04348d76bb30fa8831964ea980ec2df912a45f92
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104         return bio->bi_phys_segments & 0xffff;
105 }
106
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109         return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114         --bio->bi_phys_segments;
115         return raid5_bi_phys_segments(bio);
116 }
117
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120         unsigned short val = raid5_bi_hw_segments(bio);
121
122         --val;
123         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124         return val;
125 }
126
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 }
131
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135         if (sh->ddf_layout)
136                 /* ddf always start from first device */
137                 return 0;
138         /* md starts just after Q block */
139         if (sh->qd_idx == sh->disks - 1)
140                 return 0;
141         else
142                 return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146         disk++;
147         return (disk < raid_disks) ? disk : 0;
148 }
149
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156                              int *count, int syndrome_disks)
157 {
158         int slot = *count;
159
160         if (sh->ddf_layout)
161                 (*count)++;
162         if (idx == sh->pd_idx)
163                 return syndrome_disks;
164         if (idx == sh->qd_idx)
165                 return syndrome_disks + 1;
166         if (!sh->ddf_layout)
167                 (*count)++;
168         return slot;
169 }
170
171 static void return_io(struct bio *return_bi)
172 {
173         struct bio *bi = return_bi;
174         while (bi) {
175
176                 return_bi = bi->bi_next;
177                 bi->bi_next = NULL;
178                 bi->bi_size = 0;
179                 bio_endio(bi, 0);
180                 bi = return_bi;
181         }
182 }
183
184 static void print_raid5_conf (struct r5conf *conf);
185
186 static int stripe_operations_active(struct stripe_head *sh)
187 {
188         return sh->check_state || sh->reconstruct_state ||
189                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191 }
192
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194 {
195         if (atomic_dec_and_test(&sh->count)) {
196                 BUG_ON(!list_empty(&sh->lru));
197                 BUG_ON(atomic_read(&conf->active_stripes)==0);
198                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
199                         if (test_bit(STRIPE_DELAYED, &sh->state) &&
200                             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
201                                 list_add_tail(&sh->lru, &conf->delayed_list);
202                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
203                                    sh->bm_seq - conf->seq_write > 0)
204                                 list_add_tail(&sh->lru, &conf->bitmap_list);
205                         else {
206                                 clear_bit(STRIPE_DELAYED, &sh->state);
207                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208                                 list_add_tail(&sh->lru, &conf->handle_list);
209                         }
210                         md_wakeup_thread(conf->mddev->thread);
211                 } else {
212                         BUG_ON(stripe_operations_active(sh));
213                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
214                                 if (atomic_dec_return(&conf->preread_active_stripes)
215                                     < IO_THRESHOLD)
216                                         md_wakeup_thread(conf->mddev->thread);
217                         atomic_dec(&conf->active_stripes);
218                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
219                                 list_add_tail(&sh->lru, &conf->inactive_list);
220                                 wake_up(&conf->wait_for_stripe);
221                                 if (conf->retry_read_aligned)
222                                         md_wakeup_thread(conf->mddev->thread);
223                         }
224                 }
225         }
226 }
227
228 static void release_stripe(struct stripe_head *sh)
229 {
230         struct r5conf *conf = sh->raid_conf;
231         unsigned long flags;
232
233         spin_lock_irqsave(&conf->device_lock, flags);
234         __release_stripe(conf, sh);
235         spin_unlock_irqrestore(&conf->device_lock, flags);
236 }
237
238 static inline void remove_hash(struct stripe_head *sh)
239 {
240         pr_debug("remove_hash(), stripe %llu\n",
241                 (unsigned long long)sh->sector);
242
243         hlist_del_init(&sh->hash);
244 }
245
246 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
247 {
248         struct hlist_head *hp = stripe_hash(conf, sh->sector);
249
250         pr_debug("insert_hash(), stripe %llu\n",
251                 (unsigned long long)sh->sector);
252
253         hlist_add_head(&sh->hash, hp);
254 }
255
256
257 /* find an idle stripe, make sure it is unhashed, and return it. */
258 static struct stripe_head *get_free_stripe(struct r5conf *conf)
259 {
260         struct stripe_head *sh = NULL;
261         struct list_head *first;
262
263         if (list_empty(&conf->inactive_list))
264                 goto out;
265         first = conf->inactive_list.next;
266         sh = list_entry(first, struct stripe_head, lru);
267         list_del_init(first);
268         remove_hash(sh);
269         atomic_inc(&conf->active_stripes);
270 out:
271         return sh;
272 }
273
274 static void shrink_buffers(struct stripe_head *sh)
275 {
276         struct page *p;
277         int i;
278         int num = sh->raid_conf->pool_size;
279
280         for (i = 0; i < num ; i++) {
281                 p = sh->dev[i].page;
282                 if (!p)
283                         continue;
284                 sh->dev[i].page = NULL;
285                 put_page(p);
286         }
287 }
288
289 static int grow_buffers(struct stripe_head *sh)
290 {
291         int i;
292         int num = sh->raid_conf->pool_size;
293
294         for (i = 0; i < num; i++) {
295                 struct page *page;
296
297                 if (!(page = alloc_page(GFP_KERNEL))) {
298                         return 1;
299                 }
300                 sh->dev[i].page = page;
301         }
302         return 0;
303 }
304
305 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
306 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
307                             struct stripe_head *sh);
308
309 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
310 {
311         struct r5conf *conf = sh->raid_conf;
312         int i;
313
314         BUG_ON(atomic_read(&sh->count) != 0);
315         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
316         BUG_ON(stripe_operations_active(sh));
317
318         pr_debug("init_stripe called, stripe %llu\n",
319                 (unsigned long long)sh->sector);
320
321         remove_hash(sh);
322
323         sh->generation = conf->generation - previous;
324         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
325         sh->sector = sector;
326         stripe_set_idx(sector, conf, previous, sh);
327         sh->state = 0;
328
329
330         for (i = sh->disks; i--; ) {
331                 struct r5dev *dev = &sh->dev[i];
332
333                 if (dev->toread || dev->read || dev->towrite || dev->written ||
334                     test_bit(R5_LOCKED, &dev->flags)) {
335                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
336                                (unsigned long long)sh->sector, i, dev->toread,
337                                dev->read, dev->towrite, dev->written,
338                                test_bit(R5_LOCKED, &dev->flags));
339                         WARN_ON(1);
340                 }
341                 dev->flags = 0;
342                 raid5_build_block(sh, i, previous);
343         }
344         insert_hash(conf, sh);
345 }
346
347 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
348                                          short generation)
349 {
350         struct stripe_head *sh;
351         struct hlist_node *hn;
352
353         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
354         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
355                 if (sh->sector == sector && sh->generation == generation)
356                         return sh;
357         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
358         return NULL;
359 }
360
361 /*
362  * Need to check if array has failed when deciding whether to:
363  *  - start an array
364  *  - remove non-faulty devices
365  *  - add a spare
366  *  - allow a reshape
367  * This determination is simple when no reshape is happening.
368  * However if there is a reshape, we need to carefully check
369  * both the before and after sections.
370  * This is because some failed devices may only affect one
371  * of the two sections, and some non-in_sync devices may
372  * be insync in the section most affected by failed devices.
373  */
374 static int calc_degraded(struct r5conf *conf)
375 {
376         int degraded, degraded2;
377         int i;
378
379         rcu_read_lock();
380         degraded = 0;
381         for (i = 0; i < conf->previous_raid_disks; i++) {
382                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
383                 if (!rdev || test_bit(Faulty, &rdev->flags))
384                         degraded++;
385                 else if (test_bit(In_sync, &rdev->flags))
386                         ;
387                 else
388                         /* not in-sync or faulty.
389                          * If the reshape increases the number of devices,
390                          * this is being recovered by the reshape, so
391                          * this 'previous' section is not in_sync.
392                          * If the number of devices is being reduced however,
393                          * the device can only be part of the array if
394                          * we are reverting a reshape, so this section will
395                          * be in-sync.
396                          */
397                         if (conf->raid_disks >= conf->previous_raid_disks)
398                                 degraded++;
399         }
400         rcu_read_unlock();
401         if (conf->raid_disks == conf->previous_raid_disks)
402                 return degraded;
403         rcu_read_lock();
404         degraded2 = 0;
405         for (i = 0; i < conf->raid_disks; i++) {
406                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
407                 if (!rdev || test_bit(Faulty, &rdev->flags))
408                         degraded2++;
409                 else if (test_bit(In_sync, &rdev->flags))
410                         ;
411                 else
412                         /* not in-sync or faulty.
413                          * If reshape increases the number of devices, this
414                          * section has already been recovered, else it
415                          * almost certainly hasn't.
416                          */
417                         if (conf->raid_disks <= conf->previous_raid_disks)
418                                 degraded2++;
419         }
420         rcu_read_unlock();
421         if (degraded2 > degraded)
422                 return degraded2;
423         return degraded;
424 }
425
426 static int has_failed(struct r5conf *conf)
427 {
428         int degraded;
429
430         if (conf->mddev->reshape_position == MaxSector)
431                 return conf->mddev->degraded > conf->max_degraded;
432
433         degraded = calc_degraded(conf);
434         if (degraded > conf->max_degraded)
435                 return 1;
436         return 0;
437 }
438
439 static struct stripe_head *
440 get_active_stripe(struct r5conf *conf, sector_t sector,
441                   int previous, int noblock, int noquiesce)
442 {
443         struct stripe_head *sh;
444
445         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
446
447         spin_lock_irq(&conf->device_lock);
448
449         do {
450                 wait_event_lock_irq(conf->wait_for_stripe,
451                                     conf->quiesce == 0 || noquiesce,
452                                     conf->device_lock, /* nothing */);
453                 sh = __find_stripe(conf, sector, conf->generation - previous);
454                 if (!sh) {
455                         if (!conf->inactive_blocked)
456                                 sh = get_free_stripe(conf);
457                         if (noblock && sh == NULL)
458                                 break;
459                         if (!sh) {
460                                 conf->inactive_blocked = 1;
461                                 wait_event_lock_irq(conf->wait_for_stripe,
462                                                     !list_empty(&conf->inactive_list) &&
463                                                     (atomic_read(&conf->active_stripes)
464                                                      < (conf->max_nr_stripes *3/4)
465                                                      || !conf->inactive_blocked),
466                                                     conf->device_lock,
467                                                     );
468                                 conf->inactive_blocked = 0;
469                         } else
470                                 init_stripe(sh, sector, previous);
471                 } else {
472                         if (atomic_read(&sh->count)) {
473                                 BUG_ON(!list_empty(&sh->lru)
474                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
475                         } else {
476                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
477                                         atomic_inc(&conf->active_stripes);
478                                 if (list_empty(&sh->lru) &&
479                                     !test_bit(STRIPE_EXPANDING, &sh->state))
480                                         BUG();
481                                 list_del_init(&sh->lru);
482                         }
483                 }
484         } while (sh == NULL);
485
486         if (sh)
487                 atomic_inc(&sh->count);
488
489         spin_unlock_irq(&conf->device_lock);
490         return sh;
491 }
492
493 /* Determine if 'data_offset' or 'new_data_offset' should be used
494  * in this stripe_head.
495  */
496 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
497 {
498         sector_t progress = conf->reshape_progress;
499         /* Need a memory barrier to make sure we see the value
500          * of conf->generation, or ->data_offset that was set before
501          * reshape_progress was updated.
502          */
503         smp_rmb();
504         if (progress == MaxSector)
505                 return 0;
506         if (sh->generation == conf->generation - 1)
507                 return 0;
508         /* We are in a reshape, and this is a new-generation stripe,
509          * so use new_data_offset.
510          */
511         return 1;
512 }
513
514 static void
515 raid5_end_read_request(struct bio *bi, int error);
516 static void
517 raid5_end_write_request(struct bio *bi, int error);
518
519 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
520 {
521         struct r5conf *conf = sh->raid_conf;
522         int i, disks = sh->disks;
523
524         might_sleep();
525
526         for (i = disks; i--; ) {
527                 int rw;
528                 int replace_only = 0;
529                 struct bio *bi, *rbi;
530                 struct md_rdev *rdev, *rrdev = NULL;
531                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
532                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
533                                 rw = WRITE_FUA;
534                         else
535                                 rw = WRITE;
536                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
537                         rw = READ;
538                 else if (test_and_clear_bit(R5_WantReplace,
539                                             &sh->dev[i].flags)) {
540                         rw = WRITE;
541                         replace_only = 1;
542                 } else
543                         continue;
544                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
545                         rw |= REQ_SYNC;
546
547                 bi = &sh->dev[i].req;
548                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
549
550                 bi->bi_rw = rw;
551                 rbi->bi_rw = rw;
552                 if (rw & WRITE) {
553                         bi->bi_end_io = raid5_end_write_request;
554                         rbi->bi_end_io = raid5_end_write_request;
555                 } else
556                         bi->bi_end_io = raid5_end_read_request;
557
558                 rcu_read_lock();
559                 rrdev = rcu_dereference(conf->disks[i].replacement);
560                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
561                 rdev = rcu_dereference(conf->disks[i].rdev);
562                 if (!rdev) {
563                         rdev = rrdev;
564                         rrdev = NULL;
565                 }
566                 if (rw & WRITE) {
567                         if (replace_only)
568                                 rdev = NULL;
569                         if (rdev == rrdev)
570                                 /* We raced and saw duplicates */
571                                 rrdev = NULL;
572                 } else {
573                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
574                                 rdev = rrdev;
575                         rrdev = NULL;
576                 }
577
578                 if (rdev && test_bit(Faulty, &rdev->flags))
579                         rdev = NULL;
580                 if (rdev)
581                         atomic_inc(&rdev->nr_pending);
582                 if (rrdev && test_bit(Faulty, &rrdev->flags))
583                         rrdev = NULL;
584                 if (rrdev)
585                         atomic_inc(&rrdev->nr_pending);
586                 rcu_read_unlock();
587
588                 /* We have already checked bad blocks for reads.  Now
589                  * need to check for writes.  We never accept write errors
590                  * on the replacement, so we don't to check rrdev.
591                  */
592                 while ((rw & WRITE) && rdev &&
593                        test_bit(WriteErrorSeen, &rdev->flags)) {
594                         sector_t first_bad;
595                         int bad_sectors;
596                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
597                                               &first_bad, &bad_sectors);
598                         if (!bad)
599                                 break;
600
601                         if (bad < 0) {
602                                 set_bit(BlockedBadBlocks, &rdev->flags);
603                                 if (!conf->mddev->external &&
604                                     conf->mddev->flags) {
605                                         /* It is very unlikely, but we might
606                                          * still need to write out the
607                                          * bad block log - better give it
608                                          * a chance*/
609                                         md_check_recovery(conf->mddev);
610                                 }
611                                 /*
612                                  * Because md_wait_for_blocked_rdev
613                                  * will dec nr_pending, we must
614                                  * increment it first.
615                                  */
616                                 atomic_inc(&rdev->nr_pending);
617                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
618                         } else {
619                                 /* Acknowledged bad block - skip the write */
620                                 rdev_dec_pending(rdev, conf->mddev);
621                                 rdev = NULL;
622                         }
623                 }
624
625                 if (rdev) {
626                         if (s->syncing || s->expanding || s->expanded
627                             || s->replacing)
628                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
629
630                         set_bit(STRIPE_IO_STARTED, &sh->state);
631
632                         bi->bi_bdev = rdev->bdev;
633                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
634                                 __func__, (unsigned long long)sh->sector,
635                                 bi->bi_rw, i);
636                         atomic_inc(&sh->count);
637                         if (use_new_offset(conf, sh))
638                                 bi->bi_sector = (sh->sector
639                                                  + rdev->new_data_offset);
640                         else
641                                 bi->bi_sector = (sh->sector
642                                                  + rdev->data_offset);
643                         bi->bi_flags = 1 << BIO_UPTODATE;
644                         bi->bi_idx = 0;
645                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
646                         bi->bi_io_vec[0].bv_offset = 0;
647                         bi->bi_size = STRIPE_SIZE;
648                         bi->bi_next = NULL;
649                         if (rrdev)
650                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
651                         generic_make_request(bi);
652                 }
653                 if (rrdev) {
654                         if (s->syncing || s->expanding || s->expanded
655                             || s->replacing)
656                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
657
658                         set_bit(STRIPE_IO_STARTED, &sh->state);
659
660                         rbi->bi_bdev = rrdev->bdev;
661                         pr_debug("%s: for %llu schedule op %ld on "
662                                  "replacement disc %d\n",
663                                 __func__, (unsigned long long)sh->sector,
664                                 rbi->bi_rw, i);
665                         atomic_inc(&sh->count);
666                         if (use_new_offset(conf, sh))
667                                 rbi->bi_sector = (sh->sector
668                                                   + rrdev->new_data_offset);
669                         else
670                                 rbi->bi_sector = (sh->sector
671                                                   + rrdev->data_offset);
672                         rbi->bi_flags = 1 << BIO_UPTODATE;
673                         rbi->bi_idx = 0;
674                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
675                         rbi->bi_io_vec[0].bv_offset = 0;
676                         rbi->bi_size = STRIPE_SIZE;
677                         rbi->bi_next = NULL;
678                         generic_make_request(rbi);
679                 }
680                 if (!rdev && !rrdev) {
681                         if (rw & WRITE)
682                                 set_bit(STRIPE_DEGRADED, &sh->state);
683                         pr_debug("skip op %ld on disc %d for sector %llu\n",
684                                 bi->bi_rw, i, (unsigned long long)sh->sector);
685                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
686                         set_bit(STRIPE_HANDLE, &sh->state);
687                 }
688         }
689 }
690
691 static struct dma_async_tx_descriptor *
692 async_copy_data(int frombio, struct bio *bio, struct page *page,
693         sector_t sector, struct dma_async_tx_descriptor *tx)
694 {
695         struct bio_vec *bvl;
696         struct page *bio_page;
697         int i;
698         int page_offset;
699         struct async_submit_ctl submit;
700         enum async_tx_flags flags = 0;
701
702         if (bio->bi_sector >= sector)
703                 page_offset = (signed)(bio->bi_sector - sector) * 512;
704         else
705                 page_offset = (signed)(sector - bio->bi_sector) * -512;
706
707         if (frombio)
708                 flags |= ASYNC_TX_FENCE;
709         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
710
711         bio_for_each_segment(bvl, bio, i) {
712                 int len = bvl->bv_len;
713                 int clen;
714                 int b_offset = 0;
715
716                 if (page_offset < 0) {
717                         b_offset = -page_offset;
718                         page_offset += b_offset;
719                         len -= b_offset;
720                 }
721
722                 if (len > 0 && page_offset + len > STRIPE_SIZE)
723                         clen = STRIPE_SIZE - page_offset;
724                 else
725                         clen = len;
726
727                 if (clen > 0) {
728                         b_offset += bvl->bv_offset;
729                         bio_page = bvl->bv_page;
730                         if (frombio)
731                                 tx = async_memcpy(page, bio_page, page_offset,
732                                                   b_offset, clen, &submit);
733                         else
734                                 tx = async_memcpy(bio_page, page, b_offset,
735                                                   page_offset, clen, &submit);
736                 }
737                 /* chain the operations */
738                 submit.depend_tx = tx;
739
740                 if (clen < len) /* hit end of page */
741                         break;
742                 page_offset +=  len;
743         }
744
745         return tx;
746 }
747
748 static void ops_complete_biofill(void *stripe_head_ref)
749 {
750         struct stripe_head *sh = stripe_head_ref;
751         struct bio *return_bi = NULL;
752         struct r5conf *conf = sh->raid_conf;
753         int i;
754
755         pr_debug("%s: stripe %llu\n", __func__,
756                 (unsigned long long)sh->sector);
757
758         /* clear completed biofills */
759         spin_lock_irq(&conf->device_lock);
760         for (i = sh->disks; i--; ) {
761                 struct r5dev *dev = &sh->dev[i];
762
763                 /* acknowledge completion of a biofill operation */
764                 /* and check if we need to reply to a read request,
765                  * new R5_Wantfill requests are held off until
766                  * !STRIPE_BIOFILL_RUN
767                  */
768                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
769                         struct bio *rbi, *rbi2;
770
771                         BUG_ON(!dev->read);
772                         rbi = dev->read;
773                         dev->read = NULL;
774                         while (rbi && rbi->bi_sector <
775                                 dev->sector + STRIPE_SECTORS) {
776                                 rbi2 = r5_next_bio(rbi, dev->sector);
777                                 if (!raid5_dec_bi_phys_segments(rbi)) {
778                                         rbi->bi_next = return_bi;
779                                         return_bi = rbi;
780                                 }
781                                 rbi = rbi2;
782                         }
783                 }
784         }
785         spin_unlock_irq(&conf->device_lock);
786         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
787
788         return_io(return_bi);
789
790         set_bit(STRIPE_HANDLE, &sh->state);
791         release_stripe(sh);
792 }
793
794 static void ops_run_biofill(struct stripe_head *sh)
795 {
796         struct dma_async_tx_descriptor *tx = NULL;
797         struct r5conf *conf = sh->raid_conf;
798         struct async_submit_ctl submit;
799         int i;
800
801         pr_debug("%s: stripe %llu\n", __func__,
802                 (unsigned long long)sh->sector);
803
804         for (i = sh->disks; i--; ) {
805                 struct r5dev *dev = &sh->dev[i];
806                 if (test_bit(R5_Wantfill, &dev->flags)) {
807                         struct bio *rbi;
808                         spin_lock_irq(&conf->device_lock);
809                         dev->read = rbi = dev->toread;
810                         dev->toread = NULL;
811                         spin_unlock_irq(&conf->device_lock);
812                         while (rbi && rbi->bi_sector <
813                                 dev->sector + STRIPE_SECTORS) {
814                                 tx = async_copy_data(0, rbi, dev->page,
815                                         dev->sector, tx);
816                                 rbi = r5_next_bio(rbi, dev->sector);
817                         }
818                 }
819         }
820
821         atomic_inc(&sh->count);
822         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
823         async_trigger_callback(&submit);
824 }
825
826 static void mark_target_uptodate(struct stripe_head *sh, int target)
827 {
828         struct r5dev *tgt;
829
830         if (target < 0)
831                 return;
832
833         tgt = &sh->dev[target];
834         set_bit(R5_UPTODATE, &tgt->flags);
835         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
836         clear_bit(R5_Wantcompute, &tgt->flags);
837 }
838
839 static void ops_complete_compute(void *stripe_head_ref)
840 {
841         struct stripe_head *sh = stripe_head_ref;
842
843         pr_debug("%s: stripe %llu\n", __func__,
844                 (unsigned long long)sh->sector);
845
846         /* mark the computed target(s) as uptodate */
847         mark_target_uptodate(sh, sh->ops.target);
848         mark_target_uptodate(sh, sh->ops.target2);
849
850         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
851         if (sh->check_state == check_state_compute_run)
852                 sh->check_state = check_state_compute_result;
853         set_bit(STRIPE_HANDLE, &sh->state);
854         release_stripe(sh);
855 }
856
857 /* return a pointer to the address conversion region of the scribble buffer */
858 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
859                                  struct raid5_percpu *percpu)
860 {
861         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
862 }
863
864 static struct dma_async_tx_descriptor *
865 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
866 {
867         int disks = sh->disks;
868         struct page **xor_srcs = percpu->scribble;
869         int target = sh->ops.target;
870         struct r5dev *tgt = &sh->dev[target];
871         struct page *xor_dest = tgt->page;
872         int count = 0;
873         struct dma_async_tx_descriptor *tx;
874         struct async_submit_ctl submit;
875         int i;
876
877         pr_debug("%s: stripe %llu block: %d\n",
878                 __func__, (unsigned long long)sh->sector, target);
879         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
880
881         for (i = disks; i--; )
882                 if (i != target)
883                         xor_srcs[count++] = sh->dev[i].page;
884
885         atomic_inc(&sh->count);
886
887         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
888                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
889         if (unlikely(count == 1))
890                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
891         else
892                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
893
894         return tx;
895 }
896
897 /* set_syndrome_sources - populate source buffers for gen_syndrome
898  * @srcs - (struct page *) array of size sh->disks
899  * @sh - stripe_head to parse
900  *
901  * Populates srcs in proper layout order for the stripe and returns the
902  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
903  * destination buffer is recorded in srcs[count] and the Q destination
904  * is recorded in srcs[count+1]].
