2cf23f23ddca2721e9f336d24bc99a48c7c51b47
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_processed_stripes(struct bio *bio)
103 {
104         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
105         return (atomic_read(segments) >> 16) & 0xffff;
106 }
107
108 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
109 {
110         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111         return atomic_sub_return(1, segments) & 0xffff;
112 }
113
114 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
115 {
116         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117         atomic_inc(segments);
118 }
119
120 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
121         unsigned int cnt)
122 {
123         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
124         int old, new;
125
126         do {
127                 old = atomic_read(segments);
128                 new = (old & 0xffff) | (cnt << 16);
129         } while (atomic_cmpxchg(segments, old, new) != old);
130 }
131
132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
133 {
134         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
135         atomic_set(segments, cnt);
136 }
137
138 /* Find first data disk in a raid6 stripe */
139 static inline int raid6_d0(struct stripe_head *sh)
140 {
141         if (sh->ddf_layout)
142                 /* ddf always start from first device */
143                 return 0;
144         /* md starts just after Q block */
145         if (sh->qd_idx == sh->disks - 1)
146                 return 0;
147         else
148                 return sh->qd_idx + 1;
149 }
150 static inline int raid6_next_disk(int disk, int raid_disks)
151 {
152         disk++;
153         return (disk < raid_disks) ? disk : 0;
154 }
155
156 /* When walking through the disks in a raid5, starting at raid6_d0,
157  * We need to map each disk to a 'slot', where the data disks are slot
158  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
159  * is raid_disks-1.  This help does that mapping.
160  */
161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
162                              int *count, int syndrome_disks)
163 {
164         int slot = *count;
165
166         if (sh->ddf_layout)
167                 (*count)++;
168         if (idx == sh->pd_idx)
169                 return syndrome_disks;
170         if (idx == sh->qd_idx)
171                 return syndrome_disks + 1;
172         if (!sh->ddf_layout)
173                 (*count)++;
174         return slot;
175 }
176
177 static void return_io(struct bio *return_bi)
178 {
179         struct bio *bi = return_bi;
180         while (bi) {
181
182                 return_bi = bi->bi_next;
183                 bi->bi_next = NULL;
184                 bi->bi_size = 0;
185                 bio_endio(bi, 0);
186                 bi = return_bi;
187         }
188 }
189
190 static void print_raid5_conf (struct r5conf *conf);
191
192 static int stripe_operations_active(struct stripe_head *sh)
193 {
194         return sh->check_state || sh->reconstruct_state ||
195                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
196                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
197 }
198
199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
200 {
201         BUG_ON(!list_empty(&sh->lru));
202         BUG_ON(atomic_read(&conf->active_stripes)==0);
203         if (test_bit(STRIPE_HANDLE, &sh->state)) {
204                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
205                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
206                         list_add_tail(&sh->lru, &conf->delayed_list);
207                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
208                            sh->bm_seq - conf->seq_write > 0)
209                         list_add_tail(&sh->lru, &conf->bitmap_list);
210                 else {
211                         clear_bit(STRIPE_DELAYED, &sh->state);
212                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
213                         list_add_tail(&sh->lru, &conf->handle_list);
214                 }
215                 md_wakeup_thread(conf->mddev->thread);
216         } else {
217                 BUG_ON(stripe_operations_active(sh));
218                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
219                         if (atomic_dec_return(&conf->preread_active_stripes)
220                             < IO_THRESHOLD)
221                                 md_wakeup_thread(conf->mddev->thread);
222                 atomic_dec(&conf->active_stripes);
223                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
224                         list_add_tail(&sh->lru, &conf->inactive_list);
225                         wake_up(&conf->wait_for_stripe);
226                         if (conf->retry_read_aligned)
227                                 md_wakeup_thread(conf->mddev->thread);
228                 }
229         }
230 }
231
232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
233 {
234         if (atomic_dec_and_test(&sh->count))
235                 do_release_stripe(conf, sh);
236 }
237
238 static void release_stripe(struct stripe_head *sh)
239 {
240         struct r5conf *conf = sh->raid_conf;
241         unsigned long flags;
242
243         local_irq_save(flags);
244         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
245                 do_release_stripe(conf, sh);
246                 spin_unlock(&conf->device_lock);
247         }
248         local_irq_restore(flags);
249 }
250
251 static inline void remove_hash(struct stripe_head *sh)
252 {
253         pr_debug("remove_hash(), stripe %llu\n",
254                 (unsigned long long)sh->sector);
255
256         hlist_del_init(&sh->hash);
257 }
258
259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
260 {
261         struct hlist_head *hp = stripe_hash(conf, sh->sector);
262
263         pr_debug("insert_hash(), stripe %llu\n",
264                 (unsigned long long)sh->sector);
265
266         hlist_add_head(&sh->hash, hp);
267 }
268
269
270 /* find an idle stripe, make sure it is unhashed, and return it. */
271 static struct stripe_head *get_free_stripe(struct r5conf *conf)
272 {
273         struct stripe_head *sh = NULL;
274         struct list_head *first;
275
276         if (list_empty(&conf->inactive_list))
277                 goto out;
278         first = conf->inactive_list.next;
279         sh = list_entry(first, struct stripe_head, lru);
280         list_del_init(first);
281         remove_hash(sh);
282         atomic_inc(&conf->active_stripes);
283 out:
284         return sh;
285 }
286
287 static void shrink_buffers(struct stripe_head *sh)
288 {
289         struct page *p;
290         int i;
291         int num = sh->raid_conf->pool_size;
292
293         for (i = 0; i < num ; i++) {
294                 p = sh->dev[i].page;
295                 if (!p)
296                         continue;
297                 sh->dev[i].page = NULL;
298                 put_page(p);
299         }
300 }
301
302 static int grow_buffers(struct stripe_head *sh)
303 {
304         int i;
305         int num = sh->raid_conf->pool_size;
306
307         for (i = 0; i < num; i++) {
308                 struct page *page;
309
310                 if (!(page = alloc_page(GFP_KERNEL))) {
311                         return 1;
312                 }
313                 sh->dev[i].page = page;
314         }
315         return 0;
316 }
317
318 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320                             struct stripe_head *sh);
321
322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
323 {
324         struct r5conf *conf = sh->raid_conf;
325         int i;
326
327         BUG_ON(atomic_read(&sh->count) != 0);
328         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
329         BUG_ON(stripe_operations_active(sh));
330
331         pr_debug("init_stripe called, stripe %llu\n",
332                 (unsigned long long)sh->sector);
333
334         remove_hash(sh);
335
336         sh->generation = conf->generation - previous;
337         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
338         sh->sector = sector;
339         stripe_set_idx(sector, conf, previous, sh);
340         sh->state = 0;
341
342
343         for (i = sh->disks; i--; ) {
344                 struct r5dev *dev = &sh->dev[i];
345
346                 if (dev->toread || dev->read || dev->towrite || dev->written ||
347                     test_bit(R5_LOCKED, &dev->flags)) {
348                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
349                                (unsigned long long)sh->sector, i, dev->toread,
350                                dev->read, dev->towrite, dev->written,
351                                test_bit(R5_LOCKED, &dev->flags));
352                         WARN_ON(1);
353                 }
354                 dev->flags = 0;
355                 raid5_build_block(sh, i, previous);
356         }
357         insert_hash(conf, sh);
358 }
359
360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361                                          short generation)
362 {
363         struct stripe_head *sh;
364         struct hlist_node *hn;
365
366         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368                 if (sh->sector == sector && sh->generation == generation)
369                         return sh;
370         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
371         return NULL;
372 }
373
374 /*
375  * Need to check if array has failed when deciding whether to:
376  *  - start an array
377  *  - remove non-faulty devices
378  *  - add a spare
379  *  - allow a reshape
380  * This determination is simple when no reshape is happening.
381  * However if there is a reshape, we need to carefully check
382  * both the before and after sections.
383  * This is because some failed devices may only affect one
384  * of the two sections, and some non-in_sync devices may
385  * be insync in the section most affected by failed devices.
386  */
387 static int calc_degraded(struct r5conf *conf)
388 {
389         int degraded, degraded2;
390         int i;
391
392         rcu_read_lock();
393         degraded = 0;
394         for (i = 0; i < conf->previous_raid_disks; i++) {
395                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396                 if (rdev && test_bit(Faulty, &rdev->flags))
397                         rdev = rcu_dereference(conf->disks[i].replacement);
398                 if (!rdev || test_bit(Faulty, &rdev->flags))
399                         degraded++;
400                 else if (test_bit(In_sync, &rdev->flags))
401                         ;
402                 else
403                         /* not in-sync or faulty.
404                          * If the reshape increases the number of devices,
405                          * this is being recovered by the reshape, so
406                          * this 'previous' section is not in_sync.
407                          * If the number of devices is being reduced however,
408                          * the device can only be part of the array if
409                          * we are reverting a reshape, so this section will
410                          * be in-sync.
411                          */
412                         if (conf->raid_disks >= conf->previous_raid_disks)
413                                 degraded++;
414         }
415         rcu_read_unlock();
416         if (conf->raid_disks == conf->previous_raid_disks)
417                 return degraded;
418         rcu_read_lock();
419         degraded2 = 0;
420         for (i = 0; i < conf->raid_disks; i++) {
421                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
422                 if (rdev && test_bit(Faulty, &rdev->flags))
423                         rdev = rcu_dereference(conf->disks[i].replacement);
424                 if (!rdev || test_bit(Faulty, &rdev->flags))
425                         degraded2++;
426                 else if (test_bit(In_sync, &rdev->flags))
427                         ;
428                 else
429                         /* not in-sync or faulty.
430                          * If reshape increases the number of devices, this
431                          * section has already been recovered, else it
432                          * almost certainly hasn't.
433                          */
434                         if (conf->raid_disks <= conf->previous_raid_disks)
435                                 degraded2++;
436         }
437         rcu_read_unlock();
438         if (degraded2 > degraded)
439                 return degraded2;
440         return degraded;
441 }
442
443 static int has_failed(struct r5conf *conf)
444 {
445         int degraded;
446
447         if (conf->mddev->reshape_position == MaxSector)
448                 return conf->mddev->degraded > conf->max_degraded;
449
450         degraded = calc_degraded(conf);
451         if (degraded > conf->max_degraded)
452                 return 1;
453         return 0;
454 }
455
456 static struct stripe_head *
457 get_active_stripe(struct r5conf *conf, sector_t sector,
458                   int previous, int noblock, int noquiesce)
459 {
460         struct stripe_head *sh;
461
462         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
463
464         spin_lock_irq(&conf->device_lock);
465
466         do {
467                 wait_event_lock_irq(conf->wait_for_stripe,
468                                     conf->quiesce == 0 || noquiesce,
469                                     conf->device_lock, /* nothing */);
470                 sh = __find_stripe(conf, sector, conf->generation - previous);
471                 if (!sh) {
472                         if (!conf->inactive_blocked)
473                                 sh = get_free_stripe(conf);
474                         if (noblock && sh == NULL)
475                                 break;
476                         if (!sh) {
477                                 conf->inactive_blocked = 1;
478                                 wait_event_lock_irq(conf->wait_for_stripe,
479                                                     !list_empty(&conf->inactive_list) &&
480                                                     (atomic_read(&conf->active_stripes)
481                                                      < (conf->max_nr_stripes *3/4)
482                                                      || !conf->inactive_blocked),
483                                                     conf->device_lock,
484                                                     );
485                                 conf->inactive_blocked = 0;
486                         } else
487                                 init_stripe(sh, sector, previous);
488                 } else {
489                         if (atomic_read(&sh->count)) {
490                                 BUG_ON(!list_empty(&sh->lru)
491                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
492                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
493                         } else {
494                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
495                                         atomic_inc(&conf->active_stripes);
496                                 if (list_empty(&sh->lru) &&
497                                     !test_bit(STRIPE_EXPANDING, &sh->state))
498                                         BUG();
499                                 list_del_init(&sh->lru);
500                         }
501                 }
502         } while (sh == NULL);
503
504         if (sh)
505                 atomic_inc(&sh->count);
506
507         spin_unlock_irq(&conf->device_lock);
508         return sh;
509 }
510
511 /* Determine if 'data_offset' or 'new_data_offset' should be used
512  * in this stripe_head.
513  */
514 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
515 {
516         sector_t progress = conf->reshape_progress;
517         /* Need a memory barrier to make sure we see the value
518          * of conf->generation, or ->data_offset that was set before
519          * reshape_progress was updated.
520          */
521         smp_rmb();
522         if (progress == MaxSector)
523                 return 0;
524         if (sh->generation == conf->generation - 1)
525                 return 0;
526         /* We are in a reshape, and this is a new-generation stripe,
527          * so use new_data_offset.
528          */
529         return 1;
530 }
531
532 static void
533 raid5_end_read_request(struct bio *bi, int error);
534 static void
535 raid5_end_write_request(struct bio *bi, int error);
536
537 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
538 {
539         struct r5conf *conf = sh->raid_conf;
540         int i, disks = sh->disks;
541
542         might_sleep();
543
544         for (i = disks; i--; ) {
545                 int rw;
546                 int replace_only = 0;
547                 struct bio *bi, *rbi;
548                 struct md_rdev *rdev, *rrdev = NULL;
549                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
550                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
551                                 rw = WRITE_FUA;
552                         else
553                                 rw = WRITE;
554                         if (test_bit(R5_Discard, &sh->dev[i].flags))
555                                 rw |= REQ_DISCARD;
556                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
557                         rw = READ;
558                 else if (test_and_clear_bit(R5_WantReplace,
559                                             &sh->dev[i].flags)) {
560                         rw = WRITE;
561                         replace_only = 1;
562                 } else
563                         continue;
564                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
565                         rw |= REQ_SYNC;
566
567                 bi = &sh->dev[i].req;
568                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
569
570                 bi->bi_rw = rw;
571                 rbi->bi_rw = rw;
572                 if (rw & WRITE) {
573                         bi->bi_end_io = raid5_end_write_request;
574                         rbi->bi_end_io = raid5_end_write_request;
575                 } else
576                         bi->bi_end_io = raid5_end_read_request;
577
578                 rcu_read_lock();
579                 rrdev = rcu_dereference(conf->disks[i].replacement);
580                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
581                 rdev = rcu_dereference(conf->disks[i].rdev);
582                 if (!rdev) {
583                         rdev = rrdev;
584                         rrdev = NULL;
585                 }
586                 if (rw & WRITE) {
587                         if (replace_only)
588                                 rdev = NULL;
589                         if (rdev == rrdev)
590                                 /* We raced and saw duplicates */
591                                 rrdev = NULL;
592                 } else {
593                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
594                                 rdev = rrdev;
595                         rrdev = NULL;
596                 }
597
598                 if (rdev && test_bit(Faulty, &rdev->flags))
599                         rdev = NULL;
600                 if (rdev)
601                         atomic_inc(&rdev->nr_pending);
602                 if (rrdev && test_bit(Faulty, &rrdev->flags))
603                         rrdev = NULL;
604                 if (rrdev)
605                         atomic_inc(&rrdev->nr_pending);
606                 rcu_read_unlock();
607
608                 /* We have already checked bad blocks for reads.  Now
609                  * need to check for writes.  We never accept write errors
610                  * on the replacement, so we don't to check rrdev.
611                  */
612                 while ((rw & WRITE) && rdev &&
613                        test_bit(WriteErrorSeen, &rdev->flags)) {
614                         sector_t first_bad;
615                         int bad_sectors;
616                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
617                                               &first_bad, &bad_sectors);
618                         if (!bad)
619                                 break;
620
621                         if (bad < 0) {
622                                 set_bit(BlockedBadBlocks, &rdev->flags);
623                                 if (!conf->mddev->external &&
624                                     conf->mddev->flags) {
625                                         /* It is very unlikely, but we might
626                                          * still need to write out the
627                                          * bad block log - better give it
628                                          * a chance*/
629                                         md_check_recovery(conf->mddev);
630                                 }
631                                 /*
632                                  * Because md_wait_for_blocked_rdev
633                                  * will dec nr_pending, we must
634                                  * increment it first.
635                                  */
636                                 atomic_inc(&rdev->nr_pending);
637                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
638                         } else {
639                                 /* Acknowledged bad block - skip the write */
640                                 rdev_dec_pending(rdev, conf->mddev);
641                                 rdev = NULL;
642                         }
643                 }
644
645                 if (rdev) {
646                         if (s->syncing || s->expanding || s->expanded
647                             || s->replacing)
648                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
649
650                         set_bit(STRIPE_IO_STARTED, &sh->state);
651
652                         bi->bi_bdev = rdev->bdev;
653                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
654                                 __func__, (unsigned long long)sh->sector,
655                                 bi->bi_rw, i);
656                         atomic_inc(&sh->count);
657                         if (use_new_offset(conf, sh))
658                                 bi->bi_sector = (sh->sector
659                                                  + rdev->new_data_offset);
660                         else
661                                 bi->bi_sector = (sh->sector
662                                                  + rdev->data_offset);
663                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
664                                 bi->bi_rw |= REQ_FLUSH;
665
666                         bi->bi_flags = 1 << BIO_UPTODATE;
667                         bi->bi_idx = 0;
668                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
669                         bi->bi_io_vec[0].bv_offset = 0;
670                         bi->bi_size = STRIPE_SIZE;
671                         bi->bi_next = NULL;
672                         if (rrdev)
673                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
674                         generic_make_request(bi);
675                 }
676                 if (rrdev) {
677                         if (s->syncing || s->expanding || s->expanded
678                             || s->replacing)
679                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
680
681                         set_bit(STRIPE_IO_STARTED, &sh->state);
682
683                         rbi->bi_bdev = rrdev->bdev;
684                         pr_debug("%s: for %llu schedule op %ld on "
685                                  "replacement disc %d\n",
686                                 __func__, (unsigned long long)sh->sector,
687                                 rbi->bi_rw, i);
688                         atomic_inc(&sh->count);
689                         if (use_new_offset(conf, sh))
690                                 rbi->bi_sector = (sh->sector
691                                                   + rrdev->new_data_offset);
692                         else
693                                 rbi->bi_sector = (sh->sector
694                                                   + rrdev->data_offset);
695                         rbi->bi_flags = 1 << BIO_UPTODATE;
696                         rbi->bi_idx = 0;
697                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
698                         rbi->bi_io_vec[0].bv_offset = 0;
699                         rbi->bi_size = STRIPE_SIZE;
700                         rbi->bi_next = NULL;
701                         generic_make_request(rbi);
702                 }
703                 if (!rdev && !rrdev) {
704                         if (rw & WRITE)
705                                 set_bit(STRIPE_DEGRADED, &sh->state);
706                         pr_debug("skip op %ld on disc %d for sector %llu\n",
707                                 bi->bi_rw, i, (unsigned long long)sh->sector);
708                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
709                         set_bit(STRIPE_HANDLE, &sh->state);
710                 }
711         }
712 }
713
714 static struct dma_async_tx_descriptor *
715 async_copy_data(int frombio, struct bio *bio, struct page *page,
716         sector_t sector, struct dma_async_tx_descriptor *tx)
717 {
718         struct bio_vec *bvl;
719         struct page *bio_page;
720         int i;
721         int page_offset;
722         struct async_submit_ctl submit;
723         enum async_tx_flags flags = 0;
724
725         if (bio->bi_sector >= sector)
726                 page_offset = (signed)(bio->bi_sector - sector) * 512;
727         else
728                 page_offset = (signed)(sector - bio->bi_sector) * -512;
729
730         if (frombio)
731                 flags |= ASYNC_TX_FENCE;
732         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
733
734         bio_for_each_segment(bvl, bio, i) {
735                 int len = bvl->bv_len;
736                 int clen;
737                 int b_offset = 0;
738
739                 if (page_offset < 0) {
740                         b_offset = -page_offset;
741                         page_offset += b_offset;
742                         len -= b_offset;
743                 }
744
745                 if (len > 0 && page_offset + len > STRIPE_SIZE)
746                         clen = STRIPE_SIZE - page_offset;
747                 else
748                         clen = len;
749
750                 if (clen > 0) {
751                         b_offset += bvl->bv_offset;
752                         bio_page = bvl->bv_page;
753                         if (frombio)
754                                 tx = async_memcpy(page, bio_page, page_offset,
755                                                   b_offset, clen, &submit);
756                         else
757                                 tx = async_memcpy(bio_page, page, b_offset,
758                                                   page_offset, clen, &submit);
759                 }
760                 /* chain the operations */
761                 submit.depend_tx = tx;
762
763                 if (clen < len) /* hit end of page */
764                         break;
765                 page_offset +=  len;
766         }
767
768         return tx;
769 }
770
771 static void ops_complete_biofill(void *stripe_head_ref)
772 {
773         struct stripe_head *sh = stripe_head_ref;
774         struct bio *return_bi = NULL;
775         int i;
776
777         pr_debug("%s: stripe %llu\n", __func__,
778                 (unsigned long long)sh->sector);
779
780         /* clear completed biofills */
781         for (i = sh->disks; i--; ) {
782                 struct r5dev *dev = &sh->dev[i];
783
784                 /* acknowledge completion of a biofill operation */
785                 /* and check if we need to reply to a read request,
786                  * new R5_Wantfill requests are held off until
787                  * !STRIPE_BIOFILL_RUN
788                  */
789                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
790                         struct bio *rbi, *rbi2;
791
792                         BUG_ON(!dev->read);
793                         rbi = dev->read;
794                         dev->read = NULL;
795                         while (rbi && rbi->bi_sector <
796                                 dev->sector + STRIPE_SECTORS) {
797                                 rbi2 = r5_next_bio(rbi, dev->sector);
798                                 if (!raid5_dec_bi_active_stripes(rbi)) {
799                                         rbi->bi_next = return_bi;
800                                         return_bi = rbi;
801                                 }
802                                 rbi = rbi2;
803                         }
804                 }
805         }
806         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
807
808         return_io(return_bi);
809
810         set_bit(STRIPE_HANDLE, &sh->state);
811         release_stripe(sh);
812 }
813
814 static void ops_run_biofill(struct stripe_head *sh)
815 {
816         struct dma_async_tx_descriptor *tx = NULL;
817         struct async_submit_ctl submit;
818         int i;
819
820         pr_debug("%s: stripe %llu\n", __func__,
821                 (unsigned long long)sh->sector);
822
823         for (i = sh->disks; i--; ) {
824                 struct r5dev *dev = &sh->dev[i];
825                 if (test_bit(R5_Wantfill, &dev->flags)) {
826                         struct bio *rbi;
827                         spin_lock_irq(&sh->stripe_lock);
828                         dev->read = rbi = dev->toread;
829                         dev->toread = NULL;
830                         spin_unlock_irq(&sh->stripe_lock);
831                         while (rbi && rbi->bi_sector <
832                                 dev->sector + STRIPE_SECTORS) {
833                                 tx = async_copy_data(0, rbi, dev->page,
834                                         dev->sector, tx);
835                                 rbi = r5_next_bio(rbi, dev->sector);
836                         }
837                 }
838         }
839
840         atomic_inc(&sh->count);
841         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
842         async_trigger_callback(&submit);
843 }
844
845 static void mark_target_uptodate(struct stripe_head *sh, int target)
846 {
847         struct r5dev *tgt;
848
849         if (target < 0)
850                 return;
851
852         tgt = &sh->dev[target];
853         set_bit(R5_UPTODATE, &tgt->flags);
854         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
855         clear_bit(R5_Wantcompute, &tgt->flags);
856 }
857
858 static void ops_complete_compute(void *stripe_head_ref)
859 {
860         struct stripe_head *sh = stripe_head_ref;
861
862         pr_debug("%s: stripe %llu\n", __func__,
863                 (unsigned long long)sh->sector);
864
865         /* mark the computed target(s) as uptodate */
866         mark_target_uptodate(sh, sh->ops.target);
867         mark_target_uptodate(sh, sh->ops.target2);
868
869         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
870         if (sh->check_state == check_state_compute_run)
871                 sh->check_state = check_state_compute_result;
872         set_bit(STRIPE_HANDLE, &sh->state);
873         release_stripe(sh);
874 }
875
876 /* return a pointer to the address conversion region of the scribble buffer */
877 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
878                                  struct raid5_percpu *percpu)
879 {
880         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
881 }
882
883 static struct dma_async_tx_descriptor *
884 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
885 {
886         int disks = sh->disks;
887         struct page **xor_srcs = percpu->scribble;
888         int target = sh->ops.target;
889         struct r5dev *tgt = &sh->dev[target];
890         struct page *xor_dest = tgt->page;
891         int count = 0;
892         struct dma_async_tx_descriptor *tx;
893         struct async_submit_ctl submit;
894         int i;
895
896         pr_debug("%s: stripe %llu block: %d\n",
897                 __func__, (unsigned long long)sh->sector, target);
898         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
899
900         for (i = disks; i--; )
901                 if (i != target)
902                         xor_srcs[count++] = sh->dev[i].page;
903
904         atomic_inc(&sh->count);
905
906         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
907                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
908         if (unlikely(count == 1))
909                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
910         else
911                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
912
913         return tx;
914 }
915
916 /* set_syndrome_sources - populate source buffers for gen_syndrome
917  * @srcs - (struct page *) array of size sh->disks
918  * @sh - stripe_head to parse
919  *
920  * Populates srcs in proper layout order for the stripe and returns the
921  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
922  * destination buffer is recorded in srcs[count] and the Q destination
923  * is recorded in srcs[count+1]].
