Merge branch 'for-3.5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[firefly-linux-kernel-4.4.55.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* When there are this many requests queue to be written by
50  * the raid1 thread, we become 'congested' to provide back-pressure
51  * for writeback.
52  */
53 static int max_queued_requests = 1024;
54
55 static void allow_barrier(struct r1conf *conf);
56 static void lower_barrier(struct r1conf *conf);
57
58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
59 {
60         struct pool_info *pi = data;
61         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
62
63         /* allocate a r1bio with room for raid_disks entries in the bios array */
64         return kzalloc(size, gfp_flags);
65 }
66
67 static void r1bio_pool_free(void *r1_bio, void *data)
68 {
69         kfree(r1_bio);
70 }
71
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
77
78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
79 {
80         struct pool_info *pi = data;
81         struct page *page;
82         struct r1bio *r1_bio;
83         struct bio *bio;
84         int i, j;
85
86         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87         if (!r1_bio)
88                 return NULL;
89
90         /*
91          * Allocate bios : 1 for reading, n-1 for writing
92          */
93         for (j = pi->raid_disks ; j-- ; ) {
94                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95                 if (!bio)
96                         goto out_free_bio;
97                 r1_bio->bios[j] = bio;
98         }
99         /*
100          * Allocate RESYNC_PAGES data pages and attach them to
101          * the first bio.
102          * If this is a user-requested check/repair, allocate
103          * RESYNC_PAGES for each bio.
104          */
105         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106                 j = pi->raid_disks;
107         else
108                 j = 1;
109         while(j--) {
110                 bio = r1_bio->bios[j];
111                 for (i = 0; i < RESYNC_PAGES; i++) {
112                         page = alloc_page(gfp_flags);
113                         if (unlikely(!page))
114                                 goto out_free_pages;
115
116                         bio->bi_io_vec[i].bv_page = page;
117                         bio->bi_vcnt = i+1;
118                 }
119         }
120         /* If not user-requests, copy the page pointers to all bios */
121         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122                 for (i=0; i<RESYNC_PAGES ; i++)
123                         for (j=1; j<pi->raid_disks; j++)
124                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
125                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
126         }
127
128         r1_bio->master_bio = NULL;
129
130         return r1_bio;
131
132 out_free_pages:
133         for (j=0 ; j < pi->raid_disks; j++)
134                 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135                         put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136         j = -1;
137 out_free_bio:
138         while (++j < pi->raid_disks)
139                 bio_put(r1_bio->bios[j]);
140         r1bio_pool_free(r1_bio, data);
141         return NULL;
142 }
143
144 static void r1buf_pool_free(void *__r1_bio, void *data)
145 {
146         struct pool_info *pi = data;
147         int i,j;
148         struct r1bio *r1bio = __r1_bio;
149
150         for (i = 0; i < RESYNC_PAGES; i++)
151                 for (j = pi->raid_disks; j-- ;) {
152                         if (j == 0 ||
153                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
154                             r1bio->bios[0]->bi_io_vec[i].bv_page)
155                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
156                 }
157         for (i=0 ; i < pi->raid_disks; i++)
158                 bio_put(r1bio->bios[i]);
159
160         r1bio_pool_free(r1bio, data);
161 }
162
163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
164 {
165         int i;
166
167         for (i = 0; i < conf->raid_disks * 2; i++) {
168                 struct bio **bio = r1_bio->bios + i;
169                 if (!BIO_SPECIAL(*bio))
170                         bio_put(*bio);
171                 *bio = NULL;
172         }
173 }
174
175 static void free_r1bio(struct r1bio *r1_bio)
176 {
177         struct r1conf *conf = r1_bio->mddev->private;
178
179         put_all_bios(conf, r1_bio);
180         mempool_free(r1_bio, conf->r1bio_pool);
181 }
182
183 static void put_buf(struct r1bio *r1_bio)
184 {
185         struct r1conf *conf = r1_bio->mddev->private;
186         int i;
187
188         for (i = 0; i < conf->raid_disks * 2; i++) {
189                 struct bio *bio = r1_bio->bios[i];
190                 if (bio->bi_end_io)
191                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
192         }
193
194         mempool_free(r1_bio, conf->r1buf_pool);
195
196         lower_barrier(conf);
197 }
198
199 static void reschedule_retry(struct r1bio *r1_bio)
200 {
201         unsigned long flags;
202         struct mddev *mddev = r1_bio->mddev;
203         struct r1conf *conf = mddev->private;
204
205         spin_lock_irqsave(&conf->device_lock, flags);
206         list_add(&r1_bio->retry_list, &conf->retry_list);
207         conf->nr_queued ++;
208         spin_unlock_irqrestore(&conf->device_lock, flags);
209
210         wake_up(&conf->wait_barrier);
211         md_wakeup_thread(mddev->thread);
212 }
213
214 /*
215  * raid_end_bio_io() is called when we have finished servicing a mirrored
216  * operation and are ready to return a success/failure code to the buffer
217  * cache layer.