905  */
906 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
907 {
908         int disks = sh->disks;
909         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
910         int d0_idx = raid6_d0(sh);
911         int count;
912         int i;
913
914         for (i = 0; i < disks; i++)
915                 srcs[i] = NULL;
916
917         count = 0;
918         i = d0_idx;
919         do {
920                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
921
922                 srcs[slot] = sh->dev[i].page;
923                 i = raid6_next_disk(i, disks);
924         } while (i != d0_idx);
925
926         return syndrome_disks;
927 }
928
929 static struct dma_async_tx_descriptor *
930 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
931 {
932         int disks = sh->disks;
933         struct page **blocks = percpu->scribble;
934         int target;
935         int qd_idx = sh->qd_idx;
936         struct dma_async_tx_descriptor *tx;
937         struct async_submit_ctl submit;
938         struct r5dev *tgt;
939         struct page *dest;
940         int i;
941         int count;
942
943         if (sh->ops.target < 0)
944                 target = sh->ops.target2;
945         else if (sh->ops.target2 < 0)
946                 target = sh->ops.target;
947         else
948                 /* we should only have one valid target */
949                 BUG();
950         BUG_ON(target < 0);
951         pr_debug("%s: stripe %llu block: %d\n",
952                 __func__, (unsigned long long)sh->sector, target);
953
954         tgt = &sh->dev[target];
955         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
956         dest = tgt->page;
957
958         atomic_inc(&sh->count);
959
960         if (target == qd_idx) {
961                 count = set_syndrome_sources(blocks, sh);
962                 blocks[count] = NULL; /* regenerating p is not necessary */
963                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
964                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
965                                   ops_complete_compute, sh,
966                                   to_addr_conv(sh, percpu));
967                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
968         } else {
969                 /* Compute any data- or p-drive using XOR */
970                 count = 0;
971                 for (i = disks; i-- ; ) {
972                         if (i == target || i == qd_idx)
973                                 continue;
974                         blocks[count++] = sh->dev[i].page;
975                 }
976
977                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
978                                   NULL, ops_complete_compute, sh,
979                                   to_addr_conv(sh, percpu));
980                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
981         }
982
983         return tx;
984 }
985
986 static struct dma_async_tx_descriptor *
987 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
988 {
989         int i, count, disks = sh->disks;
990         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
991         int d0_idx = raid6_d0(sh);
992         int faila = -1, failb = -1;
993         int target = sh->ops.target;
994         int target2 = sh->ops.target2;
995         struct r5dev *tgt = &sh->dev[target];
996         struct r5dev *tgt2 = &sh->dev[target2];
997         struct dma_async_tx_descriptor *tx;
998         struct page **blocks = percpu->scribble;
999         struct async_submit_ctl submit;
1000
1001         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1002                  __func__, (unsigned long long)sh->sector, target, target2);
1003         BUG_ON(target < 0 || target2 < 0);
1004         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1005         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1006
1007         /* we need to open-code set_syndrome_sources to handle the
1008          * slot number conversion for 'faila' and 'failb'
1009          */
1010         for (i = 0; i < disks ; i++)
1011                 blocks[i] = NULL;
1012         count = 0;
1013         i = d0_idx;
1014         do {
1015                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1016
1017                 blocks[slot] = sh->dev[i].page;
1018
1019                 if (i == target)
1020                         faila = slot;
1021                 if (i == target2)
1022                         failb = slot;
1023                 i = raid6_next_disk(i, disks);
1024         } while (i != d0_idx);
1025
1026         BUG_ON(faila == failb);
1027         if (failb < faila)
1028                 swap(faila, failb);
1029         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1030                  __func__, (unsigned long long)sh->sector, faila, failb);
1031
1032         atomic_inc(&sh->count);
1033
1034         if (failb == syndrome_disks+1) {
1035                 /* Q disk is one of the missing disks */
1036                 if (faila == syndrome_disks) {
1037                         /* Missing P+Q, just recompute */
1038                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1039                                           ops_complete_compute, sh,
1040                                           to_addr_conv(sh, percpu));
1041                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1042                                                   STRIPE_SIZE, &submit);
1043                 } else {
1044                         struct page *dest;
1045                         int data_target;
1046                         int qd_idx = sh->qd_idx;
1047
1048                         /* Missing D+Q: recompute D from P, then recompute Q */
1049                         if (target == qd_idx)
1050                                 data_target = target2;
1051                         else
1052                                 data_target = target;
1053
1054                         count = 0;
1055                         for (i = disks; i-- ; ) {
1056                                 if (i == data_target || i == qd_idx)
1057                                         continue;
1058                                 blocks[count++] = sh->dev[i].page;
1059                         }
1060                         dest = sh->dev[data_target].page;
1061                         init_async_submit(&submit,
1062                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1063                                           NULL, NULL, NULL,
1064                                           to_addr_conv(sh, percpu));
1065                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1066                                        &submit);
1067
1068                         count = set_syndrome_sources(blocks, sh);
1069                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1070                                           ops_complete_compute, sh,
1071                                           to_addr_conv(sh, percpu));
1072                         return async_gen_syndrome(blocks, 0, count+2,
1073                                                   STRIPE_SIZE, &submit);
1074                 }
1075         } else {
1076                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1077                                   ops_complete_compute, sh,
1078                                   to_addr_conv(sh, percpu));
1079                 if (failb == syndrome_disks) {
1080                         /* We're missing D+P. */
1081                         return async_raid6_datap_recov(syndrome_disks+2,
1082                                                        STRIPE_SIZE, faila,
1083                                                        blocks, &submit);
1084                 } else {
1085                         /* We're missing D+D. */
1086                         return async_raid6_2data_recov(syndrome_disks+2,
1087                                                        STRIPE_SIZE, faila, failb,
1088                                                        blocks, &submit);
1089                 }
1090         }
1091 }
1092
1093
1094 static void ops_complete_prexor(void *stripe_head_ref)
1095 {
1096         struct stripe_head *sh = stripe_head_ref;
1097
1098         pr_debug("%s: stripe %llu\n", __func__,
1099                 (unsigned long long)sh->sector);
1100 }
1101
1102 static struct dma_async_tx_descriptor *
1103 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1104                struct dma_async_tx_descriptor *tx)
1105 {
1106         int disks = sh->disks;
1107         struct page **xor_srcs = percpu->scribble;
1108         int count = 0, pd_idx = sh->pd_idx, i;
1109         struct async_submit_ctl submit;
1110
1111         /* existing parity data subtracted */
1112         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1113
1114         pr_debug("%s: stripe %llu\n", __func__,
1115                 (unsigned long long)sh->sector);
1116
1117         for (i = disks; i--; ) {
1118                 struct r5dev *dev = &sh->dev[i];
1119                 /* Only process blocks that are known to be uptodate */
1120                 if (test_bit(R5_Wantdrain, &dev->flags))
1121                         xor_srcs[count++] = dev->page;
1122         }
1123
1124         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1125                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1126         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1127
1128         return tx;
1129 }
1130
1131 static struct dma_async_tx_descriptor *
1132 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1133 {
1134         int disks = sh->disks;
1135         int i;
1136
1137         pr_debug("%s: stripe %llu\n", __func__,
1138                 (unsigned long long)sh->sector);
1139
1140         for (i = disks; i--; ) {
1141                 struct r5dev *dev = &sh->dev[i];
1142                 struct bio *chosen;
1143
1144                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1145                         struct bio *wbi;
1146
1147                         spin_lock_irq(&sh->raid_conf->device_lock);
1148                         chosen = dev->towrite;
1149                         dev->towrite = NULL;
1150                         BUG_ON(dev->written);
1151                         wbi = dev->written = chosen;
1152                         spin_unlock_irq(&sh->raid_conf->device_lock);
1153
1154                         while (wbi && wbi->bi_sector <
1155                                 dev->sector + STRIPE_SECTORS) {
1156                                 if (wbi->bi_rw & REQ_FUA)
1157                                         set_bit(R5_WantFUA, &dev->flags);
1158                                 if (wbi->bi_rw & REQ_SYNC)
1159                                         set_bit(R5_SyncIO, &dev->flags);
1160                                 tx = async_copy_data(1, wbi, dev->page,
1161                                         dev->sector, tx);
1162                                 wbi = r5_next_bio(wbi, dev->sector);
1163                         }
1164                 }
1165         }
1166
1167         return tx;
1168 }
1169
1170 static void ops_complete_reconstruct(void *stripe_head_ref)
1171 {
1172         struct stripe_head *sh = stripe_head_ref;
1173         int disks = sh->disks;
1174         int pd_idx = sh->pd_idx;
1175         int qd_idx = sh->qd_idx;
1176         int i;
1177         bool fua = false, sync = false;
1178
1179         pr_debug("%s: stripe %llu\n", __func__,
1180                 (unsigned long long)sh->sector);
1181
1182         for (i = disks; i--; ) {
1183                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1184                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1185         }
1186
1187         for (i = disks; i--; ) {
1188                 struct r5dev *dev = &sh->dev[i];
1189
1190                 if (dev->written || i == pd_idx || i == qd_idx) {
1191                         set_bit(R5_UPTODATE, &dev->flags);
1192                         if (fua)
1193                                 set_bit(R5_WantFUA, &dev->flags);
1194                         if (sync)
1195                                 set_bit(R5_SyncIO, &dev->flags);
1196                 }
1197         }
1198
1199         if (sh->reconstruct_state == reconstruct_state_drain_run)
1200                 sh->reconstruct_state = reconstruct_state_drain_result;
1201         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1202                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1203         else {
1204                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1205                 sh->reconstruct_state = reconstruct_state_result;
1206         }
1207
1208         set_bit(STRIPE_HANDLE, &sh->state);
1209         release_stripe(sh);
1210 }
1211
1212 static void
1213 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1214                      struct dma_async_tx_descriptor *tx)
1215 {
1216         int disks = sh->disks;
1217         struct page **xor_srcs = percpu->scribble;
1218         struct async_submit_ctl submit;
1219         int count = 0, pd_idx = sh->pd_idx, i;
1220         struct page *xor_dest;
1221         int prexor = 0;
1222         unsigned long flags;
1223
1224         pr_debug("%s: stripe %llu\n", __func__,
1225                 (unsigned long long)sh->sector);
1226
1227         /* check if prexor is active which means only process blocks
1228          * that are part of a read-modify-write (written)
1229          */
1230         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1231                 prexor = 1;
1232                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1233                 for (i = disks; i--; ) {
1234                         struct r5dev *dev = &sh->dev[i];
1235                         if (dev->written)
1236                                 xor_srcs[count++] = dev->page;
1237                 }
1238         } else {
1239                 xor_dest = sh->dev[pd_idx].page;
1240                 for (i = disks; i--; ) {
1241                         struct r5dev *dev = &sh->dev[i];
1242                         if (i != pd_idx)
1243                                 xor_srcs[count++] = dev->page;
1244                 }
1245         }
1246
1247         /* 1/ if we prexor'd then the dest is reused as a source
1248          * 2/ if we did not prexor then we are redoing the parity
1249          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1250          * for the synchronous xor case
1251          */
1252         flags = ASYNC_TX_ACK |
1253                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1254
1255         atomic_inc(&sh->count);
1256
1257         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1258                           to_addr_conv(sh, percpu));
1259         if (unlikely(count == 1))
1260                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1261         else
1262                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1263 }
1264
1265 static void
1266 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1267                      struct dma_async_tx_descriptor *tx)
1268 {
1269         struct async_submit_ctl submit;
1270         struct page **blocks = percpu->scribble;
1271         int count;
1272
1273         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1274
1275         count = set_syndrome_sources(blocks, sh);
1276
1277         atomic_inc(&sh->count);
1278
1279         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1280                           sh, to_addr_conv(sh, percpu));
1281         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1282 }
1283
1284 static void ops_complete_check(void *stripe_head_ref)
1285 {
1286         struct stripe_head *sh = stripe_head_ref;
1287
1288         pr_debug("%s: stripe %llu\n", __func__,
1289                 (unsigned long long)sh->sector);
1290
1291         sh->check_state = check_state_check_result;
1292         set_bit(STRIPE_HANDLE, &sh->state);
1293         release_stripe(sh);
1294 }
1295
1296 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1297 {
1298         int disks = sh->disks;
1299         int pd_idx = sh->pd_idx;
1300         int qd_idx = sh->qd_idx;
1301         struct page *xor_dest;
1302         struct page **xor_srcs = percpu->scribble;
1303         struct dma_async_tx_descriptor *tx;
1304         struct async_submit_ctl submit;
1305         int count;
1306         int i;
1307
1308         pr_debug("%s: stripe %llu\n", __func__,
1309                 (unsigned long long)sh->sector);
1310
1311         count = 0;
1312         xor_dest = sh->dev[pd_idx].page;
1313         xor_srcs[count++] = xor_dest;
1314         for (i = disks; i--; ) {
1315                 if (i == pd_idx || i == qd_idx)
1316                         continue;
1317                 xor_srcs[count++] = sh->dev[i].page;
1318         }
1319
1320         init_async_submit(&submit, 0, NULL, NULL, NULL,
1321                           to_addr_conv(sh, percpu));
1322         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1323                            &sh->ops.zero_sum_result, &submit);
1324
1325         atomic_inc(&sh->count);
1326         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1327         tx = async_trigger_callback(&submit);
1328 }
1329
1330 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1331 {
1332         struct page **srcs = percpu->scribble;
1333         struct async_submit_ctl submit;
1334         int count;
1335
1336         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1337                 (unsigned long long)sh->sector, checkp);
1338
1339         count = set_syndrome_sources(srcs, sh);
1340         if (!checkp)
1341                 srcs[count] = NULL;
1342
1343         atomic_inc(&sh->count);
1344         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1345                           sh, to_addr_conv(sh, percpu));
1346         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1347                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1348 }
1349
1350 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1351 {
1352         int overlap_clear = 0, i, disks = sh->disks;
1353         struct dma_async_tx_descriptor *tx = NULL;
1354         struct r5conf *conf = sh->raid_conf;
1355         int level = conf->level;
1356         struct raid5_percpu *percpu;
1357         unsigned long cpu;
1358
1359         cpu = get_cpu();
1360         percpu = per_cpu_ptr(conf->percpu, cpu);
1361         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1362                 ops_run_biofill(sh);
1363                 overlap_clear++;
1364         }
1365
1366         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1367                 if (level < 6)
1368                         tx = ops_run_compute5(sh, percpu);
1369                 else {
1370                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1371                                 tx = ops_run_compute6_1(sh, percpu);
1372                         else
1373                                 tx = ops_run_compute6_2(sh, percpu);
1374                 }
1375                 /* terminate the chain if reconstruct is not set to be run */
1376                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1377                         async_tx_ack(tx);
1378         }
1379
1380         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1381                 tx = ops_run_prexor(sh, percpu, tx);
1382
1383         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1384                 tx = ops_run_biodrain(sh, tx);
1385                 overlap_clear++;
1386         }
1387
1388         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1389                 if (level < 6)
1390                         ops_run_reconstruct5(sh, percpu, tx);
1391                 else
1392                         ops_run_reconstruct6(sh, percpu, tx);
1393         }
1394
1395         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1396                 if (sh->check_state == check_state_run)
1397                         ops_run_check_p(sh, percpu);
1398                 else if (sh->check_state == check_state_run_q)
1399                         ops_run_check_pq(sh, percpu, 0);
1400                 else if (sh->check_state == check_state_run_pq)
1401                         ops_run_check_pq(sh, percpu, 1);
1402                 else
1403                         BUG();
1404         }
1405
1406         if (overlap_clear)
1407                 for (i = disks; i--; ) {
1408                         struct r5dev *dev = &sh->dev[i];
1409                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1410                                 wake_up(&sh->raid_conf->wait_for_overlap);
1411                 }
1412         put_cpu();
1413 }
1414
1415 #ifdef CONFIG_MULTICORE_RAID456
1416 static void async_run_ops(void *param, async_cookie_t cookie)
1417 {
1418         struct stripe_head *sh = param;
1419         unsigned long ops_request = sh->ops.request;
1420
1421         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1422         wake_up(&sh->ops.wait_for_ops);
1423
1424         __raid_run_ops(sh, ops_request);
1425         release_stripe(sh);
1426 }
1427
1428 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1429 {
1430         /* since handle_stripe can be called outside of raid5d context
1431          * we need to ensure sh->ops.request is de-staged before another
1432          * request arrives
1433          */
1434         wait_event(sh->ops.wait_for_ops,
1435                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1436         sh->ops.request = ops_request;
1437
1438         atomic_inc(&sh->count);
1439         async_schedule(async_run_ops, sh);
1440 }
1441 #else
1442 #define raid_run_ops __raid_run_ops
1443 #endif
1444
1445 static int grow_one_stripe(struct r5conf *conf)
1446 {
1447         struct stripe_head *sh;
1448         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1449         if (!sh)
1450                 return 0;
1451
1452         sh->raid_conf = conf;
1453         #ifdef CONFIG_MULTICORE_RAID456
1454         init_waitqueue_head(&sh->ops.wait_for_ops);
1455         #endif
1456
1457         if (grow_buffers(sh)) {
1458                 shrink_buffers(sh);
1459                 kmem_cache_free(conf->slab_cache, sh);
1460                 return 0;
1461         }
1462         /* we just created an active stripe so... */
1463         atomic_set(&sh->count, 1);
1464         atomic_inc(&conf->active_stripes);
1465         INIT_LIST_HEAD(&sh->lru);
1466         release_stripe(sh);
1467         return 1;
1468 }
1469
1470 static int grow_stripes(struct r5conf *conf, int num)
1471 {
1472         struct kmem_cache *sc;
1473         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1474
1475         if (conf->mddev->gendisk)
1476                 sprintf(conf->cache_name[0],
1477                         "raid%d-%s", conf->level, mdname(conf->mddev));
1478         else
1479                 sprintf(conf->cache_name[0],
1480                         "raid%d-%p", conf->level, conf->mddev);
1481         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1482
1483         conf->active_name = 0;
1484         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1485                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1486                                0, 0, NULL);
1487         if (!sc)
1488                 return 1;
1489         conf->slab_cache = sc;
1490         conf->pool_size = devs;
1491         while (num--)
1492                 if (!grow_one_stripe(conf))
1493                         return 1;
1494         return 0;
1495 }
1496
1497 /**
1498  * scribble_len - return the required size of the scribble region
1499  * @num - total number of disks in the array
1500  *
1501  * The size must be enough to contain:
1502  * 1/ a struct page pointer for each device in the array +2
1503  * 2/ room to convert each entry in (1) to its corresponding dma
1504  *    (dma_map_page()) or page (page_address()) address.
1505  *
1506  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1507  * calculate over all devices (not just the data blocks), using zeros in place
1508  * of the P and Q blocks.
1509  */
1510 static size_t scribble_len(int num)
1511 {
1512         size_t len;
1513
1514         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1515
1516         return len;
1517 }
1518
1519 static int resize_stripes(struct r5conf *conf, int newsize)
1520 {
1521         /* Make all the stripes able to hold 'newsize' devices.
1522          * New slots in each stripe get 'page' set to a new page.
1523          *
1524          * This happens in stages:
1525          * 1/ create a new kmem_cache and allocate the required number of
1526          *    stripe_heads.
1527          * 2/ gather all the old stripe_heads and tranfer the pages across
1528          *    to the new stripe_heads.  This will have the side effect of
1529          *    freezing the array as once all stripe_heads have been collected,
1530          *    no IO will be possible.  Old stripe heads are freed once their
1531          *    pages have been transferred over, and the old kmem_cache is
1532          *    freed when all stripes are done.
1533          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1534          *    we simple return a failre status - no need to clean anything up.
1535          * 4/ allocate new pages for the new slots in the new stripe_heads.
1536          *    If this fails, we don't bother trying the shrink the
1537          *    stripe_heads down again, we just leave them as they are.
1538          *    As each stripe_head is processed the new one is released into
1539          *    active service.
1540          *
1541          * Once step2 is started, we cannot afford to wait for a write,
1542          * so we use GFP_NOIO allocations.
1543          */
1544         struct stripe_head *osh, *nsh;
1545         LIST_HEAD(newstripes);
1546         struct disk_info *ndisks;
1547         unsigned long cpu;
1548         int err;
1549         struct kmem_cache *sc;
1550         int i;
1551
1552         if (newsize <= conf->pool_size)
1553                 return 0; /* never bother to shrink */
1554
1555         err = md_allow_write(conf->mddev);
1556         if (err)
1557                 return err;
1558
1559         /* Step 1 */
1560         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1561                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1562                                0, 0, NULL);
1563         if (!sc)
1564                 return -ENOMEM;
1565
1566         for (i = conf->max_nr_stripes; i; i--) {
1567                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1568                 if (!nsh)
1569                         break;
1570
1571                 nsh->raid_conf = conf;
1572                 #ifdef CONFIG_MULTICORE_RAID456
1573                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1574                 #endif
1575
1576                 list_add(&nsh->lru, &newstripes);
1577         }
1578         if (i) {
1579                 /* didn't get enough, give up */
1580                 while (!list_empty(&newstripes)) {
1581                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1582                         list_del(&nsh->lru);
1583                         kmem_cache_free(sc, nsh);
1584                 }
1585                 kmem_cache_destroy(sc);
1586                 return -ENOMEM;
1587         }
1588         /* Step 2 - Must use GFP_NOIO now.
1589          * OK, we have enough stripes, start collecting inactive
1590          * stripes and copying them over
1591          */
1592         list_for_each_entry(nsh, &newstripes, lru) {
1593                 spin_lock_irq(&conf->device_lock);
1594                 wait_event_lock_irq(conf->wait_for_stripe,
1595                                     !list_empty(&conf->inactive_list),
1596                                     conf->device_lock,
1597                                     );
1598                 osh = get_free_stripe(conf);
1599                 spin_unlock_irq(&conf->device_lock);
1600                 atomic_set(&nsh->count, 1);
1601                 for(i=0; i<conf->pool_size; i++)
1602                         nsh->dev[i].page = osh->dev[i].page;
1603                 for( ; i<newsize; i++)
1604                         nsh->dev[i].page = NULL;
1605                 kmem_cache_free(conf->slab_cache, osh);
1606         }
1607         kmem_cache_destroy(conf->slab_cache);
1608
1609         /* Step 3.
1610          * At this point, we are holding all the stripes so the array
1611          * is completely stalled, so now is a good time to resize
1612          * conf->disks and the scribble region
1613          */
1614         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1615         if (ndisks) {
1616                 for (i=0; i<conf->raid_disks; i++)
1617                         ndisks[i] = conf->disks[i];
1618                 kfree(conf->disks);
1619                 conf->disks = ndisks;
1620         } else
1621                 err = -ENOMEM;
1622
1623         get_online_cpus();
1624         conf->scribble_len = scribble_len(newsize);
1625         for_each_present_cpu(cpu) {
1626                 struct raid5_percpu *percpu;
1627                 void *scribble;
1628
1629                 percpu = per_cpu_ptr(conf->percpu, cpu);
1630                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1631
1632                 if (scribble) {
1633                         kfree(percpu->scribble);
1634                         percpu->scribble = scribble;
1635                 } else {
1636                         err = -ENOMEM;
1637                         break;
1638                 }
1639         }
1640         put_online_cpus();
1641
1642         /* Step 4, return new stripes to service */
1643         while(!list_empty(&newstripes)) {
1644                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1645                 list_del_init(&nsh->lru);
1646
1647                 for (i=conf->raid_disks; i < newsize; i++)
1648                         if (nsh->dev[i].page == NULL) {
1649                                 struct page *p = alloc_page(GFP_NOIO);
1650                                 nsh->dev[i].page = p;
1651                                 if (!p)
1652                                         err = -ENOMEM;
1653                         }
1654                 release_stripe(nsh);
1655         }
1656         /* critical section pass, GFP_NOIO no longer needed */
1657
1658         conf->slab_cache = sc;
1659         conf->active_name = 1-conf->active_name;
1660         conf->pool_size = newsize;
1661         return err;
1662 }
1663
1664 static int drop_one_stripe(struct r5conf *conf)
1665 {
1666         struct stripe_head *sh;
1667
1668         spin_lock_irq(&conf->device_lock);
1669         sh = get_free_stripe(conf);
1670         spin_unlock_irq(&conf->device_lock);
1671         if (!sh)
1672                 return 0;
1673         BUG_ON(atomic_read(&sh->count));
1674         shrink_buffers(sh);
1675         kmem_cache_free(conf->slab_cache, sh);
1676         atomic_dec(&conf->active_stripes);
1677         return 1;
1678 }
1679
1680 static void shrink_stripes(struct r5conf *conf)
1681 {
1682         while (drop_one_stripe(conf))
1683                 ;
1684
1685         if (conf->slab_cache)
1686                 kmem_cache_destroy(conf->slab_cache);
1687         conf->slab_cache = NULL;
1688 }
1689
1690 static void raid5_end_read_request(struct bio * bi, int error)
1691 {
1692         struct stripe_head *sh = bi->bi_private;
1693         struct r5conf *conf = sh->raid_conf;
1694         int disks = sh->disks, i;
1695         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1696         char b[BDEVNAME_SIZE];
1697         struct md_rdev *rdev = NULL;
1698         sector_t s;
1699
1700         for (i=0 ; i<disks; i++)
1701                 if (bi == &sh->dev[i].req)
1702                         break;
1703
1704         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1705                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1706                 uptodate);
1707         if (i == disks) {
1708                 BUG();
1709                 return;
1710         }
1711         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1712                 /* If replacement finished while this request was outstanding,
1713                  * 'replacement' might be NULL already.
1714                  * In that case it moved down to 'rdev'.
1715                  * rdev is not removed until all requests are finished.