924  */
925 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
926 {
927         int disks = sh->disks;
928         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
929         int d0_idx = raid6_d0(sh);
930         int count;
931         int i;
932
933         for (i = 0; i < disks; i++)
934                 srcs[i] = NULL;
935
936         count = 0;
937         i = d0_idx;
938         do {
939                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
940
941                 srcs[slot] = sh->dev[i].page;
942                 i = raid6_next_disk(i, disks);
943         } while (i != d0_idx);
944
945         return syndrome_disks;
946 }
947
948 static struct dma_async_tx_descriptor *
949 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
950 {
951         int disks = sh->disks;
952         struct page **blocks = percpu->scribble;
953         int target;
954         int qd_idx = sh->qd_idx;
955         struct dma_async_tx_descriptor *tx;
956         struct async_submit_ctl submit;
957         struct r5dev *tgt;
958         struct page *dest;
959         int i;
960         int count;
961
962         if (sh->ops.target < 0)
963                 target = sh->ops.target2;
964         else if (sh->ops.target2 < 0)
965                 target = sh->ops.target;
966         else
967                 /* we should only have one valid target */
968                 BUG();
969         BUG_ON(target < 0);
970         pr_debug("%s: stripe %llu block: %d\n",
971                 __func__, (unsigned long long)sh->sector, target);
972
973         tgt = &sh->dev[target];
974         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
975         dest = tgt->page;
976
977         atomic_inc(&sh->count);
978
979         if (target == qd_idx) {
980                 count = set_syndrome_sources(blocks, sh);
981                 blocks[count] = NULL; /* regenerating p is not necessary */
982                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
983                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
984                                   ops_complete_compute, sh,
985                                   to_addr_conv(sh, percpu));
986                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
987         } else {
988                 /* Compute any data- or p-drive using XOR */
989                 count = 0;
990                 for (i = disks; i-- ; ) {
991                         if (i == target || i == qd_idx)
992                                 continue;
993                         blocks[count++] = sh->dev[i].page;
994                 }
995
996                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
997                                   NULL, ops_complete_compute, sh,
998                                   to_addr_conv(sh, percpu));
999                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1000         }
1001
1002         return tx;
1003 }
1004
1005 static struct dma_async_tx_descriptor *
1006 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1007 {
1008         int i, count, disks = sh->disks;
1009         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1010         int d0_idx = raid6_d0(sh);
1011         int faila = -1, failb = -1;
1012         int target = sh->ops.target;
1013         int target2 = sh->ops.target2;
1014         struct r5dev *tgt = &sh->dev[target];
1015         struct r5dev *tgt2 = &sh->dev[target2];
1016         struct dma_async_tx_descriptor *tx;
1017         struct page **blocks = percpu->scribble;
1018         struct async_submit_ctl submit;
1019
1020         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1021                  __func__, (unsigned long long)sh->sector, target, target2);
1022         BUG_ON(target < 0 || target2 < 0);
1023         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1024         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1025
1026         /* we need to open-code set_syndrome_sources to handle the
1027          * slot number conversion for 'faila' and 'failb'
1028          */
1029         for (i = 0; i < disks ; i++)
1030                 blocks[i] = NULL;
1031         count = 0;
1032         i = d0_idx;
1033         do {
1034                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1035
1036                 blocks[slot] = sh->dev[i].page;
1037
1038                 if (i == target)
1039                         faila = slot;
1040                 if (i == target2)
1041                         failb = slot;
1042                 i = raid6_next_disk(i, disks);
1043         } while (i != d0_idx);
1044
1045         BUG_ON(faila == failb);
1046         if (failb < faila)
1047                 swap(faila, failb);
1048         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1049                  __func__, (unsigned long long)sh->sector, faila, failb);
1050
1051         atomic_inc(&sh->count);
1052
1053         if (failb == syndrome_disks+1) {
1054                 /* Q disk is one of the missing disks */
1055                 if (faila == syndrome_disks) {
1056                         /* Missing P+Q, just recompute */
1057                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1058                                           ops_complete_compute, sh,
1059                                           to_addr_conv(sh, percpu));
1060                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1061                                                   STRIPE_SIZE, &submit);
1062                 } else {
1063                         struct page *dest;
1064                         int data_target;
1065                         int qd_idx = sh->qd_idx;
1066
1067                         /* Missing D+Q: recompute D from P, then recompute Q */
1068                         if (target == qd_idx)
1069                                 data_target = target2;
1070                         else
1071                                 data_target = target;
1072
1073                         count = 0;
1074                         for (i = disks; i-- ; ) {
1075                                 if (i == data_target || i == qd_idx)
1076                                         continue;
1077                                 blocks[count++] = sh->dev[i].page;
1078                         }
1079                         dest = sh->dev[data_target].page;
1080                         init_async_submit(&submit,
1081                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1082                                           NULL, NULL, NULL,
1083                                           to_addr_conv(sh, percpu));
1084                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1085                                        &submit);
1086
1087                         count = set_syndrome_sources(blocks, sh);
1088                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1089                                           ops_complete_compute, sh,
1090                                           to_addr_conv(sh, percpu));
1091                         return async_gen_syndrome(blocks, 0, count+2,
1092                                                   STRIPE_SIZE, &submit);
1093                 }
1094         } else {
1095                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1096                                   ops_complete_compute, sh,
1097                                   to_addr_conv(sh, percpu));
1098                 if (failb == syndrome_disks) {
1099                         /* We're missing D+P. */
1100                         return async_raid6_datap_recov(syndrome_disks+2,
1101                                                        STRIPE_SIZE, faila,
1102                                                        blocks, &submit);
1103                 } else {
1104                         /* We're missing D+D. */
1105                         return async_raid6_2data_recov(syndrome_disks+2,
1106                                                        STRIPE_SIZE, faila, failb,
1107                                                        blocks, &submit);
1108                 }
1109         }
1110 }
1111
1112
1113 static void ops_complete_prexor(void *stripe_head_ref)
1114 {
1115         struct stripe_head *sh = stripe_head_ref;
1116
1117         pr_debug("%s: stripe %llu\n", __func__,
1118                 (unsigned long long)sh->sector);
1119 }
1120
1121 static struct dma_async_tx_descriptor *
1122 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1123                struct dma_async_tx_descriptor *tx)
1124 {
1125         int disks = sh->disks;
1126         struct page **xor_srcs = percpu->scribble;
1127         int count = 0, pd_idx = sh->pd_idx, i;
1128         struct async_submit_ctl submit;
1129
1130         /* existing parity data subtracted */
1131         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1132
1133         pr_debug("%s: stripe %llu\n", __func__,
1134                 (unsigned long long)sh->sector);
1135
1136         for (i = disks; i--; ) {
1137                 struct r5dev *dev = &sh->dev[i];
1138                 /* Only process blocks that are known to be uptodate */
1139                 if (test_bit(R5_Wantdrain, &dev->flags))
1140                         xor_srcs[count++] = dev->page;
1141         }
1142
1143         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1144                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1145         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1146
1147         return tx;
1148 }
1149
1150 static struct dma_async_tx_descriptor *
1151 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1152 {
1153         int disks = sh->disks;
1154         int i;
1155
1156         pr_debug("%s: stripe %llu\n", __func__,
1157                 (unsigned long long)sh->sector);
1158
1159         for (i = disks; i--; ) {
1160                 struct r5dev *dev = &sh->dev[i];
1161                 struct bio *chosen;
1162
1163                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1164                         struct bio *wbi;
1165
1166                         spin_lock_irq(&sh->stripe_lock);
1167                         chosen = dev->towrite;
1168                         dev->towrite = NULL;
1169                         BUG_ON(dev->written);
1170                         wbi = dev->written = chosen;
1171                         spin_unlock_irq(&sh->stripe_lock);
1172
1173                         while (wbi && wbi->bi_sector <
1174                                 dev->sector + STRIPE_SECTORS) {
1175                                 if (wbi->bi_rw & REQ_FUA)
1176                                         set_bit(R5_WantFUA, &dev->flags);
1177                                 if (wbi->bi_rw & REQ_SYNC)
1178                                         set_bit(R5_SyncIO, &dev->flags);
1179                                 if (wbi->bi_rw & REQ_DISCARD)
1180                                         set_bit(R5_Discard, &dev->flags);
1181                                 else
1182                                         tx = async_copy_data(1, wbi, dev->page,
1183                                                 dev->sector, tx);
1184                                 wbi = r5_next_bio(wbi, dev->sector);
1185                         }
1186                 }
1187         }
1188
1189         return tx;
1190 }
1191
1192 static void ops_complete_reconstruct(void *stripe_head_ref)
1193 {
1194         struct stripe_head *sh = stripe_head_ref;
1195         int disks = sh->disks;
1196         int pd_idx = sh->pd_idx;
1197         int qd_idx = sh->qd_idx;
1198         int i;
1199         bool fua = false, sync = false, discard = false;
1200
1201         pr_debug("%s: stripe %llu\n", __func__,
1202                 (unsigned long long)sh->sector);
1203
1204         for (i = disks; i--; ) {
1205                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1206                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1207                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1208         }
1209
1210         for (i = disks; i--; ) {
1211                 struct r5dev *dev = &sh->dev[i];
1212
1213                 if (dev->written || i == pd_idx || i == qd_idx) {
1214                         if (!discard)
1215                                 set_bit(R5_UPTODATE, &dev->flags);
1216                         if (fua)
1217                                 set_bit(R5_WantFUA, &dev->flags);
1218                         if (sync)
1219                                 set_bit(R5_SyncIO, &dev->flags);
1220                 }
1221         }
1222
1223         if (sh->reconstruct_state == reconstruct_state_drain_run)
1224                 sh->reconstruct_state = reconstruct_state_drain_result;
1225         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1226                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1227         else {
1228                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1229                 sh->reconstruct_state = reconstruct_state_result;
1230         }
1231
1232         set_bit(STRIPE_HANDLE, &sh->state);
1233         release_stripe(sh);
1234 }
1235
1236 static void
1237 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1238                      struct dma_async_tx_descriptor *tx)
1239 {
1240         int disks = sh->disks;
1241         struct page **xor_srcs = percpu->scribble;
1242         struct async_submit_ctl submit;
1243         int count = 0, pd_idx = sh->pd_idx, i;
1244         struct page *xor_dest;
1245         int prexor = 0;
1246         unsigned long flags;
1247
1248         pr_debug("%s: stripe %llu\n", __func__,
1249                 (unsigned long long)sh->sector);
1250
1251         for (i = 0; i < sh->disks; i++) {
1252                 if (pd_idx == i)
1253                         continue;
1254                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1255                         break;
1256         }
1257         if (i >= sh->disks) {
1258                 atomic_inc(&sh->count);
1259                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1260                 ops_complete_reconstruct(sh);
1261                 return;
1262         }
1263         /* check if prexor is active which means only process blocks
1264          * that are part of a read-modify-write (written)
1265          */
1266         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1267                 prexor = 1;
1268                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1269                 for (i = disks; i--; ) {
1270                         struct r5dev *dev = &sh->dev[i];
1271                         if (dev->written)
1272                                 xor_srcs[count++] = dev->page;
1273                 }
1274         } else {
1275                 xor_dest = sh->dev[pd_idx].page;
1276                 for (i = disks; i--; ) {
1277                         struct r5dev *dev = &sh->dev[i];
1278                         if (i != pd_idx)
1279                                 xor_srcs[count++] = dev->page;
1280                 }
1281         }
1282
1283         /* 1/ if we prexor'd then the dest is reused as a source
1284          * 2/ if we did not prexor then we are redoing the parity
1285          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1286          * for the synchronous xor case
1287          */
1288         flags = ASYNC_TX_ACK |
1289                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1290
1291         atomic_inc(&sh->count);
1292
1293         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1294                           to_addr_conv(sh, percpu));
1295         if (unlikely(count == 1))
1296                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1297         else
1298                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1299 }
1300
1301 static void
1302 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1303                      struct dma_async_tx_descriptor *tx)
1304 {
1305         struct async_submit_ctl submit;
1306         struct page **blocks = percpu->scribble;
1307         int count, i;
1308
1309         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1310
1311         for (i = 0; i < sh->disks; i++) {
1312                 if (sh->pd_idx == i || sh->qd_idx == i)
1313                         continue;
1314                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1315                         break;
1316         }
1317         if (i >= sh->disks) {
1318                 atomic_inc(&sh->count);
1319                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1320                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1321                 ops_complete_reconstruct(sh);
1322                 return;
1323         }
1324
1325         count = set_syndrome_sources(blocks, sh);
1326
1327         atomic_inc(&sh->count);
1328
1329         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1330                           sh, to_addr_conv(sh, percpu));
1331         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1332 }
1333
1334 static void ops_complete_check(void *stripe_head_ref)
1335 {
1336         struct stripe_head *sh = stripe_head_ref;
1337
1338         pr_debug("%s: stripe %llu\n", __func__,
1339                 (unsigned long long)sh->sector);
1340
1341         sh->check_state = check_state_check_result;
1342         set_bit(STRIPE_HANDLE, &sh->state);
1343         release_stripe(sh);
1344 }
1345
1346 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1347 {
1348         int disks = sh->disks;
1349         int pd_idx = sh->pd_idx;
1350         int qd_idx = sh->qd_idx;
1351         struct page *xor_dest;
1352         struct page **xor_srcs = percpu->scribble;
1353         struct dma_async_tx_descriptor *tx;
1354         struct async_submit_ctl submit;
1355         int count;
1356         int i;
1357
1358         pr_debug("%s: stripe %llu\n", __func__,
1359                 (unsigned long long)sh->sector);
1360
1361         count = 0;
1362         xor_dest = sh->dev[pd_idx].page;
1363         xor_srcs[count++] = xor_dest;
1364         for (i = disks; i--; ) {
1365                 if (i == pd_idx || i == qd_idx)
1366                         continue;
1367                 xor_srcs[count++] = sh->dev[i].page;
1368         }
1369
1370         init_async_submit(&submit, 0, NULL, NULL, NULL,
1371                           to_addr_conv(sh, percpu));
1372         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1373                            &sh->ops.zero_sum_result, &submit);
1374
1375         atomic_inc(&sh->count);
1376         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1377         tx = async_trigger_callback(&submit);
1378 }
1379
1380 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1381 {
1382         struct page **srcs = percpu->scribble;
1383         struct async_submit_ctl submit;
1384         int count;
1385
1386         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1387                 (unsigned long long)sh->sector, checkp);
1388
1389         count = set_syndrome_sources(srcs, sh);
1390         if (!checkp)
1391                 srcs[count] = NULL;
1392
1393         atomic_inc(&sh->count);
1394         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1395                           sh, to_addr_conv(sh, percpu));
1396         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1397                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1398 }
1399
1400 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1401 {
1402         int overlap_clear = 0, i, disks = sh->disks;
1403         struct dma_async_tx_descriptor *tx = NULL;
1404         struct r5conf *conf = sh->raid_conf;
1405         int level = conf->level;
1406         struct raid5_percpu *percpu;
1407         unsigned long cpu;
1408
1409         cpu = get_cpu();
1410         percpu = per_cpu_ptr(conf->percpu, cpu);
1411         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1412                 ops_run_biofill(sh);
1413                 overlap_clear++;
1414         }
1415
1416         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1417                 if (level < 6)
1418                         tx = ops_run_compute5(sh, percpu);
1419                 else {
1420                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1421                                 tx = ops_run_compute6_1(sh, percpu);
1422                         else
1423                                 tx = ops_run_compute6_2(sh, percpu);
1424                 }
1425                 /* terminate the chain if reconstruct is not set to be run */
1426                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1427                         async_tx_ack(tx);
1428         }
1429
1430         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1431                 tx = ops_run_prexor(sh, percpu, tx);
1432
1433         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1434                 tx = ops_run_biodrain(sh, tx);
1435                 overlap_clear++;
1436         }
1437
1438         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1439                 if (level < 6)
1440                         ops_run_reconstruct5(sh, percpu, tx);
1441                 else
1442                         ops_run_reconstruct6(sh, percpu, tx);
1443         }
1444
1445         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1446                 if (sh->check_state == check_state_run)
1447                         ops_run_check_p(sh, percpu);
1448                 else if (sh->check_state == check_state_run_q)
1449                         ops_run_check_pq(sh, percpu, 0);
1450                 else if (sh->check_state == check_state_run_pq)
1451                         ops_run_check_pq(sh, percpu, 1);
1452                 else
1453                         BUG();
1454         }
1455
1456         if (overlap_clear)
1457                 for (i = disks; i--; ) {
1458                         struct r5dev *dev = &sh->dev[i];
1459                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1460                                 wake_up(&sh->raid_conf->wait_for_overlap);
1461                 }
1462         put_cpu();
1463 }
1464
1465 #ifdef CONFIG_MULTICORE_RAID456
1466 static void async_run_ops(void *param, async_cookie_t cookie)
1467 {
1468         struct stripe_head *sh = param;
1469         unsigned long ops_request = sh->ops.request;
1470
1471         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1472         wake_up(&sh->ops.wait_for_ops);
1473
1474         __raid_run_ops(sh, ops_request);
1475         release_stripe(sh);
1476 }
1477
1478 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1479 {
1480         /* since handle_stripe can be called outside of raid5d context
1481          * we need to ensure sh->ops.request is de-staged before another
1482          * request arrives
1483          */
1484         wait_event(sh->ops.wait_for_ops,
1485                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1486         sh->ops.request = ops_request;
1487
1488         atomic_inc(&sh->count);
1489         async_schedule(async_run_ops, sh);
1490 }
1491 #else
1492 #define raid_run_ops __raid_run_ops
1493 #endif
1494
1495 static int grow_one_stripe(struct r5conf *conf)
1496 {
1497         struct stripe_head *sh;
1498         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1499         if (!sh)
1500                 return 0;
1501
1502         sh->raid_conf = conf;
1503         #ifdef CONFIG_MULTICORE_RAID456
1504         init_waitqueue_head(&sh->ops.wait_for_ops);
1505         #endif
1506
1507         spin_lock_init(&sh->stripe_lock);
1508
1509         if (grow_buffers(sh)) {
1510                 shrink_buffers(sh);
1511                 kmem_cache_free(conf->slab_cache, sh);
1512                 return 0;
1513         }
1514         /* we just created an active stripe so... */
1515         atomic_set(&sh->count, 1);
1516         atomic_inc(&conf->active_stripes);
1517         INIT_LIST_HEAD(&sh->lru);
1518         release_stripe(sh);
1519         return 1;
1520 }
1521
1522 static int grow_stripes(struct r5conf *conf, int num)
1523 {
1524         struct kmem_cache *sc;
1525         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1526
1527         if (conf->mddev->gendisk)
1528                 sprintf(conf->cache_name[0],
1529                         "raid%d-%s", conf->level, mdname(conf->mddev));
1530         else
1531                 sprintf(conf->cache_name[0],
1532                         "raid%d-%p", conf->level, conf->mddev);
1533         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1534
1535         conf->active_name = 0;
1536         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1537                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1538                                0, 0, NULL);
1539         if (!sc)
1540                 return 1;
1541         conf->slab_cache = sc;
1542         conf->pool_size = devs;
1543         while (num--)
1544                 if (!grow_one_stripe(conf))
1545                         return 1;
1546         return 0;
1547 }
1548
1549 /**
1550  * scribble_len - return the required size of the scribble region
1551  * @num - total number of disks in the array
1552  *
1553  * The size must be enough to contain:
1554  * 1/ a struct page pointer for each device in the array +2
1555  * 2/ room to convert each entry in (1) to its corresponding dma
1556  *    (dma_map_page()) or page (page_address()) address.
1557  *
1558  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1559  * calculate over all devices (not just the data blocks), using zeros in place
1560  * of the P and Q blocks.
1561  */
1562 static size_t scribble_len(int num)
1563 {
1564         size_t len;
1565
1566         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1567
1568         return len;
1569 }
1570
1571 static int resize_stripes(struct r5conf *conf, int newsize)
1572 {
1573         /* Make all the stripes able to hold 'newsize' devices.
1574          * New slots in each stripe get 'page' set to a new page.
1575          *
1576          * This happens in stages:
1577          * 1/ create a new kmem_cache and allocate the required number of
1578          *    stripe_heads.
1579          * 2/ gather all the old stripe_heads and tranfer the pages across
1580          *    to the new stripe_heads.  This will have the side effect of
1581          *    freezing the array as once all stripe_heads have been collected,
1582          *    no IO will be possible.  Old stripe heads are freed once their
1583          *    pages have been transferred over, and the old kmem_cache is
1584          *    freed when all stripes are done.
1585          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1586          *    we simple return a failre status - no need to clean anything up.
1587          * 4/ allocate new pages for the new slots in the new stripe_heads.
1588          *    If this fails, we don't bother trying the shrink the
1589          *    stripe_heads down again, we just leave them as they are.
1590          *    As each stripe_head is processed the new one is released into
1591          *    active service.
1592          *
1593          * Once step2 is started, we cannot afford to wait for a write,
1594          * so we use GFP_NOIO allocations.
1595          */
1596         struct stripe_head *osh, *nsh;
1597         LIST_HEAD(newstripes);
1598         struct disk_info *ndisks;
1599         unsigned long cpu;
1600         int err;
1601         struct kmem_cache *sc;
1602         int i;
1603
1604         if (newsize <= conf->pool_size)
1605                 return 0; /* never bother to shrink */
1606
1607         err = md_allow_write(conf->mddev);
1608         if (err)
1609                 return err;
1610
1611         /* Step 1 */
1612         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1613                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1614                                0, 0, NULL);
1615         if (!sc)
1616                 return -ENOMEM;
1617
1618         for (i = conf->max_nr_stripes; i; i--) {
1619                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1620                 if (!nsh)
1621                         break;
1622
1623                 nsh->raid_conf = conf;
1624                 #ifdef CONFIG_MULTICORE_RAID456
1625                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1626                 #endif
1627                 spin_lock_init(&nsh->stripe_lock);
1628
1629                 list_add(&nsh->lru, &newstripes);
1630         }
1631         if (i) {
1632                 /* didn't get enough, give up */
1633                 while (!list_empty(&newstripes)) {
1634                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1635                         list_del(&nsh->lru);
1636                         kmem_cache_free(sc, nsh);
1637                 }
1638                 kmem_cache_destroy(sc);
1639                 return -ENOMEM;
1640         }
1641         /* Step 2 - Must use GFP_NOIO now.
1642          * OK, we have enough stripes, start collecting inactive
1643          * stripes and copying them over
1644          */
1645         list_for_each_entry(nsh, &newstripes, lru) {
1646                 spin_lock_irq(&conf->device_lock);
1647                 wait_event_lock_irq(conf->wait_for_stripe,
1648                                     !list_empty(&conf->inactive_list),
1649                                     conf->device_lock,
1650                                     );
1651                 osh = get_free_stripe(conf);
1652                 spin_unlock_irq(&conf->device_lock);
1653                 atomic_set(&nsh->count, 1);
1654                 for(i=0; i<conf->pool_size; i++)
1655                         nsh->dev[i].page = osh->dev[i].page;
1656                 for( ; i<newsize; i++)
1657                         nsh->dev[i].page = NULL;
1658                 kmem_cache_free(conf->slab_cache, osh);
1659         }
1660         kmem_cache_destroy(conf->slab_cache);
1661
1662         /* Step 3.
1663          * At this point, we are holding all the stripes so the array
1664          * is completely stalled, so now is a good time to resize
1665          * conf->disks and the scribble region
1666          */
1667         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1668         if (ndisks) {
1669                 for (i=0; i<conf->raid_disks; i++)
1670                         ndisks[i] = conf->disks[i];
1671                 kfree(conf->disks);
1672                 conf->disks = ndisks;
1673         } else
1674                 err = -ENOMEM;
1675
1676         get_online_cpus();
1677         conf->scribble_len = scribble_len(newsize);
1678         for_each_present_cpu(cpu) {
1679                 struct raid5_percpu *percpu;
1680                 void *scribble;
1681
1682                 percpu = per_cpu_ptr(conf->percpu, cpu);
1683                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1684
1685                 if (scribble) {
1686                         kfree(percpu->scribble);
1687                         percpu->scribble = scribble;
1688                 } else {
1689                         err = -ENOMEM;
1690                         break;
1691                 }
1692         }
1693         put_online_cpus();
1694
1695         /* Step 4, return new stripes to service */
1696         while(!list_empty(&newstripes)) {
1697                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1698                 list_del_init(&nsh->lru);
1699
1700                 for (i=conf->raid_disks; i < newsize; i++)
1701                         if (nsh->dev[i].page == NULL) {
1702                                 struct page *p = alloc_page(GFP_NOIO);
1703                                 nsh->dev[i].page = p;
1704                                 if (!p)
1705                                         err = -ENOMEM;
1706                         }
1707                 release_stripe(nsh);
1708         }
1709         /* critical section pass, GFP_NOIO no longer needed */
1710
1711         conf->slab_cache = sc;
1712         conf->active_name = 1-conf->active_name;
1713         conf->pool_size = newsize;
1714         return err;
1715 }
1716
1717 static int drop_one_stripe(struct r5conf *conf)
1718 {
1719         struct stripe_head *sh;
1720
1721         spin_lock_irq(&conf->device_lock);
1722         sh = get_free_stripe(conf);
1723         spin_unlock_irq(&conf->device_lock);
1724         if (!sh)
1725                 return 0;
1726         BUG_ON(atomic_read(&sh->count));
1727         shrink_buffers(sh);
1728         kmem_cache_free(conf->slab_cache, sh);
1729         atomic_dec(&conf->active_stripes);
1730         return 1;
1731 }
1732
1733 static void shrink_stripes(struct r5conf *conf)
1734 {
1735         while (drop_one_stripe(conf))
1736                 ;
1737
1738         if (conf->slab_cache)
1739                 kmem_cache_destroy(conf->slab_cache);
1740         conf->slab_cache = NULL;
1741 }
1742
1743 static void raid5_end_read_request(struct bio * bi, int error)
1744 {
1745         struct stripe_head *sh = bi->bi_private;
1746         struct r5conf *conf = sh->raid_conf;
1747         int disks = sh->disks, i;
1748         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1749         char b[BDEVNAME_SIZE];
1750         struct md_rdev *rdev = NULL;
1751         sector_t s;
1752
1753         for (i=0 ; i<disks; i++)
1754                 if (bi == &sh->dev[i].req)
1755                         break;
1756
1757         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1758                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1759                 uptodate);
1760         if (i == disks) {
1761                 BUG();
1762                 return;
1763         }
1764         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1765                 /* If replacement finished while this request was outstanding,
1766                  * 'replacement' might be NULL already.
1767                  * In that case it moved down to 'rdev'.
1768                  * rdev is not removed until all requests are finished.