1716                  */
1717                 rdev = conf->disks[i].replacement;
1718         if (!rdev)
1719                 rdev = conf->disks[i].rdev;
1720
1721         if (use_new_offset(conf, sh))
1722                 s = sh->sector + rdev->new_data_offset;
1723         else
1724                 s = sh->sector + rdev->data_offset;
1725         if (uptodate) {
1726                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1727                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1728                         /* Note that this cannot happen on a
1729                          * replacement device.  We just fail those on
1730                          * any error
1731                          */
1732                         printk_ratelimited(
1733                                 KERN_INFO
1734                                 "md/raid:%s: read error corrected"
1735                                 " (%lu sectors at %llu on %s)\n",
1736                                 mdname(conf->mddev), STRIPE_SECTORS,
1737                                 (unsigned long long)s,
1738                                 bdevname(rdev->bdev, b));
1739                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1740                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1741                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1742                 }
1743                 if (atomic_read(&rdev->read_errors))
1744                         atomic_set(&rdev->read_errors, 0);
1745         } else {
1746                 const char *bdn = bdevname(rdev->bdev, b);
1747                 int retry = 0;
1748                 int set_bad = 0;
1749
1750                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1751                 atomic_inc(&rdev->read_errors);
1752                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1753                         printk_ratelimited(
1754                                 KERN_WARNING
1755                                 "md/raid:%s: read error on replacement device "
1756                                 "(sector %llu on %s).\n",
1757                                 mdname(conf->mddev),
1758                                 (unsigned long long)s,
1759                                 bdn);
1760                 else if (conf->mddev->degraded >= conf->max_degraded) {
1761                         set_bad = 1;
1762                         printk_ratelimited(
1763                                 KERN_WARNING
1764                                 "md/raid:%s: read error not correctable "
1765                                 "(sector %llu on %s).\n",
1766                                 mdname(conf->mddev),
1767                                 (unsigned long long)s,
1768                                 bdn);
1769                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1770                         /* Oh, no!!! */
1771                         set_bad = 1;
1772                         printk_ratelimited(
1773                                 KERN_WARNING
1774                                 "md/raid:%s: read error NOT corrected!! "
1775                                 "(sector %llu on %s).\n",
1776                                 mdname(conf->mddev),
1777                                 (unsigned long long)s,
1778                                 bdn);
1779                 } else if (atomic_read(&rdev->read_errors)
1780                          > conf->max_nr_stripes)
1781                         printk(KERN_WARNING
1782                                "md/raid:%s: Too many read errors, failing device %s.\n",
1783                                mdname(conf->mddev), bdn);
1784                 else
1785                         retry = 1;
1786                 if (retry)
1787                         set_bit(R5_ReadError, &sh->dev[i].flags);
1788                 else {
1789                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1790                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1791                         if (!(set_bad
1792                               && test_bit(In_sync, &rdev->flags)
1793                               && rdev_set_badblocks(
1794                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1795                                 md_error(conf->mddev, rdev);
1796                 }
1797         }
1798         rdev_dec_pending(rdev, conf->mddev);
1799         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1800         set_bit(STRIPE_HANDLE, &sh->state);
1801         release_stripe(sh);
1802 }
1803
1804 static void raid5_end_write_request(struct bio *bi, int error)
1805 {
1806         struct stripe_head *sh = bi->bi_private;
1807         struct r5conf *conf = sh->raid_conf;
1808         int disks = sh->disks, i;
1809         struct md_rdev *uninitialized_var(rdev);
1810         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1811         sector_t first_bad;
1812         int bad_sectors;
1813         int replacement = 0;
1814
1815         for (i = 0 ; i < disks; i++) {
1816                 if (bi == &sh->dev[i].req) {
1817                         rdev = conf->disks[i].rdev;
1818                         break;
1819                 }
1820                 if (bi == &sh->dev[i].rreq) {
1821                         rdev = conf->disks[i].replacement;
1822                         if (rdev)
1823                                 replacement = 1;
1824                         else
1825                                 /* rdev was removed and 'replacement'
1826                                  * replaced it.  rdev is not removed
1827                                  * until all requests are finished.
1828                                  */
1829                                 rdev = conf->disks[i].rdev;
1830                         break;
1831                 }
1832         }
1833         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1834                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1835                 uptodate);
1836         if (i == disks) {
1837                 BUG();
1838                 return;
1839         }
1840
1841         if (replacement) {
1842                 if (!uptodate)
1843                         md_error(conf->mddev, rdev);
1844                 else if (is_badblock(rdev, sh->sector,
1845                                      STRIPE_SECTORS,
1846                                      &first_bad, &bad_sectors))
1847                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1848         } else {
1849                 if (!uptodate) {
1850                         set_bit(WriteErrorSeen, &rdev->flags);
1851                         set_bit(R5_WriteError, &sh->dev[i].flags);
1852                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1853                                 set_bit(MD_RECOVERY_NEEDED,
1854                                         &rdev->mddev->recovery);
1855                 } else if (is_badblock(rdev, sh->sector,
1856                                        STRIPE_SECTORS,
1857                                        &first_bad, &bad_sectors))
1858                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1859         }
1860         rdev_dec_pending(rdev, conf->mddev);
1861
1862         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1863                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1864         set_bit(STRIPE_HANDLE, &sh->state);
1865         release_stripe(sh);
1866 }
1867
1868 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1869         
1870 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1871 {
1872         struct r5dev *dev = &sh->dev[i];
1873
1874         bio_init(&dev->req);
1875         dev->req.bi_io_vec = &dev->vec;
1876         dev->req.bi_vcnt++;
1877         dev->req.bi_max_vecs++;
1878         dev->req.bi_private = sh;
1879         dev->vec.bv_page = dev->page;
1880
1881         bio_init(&dev->rreq);
1882         dev->rreq.bi_io_vec = &dev->rvec;
1883         dev->rreq.bi_vcnt++;
1884         dev->rreq.bi_max_vecs++;
1885         dev->rreq.bi_private = sh;
1886         dev->rvec.bv_page = dev->page;
1887
1888         dev->flags = 0;
1889         dev->sector = compute_blocknr(sh, i, previous);
1890 }
1891
1892 static void error(struct mddev *mddev, struct md_rdev *rdev)
1893 {
1894         char b[BDEVNAME_SIZE];
1895         struct r5conf *conf = mddev->private;
1896         unsigned long flags;
1897         pr_debug("raid456: error called\n");
1898
1899         spin_lock_irqsave(&conf->device_lock, flags);
1900         clear_bit(In_sync, &rdev->flags);
1901         mddev->degraded = calc_degraded(conf);
1902         spin_unlock_irqrestore(&conf->device_lock, flags);
1903         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1904
1905         set_bit(Blocked, &rdev->flags);
1906         set_bit(Faulty, &rdev->flags);
1907         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1908         printk(KERN_ALERT
1909                "md/raid:%s: Disk failure on %s, disabling device.\n"
1910                "md/raid:%s: Operation continuing on %d devices.\n",
1911                mdname(mddev),
1912                bdevname(rdev->bdev, b),
1913                mdname(mddev),
1914                conf->raid_disks - mddev->degraded);
1915 }
1916
1917 /*
1918  * Input: a 'big' sector number,
1919  * Output: index of the data and parity disk, and the sector # in them.
1920  */
1921 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1922                                      int previous, int *dd_idx,
1923                                      struct stripe_head *sh)
1924 {
1925         sector_t stripe, stripe2;
1926         sector_t chunk_number;
1927         unsigned int chunk_offset;
1928         int pd_idx, qd_idx;
1929         int ddf_layout = 0;
1930         sector_t new_sector;
1931         int algorithm = previous ? conf->prev_algo
1932                                  : conf->algorithm;
1933         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1934                                          : conf->chunk_sectors;
1935         int raid_disks = previous ? conf->previous_raid_disks
1936                                   : conf->raid_disks;
1937         int data_disks = raid_disks - conf->max_degraded;
1938
1939         /* First compute the information on this sector */
1940
1941         /*
1942          * Compute the chunk number and the sector offset inside the chunk
1943          */
1944         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1945         chunk_number = r_sector;
1946
1947         /*
1948          * Compute the stripe number
1949          */
1950         stripe = chunk_number;
1951         *dd_idx = sector_div(stripe, data_disks);
1952         stripe2 = stripe;
1953         /*
1954          * Select the parity disk based on the user selected algorithm.
1955          */
1956         pd_idx = qd_idx = -1;
1957         switch(conf->level) {
1958         case 4:
1959                 pd_idx = data_disks;
1960                 break;
1961         case 5:
1962                 switch (algorithm) {
1963                 case ALGORITHM_LEFT_ASYMMETRIC:
1964                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1965                         if (*dd_idx >= pd_idx)
1966                                 (*dd_idx)++;
1967                         break;
1968                 case ALGORITHM_RIGHT_ASYMMETRIC:
1969                         pd_idx = sector_div(stripe2, raid_disks);
1970                         if (*dd_idx >= pd_idx)
1971                                 (*dd_idx)++;
1972                         break;
1973                 case ALGORITHM_LEFT_SYMMETRIC:
1974                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1975                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1976                         break;
1977                 case ALGORITHM_RIGHT_SYMMETRIC:
1978                         pd_idx = sector_div(stripe2, raid_disks);
1979                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1980                         break;
1981                 case ALGORITHM_PARITY_0:
1982                         pd_idx = 0;
1983                         (*dd_idx)++;
1984                         break;
1985                 case ALGORITHM_PARITY_N:
1986                         pd_idx = data_disks;
1987                         break;
1988                 default:
1989                         BUG();
1990                 }
1991                 break;
1992         case 6:
1993
1994                 switch (algorithm) {
1995                 case ALGORITHM_LEFT_ASYMMETRIC:
1996                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1997                         qd_idx = pd_idx + 1;
1998                         if (pd_idx == raid_disks-1) {
1999                                 (*dd_idx)++;    /* Q D D D P */
2000                                 qd_idx = 0;
2001                         } else if (*dd_idx >= pd_idx)
2002                                 (*dd_idx) += 2; /* D D P Q D */
2003                         break;
2004                 case ALGORITHM_RIGHT_ASYMMETRIC:
2005                         pd_idx = sector_div(stripe2, raid_disks);
2006                         qd_idx = pd_idx + 1;
2007                         if (pd_idx == raid_disks-1) {
2008                                 (*dd_idx)++;    /* Q D D D P */
2009                                 qd_idx = 0;
2010                         } else if (*dd_idx >= pd_idx)
2011                                 (*dd_idx) += 2; /* D D P Q D */
2012                         break;
2013                 case ALGORITHM_LEFT_SYMMETRIC:
2014                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2015                         qd_idx = (pd_idx + 1) % raid_disks;
2016                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2017                         break;
2018                 case ALGORITHM_RIGHT_SYMMETRIC:
2019                         pd_idx = sector_div(stripe2, raid_disks);
2020                         qd_idx = (pd_idx + 1) % raid_disks;
2021                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2022                         break;
2023
2024                 case ALGORITHM_PARITY_0:
2025                         pd_idx = 0;
2026                         qd_idx = 1;
2027                         (*dd_idx) += 2;
2028                         break;
2029                 case ALGORITHM_PARITY_N:
2030                         pd_idx = data_disks;
2031                         qd_idx = data_disks + 1;
2032                         break;
2033
2034                 case ALGORITHM_ROTATING_ZERO_RESTART:
2035                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2036                          * of blocks for computing Q is different.
2037                          */
2038                         pd_idx = sector_div(stripe2, raid_disks);
2039                         qd_idx = pd_idx + 1;
2040                         if (pd_idx == raid_disks-1) {
2041                                 (*dd_idx)++;    /* Q D D D P */
2042                                 qd_idx = 0;
2043                         } else if (*dd_idx >= pd_idx)
2044                                 (*dd_idx) += 2; /* D D P Q D */
2045                         ddf_layout = 1;
2046                         break;
2047
2048                 case ALGORITHM_ROTATING_N_RESTART:
2049                         /* Same a left_asymmetric, by first stripe is
2050                          * D D D P Q  rather than
2051                          * Q D D D P
2052                          */
2053                         stripe2 += 1;
2054                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2055                         qd_idx = pd_idx + 1;
2056                         if (pd_idx == raid_disks-1) {
2057                                 (*dd_idx)++;    /* Q D D D P */
2058                                 qd_idx = 0;
2059                         } else if (*dd_idx >= pd_idx)
2060                                 (*dd_idx) += 2; /* D D P Q D */
2061                         ddf_layout = 1;
2062                         break;
2063
2064                 case ALGORITHM_ROTATING_N_CONTINUE:
2065                         /* Same as left_symmetric but Q is before P */
2066                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2067                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2068                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2069                         ddf_layout = 1;
2070                         break;
2071
2072                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2073                         /* RAID5 left_asymmetric, with Q on last device */
2074                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2075                         if (*dd_idx >= pd_idx)
2076                                 (*dd_idx)++;
2077                         qd_idx = raid_disks - 1;
2078                         break;
2079
2080                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2081                         pd_idx = sector_div(stripe2, raid_disks-1);
2082                         if (*dd_idx >= pd_idx)
2083                                 (*dd_idx)++;
2084                         qd_idx = raid_disks - 1;
2085                         break;
2086
2087                 case ALGORITHM_LEFT_SYMMETRIC_6:
2088                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2089                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2090                         qd_idx = raid_disks - 1;
2091                         break;
2092
2093                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2094                         pd_idx = sector_div(stripe2, raid_disks-1);
2095                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2096                         qd_idx = raid_disks - 1;
2097                         break;
2098
2099                 case ALGORITHM_PARITY_0_6:
2100                         pd_idx = 0;
2101                         (*dd_idx)++;
2102                         qd_idx = raid_disks - 1;
2103                         break;
2104
2105                 default:
2106                         BUG();
2107                 }
2108                 break;
2109         }
2110
2111         if (sh) {
2112                 sh->pd_idx = pd_idx;
2113                 sh->qd_idx = qd_idx;
2114                 sh->ddf_layout = ddf_layout;
2115         }
2116         /*
2117          * Finally, compute the new sector number
2118          */
2119         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2120         return new_sector;
2121 }
2122
2123
2124 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2125 {
2126         struct r5conf *conf = sh->raid_conf;
2127         int raid_disks = sh->disks;
2128         int data_disks = raid_disks - conf->max_degraded;
2129         sector_t new_sector = sh->sector, check;
2130         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2131                                          : conf->chunk_sectors;
2132         int algorithm = previous ? conf->prev_algo
2133                                  : conf->algorithm;
2134         sector_t stripe;
2135         int chunk_offset;
2136         sector_t chunk_number;
2137         int dummy1, dd_idx = i;
2138         sector_t r_sector;
2139         struct stripe_head sh2;
2140
2141
2142         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2143         stripe = new_sector;
2144
2145         if (i == sh->pd_idx)
2146                 return 0;
2147         switch(conf->level) {
2148         case 4: break;
2149         case 5:
2150                 switch (algorithm) {
2151                 case ALGORITHM_LEFT_ASYMMETRIC:
2152                 case ALGORITHM_RIGHT_ASYMMETRIC:
2153                         if (i > sh->pd_idx)
2154                                 i--;
2155                         break;
2156                 case ALGORITHM_LEFT_SYMMETRIC:
2157                 case ALGORITHM_RIGHT_SYMMETRIC:
2158                         if (i < sh->pd_idx)
2159                                 i += raid_disks;
2160                         i -= (sh->pd_idx + 1);
2161                         break;
2162                 case ALGORITHM_PARITY_0:
2163                         i -= 1;
2164                         break;
2165                 case ALGORITHM_PARITY_N:
2166                         break;
2167                 default:
2168                         BUG();
2169                 }
2170                 break;
2171         case 6:
2172                 if (i == sh->qd_idx)
2173                         return 0; /* It is the Q disk */
2174                 switch (algorithm) {
2175                 case ALGORITHM_LEFT_ASYMMETRIC:
2176                 case ALGORITHM_RIGHT_ASYMMETRIC:
2177                 case ALGORITHM_ROTATING_ZERO_RESTART:
2178                 case ALGORITHM_ROTATING_N_RESTART:
2179                         if (sh->pd_idx == raid_disks-1)
2180                                 i--;    /* Q D D D P */
2181                         else if (i > sh->pd_idx)
2182                                 i -= 2; /* D D P Q D */
2183                         break;
2184                 case ALGORITHM_LEFT_SYMMETRIC:
2185                 case ALGORITHM_RIGHT_SYMMETRIC:
2186                         if (sh->pd_idx == raid_disks-1)
2187                                 i--; /* Q D D D P */
2188                         else {
2189                                 /* D D P Q D */
2190                                 if (i < sh->pd_idx)
2191                                         i += raid_disks;
2192                                 i -= (sh->pd_idx + 2);
2193                         }
2194                         break;
2195                 case ALGORITHM_PARITY_0:
2196                         i -= 2;
2197                         break;
2198                 case ALGORITHM_PARITY_N:
2199                         break;
2200                 case ALGORITHM_ROTATING_N_CONTINUE:
2201                         /* Like left_symmetric, but P is before Q */
2202                         if (sh->pd_idx == 0)
2203                                 i--;    /* P D D D Q */
2204                         else {
2205                                 /* D D Q P D */
2206                                 if (i < sh->pd_idx)
2207                                         i += raid_disks;
2208                                 i -= (sh->pd_idx + 1);
2209                         }
2210                         break;
2211                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2212                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2213                         if (i > sh->pd_idx)
2214                                 i--;
2215                         break;
2216                 case ALGORITHM_LEFT_SYMMETRIC_6:
2217                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2218                         if (i < sh->pd_idx)
2219                                 i += data_disks + 1;
2220                         i -= (sh->pd_idx + 1);
2221                         break;
2222                 case ALGORITHM_PARITY_0_6:
2223                         i -= 1;
2224                         break;
2225                 default:
2226                         BUG();
2227                 }
2228                 break;
2229         }
2230
2231         chunk_number = stripe * data_disks + i;
2232         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2233
2234         check = raid5_compute_sector(conf, r_sector,
2235                                      previous, &dummy1, &sh2);
2236         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2237                 || sh2.qd_idx != sh->qd_idx) {
2238                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2239                        mdname(conf->mddev));
2240                 return 0;
2241         }
2242         return r_sector;
2243 }
2244
2245
2246 static void
2247 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2248                          int rcw, int expand)
2249 {
2250         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2251         struct r5conf *conf = sh->raid_conf;
2252         int level = conf->level;
2253
2254         if (rcw) {
2255                 /* if we are not expanding this is a proper write request, and
2256                  * there will be bios with new data to be drained into the
2257                  * stripe cache
2258                  */
2259                 if (!expand) {
2260                         sh->reconstruct_state = reconstruct_state_drain_run;
2261                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2262                 } else
2263                         sh->reconstruct_state = reconstruct_state_run;
2264
2265                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2266
2267                 for (i = disks; i--; ) {
2268                         struct r5dev *dev = &sh->dev[i];
2269
2270                         if (dev->towrite) {
2271                                 set_bit(R5_LOCKED, &dev->flags);
2272                                 set_bit(R5_Wantdrain, &dev->flags);
2273                                 if (!expand)
2274                                         clear_bit(R5_UPTODATE, &dev->flags);
2275                                 s->locked++;
2276                         }
2277                 }
2278                 if (s->locked + conf->max_degraded == disks)
2279                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2280                                 atomic_inc(&conf->pending_full_writes);
2281         } else {
2282                 BUG_ON(level == 6);
2283                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2284                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2285
2286                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2287                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2288                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2289                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2290
2291                 for (i = disks; i--; ) {
2292                         struct r5dev *dev = &sh->dev[i];
2293                         if (i == pd_idx)
2294                                 continue;
2295
2296                         if (dev->towrite &&
2297                             (test_bit(R5_UPTODATE, &dev->flags) ||
2298                              test_bit(R5_Wantcompute, &dev->flags))) {
2299                                 set_bit(R5_Wantdrain, &dev->flags);
2300                                 set_bit(R5_LOCKED, &dev->flags);
2301                                 clear_bit(R5_UPTODATE, &dev->flags);
2302                                 s->locked++;
2303                         }
2304                 }
2305         }
2306
2307         /* keep the parity disk(s) locked while asynchronous operations
2308          * are in flight
2309          */
2310         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2311         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2312         s->locked++;
2313
2314         if (level == 6) {
2315                 int qd_idx = sh->qd_idx;
2316                 struct r5dev *dev = &sh->dev[qd_idx];
2317
2318                 set_bit(R5_LOCKED, &dev->flags);
2319                 clear_bit(R5_UPTODATE, &dev->flags);
2320                 s->locked++;
2321         }
2322
2323         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2324                 __func__, (unsigned long long)sh->sector,
2325                 s->locked, s->ops_request);
2326 }
2327
2328 /*
2329  * Each stripe/dev can have one or more bion attached.
2330  * toread/towrite point to the first in a chain.
2331  * The bi_next chain must be in order.
2332  */
2333 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2334 {
2335         struct bio **bip;
2336         struct r5conf *conf = sh->raid_conf;
2337         int firstwrite=0;
2338
2339         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2340                 (unsigned long long)bi->bi_sector,
2341                 (unsigned long long)sh->sector);
2342
2343
2344         spin_lock_irq(&conf->device_lock);
2345         if (forwrite) {
2346                 bip = &sh->dev[dd_idx].towrite;
2347                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2348                         firstwrite = 1;
2349         } else
2350                 bip = &sh->dev[dd_idx].toread;
2351         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2352                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2353                         goto overlap;
2354                 bip = & (*bip)->bi_next;
2355         }
2356         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2357                 goto overlap;
2358
2359         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2360         if (*bip)
2361                 bi->bi_next = *bip;
2362         *bip = bi;
2363         bi->bi_phys_segments++;
2364
2365         if (forwrite) {
2366                 /* check if page is covered */
2367                 sector_t sector = sh->dev[dd_idx].sector;
2368                 for (bi=sh->dev[dd_idx].towrite;
2369                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2370                              bi && bi->bi_sector <= sector;
2371                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2372                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2373                                 sector = bi->bi_sector + (bi->bi_size>>9);
2374                 }
2375                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2376                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2377         }
2378         spin_unlock_irq(&conf->device_lock);
2379
2380         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2381                 (unsigned long long)(*bip)->bi_sector,
2382                 (unsigned long long)sh->sector, dd_idx);
2383
2384         if (conf->mddev->bitmap && firstwrite) {
2385                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2386                                   STRIPE_SECTORS, 0);
2387                 sh->bm_seq = conf->seq_flush+1;
2388                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2389         }
2390         return 1;
2391
2392  overlap:
2393         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2394         spin_unlock_irq(&conf->device_lock);
2395         return 0;
2396 }
2397
2398 static void end_reshape(struct r5conf *conf);
2399
2400 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2401                             struct stripe_head *sh)
2402 {
2403         int sectors_per_chunk =
2404                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2405         int dd_idx;
2406         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2407         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2408
2409         raid5_compute_sector(conf,
2410                              stripe * (disks - conf->max_degraded)
2411                              *sectors_per_chunk + chunk_offset,
2412                              previous,
2413                              &dd_idx, sh);
2414 }
2415
2416 static void
2417 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2418                                 struct stripe_head_state *s, int disks,
2419                                 struct bio **return_bi)
2420 {
2421         int i;
2422         for (i = disks; i--; ) {
2423                 struct bio *bi;
2424                 int bitmap_end = 0;
2425
2426                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2427                         struct md_rdev *rdev;
2428                         rcu_read_lock();
2429                         rdev = rcu_dereference(conf->disks[i].rdev);
2430                         if (rdev && test_bit(In_sync, &rdev->flags))
2431                                 atomic_inc(&rdev->nr_pending);
2432                         else
2433                                 rdev = NULL;
2434                         rcu_read_unlock();
2435                         if (rdev) {
2436                                 if (!rdev_set_badblocks(
2437                                             rdev,
2438                                             sh->sector,
2439                                             STRIPE_SECTORS, 0))
2440                                         md_error(conf->mddev, rdev);
2441                                 rdev_dec_pending(rdev, conf->mddev);
2442                         }
2443                 }
2444                 spin_lock_irq(&conf->device_lock);
2445                 /* fail all writes first */
2446                 bi = sh->dev[i].towrite;
2447                 sh->dev[i].towrite = NULL;
2448                 if (bi) {
2449                         s->to_write--;
2450                         bitmap_end = 1;
2451                 }
2452
2453                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2454                         wake_up(&conf->wait_for_overlap);
2455
2456                 while (bi && bi->bi_sector <
2457                         sh->dev[i].sector + STRIPE_SECTORS) {
2458                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2459                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2460                         if (!raid5_dec_bi_phys_segments(bi)) {
2461                                 md_write_end(conf->mddev);
2462                                 bi->bi_next = *return_bi;
2463                                 *return_bi = bi;
2464                         }
2465                         bi = nextbi;
2466                 }
2467                 /* and fail all 'written' */
2468                 bi = sh->dev[i].written;
2469                 sh->dev[i].written = NULL;
2470                 if (bi) bitmap_end = 1;
2471                 while (bi && bi->bi_sector <
2472                        sh->dev[i].sector + STRIPE_SECTORS) {
2473                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2474                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2475                         if (!raid5_dec_bi_phys_segments(bi)) {
2476                                 md_write_end(conf->mddev);
2477                                 bi->bi_next = *return_bi;
2478                                 *return_bi = bi;
2479                         }
2480                         bi = bi2;
2481                 }
2482
2483                 /* fail any reads if this device is non-operational and
2484                  * the data has not reached the cache yet.
2485                  */
2486                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2487                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2488                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2489                         bi = sh->dev[i].toread;
2490                         sh->dev[i].toread = NULL;
2491                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2492                                 wake_up(&conf->wait_for_overlap);
2493                         if (bi) s->to_read--;
2494                         while (bi && bi->bi_sector <
2495                                sh->dev[i].sector + STRIPE_SECTORS) {
2496                                 struct bio *nextbi =
2497                                         r5_next_bio(bi, sh->dev[i].sector);
2498                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2499                                 if (!raid5_dec_bi_phys_segments(bi)) {
2500                                         bi->bi_next = *return_bi;
2501                                         *return_bi = bi;
2502                                 }
2503                                 bi = nextbi;
2504                         }
2505                 }
2506                 spin_unlock_irq(&conf->device_lock);
2507                 if (bitmap_end)
2508                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2509                                         STRIPE_SECTORS, 0, 0);
2510                 /* If we were in the middle of a write the parity block might
2511                  * still be locked - so just clear all R5_LOCKED flags
2512                  */
2513                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2514         }
2515
2516         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2517                 if (atomic_dec_and_test(&conf->pending_full_writes))
2518                         md_wakeup_thread(conf->mddev->thread);
2519 }
2520
2521 static void
2522 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2523                    struct stripe_head_state *s)
2524 {
2525         int abort = 0;
2526         int i;
2527
2528         clear_bit(STRIPE_SYNCING, &sh->state);
2529         s->syncing = 0;
2530         s->replacing = 0;
2531         /* There is nothing more to do for sync/check/repair.
2532          * Don't even need to abort as that is handled elsewhere
2533          * if needed, and not always wanted e.g. if there is a known
2534          * bad block here.
2535          * For recover/replace we need to record a bad block on all
2536          * non-sync devices, or abort the recovery
2537          */
2538         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2539                 /* During recovery devices cannot be removed, so
2540                  * locking and refcounting of rdevs is not needed
2541                  */
2542                 for (i = 0; i < conf->raid_disks; i++) {
2543                         struct md_rdev *rdev = conf->disks[i].rdev;
2544                         if (rdev
2545                             && !test_bit(Faulty, &rdev->flags)
2546                             && !test_bit(In_sync, &rdev->flags)
2547                             && !rdev_set_badblocks(rdev, sh->sector,
2548                                                    STRIPE_SECTORS, 0))
2549                                 abort = 1;
2550                         rdev = conf->disks[i].replacement;
2551                         if (rdev
2552                             && !test_bit(Faulty, &rdev->flags)
2553                             && !test_bit(In_sync, &rdev->flags)
2554                             && !rdev_set_badblocks(rdev, sh->sector,
2555                                                    STRIPE_SECTORS, 0))
2556                                 abort = 1;
2557                 }
2558                 if (abort)
2559                         conf->recovery_disabled =
2560                                 conf->mddev->recovery_disabled;
2561         }
2562         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2563 }
2564
2565 static int want_replace(struct stripe_head *sh, int disk_idx)
2566 {
2567         struct md_rdev *rdev;
2568         int rv = 0;
2569         /* Doing recovery so rcu locking not required */
2570         rdev = sh->raid_conf->disks[disk_idx].replacement;
2571         if (rdev
2572             && !test_bit(Faulty, &rdev->flags)
2573             && !test_bit(In_sync, &rdev->flags)
2574             && (rdev->recovery_offset <= sh->sector
2575                 || rdev->mddev->recovery_cp <= sh->sector))
2576                 rv = 1;
2577
2578         return rv;
2579 }
2580
2581 /* fetch_block - checks the given member device to see if its data needs
2582  * to be read or computed to satisfy a request.
2583  *
2584  * Returns 1 when no more member devices need to be checked, otherwise returns
2585  * 0 to tell the loop in handle_stripe_fill to continue
2586  */
2587 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2588                        int disk_idx, int disks)
2589 {
2590         struct r5dev *dev = &sh->dev[disk_idx];
2591         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2592                                   &sh->dev[s->failed_num[1]] };
2593
2594         /* is the data in this block needed, and can we get it? */
2595         if (!test_bit(R5_LOCKED, &dev->flags) &&
2596             !test_bit(R5_UPTODATE, &dev->flags) &&
2597             (dev->toread ||
2598              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2599              s->syncing || s->expanding ||
2600              (s->replacing && want_replace(sh, disk_idx)) ||
2601              (s->failed >= 1 && fdev[0]->toread) ||
2602              (s->failed >= 2 && fdev[1]->toread) ||
2603              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2604               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2605              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2606                 /* we would like to get this block, possibly by computing it,
2607                  * otherwise read it if the backing disk is insync
2608                  */
2609                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2610                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2611                 if ((s->uptodate == disks - 1) &&
2612                     (s->failed && (disk_idx == s->failed_num[0] ||
2613                                    disk_idx == s->failed_num[1]))) {
2614                         /* have disk failed, and we're requested to fetch it;
2615                          * do compute it
2616                          */
2617                         pr_debug("Computing stripe %llu block %d\n",
2618                                (unsigned long long)sh->sector, disk_idx);
2619                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2620                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2621                         set_bit(R5_Wantcompute, &dev->flags);
2622                         sh->ops.target = disk_idx;
2623                         sh->ops.target2 = -1; /* no 2nd target */
2624                         s->req_compute = 1;
2625                         /* Careful: from this point on 'uptodate' is in the eye
2626                          * of raid_run_ops which services 'compute' operations
2627                          * before writes. R5_Wantcompute flags a block that will
2628                          * be R5_UPTODATE by the time it is needed for a
2629                          * subsequent operation.
2630                          */
2631                         s->uptodate++;
2632                         return 1;
2633                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2634                         /* Computing 2-failure is *very* expensive; only
2635                          * do it if failed >= 2
2636                          */
2637                         int other;
2638                         for (other = disks; other--; ) {
2639                                 if (other == disk_idx)
2640                                         continue;
2641                                 if (!test_bit(R5_UPTODATE,
2642                                       &sh->dev[other].flags))
2643                                         break;
2644                         }
2645                         BUG_ON(other < 0);
2646                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2647                                (unsigned long long)sh->sector,
2648                                disk_idx, other);
2649                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2650                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2651                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2652                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2653                         sh->ops.target = disk_idx;
2654                         sh->ops.target2 = other;
2655                         s->uptodate += 2;
2656                         s->req_compute = 1;
2657                         return 1;
2658                 } else if (test_bit(R5_Insync, &dev->flags)) {
2659                         set_bit(R5_LOCKED, &dev->flags);
2660                         set_bit(R5_Wantread, &dev->flags);
2661                         s->locked++;
2662                         pr_debug("Reading block %d (sync=%d)\n",
2663                                 disk_idx, s->syncing);
2664                 }
2665         }
2666
2667         return 0;
2668 }
2669
2670 /**
2671  * handle_stripe_fill - read or compute data to satisfy pending requests.
2672  */
2673 static void handle_stripe_fill(struct stripe_head *sh,
2674                                struct stripe_head_state *s,
2675                                int disks)
2676 {
2677         int i;
2678
2679         /* look for blocks to read/compute, skip this if a compute
2680          * is already in flight, or if the stripe contents are in the
2681          * midst of changing due to a write
2682          */
2683         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2684             !sh->reconstruct_state)
2685                 for (i = disks; i--; )
2686                         if (fetch_block(sh, s, i, disks))
2687                                 break;
2688         set_bit(STRIPE_HANDLE, &sh->state);
2689 }
2690
2691
2692 /* handle_stripe_clean_event
2693  * any written block on an uptodate or failed drive can be returned.
2694  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2695  * never LOCKED, so we don't need to test 'failed' directly.
2696  */
2697 static void handle_stripe_clean_event(struct r5conf *conf,
2698         struct stripe_head *sh, int disks, struct bio **return_bi)
2699 {
2700         int i;
2701         struct r5dev *dev;
2702
2703         for (i = disks; i--; )
2704                 if (sh->dev[i].written) {
2705                         dev = &sh->dev[i];
2706                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2707                                 test_bit(R5_UPTODATE, &dev->flags)) {
2708                                 /* We can return any write requests */
2709                                 struct bio *wbi, *wbi2;
2710                                 int bitmap_end = 0;
2711                                 pr_debug("Return write for disc %d\n", i);
2712                                 spin_lock_irq(&conf->device_lock);
2713                                 wbi = dev->written;
2714                                 dev->written = NULL;
2715                                 while (wbi && wbi->bi_sector <
2716                                         dev->sector + STRIPE_SECTORS) {
2717                                         wbi2 = r5_next_bio(wbi, dev->sector);
2718                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2719                                                 md_write_end(conf->mddev);
2720                                                 wbi->bi_next = *return_bi;
2721                                                 *return_bi = wbi;
2722                                         }
2723                                         wbi = wbi2;
2724                                 }
2725                                 if (dev->towrite == NULL)
2726                                         bitmap_end = 1;
2727                                 spin_unlock_irq(&conf->device_lock);
2728                                 if (bitmap_end)
2729                                         bitmap_endwrite(conf->mddev->bitmap,
2730                                                         sh->sector,
2731                                                         STRIPE_SECTORS,
2732                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2733                                                         0);
2734                         }
2735                 }
2736
2737         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2738                 if (atomic_dec_and_test(&conf->pending_full_writes))
2739                         md_wakeup_thread(conf->mddev->thread);
2740 }
2741
2742 static void handle_stripe_dirtying(struct r5conf *conf,
2743                                    struct stripe_head *sh,
2744                                    struct stripe_head_state *s,
2745                                    int disks)
2746 {
2747         int rmw = 0, rcw = 0, i;
2748         if (conf->max_degraded == 2) {
2749                 /* RAID6 requires 'rcw' in current implementation
2750                  * Calculate the real rcw later - for now fake it
2751                  * look like rcw is cheaper
2752                  */
2753                 rcw = 1; rmw = 2;
2754         } else for (i = disks; i--; ) {
2755                 /* would I have to read this buffer for read_modify_write */
2756                 struct r5dev *dev = &sh->dev[i];
2757                 if ((dev->towrite || i == sh->pd_idx) &&
2758                     !test_bit(R5_LOCKED, &dev->flags) &&
2759                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2760                       test_bit(R5_Wantcompute, &dev->flags))) {
2761                         if (test_bit(R5_Insync, &dev->flags))
2762                                 rmw++;
2763                         else
2764                                 rmw += 2*disks;  /* cannot read it */
2765                 }
2766                 /* Would I have to read this buffer for reconstruct_write */
2767                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2768                     !test_bit(R5_LOCKED, &dev->flags) &&
2769                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2770                     test_bit(R5_Wantcompute, &dev->flags))) {
2771                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2772                         else
2773                                 rcw += 2*disks;
2774                 }
2775         }
2776         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2777                 (unsigned long long)sh->sector, rmw, rcw);
2778         set_bit(STRIPE_HANDLE, &sh->state);
2779         if (rmw < rcw && rmw > 0)
2780                 /* prefer read-modify-write, but need to get some data */
2781                 for (i = disks; i--; ) {
2782                         struct r5dev *dev = &sh->dev[i];
2783                         if ((dev->towrite || i == sh->pd_idx) &&
2784                             !test_bit(R5_LOCKED, &dev->flags) &&
2785                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2786                             test_bit(R5_Wantcompute, &dev->flags)) &&
2787                             test_bit(R5_Insync, &dev->flags)) {
2788                                 if (
2789                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2790                                         pr_debug("Read_old block "
2791                                                 "%d for r-m-w\n", i);
2792                                         set_bit(R5_LOCKED, &dev->flags);
2793                                         set_bit(R5_Wantread, &dev->flags);
2794                                         s->locked++;
2795                                 } else {
2796                                         set_bit(STRIPE_DELAYED, &sh->state);
2797                                         set_bit(STRIPE_HANDLE, &sh->state);
2798                                 }
2799                         }
2800                 }
2801         if (rcw <= rmw && rcw > 0) {
2802                 /* want reconstruct write, but need to get some data */
2803                 rcw = 0;
2804                 for (i = disks; i--; ) {
2805                         struct r5dev *dev = &sh->dev[i];
2806                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2807                             i != sh->pd_idx && i != sh->qd_idx &&
2808                             !test_bit(R5_LOCKED, &dev->flags) &&
2809                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2810                               test_bit(R5_Wantcompute, &dev->flags))) {
2811                                 rcw++;
2812                                 if (!test_bit(R5_Insync, &dev->flags))
2813                                         continue; /* it's a failed drive */
2814                                 if (
2815                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2816                                         pr_debug("Read_old block "
2817                                                 "%d for Reconstruct\n", i);
2818                                         set_bit(R5_LOCKED, &dev->flags);
2819                                         set_bit(R5_Wantread, &dev->flags);
2820                                         s->locked++;
2821                                 } else {
2822                                         set_bit(STRIPE_DELAYED, &sh->state);
2823                                         set_bit(STRIPE_HANDLE, &sh->state);
2824                                 }
2825                         }
2826                 }
2827         }
2828         /* now if nothing is locked, and if we have enough data,
2829          * we can start a write request
2830          */
2831         /* since handle_stripe can be called at any time we need to handle the
2832          * case where a compute block operation has been submitted and then a
2833          * subsequent call wants to start a write request.  raid_run_ops only
2834          * handles the case where compute block and reconstruct are requested
2835          * simultaneously.  If this is not the case then new writes need to be
2836          * held off until the compute completes.
2837          */
2838         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2839             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2840             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2841                 schedule_reconstruction(sh, s, rcw == 0, 0);
2842 }
2843
2844 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2845                                 struct stripe_head_state *s, int disks)
2846 {
2847         struct r5dev *dev = NULL;
2848
2849         set_bit(STRIPE_HANDLE, &sh->state);
2850
2851         switch (sh->check_state) {
2852         case check_state_idle:
2853                 /* start a new check operation if there are no failures */
2854                 if (s->failed == 0) {
2855                         BUG_ON(s->uptodate != disks);
2856                         sh->check_state = check_state_run;
2857                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2858                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2859                         s->uptodate--;
2860                         break;
2861                 }
2862                 dev = &sh->dev[s->failed_num[0]];
2863                 /* fall through */
2864         case check_state_compute_result:
2865                 sh->check_state = check_state_idle;
2866                 if (!dev)
2867                         dev = &sh->dev[sh->pd_idx];
2868
2869                 /* check that a write has not made the stripe insync */
2870                 if (test_bit(STRIPE_INSYNC, &sh->state))
2871                         break;
2872
2873                 /* either failed parity check, or recovery is happening */
2874                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2875                 BUG_ON(s->uptodate != disks);
2876
2877                 set_bit(R5_LOCKED, &dev->flags);
2878                 s->locked++;
2879                 set_bit(R5_Wantwrite, &dev->flags);
2880
2881                 clear_bit(STRIPE_DEGRADED, &sh->state);
2882                 set_bit(STRIPE_INSYNC, &sh->state);
2883                 break;
2884         case check_state_run:
2885                 break; /* we will be called again upon completion */
2886         case check_state_check_result:
2887                 sh->check_state = check_state_idle;
2888
2889                 /* if a failure occurred during the check operation, leave
2890                  * STRIPE_INSYNC not set and let the stripe be handled again
2891                  */
2892                 if (s->failed)
2893                         break;
2894
2895                 /* handle a successful check operation, if parity is correct
2896                  * we are done.  Otherwise update the mismatch count and repair
2897                  * parity if !MD_RECOVERY_CHECK
2898                  */
2899                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2900                         /* parity is correct (on disc,
2901                          * not in buffer any more)
2902                          */
2903                         set_bit(STRIPE_INSYNC, &sh->state);
2904                 else {
2905                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2906                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2907                                 /* don't try to repair!! */
2908                                 set_bit(STRIPE_INSYNC, &sh->state);
2909                         else {
2910                                 sh->check_state = check_state_compute_run;
2911                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2912                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2913                                 set_bit(R5_Wantcompute,
2914                                         &sh->dev[sh->pd_idx].flags);
2915                                 sh->ops.target = sh->pd_idx;
2916                                 sh->ops.target2 = -1;
2917                                 s->uptodate++;
2918                         }
2919                 }
2920                 break;
2921         case check_state_compute_run:
2922                 break;
2923         default:
2924                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2925                        __func__, sh->check_state,
2926                        (unsigned long long) sh->sector);
2927                 BUG();
2928         }
2929 }
2930
2931
2932 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2933                                   struct stripe_head_state *s,
2934                                   int disks)
2935 {
2936         int pd_idx = sh->pd_idx;
2937         int qd_idx = sh->qd_idx;
2938         struct r5dev *dev;
2939
2940         set_bit(STRIPE_HANDLE, &sh->state);
2941
2942         BUG_ON(s->failed > 2);
2943
2944         /* Want to check and possibly repair P and Q.
2945          * However there could be one 'failed' device, in which
2946          * case we can only check one of them, possibly using the
2947          * other to generate missing data
2948          */
2949
2950         switch (sh->check_state) {
2951         case check_state_idle:
2952                 /* start a new check operation if there are < 2 failures */
2953                 if (s->failed == s->q_failed) {
2954                         /* The only possible failed device holds Q, so it
2955                          * makes sense to check P (If anything else were failed,
2956                          * we would have used P to recreate it).
2957                          */
2958                         sh->check_state = check_state_run;
2959                 }
2960                 if (!s->q_failed && s->failed < 2) {
2961                         /* Q is not failed, and we didn't use it to generate
2962                          * anything, so it makes sense to check it
2963                          */
2964                         if (sh->check_state == check_state_run)
2965                                 sh->check_state = check_state_run_pq;
2966                         else
2967                                 sh->check_state = check_state_run_q;
2968                 }
2969
2970                 /* discard potentially stale zero_sum_result */
2971                 sh->ops.zero_sum_result = 0;
2972
2973                 if (sh->check_state == check_state_run) {
2974                         /* async_xor_zero_sum destroys the contents of P */
2975                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2976                         s->uptodate--;
2977                 }
2978                 if (sh->check_state >= check_state_run &&
2979                     sh->check_state <= check_state_run_pq) {
2980                         /* async_syndrome_zero_sum preserves P and Q, so
2981                          * no need to mark them !uptodate here
2982                          */
2983                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2984                         break;
2985                 }
2986
2987                 /* we have 2-disk failure */
2988                 BUG_ON(s->failed != 2);
2989                 /* fall through */
2990         case check_state_compute_result:
2991                 sh->check_state = check_state_idle;
2992
2993                 /* check that a write has not made the stripe insync */
2994                 if (test_bit(STRIPE_INSYNC, &sh->state))
2995                         break;
2996
2997                 /* now write out any block on a failed drive,
2998                  * or P or Q if they were recomputed
2999                  */
3000                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3001                 if (s->failed == 2) {
3002                         dev = &sh->dev[s->failed_num[1]];
3003                         s->locked++;
3004                         set_bit(R5_LOCKED, &dev->flags);
3005                         set_bit(R5_Wantwrite, &dev->flags);
3006                 }
3007                 if (s->failed >= 1) {
3008                         dev = &sh->dev[s->failed_num[0]];
3009                         s->locked++;
3010                         set_bit(R5_LOCKED, &dev->flags);
3011                         set_bit(R5_Wantwrite, &dev->flags);
3012                 }
3013                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3014                         dev = &sh->dev[pd_idx];
3015                         s->locked++;
3016                         set_bit(R5_LOCKED, &dev->flags);
3017                         set_bit(R5_Wantwrite, &dev->flags);
3018                 }
3019                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3020                         dev = &sh->dev[qd_idx];
3021                         s->locked++;
3022                         set_bit(R5_LOCKED, &dev->flags);
3023                         set_bit(R5_Wantwrite, &dev->flags);
3024                 }
3025                 clear_bit(STRIPE_DEGRADED, &sh->state);
3026
3027                 set_bit(STRIPE_INSYNC, &sh->state);
3028                 break;
3029         case check_state_run:
3030         case check_state_run_q:
3031         case check_state_run_pq:
3032                 break; /* we will be called again upon completion */
3033         case check_state_check_result:
3034                 sh->check_state = check_state_idle;
3035
3036                 /* handle a successful check operation, if parity is correct
3037                  * we are done.  Otherwise update the mismatch count and repair
3038                  * parity if !MD_RECOVERY_CHECK
3039                  */
3040                 if (sh->ops.zero_sum_result == 0) {
3041                         /* both parities are correct */
3042                         if (!s->failed)
3043                                 set_bit(STRIPE_INSYNC, &sh->state);
3044                         else {
3045                                 /* in contrast to the raid5 case we can validate
3046                                  * parity, but still have a failure to write
3047                                  * back
3048                                  */
3049                                 sh->check_state = check_state_compute_result;
3050                                 /* Returning at this point means that we may go
3051                                  * off and bring p and/or q uptodate again so
3052                                  * we make sure to check zero_sum_result again
3053                                  * to verify if p or q need writeback
3054                                  */
3055                         }
3056                 } else {
3057                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
3058                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3059                                 /* don't try to repair!! */
3060                                 set_bit(STRIPE_INSYNC, &sh->state);
3061                         else {
3062                                 int *target = &sh->ops.target;
3063
3064                                 sh->ops.target = -1;
3065                                 sh->ops.target2 = -1;
3066                                 sh->check_state = check_state_compute_run;
3067                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3068                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3069                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3070                                         set_bit(R5_Wantcompute,
3071                                                 &sh->dev[pd_idx].flags);
3072                                         *target = pd_idx;
3073                                         target = &sh->ops.target2;
3074                                         s->uptodate++;
3075                                 }
3076                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3077                                         set_bit(R5_Wantcompute,
3078                                                 &sh->dev[qd_idx].flags);
3079                                         *target = qd_idx;
3080                                         s->uptodate++;
3081                                 }
3082                         }
3083                 }
3084                 break;
3085         case check_state_compute_run:
3086                 break;
3087         default:
3088                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3089                        __func__, sh->check_state,
3090                        (unsigned long long) sh->sector);
3091                 BUG();
3092         }
3093 }
3094
3095 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3096 {
3097         int i;
3098
3099         /* We have read all the blocks in this stripe and now we need to
3100          * copy some of them into a target stripe for expand.
3101          */
3102         struct dma_async_tx_descriptor *tx = NULL;
3103         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3104         for (i = 0; i < sh->disks; i++)
3105                 if (i != sh->pd_idx && i != sh->qd_idx) {
3106                         int dd_idx, j;
3107                         struct stripe_head *sh2;
3108                         struct async_submit_ctl submit;
3109
3110                         sector_t bn = compute_blocknr(sh, i, 1);
3111                         sector_t s = raid5_compute_sector(conf, bn, 0,
3112                                                           &dd_idx, NULL);
3113                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3114                         if (sh2 == NULL)
3115                                 /* so far only the early blocks of this stripe
3116                                  * have been requested.  When later blocks
3117                                  * get requested, we will try again
3118                                  */
3119                                 continue;
3120                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3121                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3122                                 /* must have already done this block */
3123                                 release_stripe(sh2);
3124                                 continue;
3125                         }
3126
3127                         /* place all the copies on one channel */
3128                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3129                         tx = async_memcpy(sh2->dev[dd_idx].page,
3130                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3131                                           &submit);
3132
3133                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3134                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3135                         for (j = 0; j < conf->raid_disks; j++)
3136                                 if (j != sh2->pd_idx &&
3137                                     j != sh2->qd_idx &&
3138                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3139                                         break;
3140                         if (j == conf->raid_disks) {
3141                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3142                                 set_bit(STRIPE_HANDLE, &sh2->state);
3143                         }
3144                         release_stripe(sh2);
3145
3146                 }
3147         /* done submitting copies, wait for them to complete */
3148         if (tx) {
3149                 async_tx_ack(tx);
3150                 dma_wait_for_async_tx(tx);
3151         }
3152 }
3153
3154 /*
3155  * handle_stripe - do things to a stripe.
3156  *
3157  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3158  * state of various bits to see what needs to be done.
3159  * Possible results:
3160  *    return some read requests which now have data
3161  *    return some write requests which are safely on storage
3162  *    schedule a read on some buffers
3163  *    schedule a write of some buffers
3164  *    return confirmation of parity correctness
3165  *
3166  */
3167
3168 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3169 {
3170         struct r5conf *conf = sh->raid_conf;
3171         int disks = sh->disks;
3172         struct r5dev *dev;
3173         int i;
3174         int do_recovery = 0;
3175
3176         memset(s, 0, sizeof(*s));
3177
3178         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3179         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3180         s->failed_num[0] = -1;
3181         s->failed_num[1] = -1;
3182
3183         /* Now to look around and see what can be done */
3184         rcu_read_lock();
3185         spin_lock_irq(&conf->device_lock);
3186         for (i=disks; i--; ) {
3187                 struct md_rdev *rdev;
3188                 sector_t first_bad;
3189                 int bad_sectors;
3190                 int is_bad = 0;
3191
3192                 dev = &sh->dev[i];
3193
3194                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3195                          i, dev->flags,
3196                          dev->toread, dev->towrite, dev->written);
3197                 /* maybe we can reply to a read
3198                  *
3199                  * new wantfill requests are only permitted while
3200                  * ops_complete_biofill is guaranteed to be inactive
3201                  */
3202                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3203                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3204                         set_bit(R5_Wantfill, &dev->flags);
3205
3206                 /* now count some things */
3207                 if (test_bit(R5_LOCKED, &dev->flags))
3208                         s->locked++;
3209                 if (test_bit(R5_UPTODATE, &dev->flags))
3210                         s->uptodate++;
3211                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3212                         s->compute++;
3213                         BUG_ON(s->compute > 2);
3214                 }
3215
3216                 if (test_bit(R5_Wantfill, &dev->flags))
3217                         s->to_fill++;
3218                 else if (dev->toread)
3219                         s->to_read++;
3220                 if (dev->towrite) {
3221                         s->to_write++;
3222                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3223                                 s->non_overwrite++;
3224                 }
3225                 if (dev->written)
3226                         s->written++;
3227                 /* Prefer to use the replacement for reads, but only
3228                  * if it is recovered enough and has no bad blocks.