1769                  */
1770                 rdev = conf->disks[i].replacement;
1771         if (!rdev)
1772                 rdev = conf->disks[i].rdev;
1773
1774         if (use_new_offset(conf, sh))
1775                 s = sh->sector + rdev->new_data_offset;
1776         else
1777                 s = sh->sector + rdev->data_offset;
1778         if (uptodate) {
1779                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1780                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1781                         /* Note that this cannot happen on a
1782                          * replacement device.  We just fail those on
1783                          * any error
1784                          */
1785                         printk_ratelimited(
1786                                 KERN_INFO
1787                                 "md/raid:%s: read error corrected"
1788                                 " (%lu sectors at %llu on %s)\n",
1789                                 mdname(conf->mddev), STRIPE_SECTORS,
1790                                 (unsigned long long)s,
1791                                 bdevname(rdev->bdev, b));
1792                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1793                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1794                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1795                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1796                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1797
1798                 if (atomic_read(&rdev->read_errors))
1799                         atomic_set(&rdev->read_errors, 0);
1800         } else {
1801                 const char *bdn = bdevname(rdev->bdev, b);
1802                 int retry = 0;
1803                 int set_bad = 0;
1804
1805                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1806                 atomic_inc(&rdev->read_errors);
1807                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1808                         printk_ratelimited(
1809                                 KERN_WARNING
1810                                 "md/raid:%s: read error on replacement device "
1811                                 "(sector %llu on %s).\n",
1812                                 mdname(conf->mddev),
1813                                 (unsigned long long)s,
1814                                 bdn);
1815                 else if (conf->mddev->degraded >= conf->max_degraded) {
1816                         set_bad = 1;
1817                         printk_ratelimited(
1818                                 KERN_WARNING
1819                                 "md/raid:%s: read error not correctable "
1820                                 "(sector %llu on %s).\n",
1821                                 mdname(conf->mddev),
1822                                 (unsigned long long)s,
1823                                 bdn);
1824                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1825                         /* Oh, no!!! */
1826                         set_bad = 1;
1827                         printk_ratelimited(
1828                                 KERN_WARNING
1829                                 "md/raid:%s: read error NOT corrected!! "
1830                                 "(sector %llu on %s).\n",
1831                                 mdname(conf->mddev),
1832                                 (unsigned long long)s,
1833                                 bdn);
1834                 } else if (atomic_read(&rdev->read_errors)
1835                          > conf->max_nr_stripes)
1836                         printk(KERN_WARNING
1837                                "md/raid:%s: Too many read errors, failing device %s.\n",
1838                                mdname(conf->mddev), bdn);
1839                 else
1840                         retry = 1;
1841                 if (retry)
1842                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1843                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1844                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1845                         } else
1846                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1847                 else {
1848                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1849                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1850                         if (!(set_bad
1851                               && test_bit(In_sync, &rdev->flags)
1852                               && rdev_set_badblocks(
1853                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1854                                 md_error(conf->mddev, rdev);
1855                 }
1856         }
1857         rdev_dec_pending(rdev, conf->mddev);
1858         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1859         set_bit(STRIPE_HANDLE, &sh->state);
1860         release_stripe(sh);
1861 }
1862
1863 static void raid5_end_write_request(struct bio *bi, int error)
1864 {
1865         struct stripe_head *sh = bi->bi_private;
1866         struct r5conf *conf = sh->raid_conf;
1867         int disks = sh->disks, i;
1868         struct md_rdev *uninitialized_var(rdev);
1869         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1870         sector_t first_bad;
1871         int bad_sectors;
1872         int replacement = 0;
1873
1874         for (i = 0 ; i < disks; i++) {
1875                 if (bi == &sh->dev[i].req) {
1876                         rdev = conf->disks[i].rdev;
1877                         break;
1878                 }
1879                 if (bi == &sh->dev[i].rreq) {
1880                         rdev = conf->disks[i].replacement;
1881                         if (rdev)
1882                                 replacement = 1;
1883                         else
1884                                 /* rdev was removed and 'replacement'
1885                                  * replaced it.  rdev is not removed
1886                                  * until all requests are finished.
1887                                  */
1888                                 rdev = conf->disks[i].rdev;
1889                         break;
1890                 }
1891         }
1892         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1893                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1894                 uptodate);
1895         if (i == disks) {
1896                 BUG();
1897                 return;
1898         }
1899
1900         if (replacement) {
1901                 if (!uptodate)
1902                         md_error(conf->mddev, rdev);
1903                 else if (is_badblock(rdev, sh->sector,
1904                                      STRIPE_SECTORS,
1905                                      &first_bad, &bad_sectors))
1906                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1907         } else {
1908                 if (!uptodate) {
1909                         set_bit(WriteErrorSeen, &rdev->flags);
1910                         set_bit(R5_WriteError, &sh->dev[i].flags);
1911                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1912                                 set_bit(MD_RECOVERY_NEEDED,
1913                                         &rdev->mddev->recovery);
1914                 } else if (is_badblock(rdev, sh->sector,
1915                                        STRIPE_SECTORS,
1916                                        &first_bad, &bad_sectors))
1917                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1918         }
1919         rdev_dec_pending(rdev, conf->mddev);
1920
1921         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1922                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1923         set_bit(STRIPE_HANDLE, &sh->state);
1924         release_stripe(sh);
1925 }
1926
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1928         
1929 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1930 {
1931         struct r5dev *dev = &sh->dev[i];
1932
1933         bio_init(&dev->req);
1934         dev->req.bi_io_vec = &dev->vec;
1935         dev->req.bi_vcnt++;
1936         dev->req.bi_max_vecs++;
1937         dev->req.bi_private = sh;
1938         dev->vec.bv_page = dev->page;
1939
1940         bio_init(&dev->rreq);
1941         dev->rreq.bi_io_vec = &dev->rvec;
1942         dev->rreq.bi_vcnt++;
1943         dev->rreq.bi_max_vecs++;
1944         dev->rreq.bi_private = sh;
1945         dev->rvec.bv_page = dev->page;
1946
1947         dev->flags = 0;
1948         dev->sector = compute_blocknr(sh, i, previous);
1949 }
1950
1951 static void error(struct mddev *mddev, struct md_rdev *rdev)
1952 {
1953         char b[BDEVNAME_SIZE];
1954         struct r5conf *conf = mddev->private;
1955         unsigned long flags;
1956         pr_debug("raid456: error called\n");
1957
1958         spin_lock_irqsave(&conf->device_lock, flags);
1959         clear_bit(In_sync, &rdev->flags);
1960         mddev->degraded = calc_degraded(conf);
1961         spin_unlock_irqrestore(&conf->device_lock, flags);
1962         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1963
1964         set_bit(Blocked, &rdev->flags);
1965         set_bit(Faulty, &rdev->flags);
1966         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1967         printk(KERN_ALERT
1968                "md/raid:%s: Disk failure on %s, disabling device.\n"
1969                "md/raid:%s: Operation continuing on %d devices.\n",
1970                mdname(mddev),
1971                bdevname(rdev->bdev, b),
1972                mdname(mddev),
1973                conf->raid_disks - mddev->degraded);
1974 }
1975
1976 /*
1977  * Input: a 'big' sector number,
1978  * Output: index of the data and parity disk, and the sector # in them.
1979  */
1980 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1981                                      int previous, int *dd_idx,
1982                                      struct stripe_head *sh)
1983 {
1984         sector_t stripe, stripe2;
1985         sector_t chunk_number;
1986         unsigned int chunk_offset;
1987         int pd_idx, qd_idx;
1988         int ddf_layout = 0;
1989         sector_t new_sector;
1990         int algorithm = previous ? conf->prev_algo
1991                                  : conf->algorithm;
1992         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1993                                          : conf->chunk_sectors;
1994         int raid_disks = previous ? conf->previous_raid_disks
1995                                   : conf->raid_disks;
1996         int data_disks = raid_disks - conf->max_degraded;
1997
1998         /* First compute the information on this sector */
1999
2000         /*
2001          * Compute the chunk number and the sector offset inside the chunk
2002          */
2003         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2004         chunk_number = r_sector;
2005
2006         /*
2007          * Compute the stripe number
2008          */
2009         stripe = chunk_number;
2010         *dd_idx = sector_div(stripe, data_disks);
2011         stripe2 = stripe;
2012         /*
2013          * Select the parity disk based on the user selected algorithm.
2014          */
2015         pd_idx = qd_idx = -1;
2016         switch(conf->level) {
2017         case 4:
2018                 pd_idx = data_disks;
2019                 break;
2020         case 5:
2021                 switch (algorithm) {
2022                 case ALGORITHM_LEFT_ASYMMETRIC:
2023                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2024                         if (*dd_idx >= pd_idx)
2025                                 (*dd_idx)++;
2026                         break;
2027                 case ALGORITHM_RIGHT_ASYMMETRIC:
2028                         pd_idx = sector_div(stripe2, raid_disks);
2029                         if (*dd_idx >= pd_idx)
2030                                 (*dd_idx)++;
2031                         break;
2032                 case ALGORITHM_LEFT_SYMMETRIC:
2033                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2034                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2035                         break;
2036                 case ALGORITHM_RIGHT_SYMMETRIC:
2037                         pd_idx = sector_div(stripe2, raid_disks);
2038                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2039                         break;
2040                 case ALGORITHM_PARITY_0:
2041                         pd_idx = 0;
2042                         (*dd_idx)++;
2043                         break;
2044                 case ALGORITHM_PARITY_N:
2045                         pd_idx = data_disks;
2046                         break;
2047                 default:
2048                         BUG();
2049                 }
2050                 break;
2051         case 6:
2052
2053                 switch (algorithm) {
2054                 case ALGORITHM_LEFT_ASYMMETRIC:
2055                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2056                         qd_idx = pd_idx + 1;
2057                         if (pd_idx == raid_disks-1) {
2058                                 (*dd_idx)++;    /* Q D D D P */
2059                                 qd_idx = 0;
2060                         } else if (*dd_idx >= pd_idx)
2061                                 (*dd_idx) += 2; /* D D P Q D */
2062                         break;
2063                 case ALGORITHM_RIGHT_ASYMMETRIC:
2064                         pd_idx = sector_div(stripe2, raid_disks);
2065                         qd_idx = pd_idx + 1;
2066                         if (pd_idx == raid_disks-1) {
2067                                 (*dd_idx)++;    /* Q D D D P */
2068                                 qd_idx = 0;
2069                         } else if (*dd_idx >= pd_idx)
2070                                 (*dd_idx) += 2; /* D D P Q D */
2071                         break;
2072                 case ALGORITHM_LEFT_SYMMETRIC:
2073                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2074                         qd_idx = (pd_idx + 1) % raid_disks;
2075                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2076                         break;
2077                 case ALGORITHM_RIGHT_SYMMETRIC:
2078                         pd_idx = sector_div(stripe2, raid_disks);
2079                         qd_idx = (pd_idx + 1) % raid_disks;
2080                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2081                         break;
2082
2083                 case ALGORITHM_PARITY_0:
2084                         pd_idx = 0;
2085                         qd_idx = 1;
2086                         (*dd_idx) += 2;
2087                         break;
2088                 case ALGORITHM_PARITY_N:
2089                         pd_idx = data_disks;
2090                         qd_idx = data_disks + 1;
2091                         break;
2092
2093                 case ALGORITHM_ROTATING_ZERO_RESTART:
2094                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2095                          * of blocks for computing Q is different.
2096                          */
2097                         pd_idx = sector_div(stripe2, raid_disks);
2098                         qd_idx = pd_idx + 1;
2099                         if (pd_idx == raid_disks-1) {
2100                                 (*dd_idx)++;    /* Q D D D P */
2101                                 qd_idx = 0;
2102                         } else if (*dd_idx >= pd_idx)
2103                                 (*dd_idx) += 2; /* D D P Q D */
2104                         ddf_layout = 1;
2105                         break;
2106
2107                 case ALGORITHM_ROTATING_N_RESTART:
2108                         /* Same a left_asymmetric, by first stripe is
2109                          * D D D P Q  rather than
2110                          * Q D D D P
2111                          */
2112                         stripe2 += 1;
2113                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2114                         qd_idx = pd_idx + 1;
2115                         if (pd_idx == raid_disks-1) {
2116                                 (*dd_idx)++;    /* Q D D D P */
2117                                 qd_idx = 0;
2118                         } else if (*dd_idx >= pd_idx)
2119                                 (*dd_idx) += 2; /* D D P Q D */
2120                         ddf_layout = 1;
2121                         break;
2122
2123                 case ALGORITHM_ROTATING_N_CONTINUE:
2124                         /* Same as left_symmetric but Q is before P */
2125                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2126                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2127                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2128                         ddf_layout = 1;
2129                         break;
2130
2131                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2132                         /* RAID5 left_asymmetric, with Q on last device */
2133                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2134                         if (*dd_idx >= pd_idx)
2135                                 (*dd_idx)++;
2136                         qd_idx = raid_disks - 1;
2137                         break;
2138
2139                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2140                         pd_idx = sector_div(stripe2, raid_disks-1);
2141                         if (*dd_idx >= pd_idx)
2142                                 (*dd_idx)++;
2143                         qd_idx = raid_disks - 1;
2144                         break;
2145
2146                 case ALGORITHM_LEFT_SYMMETRIC_6:
2147                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2148                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2149                         qd_idx = raid_disks - 1;
2150                         break;
2151
2152                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2153                         pd_idx = sector_div(stripe2, raid_disks-1);
2154                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2155                         qd_idx = raid_disks - 1;
2156                         break;
2157
2158                 case ALGORITHM_PARITY_0_6:
2159                         pd_idx = 0;
2160                         (*dd_idx)++;
2161                         qd_idx = raid_disks - 1;
2162                         break;
2163
2164                 default:
2165                         BUG();
2166                 }
2167                 break;
2168         }
2169
2170         if (sh) {
2171                 sh->pd_idx = pd_idx;
2172                 sh->qd_idx = qd_idx;
2173                 sh->ddf_layout = ddf_layout;
2174         }
2175         /*
2176          * Finally, compute the new sector number
2177          */
2178         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2179         return new_sector;
2180 }
2181
2182
2183 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2184 {
2185         struct r5conf *conf = sh->raid_conf;
2186         int raid_disks = sh->disks;
2187         int data_disks = raid_disks - conf->max_degraded;
2188         sector_t new_sector = sh->sector, check;
2189         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2190                                          : conf->chunk_sectors;
2191         int algorithm = previous ? conf->prev_algo
2192                                  : conf->algorithm;
2193         sector_t stripe;
2194         int chunk_offset;
2195         sector_t chunk_number;
2196         int dummy1, dd_idx = i;
2197         sector_t r_sector;
2198         struct stripe_head sh2;
2199
2200
2201         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2202         stripe = new_sector;
2203
2204         if (i == sh->pd_idx)
2205                 return 0;
2206         switch(conf->level) {
2207         case 4: break;
2208         case 5:
2209                 switch (algorithm) {
2210                 case ALGORITHM_LEFT_ASYMMETRIC:
2211                 case ALGORITHM_RIGHT_ASYMMETRIC:
2212                         if (i > sh->pd_idx)
2213                                 i--;
2214                         break;
2215                 case ALGORITHM_LEFT_SYMMETRIC:
2216                 case ALGORITHM_RIGHT_SYMMETRIC:
2217                         if (i < sh->pd_idx)
2218                                 i += raid_disks;
2219                         i -= (sh->pd_idx + 1);
2220                         break;
2221                 case ALGORITHM_PARITY_0:
2222                         i -= 1;
2223                         break;
2224                 case ALGORITHM_PARITY_N:
2225                         break;
2226                 default:
2227                         BUG();
2228                 }
2229                 break;
2230         case 6:
2231                 if (i == sh->qd_idx)
2232                         return 0; /* It is the Q disk */
2233                 switch (algorithm) {
2234                 case ALGORITHM_LEFT_ASYMMETRIC:
2235                 case ALGORITHM_RIGHT_ASYMMETRIC:
2236                 case ALGORITHM_ROTATING_ZERO_RESTART:
2237                 case ALGORITHM_ROTATING_N_RESTART:
2238                         if (sh->pd_idx == raid_disks-1)
2239                                 i--;    /* Q D D D P */
2240                         else if (i > sh->pd_idx)
2241                                 i -= 2; /* D D P Q D */
2242                         break;
2243                 case ALGORITHM_LEFT_SYMMETRIC:
2244                 case ALGORITHM_RIGHT_SYMMETRIC:
2245                         if (sh->pd_idx == raid_disks-1)
2246                                 i--; /* Q D D D P */
2247                         else {
2248                                 /* D D P Q D */
2249                                 if (i < sh->pd_idx)
2250                                         i += raid_disks;
2251                                 i -= (sh->pd_idx + 2);
2252                         }
2253                         break;
2254                 case ALGORITHM_PARITY_0:
2255                         i -= 2;
2256                         break;
2257                 case ALGORITHM_PARITY_N:
2258                         break;
2259                 case ALGORITHM_ROTATING_N_CONTINUE:
2260                         /* Like left_symmetric, but P is before Q */
2261                         if (sh->pd_idx == 0)
2262                                 i--;    /* P D D D Q */
2263                         else {
2264                                 /* D D Q P D */
2265                                 if (i < sh->pd_idx)
2266                                         i += raid_disks;
2267                                 i -= (sh->pd_idx + 1);
2268                         }
2269                         break;
2270                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2271                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2272                         if (i > sh->pd_idx)
2273                                 i--;
2274                         break;
2275                 case ALGORITHM_LEFT_SYMMETRIC_6:
2276                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2277                         if (i < sh->pd_idx)
2278                                 i += data_disks + 1;
2279                         i -= (sh->pd_idx + 1);
2280                         break;
2281                 case ALGORITHM_PARITY_0_6:
2282                         i -= 1;
2283                         break;
2284                 default:
2285                         BUG();
2286                 }
2287                 break;
2288         }
2289
2290         chunk_number = stripe * data_disks + i;
2291         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2292
2293         check = raid5_compute_sector(conf, r_sector,
2294                                      previous, &dummy1, &sh2);
2295         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2296                 || sh2.qd_idx != sh->qd_idx) {
2297                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2298                        mdname(conf->mddev));
2299                 return 0;
2300         }
2301         return r_sector;
2302 }
2303
2304
2305 static void
2306 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2307                          int rcw, int expand)
2308 {
2309         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2310         struct r5conf *conf = sh->raid_conf;
2311         int level = conf->level;
2312
2313         if (rcw) {
2314                 /* if we are not expanding this is a proper write request, and
2315                  * there will be bios with new data to be drained into the
2316                  * stripe cache
2317                  */
2318                 if (!expand) {
2319                         sh->reconstruct_state = reconstruct_state_drain_run;
2320                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2321                 } else
2322                         sh->reconstruct_state = reconstruct_state_run;
2323
2324                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2325
2326                 for (i = disks; i--; ) {
2327                         struct r5dev *dev = &sh->dev[i];
2328
2329                         if (dev->towrite) {
2330                                 set_bit(R5_LOCKED, &dev->flags);
2331                                 set_bit(R5_Wantdrain, &dev->flags);
2332                                 if (!expand)
2333                                         clear_bit(R5_UPTODATE, &dev->flags);
2334                                 s->locked++;
2335                         }
2336                 }
2337                 if (s->locked + conf->max_degraded == disks)
2338                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2339                                 atomic_inc(&conf->pending_full_writes);
2340         } else {
2341                 BUG_ON(level == 6);
2342                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2343                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2344
2345                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2346                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2347                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2348                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2349
2350                 for (i = disks; i--; ) {
2351                         struct r5dev *dev = &sh->dev[i];
2352                         if (i == pd_idx)
2353                                 continue;
2354
2355                         if (dev->towrite &&
2356                             (test_bit(R5_UPTODATE, &dev->flags) ||
2357                              test_bit(R5_Wantcompute, &dev->flags))) {
2358                                 set_bit(R5_Wantdrain, &dev->flags);
2359                                 set_bit(R5_LOCKED, &dev->flags);
2360                                 clear_bit(R5_UPTODATE, &dev->flags);
2361                                 s->locked++;
2362                         }
2363                 }
2364         }
2365
2366         /* keep the parity disk(s) locked while asynchronous operations
2367          * are in flight
2368          */
2369         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2370         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2371         s->locked++;
2372
2373         if (level == 6) {
2374                 int qd_idx = sh->qd_idx;
2375                 struct r5dev *dev = &sh->dev[qd_idx];
2376
2377                 set_bit(R5_LOCKED, &dev->flags);
2378                 clear_bit(R5_UPTODATE, &dev->flags);
2379                 s->locked++;
2380         }
2381
2382         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2383                 __func__, (unsigned long long)sh->sector,
2384                 s->locked, s->ops_request);
2385 }
2386
2387 /*
2388  * Each stripe/dev can have one or more bion attached.
2389  * toread/towrite point to the first in a chain.
2390  * The bi_next chain must be in order.
2391  */
2392 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2393 {
2394         struct bio **bip;
2395         struct r5conf *conf = sh->raid_conf;
2396         int firstwrite=0;
2397
2398         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2399                 (unsigned long long)bi->bi_sector,
2400                 (unsigned long long)sh->sector);
2401
2402         /*
2403          * If several bio share a stripe. The bio bi_phys_segments acts as a
2404          * reference count to avoid race. The reference count should already be
2405          * increased before this function is called (for example, in
2406          * make_request()), so other bio sharing this stripe will not free the
2407          * stripe. If a stripe is owned by one stripe, the stripe lock will
2408          * protect it.
2409          */
2410         spin_lock_irq(&sh->stripe_lock);
2411         if (forwrite) {
2412                 bip = &sh->dev[dd_idx].towrite;
2413                 if (*bip == NULL)
2414                         firstwrite = 1;
2415         } else
2416                 bip = &sh->dev[dd_idx].toread;
2417         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2418                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2419                         goto overlap;
2420                 bip = & (*bip)->bi_next;
2421         }
2422         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2423                 goto overlap;
2424
2425         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2426         if (*bip)
2427                 bi->bi_next = *bip;
2428         *bip = bi;
2429         raid5_inc_bi_active_stripes(bi);
2430
2431         if (forwrite) {
2432                 /* check if page is covered */
2433                 sector_t sector = sh->dev[dd_idx].sector;
2434                 for (bi=sh->dev[dd_idx].towrite;
2435                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2436                              bi && bi->bi_sector <= sector;
2437                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2438                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2439                                 sector = bi->bi_sector + (bi->bi_size>>9);
2440                 }
2441                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2442                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2443         }
2444
2445         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2446                 (unsigned long long)(*bip)->bi_sector,
2447                 (unsigned long long)sh->sector, dd_idx);
2448         spin_unlock_irq(&sh->stripe_lock);
2449
2450         if (conf->mddev->bitmap && firstwrite) {
2451                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2452                                   STRIPE_SECTORS, 0);
2453                 sh->bm_seq = conf->seq_flush+1;
2454                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2455         }
2456         return 1;
2457
2458  overlap:
2459         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2460         spin_unlock_irq(&sh->stripe_lock);
2461         return 0;
2462 }
2463
2464 static void end_reshape(struct r5conf *conf);
2465
2466 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2467                             struct stripe_head *sh)
2468 {
2469         int sectors_per_chunk =
2470                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2471         int dd_idx;
2472         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2473         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2474
2475         raid5_compute_sector(conf,
2476                              stripe * (disks - conf->max_degraded)
2477                              *sectors_per_chunk + chunk_offset,
2478                              previous,
2479                              &dd_idx, sh);
2480 }
2481
2482 static void
2483 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2484                                 struct stripe_head_state *s, int disks,
2485                                 struct bio **return_bi)
2486 {
2487         int i;
2488         for (i = disks; i--; ) {
2489                 struct bio *bi;
2490                 int bitmap_end = 0;
2491
2492                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2493                         struct md_rdev *rdev;
2494                         rcu_read_lock();
2495                         rdev = rcu_dereference(conf->disks[i].rdev);
2496                         if (rdev && test_bit(In_sync, &rdev->flags))
2497                                 atomic_inc(&rdev->nr_pending);
2498                         else
2499                                 rdev = NULL;
2500                         rcu_read_unlock();
2501                         if (rdev) {
2502                                 if (!rdev_set_badblocks(
2503                                             rdev,
2504                                             sh->sector,
2505                                             STRIPE_SECTORS, 0))
2506                                         md_error(conf->mddev, rdev);
2507                                 rdev_dec_pending(rdev, conf->mddev);
2508                         }
2509                 }
2510                 spin_lock_irq(&sh->stripe_lock);
2511                 /* fail all writes first */
2512                 bi = sh->dev[i].towrite;
2513                 sh->dev[i].towrite = NULL;
2514                 spin_unlock_irq(&sh->stripe_lock);
2515                 if (bi)
2516                         bitmap_end = 1;
2517
2518                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2519                         wake_up(&conf->wait_for_overlap);
2520
2521                 while (bi && bi->bi_sector <
2522                         sh->dev[i].sector + STRIPE_SECTORS) {
2523                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2524                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2525                         if (!raid5_dec_bi_active_stripes(bi)) {
2526                                 md_write_end(conf->mddev);
2527                                 bi->bi_next = *return_bi;
2528                                 *return_bi = bi;
2529                         }
2530                         bi = nextbi;
2531                 }
2532                 if (bitmap_end)
2533                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2534                                 STRIPE_SECTORS, 0, 0);
2535                 bitmap_end = 0;
2536                 /* and fail all 'written' */
2537                 bi = sh->dev[i].written;
2538                 sh->dev[i].written = NULL;
2539                 if (bi) bitmap_end = 1;
2540                 while (bi && bi->bi_sector <
2541                        sh->dev[i].sector + STRIPE_SECTORS) {
2542                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2543                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2544                         if (!raid5_dec_bi_active_stripes(bi)) {
2545                                 md_write_end(conf->mddev);
2546                                 bi->bi_next = *return_bi;
2547                                 *return_bi = bi;
2548                         }
2549                         bi = bi2;
2550                 }
2551
2552                 /* fail any reads if this device is non-operational and
2553                  * the data has not reached the cache yet.
2554                  */
2555                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2556                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2557                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2558                         spin_lock_irq(&sh->stripe_lock);
2559                         bi = sh->dev[i].toread;
2560                         sh->dev[i].toread = NULL;
2561                         spin_unlock_irq(&sh->stripe_lock);
2562                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2563                                 wake_up(&conf->wait_for_overlap);
2564                         while (bi && bi->bi_sector <
2565                                sh->dev[i].sector + STRIPE_SECTORS) {
2566                                 struct bio *nextbi =
2567                                         r5_next_bio(bi, sh->dev[i].sector);
2568                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2569                                 if (!raid5_dec_bi_active_stripes(bi)) {
2570                                         bi->bi_next = *return_bi;
2571                                         *return_bi = bi;
2572                                 }
2573                                 bi = nextbi;
2574                         }
2575                 }
2576                 if (bitmap_end)
2577                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2578                                         STRIPE_SECTORS, 0, 0);
2579                 /* If we were in the middle of a write the parity block might
2580                  * still be locked - so just clear all R5_LOCKED flags
2581                  */
2582                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2583         }
2584
2585         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2586                 if (atomic_dec_and_test(&conf->pending_full_writes))
2587                         md_wakeup_thread(conf->mddev->thread);
2588 }
2589
2590 static void
2591 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2592                    struct stripe_head_state *s)
2593 {
2594         int abort = 0;
2595         int i;
2596
2597         clear_bit(STRIPE_SYNCING, &sh->state);
2598         s->syncing = 0;
2599         s->replacing = 0;
2600         /* There is nothing more to do for sync/check/repair.
2601          * Don't even need to abort as that is handled elsewhere
2602          * if needed, and not always wanted e.g. if there is a known
2603          * bad block here.
2604          * For recover/replace we need to record a bad block on all
2605          * non-sync devices, or abort the recovery
2606          */
2607         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2608                 /* During recovery devices cannot be removed, so
2609                  * locking and refcounting of rdevs is not needed
2610                  */
2611                 for (i = 0; i < conf->raid_disks; i++) {
2612                         struct md_rdev *rdev = conf->disks[i].rdev;
2613                         if (rdev
2614                             && !test_bit(Faulty, &rdev->flags)
2615                             && !test_bit(In_sync, &rdev->flags)
2616                             && !rdev_set_badblocks(rdev, sh->sector,
2617                                                    STRIPE_SECTORS, 0))
2618                                 abort = 1;
2619                         rdev = conf->disks[i].replacement;
2620                         if (rdev
2621                             && !test_bit(Faulty, &rdev->flags)
2622                             && !test_bit(In_sync, &rdev->flags)
2623                             && !rdev_set_badblocks(rdev, sh->sector,
2624                                                    STRIPE_SECTORS, 0))
2625                                 abort = 1;
2626                 }
2627                 if (abort)
2628                         conf->recovery_disabled =
2629                                 conf->mddev->recovery_disabled;
2630         }
2631         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2632 }
2633
2634 static int want_replace(struct stripe_head *sh, int disk_idx)
2635 {
2636         struct md_rdev *rdev;
2637         int rv = 0;
2638         /* Doing recovery so rcu locking not required */
2639         rdev = sh->raid_conf->disks[disk_idx].replacement;
2640         if (rdev
2641             && !test_bit(Faulty, &rdev->flags)
2642             && !test_bit(In_sync, &rdev->flags)
2643             && (rdev->recovery_offset <= sh->sector
2644                 || rdev->mddev->recovery_cp <= sh->sector))
2645                 rv = 1;
2646
2647         return rv;
2648 }
2649
2650 /* fetch_block - checks the given member device to see if its data needs
2651  * to be read or computed to satisfy a request.
2652  *
2653  * Returns 1 when no more member devices need to be checked, otherwise returns
2654  * 0 to tell the loop in handle_stripe_fill to continue
2655  */
2656 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2657                        int disk_idx, int disks)
2658 {
2659         struct r5dev *dev = &sh->dev[disk_idx];
2660         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2661                                   &sh->dev[s->failed_num[1]] };
2662
2663         /* is the data in this block needed, and can we get it? */
2664         if (!test_bit(R5_LOCKED, &dev->flags) &&
2665             !test_bit(R5_UPTODATE, &dev->flags) &&
2666             (dev->toread ||
2667              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2668              s->syncing || s->expanding ||
2669              (s->replacing && want_replace(sh, disk_idx)) ||
2670              (s->failed >= 1 && fdev[0]->toread) ||
2671              (s->failed >= 2 && fdev[1]->toread) ||
2672              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2673               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2674              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2675                 /* we would like to get this block, possibly by computing it,
2676                  * otherwise read it if the backing disk is insync
2677                  */
2678                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2679                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2680                 if ((s->uptodate == disks - 1) &&
2681                     (s->failed && (disk_idx == s->failed_num[0] ||
2682                                    disk_idx == s->failed_num[1]))) {
2683                         /* have disk failed, and we're requested to fetch it;
2684                          * do compute it
2685                          */
2686                         pr_debug("Computing stripe %llu block %d\n",
2687                                (unsigned long long)sh->sector, disk_idx);
2688                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2689                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2690                         set_bit(R5_Wantcompute, &dev->flags);
2691                         sh->ops.target = disk_idx;
2692                         sh->ops.target2 = -1; /* no 2nd target */
2693                         s->req_compute = 1;
2694                         /* Careful: from this point on 'uptodate' is in the eye
2695                          * of raid_run_ops which services 'compute' operations
2696                          * before writes. R5_Wantcompute flags a block that will
2697                          * be R5_UPTODATE by the time it is needed for a
2698                          * subsequent operation.
2699                          */
2700                         s->uptodate++;
2701                         return 1;
2702                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2703                         /* Computing 2-failure is *very* expensive; only
2704                          * do it if failed >= 2
2705                          */
2706                         int other;
2707                         for (other = disks; other--; ) {
2708                                 if (other == disk_idx)
2709                                         continue;
2710                                 if (!test_bit(R5_UPTODATE,
2711                                       &sh->dev[other].flags))
2712                                         break;
2713                         }
2714                         BUG_ON(other < 0);
2715                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2716                                (unsigned long long)sh->sector,
2717                                disk_idx, other);
2718                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2719                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2720                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2721                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2722                         sh->ops.target = disk_idx;
2723                         sh->ops.target2 = other;
2724                         s->uptodate += 2;
2725                         s->req_compute = 1;
2726                         return 1;
2727                 } else if (test_bit(R5_Insync, &dev->flags)) {
2728                         set_bit(R5_LOCKED, &dev->flags);
2729                         set_bit(R5_Wantread, &dev->flags);
2730                         s->locked++;
2731                         pr_debug("Reading block %d (sync=%d)\n",
2732                                 disk_idx, s->syncing);
2733                 }
2734         }
2735
2736         return 0;
2737 }
2738
2739 /**
2740  * handle_stripe_fill - read or compute data to satisfy pending requests.
2741  */
2742 static void handle_stripe_fill(struct stripe_head *sh,
2743                                struct stripe_head_state *s,
2744                                int disks)
2745 {
2746         int i;
2747
2748         /* look for blocks to read/compute, skip this if a compute
2749          * is already in flight, or if the stripe contents are in the
2750          * midst of changing due to a write
2751          */
2752         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2753             !sh->reconstruct_state)
2754                 for (i = disks; i--; )
2755                         if (fetch_block(sh, s, i, disks))
2756                                 break;
2757         set_bit(STRIPE_HANDLE, &sh->state);
2758 }
2759
2760
2761 /* handle_stripe_clean_event
2762  * any written block on an uptodate or failed drive can be returned.
2763  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2764  * never LOCKED, so we don't need to test 'failed' directly.
2765  */
2766 static void handle_stripe_clean_event(struct r5conf *conf,
2767         struct stripe_head *sh, int disks, struct bio **return_bi)
2768 {
2769         int i;
2770         struct r5dev *dev;
2771
2772         for (i = disks; i--; )
2773                 if (sh->dev[i].written) {
2774                         dev = &sh->dev[i];
2775                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2776                             (test_bit(R5_UPTODATE, &dev->flags) ||
2777                              test_bit(R5_Discard, &dev->flags))) {
2778                                 /* We can return any write requests */
2779                                 struct bio *wbi, *wbi2;
2780                                 pr_debug("Return write for disc %d\n", i);
2781                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
2782                                         clear_bit(R5_UPTODATE, &dev->flags);
2783                                 wbi = dev->written;
2784                                 dev->written = NULL;
2785                                 while (wbi && wbi->bi_sector <
2786                                         dev->sector + STRIPE_SECTORS) {
2787                                         wbi2 = r5_next_bio(wbi, dev->sector);
2788                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2789                                                 md_write_end(conf->mddev);
2790                                                 wbi->bi_next = *return_bi;
2791                                                 *return_bi = wbi;
2792                                         }
2793                                         wbi = wbi2;
2794                                 }
2795                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2796                                                 STRIPE_SECTORS,
2797                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2798                                                 0);
2799                         }
2800                 } else if (test_bit(R5_Discard, &sh->dev[i].flags))
2801                         clear_bit(R5_Discard, &sh->dev[i].flags);
2802
2803         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2804                 if (atomic_dec_and_test(&conf->pending_full_writes))
2805                         md_wakeup_thread(conf->mddev->thread);
2806 }
2807
2808 static void handle_stripe_dirtying(struct r5conf *conf,
2809                                    struct stripe_head *sh,
2810                                    struct stripe_head_state *s,
2811                                    int disks)
2812 {
2813         int rmw = 0, rcw = 0, i;
2814         sector_t recovery_cp = conf->mddev->recovery_cp;
2815
2816         /* RAID6 requires 'rcw' in current implementation.
2817          * Otherwise, check whether resync is now happening or should start.
2818          * If yes, then the array is dirty (after unclean shutdown or
2819          * initial creation), so parity in some stripes might be inconsistent.
2820          * In this case, we need to always do reconstruct-write, to ensure
2821          * that in case of drive failure or read-error correction, we
2822          * generate correct data from the parity.
2823          */
2824         if (conf->max_degraded == 2 ||
2825             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2826                 /* Calculate the real rcw later - for now make it
2827                  * look like rcw is cheaper
2828                  */
2829                 rcw = 1; rmw = 2;
2830                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2831                          conf->max_degraded, (unsigned long long)recovery_cp,
2832                          (unsigned long long)sh->sector);
2833         } else for (i = disks; i--; ) {
2834                 /* would I have to read this buffer for read_modify_write */
2835                 struct r5dev *dev = &sh->dev[i];
2836                 if ((dev->towrite || i == sh->pd_idx) &&
2837                     !test_bit(R5_LOCKED, &dev->flags) &&
2838                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2839                       test_bit(R5_Wantcompute, &dev->flags))) {
2840                         if (test_bit(R5_Insync, &dev->flags))
2841                                 rmw++;
2842                         else
2843                                 rmw += 2*disks;  /* cannot read it */
2844                 }
2845                 /* Would I have to read this buffer for reconstruct_write */
2846                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2847                     !test_bit(R5_LOCKED, &dev->flags) &&
2848                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2849                     test_bit(R5_Wantcompute, &dev->flags))) {
2850                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2851                         else
2852                                 rcw += 2*disks;
2853                 }
2854         }
2855         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2856                 (unsigned long long)sh->sector, rmw, rcw);
2857         set_bit(STRIPE_HANDLE, &sh->state);
2858         if (rmw < rcw && rmw > 0)
2859                 /* prefer read-modify-write, but need to get some data */
2860                 for (i = disks; i--; ) {
2861                         struct r5dev *dev = &sh->dev[i];
2862                         if ((dev->towrite || i == sh->pd_idx) &&
2863                             !test_bit(R5_LOCKED, &dev->flags) &&
2864                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2865                             test_bit(R5_Wantcompute, &dev->flags)) &&
2866                             test_bit(R5_Insync, &dev->flags)) {
2867                                 if (
2868                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2869                                         pr_debug("Read_old block "
2870                                                 "%d for r-m-w\n", i);
2871                                         set_bit(R5_LOCKED, &dev->flags);
2872                                         set_bit(R5_Wantread, &dev->flags);
2873                                         s->locked++;
2874                                 } else {
2875                                         set_bit(STRIPE_DELAYED, &sh->state);
2876                                         set_bit(STRIPE_HANDLE, &sh->state);
2877                                 }
2878                         }
2879                 }
2880         if (rcw <= rmw && rcw > 0) {
2881                 /* want reconstruct write, but need to get some data */
2882                 rcw = 0;
2883                 for (i = disks; i--; ) {
2884                         struct r5dev *dev = &sh->dev[i];
2885                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2886                             i != sh->pd_idx && i != sh->qd_idx &&
2887                             !test_bit(R5_LOCKED, &dev->flags) &&
2888                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2889                               test_bit(R5_Wantcompute, &dev->flags))) {
2890                                 rcw++;
2891                                 if (!test_bit(R5_Insync, &dev->flags))
2892                                         continue; /* it's a failed drive */
2893                                 if (
2894                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2895                                         pr_debug("Read_old block "
2896                                                 "%d for Reconstruct\n", i);
2897                                         set_bit(R5_LOCKED, &dev->flags);
2898                                         set_bit(R5_Wantread, &dev->flags);
2899                                         s->locked++;
2900                                 } else {
2901                                         set_bit(STRIPE_DELAYED, &sh->state);
2902                                         set_bit(STRIPE_HANDLE, &sh->state);
2903                                 }
2904                         }
2905                 }
2906         }
2907         /* now if nothing is locked, and if we have enough data,
2908          * we can start a write request
2909          */
2910         /* since handle_stripe can be called at any time we need to handle the
2911          * case where a compute block operation has been submitted and then a
2912          * subsequent call wants to start a write request.  raid_run_ops only
2913          * handles the case where compute block and reconstruct are requested
2914          * simultaneously.  If this is not the case then new writes need to be
2915          * held off until the compute completes.
2916          */
2917         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2918             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2919             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2920                 schedule_reconstruction(sh, s, rcw == 0, 0);
2921 }
2922
2923 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2924                                 struct stripe_head_state *s, int disks)
2925 {
2926         struct r5dev *dev = NULL;
2927
2928         set_bit(STRIPE_HANDLE, &sh->state);
2929
2930         switch (sh->check_state) {
2931         case check_state_idle:
2932                 /* start a new check operation if there are no failures */
2933                 if (s->failed == 0) {
2934                         BUG_ON(s->uptodate != disks);
2935                         sh->check_state = check_state_run;
2936                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2937                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2938                         s->uptodate--;
2939                         break;
2940                 }
2941                 dev = &sh->dev[s->failed_num[0]];
2942                 /* fall through */
2943         case check_state_compute_result:
2944                 sh->check_state = check_state_idle;
2945                 if (!dev)
2946                         dev = &sh->dev[sh->pd_idx];
2947
2948                 /* check that a write has not made the stripe insync */
2949                 if (test_bit(STRIPE_INSYNC, &sh->state))
2950                         break;
2951
2952                 /* either failed parity check, or recovery is happening */
2953                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2954                 BUG_ON(s->uptodate != disks);
2955
2956                 set_bit(R5_LOCKED, &dev->flags);
2957                 s->locked++;
2958                 set_bit(R5_Wantwrite, &dev->flags);
2959
2960                 clear_bit(STRIPE_DEGRADED, &sh->state);
2961                 set_bit(STRIPE_INSYNC, &sh->state);
2962                 break;
2963         case check_state_run:
2964                 break; /* we will be called again upon completion */
2965         case check_state_check_result:
2966                 sh->check_state = check_state_idle;
2967
2968                 /* if a failure occurred during the check operation, leave
2969                  * STRIPE_INSYNC not set and let the stripe be handled again
2970                  */
2971                 if (s->failed)
2972                         break;
2973
2974                 /* handle a successful check operation, if parity is correct
2975                  * we are done.  Otherwise update the mismatch count and repair
2976                  * parity if !MD_RECOVERY_CHECK
2977                  */
2978                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2979                         /* parity is correct (on disc,
2980                          * not in buffer any more)
2981                          */
2982                         set_bit(STRIPE_INSYNC, &sh->state);
2983                 else {
2984                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
2985                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2986                                 /* don't try to repair!! */
2987                                 set_bit(STRIPE_INSYNC, &sh->state);
2988                         else {
2989                                 sh->check_state = check_state_compute_run;
2990                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2991                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2992                                 set_bit(R5_Wantcompute,
2993                                         &sh->dev[sh->pd_idx].flags);
2994                                 sh->ops.target = sh->pd_idx;
2995                                 sh->ops.target2 = -1;
2996                                 s->uptodate++;
2997                         }
2998                 }
2999                 break;
3000         case check_state_compute_run:
3001                 break;
3002         default:
3003                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3004                        __func__, sh->check_state,
3005                        (unsigned long long) sh->sector);
3006                 BUG();
3007         }
3008 }
3009
3010
3011 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3012                                   struct stripe_head_state *s,
3013                                   int disks)
3014 {
3015         int pd_idx = sh->pd_idx;
3016         int qd_idx = sh->qd_idx;
3017         struct r5dev *dev;
3018
3019         set_bit(STRIPE_HANDLE, &sh->state);
3020
3021         BUG_ON(s->failed > 2);
3022
3023         /* Want to check and possibly repair P and Q.
3024          * However there could be one 'failed' device, in which
3025          * case we can only check one of them, possibly using the
3026          * other to generate missing data
3027          */
3028
3029         switch (sh->check_state) {
3030         case check_state_idle:
3031                 /* start a new check operation if there are < 2 failures */
3032                 if (s->failed == s->q_failed) {
3033                         /* The only possible failed device holds Q, so it
3034                          * makes sense to check P (If anything else were failed,
3035                          * we would have used P to recreate it).
3036                          */
3037                         sh->check_state = check_state_run;
3038                 }
3039                 if (!s->q_failed && s->failed < 2) {
3040                         /* Q is not failed, and we didn't use it to generate
3041                          * anything, so it makes sense to check it
3042                          */
3043                         if (sh->check_state == check_state_run)
3044                                 sh->check_state = check_state_run_pq;
3045                         else
3046                                 sh->check_state = check_state_run_q;
3047                 }
3048
3049                 /* discard potentially stale zero_sum_result */
3050                 sh->ops.zero_sum_result = 0;
3051
3052                 if (sh->check_state == check_state_run) {
3053                         /* async_xor_zero_sum destroys the contents of P */
3054                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3055                         s->uptodate--;
3056                 }
3057                 if (sh->check_state >= check_state_run &&
3058                     sh->check_state <= check_state_run_pq) {
3059                         /* async_syndrome_zero_sum preserves P and Q, so
3060                          * no need to mark them !uptodate here
3061                          */
3062                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3063                         break;
3064                 }
3065
3066                 /* we have 2-disk failure */
3067                 BUG_ON(s->failed != 2);
3068                 /* fall through */
3069         case check_state_compute_result:
3070                 sh->check_state = check_state_idle;
3071
3072                 /* check that a write has not made the stripe insync */
3073                 if (test_bit(STRIPE_INSYNC, &sh->state))
3074                         break;
3075
3076                 /* now write out any block on a failed drive,
3077                  * or P or Q if they were recomputed
3078                  */
3079                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3080                 if (s->failed == 2) {
3081                         dev = &sh->dev[s->failed_num[1]];
3082                         s->locked++;
3083                         set_bit(R5_LOCKED, &dev->flags);
3084                         set_bit(R5_Wantwrite, &dev->flags);
3085                 }
3086                 if (s->failed >= 1) {
3087                         dev = &sh->dev[s->failed_num[0]];
3088                         s->locked++;
3089                         set_bit(R5_LOCKED, &dev->flags);
3090                         set_bit(R5_Wantwrite, &dev->flags);
3091                 }
3092                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3093                         dev = &sh->dev[pd_idx];
3094                         s->locked++;
3095                         set_bit(R5_LOCKED, &dev->flags);
3096                         set_bit(R5_Wantwrite, &dev->flags);
3097                 }
3098                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3099                         dev = &sh->dev[qd_idx];
3100                         s->locked++;
3101                         set_bit(R5_LOCKED, &dev->flags);
3102                         set_bit(R5_Wantwrite, &dev->flags);
3103                 }
3104                 clear_bit(STRIPE_DEGRADED, &sh->state);
3105
3106                 set_bit(STRIPE_INSYNC, &sh->state);
3107                 break;
3108         case check_state_run:
3109         case check_state_run_q:
3110         case check_state_run_pq:
3111                 break; /* we will be called again upon completion */
3112         case check_state_check_result:
3113                 sh->check_state = check_state_idle;
3114
3115                 /* handle a successful check operation, if parity is correct
3116                  * we are done.  Otherwise update the mismatch count and repair
3117                  * parity if !MD_RECOVERY_CHECK
3118                  */
3119                 if (sh->ops.zero_sum_result == 0) {
3120                         /* both parities are correct */
3121                         if (!s->failed)
3122                                 set_bit(STRIPE_INSYNC, &sh->state);
3123                         else {
3124                                 /* in contrast to the raid5 case we can validate
3125                                  * parity, but still have a failure to write
3126                                  * back
3127                                  */
3128                                 sh->check_state = check_state_compute_result;
3129                                 /* Returning at this point means that we may go
3130                                  * off and bring p and/or q uptodate again so
3131                                  * we make sure to check zero_sum_result again
3132                                  * to verify if p or q need writeback
3133                                  */
3134                         }
3135                 } else {
3136                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3137                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3138                                 /* don't try to repair!! */
3139                                 set_bit(STRIPE_INSYNC, &sh->state);
3140                         else {
3141                                 int *target = &sh->ops.target;
3142
3143                                 sh->ops.target = -1;
3144                                 sh->ops.target2 = -1;
3145                                 sh->check_state = check_state_compute_run;
3146                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3147                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3148                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3149                                         set_bit(R5_Wantcompute,
3150                                                 &sh->dev[pd_idx].flags);
3151                                         *target = pd_idx;
3152                                         target = &sh->ops.target2;
3153                                         s->uptodate++;
3154                                 }
3155                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3156                                         set_bit(R5_Wantcompute,
3157                                                 &sh->dev[qd_idx].flags);
3158                                         *target = qd_idx;
3159                                         s->uptodate++;
3160                                 }
3161                         }
3162                 }
3163                 break;
3164         case check_state_compute_run:
3165                 break;
3166         default:
3167                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3168                        __func__, sh->check_state,
3169                        (unsigned long long) sh->sector);
3170                 BUG();
3171         }
3172 }
3173
3174 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3175 {
3176         int i;
3177
3178         /* We have read all the blocks in this stripe and now we need to
3179          * copy some of them into a target stripe for expand.
3180          */
3181         struct dma_async_tx_descriptor *tx = NULL;
3182         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3183         for (i = 0; i < sh->disks; i++)
3184                 if (i != sh->pd_idx && i != sh->qd_idx) {
3185                         int dd_idx, j;
3186                         struct stripe_head *sh2;
3187                         struct async_submit_ctl submit;
3188
3189                         sector_t bn = compute_blocknr(sh, i, 1);
3190                         sector_t s = raid5_compute_sector(conf, bn, 0,
3191                                                           &dd_idx, NULL);
3192                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3193                         if (sh2 == NULL)
3194                                 /* so far only the early blocks of this stripe
3195                                  * have been requested.  When later blocks
3196                                  * get requested, we will try again
3197                                  */
3198                                 continue;
3199                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3200                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3201                                 /* must have already done this block */
3202                                 release_stripe(sh2);
3203                                 continue;
3204                         }
3205
3206                         /* place all the copies on one channel */
3207                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3208                         tx = async_memcpy(sh2->dev[dd_idx].page,
3209                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3210                                           &submit);
3211
3212                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3213                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3214                         for (j = 0; j < conf->raid_disks; j++)
3215                                 if (j != sh2->pd_idx &&
3216                                     j != sh2->qd_idx &&
3217                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3218                                         break;
3219                         if (j == conf->raid_disks) {
3220                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3221                                 set_bit(STRIPE_HANDLE, &sh2->state);
3222                         }
3223                         release_stripe(sh2);
3224
3225                 }
3226         /* done submitting copies, wait for them to complete */
3227         async_tx_quiesce(&tx);
3228 }
3229
3230 /*
3231  * handle_stripe - do things to a stripe.
3232  *
3233  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3234  * state of various bits to see what needs to be done.
3235  * Possible results:
3236  *    return some read requests which now have data
3237  *    return some write requests which are safely on storage
3238  *    schedule a read on some buffers
3239  *    schedule a write of some buffers
3240  *    return confirmation of parity correctness
3241  *
3242  */
3243
3244 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3245 {
3246         struct r5conf *conf = sh->raid_conf;
3247         int disks = sh->disks;
3248         struct r5dev *dev;
3249         int i;
3250         int do_recovery = 0;
3251
3252         memset(s, 0, sizeof(*s));
3253
3254         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3255         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3256         s->failed_num[0] = -1;
3257         s->failed_num[1] = -1;
3258
3259         /* Now to look around and see what can be done */
3260         rcu_read_lock();
3261         for (i=disks; i--; ) {
3262                 struct md_rdev *rdev;
3263                 sector_t first_bad;
3264                 int bad_sectors;
3265                 int is_bad = 0;
3266
3267                 dev = &sh->dev[i];
3268
3269                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3270                          i, dev->flags,
3271                          dev->toread, dev->towrite, dev->written);
3272                 /* maybe we can reply to a read
3273                  *
3274                  * new wantfill requests are only permitted while
3275                  * ops_complete_biofill is guaranteed to be inactive
3276                  */
3277                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3278                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3279                         set_bit(R5_Wantfill, &dev->flags);
3280
3281                 /* now count some things */
3282                 if (test_bit(R5_LOCKED, &dev->flags))
3283                         s->locked++;
3284                 if (test_bit(R5_UPTODATE, &dev->flags))
3285                         s->uptodate++;
3286                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3287                         s->compute++;
3288                         BUG_ON(s->compute > 2);
3289                 }
3290
3291                 if (test_bit(R5_Wantfill, &dev->flags))
3292                         s->to_fill++;
3293                 else if (dev->toread)
3294                         s->to_read++;
3295                 if (dev->towrite) {
3296                         s->to_write++;
3297                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3298                                 s->non_overwrite++;
3299                 }
3300                 if (dev->written)
3301                         s->written++;
3302                 /* Prefer to use the replacement for reads, but only
3303                  * if it is recovered enough and has no bad blocks.
3304                  */
3305                 rdev = rcu_dereference(conf->disks[i].replacement);
3306                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3307                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3308                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3309                                  &first_bad, &bad_sectors))
3310                         set_bit(R5_ReadRepl, &dev->flags);
3311                 else {
3312                         if (rdev)
3313                                 set_bit(R5_NeedReplace, &dev->flags);
3314                         rdev = rcu_dereference(conf->disks[i].rdev);
3315                         clear_bit(R5_ReadRepl, &dev->flags);
3316                 }
3317                 if (rdev && test_bit(Faulty, &rdev->flags))
3318                         rdev = NULL;
3319                 if (rdev) {
3320                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3321                                              &first_bad, &bad_sectors);
3322                         if (s->blocked_rdev == NULL
3323                             && (test_bit(Blocked, &rdev->flags)
3324                                 || is_bad < 0)) {
3325                                 if (is_bad < 0)
3326                                         set_bit(BlockedBadBlocks,
3327                                                 &rdev->flags);
3328                                 s->blocked_rdev = rdev;
3329                                 atomic_inc(&rdev->nr_pending);
3330                         }
3331                 }
3332                 clear_bit(R5_Insync, &dev->flags);
3333                 if (!rdev)
3334                         /* Not in-sync */;
3335                 else if (is_bad) {
3336                         /* also not in-sync */
3337                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3338                             test_bit(R5_UPTODATE, &dev->flags)) {
3339                                 /* treat as in-sync, but with a read error
3340                                  * which we can now try to correct
3341                                  */
3342                                 set_bit(R5_Insync, &dev->flags);
3343                                 set_bit(R5_ReadError, &dev->flags);
3344                         }
3345                 } else if (test_bit(In_sync, &rdev->flags))
3346                         set_bit(R5_Insync, &dev->flags);
3347                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3348                         /* in sync if before recovery_offset */
3349                         set_bit(R5_Insync, &dev->flags);
3350                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3351                          test_bit(R5_Expanded, &dev->flags))
3352                         /* If we've reshaped into here, we assume it is Insync.