3229                  */
3230                 rdev = rcu_dereference(conf->disks[i].replacement);
3231                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3232                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3233                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3234                                  &first_bad, &bad_sectors))
3235                         set_bit(R5_ReadRepl, &dev->flags);
3236                 else {
3237                         if (rdev)
3238                                 set_bit(R5_NeedReplace, &dev->flags);
3239                         rdev = rcu_dereference(conf->disks[i].rdev);
3240                         clear_bit(R5_ReadRepl, &dev->flags);
3241                 }
3242                 if (rdev && test_bit(Faulty, &rdev->flags))
3243                         rdev = NULL;
3244                 if (rdev) {
3245                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3246                                              &first_bad, &bad_sectors);
3247                         if (s->blocked_rdev == NULL
3248                             && (test_bit(Blocked, &rdev->flags)
3249                                 || is_bad < 0)) {
3250                                 if (is_bad < 0)
3251                                         set_bit(BlockedBadBlocks,
3252                                                 &rdev->flags);
3253                                 s->blocked_rdev = rdev;
3254                                 atomic_inc(&rdev->nr_pending);
3255                         }
3256                 }
3257                 clear_bit(R5_Insync, &dev->flags);
3258                 if (!rdev)
3259                         /* Not in-sync */;
3260                 else if (is_bad) {
3261                         /* also not in-sync */
3262                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3263                             test_bit(R5_UPTODATE, &dev->flags)) {
3264                                 /* treat as in-sync, but with a read error
3265                                  * which we can now try to correct
3266                                  */
3267                                 set_bit(R5_Insync, &dev->flags);
3268                                 set_bit(R5_ReadError, &dev->flags);
3269                         }
3270                 } else if (test_bit(In_sync, &rdev->flags))
3271                         set_bit(R5_Insync, &dev->flags);
3272                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3273                         /* in sync if before recovery_offset */
3274                         set_bit(R5_Insync, &dev->flags);
3275                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3276                          test_bit(R5_Expanded, &dev->flags))
3277                         /* If we've reshaped into here, we assume it is Insync.
3278                          * We will shortly update recovery_offset to make
3279                          * it official.
3280                          */
3281                         set_bit(R5_Insync, &dev->flags);
3282
3283                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3284                         /* This flag does not apply to '.replacement'
3285                          * only to .rdev, so make sure to check that*/
3286                         struct md_rdev *rdev2 = rcu_dereference(
3287                                 conf->disks[i].rdev);
3288                         if (rdev2 == rdev)
3289                                 clear_bit(R5_Insync, &dev->flags);
3290                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3291                                 s->handle_bad_blocks = 1;
3292                                 atomic_inc(&rdev2->nr_pending);
3293                         } else
3294                                 clear_bit(R5_WriteError, &dev->flags);
3295                 }
3296                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3297                         /* This flag does not apply to '.replacement'
3298                          * only to .rdev, so make sure to check that*/
3299                         struct md_rdev *rdev2 = rcu_dereference(
3300                                 conf->disks[i].rdev);
3301                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3302                                 s->handle_bad_blocks = 1;
3303                                 atomic_inc(&rdev2->nr_pending);
3304                         } else
3305                                 clear_bit(R5_MadeGood, &dev->flags);
3306                 }
3307                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3308                         struct md_rdev *rdev2 = rcu_dereference(
3309                                 conf->disks[i].replacement);
3310                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3311                                 s->handle_bad_blocks = 1;
3312                                 atomic_inc(&rdev2->nr_pending);
3313                         } else
3314                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3315                 }
3316                 if (!test_bit(R5_Insync, &dev->flags)) {
3317                         /* The ReadError flag will just be confusing now */
3318                         clear_bit(R5_ReadError, &dev->flags);
3319                         clear_bit(R5_ReWrite, &dev->flags);
3320                 }
3321                 if (test_bit(R5_ReadError, &dev->flags))
3322                         clear_bit(R5_Insync, &dev->flags);
3323                 if (!test_bit(R5_Insync, &dev->flags)) {
3324                         if (s->failed < 2)
3325                                 s->failed_num[s->failed] = i;
3326                         s->failed++;
3327                         if (rdev && !test_bit(Faulty, &rdev->flags))
3328                                 do_recovery = 1;
3329                 }
3330         }
3331         spin_unlock_irq(&conf->device_lock);
3332         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3333                 /* If there is a failed device being replaced,
3334                  *     we must be recovering.
3335                  * else if we are after recovery_cp, we must be syncing
3336                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3337                  * else we can only be replacing
3338                  * sync and recovery both need to read all devices, and so
3339                  * use the same flag.
3340                  */
3341                 if (do_recovery ||
3342                     sh->sector >= conf->mddev->recovery_cp ||
3343                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3344                         s->syncing = 1;
3345                 else
3346                         s->replacing = 1;
3347         }
3348         rcu_read_unlock();
3349 }
3350
3351 static void handle_stripe(struct stripe_head *sh)
3352 {
3353         struct stripe_head_state s;
3354         struct r5conf *conf = sh->raid_conf;
3355         int i;
3356         int prexor;
3357         int disks = sh->disks;
3358         struct r5dev *pdev, *qdev;
3359
3360         clear_bit(STRIPE_HANDLE, &sh->state);
3361         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3362                 /* already being handled, ensure it gets handled
3363                  * again when current action finishes */
3364                 set_bit(STRIPE_HANDLE, &sh->state);
3365                 return;
3366         }
3367
3368         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3369                 set_bit(STRIPE_SYNCING, &sh->state);
3370                 clear_bit(STRIPE_INSYNC, &sh->state);
3371         }
3372         clear_bit(STRIPE_DELAYED, &sh->state);
3373
3374         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3375                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3376                (unsigned long long)sh->sector, sh->state,
3377                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3378                sh->check_state, sh->reconstruct_state);
3379
3380         analyse_stripe(sh, &s);
3381
3382         if (s.handle_bad_blocks) {
3383                 set_bit(STRIPE_HANDLE, &sh->state);
3384                 goto finish;
3385         }
3386
3387         if (unlikely(s.blocked_rdev)) {
3388                 if (s.syncing || s.expanding || s.expanded ||
3389                     s.replacing || s.to_write || s.written) {
3390                         set_bit(STRIPE_HANDLE, &sh->state);
3391                         goto finish;
3392                 }
3393                 /* There is nothing for the blocked_rdev to block */
3394                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3395                 s.blocked_rdev = NULL;
3396         }
3397
3398         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3399                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3400                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3401         }
3402
3403         pr_debug("locked=%d uptodate=%d to_read=%d"
3404                " to_write=%d failed=%d failed_num=%d,%d\n",
3405                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3406                s.failed_num[0], s.failed_num[1]);
3407         /* check if the array has lost more than max_degraded devices and,
3408          * if so, some requests might need to be failed.
3409          */
3410         if (s.failed > conf->max_degraded) {
3411                 sh->check_state = 0;
3412                 sh->reconstruct_state = 0;
3413                 if (s.to_read+s.to_write+s.written)
3414                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3415                 if (s.syncing + s.replacing)
3416                         handle_failed_sync(conf, sh, &s);
3417         }
3418
3419         /*
3420          * might be able to return some write requests if the parity blocks
3421          * are safe, or on a failed drive
3422          */
3423         pdev = &sh->dev[sh->pd_idx];
3424         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3425                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3426         qdev = &sh->dev[sh->qd_idx];
3427         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3428                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3429                 || conf->level < 6;
3430
3431         if (s.written &&
3432             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3433                              && !test_bit(R5_LOCKED, &pdev->flags)
3434                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3435             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3436                              && !test_bit(R5_LOCKED, &qdev->flags)
3437                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3438                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3439
3440         /* Now we might consider reading some blocks, either to check/generate
3441          * parity, or to satisfy requests
3442          * or to load a block that is being partially written.
3443          */
3444         if (s.to_read || s.non_overwrite
3445             || (conf->level == 6 && s.to_write && s.failed)
3446             || (s.syncing && (s.uptodate + s.compute < disks))
3447             || s.replacing
3448             || s.expanding)
3449                 handle_stripe_fill(sh, &s, disks);
3450
3451         /* Now we check to see if any write operations have recently
3452          * completed
3453          */
3454         prexor = 0;
3455         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3456                 prexor = 1;
3457         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3458             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3459                 sh->reconstruct_state = reconstruct_state_idle;
3460
3461                 /* All the 'written' buffers and the parity block are ready to
3462                  * be written back to disk
3463                  */
3464                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3465                 BUG_ON(sh->qd_idx >= 0 &&
3466                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3467                 for (i = disks; i--; ) {
3468                         struct r5dev *dev = &sh->dev[i];
3469                         if (test_bit(R5_LOCKED, &dev->flags) &&
3470                                 (i == sh->pd_idx || i == sh->qd_idx ||
3471                                  dev->written)) {
3472                                 pr_debug("Writing block %d\n", i);
3473                                 set_bit(R5_Wantwrite, &dev->flags);
3474                                 if (prexor)
3475                                         continue;
3476                                 if (!test_bit(R5_Insync, &dev->flags) ||
3477                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3478                                      s.failed == 0))
3479                                         set_bit(STRIPE_INSYNC, &sh->state);
3480                         }
3481                 }
3482                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3483                         s.dec_preread_active = 1;
3484         }
3485
3486         /* Now to consider new write requests and what else, if anything
3487          * should be read.  We do not handle new writes when:
3488          * 1/ A 'write' operation (copy+xor) is already in flight.
3489          * 2/ A 'check' operation is in flight, as it may clobber the parity
3490          *    block.
3491          */
3492         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3493                 handle_stripe_dirtying(conf, sh, &s, disks);
3494
3495         /* maybe we need to check and possibly fix the parity for this stripe
3496          * Any reads will already have been scheduled, so we just see if enough
3497          * data is available.  The parity check is held off while parity
3498          * dependent operations are in flight.
3499          */
3500         if (sh->check_state ||
3501             (s.syncing && s.locked == 0 &&
3502              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3503              !test_bit(STRIPE_INSYNC, &sh->state))) {
3504                 if (conf->level == 6)
3505                         handle_parity_checks6(conf, sh, &s, disks);
3506                 else
3507                         handle_parity_checks5(conf, sh, &s, disks);
3508         }
3509
3510         if (s.replacing && s.locked == 0
3511             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3512                 /* Write out to replacement devices where possible */
3513                 for (i = 0; i < conf->raid_disks; i++)
3514                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3515                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3516                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3517                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3518                                 s.locked++;
3519                         }
3520                 set_bit(STRIPE_INSYNC, &sh->state);
3521         }
3522         if ((s.syncing || s.replacing) && s.locked == 0 &&
3523             test_bit(STRIPE_INSYNC, &sh->state)) {
3524                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3525                 clear_bit(STRIPE_SYNCING, &sh->state);
3526         }
3527
3528         /* If the failed drives are just a ReadError, then we might need
3529          * to progress the repair/check process
3530          */
3531         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3532                 for (i = 0; i < s.failed; i++) {
3533                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3534                         if (test_bit(R5_ReadError, &dev->flags)
3535                             && !test_bit(R5_LOCKED, &dev->flags)
3536                             && test_bit(R5_UPTODATE, &dev->flags)
3537                                 ) {
3538                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3539                                         set_bit(R5_Wantwrite, &dev->flags);
3540                                         set_bit(R5_ReWrite, &dev->flags);
3541                                         set_bit(R5_LOCKED, &dev->flags);
3542                                         s.locked++;
3543                                 } else {
3544                                         /* let's read it back */
3545                                         set_bit(R5_Wantread, &dev->flags);
3546                                         set_bit(R5_LOCKED, &dev->flags);
3547                                         s.locked++;
3548                                 }
3549                         }
3550                 }
3551
3552
3553         /* Finish reconstruct operations initiated by the expansion process */
3554         if (sh->reconstruct_state == reconstruct_state_result) {
3555                 struct stripe_head *sh_src
3556                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3557                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3558                         /* sh cannot be written until sh_src has been read.
3559                          * so arrange for sh to be delayed a little
3560                          */
3561                         set_bit(STRIPE_DELAYED, &sh->state);
3562                         set_bit(STRIPE_HANDLE, &sh->state);
3563                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3564                                               &sh_src->state))
3565                                 atomic_inc(&conf->preread_active_stripes);
3566                         release_stripe(sh_src);
3567                         goto finish;
3568                 }
3569                 if (sh_src)
3570                         release_stripe(sh_src);
3571
3572                 sh->reconstruct_state = reconstruct_state_idle;
3573                 clear_bit(STRIPE_EXPANDING, &sh->state);
3574                 for (i = conf->raid_disks; i--; ) {
3575                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3576                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3577                         s.locked++;
3578                 }
3579         }
3580
3581         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3582             !sh->reconstruct_state) {
3583                 /* Need to write out all blocks after computing parity */
3584                 sh->disks = conf->raid_disks;
3585                 stripe_set_idx(sh->sector, conf, 0, sh);
3586                 schedule_reconstruction(sh, &s, 1, 1);
3587         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3588                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3589                 atomic_dec(&conf->reshape_stripes);
3590                 wake_up(&conf->wait_for_overlap);
3591                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3592         }
3593
3594         if (s.expanding && s.locked == 0 &&
3595             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3596                 handle_stripe_expansion(conf, sh);
3597
3598 finish:
3599         /* wait for this device to become unblocked */
3600         if (unlikely(s.blocked_rdev)) {
3601                 if (conf->mddev->external)
3602                         md_wait_for_blocked_rdev(s.blocked_rdev,
3603                                                  conf->mddev);
3604                 else
3605                         /* Internal metadata will immediately
3606                          * be written by raid5d, so we don't
3607                          * need to wait here.
3608                          */
3609                         rdev_dec_pending(s.blocked_rdev,
3610                                          conf->mddev);
3611         }
3612
3613         if (s.handle_bad_blocks)
3614                 for (i = disks; i--; ) {
3615                         struct md_rdev *rdev;
3616                         struct r5dev *dev = &sh->dev[i];
3617                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3618                                 /* We own a safe reference to the rdev */
3619                                 rdev = conf->disks[i].rdev;
3620                                 if (!rdev_set_badblocks(rdev, sh->sector,
3621                                                         STRIPE_SECTORS, 0))
3622                                         md_error(conf->mddev, rdev);
3623                                 rdev_dec_pending(rdev, conf->mddev);
3624                         }
3625                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3626                                 rdev = conf->disks[i].rdev;
3627                                 rdev_clear_badblocks(rdev, sh->sector,
3628                                                      STRIPE_SECTORS, 0);
3629                                 rdev_dec_pending(rdev, conf->mddev);
3630                         }
3631                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3632                                 rdev = conf->disks[i].replacement;
3633                                 if (!rdev)
3634                                         /* rdev have been moved down */
3635                                         rdev = conf->disks[i].rdev;
3636                                 rdev_clear_badblocks(rdev, sh->sector,
3637                                                      STRIPE_SECTORS, 0);
3638                                 rdev_dec_pending(rdev, conf->mddev);
3639                         }
3640                 }
3641
3642         if (s.ops_request)
3643                 raid_run_ops(sh, s.ops_request);
3644
3645         ops_run_io(sh, &s);
3646
3647         if (s.dec_preread_active) {
3648                 /* We delay this until after ops_run_io so that if make_request
3649                  * is waiting on a flush, it won't continue until the writes
3650                  * have actually been submitted.
3651                  */
3652                 atomic_dec(&conf->preread_active_stripes);
3653                 if (atomic_read(&conf->preread_active_stripes) <
3654                     IO_THRESHOLD)
3655                         md_wakeup_thread(conf->mddev->thread);
3656         }
3657
3658         return_io(s.return_bi);
3659
3660         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3661 }
3662
3663 static void raid5_activate_delayed(struct r5conf *conf)
3664 {
3665         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3666                 while (!list_empty(&conf->delayed_list)) {
3667                         struct list_head *l = conf->delayed_list.next;
3668                         struct stripe_head *sh;
3669                         sh = list_entry(l, struct stripe_head, lru);
3670                         list_del_init(l);
3671                         clear_bit(STRIPE_DELAYED, &sh->state);
3672                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3673                                 atomic_inc(&conf->preread_active_stripes);
3674                         list_add_tail(&sh->lru, &conf->hold_list);
3675                 }
3676         }
3677 }
3678
3679 static void activate_bit_delay(struct r5conf *conf)
3680 {
3681         /* device_lock is held */
3682         struct list_head head;
3683         list_add(&head, &conf->bitmap_list);
3684         list_del_init(&conf->bitmap_list);
3685         while (!list_empty(&head)) {
3686                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3687                 list_del_init(&sh->lru);
3688                 atomic_inc(&sh->count);
3689                 __release_stripe(conf, sh);
3690         }
3691 }
3692
3693 int md_raid5_congested(struct mddev *mddev, int bits)
3694 {
3695         struct r5conf *conf = mddev->private;
3696
3697         /* No difference between reads and writes.  Just check
3698          * how busy the stripe_cache is
3699          */
3700
3701         if (conf->inactive_blocked)
3702                 return 1;
3703         if (conf->quiesce)
3704                 return 1;
3705         if (list_empty_careful(&conf->inactive_list))
3706                 return 1;
3707
3708         return 0;
3709 }
3710 EXPORT_SYMBOL_GPL(md_raid5_congested);
3711
3712 static int raid5_congested(void *data, int bits)
3713 {
3714         struct mddev *mddev = data;
3715
3716         return mddev_congested(mddev, bits) ||
3717                 md_raid5_congested(mddev, bits);
3718 }
3719
3720 /* We want read requests to align with chunks where possible,
3721  * but write requests don't need to.
3722  */
3723 static int raid5_mergeable_bvec(struct request_queue *q,
3724                                 struct bvec_merge_data *bvm,
3725                                 struct bio_vec *biovec)
3726 {
3727         struct mddev *mddev = q->queuedata;
3728         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3729         int max;
3730         unsigned int chunk_sectors = mddev->chunk_sectors;
3731         unsigned int bio_sectors = bvm->bi_size >> 9;
3732
3733         if ((bvm->bi_rw & 1) == WRITE)
3734                 return biovec->bv_len; /* always allow writes to be mergeable */
3735
3736         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3737                 chunk_sectors = mddev->new_chunk_sectors;
3738         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3739         if (max < 0) max = 0;
3740         if (max <= biovec->bv_len && bio_sectors == 0)
3741                 return biovec->bv_len;
3742         else
3743                 return max;
3744 }
3745
3746
3747 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3748 {
3749         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3750         unsigned int chunk_sectors = mddev->chunk_sectors;
3751         unsigned int bio_sectors = bio->bi_size >> 9;
3752
3753         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3754                 chunk_sectors = mddev->new_chunk_sectors;
3755         return  chunk_sectors >=
3756                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3757 }
3758
3759 /*
3760  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3761  *  later sampled by raid5d.
3762  */
3763 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3764 {
3765         unsigned long flags;
3766
3767         spin_lock_irqsave(&conf->device_lock, flags);
3768
3769         bi->bi_next = conf->retry_read_aligned_list;
3770         conf->retry_read_aligned_list = bi;
3771
3772         spin_unlock_irqrestore(&conf->device_lock, flags);
3773         md_wakeup_thread(conf->mddev->thread);
3774 }
3775
3776
3777 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3778 {
3779         struct bio *bi;
3780
3781         bi = conf->retry_read_aligned;
3782         if (bi) {
3783                 conf->retry_read_aligned = NULL;
3784                 return bi;
3785         }
3786         bi = conf->retry_read_aligned_list;
3787         if(bi) {
3788                 conf->retry_read_aligned_list = bi->bi_next;
3789                 bi->bi_next = NULL;
3790                 /*
3791                  * this sets the active strip count to 1 and the processed
3792                  * strip count to zero (upper 8 bits)
3793                  */
3794                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3795         }
3796
3797         return bi;
3798 }
3799
3800
3801 /*
3802  *  The "raid5_align_endio" should check if the read succeeded and if it
3803  *  did, call bio_endio on the original bio (having bio_put the new bio
3804  *  first).
3805  *  If the read failed..
3806  */
3807 static void raid5_align_endio(struct bio *bi, int error)
3808 {
3809         struct bio* raid_bi  = bi->bi_private;
3810         struct mddev *mddev;
3811         struct r5conf *conf;
3812         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3813         struct md_rdev *rdev;
3814
3815         bio_put(bi);
3816
3817         rdev = (void*)raid_bi->bi_next;
3818         raid_bi->bi_next = NULL;
3819         mddev = rdev->mddev;
3820         conf = mddev->private;
3821
3822         rdev_dec_pending(rdev, conf->mddev);
3823
3824         if (!error && uptodate) {
3825                 bio_endio(raid_bi, 0);
3826                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3827                         wake_up(&conf->wait_for_stripe);
3828                 return;
3829         }
3830
3831
3832         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3833
3834         add_bio_to_retry(raid_bi, conf);
3835 }
3836
3837 static int bio_fits_rdev(struct bio *bi)
3838 {
3839         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3840
3841         if ((bi->bi_size>>9) > queue_max_sectors(q))
3842                 return 0;
3843         blk_recount_segments(q, bi);
3844         if (bi->bi_phys_segments > queue_max_segments(q))
3845                 return 0;
3846
3847         if (q->merge_bvec_fn)
3848                 /* it's too hard to apply the merge_bvec_fn at this stage,
3849                  * just just give up
3850                  */
3851                 return 0;
3852
3853         return 1;
3854 }
3855
3856
3857 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3858 {
3859         struct r5conf *conf = mddev->private;
3860         int dd_idx;
3861         struct bio* align_bi;
3862         struct md_rdev *rdev;
3863         sector_t end_sector;
3864
3865         if (!in_chunk_boundary(mddev, raid_bio)) {
3866                 pr_debug("chunk_aligned_read : non aligned\n");
3867                 return 0;
3868         }
3869         /*
3870          * use bio_clone_mddev to make a copy of the bio
3871          */
3872         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3873         if (!align_bi)
3874                 return 0;
3875         /*
3876          *   set bi_end_io to a new function, and set bi_private to the
3877          *     original bio.
3878          */
3879         align_bi->bi_end_io  = raid5_align_endio;
3880         align_bi->bi_private = raid_bio;
3881         /*
3882          *      compute position
3883          */
3884         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3885                                                     0,
3886                                                     &dd_idx, NULL);
3887
3888         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3889         rcu_read_lock();
3890         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3891         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3892             rdev->recovery_offset < end_sector) {
3893                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3894                 if (rdev &&
3895                     (test_bit(Faulty, &rdev->flags) ||
3896                     !(test_bit(In_sync, &rdev->flags) ||
3897                       rdev->recovery_offset >= end_sector)))
3898                         rdev = NULL;
3899         }
3900         if (rdev) {
3901                 sector_t first_bad;
3902                 int bad_sectors;
3903
3904                 atomic_inc(&rdev->nr_pending);
3905                 rcu_read_unlock();
3906                 raid_bio->bi_next = (void*)rdev;
3907                 align_bi->bi_bdev =  rdev->bdev;
3908                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3909
3910                 if (!bio_fits_rdev(align_bi) ||
3911                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3912                                 &first_bad, &bad_sectors)) {
3913                         /* too big in some way, or has a known bad block */
3914                         bio_put(align_bi);
3915                         rdev_dec_pending(rdev, mddev);
3916                         return 0;
3917                 }
3918
3919                 /* No reshape active, so we can trust rdev->data_offset */
3920                 align_bi->bi_sector += rdev->data_offset;
3921
3922                 spin_lock_irq(&conf->device_lock);
3923                 wait_event_lock_irq(conf->wait_for_stripe,
3924                                     conf->quiesce == 0,
3925                                     conf->device_lock, /* nothing */);
3926                 atomic_inc(&conf->active_aligned_reads);
3927                 spin_unlock_irq(&conf->device_lock);
3928
3929                 generic_make_request(align_bi);
3930                 return 1;
3931         } else {
3932                 rcu_read_unlock();
3933                 bio_put(align_bi);
3934                 return 0;
3935         }
3936 }
3937
3938 /* __get_priority_stripe - get the next stripe to process
3939  *
3940  * Full stripe writes are allowed to pass preread active stripes up until
3941  * the bypass_threshold is exceeded.  In general the bypass_count
3942  * increments when the handle_list is handled before the hold_list; however, it
3943  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3944  * stripe with in flight i/o.  The bypass_count will be reset when the
3945  * head of the hold_list has changed, i.e. the head was promoted to the
3946  * handle_list.