3353                          * We will shortly update recovery_offset to make
3354                          * it official.
3355                          */
3356                         set_bit(R5_Insync, &dev->flags);
3357
3358                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3359                         /* This flag does not apply to '.replacement'
3360                          * only to .rdev, so make sure to check that*/
3361                         struct md_rdev *rdev2 = rcu_dereference(
3362                                 conf->disks[i].rdev);
3363                         if (rdev2 == rdev)
3364                                 clear_bit(R5_Insync, &dev->flags);
3365                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3366                                 s->handle_bad_blocks = 1;
3367                                 atomic_inc(&rdev2->nr_pending);
3368                         } else
3369                                 clear_bit(R5_WriteError, &dev->flags);
3370                 }
3371                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3372                         /* This flag does not apply to '.replacement'
3373                          * only to .rdev, so make sure to check that*/
3374                         struct md_rdev *rdev2 = rcu_dereference(
3375                                 conf->disks[i].rdev);
3376                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3377                                 s->handle_bad_blocks = 1;
3378                                 atomic_inc(&rdev2->nr_pending);
3379                         } else
3380                                 clear_bit(R5_MadeGood, &dev->flags);
3381                 }
3382                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3383                         struct md_rdev *rdev2 = rcu_dereference(
3384                                 conf->disks[i].replacement);
3385                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3386                                 s->handle_bad_blocks = 1;
3387                                 atomic_inc(&rdev2->nr_pending);
3388                         } else
3389                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3390                 }
3391                 if (!test_bit(R5_Insync, &dev->flags)) {
3392                         /* The ReadError flag will just be confusing now */
3393                         clear_bit(R5_ReadError, &dev->flags);
3394                         clear_bit(R5_ReWrite, &dev->flags);
3395                 }
3396                 if (test_bit(R5_ReadError, &dev->flags))
3397                         clear_bit(R5_Insync, &dev->flags);
3398                 if (!test_bit(R5_Insync, &dev->flags)) {
3399                         if (s->failed < 2)
3400                                 s->failed_num[s->failed] = i;
3401                         s->failed++;
3402                         if (rdev && !test_bit(Faulty, &rdev->flags))
3403                                 do_recovery = 1;
3404                 }
3405         }
3406         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3407                 /* If there is a failed device being replaced,
3408                  *     we must be recovering.
3409                  * else if we are after recovery_cp, we must be syncing
3410                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3411                  * else we can only be replacing
3412                  * sync and recovery both need to read all devices, and so
3413                  * use the same flag.
3414                  */
3415                 if (do_recovery ||
3416                     sh->sector >= conf->mddev->recovery_cp ||
3417                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3418                         s->syncing = 1;
3419                 else
3420                         s->replacing = 1;
3421         }
3422         rcu_read_unlock();
3423 }
3424
3425 static void handle_stripe(struct stripe_head *sh)
3426 {
3427         struct stripe_head_state s;
3428         struct r5conf *conf = sh->raid_conf;
3429         int i;
3430         int prexor;
3431         int disks = sh->disks;
3432         struct r5dev *pdev, *qdev;
3433
3434         clear_bit(STRIPE_HANDLE, &sh->state);
3435         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3436                 /* already being handled, ensure it gets handled
3437                  * again when current action finishes */
3438                 set_bit(STRIPE_HANDLE, &sh->state);
3439                 return;
3440         }
3441
3442         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3443                 set_bit(STRIPE_SYNCING, &sh->state);
3444                 clear_bit(STRIPE_INSYNC, &sh->state);
3445         }
3446         clear_bit(STRIPE_DELAYED, &sh->state);
3447
3448         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3449                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3450                (unsigned long long)sh->sector, sh->state,
3451                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3452                sh->check_state, sh->reconstruct_state);
3453
3454         analyse_stripe(sh, &s);
3455
3456         if (s.handle_bad_blocks) {
3457                 set_bit(STRIPE_HANDLE, &sh->state);
3458                 goto finish;
3459         }
3460
3461         if (unlikely(s.blocked_rdev)) {
3462                 if (s.syncing || s.expanding || s.expanded ||
3463                     s.replacing || s.to_write || s.written) {
3464                         set_bit(STRIPE_HANDLE, &sh->state);
3465                         goto finish;
3466                 }
3467                 /* There is nothing for the blocked_rdev to block */
3468                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3469                 s.blocked_rdev = NULL;
3470         }
3471
3472         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3473                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3474                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3475         }
3476
3477         pr_debug("locked=%d uptodate=%d to_read=%d"
3478                " to_write=%d failed=%d failed_num=%d,%d\n",
3479                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3480                s.failed_num[0], s.failed_num[1]);
3481         /* check if the array has lost more than max_degraded devices and,
3482          * if so, some requests might need to be failed.
3483          */
3484         if (s.failed > conf->max_degraded) {
3485                 sh->check_state = 0;
3486                 sh->reconstruct_state = 0;
3487                 if (s.to_read+s.to_write+s.written)
3488                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3489                 if (s.syncing + s.replacing)
3490                         handle_failed_sync(conf, sh, &s);
3491         }
3492
3493         /* Now we check to see if any write operations have recently
3494          * completed
3495          */
3496         prexor = 0;
3497         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3498                 prexor = 1;
3499         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3500             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3501                 sh->reconstruct_state = reconstruct_state_idle;
3502
3503                 /* All the 'written' buffers and the parity block are ready to
3504                  * be written back to disk
3505                  */
3506                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3507                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3508                 BUG_ON(sh->qd_idx >= 0 &&
3509                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3510                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3511                 for (i = disks; i--; ) {
3512                         struct r5dev *dev = &sh->dev[i];
3513                         if (test_bit(R5_LOCKED, &dev->flags) &&
3514                                 (i == sh->pd_idx || i == sh->qd_idx ||
3515                                  dev->written)) {
3516                                 pr_debug("Writing block %d\n", i);
3517                                 set_bit(R5_Wantwrite, &dev->flags);
3518                                 if (prexor)
3519                                         continue;
3520                                 if (!test_bit(R5_Insync, &dev->flags) ||
3521                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3522                                      s.failed == 0))
3523                                         set_bit(STRIPE_INSYNC, &sh->state);
3524                         }
3525                 }
3526                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3527                         s.dec_preread_active = 1;
3528         }
3529
3530         /*
3531          * might be able to return some write requests if the parity blocks
3532          * are safe, or on a failed drive
3533          */
3534         pdev = &sh->dev[sh->pd_idx];
3535         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3536                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3537         qdev = &sh->dev[sh->qd_idx];
3538         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3539                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3540                 || conf->level < 6;
3541
3542         if (s.written &&
3543             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3544                              && !test_bit(R5_LOCKED, &pdev->flags)
3545                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3546                                  test_bit(R5_Discard, &pdev->flags))))) &&
3547             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3548                              && !test_bit(R5_LOCKED, &qdev->flags)
3549                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3550                                  test_bit(R5_Discard, &qdev->flags))))))
3551                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3552
3553         /* Now we might consider reading some blocks, either to check/generate
3554          * parity, or to satisfy requests
3555          * or to load a block that is being partially written.
3556          */
3557         if (s.to_read || s.non_overwrite
3558             || (conf->level == 6 && s.to_write && s.failed)
3559             || (s.syncing && (s.uptodate + s.compute < disks))
3560             || s.replacing
3561             || s.expanding)
3562                 handle_stripe_fill(sh, &s, disks);
3563
3564         /* Now to consider new write requests and what else, if anything
3565          * should be read.  We do not handle new writes when:
3566          * 1/ A 'write' operation (copy+xor) is already in flight.
3567          * 2/ A 'check' operation is in flight, as it may clobber the parity
3568          *    block.
3569          */
3570         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3571                 handle_stripe_dirtying(conf, sh, &s, disks);
3572
3573         /* maybe we need to check and possibly fix the parity for this stripe
3574          * Any reads will already have been scheduled, so we just see if enough
3575          * data is available.  The parity check is held off while parity
3576          * dependent operations are in flight.
3577          */
3578         if (sh->check_state ||
3579             (s.syncing && s.locked == 0 &&
3580              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3581              !test_bit(STRIPE_INSYNC, &sh->state))) {
3582                 if (conf->level == 6)
3583                         handle_parity_checks6(conf, sh, &s, disks);
3584                 else
3585                         handle_parity_checks5(conf, sh, &s, disks);
3586         }
3587
3588         if (s.replacing && s.locked == 0
3589             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3590                 /* Write out to replacement devices where possible */
3591                 for (i = 0; i < conf->raid_disks; i++)
3592                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3593                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3594                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3595                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3596                                 s.locked++;
3597                         }
3598                 set_bit(STRIPE_INSYNC, &sh->state);
3599         }
3600         if ((s.syncing || s.replacing) && s.locked == 0 &&
3601             test_bit(STRIPE_INSYNC, &sh->state)) {
3602                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3603                 clear_bit(STRIPE_SYNCING, &sh->state);
3604         }
3605
3606         /* If the failed drives are just a ReadError, then we might need
3607          * to progress the repair/check process
3608          */
3609         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3610                 for (i = 0; i < s.failed; i++) {
3611                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3612                         if (test_bit(R5_ReadError, &dev->flags)
3613                             && !test_bit(R5_LOCKED, &dev->flags)
3614                             && test_bit(R5_UPTODATE, &dev->flags)
3615                                 ) {
3616                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3617                                         set_bit(R5_Wantwrite, &dev->flags);
3618                                         set_bit(R5_ReWrite, &dev->flags);
3619                                         set_bit(R5_LOCKED, &dev->flags);
3620                                         s.locked++;
3621                                 } else {
3622                                         /* let's read it back */
3623                                         set_bit(R5_Wantread, &dev->flags);
3624                                         set_bit(R5_LOCKED, &dev->flags);
3625                                         s.locked++;
3626                                 }
3627                         }
3628                 }
3629
3630
3631         /* Finish reconstruct operations initiated by the expansion process */
3632         if (sh->reconstruct_state == reconstruct_state_result) {
3633                 struct stripe_head *sh_src
3634                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3635                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3636                         /* sh cannot be written until sh_src has been read.
3637                          * so arrange for sh to be delayed a little
3638                          */
3639                         set_bit(STRIPE_DELAYED, &sh->state);
3640                         set_bit(STRIPE_HANDLE, &sh->state);
3641                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3642                                               &sh_src->state))
3643                                 atomic_inc(&conf->preread_active_stripes);
3644                         release_stripe(sh_src);
3645                         goto finish;
3646                 }
3647                 if (sh_src)
3648                         release_stripe(sh_src);
3649
3650                 sh->reconstruct_state = reconstruct_state_idle;
3651                 clear_bit(STRIPE_EXPANDING, &sh->state);
3652                 for (i = conf->raid_disks; i--; ) {
3653                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3654                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3655                         s.locked++;
3656                 }
3657         }
3658
3659         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3660             !sh->reconstruct_state) {
3661                 /* Need to write out all blocks after computing parity */
3662                 sh->disks = conf->raid_disks;
3663                 stripe_set_idx(sh->sector, conf, 0, sh);
3664                 schedule_reconstruction(sh, &s, 1, 1);
3665         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3666                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3667                 atomic_dec(&conf->reshape_stripes);
3668                 wake_up(&conf->wait_for_overlap);
3669                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3670         }
3671
3672         if (s.expanding && s.locked == 0 &&
3673             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3674                 handle_stripe_expansion(conf, sh);
3675
3676 finish:
3677         /* wait for this device to become unblocked */
3678         if (unlikely(s.blocked_rdev)) {
3679                 if (conf->mddev->external)
3680                         md_wait_for_blocked_rdev(s.blocked_rdev,
3681                                                  conf->mddev);
3682                 else
3683                         /* Internal metadata will immediately
3684                          * be written by raid5d, so we don't
3685                          * need to wait here.
3686                          */
3687                         rdev_dec_pending(s.blocked_rdev,
3688                                          conf->mddev);
3689         }
3690
3691         if (s.handle_bad_blocks)
3692                 for (i = disks; i--; ) {
3693                         struct md_rdev *rdev;
3694                         struct r5dev *dev = &sh->dev[i];
3695                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3696                                 /* We own a safe reference to the rdev */
3697                                 rdev = conf->disks[i].rdev;
3698                                 if (!rdev_set_badblocks(rdev, sh->sector,
3699                                                         STRIPE_SECTORS, 0))
3700                                         md_error(conf->mddev, rdev);
3701                                 rdev_dec_pending(rdev, conf->mddev);
3702                         }
3703                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3704                                 rdev = conf->disks[i].rdev;
3705                                 rdev_clear_badblocks(rdev, sh->sector,
3706                                                      STRIPE_SECTORS, 0);
3707                                 rdev_dec_pending(rdev, conf->mddev);
3708                         }
3709                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3710                                 rdev = conf->disks[i].replacement;
3711                                 if (!rdev)
3712                                         /* rdev have been moved down */
3713                                         rdev = conf->disks[i].rdev;
3714                                 rdev_clear_badblocks(rdev, sh->sector,
3715                                                      STRIPE_SECTORS, 0);
3716                                 rdev_dec_pending(rdev, conf->mddev);
3717                         }
3718                 }
3719
3720         if (s.ops_request)
3721                 raid_run_ops(sh, s.ops_request);
3722
3723         ops_run_io(sh, &s);
3724
3725         if (s.dec_preread_active) {
3726                 /* We delay this until after ops_run_io so that if make_request
3727                  * is waiting on a flush, it won't continue until the writes
3728                  * have actually been submitted.
3729                  */
3730                 atomic_dec(&conf->preread_active_stripes);
3731                 if (atomic_read(&conf->preread_active_stripes) <
3732                     IO_THRESHOLD)
3733                         md_wakeup_thread(conf->mddev->thread);
3734         }
3735
3736         return_io(s.return_bi);
3737
3738         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3739 }
3740
3741 static void raid5_activate_delayed(struct r5conf *conf)
3742 {
3743         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3744                 while (!list_empty(&conf->delayed_list)) {
3745                         struct list_head *l = conf->delayed_list.next;
3746                         struct stripe_head *sh;
3747                         sh = list_entry(l, struct stripe_head, lru);
3748                         list_del_init(l);
3749                         clear_bit(STRIPE_DELAYED, &sh->state);
3750                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3751                                 atomic_inc(&conf->preread_active_stripes);
3752                         list_add_tail(&sh->lru, &conf->hold_list);
3753                 }
3754         }
3755 }
3756
3757 static void activate_bit_delay(struct r5conf *conf)
3758 {
3759         /* device_lock is held */
3760         struct list_head head;
3761         list_add(&head, &conf->bitmap_list);
3762         list_del_init(&conf->bitmap_list);
3763         while (!list_empty(&head)) {
3764                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3765                 list_del_init(&sh->lru);
3766                 atomic_inc(&sh->count);
3767                 __release_stripe(conf, sh);
3768         }
3769 }
3770
3771 int md_raid5_congested(struct mddev *mddev, int bits)
3772 {
3773         struct r5conf *conf = mddev->private;
3774
3775         /* No difference between reads and writes.  Just check
3776          * how busy the stripe_cache is
3777          */
3778
3779         if (conf->inactive_blocked)
3780                 return 1;
3781         if (conf->quiesce)
3782                 return 1;
3783         if (list_empty_careful(&conf->inactive_list))
3784                 return 1;
3785
3786         return 0;
3787 }
3788 EXPORT_SYMBOL_GPL(md_raid5_congested);
3789
3790 static int raid5_congested(void *data, int bits)
3791 {
3792         struct mddev *mddev = data;
3793
3794         return mddev_congested(mddev, bits) ||
3795                 md_raid5_congested(mddev, bits);
3796 }
3797
3798 /* We want read requests to align with chunks where possible,
3799  * but write requests don't need to.
3800  */
3801 static int raid5_mergeable_bvec(struct request_queue *q,
3802                                 struct bvec_merge_data *bvm,
3803                                 struct bio_vec *biovec)
3804 {
3805         struct mddev *mddev = q->queuedata;
3806         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3807         int max;
3808         unsigned int chunk_sectors = mddev->chunk_sectors;
3809         unsigned int bio_sectors = bvm->bi_size >> 9;
3810
3811         if ((bvm->bi_rw & 1) == WRITE)
3812                 return biovec->bv_len; /* always allow writes to be mergeable */
3813
3814         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3815                 chunk_sectors = mddev->new_chunk_sectors;
3816         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3817         if (max < 0) max = 0;
3818         if (max <= biovec->bv_len && bio_sectors == 0)
3819                 return biovec->bv_len;
3820         else
3821                 return max;
3822 }
3823
3824
3825 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3826 {
3827         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3828         unsigned int chunk_sectors = mddev->chunk_sectors;
3829         unsigned int bio_sectors = bio->bi_size >> 9;
3830
3831         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3832                 chunk_sectors = mddev->new_chunk_sectors;
3833         return  chunk_sectors >=
3834                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3835 }
3836
3837 /*
3838  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3839  *  later sampled by raid5d.
3840  */
3841 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3842 {
3843         unsigned long flags;
3844
3845         spin_lock_irqsave(&conf->device_lock, flags);
3846
3847         bi->bi_next = conf->retry_read_aligned_list;
3848         conf->retry_read_aligned_list = bi;
3849
3850         spin_unlock_irqrestore(&conf->device_lock, flags);
3851         md_wakeup_thread(conf->mddev->thread);
3852 }
3853
3854
3855 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3856 {
3857         struct bio *bi;
3858
3859         bi = conf->retry_read_aligned;
3860         if (bi) {
3861                 conf->retry_read_aligned = NULL;
3862                 return bi;
3863         }
3864         bi = conf->retry_read_aligned_list;
3865         if(bi) {
3866                 conf->retry_read_aligned_list = bi->bi_next;
3867                 bi->bi_next = NULL;
3868                 /*
3869                  * this sets the active strip count to 1 and the processed
3870                  * strip count to zero (upper 8 bits)
3871                  */
3872                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3873         }
3874
3875         return bi;
3876 }
3877
3878
3879 /*
3880  *  The "raid5_align_endio" should check if the read succeeded and if it
3881  *  did, call bio_endio on the original bio (having bio_put the new bio
3882  *  first).
3883  *  If the read failed..
3884  */
3885 static void raid5_align_endio(struct bio *bi, int error)
3886 {
3887         struct bio* raid_bi  = bi->bi_private;
3888         struct mddev *mddev;
3889         struct r5conf *conf;
3890         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3891         struct md_rdev *rdev;
3892
3893         bio_put(bi);
3894
3895         rdev = (void*)raid_bi->bi_next;
3896         raid_bi->bi_next = NULL;
3897         mddev = rdev->mddev;
3898         conf = mddev->private;
3899
3900         rdev_dec_pending(rdev, conf->mddev);
3901
3902         if (!error && uptodate) {
3903                 bio_endio(raid_bi, 0);
3904                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3905                         wake_up(&conf->wait_for_stripe);
3906                 return;
3907         }
3908
3909
3910         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3911
3912         add_bio_to_retry(raid_bi, conf);
3913 }
3914
3915 static int bio_fits_rdev(struct bio *bi)
3916 {
3917         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3918
3919         if ((bi->bi_size>>9) > queue_max_sectors(q))
3920                 return 0;
3921         blk_recount_segments(q, bi);
3922         if (bi->bi_phys_segments > queue_max_segments(q))
3923                 return 0;
3924
3925         if (q->merge_bvec_fn)
3926                 /* it's too hard to apply the merge_bvec_fn at this stage,
3927                  * just just give up
3928                  */
3929                 return 0;
3930
3931         return 1;
3932 }
3933
3934
3935 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3936 {
3937         struct r5conf *conf = mddev->private;
3938         int dd_idx;
3939         struct bio* align_bi;
3940         struct md_rdev *rdev;
3941         sector_t end_sector;
3942
3943         if (!in_chunk_boundary(mddev, raid_bio)) {
3944                 pr_debug("chunk_aligned_read : non aligned\n");
3945                 return 0;
3946         }
3947         /*
3948          * use bio_clone_mddev to make a copy of the bio
3949          */
3950         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3951         if (!align_bi)
3952                 return 0;
3953         /*
3954          *   set bi_end_io to a new function, and set bi_private to the
3955          *     original bio.
3956          */
3957         align_bi->bi_end_io  = raid5_align_endio;
3958         align_bi->bi_private = raid_bio;
3959         /*
3960          *      compute position
3961          */
3962         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3963                                                     0,
3964                                                     &dd_idx, NULL);
3965
3966         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3967         rcu_read_lock();
3968         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3969         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3970             rdev->recovery_offset < end_sector) {
3971                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3972                 if (rdev &&
3973                     (test_bit(Faulty, &rdev->flags) ||
3974                     !(test_bit(In_sync, &rdev->flags) ||
3975                       rdev->recovery_offset >= end_sector)))
3976                         rdev = NULL;
3977         }
3978         if (rdev) {
3979                 sector_t first_bad;
3980                 int bad_sectors;
3981
3982                 atomic_inc(&rdev->nr_pending);
3983                 rcu_read_unlock();
3984                 raid_bio->bi_next = (void*)rdev;
3985                 align_bi->bi_bdev =  rdev->bdev;
3986                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3987
3988                 if (!bio_fits_rdev(align_bi) ||
3989                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3990                                 &first_bad, &bad_sectors)) {
3991                         /* too big in some way, or has a known bad block */
3992                         bio_put(align_bi);
3993                         rdev_dec_pending(rdev, mddev);
3994                         return 0;
3995                 }
3996
3997                 /* No reshape active, so we can trust rdev->data_offset */
3998                 align_bi->bi_sector += rdev->data_offset;
3999
4000                 spin_lock_irq(&conf->device_lock);
4001                 wait_event_lock_irq(conf->wait_for_stripe,
4002                                     conf->quiesce == 0,
4003                                     conf->device_lock, /* nothing */);
4004                 atomic_inc(&conf->active_aligned_reads);
4005                 spin_unlock_irq(&conf->device_lock);
4006
4007                 generic_make_request(align_bi);
4008                 return 1;
4009         } else {
4010                 rcu_read_unlock();
4011                 bio_put(align_bi);
4012                 return 0;
4013         }
4014 }
4015
4016 /* __get_priority_stripe - get the next stripe to process
4017  *
4018  * Full stripe writes are allowed to pass preread active stripes up until
4019  * the bypass_threshold is exceeded.  In general the bypass_count
4020  * increments when the handle_list is handled before the hold_list; however, it
4021  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4022  * stripe with in flight i/o.  The bypass_count will be reset when the
4023  * head of the hold_list has changed, i.e. the head was promoted to the
4024  * handle_list.
4025  */
4026 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4027 {
4028         struct stripe_head *sh;
4029
4030         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4031                   __func__,
4032                   list_empty(&conf->handle_list) ? "empty" : "busy",
4033                   list_empty(&conf->hold_list) ? "empty" : "busy",
4034                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4035
4036         if (!list_empty(&conf->handle_list)) {
4037                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4038
4039                 if (list_empty(&conf->hold_list))
4040                         conf->bypass_count = 0;
4041                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4042                         if (conf->hold_list.next == conf->last_hold)
4043                                 conf->bypass_count++;
4044                         else {
4045                                 conf->last_hold = conf->hold_list.next;
4046                                 conf->bypass_count -= conf->bypass_threshold;
4047                                 if (conf->bypass_count < 0)
4048                                         conf->bypass_count = 0;
4049                         }
4050                 }
4051         } else if (!list_empty(&conf->hold_list) &&
4052                    ((conf->bypass_threshold &&
4053                      conf->bypass_count > conf->bypass_threshold) ||
4054                     atomic_read(&conf->pending_full_writes) == 0)) {
4055                 sh = list_entry(conf->hold_list.next,
4056                                 typeof(*sh), lru);
4057                 conf->bypass_count -= conf->bypass_threshold;
4058                 if (conf->bypass_count < 0)
4059                         conf->bypass_count = 0;
4060         } else
4061                 return NULL;
4062
4063         list_del_init(&sh->lru);
4064         atomic_inc(&sh->count);
4065         BUG_ON(atomic_read(&sh->count) != 1);
4066         return sh;
4067 }
4068
4069 struct raid5_plug_cb {
4070         struct blk_plug_cb      cb;
4071         struct list_head        list;
4072 };
4073
4074 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4075 {
4076         struct raid5_plug_cb *cb = container_of(
4077                 blk_cb, struct raid5_plug_cb, cb);
4078         struct stripe_head *sh;
4079         struct mddev *mddev = cb->cb.data;
4080         struct r5conf *conf = mddev->private;
4081
4082         if (cb->list.next && !list_empty(&cb->list)) {
4083                 spin_lock_irq(&conf->device_lock);
4084                 while (!list_empty(&cb->list)) {
4085                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4086                         list_del_init(&sh->lru);
4087                         /*
4088                          * avoid race release_stripe_plug() sees
4089                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4090                          * is still in our list
4091                          */
4092                         smp_mb__before_clear_bit();
4093                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4094                         __release_stripe(conf, sh);
4095                 }
4096                 spin_unlock_irq(&conf->device_lock);
4097         }
4098         kfree(cb);
4099 }
4100
4101 static void release_stripe_plug(struct mddev *mddev,
4102                                 struct stripe_head *sh)
4103 {
4104         struct blk_plug_cb *blk_cb = blk_check_plugged(
4105                 raid5_unplug, mddev,
4106                 sizeof(struct raid5_plug_cb));
4107         struct raid5_plug_cb *cb;
4108
4109         if (!blk_cb) {
4110                 release_stripe(sh);
4111                 return;
4112         }
4113
4114         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4115
4116         if (cb->list.next == NULL)
4117                 INIT_LIST_HEAD(&cb->list);
4118
4119         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4120                 list_add_tail(&sh->lru, &cb->list);
4121         else
4122                 release_stripe(sh);
4123 }
4124
4125 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4126 {
4127         struct r5conf *conf = mddev->private;
4128         sector_t logical_sector, last_sector;
4129         struct stripe_head *sh;
4130         int remaining;
4131         int stripe_sectors;
4132
4133         if (mddev->reshape_position != MaxSector)
4134                 /* Skip discard while reshape is happening */
4135                 return;
4136
4137         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4138         last_sector = bi->bi_sector + (bi->bi_size>>9);
4139
4140         bi->bi_next = NULL;
4141         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4142
4143         stripe_sectors = conf->chunk_sectors *
4144                 (conf->raid_disks - conf->max_degraded);
4145         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4146                                                stripe_sectors);
4147         sector_div(last_sector, stripe_sectors);
4148
4149         logical_sector *= conf->chunk_sectors;
4150         last_sector *= conf->chunk_sectors;
4151
4152         for (; logical_sector < last_sector;
4153              logical_sector += STRIPE_SECTORS) {
4154                 DEFINE_WAIT(w);
4155                 int d;
4156         again:
4157                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4158                 prepare_to_wait(&conf->wait_for_overlap, &w,
4159                                 TASK_UNINTERRUPTIBLE);
4160                 spin_lock_irq(&sh->stripe_lock);
4161                 for (d = 0; d < conf->raid_disks; d++) {
4162                         if (d == sh->pd_idx || d == sh->qd_idx)
4163                                 continue;
4164                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4165                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4166                                 spin_unlock_irq(&sh->stripe_lock);
4167                                 release_stripe(sh);
4168                                 schedule();
4169                                 goto again;
4170                         }
4171                 }
4172                 finish_wait(&conf->wait_for_overlap, &w);
4173                 for (d = 0; d < conf->raid_disks; d++) {
4174                         if (d == sh->pd_idx || d == sh->qd_idx)
4175                                 continue;
4176                         sh->dev[d].towrite = bi;
4177                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4178                         raid5_inc_bi_active_stripes(bi);
4179                 }
4180                 spin_unlock_irq(&sh->stripe_lock);
4181                 if (conf->mddev->bitmap) {
4182                         for (d = 0;
4183                              d < conf->raid_disks - conf->max_degraded;
4184                              d++)
4185                                 bitmap_startwrite(mddev->bitmap,
4186                                                   sh->sector,
4187                                                   STRIPE_SECTORS,
4188                                                   0);
4189                         sh->bm_seq = conf->seq_flush + 1;
4190                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4191                 }
4192
4193                 set_bit(STRIPE_HANDLE, &sh->state);
4194                 clear_bit(STRIPE_DELAYED, &sh->state);
4195                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4196                         atomic_inc(&conf->preread_active_stripes);
4197                 release_stripe_plug(mddev, sh);
4198         }
4199
4200         remaining = raid5_dec_bi_active_stripes(bi);
4201         if (remaining == 0) {
4202                 md_write_end(mddev);
4203                 bio_endio(bi, 0);
4204         }
4205 }
4206
4207 static void make_request(struct mddev *mddev, struct bio * bi)
4208 {
4209         struct r5conf *conf = mddev->private;
4210         int dd_idx;
4211         sector_t new_sector;
4212         sector_t logical_sector, last_sector;
4213         struct stripe_head *sh;
4214         const int rw = bio_data_dir(bi);
4215         int remaining;
4216
4217         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4218                 md_flush_request(mddev, bi);
4219                 return;
4220         }
4221
4222         md_write_start(mddev, bi);
4223
4224         if (rw == READ &&
4225              mddev->reshape_position == MaxSector &&
4226              chunk_aligned_read(mddev,bi))
4227                 return;
4228
4229         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4230                 make_discard_request(mddev, bi);
4231                 return;
4232         }
4233
4234         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4235         last_sector = bi->bi_sector + (bi->bi_size>>9);
4236         bi->bi_next = NULL;
4237         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4238
4239         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4240                 DEFINE_WAIT(w);
4241                 int previous;
4242
4243         retry:
4244                 previous = 0;
4245                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4246                 if (unlikely(conf->reshape_progress != MaxSector)) {
4247                         /* spinlock is needed as reshape_progress may be
4248                          * 64bit on a 32bit platform, and so it might be
4249                          * possible to see a half-updated value
4250                          * Of course reshape_progress could change after
4251                          * the lock is dropped, so once we get a reference
4252                          * to the stripe that we think it is, we will have
4253                          * to check again.
4254                          */
4255                         spin_lock_irq(&conf->device_lock);
4256                         if (mddev->reshape_backwards
4257                             ? logical_sector < conf->reshape_progress
4258                             : logical_sector >= conf->reshape_progress) {
4259                                 previous = 1;
4260                         } else {
4261                                 if (mddev->reshape_backwards
4262                                     ? logical_sector < conf->reshape_safe
4263                                     : logical_sector >= conf->reshape_safe) {
4264                                         spin_unlock_irq(&conf->device_lock);
4265                                         schedule();
4266                                         goto retry;
4267                                 }
4268                         }
4269                         spin_unlock_irq(&conf->device_lock);
4270                 }
4271
4272                 new_sector = raid5_compute_sector(conf, logical_sector,
4273                                                   previous,
4274                                                   &dd_idx, NULL);
4275                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4276                         (unsigned long long)new_sector, 
4277                         (unsigned long long)logical_sector);
4278
4279                 sh = get_active_stripe(conf, new_sector, previous,
4280                                        (bi->bi_rw&RWA_MASK), 0);
4281                 if (sh) {
4282                         if (unlikely(previous)) {
4283                                 /* expansion might have moved on while waiting for a
4284                                  * stripe, so we must do the range check again.
4285                                  * Expansion could still move past after this
4286                                  * test, but as we are holding a reference to
4287                                  * 'sh', we know that if that happens,
4288                                  *  STRIPE_EXPANDING will get set and the expansion
4289                                  * won't proceed until we finish with the stripe.
4290                                  */
4291                                 int must_retry = 0;
4292                                 spin_lock_irq(&conf->device_lock);
4293                                 if (mddev->reshape_backwards
4294                                     ? logical_sector >= conf->reshape_progress
4295                                     : logical_sector < conf->reshape_progress)
4296                                         /* mismatch, need to try again */
4297                                         must_retry = 1;
4298                                 spin_unlock_irq(&conf->device_lock);
4299                                 if (must_retry) {
4300                                         release_stripe(sh);
4301                                         schedule();
4302                                         goto retry;
4303                                 }
4304                         }
4305
4306                         if (rw == WRITE &&
4307                             logical_sector >= mddev->suspend_lo &&
4308                             logical_sector < mddev->suspend_hi) {
4309                                 release_stripe(sh);
4310                                 /* As the suspend_* range is controlled by
4311                                  * userspace, we want an interruptible
4312                                  * wait.
4313                                  */
4314                                 flush_signals(current);
4315                                 prepare_to_wait(&conf->wait_for_overlap,
4316                                                 &w, TASK_INTERRUPTIBLE);
4317                                 if (logical_sector >= mddev->suspend_lo &&
4318                                     logical_sector < mddev->suspend_hi)
4319                                         schedule();
4320                                 goto retry;
4321                         }
4322
4323                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4324                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4325                                 /* Stripe is busy expanding or
4326                                  * add failed due to overlap.  Flush everything
4327                                  * and wait a while
4328                                  */
4329                                 md_wakeup_thread(mddev->thread);
4330                                 release_stripe(sh);
4331                                 schedule();
4332                                 goto retry;
4333                         }
4334                         finish_wait(&conf->wait_for_overlap, &w);
4335                         set_bit(STRIPE_HANDLE, &sh->state);
4336                         clear_bit(STRIPE_DELAYED, &sh->state);
4337                         if ((bi->bi_rw & REQ_SYNC) &&
4338                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4339                                 atomic_inc(&conf->preread_active_stripes);
4340                         release_stripe_plug(mddev, sh);
4341                 } else {
4342                         /* cannot get stripe for read-ahead, just give-up */
4343                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4344                         finish_wait(&conf->wait_for_overlap, &w);
4345                         break;
4346                 }
4347         }
4348
4349         remaining = raid5_dec_bi_active_stripes(bi);
4350         if (remaining == 0) {
4351
4352                 if ( rw == WRITE )
4353                         md_write_end(mddev);
4354
4355                 bio_endio(bi, 0);
4356         }
4357 }
4358
4359 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4360
4361 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4362 {
4363         /* reshaping is quite different to recovery/resync so it is
4364          * handled quite separately ... here.
4365          *
4366          * On each call to sync_request, we gather one chunk worth of
4367          * destination stripes and flag them as expanding.
4368          * Then we find all the source stripes and request reads.
4369          * As the reads complete, handle_stripe will copy the data
4370          * into the destination stripe and release that stripe.
4371          */
4372         struct r5conf *conf = mddev->private;
4373         struct stripe_head *sh;
4374         sector_t first_sector, last_sector;
4375         int raid_disks = conf->previous_raid_disks;
4376         int data_disks = raid_disks - conf->max_degraded;
4377         int new_data_disks = conf->raid_disks - conf->max_degraded;
4378         int i;
4379         int dd_idx;
4380         sector_t writepos, readpos, safepos;
4381         sector_t stripe_addr;
4382         int reshape_sectors;
4383         struct list_head stripes;
4384
4385         if (sector_nr == 0) {
4386                 /* If restarting in the middle, skip the initial sectors */
4387                 if (mddev->reshape_backwards &&
4388                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4389                         sector_nr = raid5_size(mddev, 0, 0)
4390                                 - conf->reshape_progress;
4391                 } else if (!mddev->reshape_backwards &&
4392                            conf->reshape_progress > 0)
4393                         sector_nr = conf->reshape_progress;
4394                 sector_div(sector_nr, new_data_disks);
4395                 if (sector_nr) {
4396                         mddev->curr_resync_completed = sector_nr;
4397                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4398                         *skipped = 1;
4399                         return sector_nr;
4400                 }
4401         }
4402
4403         /* We need to process a full chunk at a time.
4404          * If old and new chunk sizes differ, we need to process the
4405          * largest of these
4406          */
4407         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4408                 reshape_sectors = mddev->new_chunk_sectors;
4409         else
4410                 reshape_sectors = mddev->chunk_sectors;
4411
4412         /* We update the metadata at least every 10 seconds, or when
4413          * the data about to be copied would over-write the source of
4414          * the data at the front of the range.  i.e. one new_stripe
4415          * along from reshape_progress new_maps to after where
4416          * reshape_safe old_maps to
4417          */
4418         writepos = conf->reshape_progress;
4419         sector_div(writepos, new_data_disks);
4420         readpos = conf->reshape_progress;
4421         sector_div(readpos, data_disks);
4422         safepos = conf->reshape_safe;
4423         sector_div(safepos, data_disks);
4424         if (mddev->reshape_backwards) {
4425                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4426                 readpos += reshape_sectors;
4427                 safepos += reshape_sectors;
4428         } else {
4429                 writepos += reshape_sectors;
4430                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4431                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4432         }
4433
4434         /* Having calculated the 'writepos' possibly use it
4435          * to set 'stripe_addr' which is where we will write to.
4436          */
4437         if (mddev->reshape_backwards) {
4438                 BUG_ON(conf->reshape_progress == 0);
4439                 stripe_addr = writepos;
4440                 BUG_ON((mddev->dev_sectors &
4441                         ~((sector_t)reshape_sectors - 1))
4442                        - reshape_sectors - stripe_addr
4443                        != sector_nr);
4444         } else {
4445                 BUG_ON(writepos != sector_nr + reshape_sectors);
4446                 stripe_addr = sector_nr;
4447         }
4448
4449         /* 'writepos' is the most advanced device address we might write.
4450          * 'readpos' is the least advanced device address we might read.
4451          * 'safepos' is the least address recorded in the metadata as having
4452          *     been reshaped.
4453          * If there is a min_offset_diff, these are adjusted either by
4454          * increasing the safepos/readpos if diff is negative, or
4455          * increasing writepos if diff is positive.
4456          * If 'readpos' is then behind 'writepos', there is no way that we can
4457          * ensure safety in the face of a crash - that must be done by userspace
4458          * making a backup of the data.  So in that case there is no particular
4459          * rush to update metadata.
4460          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4461          * update the metadata to advance 'safepos' to match 'readpos' so that
4462          * we can be safe in the event of a crash.
4463          * So we insist on updating metadata if safepos is behind writepos and
4464          * readpos is beyond writepos.
4465          * In any case, update the metadata every 10 seconds.
4466          * Maybe that number should be configurable, but I'm not sure it is
4467          * worth it.... maybe it could be a multiple of safemode_delay???
4468          */
4469         if (conf->min_offset_diff < 0) {
4470                 safepos += -conf->min_offset_diff;
4471                 readpos += -conf->min_offset_diff;
4472         } else
4473                 writepos += conf->min_offset_diff;
4474
4475         if ((mddev->reshape_backwards
4476              ? (safepos > writepos && readpos < writepos)
4477              : (safepos < writepos && readpos > writepos)) ||
4478             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4479                 /* Cannot proceed until we've updated the superblock... */
4480                 wait_event(conf->wait_for_overlap,
4481                            atomic_read(&conf->reshape_stripes)==0);
4482                 mddev->reshape_position = conf->reshape_progress;
4483                 mddev->curr_resync_completed = sector_nr;
4484                 conf->reshape_checkpoint = jiffies;
4485                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4486                 md_wakeup_thread(mddev->thread);
4487                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4488                            kthread_should_stop());
4489                 spin_lock_irq(&conf->device_lock);
4490                 conf->reshape_safe = mddev->reshape_position;
4491                 spin_unlock_irq(&conf->device_lock);
4492                 wake_up(&conf->wait_for_overlap);
4493                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4494         }
4495
4496         INIT_LIST_HEAD(&stripes);
4497         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4498                 int j;
4499                 int skipped_disk = 0;
4500                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4501                 set_bit(STRIPE_EXPANDING, &sh->state);
4502                 atomic_inc(&conf->reshape_stripes);
4503                 /* If any of this stripe is beyond the end of the old
4504                  * array, then we need to zero those blocks
4505                  */
4506                 for (j=sh->disks; j--;) {
4507                         sector_t s;
4508                         if (j == sh->pd_idx)
4509                                 continue;
4510                         if (conf->level == 6 &&
4511                             j == sh->qd_idx)
4512                                 continue;
4513                         s = compute_blocknr(sh, j, 0);
4514                         if (s < raid5_size(mddev, 0, 0)) {
4515                                 skipped_disk = 1;
4516                                 continue;
4517                         }
4518                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4519                         set_bit(R5_Expanded, &sh->dev[j].flags);
4520                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4521                 }
4522                 if (!skipped_disk) {
4523                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4524                         set_bit(STRIPE_HANDLE, &sh->state);
4525                 }
4526                 list_add(&sh->lru, &stripes);
4527         }
4528         spin_lock_irq(&conf->device_lock);
4529         if (mddev->reshape_backwards)
4530                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4531         else
4532                 conf->reshape_progress += reshape_sectors * new_data_disks;
4533         spin_unlock_irq(&conf->device_lock);
4534         /* Ok, those stripe are ready. We can start scheduling
4535          * reads on the source stripes.
4536          * The source stripes are determined by mapping the first and last
4537          * block on the destination stripes.
4538          */
4539         first_sector =
4540                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4541                                      1, &dd_idx, NULL);
4542         last_sector =
4543                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4544                                             * new_data_disks - 1),
4545                                      1, &dd_idx, NULL);
4546         if (last_sector >= mddev->dev_sectors)
4547                 last_sector = mddev->dev_sectors - 1;
4548         while (first_sector <= last_sector) {
4549                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4550                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4551                 set_bit(STRIPE_HANDLE, &sh->state);
4552                 release_stripe(sh);
4553                 first_sector += STRIPE_SECTORS;
4554         }
4555         /* Now that the sources are clearly marked, we can release
4556          * the destination stripes
4557          */
4558         while (!list_empty(&stripes)) {
4559                 sh = list_entry(stripes.next, struct stripe_head, lru);
4560                 list_del_init(&sh->lru);
4561                 release_stripe(sh);
4562         }
4563         /* If this takes us to the resync_max point where we have to pause,
4564          * then we need to write out the superblock.
4565          */
4566         sector_nr += reshape_sectors;
4567         if ((sector_nr - mddev->curr_resync_completed) * 2
4568             >= mddev->resync_max - mddev->curr_resync_completed) {
4569                 /* Cannot proceed until we've updated the superblock... */
4570                 wait_event(conf->wait_for_overlap,
4571                            atomic_read(&conf->reshape_stripes) == 0);
4572                 mddev->reshape_position = conf->reshape_progress;
4573                 mddev->curr_resync_completed = sector_nr;
4574                 conf->reshape_checkpoint = jiffies;
4575                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4576                 md_wakeup_thread(mddev->thread);
4577                 wait_event(mddev->sb_wait,
4578                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4579                            || kthread_should_stop());
4580                 spin_lock_irq(&conf->device_lock);
4581                 conf->reshape_safe = mddev->reshape_position;
4582                 spin_unlock_irq(&conf->device_lock);
4583                 wake_up(&conf->wait_for_overlap);
4584                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4585         }
4586         return reshape_sectors;
4587 }
4588
4589 /* FIXME go_faster isn't used */
4590 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4591 {
4592         struct r5conf *conf = mddev->private;
4593         struct stripe_head *sh;
4594         sector_t max_sector = mddev->dev_sectors;
4595         sector_t sync_blocks;
4596         int still_degraded = 0;
4597         int i;
4598
4599         if (sector_nr >= max_sector) {
4600                 /* just being told to finish up .. nothing much to do */
4601
4602                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4603                         end_reshape(conf);
4604                         return 0;
4605                 }
4606
4607                 if (mddev->curr_resync < max_sector) /* aborted */
4608                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4609                                         &sync_blocks, 1);
4610                 else /* completed sync */
4611                         conf->fullsync = 0;
4612                 bitmap_close_sync(mddev->bitmap);
4613
4614                 return 0;
4615         }
4616
4617         /* Allow raid5_quiesce to complete */
4618         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4619
4620         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4621                 return reshape_request(mddev, sector_nr, skipped);
4622
4623         /* No need to check resync_max as we never do more than one
4624          * stripe, and as resync_max will always be on a chunk boundary,
4625          * if the check in md_do_sync didn't fire, there is no chance
4626          * of overstepping resync_max here
4627          */
4628
4629         /* if there is too many failed drives and we are trying
4630          * to resync, then assert that we are finished, because there is
4631          * nothing we can do.
4632          */
4633         if (mddev->degraded >= conf->max_degraded &&
4634             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4635                 sector_t rv = mddev->dev_sectors - sector_nr;
4636                 *skipped = 1;
4637                 return rv;
4638         }
4639         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4640             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4641             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4642                 /* we can skip this block, and probably more */
4643                 sync_blocks /= STRIPE_SECTORS;
4644                 *skipped = 1;
4645                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4646         }
4647
4648         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4649
4650         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4651         if (sh == NULL) {
4652                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4653                 /* make sure we don't swamp the stripe cache if someone else
4654                  * is trying to get access
4655                  */
4656                 schedule_timeout_uninterruptible(1);
4657         }
4658         /* Need to check if array will still be degraded after recovery/resync
4659          * We don't need to check the 'failed' flag as when that gets set,
4660          * recovery aborts.
4661          */
4662         for (i = 0; i < conf->raid_disks; i++)
4663                 if (conf->disks[i].rdev == NULL)
4664                         still_degraded = 1;
4665
4666         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4667
4668         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4669
4670         handle_stripe(sh);
4671         release_stripe(sh);
4672
4673         return STRIPE_SECTORS;
4674 }
4675
4676 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4677 {
4678         /* We may not be able to submit a whole bio at once as there
4679          * may not be enough stripe_heads available.
4680          * We cannot pre-allocate enough stripe_heads as we may need
4681          * more than exist in the cache (if we allow ever large chunks).
4682          * So we do one stripe head at a time and record in
4683          * ->bi_hw_segments how many have been done.
4684          *
4685          * We *know* that this entire raid_bio is in one chunk, so
4686          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4687          */
4688         struct stripe_head *sh;
4689         int dd_idx;
4690         sector_t sector, logical_sector, last_sector;
4691         int scnt = 0;
4692         int remaining;
4693         int handled = 0;
4694
4695         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4696         sector = raid5_compute_sector(conf, logical_sector,
4697                                       0, &dd_idx, NULL);
4698         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4699
4700         for (; logical_sector < last_sector;
4701              logical_sector += STRIPE_SECTORS,
4702                      sector += STRIPE_SECTORS,
4703                      scnt++) {
4704
4705                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4706                         /* already done this stripe */
4707                         continue;
4708
4709                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4710
4711                 if (!sh) {
4712                         /* failed to get a stripe - must wait */
4713                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4714                         conf->retry_read_aligned = raid_bio;
4715                         return handled;
4716                 }
4717
4718                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4719                         release_stripe(sh);
4720                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4721                         conf->retry_read_aligned = raid_bio;
4722                         return handled;
4723                 }
4724
4725                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4726                 handle_stripe(sh);
4727                 release_stripe(sh);
4728                 handled++;
4729         }
4730         remaining = raid5_dec_bi_active_stripes(raid_bio);
4731         if (remaining == 0)
4732                 bio_endio(raid_bio, 0);
4733         if (atomic_dec_and_test(&conf->active_aligned_reads))
4734                 wake_up(&conf->wait_for_stripe);
4735         return handled;
4736 }
4737
4738 #define MAX_STRIPE_BATCH 8
4739 static int handle_active_stripes(struct r5conf *conf)
4740 {
4741         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4742         int i, batch_size = 0;
4743
4744         while (batch_size < MAX_STRIPE_BATCH &&
4745                         (sh = __get_priority_stripe(conf)) != NULL)
4746                 batch[batch_size++] = sh;
4747
4748         if (batch_size == 0)
4749                 return batch_size;
4750         spin_unlock_irq(&conf->device_lock);
4751
4752         for (i = 0; i < batch_size; i++)
4753                 handle_stripe(batch[i]);
4754
4755         cond_resched();
4756
4757         spin_lock_irq(&conf->device_lock);
4758         for (i = 0; i < batch_size; i++)
4759                 __release_stripe(conf, batch[i]);
4760         return batch_size;
4761 }
4762
4763 /*
4764  * This is our raid5 kernel thread.
4765  *
4766  * We scan the hash table for stripes which can be handled now.
4767  * During the scan, completed stripes are saved for us by the interrupt
4768  * handler, so that they will not have to wait for our next wakeup.