3947  */
3948 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3949 {
3950         struct stripe_head *sh;
3951
3952         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3953                   __func__,
3954                   list_empty(&conf->handle_list) ? "empty" : "busy",
3955                   list_empty(&conf->hold_list) ? "empty" : "busy",
3956                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3957
3958         if (!list_empty(&conf->handle_list)) {
3959                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3960
3961                 if (list_empty(&conf->hold_list))
3962                         conf->bypass_count = 0;
3963                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3964                         if (conf->hold_list.next == conf->last_hold)
3965                                 conf->bypass_count++;
3966                         else {
3967                                 conf->last_hold = conf->hold_list.next;
3968                                 conf->bypass_count -= conf->bypass_threshold;
3969                                 if (conf->bypass_count < 0)
3970                                         conf->bypass_count = 0;
3971                         }
3972                 }
3973         } else if (!list_empty(&conf->hold_list) &&
3974                    ((conf->bypass_threshold &&
3975                      conf->bypass_count > conf->bypass_threshold) ||
3976                     atomic_read(&conf->pending_full_writes) == 0)) {
3977                 sh = list_entry(conf->hold_list.next,
3978                                 typeof(*sh), lru);
3979                 conf->bypass_count -= conf->bypass_threshold;
3980                 if (conf->bypass_count < 0)
3981                         conf->bypass_count = 0;
3982         } else
3983                 return NULL;
3984
3985         list_del_init(&sh->lru);
3986         atomic_inc(&sh->count);
3987         BUG_ON(atomic_read(&sh->count) != 1);
3988         return sh;
3989 }
3990
3991 static void make_request(struct mddev *mddev, struct bio * bi)
3992 {
3993         struct r5conf *conf = mddev->private;
3994         int dd_idx;
3995         sector_t new_sector;
3996         sector_t logical_sector, last_sector;
3997         struct stripe_head *sh;
3998         const int rw = bio_data_dir(bi);
3999         int remaining;
4000
4001         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4002                 md_flush_request(mddev, bi);
4003                 return;
4004         }
4005
4006         md_write_start(mddev, bi);
4007
4008         if (rw == READ &&
4009              mddev->reshape_position == MaxSector &&
4010              chunk_aligned_read(mddev,bi))
4011                 return;
4012
4013         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4014         last_sector = bi->bi_sector + (bi->bi_size>>9);
4015         bi->bi_next = NULL;
4016         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4017
4018         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4019                 DEFINE_WAIT(w);
4020                 int previous;
4021
4022         retry:
4023                 previous = 0;
4024                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4025                 if (unlikely(conf->reshape_progress != MaxSector)) {
4026                         /* spinlock is needed as reshape_progress may be
4027                          * 64bit on a 32bit platform, and so it might be
4028                          * possible to see a half-updated value
4029                          * Of course reshape_progress could change after
4030                          * the lock is dropped, so once we get a reference
4031                          * to the stripe that we think it is, we will have
4032                          * to check again.
4033                          */
4034                         spin_lock_irq(&conf->device_lock);
4035                         if (mddev->reshape_backwards
4036                             ? logical_sector < conf->reshape_progress
4037                             : logical_sector >= conf->reshape_progress) {
4038                                 previous = 1;
4039                         } else {
4040                                 if (mddev->reshape_backwards
4041                                     ? logical_sector < conf->reshape_safe
4042                                     : logical_sector >= conf->reshape_safe) {
4043                                         spin_unlock_irq(&conf->device_lock);
4044                                         schedule();
4045                                         goto retry;
4046                                 }
4047                         }
4048                         spin_unlock_irq(&conf->device_lock);
4049                 }
4050
4051                 new_sector = raid5_compute_sector(conf, logical_sector,
4052                                                   previous,
4053                                                   &dd_idx, NULL);
4054                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4055                         (unsigned long long)new_sector, 
4056                         (unsigned long long)logical_sector);
4057
4058                 sh = get_active_stripe(conf, new_sector, previous,
4059                                        (bi->bi_rw&RWA_MASK), 0);
4060                 if (sh) {
4061                         if (unlikely(previous)) {
4062                                 /* expansion might have moved on while waiting for a
4063                                  * stripe, so we must do the range check again.
4064                                  * Expansion could still move past after this
4065                                  * test, but as we are holding a reference to
4066                                  * 'sh', we know that if that happens,
4067                                  *  STRIPE_EXPANDING will get set and the expansion
4068                                  * won't proceed until we finish with the stripe.
4069                                  */
4070                                 int must_retry = 0;
4071                                 spin_lock_irq(&conf->device_lock);
4072                                 if (mddev->reshape_backwards
4073                                     ? logical_sector >= conf->reshape_progress
4074                                     : logical_sector < conf->reshape_progress)
4075                                         /* mismatch, need to try again */
4076                                         must_retry = 1;
4077                                 spin_unlock_irq(&conf->device_lock);
4078                                 if (must_retry) {
4079                                         release_stripe(sh);
4080                                         schedule();
4081                                         goto retry;
4082                                 }
4083                         }
4084
4085                         if (rw == WRITE &&
4086                             logical_sector >= mddev->suspend_lo &&
4087                             logical_sector < mddev->suspend_hi) {
4088                                 release_stripe(sh);
4089                                 /* As the suspend_* range is controlled by
4090                                  * userspace, we want an interruptible
4091                                  * wait.
4092                                  */
4093                                 flush_signals(current);
4094                                 prepare_to_wait(&conf->wait_for_overlap,
4095                                                 &w, TASK_INTERRUPTIBLE);
4096                                 if (logical_sector >= mddev->suspend_lo &&
4097                                     logical_sector < mddev->suspend_hi)
4098                                         schedule();
4099                                 goto retry;
4100                         }
4101
4102                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4103                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4104                                 /* Stripe is busy expanding or
4105                                  * add failed due to overlap.  Flush everything
4106                                  * and wait a while
4107                                  */
4108                                 md_wakeup_thread(mddev->thread);
4109                                 release_stripe(sh);
4110                                 schedule();
4111                                 goto retry;
4112                         }
4113                         finish_wait(&conf->wait_for_overlap, &w);
4114                         set_bit(STRIPE_HANDLE, &sh->state);
4115                         clear_bit(STRIPE_DELAYED, &sh->state);
4116                         if ((bi->bi_rw & REQ_SYNC) &&
4117                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4118                                 atomic_inc(&conf->preread_active_stripes);
4119                         mddev_check_plugged(mddev);
4120                         release_stripe(sh);
4121                 } else {
4122                         /* cannot get stripe for read-ahead, just give-up */
4123                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4124                         finish_wait(&conf->wait_for_overlap, &w);
4125                         break;
4126                 }
4127         }
4128
4129         spin_lock_irq(&conf->device_lock);
4130         remaining = raid5_dec_bi_phys_segments(bi);
4131         spin_unlock_irq(&conf->device_lock);
4132         if (remaining == 0) {
4133
4134                 if ( rw == WRITE )
4135                         md_write_end(mddev);
4136
4137                 bio_endio(bi, 0);
4138         }
4139 }
4140
4141 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4142
4143 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4144 {
4145         /* reshaping is quite different to recovery/resync so it is
4146          * handled quite separately ... here.
4147          *
4148          * On each call to sync_request, we gather one chunk worth of
4149          * destination stripes and flag them as expanding.
4150          * Then we find all the source stripes and request reads.
4151          * As the reads complete, handle_stripe will copy the data
4152          * into the destination stripe and release that stripe.
4153          */
4154         struct r5conf *conf = mddev->private;
4155         struct stripe_head *sh;
4156         sector_t first_sector, last_sector;
4157         int raid_disks = conf->previous_raid_disks;
4158         int data_disks = raid_disks - conf->max_degraded;
4159         int new_data_disks = conf->raid_disks - conf->max_degraded;
4160         int i;
4161         int dd_idx;
4162         sector_t writepos, readpos, safepos;
4163         sector_t stripe_addr;
4164         int reshape_sectors;
4165         struct list_head stripes;
4166
4167         if (sector_nr == 0) {
4168                 /* If restarting in the middle, skip the initial sectors */
4169                 if (mddev->reshape_backwards &&
4170                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4171                         sector_nr = raid5_size(mddev, 0, 0)
4172                                 - conf->reshape_progress;
4173                 } else if (!mddev->reshape_backwards &&
4174                            conf->reshape_progress > 0)
4175                         sector_nr = conf->reshape_progress;
4176                 sector_div(sector_nr, new_data_disks);
4177                 if (sector_nr) {
4178                         mddev->curr_resync_completed = sector_nr;
4179                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4180                         *skipped = 1;
4181                         return sector_nr;
4182                 }
4183         }
4184
4185         /* We need to process a full chunk at a time.
4186          * If old and new chunk sizes differ, we need to process the
4187          * largest of these
4188          */
4189         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4190                 reshape_sectors = mddev->new_chunk_sectors;
4191         else
4192                 reshape_sectors = mddev->chunk_sectors;
4193
4194         /* We update the metadata at least every 10 seconds, or when
4195          * the data about to be copied would over-write the source of
4196          * the data at the front of the range.  i.e. one new_stripe
4197          * along from reshape_progress new_maps to after where
4198          * reshape_safe old_maps to
4199          */
4200         writepos = conf->reshape_progress;
4201         sector_div(writepos, new_data_disks);
4202         readpos = conf->reshape_progress;
4203         sector_div(readpos, data_disks);
4204         safepos = conf->reshape_safe;
4205         sector_div(safepos, data_disks);
4206         if (mddev->reshape_backwards) {
4207                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4208                 readpos += reshape_sectors;
4209                 safepos += reshape_sectors;
4210         } else {
4211                 writepos += reshape_sectors;
4212                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4213                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4214         }
4215
4216         /* Having calculated the 'writepos' possibly use it
4217          * to set 'stripe_addr' which is where we will write to.
4218          */
4219         if (mddev->reshape_backwards) {
4220                 BUG_ON(conf->reshape_progress == 0);
4221                 stripe_addr = writepos;
4222                 BUG_ON((mddev->dev_sectors &
4223                         ~((sector_t)reshape_sectors - 1))
4224                        - reshape_sectors - stripe_addr
4225                        != sector_nr);
4226         } else {
4227                 BUG_ON(writepos != sector_nr + reshape_sectors);
4228                 stripe_addr = sector_nr;
4229         }
4230
4231         /* 'writepos' is the most advanced device address we might write.
4232          * 'readpos' is the least advanced device address we might read.
4233          * 'safepos' is the least address recorded in the metadata as having
4234          *     been reshaped.
4235          * If there is a min_offset_diff, these are adjusted either by
4236          * increasing the safepos/readpos if diff is negative, or
4237          * increasing writepos if diff is positive.
4238          * If 'readpos' is then behind 'writepos', there is no way that we can
4239          * ensure safety in the face of a crash - that must be done by userspace
4240          * making a backup of the data.  So in that case there is no particular
4241          * rush to update metadata.
4242          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4243          * update the metadata to advance 'safepos' to match 'readpos' so that
4244          * we can be safe in the event of a crash.
4245          * So we insist on updating metadata if safepos is behind writepos and
4246          * readpos is beyond writepos.
4247          * In any case, update the metadata every 10 seconds.
4248          * Maybe that number should be configurable, but I'm not sure it is
4249          * worth it.... maybe it could be a multiple of safemode_delay???
4250          */
4251         if (conf->min_offset_diff < 0) {
4252                 safepos += -conf->min_offset_diff;
4253                 readpos += -conf->min_offset_diff;
4254         } else
4255                 writepos += conf->min_offset_diff;
4256
4257         if ((mddev->reshape_backwards
4258              ? (safepos > writepos && readpos < writepos)
4259              : (safepos < writepos && readpos > writepos)) ||
4260             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4261                 /* Cannot proceed until we've updated the superblock... */
4262                 wait_event(conf->wait_for_overlap,
4263                            atomic_read(&conf->reshape_stripes)==0);
4264                 mddev->reshape_position = conf->reshape_progress;
4265                 mddev->curr_resync_completed = sector_nr;
4266                 conf->reshape_checkpoint = jiffies;
4267                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4268                 md_wakeup_thread(mddev->thread);
4269                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4270                            kthread_should_stop());
4271                 spin_lock_irq(&conf->device_lock);
4272                 conf->reshape_safe = mddev->reshape_position;
4273                 spin_unlock_irq(&conf->device_lock);
4274                 wake_up(&conf->wait_for_overlap);
4275                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4276         }
4277
4278         INIT_LIST_HEAD(&stripes);
4279         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4280                 int j;
4281                 int skipped_disk = 0;
4282                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4283                 set_bit(STRIPE_EXPANDING, &sh->state);
4284                 atomic_inc(&conf->reshape_stripes);
4285                 /* If any of this stripe is beyond the end of the old
4286                  * array, then we need to zero those blocks
4287                  */
4288                 for (j=sh->disks; j--;) {
4289                         sector_t s;
4290                         if (j == sh->pd_idx)
4291                                 continue;
4292                         if (conf->level == 6 &&
4293                             j == sh->qd_idx)
4294                                 continue;
4295                         s = compute_blocknr(sh, j, 0);
4296                         if (s < raid5_size(mddev, 0, 0)) {
4297                                 skipped_disk = 1;
4298                                 continue;
4299                         }
4300                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4301                         set_bit(R5_Expanded, &sh->dev[j].flags);
4302                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4303                 }
4304                 if (!skipped_disk) {
4305                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4306                         set_bit(STRIPE_HANDLE, &sh->state);
4307                 }
4308                 list_add(&sh->lru, &stripes);
4309         }
4310         spin_lock_irq(&conf->device_lock);
4311         if (mddev->reshape_backwards)
4312                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4313         else
4314                 conf->reshape_progress += reshape_sectors * new_data_disks;
4315         spin_unlock_irq(&conf->device_lock);
4316         /* Ok, those stripe are ready. We can start scheduling
4317          * reads on the source stripes.
4318          * The source stripes are determined by mapping the first and last
4319          * block on the destination stripes.
4320          */
4321         first_sector =
4322                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4323                                      1, &dd_idx, NULL);
4324         last_sector =
4325                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4326                                             * new_data_disks - 1),
4327                                      1, &dd_idx, NULL);
4328         if (last_sector >= mddev->dev_sectors)
4329                 last_sector = mddev->dev_sectors - 1;
4330         while (first_sector <= last_sector) {
4331                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4332                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4333                 set_bit(STRIPE_HANDLE, &sh->state);
4334                 release_stripe(sh);
4335                 first_sector += STRIPE_SECTORS;
4336         }
4337         /* Now that the sources are clearly marked, we can release
4338          * the destination stripes
4339          */
4340         while (!list_empty(&stripes)) {
4341                 sh = list_entry(stripes.next, struct stripe_head, lru);
4342                 list_del_init(&sh->lru);
4343                 release_stripe(sh);
4344         }
4345         /* If this takes us to the resync_max point where we have to pause,
4346          * then we need to write out the superblock.
4347          */
4348         sector_nr += reshape_sectors;
4349         if ((sector_nr - mddev->curr_resync_completed) * 2
4350             >= mddev->resync_max - mddev->curr_resync_completed) {
4351                 /* Cannot proceed until we've updated the superblock... */
4352                 wait_event(conf->wait_for_overlap,
4353                            atomic_read(&conf->reshape_stripes) == 0);
4354                 mddev->reshape_position = conf->reshape_progress;
4355                 mddev->curr_resync_completed = sector_nr;
4356                 conf->reshape_checkpoint = jiffies;
4357                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4358                 md_wakeup_thread(mddev->thread);
4359                 wait_event(mddev->sb_wait,
4360                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4361                            || kthread_should_stop());
4362                 spin_lock_irq(&conf->device_lock);
4363                 conf->reshape_safe = mddev->reshape_position;
4364                 spin_unlock_irq(&conf->device_lock);
4365                 wake_up(&conf->wait_for_overlap);
4366                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4367         }
4368         return reshape_sectors;
4369 }
4370
4371 /* FIXME go_faster isn't used */
4372 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4373 {
4374         struct r5conf *conf = mddev->private;
4375         struct stripe_head *sh;
4376         sector_t max_sector = mddev->dev_sectors;
4377         sector_t sync_blocks;
4378         int still_degraded = 0;
4379         int i;
4380
4381         if (sector_nr >= max_sector) {
4382                 /* just being told to finish up .. nothing much to do */
4383
4384                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4385                         end_reshape(conf);
4386                         return 0;
4387                 }
4388
4389                 if (mddev->curr_resync < max_sector) /* aborted */
4390                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4391                                         &sync_blocks, 1);
4392                 else /* completed sync */
4393                         conf->fullsync = 0;
4394                 bitmap_close_sync(mddev->bitmap);
4395
4396                 return 0;
4397         }
4398
4399         /* Allow raid5_quiesce to complete */
4400         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4401
4402         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4403                 return reshape_request(mddev, sector_nr, skipped);
4404
4405         /* No need to check resync_max as we never do more than one
4406          * stripe, and as resync_max will always be on a chunk boundary,
4407          * if the check in md_do_sync didn't fire, there is no chance
4408          * of overstepping resync_max here
4409          */
4410
4411         /* if there is too many failed drives and we are trying
4412          * to resync, then assert that we are finished, because there is
4413          * nothing we can do.
4414          */
4415         if (mddev->degraded >= conf->max_degraded &&
4416             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4417                 sector_t rv = mddev->dev_sectors - sector_nr;
4418                 *skipped = 1;
4419                 return rv;
4420         }
4421         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4422             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4423             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4424                 /* we can skip this block, and probably more */
4425                 sync_blocks /= STRIPE_SECTORS;
4426                 *skipped = 1;
4427                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4428         }
4429
4430         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4431
4432         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4433         if (sh == NULL) {
4434                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4435                 /* make sure we don't swamp the stripe cache if someone else
4436                  * is trying to get access
4437                  */
4438                 schedule_timeout_uninterruptible(1);
4439         }
4440         /* Need to check if array will still be degraded after recovery/resync
4441          * We don't need to check the 'failed' flag as when that gets set,
4442          * recovery aborts.
4443          */
4444         for (i = 0; i < conf->raid_disks; i++)
4445                 if (conf->disks[i].rdev == NULL)
4446                         still_degraded = 1;
4447
4448         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4449
4450         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4451
4452         handle_stripe(sh);
4453         release_stripe(sh);
4454
4455         return STRIPE_SECTORS;
4456 }
4457
4458 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4459 {
4460         /* We may not be able to submit a whole bio at once as there
4461          * may not be enough stripe_heads available.
4462          * We cannot pre-allocate enough stripe_heads as we may need
4463          * more than exist in the cache (if we allow ever large chunks).
4464          * So we do one stripe head at a time and record in
4465          * ->bi_hw_segments how many have been done.
4466          *
4467          * We *know* that this entire raid_bio is in one chunk, so
4468          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4469          */
4470         struct stripe_head *sh;
4471         int dd_idx;
4472         sector_t sector, logical_sector, last_sector;
4473         int scnt = 0;
4474         int remaining;
4475         int handled = 0;
4476
4477         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4478         sector = raid5_compute_sector(conf, logical_sector,
4479                                       0, &dd_idx, NULL);
4480         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4481
4482         for (; logical_sector < last_sector;
4483              logical_sector += STRIPE_SECTORS,
4484                      sector += STRIPE_SECTORS,
4485                      scnt++) {
4486
4487                 if (scnt < raid5_bi_hw_segments(raid_bio))
4488                         /* already done this stripe */
4489                         continue;
4490
4491                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4492
4493                 if (!sh) {
4494                         /* failed to get a stripe - must wait */
4495                         raid5_set_bi_hw_segments(raid_bio, scnt);
4496                         conf->retry_read_aligned = raid_bio;
4497                         return handled;
4498                 }
4499
4500                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4501                         release_stripe(sh);
4502                         raid5_set_bi_hw_segments(raid_bio, scnt);
4503                         conf->retry_read_aligned = raid_bio;
4504                         return handled;
4505                 }
4506
4507                 handle_stripe(sh);
4508                 release_stripe(sh);
4509                 handled++;
4510         }
4511         spin_lock_irq(&conf->device_lock);
4512         remaining = raid5_dec_bi_phys_segments(raid_bio);
4513         spin_unlock_irq(&conf->device_lock);
4514         if (remaining == 0)
4515                 bio_endio(raid_bio, 0);
4516         if (atomic_dec_and_test(&conf->active_aligned_reads))
4517                 wake_up(&conf->wait_for_stripe);
4518         return handled;
4519 }
4520
4521
4522 /*
4523  * This is our raid5 kernel thread.
4524  *
4525  * We scan the hash table for stripes which can be handled now.
4526  * During the scan, completed stripes are saved for us by the interrupt
4527  * handler, so that they will not have to wait for our next wakeup.