4769  */
4770 static void raid5d(struct md_thread *thread)
4771 {
4772         struct mddev *mddev = thread->mddev;
4773         struct r5conf *conf = mddev->private;
4774         int handled;
4775         struct blk_plug plug;
4776
4777         pr_debug("+++ raid5d active\n");
4778
4779         md_check_recovery(mddev);
4780
4781         blk_start_plug(&plug);
4782         handled = 0;
4783         spin_lock_irq(&conf->device_lock);
4784         while (1) {
4785                 struct bio *bio;
4786                 int batch_size;
4787
4788                 if (
4789                     !list_empty(&conf->bitmap_list)) {
4790                         /* Now is a good time to flush some bitmap updates */
4791                         conf->seq_flush++;
4792                         spin_unlock_irq(&conf->device_lock);
4793                         bitmap_unplug(mddev->bitmap);
4794                         spin_lock_irq(&conf->device_lock);
4795                         conf->seq_write = conf->seq_flush;
4796                         activate_bit_delay(conf);
4797                 }
4798                 raid5_activate_delayed(conf);
4799
4800                 while ((bio = remove_bio_from_retry(conf))) {
4801                         int ok;
4802                         spin_unlock_irq(&conf->device_lock);
4803                         ok = retry_aligned_read(conf, bio);
4804                         spin_lock_irq(&conf->device_lock);
4805                         if (!ok)
4806                                 break;
4807                         handled++;
4808                 }
4809
4810                 batch_size = handle_active_stripes(conf);
4811                 if (!batch_size)
4812                         break;
4813                 handled += batch_size;
4814
4815                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4816                         spin_unlock_irq(&conf->device_lock);
4817                         md_check_recovery(mddev);
4818                         spin_lock_irq(&conf->device_lock);
4819                 }
4820         }
4821         pr_debug("%d stripes handled\n", handled);
4822
4823         spin_unlock_irq(&conf->device_lock);
4824
4825         async_tx_issue_pending_all();
4826         blk_finish_plug(&plug);
4827
4828         pr_debug("--- raid5d inactive\n");
4829 }
4830
4831 static ssize_t
4832 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4833 {
4834         struct r5conf *conf = mddev->private;
4835         if (conf)
4836                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4837         else
4838                 return 0;
4839 }
4840
4841 int
4842 raid5_set_cache_size(struct mddev *mddev, int size)
4843 {
4844         struct r5conf *conf = mddev->private;
4845         int err;
4846
4847         if (size <= 16 || size > 32768)
4848                 return -EINVAL;
4849         while (size < conf->max_nr_stripes) {
4850                 if (drop_one_stripe(conf))
4851                         conf->max_nr_stripes--;
4852                 else
4853                         break;
4854         }
4855         err = md_allow_write(mddev);
4856         if (err)
4857                 return err;
4858         while (size > conf->max_nr_stripes) {
4859                 if (grow_one_stripe(conf))
4860                         conf->max_nr_stripes++;
4861                 else break;
4862         }
4863         return 0;
4864 }
4865 EXPORT_SYMBOL(raid5_set_cache_size);
4866
4867 static ssize_t
4868 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4869 {
4870         struct r5conf *conf = mddev->private;
4871         unsigned long new;
4872         int err;
4873
4874         if (len >= PAGE_SIZE)
4875                 return -EINVAL;
4876         if (!conf)
4877                 return -ENODEV;
4878
4879         if (strict_strtoul(page, 10, &new))
4880                 return -EINVAL;
4881         err = raid5_set_cache_size(mddev, new);
4882         if (err)
4883                 return err;
4884         return len;
4885 }
4886
4887 static struct md_sysfs_entry
4888 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4889                                 raid5_show_stripe_cache_size,
4890                                 raid5_store_stripe_cache_size);
4891
4892 static ssize_t
4893 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4894 {
4895         struct r5conf *conf = mddev->private;
4896         if (conf)
4897                 return sprintf(page, "%d\n", conf->bypass_threshold);
4898         else
4899                 return 0;
4900 }
4901
4902 static ssize_t
4903 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4904 {
4905         struct r5conf *conf = mddev->private;
4906         unsigned long new;
4907         if (len >= PAGE_SIZE)
4908                 return -EINVAL;
4909         if (!conf)
4910                 return -ENODEV;
4911
4912         if (strict_strtoul(page, 10, &new))
4913                 return -EINVAL;
4914         if (new > conf->max_nr_stripes)
4915                 return -EINVAL;
4916         conf->bypass_threshold = new;
4917         return len;
4918 }
4919
4920 static struct md_sysfs_entry
4921 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4922                                         S_IRUGO | S_IWUSR,
4923                                         raid5_show_preread_threshold,
4924                                         raid5_store_preread_threshold);
4925
4926 static ssize_t
4927 stripe_cache_active_show(struct mddev *mddev, char *page)
4928 {
4929         struct r5conf *conf = mddev->private;
4930         if (conf)
4931                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4932         else
4933                 return 0;
4934 }
4935
4936 static struct md_sysfs_entry
4937 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4938
4939 static struct attribute *raid5_attrs[] =  {
4940         &raid5_stripecache_size.attr,
4941         &raid5_stripecache_active.attr,
4942         &raid5_preread_bypass_threshold.attr,
4943         NULL,
4944 };
4945 static struct attribute_group raid5_attrs_group = {
4946         .name = NULL,
4947         .attrs = raid5_attrs,
4948 };
4949
4950 static sector_t
4951 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4952 {
4953         struct r5conf *conf = mddev->private;
4954
4955         if (!sectors)
4956                 sectors = mddev->dev_sectors;
4957         if (!raid_disks)
4958                 /* size is defined by the smallest of previous and new size */
4959                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4960
4961         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4962         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4963         return sectors * (raid_disks - conf->max_degraded);
4964 }
4965
4966 static void raid5_free_percpu(struct r5conf *conf)
4967 {
4968         struct raid5_percpu *percpu;
4969         unsigned long cpu;
4970
4971         if (!conf->percpu)
4972                 return;
4973
4974         get_online_cpus();
4975         for_each_possible_cpu(cpu) {
4976                 percpu = per_cpu_ptr(conf->percpu, cpu);
4977                 safe_put_page(percpu->spare_page);
4978                 kfree(percpu->scribble);
4979         }
4980 #ifdef CONFIG_HOTPLUG_CPU
4981         unregister_cpu_notifier(&conf->cpu_notify);
4982 #endif
4983         put_online_cpus();
4984
4985         free_percpu(conf->percpu);
4986 }
4987
4988 static void free_conf(struct r5conf *conf)
4989 {
4990         shrink_stripes(conf);
4991         raid5_free_percpu(conf);
4992         kfree(conf->disks);
4993         kfree(conf->stripe_hashtbl);
4994         kfree(conf);
4995 }
4996
4997 #ifdef CONFIG_HOTPLUG_CPU
4998 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4999                               void *hcpu)
5000 {
5001         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5002         long cpu = (long)hcpu;
5003         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5004
5005         switch (action) {
5006         case CPU_UP_PREPARE:
5007         case CPU_UP_PREPARE_FROZEN:
5008                 if (conf->level == 6 && !percpu->spare_page)
5009                         percpu->spare_page = alloc_page(GFP_KERNEL);
5010                 if (!percpu->scribble)
5011                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5012
5013                 if (!percpu->scribble ||
5014                     (conf->level == 6 && !percpu->spare_page)) {
5015                         safe_put_page(percpu->spare_page);
5016                         kfree(percpu->scribble);
5017                         pr_err("%s: failed memory allocation for cpu%ld\n",
5018                                __func__, cpu);
5019                         return notifier_from_errno(-ENOMEM);
5020                 }
5021                 break;
5022         case CPU_DEAD:
5023         case CPU_DEAD_FROZEN:
5024                 safe_put_page(percpu->spare_page);
5025                 kfree(percpu->scribble);
5026                 percpu->spare_page = NULL;
5027                 percpu->scribble = NULL;
5028                 break;
5029         default:
5030                 break;
5031         }
5032         return NOTIFY_OK;
5033 }
5034 #endif
5035
5036 static int raid5_alloc_percpu(struct r5conf *conf)
5037 {
5038         unsigned long cpu;
5039         struct page *spare_page;
5040         struct raid5_percpu __percpu *allcpus;
5041         void *scribble;
5042         int err;
5043
5044         allcpus = alloc_percpu(struct raid5_percpu);
5045         if (!allcpus)
5046                 return -ENOMEM;
5047         conf->percpu = allcpus;
5048
5049         get_online_cpus();
5050         err = 0;
5051         for_each_present_cpu(cpu) {
5052                 if (conf->level == 6) {
5053                         spare_page = alloc_page(GFP_KERNEL);
5054                         if (!spare_page) {
5055                                 err = -ENOMEM;
5056                                 break;
5057                         }
5058                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5059                 }
5060                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5061                 if (!scribble) {
5062                         err = -ENOMEM;
5063                         break;
5064                 }
5065                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5066         }
5067 #ifdef CONFIG_HOTPLUG_CPU
5068         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5069         conf->cpu_notify.priority = 0;
5070         if (err == 0)
5071                 err = register_cpu_notifier(&conf->cpu_notify);
5072 #endif
5073         put_online_cpus();
5074
5075         return err;
5076 }
5077
5078 static struct r5conf *setup_conf(struct mddev *mddev)
5079 {
5080         struct r5conf *conf;
5081         int raid_disk, memory, max_disks;
5082         struct md_rdev *rdev;
5083         struct disk_info *disk;
5084         char pers_name[6];
5085
5086         if (mddev->new_level != 5
5087             && mddev->new_level != 4
5088             && mddev->new_level != 6) {
5089                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5090                        mdname(mddev), mddev->new_level);
5091                 return ERR_PTR(-EIO);
5092         }
5093         if ((mddev->new_level == 5
5094              && !algorithm_valid_raid5(mddev->new_layout)) ||
5095             (mddev->new_level == 6
5096              && !algorithm_valid_raid6(mddev->new_layout))) {
5097                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5098                        mdname(mddev), mddev->new_layout);
5099                 return ERR_PTR(-EIO);
5100         }
5101         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5102                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5103                        mdname(mddev), mddev->raid_disks);
5104                 return ERR_PTR(-EINVAL);
5105         }
5106
5107         if (!mddev->new_chunk_sectors ||
5108             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5109             !is_power_of_2(mddev->new_chunk_sectors)) {
5110                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5111                        mdname(mddev), mddev->new_chunk_sectors << 9);
5112                 return ERR_PTR(-EINVAL);
5113         }
5114
5115         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5116         if (conf == NULL)
5117                 goto abort;
5118         spin_lock_init(&conf->device_lock);
5119         init_waitqueue_head(&conf->wait_for_stripe);
5120         init_waitqueue_head(&conf->wait_for_overlap);
5121         INIT_LIST_HEAD(&conf->handle_list);
5122         INIT_LIST_HEAD(&conf->hold_list);
5123         INIT_LIST_HEAD(&conf->delayed_list);
5124         INIT_LIST_HEAD(&conf->bitmap_list);
5125         INIT_LIST_HEAD(&conf->inactive_list);
5126         atomic_set(&conf->active_stripes, 0);
5127         atomic_set(&conf->preread_active_stripes, 0);
5128         atomic_set(&conf->active_aligned_reads, 0);
5129         conf->bypass_threshold = BYPASS_THRESHOLD;
5130         conf->recovery_disabled = mddev->recovery_disabled - 1;
5131
5132         conf->raid_disks = mddev->raid_disks;
5133         if (mddev->reshape_position == MaxSector)
5134                 conf->previous_raid_disks = mddev->raid_disks;
5135         else
5136                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5137         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5138         conf->scribble_len = scribble_len(max_disks);
5139
5140         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5141                               GFP_KERNEL);
5142         if (!conf->disks)
5143                 goto abort;
5144
5145         conf->mddev = mddev;
5146
5147         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5148                 goto abort;
5149
5150         conf->level = mddev->new_level;
5151         if (raid5_alloc_percpu(conf) != 0)
5152                 goto abort;
5153
5154         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5155
5156         rdev_for_each(rdev, mddev) {
5157                 raid_disk = rdev->raid_disk;
5158                 if (raid_disk >= max_disks
5159                     || raid_disk < 0)
5160                         continue;
5161                 disk = conf->disks + raid_disk;
5162
5163                 if (test_bit(Replacement, &rdev->flags)) {
5164                         if (disk->replacement)
5165                                 goto abort;
5166                         disk->replacement = rdev;
5167                 } else {
5168                         if (disk->rdev)
5169                                 goto abort;
5170                         disk->rdev = rdev;
5171                 }
5172
5173                 if (test_bit(In_sync, &rdev->flags)) {
5174                         char b[BDEVNAME_SIZE];
5175                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5176                                " disk %d\n",
5177                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5178                 } else if (rdev->saved_raid_disk != raid_disk)
5179                         /* Cannot rely on bitmap to complete recovery */
5180                         conf->fullsync = 1;
5181         }
5182
5183         conf->chunk_sectors = mddev->new_chunk_sectors;
5184         conf->level = mddev->new_level;
5185         if (conf->level == 6)
5186                 conf->max_degraded = 2;
5187         else
5188                 conf->max_degraded = 1;
5189         conf->algorithm = mddev->new_layout;
5190         conf->max_nr_stripes = NR_STRIPES;
5191         conf->reshape_progress = mddev->reshape_position;
5192         if (conf->reshape_progress != MaxSector) {
5193                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5194                 conf->prev_algo = mddev->layout;
5195         }
5196
5197         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5198                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5199         if (grow_stripes(conf, conf->max_nr_stripes)) {
5200                 printk(KERN_ERR
5201                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5202                        mdname(mddev), memory);
5203                 goto abort;
5204         } else
5205                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5206                        mdname(mddev), memory);
5207
5208         sprintf(pers_name, "raid%d", mddev->new_level);
5209         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5210         if (!conf->thread) {
5211                 printk(KERN_ERR
5212                        "md/raid:%s: couldn't allocate thread.\n",
5213                        mdname(mddev));
5214                 goto abort;
5215         }
5216
5217         return conf;
5218
5219  abort:
5220         if (conf) {
5221                 free_conf(conf);
5222                 return ERR_PTR(-EIO);
5223         } else
5224                 return ERR_PTR(-ENOMEM);
5225 }
5226
5227
5228 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5229 {
5230         switch (algo) {
5231         case ALGORITHM_PARITY_0:
5232                 if (raid_disk < max_degraded)
5233                         return 1;
5234                 break;
5235         case ALGORITHM_PARITY_N:
5236                 if (raid_disk >= raid_disks - max_degraded)
5237                         return 1;
5238                 break;
5239         case ALGORITHM_PARITY_0_6:
5240                 if (raid_disk == 0 || 
5241                     raid_disk == raid_disks - 1)
5242                         return 1;
5243                 break;
5244         case ALGORITHM_LEFT_ASYMMETRIC_6:
5245         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5246         case ALGORITHM_LEFT_SYMMETRIC_6:
5247         case ALGORITHM_RIGHT_SYMMETRIC_6:
5248                 if (raid_disk == raid_disks - 1)
5249                         return 1;
5250         }
5251         return 0;
5252 }
5253
5254 static int run(struct mddev *mddev)
5255 {
5256         struct r5conf *conf;
5257         int working_disks = 0;
5258         int dirty_parity_disks = 0;
5259         struct md_rdev *rdev;
5260         sector_t reshape_offset = 0;
5261         int i;
5262         long long min_offset_diff = 0;
5263         int first = 1;
5264
5265         if (mddev->recovery_cp != MaxSector)
5266                 printk(KERN_NOTICE "md/raid:%s: not clean"
5267                        " -- starting background reconstruction\n",
5268                        mdname(mddev));
5269
5270         rdev_for_each(rdev, mddev) {
5271                 long long diff;
5272                 if (rdev->raid_disk < 0)
5273                         continue;
5274                 diff = (rdev->new_data_offset - rdev->data_offset);
5275                 if (first) {
5276                         min_offset_diff = diff;
5277                         first = 0;
5278                 } else if (mddev->reshape_backwards &&
5279                          diff < min_offset_diff)
5280                         min_offset_diff = diff;
5281                 else if (!mddev->reshape_backwards &&
5282                          diff > min_offset_diff)
5283                         min_offset_diff = diff;
5284         }
5285
5286         if (mddev->reshape_position != MaxSector) {
5287                 /* Check that we can continue the reshape.
5288                  * Difficulties arise if the stripe we would write to
5289                  * next is at or after the stripe we would read from next.
5290                  * For a reshape that changes the number of devices, this
5291                  * is only possible for a very short time, and mdadm makes
5292                  * sure that time appears to have past before assembling
5293                  * the array.  So we fail if that time hasn't passed.
5294                  * For a reshape that keeps the number of devices the same
5295                  * mdadm must be monitoring the reshape can keeping the
5296                  * critical areas read-only and backed up.  It will start
5297                  * the array in read-only mode, so we check for that.
5298                  */
5299                 sector_t here_new, here_old;
5300                 int old_disks;
5301                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5302
5303                 if (mddev->new_level != mddev->level) {
5304                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5305                                "required - aborting.\n",
5306                                mdname(mddev));
5307                         return -EINVAL;
5308                 }
5309                 old_disks = mddev->raid_disks - mddev->delta_disks;
5310                 /* reshape_position must be on a new-stripe boundary, and one
5311                  * further up in new geometry must map after here in old
5312                  * geometry.
5313                  */
5314                 here_new = mddev->reshape_position;
5315                 if (sector_div(here_new, mddev->new_chunk_sectors *
5316                                (mddev->raid_disks - max_degraded))) {
5317                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5318                                "on a stripe boundary\n", mdname(mddev));
5319                         return -EINVAL;
5320                 }
5321                 reshape_offset = here_new * mddev->new_chunk_sectors;
5322                 /* here_new is the stripe we will write to */
5323                 here_old = mddev->reshape_position;
5324                 sector_div(here_old, mddev->chunk_sectors *
5325                            (old_disks-max_degraded));
5326                 /* here_old is the first stripe that we might need to read
5327                  * from */
5328                 if (mddev->delta_disks == 0) {
5329                         if ((here_new * mddev->new_chunk_sectors !=
5330                              here_old * mddev->chunk_sectors)) {
5331                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5332                                        " confused - aborting\n", mdname(mddev));
5333                                 return -EINVAL;
5334                         }
5335                         /* We cannot be sure it is safe to start an in-place
5336                          * reshape.  It is only safe if user-space is monitoring
5337                          * and taking constant backups.
5338                          * mdadm always starts a situation like this in
5339                          * readonly mode so it can take control before
5340                          * allowing any writes.  So just check for that.
5341                          */
5342                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5343                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5344                                 /* not really in-place - so OK */;
5345                         else if (mddev->ro == 0) {
5346                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5347                                        "must be started in read-only mode "
5348                                        "- aborting\n",
5349                                        mdname(mddev));
5350                                 return -EINVAL;
5351                         }
5352                 } else if (mddev->reshape_backwards
5353                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5354                        here_old * mddev->chunk_sectors)
5355                     : (here_new * mddev->new_chunk_sectors >=
5356                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5357                         /* Reading from the same stripe as writing to - bad */
5358                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5359                                "auto-recovery - aborting.\n",
5360                                mdname(mddev));
5361                         return -EINVAL;
5362                 }
5363                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5364                        mdname(mddev));
5365                 /* OK, we should be able to continue; */
5366         } else {
5367                 BUG_ON(mddev->level != mddev->new_level);
5368                 BUG_ON(mddev->layout != mddev->new_layout);
5369                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5370                 BUG_ON(mddev->delta_disks != 0);
5371         }
5372
5373         if (mddev->private == NULL)
5374                 conf = setup_conf(mddev);
5375         else
5376                 conf = mddev->private;
5377
5378         if (IS_ERR(conf))
5379                 return PTR_ERR(conf);
5380
5381         conf->min_offset_diff = min_offset_diff;
5382         mddev->thread = conf->thread;
5383         conf->thread = NULL;
5384         mddev->private = conf;
5385
5386         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5387              i++) {
5388                 rdev = conf->disks[i].rdev;
5389                 if (!rdev && conf->disks[i].replacement) {
5390                         /* The replacement is all we have yet */
5391                         rdev = conf->disks[i].replacement;
5392                         conf->disks[i].replacement = NULL;
5393                         clear_bit(Replacement, &rdev->flags);
5394                         conf->disks[i].rdev = rdev;
5395                 }
5396                 if (!rdev)
5397                         continue;
5398                 if (conf->disks[i].replacement &&
5399                     conf->reshape_progress != MaxSector) {
5400                         /* replacements and reshape simply do not mix. */
5401                         printk(KERN_ERR "md: cannot handle concurrent "
5402                                "replacement and reshape.\n");
5403                         goto abort;
5404                 }
5405                 if (test_bit(In_sync, &rdev->flags)) {
5406                         working_disks++;
5407                         continue;
5408                 }
5409                 /* This disc is not fully in-sync.  However if it
5410                  * just stored parity (beyond the recovery_offset),
5411                  * when we don't need to be concerned about the
5412                  * array being dirty.
5413                  * When reshape goes 'backwards', we never have
5414                  * partially completed devices, so we only need
5415                  * to worry about reshape going forwards.
5416                  */
5417                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5418                 if (mddev->major_version == 0 &&
5419                     mddev->minor_version > 90)
5420                         rdev->recovery_offset = reshape_offset;
5421                         
5422                 if (rdev->recovery_offset < reshape_offset) {
5423                         /* We need to check old and new layout */
5424                         if (!only_parity(rdev->raid_disk,
5425                                          conf->algorithm,
5426                                          conf->raid_disks,
5427                                          conf->max_degraded))
5428                                 continue;
5429                 }
5430                 if (!only_parity(rdev->raid_disk,
5431                                  conf->prev_algo,
5432                                  conf->previous_raid_disks,
5433                                  conf->max_degraded))
5434                         continue;
5435                 dirty_parity_disks++;
5436         }
5437
5438         /*
5439          * 0 for a fully functional array, 1 or 2 for a degraded array.
5440          */
5441         mddev->degraded = calc_degraded(conf);
5442
5443         if (has_failed(conf)) {
5444                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5445                         " (%d/%d failed)\n",
5446                         mdname(mddev), mddev->degraded, conf->raid_disks);
5447                 goto abort;
5448         }
5449
5450         /* device size must be a multiple of chunk size */
5451         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5452         mddev->resync_max_sectors = mddev->dev_sectors;
5453
5454         if (mddev->degraded > dirty_parity_disks &&
5455             mddev->recovery_cp != MaxSector) {
5456                 if (mddev->ok_start_degraded)
5457                         printk(KERN_WARNING
5458                                "md/raid:%s: starting dirty degraded array"
5459                                " - data corruption possible.\n",
5460                                mdname(mddev));
5461                 else {
5462                         printk(KERN_ERR
5463                                "md/raid:%s: cannot start dirty degraded array.\n",
5464                                mdname(mddev));
5465                         goto abort;
5466                 }
5467         }
5468
5469         if (mddev->degraded == 0)
5470                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5471                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5472                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5473                        mddev->new_layout);
5474         else
5475                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5476                        " out of %d devices, algorithm %d\n",
5477                        mdname(mddev), conf->level,
5478                        mddev->raid_disks - mddev->degraded,
5479                        mddev->raid_disks, mddev->new_layout);
5480
5481         print_raid5_conf(conf);
5482
5483         if (conf->reshape_progress != MaxSector) {
5484                 conf->reshape_safe = conf->reshape_progress;
5485                 atomic_set(&conf->reshape_stripes, 0);
5486                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5487                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5488                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5489                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5490                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5491                                                         "reshape");
5492         }
5493
5494
5495         /* Ok, everything is just fine now */
5496         if (mddev->to_remove == &raid5_attrs_group)
5497                 mddev->to_remove = NULL;
5498         else if (mddev->kobj.sd &&
5499             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5500                 printk(KERN_WARNING
5501                        "raid5: failed to create sysfs attributes for %s\n",
5502                        mdname(mddev));
5503         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5504
5505         if (mddev->queue) {
5506                 int chunk_size;
5507                 bool discard_supported = true;
5508                 /* read-ahead size must cover two whole stripes, which
5509                  * is 2 * (datadisks) * chunksize where 'n' is the
5510                  * number of raid devices
5511                  */
5512                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5513                 int stripe = data_disks *
5514                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5515                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5516                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5517
5518                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5519
5520                 mddev->queue->backing_dev_info.congested_data = mddev;
5521                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5522
5523                 chunk_size = mddev->chunk_sectors << 9;
5524                 blk_queue_io_min(mddev->queue, chunk_size);
5525                 blk_queue_io_opt(mddev->queue, chunk_size *
5526                                  (conf->raid_disks - conf->max_degraded));
5527                 /*
5528                  * We can only discard a whole stripe. It doesn't make sense to
5529                  * discard data disk but write parity disk
5530                  */
5531                 stripe = stripe * PAGE_SIZE;
5532                 /* Round up to power of 2, as discard handling
5533                  * currently assumes that */
5534                 while ((stripe-1) & stripe)
5535                         stripe = (stripe | (stripe-1)) + 1;
5536                 mddev->queue->limits.discard_alignment = stripe;
5537                 mddev->queue->limits.discard_granularity = stripe;
5538                 /*
5539                  * unaligned part of discard request will be ignored, so can't
5540                  * guarantee discard_zerors_data
5541                  */
5542                 mddev->queue->limits.discard_zeroes_data = 0;
5543
5544                 rdev_for_each(rdev, mddev) {
5545                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5546                                           rdev->data_offset << 9);
5547                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5548                                           rdev->new_data_offset << 9);
5549                         /*
5550                          * discard_zeroes_data is required, otherwise data
5551                          * could be lost. Consider a scenario: discard a stripe
5552                          * (the stripe could be inconsistent if
5553                          * discard_zeroes_data is 0); write one disk of the
5554                          * stripe (the stripe could be inconsistent again
5555                          * depending on which disks are used to calculate
5556                          * parity); the disk is broken; The stripe data of this
5557                          * disk is lost.
5558                          */
5559                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5560                             !bdev_get_queue(rdev->bdev)->
5561                                                 limits.discard_zeroes_data)
5562                                 discard_supported = false;
5563                 }
5564
5565                 if (discard_supported &&
5566                    mddev->queue->limits.max_discard_sectors >= stripe &&
5567                    mddev->queue->limits.discard_granularity >= stripe)
5568                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5569                                                 mddev->queue);
5570                 else
5571                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5572                                                 mddev->queue);
5573         }
5574
5575         return 0;
5576 abort:
5577         md_unregister_thread(&mddev->thread);
5578         print_raid5_conf(conf);
5579         free_conf(conf);
5580         mddev->private = NULL;
5581         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5582         return -EIO;
5583 }
5584
5585 static int stop(struct mddev *mddev)
5586 {
5587         struct r5conf *conf = mddev->private;
5588
5589         md_unregister_thread(&mddev->thread);
5590         if (mddev->queue)
5591                 mddev->queue->backing_dev_info.congested_fn = NULL;
5592         free_conf(conf);
5593         mddev->private = NULL;
5594         mddev->to_remove = &raid5_attrs_group;
5595         return 0;
5596 }
5597
5598 static void status(struct seq_file *seq, struct mddev *mddev)
5599 {
5600         struct r5conf *conf = mddev->private;
5601         int i;
5602
5603         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5604                 mddev->chunk_sectors / 2, mddev->layout);
5605         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5606         for (i = 0; i < conf->raid_disks; i++)
5607                 seq_printf (seq, "%s",
5608                                conf->disks[i].rdev &&
5609                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5610         seq_printf (seq, "]");
5611 }
5612
5613 static void print_raid5_conf (struct r5conf *conf)
5614 {
5615         int i;
5616         struct disk_info *tmp;
5617
5618         printk(KERN_DEBUG "RAID conf printout:\n");
5619         if (!conf) {
5620                 printk("(conf==NULL)\n");
5621                 return;
5622         }
5623         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5624                conf->raid_disks,
5625                conf->raid_disks - conf->mddev->degraded);
5626
5627         for (i = 0; i < conf->raid_disks; i++) {
5628                 char b[BDEVNAME_SIZE];
5629                 tmp = conf->disks + i;
5630                 if (tmp->rdev)
5631                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5632                                i, !test_bit(Faulty, &tmp->rdev->flags),
5633                                bdevname(tmp->rdev->bdev, b));
5634         }
5635 }
5636
5637 static int raid5_spare_active(struct mddev *mddev)
5638 {
5639         int i;
5640         struct r5conf *conf = mddev->private;
5641         struct disk_info *tmp;
5642         int count = 0;
5643         unsigned long flags;
5644
5645         for (i = 0; i < conf->raid_disks; i++) {
5646                 tmp = conf->disks + i;
5647                 if (tmp->replacement
5648                     && tmp->replacement->recovery_offset == MaxSector
5649                     && !test_bit(Faulty, &tmp->replacement->flags)
5650                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5651                         /* Replacement has just become active. */
5652                         if (!tmp->rdev
5653                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5654                                 count++;
5655                         if (tmp->rdev) {
5656                                 /* Replaced device not technically faulty,
5657                                  * but we need to be sure it gets removed
5658                                  * and never re-added.
5659                                  */
5660                                 set_bit(Faulty, &tmp->rdev->flags);
5661                                 sysfs_notify_dirent_safe(
5662                                         tmp->rdev->sysfs_state);
5663                         }
5664                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5665                 } else if (tmp->rdev
5666                     && tmp->rdev->recovery_offset == MaxSector
5667                     && !test_bit(Faulty, &tmp->rdev->flags)
5668                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5669                         count++;
5670                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5671                 }
5672         }
5673         spin_lock_irqsave(&conf->device_lock, flags);
5674         mddev->degraded = calc_degraded(conf);
5675         spin_unlock_irqrestore(&conf->device_lock, flags);
5676         print_raid5_conf(conf);
5677         return count;
5678 }
5679
5680 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5681 {
5682         struct r5conf *conf = mddev->private;
5683         int err = 0;
5684         int number = rdev->raid_disk;
5685         struct md_rdev **rdevp;
5686         struct disk_info *p = conf->disks + number;
5687
5688         print_raid5_conf(conf);
5689         if (rdev == p->rdev)
5690                 rdevp = &p->rdev;
5691         else if (rdev == p->replacement)
5692                 rdevp = &p->replacement;
5693         else
5694                 return 0;
5695
5696         if (number >= conf->raid_disks &&
5697             conf->reshape_progress == MaxSector)
5698                 clear_bit(In_sync, &rdev->flags);
5699
5700         if (test_bit(In_sync, &rdev->flags) ||
5701             atomic_read(&rdev->nr_pending)) {
5702                 err = -EBUSY;
5703                 goto abort;
5704         }
5705         /* Only remove non-faulty devices if recovery
5706          * isn't possible.
5707          */
5708         if (!test_bit(Faulty, &rdev->flags) &&
5709             mddev->recovery_disabled != conf->recovery_disabled &&
5710             !has_failed(conf) &&
5711             (!p->replacement || p->replacement == rdev) &&
5712             number < conf->raid_disks) {
5713                 err = -EBUSY;
5714                 goto abort;
5715         }
5716         *rdevp = NULL;
5717         synchronize_rcu();
5718         if (atomic_read(&rdev->nr_pending)) {
5719                 /* lost the race, try later */
5720                 err = -EBUSY;
5721                 *rdevp = rdev;
5722         } else if (p->replacement) {
5723                 /* We must have just cleared 'rdev' */
5724                 p->rdev = p->replacement;
5725                 clear_bit(Replacement, &p->replacement->flags);
5726                 smp_mb(); /* Make sure other CPUs may see both as identical
5727                            * but will never see neither - if they are careful
5728                            */
5729                 p->replacement = NULL;
5730                 clear_bit(WantReplacement, &rdev->flags);
5731         } else
5732                 /* We might have just removed the Replacement as faulty-
5733                  * clear the bit just in case
5734                  */
5735                 clear_bit(WantReplacement, &rdev->flags);
5736 abort:
5737
5738         print_raid5_conf(conf);
5739         return err;
5740 }
5741
5742 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5743 {
5744         struct r5conf *conf = mddev->private;
5745         int err = -EEXIST;
5746         int disk;
5747         struct disk_info *p;
5748         int first = 0;
5749         int last = conf->raid_disks - 1;
5750
5751         if (mddev->recovery_disabled == conf->recovery_disabled)
5752                 return -EBUSY;
5753
5754         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5755                 /* no point adding a device */
5756                 return -EINVAL;
5757
5758         if (rdev->raid_disk >= 0)
5759                 first = last = rdev->raid_disk;
5760
5761         /*
5762          * find the disk ... but prefer rdev->saved_raid_disk
5763          * if possible.
5764          */
5765         if (rdev->saved_raid_disk >= 0 &&
5766             rdev->saved_raid_disk >= first &&
5767             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5768                 first = rdev->saved_raid_disk;
5769
5770         for (disk = first; disk <= last; disk++) {
5771                 p = conf->disks + disk;
5772                 if (p->rdev == NULL) {
5773                         clear_bit(In_sync, &rdev->flags);
5774                         rdev->raid_disk = disk;
5775                         err = 0;
5776                         if (rdev->saved_raid_disk != disk)
5777                                 conf->fullsync = 1;
5778                         rcu_assign_pointer(p->rdev, rdev);
5779                         goto out;
5780                 }
5781         }
5782         for (disk = first; disk <= last; disk++) {
5783                 p = conf->disks + disk;
5784                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5785                     p->replacement == NULL) {
5786                         clear_bit(In_sync, &rdev->flags);
5787                         set_bit(Replacement, &rdev->flags);
5788                         rdev->raid_disk = disk;
5789                         err = 0;
5790                         conf->fullsync = 1;
5791                         rcu_assign_pointer(p->replacement, rdev);
5792                         break;
5793                 }
5794         }
5795 out:
5796         print_raid5_conf(conf);
5797         return err;
5798 }
5799
5800 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5801 {
5802         /* no resync is happening, and there is enough space
5803          * on all devices, so we can resize.
5804          * We need to make sure resync covers any new space.
5805          * If the array is shrinking we should possibly wait until
5806          * any io in the removed space completes, but it hardly seems
5807          * worth it.
5808          */
5809         sector_t newsize;
5810         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5811         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5812         if (mddev->external_size &&
5813             mddev->array_sectors > newsize)
5814                 return -EINVAL;
5815         if (mddev->bitmap) {
5816                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5817                 if (ret)
5818                         return ret;
5819         }
5820         md_set_array_sectors(mddev, newsize);
5821         set_capacity(mddev->gendisk, mddev->array_sectors);
5822         revalidate_disk(mddev->gendisk);
5823         if (sectors > mddev->dev_sectors &&
5824             mddev->recovery_cp > mddev->dev_sectors) {
5825                 mddev->recovery_cp = mddev->dev_sectors;
5826                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5827         }
5828         mddev->dev_sectors = sectors;
5829         mddev->resync_max_sectors = sectors;
5830         return 0;
5831 }
5832
5833 static int check_stripe_cache(struct mddev *mddev)
5834 {
5835         /* Can only proceed if there are plenty of stripe_heads.
5836          * We need a minimum of one full stripe,, and for sensible progress
5837          * it is best to have about 4 times that.
5838          * If we require 4 times, then the default 256 4K stripe_heads will
5839          * allow for chunk sizes up to 256K, which is probably OK.
5840          * If the chunk size is greater, user-space should request more
5841          * stripe_heads first.
5842          */
5843         struct r5conf *conf = mddev->private;
5844         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5845             > conf->max_nr_stripes ||
5846             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5847             > conf->max_nr_stripes) {
5848                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5849                        mdname(mddev),
5850                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5851                         / STRIPE_SIZE)*4);
5852                 return 0;
5853         }
5854         return 1;
5855 }
5856
5857 static int check_reshape(struct mddev *mddev)
5858 {
5859         struct r5conf *conf = mddev->private;
5860
5861         if (mddev->delta_disks == 0 &&
5862             mddev->new_layout == mddev->layout &&
5863             mddev->new_chunk_sectors == mddev->chunk_sectors)
5864                 return 0; /* nothing to do */
5865         if (has_failed(conf))
5866                 return -EINVAL;
5867         if (mddev->delta_disks < 0) {
5868                 /* We might be able to shrink, but the devices must
5869                  * be made bigger first.
5870                  * For raid6, 4 is the minimum size.
5871                  * Otherwise 2 is the minimum
5872                  */
5873                 int min = 2;
5874                 if (mddev->level == 6)
5875                         min = 4;
5876                 if (mddev->raid_disks + mddev->delta_disks < min)
5877                         return -EINVAL;
5878         }
5879
5880         if (!check_stripe_cache(mddev))
5881                 return -ENOSPC;
5882
5883         return resize_stripes(conf, (conf->previous_raid_disks
5884                                      + mddev->delta_disks));
5885 }
5886
5887 static int raid5_start_reshape(struct mddev *mddev)
5888 {
5889         struct r5conf *conf = mddev->private;
5890         struct md_rdev *rdev;
5891         int spares = 0;
5892         unsigned long flags;
5893
5894         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5895                 return -EBUSY;
5896
5897         if (!check_stripe_cache(mddev))
5898                 return -ENOSPC;
5899
5900         if (has_failed(conf))
5901                 return -EINVAL;
5902
5903         rdev_for_each(rdev, mddev) {
5904                 if (!test_bit(In_sync, &rdev->flags)
5905                     && !test_bit(Faulty, &rdev->flags))
5906                         spares++;
5907         }
5908
5909         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5910                 /* Not enough devices even to make a degraded array
5911                  * of that size
5912                  */
5913                 return -EINVAL;
5914
5915         /* Refuse to reduce size of the array.  Any reductions in
5916          * array size must be through explicit setting of array_size
5917          * attribute.
5918          */
5919         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5920             < mddev->array_sectors) {
5921                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5922                        "before number of disks\n", mdname(mddev));
5923                 return -EINVAL;
5924         }
5925
5926         atomic_set(&conf->reshape_stripes, 0);
5927         spin_lock_irq(&conf->device_lock);
5928         conf->previous_raid_disks = conf->raid_disks;
5929         conf->raid_disks += mddev->delta_disks;
5930         conf->prev_chunk_sectors = conf->chunk_sectors;
5931         conf->chunk_sectors = mddev->new_chunk_sectors;
5932         conf->prev_algo = conf->algorithm;
5933         conf->algorithm = mddev->new_layout;
5934         conf->generation++;
5935         /* Code that selects data_offset needs to see the generation update
5936          * if reshape_progress has been set - so a memory barrier needed.
5937          */
5938         smp_mb();
5939         if (mddev->reshape_backwards)
5940                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5941         else
5942                 conf->reshape_progress = 0;
5943         conf->reshape_safe = conf->reshape_progress;
5944         spin_unlock_irq(&conf->device_lock);
5945
5946         /* Add some new drives, as many as will fit.
5947          * We know there are enough to make the newly sized array work.
5948          * Don't add devices if we are reducing the number of
5949          * devices in the array.  This is because it is not possible
5950          * to correctly record the "partially reconstructed" state of
5951          * such devices during the reshape and confusion could result.
5952          */
5953         if (mddev->delta_disks >= 0) {
5954                 rdev_for_each(rdev, mddev)
5955                         if (rdev->raid_disk < 0 &&
5956                             !test_bit(Faulty, &rdev->flags)) {
5957                                 if (raid5_add_disk(mddev, rdev) == 0) {
5958                                         if (rdev->raid_disk
5959                                             >= conf->previous_raid_disks)
5960                                                 set_bit(In_sync, &rdev->flags);
5961                                         else
5962                                                 rdev->recovery_offset = 0;
5963
5964                                         if (sysfs_link_rdev(mddev, rdev))
5965                                                 /* Failure here is OK */;
5966                                 }
5967                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5968                                    && !test_bit(Faulty, &rdev->flags)) {
5969                                 /* This is a spare that was manually added */
5970                                 set_bit(In_sync, &rdev->flags);
5971                         }
5972
5973                 /* When a reshape changes the number of devices,
5974                  * ->degraded is measured against the larger of the
5975                  * pre and post number of devices.
5976                  */
5977                 spin_lock_irqsave(&conf->device_lock, flags);
5978                 mddev->degraded = calc_degraded(conf);
5979                 spin_unlock_irqrestore(&conf->device_lock, flags);
5980         }
5981         mddev->raid_disks = conf->raid_disks;
5982         mddev->reshape_position = conf->reshape_progress;
5983         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5984
5985         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5986         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5987         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5988         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5989         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5990                                                 "reshape");
5991         if (!mddev->sync_thread) {
5992                 mddev->recovery = 0;
5993                 spin_lock_irq(&conf->device_lock);
5994                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5995                 rdev_for_each(rdev, mddev)
5996                         rdev->new_data_offset = rdev->data_offset;
5997                 smp_wmb();
5998                 conf->reshape_progress = MaxSector;
5999                 mddev->reshape_position = MaxSector;
6000                 spin_unlock_irq(&conf->device_lock);
6001                 return -EAGAIN;
6002         }
6003         conf->reshape_checkpoint = jiffies;
6004         md_wakeup_thread(mddev->sync_thread);
6005         md_new_event(mddev);
6006         return 0;
6007 }
6008
6009 /* This is called from the reshape thread and should make any
6010  * changes needed in 'conf'
6011  */
6012 static void end_reshape(struct r5conf *conf)
6013 {
6014
6015         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6016                 struct md_rdev *rdev;
6017
6018                 spin_lock_irq(&conf->device_lock);
6019                 conf->previous_raid_disks = conf->raid_disks;
6020                 rdev_for_each(rdev, conf->mddev)
6021                         rdev->data_offset = rdev->new_data_offset;
6022                 smp_wmb();
6023                 conf->reshape_progress = MaxSector;
6024                 spin_unlock_irq(&conf->device_lock);
6025                 wake_up(&conf->wait_for_overlap);
6026
6027                 /* read-ahead size must cover two whole stripes, which is
6028                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6029                  */
6030                 if (conf->mddev->queue) {
6031                         int data_disks = conf->raid_disks - conf->max_degraded;
6032                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6033                                                    / PAGE_SIZE);
6034                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6035                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6036                 }
6037         }
6038 }
6039
6040 /* This is called from the raid5d thread with mddev_lock held.
6041  * It makes config changes to the device.
6042  */
6043 static void raid5_finish_reshape(struct mddev *mddev)
6044 {
6045         struct r5conf *conf = mddev->private;
6046
6047         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6048
6049                 if (mddev->delta_disks > 0) {
6050                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6051                         set_capacity(mddev->gendisk, mddev->array_sectors);
6052                         revalidate_disk(mddev->gendisk);
6053                 } else {
6054                         int d;
6055                         spin_lock_irq(&conf->device_lock);
6056                         mddev->degraded = calc_degraded(conf);
6057                         spin_unlock_irq(&conf->device_lock);
6058                         for (d = conf->raid_disks ;
6059                              d < conf->raid_disks - mddev->delta_disks;
6060                              d++) {
6061                                 struct md_rdev *rdev = conf->disks[d].rdev;
6062                                 if (rdev)
6063                                         clear_bit(In_sync, &rdev->flags);
6064                                 rdev = conf->disks[d].replacement;
6065                                 if (rdev)
6066                                         clear_bit(In_sync, &rdev->flags);
6067                         }
6068                 }
6069                 mddev->layout = conf->algorithm;
6070                 mddev->chunk_sectors = conf->chunk_sectors;
6071                 mddev->reshape_position = MaxSector;
6072                 mddev->delta_disks = 0;
6073                 mddev->reshape_backwards = 0;
6074         }
6075 }
6076
6077 static void raid5_quiesce(struct mddev *mddev, int state)
6078 {
6079         struct r5conf *conf = mddev->private;
6080
6081         switch(state) {
6082         case 2: /* resume for a suspend */
6083                 wake_up(&conf->wait_for_overlap);
6084                 break;
6085
6086         case 1: /* stop all writes */
6087                 spin_lock_irq(&conf->device_lock);
6088                 /* '2' tells resync/reshape to pause so that all
6089                  * active stripes can drain
6090                  */
6091                 conf->quiesce = 2;
6092                 wait_event_lock_irq(conf->wait_for_stripe,
6093                                     atomic_read(&conf->active_stripes) == 0 &&
6094                                     atomic_read(&conf->active_aligned_reads) == 0,
6095                                     conf->device_lock, /* nothing */);
6096                 conf->quiesce = 1;
6097                 spin_unlock_irq(&conf->device_lock);
6098                 /* allow reshape to continue */
6099                 wake_up(&conf->wait_for_overlap);
6100                 break;
6101
6102         case 0: /* re-enable writes */
6103                 spin_lock_irq(&conf->device_lock);
6104                 conf->quiesce = 0;
6105                 wake_up(&conf->wait_for_stripe);
6106                 wake_up(&conf->wait_for_overlap);
6107                 spin_unlock_irq(&conf->device_lock);
6108                 break;
6109         }
6110 }
6111
6112
6113 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6114 {
6115         struct r0conf *raid0_conf = mddev->private;
6116         sector_t sectors;
6117
6118         /* for raid0 takeover only one zone is supported */
6119         if (raid0_conf->nr_strip_zones > 1) {
6120                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6121                        mdname(mddev));
6122                 return ERR_PTR(-EINVAL);
6123         }
6124
6125         sectors = raid0_conf->strip_zone[0].zone_end;
6126         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6127         mddev->dev_sectors = sectors;
6128         mddev->new_level = level;
6129         mddev->new_layout = ALGORITHM_PARITY_N;
6130         mddev->new_chunk_sectors = mddev->chunk_sectors;
6131         mddev->raid_disks += 1;
6132         mddev->delta_disks = 1;
6133         /* make sure it will be not marked as dirty */
6134         mddev->recovery_cp = MaxSector;
6135
6136         return setup_conf(mddev);
6137 }
6138
6139
6140 static void *raid5_takeover_raid1(struct mddev *mddev)
6141 {
6142         int chunksect;
6143
6144         if (mddev->raid_disks != 2 ||
6145             mddev->degraded > 1)
6146                 return ERR_PTR(-EINVAL);
6147
6148         /* Should check if there are write-behind devices? */
6149
6150         chunksect = 64*2; /* 64K by default */
6151
6152         /* The array must be an exact multiple of chunksize */
6153         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6154                 chunksect >>= 1;
6155
6156         if ((chunksect<<9) < STRIPE_SIZE)
6157                 /* array size does not allow a suitable chunk size */
6158                 return ERR_PTR(-EINVAL);
6159
6160         mddev->new_level = 5;
6161         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6162         mddev->new_chunk_sectors = chunksect;
6163
6164         return setup_conf(mddev);
6165 }
6166
6167 static void *raid5_takeover_raid6(struct mddev *mddev)
6168 {
6169         int new_layout;
6170
6171         switch (mddev->layout) {
6172         case ALGORITHM_LEFT_ASYMMETRIC_6:
6173                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6174                 break;
6175         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6176                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6177                 break;
6178         case ALGORITHM_LEFT_SYMMETRIC_6:
6179                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6180                 break;
6181         case ALGORITHM_RIGHT_SYMMETRIC_6:
6182                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6183                 break;
6184         case ALGORITHM_PARITY_0_6:
6185                 new_layout = ALGORITHM_PARITY_0;
6186                 break;
6187         case ALGORITHM_PARITY_N:
6188                 new_layout = ALGORITHM_PARITY_N;
6189                 break;
6190         default:
6191                 return ERR_PTR(-EINVAL);
6192         }
6193         mddev->new_level = 5;
6194         mddev->new_layout = new_layout;
6195         mddev->delta_disks = -1;
6196         mddev->raid_disks -= 1;
6197         return setup_conf(mddev);
6198 }
6199
6200
6201 static int raid5_check_reshape(struct mddev *mddev)
6202 {
6203         /* For a 2-drive array, the layout and chunk size can be changed
6204          * immediately as not restriping is needed.
6205          * For larger arrays we record the new value - after validation
6206          * to be used by a reshape pass.
6207          */
6208         struct r5conf *conf = mddev->private;
6209         int new_chunk = mddev->new_chunk_sectors;
6210
6211         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6212                 return -EINVAL;
6213         if (new_chunk > 0) {
6214                 if (!is_power_of_2(new_chunk))
6215                         return -EINVAL;
6216                 if (new_chunk < (PAGE_SIZE>>9))
6217                         return -EINVAL;
6218                 if (mddev->array_sectors & (new_chunk-1))
6219                         /* not factor of array size */
6220                         return -EINVAL;
6221         }
6222
6223         /* They look valid */
6224
6225         if (mddev->raid_disks == 2) {
6226                 /* can make the change immediately */
6227                 if (mddev->new_layout >= 0) {
6228                         conf->algorithm = mddev->new_layout;
6229                         mddev->layout = mddev->new_layout;
6230                 }
6231                 if (new_chunk > 0) {
6232                         conf->chunk_sectors = new_chunk ;
6233                         mddev->chunk_sectors = new_chunk;
6234                 }
6235                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6236                 md_wakeup_thread(mddev->thread);
6237         }
6238         return check_reshape(mddev);
6239 }
6240
6241 static int raid6_check_reshape(struct mddev *mddev)
6242 {
6243         int new_chunk = mddev->new_chunk_sectors;
6244
6245         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6246                 return -EINVAL;
6247         if (new_chunk > 0) {
6248                 if (!is_power_of_2(new_chunk))
6249                         return -EINVAL;
6250                 if (new_chunk < (PAGE_SIZE >> 9))
6251                         return -EINVAL;
6252                 if (mddev->array_sectors & (new_chunk-1))
6253                         /* not factor of array size */
6254                         return -EINVAL;
6255         }
6256
6257         /* They look valid */
6258         return check_reshape(mddev);
6259 }
6260
6261 static void *raid5_takeover(struct mddev *mddev)
6262 {
6263         /* raid5 can take over:
6264          *  raid0 - if there is only one strip zone - make it a raid4 layout
6265          *  raid1 - if there are two drives.  We need to know the chunk size
6266          *  raid4 - trivial - just use a raid4 layout.
6267          *  raid6 - Providing it is a *_6 layout
6268          */
6269         if (mddev->level == 0)
6270                 return raid45_takeover_raid0(mddev, 5);
6271         if (mddev->level == 1)
6272                 return raid5_takeover_raid1(mddev);
6273         if (mddev->level == 4) {
6274                 mddev->new_layout = ALGORITHM_PARITY_N;
6275                 mddev->new_level = 5;
6276                 return setup_conf(mddev);
6277         }
6278         if (mddev->level == 6)
6279                 return raid5_takeover_raid6(mddev);
6280
6281         return ERR_PTR(-EINVAL);
6282 }
6283
6284 static void *raid4_takeover(struct mddev *mddev)
6285 {
6286         /* raid4 can take over:
6287          *  raid0 - if there is only one strip zone
6288          *  raid5 - if layout is right
6289          */
6290         if (mddev->level == 0)
6291                 return raid45_takeover_raid0(mddev, 4);
6292         if (mddev->level == 5 &&
6293             mddev->layout == ALGORITHM_PARITY_N) {
6294                 mddev->new_layout = 0;
6295                 mddev->new_level = 4;
6296                 return setup_conf(mddev);
6297         }
6298         return ERR_PTR(-EINVAL);
6299 }
6300
6301 static struct md_personality raid5_personality;
6302
6303 static void *raid6_takeover(struct mddev *mddev)
6304 {
6305         /* Currently can only take over a raid5.  We map the
6306          * personality to an equivalent raid6 personality
6307          * with the Q block at the end.
6308          */
6309         int new_layout;
6310
6311         if (mddev->pers != &raid5_personality)
6312                 return ERR_PTR(-EINVAL);
6313         if (mddev->degraded > 1)
6314                 return ERR_PTR(-EINVAL);
6315         if (mddev->raid_disks > 253)
6316                 return ERR_PTR(-EINVAL);
6317         if (mddev->raid_disks < 3)
6318                 return ERR_PTR(-EINVAL);
6319
6320         switch (mddev->layout) {
6321         case ALGORITHM_LEFT_ASYMMETRIC:
6322                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6323                 break;
6324         case ALGORITHM_RIGHT_ASYMMETRIC:
6325                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6326                 break;
6327         case ALGORITHM_LEFT_SYMMETRIC:
6328                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6329                 break;
6330         case ALGORITHM_RIGHT_SYMMETRIC:
6331                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6332                 break;
6333         case ALGORITHM_PARITY_0:
6334                 new_layout = ALGORITHM_PARITY_0_6;
6335                 break;
6336         case ALGORITHM_PARITY_N:
6337                 new_layout = ALGORITHM_PARITY_N;
6338                 break;
6339         default:
6340                 return ERR_PTR(-EINVAL);
6341         }
6342         mddev->new_level = 6;
6343         mddev->new_layout = new_layout;
6344         mddev->delta_disks = 1;
6345         mddev->raid_disks += 1;
6346         return setup_conf(mddev);
6347 }
6348
6349
6350 static struct md_personality raid6_personality =
6351 {
6352         .name           = "raid6",
6353         .level          = 6,
6354         .owner          = THIS_MODULE,
6355         .make_request   = make_request,
6356         .run            = run,
6357         .stop           = stop,
6358         .status         = status,
6359         .error_handler  = error,
6360         .hot_add_disk   = raid5_add_disk,
6361         .hot_remove_disk= raid5_remove_disk,
6362         .spare_active   = raid5_spare_active,
6363         .sync_request   = sync_request,
6364         .resize         = raid5_resize,
6365         .size           = raid5_size,
6366         .check_reshape  = raid6_check_reshape,
6367         .start_reshape  = raid5_start_reshape,
6368         .finish_reshape = raid5_finish_reshape,
6369         .quiesce        = raid5_quiesce,
6370         .takeover       = raid6_takeover,
6371 };
6372 static struct md_personality raid5_personality =
6373 {
6374         .name           = "raid5",
6375         .level          = 5,
6376         .owner          = THIS_MODULE,
6377         .make_request   = make_request,
6378         .run            = run,
6379         .stop           = stop,
6380         .status         = status,
6381         .error_handler  = error,
6382         .hot_add_disk   = raid5_add_disk,
6383         .hot_remove_disk= raid5_remove_disk,
6384         .spare_active   = raid5_spare_active,
6385         .sync_request   = sync_request,
6386         .resize         = raid5_resize,
6387         .size           = raid5_size,
6388         .check_reshape  = raid5_check_reshape,
6389         .start_reshape  = raid5_start_reshape,
6390         .finish_reshape = raid5_finish_reshape,
6391         .quiesce        = raid5_quiesce,
6392         .takeover       = raid5_takeover,
6393 };
6394
6395 static struct md_personality raid4_personality =
6396 {
6397         .name           = "raid4",
6398         .level          = 4,
6399         .owner          = THIS_MODULE,
6400         .make_request   = make_request,
6401         .run            = run,
6402         .stop           = stop,
6403         .status         = status,
6404         .error_handler  = error,
6405         .hot_add_disk   = raid5_add_disk,
6406         .hot_remove_disk= raid5_remove_disk,
6407         .spare_active   = raid5_spare_active,
6408         .sync_request   = sync_request,
6409         .resize         = raid5_resize,
6410         .size           = raid5_size,
6411         .check_reshape  = raid5_check_reshape,
6412         .start_reshape  = raid5_start_reshape,
6413         .finish_reshape = raid5_finish_reshape,
6414         .quiesce        = raid5_quiesce,
6415         .takeover       = raid4_takeover,
6416 };
6417
6418 static int __init raid5_init(void)
6419 {
6420         register_md_personality(&raid6_personality);
6421         register_md_personality(&raid5_personality);
6422         register_md_personality(&raid4_personality);
6423         return 0;
6424 }
6425
6426 static void raid5_exit(void)
6427 {
6428         unregister_md_personality(&raid6_personality);
6429         unregister_md_personality(&raid5_personality);
6430         unregister_md_personality(&raid4_personality);
6431 }
6432
6433 module_init(raid5_init);
6434 module_exit(raid5_exit);
6435 MODULE_LICENSE("GPL");
6436 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6437 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6438 MODULE_ALIAS("md-raid5");
6439 MODULE_ALIAS("md-raid4");
6440 MODULE_ALIAS("md-level-5");
6441 MODULE_ALIAS("md-level-4");
6442 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6443 MODULE_ALIAS("md-raid6");
6444 MODULE_ALIAS("md-level-6");
6445
6446 /* This used to be two separate modules, they were: */
6447 MODULE_ALIAS("raid5");
6448 MODULE_ALIAS("raid6");