4528  */
4529 static void raid5d(struct mddev *mddev)
4530 {
4531         struct stripe_head *sh;
4532         struct r5conf *conf = mddev->private;
4533         int handled;
4534         struct blk_plug plug;
4535
4536         pr_debug("+++ raid5d active\n");
4537
4538         md_check_recovery(mddev);
4539
4540         blk_start_plug(&plug);
4541         handled = 0;
4542         spin_lock_irq(&conf->device_lock);
4543         while (1) {
4544                 struct bio *bio;
4545
4546                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4547                     !list_empty(&conf->bitmap_list)) {
4548                         /* Now is a good time to flush some bitmap updates */
4549                         conf->seq_flush++;
4550                         spin_unlock_irq(&conf->device_lock);
4551                         bitmap_unplug(mddev->bitmap);
4552                         spin_lock_irq(&conf->device_lock);
4553                         conf->seq_write = conf->seq_flush;
4554                         activate_bit_delay(conf);
4555                 }
4556                 if (atomic_read(&mddev->plug_cnt) == 0)
4557                         raid5_activate_delayed(conf);
4558
4559                 while ((bio = remove_bio_from_retry(conf))) {
4560                         int ok;
4561                         spin_unlock_irq(&conf->device_lock);
4562                         ok = retry_aligned_read(conf, bio);
4563                         spin_lock_irq(&conf->device_lock);
4564                         if (!ok)
4565                                 break;
4566                         handled++;
4567                 }
4568
4569                 sh = __get_priority_stripe(conf);
4570
4571                 if (!sh)
4572                         break;
4573                 spin_unlock_irq(&conf->device_lock);
4574                 
4575                 handled++;
4576                 handle_stripe(sh);
4577                 release_stripe(sh);
4578                 cond_resched();
4579
4580                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4581                         md_check_recovery(mddev);
4582
4583                 spin_lock_irq(&conf->device_lock);
4584         }
4585         pr_debug("%d stripes handled\n", handled);
4586
4587         spin_unlock_irq(&conf->device_lock);
4588
4589         async_tx_issue_pending_all();
4590         blk_finish_plug(&plug);
4591
4592         pr_debug("--- raid5d inactive\n");
4593 }
4594
4595 static ssize_t
4596 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4597 {
4598         struct r5conf *conf = mddev->private;
4599         if (conf)
4600                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4601         else
4602                 return 0;
4603 }
4604
4605 int
4606 raid5_set_cache_size(struct mddev *mddev, int size)
4607 {
4608         struct r5conf *conf = mddev->private;
4609         int err;
4610
4611         if (size <= 16 || size > 32768)
4612                 return -EINVAL;
4613         while (size < conf->max_nr_stripes) {
4614                 if (drop_one_stripe(conf))
4615                         conf->max_nr_stripes--;
4616                 else
4617                         break;
4618         }
4619         err = md_allow_write(mddev);
4620         if (err)
4621                 return err;
4622         while (size > conf->max_nr_stripes) {
4623                 if (grow_one_stripe(conf))
4624                         conf->max_nr_stripes++;
4625                 else break;
4626         }
4627         return 0;
4628 }
4629 EXPORT_SYMBOL(raid5_set_cache_size);
4630
4631 static ssize_t
4632 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4633 {
4634         struct r5conf *conf = mddev->private;
4635         unsigned long new;
4636         int err;
4637
4638         if (len >= PAGE_SIZE)
4639                 return -EINVAL;
4640         if (!conf)
4641                 return -ENODEV;
4642
4643         if (strict_strtoul(page, 10, &new))
4644                 return -EINVAL;
4645         err = raid5_set_cache_size(mddev, new);
4646         if (err)
4647                 return err;
4648         return len;
4649 }
4650
4651 static struct md_sysfs_entry
4652 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4653                                 raid5_show_stripe_cache_size,
4654                                 raid5_store_stripe_cache_size);
4655
4656 static ssize_t
4657 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4658 {
4659         struct r5conf *conf = mddev->private;
4660         if (conf)
4661                 return sprintf(page, "%d\n", conf->bypass_threshold);
4662         else
4663                 return 0;
4664 }
4665
4666 static ssize_t
4667 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4668 {
4669         struct r5conf *conf = mddev->private;
4670         unsigned long new;
4671         if (len >= PAGE_SIZE)
4672                 return -EINVAL;
4673         if (!conf)
4674                 return -ENODEV;
4675
4676         if (strict_strtoul(page, 10, &new))
4677                 return -EINVAL;
4678         if (new > conf->max_nr_stripes)
4679                 return -EINVAL;
4680         conf->bypass_threshold = new;
4681         return len;
4682 }
4683
4684 static struct md_sysfs_entry
4685 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4686                                         S_IRUGO | S_IWUSR,
4687                                         raid5_show_preread_threshold,
4688                                         raid5_store_preread_threshold);
4689
4690 static ssize_t
4691 stripe_cache_active_show(struct mddev *mddev, char *page)
4692 {
4693         struct r5conf *conf = mddev->private;
4694         if (conf)
4695                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4696         else
4697                 return 0;
4698 }
4699
4700 static struct md_sysfs_entry
4701 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4702
4703 static struct attribute *raid5_attrs[] =  {
4704         &raid5_stripecache_size.attr,
4705         &raid5_stripecache_active.attr,
4706         &raid5_preread_bypass_threshold.attr,
4707         NULL,
4708 };
4709 static struct attribute_group raid5_attrs_group = {
4710         .name = NULL,
4711         .attrs = raid5_attrs,
4712 };
4713
4714 static sector_t
4715 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4716 {
4717         struct r5conf *conf = mddev->private;
4718
4719         if (!sectors)
4720                 sectors = mddev->dev_sectors;
4721         if (!raid_disks)
4722                 /* size is defined by the smallest of previous and new size */
4723                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4724
4725         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4726         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4727         return sectors * (raid_disks - conf->max_degraded);
4728 }
4729
4730 static void raid5_free_percpu(struct r5conf *conf)
4731 {
4732         struct raid5_percpu *percpu;
4733         unsigned long cpu;
4734
4735         if (!conf->percpu)
4736                 return;
4737
4738         get_online_cpus();
4739         for_each_possible_cpu(cpu) {
4740                 percpu = per_cpu_ptr(conf->percpu, cpu);
4741                 safe_put_page(percpu->spare_page);
4742                 kfree(percpu->scribble);
4743         }
4744 #ifdef CONFIG_HOTPLUG_CPU
4745         unregister_cpu_notifier(&conf->cpu_notify);
4746 #endif
4747         put_online_cpus();
4748
4749         free_percpu(conf->percpu);
4750 }
4751
4752 static void free_conf(struct r5conf *conf)
4753 {
4754         shrink_stripes(conf);
4755         raid5_free_percpu(conf);
4756         kfree(conf->disks);
4757         kfree(conf->stripe_hashtbl);
4758         kfree(conf);
4759 }
4760
4761 #ifdef CONFIG_HOTPLUG_CPU
4762 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4763                               void *hcpu)
4764 {
4765         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4766         long cpu = (long)hcpu;
4767         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4768
4769         switch (action) {
4770         case CPU_UP_PREPARE:
4771         case CPU_UP_PREPARE_FROZEN:
4772                 if (conf->level == 6 && !percpu->spare_page)
4773                         percpu->spare_page = alloc_page(GFP_KERNEL);
4774                 if (!percpu->scribble)
4775                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4776
4777                 if (!percpu->scribble ||
4778                     (conf->level == 6 && !percpu->spare_page)) {
4779                         safe_put_page(percpu->spare_page);
4780                         kfree(percpu->scribble);
4781                         pr_err("%s: failed memory allocation for cpu%ld\n",
4782                                __func__, cpu);
4783                         return notifier_from_errno(-ENOMEM);
4784                 }
4785                 break;
4786         case CPU_DEAD:
4787         case CPU_DEAD_FROZEN:
4788                 safe_put_page(percpu->spare_page);
4789                 kfree(percpu->scribble);
4790                 percpu->spare_page = NULL;
4791                 percpu->scribble = NULL;
4792                 break;
4793         default:
4794                 break;
4795         }
4796         return NOTIFY_OK;
4797 }
4798 #endif
4799
4800 static int raid5_alloc_percpu(struct r5conf *conf)
4801 {
4802         unsigned long cpu;
4803         struct page *spare_page;
4804         struct raid5_percpu __percpu *allcpus;
4805         void *scribble;
4806         int err;
4807
4808         allcpus = alloc_percpu(struct raid5_percpu);
4809         if (!allcpus)
4810                 return -ENOMEM;
4811         conf->percpu = allcpus;
4812
4813         get_online_cpus();
4814         err = 0;
4815         for_each_present_cpu(cpu) {
4816                 if (conf->level == 6) {
4817                         spare_page = alloc_page(GFP_KERNEL);
4818                         if (!spare_page) {
4819                                 err = -ENOMEM;
4820                                 break;
4821                         }
4822                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4823                 }
4824                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4825                 if (!scribble) {
4826                         err = -ENOMEM;
4827                         break;
4828                 }
4829                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4830         }
4831 #ifdef CONFIG_HOTPLUG_CPU
4832         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4833         conf->cpu_notify.priority = 0;
4834         if (err == 0)
4835                 err = register_cpu_notifier(&conf->cpu_notify);
4836 #endif
4837         put_online_cpus();
4838
4839         return err;
4840 }
4841
4842 static struct r5conf *setup_conf(struct mddev *mddev)
4843 {
4844         struct r5conf *conf;
4845         int raid_disk, memory, max_disks;
4846         struct md_rdev *rdev;
4847         struct disk_info *disk;
4848         char pers_name[6];
4849
4850         if (mddev->new_level != 5
4851             && mddev->new_level != 4
4852             && mddev->new_level != 6) {
4853                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4854                        mdname(mddev), mddev->new_level);
4855                 return ERR_PTR(-EIO);
4856         }
4857         if ((mddev->new_level == 5
4858              && !algorithm_valid_raid5(mddev->new_layout)) ||
4859             (mddev->new_level == 6
4860              && !algorithm_valid_raid6(mddev->new_layout))) {
4861                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4862                        mdname(mddev), mddev->new_layout);
4863                 return ERR_PTR(-EIO);
4864         }
4865         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4866                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4867                        mdname(mddev), mddev->raid_disks);
4868                 return ERR_PTR(-EINVAL);
4869         }
4870
4871         if (!mddev->new_chunk_sectors ||
4872             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4873             !is_power_of_2(mddev->new_chunk_sectors)) {
4874                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4875                        mdname(mddev), mddev->new_chunk_sectors << 9);
4876                 return ERR_PTR(-EINVAL);
4877         }
4878
4879         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4880         if (conf == NULL)
4881                 goto abort;
4882         spin_lock_init(&conf->device_lock);
4883         init_waitqueue_head(&conf->wait_for_stripe);
4884         init_waitqueue_head(&conf->wait_for_overlap);
4885         INIT_LIST_HEAD(&conf->handle_list);
4886         INIT_LIST_HEAD(&conf->hold_list);
4887         INIT_LIST_HEAD(&conf->delayed_list);
4888         INIT_LIST_HEAD(&conf->bitmap_list);
4889         INIT_LIST_HEAD(&conf->inactive_list);
4890         atomic_set(&conf->active_stripes, 0);
4891         atomic_set(&conf->preread_active_stripes, 0);
4892         atomic_set(&conf->active_aligned_reads, 0);
4893         conf->bypass_threshold = BYPASS_THRESHOLD;
4894         conf->recovery_disabled = mddev->recovery_disabled - 1;
4895
4896         conf->raid_disks = mddev->raid_disks;
4897         if (mddev->reshape_position == MaxSector)
4898                 conf->previous_raid_disks = mddev->raid_disks;
4899         else
4900                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4901         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4902         conf->scribble_len = scribble_len(max_disks);
4903
4904         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4905                               GFP_KERNEL);
4906         if (!conf->disks)
4907                 goto abort;
4908
4909         conf->mddev = mddev;
4910
4911         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4912                 goto abort;
4913
4914         conf->level = mddev->new_level;
4915         if (raid5_alloc_percpu(conf) != 0)
4916                 goto abort;
4917
4918         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4919
4920         rdev_for_each(rdev, mddev) {
4921                 raid_disk = rdev->raid_disk;
4922                 if (raid_disk >= max_disks
4923                     || raid_disk < 0)
4924                         continue;
4925                 disk = conf->disks + raid_disk;
4926
4927                 if (test_bit(Replacement, &rdev->flags)) {
4928                         if (disk->replacement)
4929                                 goto abort;
4930                         disk->replacement = rdev;
4931                 } else {
4932                         if (disk->rdev)
4933                                 goto abort;
4934                         disk->rdev = rdev;
4935                 }
4936
4937                 if (test_bit(In_sync, &rdev->flags)) {
4938                         char b[BDEVNAME_SIZE];
4939                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4940                                " disk %d\n",
4941                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4942                 } else if (rdev->saved_raid_disk != raid_disk)
4943                         /* Cannot rely on bitmap to complete recovery */
4944                         conf->fullsync = 1;
4945         }
4946
4947         conf->chunk_sectors = mddev->new_chunk_sectors;
4948         conf->level = mddev->new_level;
4949         if (conf->level == 6)
4950                 conf->max_degraded = 2;
4951         else
4952                 conf->max_degraded = 1;
4953         conf->algorithm = mddev->new_layout;
4954         conf->max_nr_stripes = NR_STRIPES;
4955         conf->reshape_progress = mddev->reshape_position;
4956         if (conf->reshape_progress != MaxSector) {
4957                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4958                 conf->prev_algo = mddev->layout;
4959         }
4960
4961         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4962                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4963         if (grow_stripes(conf, conf->max_nr_stripes)) {
4964                 printk(KERN_ERR
4965                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4966                        mdname(mddev), memory);
4967                 goto abort;
4968         } else
4969                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4970                        mdname(mddev), memory);
4971
4972         sprintf(pers_name, "raid%d", mddev->new_level);
4973         conf->thread = md_register_thread(raid5d, mddev, pers_name);
4974         if (!conf->thread) {
4975                 printk(KERN_ERR
4976                        "md/raid:%s: couldn't allocate thread.\n",
4977                        mdname(mddev));
4978                 goto abort;
4979         }
4980
4981         return conf;
4982
4983  abort:
4984         if (conf) {
4985                 free_conf(conf);
4986                 return ERR_PTR(-EIO);
4987         } else
4988                 return ERR_PTR(-ENOMEM);
4989 }
4990
4991
4992 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4993 {
4994         switch (algo) {
4995         case ALGORITHM_PARITY_0:
4996                 if (raid_disk < max_degraded)
4997                         return 1;
4998                 break;
4999         case ALGORITHM_PARITY_N:
5000                 if (raid_disk >= raid_disks - max_degraded)
5001                         return 1;
5002                 break;
5003         case ALGORITHM_PARITY_0_6:
5004                 if (raid_disk == 0 || 
5005                     raid_disk == raid_disks - 1)
5006                         return 1;
5007                 break;
5008         case ALGORITHM_LEFT_ASYMMETRIC_6:
5009         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5010         case ALGORITHM_LEFT_SYMMETRIC_6:
5011         case ALGORITHM_RIGHT_SYMMETRIC_6:
5012                 if (raid_disk == raid_disks - 1)
5013                         return 1;
5014         }
5015         return 0;
5016 }
5017
5018 static int run(struct mddev *mddev)
5019 {
5020         struct r5conf *conf;
5021         int working_disks = 0;
5022         int dirty_parity_disks = 0;
5023         struct md_rdev *rdev;
5024         sector_t reshape_offset = 0;
5025         int i;
5026         long long min_offset_diff = 0;
5027         int first = 1;
5028
5029         if (mddev->recovery_cp != MaxSector)
5030                 printk(KERN_NOTICE "md/raid:%s: not clean"
5031                        " -- starting background reconstruction\n",
5032                        mdname(mddev));
5033
5034         rdev_for_each(rdev, mddev) {
5035                 long long diff;
5036                 if (rdev->raid_disk < 0)
5037                         continue;
5038                 diff = (rdev->new_data_offset - rdev->data_offset);
5039                 if (first) {
5040                         min_offset_diff = diff;
5041                         first = 0;
5042                 } else if (mddev->reshape_backwards &&
5043                          diff < min_offset_diff)
5044                         min_offset_diff = diff;
5045                 else if (!mddev->reshape_backwards &&
5046                          diff > min_offset_diff)
5047                         min_offset_diff = diff;
5048         }
5049
5050         if (mddev->reshape_position != MaxSector) {
5051                 /* Check that we can continue the reshape.
5052                  * Difficulties arise if the stripe we would write to
5053                  * next is at or after the stripe we would read from next.
5054                  * For a reshape that changes the number of devices, this
5055                  * is only possible for a very short time, and mdadm makes
5056                  * sure that time appears to have past before assembling
5057                  * the array.  So we fail if that time hasn't passed.
5058                  * For a reshape that keeps the number of devices the same
5059                  * mdadm must be monitoring the reshape can keeping the
5060                  * critical areas read-only and backed up.  It will start
5061                  * the array in read-only mode, so we check for that.
5062                  */
5063                 sector_t here_new, here_old;
5064                 int old_disks;
5065                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5066
5067                 if (mddev->new_level != mddev->level) {
5068                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5069                                "required - aborting.\n",
5070                                mdname(mddev));
5071                         return -EINVAL;
5072                 }
5073                 old_disks = mddev->raid_disks - mddev->delta_disks;
5074                 /* reshape_position must be on a new-stripe boundary, and one
5075                  * further up in new geometry must map after here in old
5076                  * geometry.
5077                  */
5078                 here_new = mddev->reshape_position;
5079                 if (sector_div(here_new, mddev->new_chunk_sectors *
5080                                (mddev->raid_disks - max_degraded))) {
5081                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5082                                "on a stripe boundary\n", mdname(mddev));
5083                         return -EINVAL;
5084                 }
5085                 reshape_offset = here_new * mddev->new_chunk_sectors;
5086                 /* here_new is the stripe we will write to */
5087                 here_old = mddev->reshape_position;
5088                 sector_div(here_old, mddev->chunk_sectors *
5089                            (old_disks-max_degraded));
5090                 /* here_old is the first stripe that we might need to read
5091                  * from */
5092                 if (mddev->delta_disks == 0) {
5093                         if ((here_new * mddev->new_chunk_sectors !=
5094                              here_old * mddev->chunk_sectors)) {
5095                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5096                                        " confused - aborting\n", mdname(mddev));
5097                                 return -EINVAL;
5098                         }
5099                         /* We cannot be sure it is safe to start an in-place
5100                          * reshape.  It is only safe if user-space is monitoring
5101                          * and taking constant backups.
5102                          * mdadm always starts a situation like this in
5103                          * readonly mode so it can take control before
5104                          * allowing any writes.  So just check for that.
5105                          */
5106                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5107                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5108                                 /* not really in-place - so OK */;
5109                         else if (mddev->ro == 0) {
5110                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5111                                        "must be started in read-only mode "
5112                                        "- aborting\n",
5113                                        mdname(mddev));
5114                                 return -EINVAL;
5115                         }
5116                 } else if (mddev->reshape_backwards
5117                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5118                        here_old * mddev->chunk_sectors)
5119                     : (here_new * mddev->new_chunk_sectors >=
5120                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5121                         /* Reading from the same stripe as writing to - bad */
5122                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5123                                "auto-recovery - aborting.\n",
5124                                mdname(mddev));
5125                         return -EINVAL;
5126                 }
5127                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5128                        mdname(mddev));
5129                 /* OK, we should be able to continue; */
5130         } else {
5131                 BUG_ON(mddev->level != mddev->new_level);
5132                 BUG_ON(mddev->layout != mddev->new_layout);
5133                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5134                 BUG_ON(mddev->delta_disks != 0);
5135         }
5136
5137         if (mddev->private == NULL)
5138                 conf = setup_conf(mddev);
5139         else
5140                 conf = mddev->private;
5141
5142         if (IS_ERR(conf))
5143                 return PTR_ERR(conf);
5144
5145         conf->min_offset_diff = min_offset_diff;
5146         mddev->thread = conf->thread;
5147         conf->thread = NULL;
5148         mddev->private = conf;
5149
5150         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5151              i++) {
5152                 rdev = conf->disks[i].rdev;
5153                 if (!rdev && conf->disks[i].replacement) {
5154                         /* The replacement is all we have yet */
5155                         rdev = conf->disks[i].replacement;
5156                         conf->disks[i].replacement = NULL;
5157                         clear_bit(Replacement, &rdev->flags);
5158                         conf->disks[i].rdev = rdev;
5159                 }
5160                 if (!rdev)
5161                         continue;
5162                 if (conf->disks[i].replacement &&
5163                     conf->reshape_progress != MaxSector) {
5164                         /* replacements and reshape simply do not mix. */
5165                         printk(KERN_ERR "md: cannot handle concurrent "
5166                                "replacement and reshape.\n");
5167                         goto abort;
5168                 }
5169                 if (test_bit(In_sync, &rdev->flags)) {
5170                         working_disks++;
5171                         continue;
5172                 }
5173                 /* This disc is not fully in-sync.  However if it
5174                  * just stored parity (beyond the recovery_offset),
5175                  * when we don't need to be concerned about the
5176                  * array being dirty.
5177                  * When reshape goes 'backwards', we never have
5178                  * partially completed devices, so we only need
5179                  * to worry about reshape going forwards.
5180                  */
5181                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5182                 if (mddev->major_version == 0 &&
5183                     mddev->minor_version > 90)
5184                         rdev->recovery_offset = reshape_offset;
5185                         
5186                 if (rdev->recovery_offset < reshape_offset) {
5187                         /* We need to check old and new layout */
5188                         if (!only_parity(rdev->raid_disk,
5189                                          conf->algorithm,
5190                                          conf->raid_disks,
5191                                          conf->max_degraded))
5192                                 continue;
5193                 }
5194                 if (!only_parity(rdev->raid_disk,
5195                                  conf->prev_algo,
5196                                  conf->previous_raid_disks,
5197                                  conf->max_degraded))
5198                         continue;
5199                 dirty_parity_disks++;
5200         }
5201
5202         /*
5203          * 0 for a fully functional array, 1 or 2 for a degraded array.
5204          */
5205         mddev->degraded = calc_degraded(conf);
5206
5207         if (has_failed(conf)) {
5208                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5209                         " (%d/%d failed)\n",
5210                         mdname(mddev), mddev->degraded, conf->raid_disks);
5211                 goto abort;
5212         }
5213
5214         /* device size must be a multiple of chunk size */
5215         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5216         mddev->resync_max_sectors = mddev->dev_sectors;
5217
5218         if (mddev->degraded > dirty_parity_disks &&
5219             mddev->recovery_cp != MaxSector) {
5220                 if (mddev->ok_start_degraded)
5221                         printk(KERN_WARNING
5222                                "md/raid:%s: starting dirty degraded array"
5223                                " - data corruption possible.\n",
5224                                mdname(mddev));
5225                 else {
5226                         printk(KERN_ERR
5227                                "md/raid:%s: cannot start dirty degraded array.\n",
5228                                mdname(mddev));
5229                         goto abort;
5230                 }
5231         }
5232
5233         if (mddev->degraded == 0)
5234                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5235                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5236                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5237                        mddev->new_layout);
5238         else
5239                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5240                        " out of %d devices, algorithm %d\n",
5241                        mdname(mddev), conf->level,
5242                        mddev->raid_disks - mddev->degraded,
5243                        mddev->raid_disks, mddev->new_layout);
5244
5245         print_raid5_conf(conf);
5246
5247         if (conf->reshape_progress != MaxSector) {
5248                 conf->reshape_safe = conf->reshape_progress;
5249                 atomic_set(&conf->reshape_stripes, 0);
5250                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5251                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5252                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5253                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5254                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5255                                                         "reshape");
5256         }
5257
5258
5259         /* Ok, everything is just fine now */
5260         if (mddev->to_remove == &raid5_attrs_group)
5261                 mddev->to_remove = NULL;
5262         else if (mddev->kobj.sd &&
5263             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5264                 printk(KERN_WARNING
5265                        "raid5: failed to create sysfs attributes for %s\n",
5266                        mdname(mddev));
5267         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5268
5269         if (mddev->queue) {
5270                 int chunk_size;
5271                 /* read-ahead size must cover two whole stripes, which
5272                  * is 2 * (datadisks) * chunksize where 'n' is the
5273                  * number of raid devices
5274                  */
5275                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5276                 int stripe = data_disks *
5277                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5278                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5279                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5280
5281                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5282
5283                 mddev->queue->backing_dev_info.congested_data = mddev;
5284                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5285
5286                 chunk_size = mddev->chunk_sectors << 9;
5287                 blk_queue_io_min(mddev->queue, chunk_size);
5288                 blk_queue_io_opt(mddev->queue, chunk_size *
5289                                  (conf->raid_disks - conf->max_degraded));
5290
5291                 rdev_for_each(rdev, mddev) {
5292                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5293                                           rdev->data_offset << 9);
5294                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5295                                           rdev->new_data_offset << 9);
5296                 }
5297         }
5298
5299         return 0;
5300 abort:
5301         md_unregister_thread(&mddev->thread);
5302         print_raid5_conf(conf);
5303         free_conf(conf);
5304         mddev->private = NULL;
5305         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5306         return -EIO;
5307 }
5308
5309 static int stop(struct mddev *mddev)
5310 {
5311         struct r5conf *conf = mddev->private;
5312
5313         md_unregister_thread(&mddev->thread);
5314         if (mddev->queue)
5315                 mddev->queue->backing_dev_info.congested_fn = NULL;
5316         free_conf(conf);
5317         mddev->private = NULL;
5318         mddev->to_remove = &raid5_attrs_group;
5319         return 0;
5320 }
5321
5322 static void status(struct seq_file *seq, struct mddev *mddev)
5323 {
5324         struct r5conf *conf = mddev->private;
5325         int i;
5326
5327         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5328                 mddev->chunk_sectors / 2, mddev->layout);
5329         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5330         for (i = 0; i < conf->raid_disks; i++)
5331                 seq_printf (seq, "%s",
5332                                conf->disks[i].rdev &&
5333                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5334         seq_printf (seq, "]");
5335 }
5336
5337 static void print_raid5_conf (struct r5conf *conf)
5338 {
5339         int i;
5340         struct disk_info *tmp;
5341
5342         printk(KERN_DEBUG "RAID conf printout:\n");
5343         if (!conf) {
5344                 printk("(conf==NULL)\n");
5345                 return;
5346         }
5347         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5348                conf->raid_disks,
5349                conf->raid_disks - conf->mddev->degraded);
5350
5351         for (i = 0; i < conf->raid_disks; i++) {
5352                 char b[BDEVNAME_SIZE];
5353                 tmp = conf->disks + i;
5354                 if (tmp->rdev)
5355                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5356                                i, !test_bit(Faulty, &tmp->rdev->flags),
5357                                bdevname(tmp->rdev->bdev, b));
5358         }
5359 }
5360
5361 static int raid5_spare_active(struct mddev *mddev)
5362 {
5363         int i;
5364         struct r5conf *conf = mddev->private;
5365         struct disk_info *tmp;
5366         int count = 0;
5367         unsigned long flags;
5368
5369         for (i = 0; i < conf->raid_disks; i++) {
5370                 tmp = conf->disks + i;
5371                 if (tmp->replacement
5372                     && tmp->replacement->recovery_offset == MaxSector
5373                     && !test_bit(Faulty, &tmp->replacement->flags)
5374                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5375                         /* Replacement has just become active. */
5376                         if (!tmp->rdev
5377                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5378                                 count++;
5379                         if (tmp->rdev) {
5380                                 /* Replaced device not technically faulty,
5381                                  * but we need to be sure it gets removed
5382                                  * and never re-added.
5383                                  */
5384                                 set_bit(Faulty, &tmp->rdev->flags);
5385                                 sysfs_notify_dirent_safe(
5386                                         tmp->rdev->sysfs_state);
5387                         }
5388                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5389                 } else if (tmp->rdev
5390                     && tmp->rdev->recovery_offset == MaxSector
5391                     && !test_bit(Faulty, &tmp->rdev->flags)
5392                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5393                         count++;
5394                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5395                 }
5396         }
5397         spin_lock_irqsave(&conf->device_lock, flags);
5398         mddev->degraded = calc_degraded(conf);
5399         spin_unlock_irqrestore(&conf->device_lock, flags);
5400         print_raid5_conf(conf);
5401         return count;
5402 }
5403
5404 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5405 {
5406         struct r5conf *conf = mddev->private;
5407         int err = 0;
5408         int number = rdev->raid_disk;
5409         struct md_rdev **rdevp;
5410         struct disk_info *p = conf->disks + number;
5411
5412         print_raid5_conf(conf);
5413         if (rdev == p->rdev)
5414                 rdevp = &p->rdev;
5415         else if (rdev == p->replacement)
5416                 rdevp = &p->replacement;
5417         else
5418                 return 0;
5419
5420         if (number >= conf->raid_disks &&
5421             conf->reshape_progress == MaxSector)
5422                 clear_bit(In_sync, &rdev->flags);
5423
5424         if (test_bit(In_sync, &rdev->flags) ||
5425             atomic_read(&rdev->nr_pending)) {
5426                 err = -EBUSY;
5427                 goto abort;
5428         }
5429         /* Only remove non-faulty devices if recovery
5430          * isn't possible.
5431          */
5432         if (!test_bit(Faulty, &rdev->flags) &&
5433             mddev->recovery_disabled != conf->recovery_disabled &&
5434             !has_failed(conf) &&
5435             (!p->replacement || p->replacement == rdev) &&
5436             number < conf->raid_disks) {
5437                 err = -EBUSY;
5438                 goto abort;
5439         }
5440         *rdevp = NULL;
5441         synchronize_rcu();
5442         if (atomic_read(&rdev->nr_pending)) {
5443                 /* lost the race, try later */
5444                 err = -EBUSY;
5445                 *rdevp = rdev;
5446         } else if (p->replacement) {
5447                 /* We must have just cleared 'rdev' */
5448                 p->rdev = p->replacement;
5449                 clear_bit(Replacement, &p->replacement->flags);
5450                 smp_mb(); /* Make sure other CPUs may see both as identical
5451                            * but will never see neither - if they are careful
5452                            */
5453                 p->replacement = NULL;
5454                 clear_bit(WantReplacement, &rdev->flags);
5455         } else
5456                 /* We might have just removed the Replacement as faulty-
5457                  * clear the bit just in case
5458                  */
5459                 clear_bit(WantReplacement, &rdev->flags);
5460 abort:
5461
5462         print_raid5_conf(conf);
5463         return err;
5464 }
5465
5466 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5467 {
5468         struct r5conf *conf = mddev->private;
5469         int err = -EEXIST;
5470         int disk;
5471         struct disk_info *p;
5472         int first = 0;
5473         int last = conf->raid_disks - 1;
5474
5475         if (mddev->recovery_disabled == conf->recovery_disabled)
5476                 return -EBUSY;
5477
5478         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5479                 /* no point adding a device */
5480                 return -EINVAL;
5481
5482         if (rdev->raid_disk >= 0)
5483                 first = last = rdev->raid_disk;
5484
5485         /*
5486          * find the disk ... but prefer rdev->saved_raid_disk
5487          * if possible.
5488          */
5489         if (rdev->saved_raid_disk >= 0 &&
5490             rdev->saved_raid_disk >= first &&
5491             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5492                 first = rdev->saved_raid_disk;
5493
5494         for (disk = first; disk <= last; disk++) {
5495                 p = conf->disks + disk;
5496                 if (p->rdev == NULL) {
5497                         clear_bit(In_sync, &rdev->flags);
5498                         rdev->raid_disk = disk;
5499                         err = 0;
5500                         if (rdev->saved_raid_disk != disk)
5501                                 conf->fullsync = 1;
5502                         rcu_assign_pointer(p->rdev, rdev);
5503                         goto out;
5504                 }
5505         }
5506         for (disk = first; disk <= last; disk++) {
5507                 p = conf->disks + disk;
5508                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5509                     p->replacement == NULL) {
5510                         clear_bit(In_sync, &rdev->flags);
5511                         set_bit(Replacement, &rdev->flags);
5512                         rdev->raid_disk = disk;
5513                         err = 0;
5514                         conf->fullsync = 1;
5515                         rcu_assign_pointer(p->replacement, rdev);
5516                         break;
5517                 }
5518         }
5519 out:
5520         print_raid5_conf(conf);
5521         return err;
5522 }
5523
5524 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5525 {
5526         /* no resync is happening, and there is enough space
5527          * on all devices, so we can resize.
5528          * We need to make sure resync covers any new space.
5529          * If the array is shrinking we should possibly wait until
5530          * any io in the removed space completes, but it hardly seems
5531          * worth it.
5532          */
5533         sector_t newsize;
5534         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5535         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5536         if (mddev->external_size &&
5537             mddev->array_sectors > newsize)
5538                 return -EINVAL;
5539         if (mddev->bitmap) {
5540                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5541                 if (ret)
5542                         return ret;
5543         }
5544         md_set_array_sectors(mddev, newsize);
5545         set_capacity(mddev->gendisk, mddev->array_sectors);
5546         revalidate_disk(mddev->gendisk);
5547         if (sectors > mddev->dev_sectors &&
5548             mddev->recovery_cp > mddev->dev_sectors) {
5549                 mddev->recovery_cp = mddev->dev_sectors;
5550                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5551         }
5552         mddev->dev_sectors = sectors;
5553         mddev->resync_max_sectors = sectors;
5554         return 0;
5555 }
5556
5557 static int check_stripe_cache(struct mddev *mddev)
5558 {
5559         /* Can only proceed if there are plenty of stripe_heads.
5560          * We need a minimum of one full stripe,, and for sensible progress
5561          * it is best to have about 4 times that.
5562          * If we require 4 times, then the default 256 4K stripe_heads will
5563          * allow for chunk sizes up to 256K, which is probably OK.
5564          * If the chunk size is greater, user-space should request more
5565          * stripe_heads first.
5566          */
5567         struct r5conf *conf = mddev->private;
5568         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5569             > conf->max_nr_stripes ||
5570             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5571             > conf->max_nr_stripes) {
5572                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5573                        mdname(mddev),
5574                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5575                         / STRIPE_SIZE)*4);
5576                 return 0;
5577         }
5578         return 1;
5579 }
5580
5581 static int check_reshape(struct mddev *mddev)
5582 {
5583         struct r5conf *conf = mddev->private;
5584
5585         if (mddev->delta_disks == 0 &&
5586             mddev->new_layout == mddev->layout &&
5587             mddev->new_chunk_sectors == mddev->chunk_sectors)
5588                 return 0; /* nothing to do */
5589         if (has_failed(conf))
5590                 return -EINVAL;
5591         if (mddev->delta_disks < 0) {
5592                 /* We might be able to shrink, but the devices must
5593                  * be made bigger first.
5594                  * For raid6, 4 is the minimum size.
5595                  * Otherwise 2 is the minimum
5596                  */
5597                 int min = 2;
5598                 if (mddev->level == 6)
5599                         min = 4;
5600                 if (mddev->raid_disks + mddev->delta_disks < min)
5601                         return -EINVAL;
5602         }
5603
5604         if (!check_stripe_cache(mddev))
5605                 return -ENOSPC;
5606
5607         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5608 }
5609
5610 static int raid5_start_reshape(struct mddev *mddev)
5611 {
5612         struct r5conf *conf = mddev->private;
5613         struct md_rdev *rdev;
5614         int spares = 0;
5615         unsigned long flags;
5616
5617         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5618                 return -EBUSY;
5619
5620         if (!check_stripe_cache(mddev))
5621                 return -ENOSPC;
5622
5623         if (has_failed(conf))
5624                 return -EINVAL;
5625
5626         rdev_for_each(rdev, mddev) {
5627                 if (!test_bit(In_sync, &rdev->flags)
5628                     && !test_bit(Faulty, &rdev->flags))
5629                         spares++;
5630         }
5631
5632         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5633                 /* Not enough devices even to make a degraded array
5634                  * of that size
5635                  */
5636                 return -EINVAL;
5637
5638         /* Refuse to reduce size of the array.  Any reductions in
5639          * array size must be through explicit setting of array_size
5640          * attribute.
5641          */
5642         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5643             < mddev->array_sectors) {
5644                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5645                        "before number of disks\n", mdname(mddev));
5646                 return -EINVAL;
5647         }
5648
5649         atomic_set(&conf->reshape_stripes, 0);
5650         spin_lock_irq(&conf->device_lock);
5651         conf->previous_raid_disks = conf->raid_disks;
5652         conf->raid_disks += mddev->delta_disks;
5653         conf->prev_chunk_sectors = conf->chunk_sectors;
5654         conf->chunk_sectors = mddev->new_chunk_sectors;
5655         conf->prev_algo = conf->algorithm;
5656         conf->algorithm = mddev->new_layout;
5657         conf->generation++;
5658         /* Code that selects data_offset needs to see the generation update
5659          * if reshape_progress has been set - so a memory barrier needed.
5660          */
5661         smp_mb();
5662         if (mddev->reshape_backwards)
5663                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5664         else
5665                 conf->reshape_progress = 0;
5666         conf->reshape_safe = conf->reshape_progress;
5667         spin_unlock_irq(&conf->device_lock);
5668
5669         /* Add some new drives, as many as will fit.
5670          * We know there are enough to make the newly sized array work.
5671          * Don't add devices if we are reducing the number of
5672          * devices in the array.  This is because it is not possible
5673          * to correctly record the "partially reconstructed" state of
5674          * such devices during the reshape and confusion could result.
5675          */
5676         if (mddev->delta_disks >= 0) {
5677                 rdev_for_each(rdev, mddev)
5678                         if (rdev->raid_disk < 0 &&
5679                             !test_bit(Faulty, &rdev->flags)) {
5680                                 if (raid5_add_disk(mddev, rdev) == 0) {
5681                                         if (rdev->raid_disk
5682                                             >= conf->previous_raid_disks)
5683                                                 set_bit(In_sync, &rdev->flags);
5684                                         else
5685                                                 rdev->recovery_offset = 0;
5686
5687                                         if (sysfs_link_rdev(mddev, rdev))
5688                                                 /* Failure here is OK */;
5689                                 }
5690                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5691                                    && !test_bit(Faulty, &rdev->flags)) {
5692                                 /* This is a spare that was manually added */
5693                                 set_bit(In_sync, &rdev->flags);
5694                         }
5695
5696                 /* When a reshape changes the number of devices,
5697                  * ->degraded is measured against the larger of the
5698                  * pre and post number of devices.
5699                  */
5700                 spin_lock_irqsave(&conf->device_lock, flags);
5701                 mddev->degraded = calc_degraded(conf);
5702                 spin_unlock_irqrestore(&conf->device_lock, flags);
5703         }
5704         mddev->raid_disks = conf->raid_disks;
5705         mddev->reshape_position = conf->reshape_progress;
5706         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5707
5708         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5709         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5710         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5711         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5712         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5713                                                 "reshape");
5714         if (!mddev->sync_thread) {
5715                 mddev->recovery = 0;
5716                 spin_lock_irq(&conf->device_lock);
5717                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5718                 rdev_for_each(rdev, mddev)
5719                         rdev->new_data_offset = rdev->data_offset;
5720                 smp_wmb();
5721                 conf->reshape_progress = MaxSector;
5722                 mddev->reshape_position = MaxSector;
5723                 spin_unlock_irq(&conf->device_lock);
5724                 return -EAGAIN;
5725         }
5726         conf->reshape_checkpoint = jiffies;
5727         md_wakeup_thread(mddev->sync_thread);
5728         md_new_event(mddev);
5729         return 0;
5730 }
5731
5732 /* This is called from the reshape thread and should make any
5733  * changes needed in 'conf'
5734  */
5735 static void end_reshape(struct r5conf *conf)
5736 {
5737
5738         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5739                 struct md_rdev *rdev;
5740
5741                 spin_lock_irq(&conf->device_lock);
5742                 conf->previous_raid_disks = conf->raid_disks;
5743                 rdev_for_each(rdev, conf->mddev)
5744                         rdev->data_offset = rdev->new_data_offset;
5745                 smp_wmb();
5746                 conf->reshape_progress = MaxSector;
5747                 spin_unlock_irq(&conf->device_lock);
5748                 wake_up(&conf->wait_for_overlap);
5749
5750                 /* read-ahead size must cover two whole stripes, which is
5751                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5752                  */
5753                 if (conf->mddev->queue) {
5754                         int data_disks = conf->raid_disks - conf->max_degraded;
5755                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5756                                                    / PAGE_SIZE);
5757                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5758                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5759                 }
5760         }
5761 }
5762
5763 /* This is called from the raid5d thread with mddev_lock held.
5764  * It makes config changes to the device.
5765  */
5766 static void raid5_finish_reshape(struct mddev *mddev)
5767 {
5768         struct r5conf *conf = mddev->private;
5769
5770         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5771
5772                 if (mddev->delta_disks > 0) {
5773                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5774                         set_capacity(mddev->gendisk, mddev->array_sectors);
5775                         revalidate_disk(mddev->gendisk);
5776                 } else {
5777                         int d;
5778                         spin_lock_irq(&conf->device_lock);
5779                         mddev->degraded = calc_degraded(conf);
5780                         spin_unlock_irq(&conf->device_lock);
5781                         for (d = conf->raid_disks ;
5782                              d < conf->raid_disks - mddev->delta_disks;
5783                              d++) {
5784                                 struct md_rdev *rdev = conf->disks[d].rdev;
5785                                 if (rdev)
5786                                         clear_bit(In_sync, &rdev->flags);
5787                                 rdev = conf->disks[d].replacement;
5788                                 if (rdev)
5789                                         clear_bit(In_sync, &rdev->flags);
5790                         }
5791                 }
5792                 mddev->layout = conf->algorithm;
5793                 mddev->chunk_sectors = conf->chunk_sectors;
5794                 mddev->reshape_position = MaxSector;
5795                 mddev->delta_disks = 0;
5796                 mddev->reshape_backwards = 0;
5797         }
5798 }
5799
5800 static void raid5_quiesce(struct mddev *mddev, int state)
5801 {
5802         struct r5conf *conf = mddev->private;
5803
5804         switch(state) {
5805         case 2: /* resume for a suspend */
5806                 wake_up(&conf->wait_for_overlap);
5807                 break;
5808
5809         case 1: /* stop all writes */
5810                 spin_lock_irq(&conf->device_lock);
5811                 /* '2' tells resync/reshape to pause so that all
5812                  * active stripes can drain
5813                  */
5814                 conf->quiesce = 2;
5815                 wait_event_lock_irq(conf->wait_for_stripe,
5816                                     atomic_read(&conf->active_stripes) == 0 &&
5817                                     atomic_read(&conf->active_aligned_reads) == 0,
5818                                     conf->device_lock, /* nothing */);
5819                 conf->quiesce = 1;
5820                 spin_unlock_irq(&conf->device_lock);
5821                 /* allow reshape to continue */
5822                 wake_up(&conf->wait_for_overlap);
5823                 break;
5824
5825         case 0: /* re-enable writes */
5826                 spin_lock_irq(&conf->device_lock);
5827                 conf->quiesce = 0;
5828                 wake_up(&conf->wait_for_stripe);
5829                 wake_up(&conf->wait_for_overlap);
5830                 spin_unlock_irq(&conf->device_lock);
5831                 break;
5832         }
5833 }
5834
5835
5836 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5837 {
5838         struct r0conf *raid0_conf = mddev->private;
5839         sector_t sectors;
5840
5841         /* for raid0 takeover only one zone is supported */
5842         if (raid0_conf->nr_strip_zones > 1) {
5843                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5844                        mdname(mddev));
5845                 return ERR_PTR(-EINVAL);
5846         }
5847
5848         sectors = raid0_conf->strip_zone[0].zone_end;
5849         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5850         mddev->dev_sectors = sectors;
5851         mddev->new_level = level;
5852         mddev->new_layout = ALGORITHM_PARITY_N;
5853         mddev->new_chunk_sectors = mddev->chunk_sectors;
5854         mddev->raid_disks += 1;
5855         mddev->delta_disks = 1;
5856         /* make sure it will be not marked as dirty */
5857         mddev->recovery_cp = MaxSector;
5858
5859         return setup_conf(mddev);
5860 }
5861
5862
5863 static void *raid5_takeover_raid1(struct mddev *mddev)
5864 {
5865         int chunksect;
5866
5867         if (mddev->raid_disks != 2 ||
5868             mddev->degraded > 1)
5869                 return ERR_PTR(-EINVAL);
5870
5871         /* Should check if there are write-behind devices? */
5872
5873         chunksect = 64*2; /* 64K by default */
5874
5875         /* The array must be an exact multiple of chunksize */
5876         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5877                 chunksect >>= 1;
5878
5879         if ((chunksect<<9) < STRIPE_SIZE)
5880                 /* array size does not allow a suitable chunk size */
5881                 return ERR_PTR(-EINVAL);
5882
5883         mddev->new_level = 5;
5884         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5885         mddev->new_chunk_sectors = chunksect;
5886
5887         return setup_conf(mddev);
5888 }
5889
5890 static void *raid5_takeover_raid6(struct mddev *mddev)
5891 {
5892         int new_layout;
5893
5894         switch (mddev->layout) {
5895         case ALGORITHM_LEFT_ASYMMETRIC_6:
5896                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5897                 break;
5898         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5899                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5900                 break;
5901         case ALGORITHM_LEFT_SYMMETRIC_6:
5902                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5903                 break;
5904         case ALGORITHM_RIGHT_SYMMETRIC_6:
5905                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5906                 break;
5907         case ALGORITHM_PARITY_0_6:
5908                 new_layout = ALGORITHM_PARITY_0;
5909                 break;
5910         case ALGORITHM_PARITY_N:
5911                 new_layout = ALGORITHM_PARITY_N;
5912                 break;
5913         default:
5914                 return ERR_PTR(-EINVAL);
5915         }
5916         mddev->new_level = 5;
5917         mddev->new_layout = new_layout;
5918         mddev->delta_disks = -1;
5919         mddev->raid_disks -= 1;
5920         return setup_conf(mddev);
5921 }
5922
5923
5924 static int raid5_check_reshape(struct mddev *mddev)
5925 {
5926         /* For a 2-drive array, the layout and chunk size can be changed
5927          * immediately as not restriping is needed.
5928          * For larger arrays we record the new value - after validation
5929          * to be used by a reshape pass.
5930          */
5931         struct r5conf *conf = mddev->private;
5932         int new_chunk = mddev->new_chunk_sectors;
5933
5934         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5935                 return -EINVAL;
5936         if (new_chunk > 0) {
5937                 if (!is_power_of_2(new_chunk))
5938                         return -EINVAL;
5939                 if (new_chunk < (PAGE_SIZE>>9))
5940                         return -EINVAL;
5941                 if (mddev->array_sectors & (new_chunk-1))
5942                         /* not factor of array size */
5943                         return -EINVAL;
5944         }
5945
5946         /* They look valid */
5947
5948         if (mddev->raid_disks == 2) {
5949                 /* can make the change immediately */
5950                 if (mddev->new_layout >= 0) {
5951                         conf->algorithm = mddev->new_layout;
5952                         mddev->layout = mddev->new_layout;
5953                 }
5954                 if (new_chunk > 0) {
5955                         conf->chunk_sectors = new_chunk ;
5956                         mddev->chunk_sectors = new_chunk;
5957                 }
5958                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5959                 md_wakeup_thread(mddev->thread);
5960         }
5961         return check_reshape(mddev);
5962 }
5963
5964 static int raid6_check_reshape(struct mddev *mddev)
5965 {
5966         int new_chunk = mddev->new_chunk_sectors;
5967
5968         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5969                 return -EINVAL;
5970         if (new_chunk > 0) {
5971                 if (!is_power_of_2(new_chunk))
5972                         return -EINVAL;
5973                 if (new_chunk < (PAGE_SIZE >> 9))
5974                         return -EINVAL;
5975                 if (mddev->array_sectors & (new_chunk-1))
5976                         /* not factor of array size */
5977                         return -EINVAL;
5978         }
5979
5980         /* They look valid */
5981         return check_reshape(mddev);
5982 }
5983
5984 static void *raid5_takeover(struct mddev *mddev)
5985 {
5986         /* raid5 can take over:
5987          *  raid0 - if there is only one strip zone - make it a raid4 layout
5988          *  raid1 - if there are two drives.  We need to know the chunk size
5989          *  raid4 - trivial - just use a raid4 layout.
5990          *  raid6 - Providing it is a *_6 layout
5991          */
5992         if (mddev->level == 0)
5993                 return raid45_takeover_raid0(mddev, 5);
5994         if (mddev->level == 1)
5995                 return raid5_takeover_raid1(mddev);
5996         if (mddev->level == 4) {
5997                 mddev->new_layout = ALGORITHM_PARITY_N;
5998                 mddev->new_level = 5;
5999                 return setup_conf(mddev);
6000         }
6001         if (mddev->level == 6)
6002                 return raid5_takeover_raid6(mddev);
6003
6004         return ERR_PTR(-EINVAL);
6005 }
6006
6007 static void *raid4_takeover(struct mddev *mddev)
6008 {
6009         /* raid4 can take over:
6010          *  raid0 - if there is only one strip zone
6011          *  raid5 - if layout is right
6012          */
6013         if (mddev->level == 0)
6014                 return raid45_takeover_raid0(mddev, 4);
6015         if (mddev->level == 5 &&
6016             mddev->layout == ALGORITHM_PARITY_N) {
6017                 mddev->new_layout = 0;
6018                 mddev->new_level = 4;
6019                 return setup_conf(mddev);
6020         }
6021         return ERR_PTR(-EINVAL);
6022 }
6023
6024 static struct md_personality raid5_personality;
6025
6026 static void *raid6_takeover(struct mddev *mddev)
6027 {
6028         /* Currently can only take over a raid5.  We map the
6029          * personality to an equivalent raid6 personality
6030          * with the Q block at the end.
6031          */
6032         int new_layout;
6033
6034         if (mddev->pers != &raid5_personality)
6035                 return ERR_PTR(-EINVAL);
6036         if (mddev->degraded > 1)
6037                 return ERR_PTR(-EINVAL);
6038         if (mddev->raid_disks > 253)
6039                 return ERR_PTR(-EINVAL);
6040         if (mddev->raid_disks < 3)
6041                 return ERR_PTR(-EINVAL);
6042
6043         switch (mddev->layout) {
6044         case ALGORITHM_LEFT_ASYMMETRIC:
6045                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6046                 break;
6047         case ALGORITHM_RIGHT_ASYMMETRIC:
6048                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6049                 break;
6050         case ALGORITHM_LEFT_SYMMETRIC:
6051                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6052                 break;
6053         case ALGORITHM_RIGHT_SYMMETRIC:
6054                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6055                 break;
6056         case ALGORITHM_PARITY_0:
6057                 new_layout = ALGORITHM_PARITY_0_6;
6058                 break;
6059         case ALGORITHM_PARITY_N:
6060                 new_layout = ALGORITHM_PARITY_N;
6061                 break;
6062         default:
6063                 return ERR_PTR(-EINVAL);
6064         }
6065         mddev->new_level = 6;
6066         mddev->new_layout = new_layout;
6067         mddev->delta_disks = 1;
6068         mddev->raid_disks += 1;
6069         return setup_conf(mddev);
6070 }
6071
6072
6073 static struct md_personality raid6_personality =
6074 {
6075         .name           = "raid6",
6076         .level          = 6,
6077         .owner          = THIS_MODULE,
6078         .make_request   = make_request,
6079         .run            = run,
6080         .stop           = stop,
6081         .status         = status,
6082         .error_handler  = error,
6083         .hot_add_disk   = raid5_add_disk,
6084         .hot_remove_disk= raid5_remove_disk,
6085         .spare_active   = raid5_spare_active,
6086         .sync_request   = sync_request,
6087         .resize         = raid5_resize,
6088         .size           = raid5_size,
6089         .check_reshape  = raid6_check_reshape,
6090         .start_reshape  = raid5_start_reshape,
6091         .finish_reshape = raid5_finish_reshape,
6092         .quiesce        = raid5_quiesce,
6093         .takeover       = raid6_takeover,
6094 };
6095 static struct md_personality raid5_personality =
6096 {
6097         .name           = "raid5",
6098         .level          = 5,
6099         .owner          = THIS_MODULE,
6100         .make_request   = make_request,
6101         .run            = run,
6102         .stop           = stop,
6103         .status         = status,
6104         .error_handler  = error,
6105         .hot_add_disk   = raid5_add_disk,
6106         .hot_remove_disk= raid5_remove_disk,
6107         .spare_active   = raid5_spare_active,
6108         .sync_request   = sync_request,
6109         .resize         = raid5_resize,
6110         .size           = raid5_size,
6111         .check_reshape  = raid5_check_reshape,
6112         .start_reshape  = raid5_start_reshape,
6113         .finish_reshape = raid5_finish_reshape,
6114         .quiesce        = raid5_quiesce,
6115         .takeover       = raid5_takeover,
6116 };
6117
6118 static struct md_personality raid4_personality =
6119 {
6120         .name           = "raid4",
6121         .level          = 4,
6122         .owner          = THIS_MODULE,
6123         .make_request   = make_request,
6124         .run            = run,
6125         .stop           = stop,
6126         .status         = status,
6127         .error_handler  = error,
6128         .hot_add_disk   = raid5_add_disk,
6129         .hot_remove_disk= raid5_remove_disk,
6130         .spare_active   = raid5_spare_active,
6131         .sync_request   = sync_request,
6132         .resize         = raid5_resize,
6133         .size           = raid5_size,
6134         .check_reshape  = raid5_check_reshape,
6135         .start_reshape  = raid5_start_reshape,
6136         .finish_reshape = raid5_finish_reshape,
6137         .quiesce        = raid5_quiesce,
6138         .takeover       = raid4_takeover,
6139 };
6140
6141 static int __init raid5_init(void)
6142 {
6143         register_md_personality(&raid6_personality);
6144         register_md_personality(&raid5_personality);
6145         register_md_personality(&raid4_personality);
6146         return 0;
6147 }
6148
6149 static void raid5_exit(void)
6150 {
6151         unregister_md_personality(&raid6_personality);
6152         unregister_md_personality(&raid5_personality);
6153         unregister_md_personality(&raid4_personality);
6154 }
6155
6156 module_init(raid5_init);
6157 module_exit(raid5_exit);
6158 MODULE_LICENSE("GPL");
6159 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6160 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6161 MODULE_ALIAS("md-raid5");
6162 MODULE_ALIAS("md-raid4");
6163 MODULE_ALIAS("md-level-5");
6164 MODULE_ALIAS("md-level-4");
6165 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6166 MODULE_ALIAS("md-raid6");
6167 MODULE_ALIAS("md-level-6");
6168
6169 /* This used to be two separate modules, they were: */
6170 MODULE_ALIAS("raid5");
6171 MODULE_ALIAS("raid6");