218  */
219 static void call_bio_endio(struct r1bio *r1_bio)
220 {
221         struct bio *bio = r1_bio->master_bio;
222         int done;
223         struct r1conf *conf = r1_bio->mddev->private;
224
225         if (bio->bi_phys_segments) {
226                 unsigned long flags;
227                 spin_lock_irqsave(&conf->device_lock, flags);
228                 bio->bi_phys_segments--;
229                 done = (bio->bi_phys_segments == 0);
230                 spin_unlock_irqrestore(&conf->device_lock, flags);
231         } else
232                 done = 1;
233
234         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
235                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
236         if (done) {
237                 bio_endio(bio, 0);
238                 /*
239                  * Wake up any possible resync thread that waits for the device
240                  * to go idle.
241                  */
242                 allow_barrier(conf);
243         }
244 }
245
246 static void raid_end_bio_io(struct r1bio *r1_bio)
247 {
248         struct bio *bio = r1_bio->master_bio;
249
250         /* if nobody has done the final endio yet, do it now */
251         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
252                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
254                          (unsigned long long) bio->bi_sector,
255                          (unsigned long long) bio->bi_sector +
256                          (bio->bi_size >> 9) - 1);
257
258                 call_bio_endio(r1_bio);
259         }
260         free_r1bio(r1_bio);
261 }
262
263 /*
264  * Update disk head position estimator based on IRQ completion info.
265  */
266 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
267 {
268         struct r1conf *conf = r1_bio->mddev->private;
269
270         conf->mirrors[disk].head_position =
271                 r1_bio->sector + (r1_bio->sectors);
272 }
273
274 /*
275  * Find the disk number which triggered given bio
276  */
277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
278 {
279         int mirror;
280         struct r1conf *conf = r1_bio->mddev->private;
281         int raid_disks = conf->raid_disks;
282
283         for (mirror = 0; mirror < raid_disks * 2; mirror++)
284                 if (r1_bio->bios[mirror] == bio)
285                         break;
286
287         BUG_ON(mirror == raid_disks * 2);
288         update_head_pos(mirror, r1_bio);
289
290         return mirror;
291 }
292
293 static void raid1_end_read_request(struct bio *bio, int error)
294 {
295         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
296         struct r1bio *r1_bio = bio->bi_private;
297         int mirror;
298         struct r1conf *conf = r1_bio->mddev->private;
299
300         mirror = r1_bio->read_disk;
301         /*
302          * this branch is our 'one mirror IO has finished' event handler:
303          */
304         update_head_pos(mirror, r1_bio);
305
306         if (uptodate)
307                 set_bit(R1BIO_Uptodate, &r1_bio->state);
308         else {
309                 /* If all other devices have failed, we want to return
310                  * the error upwards rather than fail the last device.
311                  * Here we redefine "uptodate" to mean "Don't want to retry"
312                  */
313                 unsigned long flags;
314                 spin_lock_irqsave(&conf->device_lock, flags);
315                 if (r1_bio->mddev->degraded == conf->raid_disks ||
316                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
317                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
318                         uptodate = 1;
319                 spin_unlock_irqrestore(&conf->device_lock, flags);
320         }
321
322         if (uptodate)
323                 raid_end_bio_io(r1_bio);
324         else {
325                 /*
326                  * oops, read error:
327                  */
328                 char b[BDEVNAME_SIZE];
329                 printk_ratelimited(
330                         KERN_ERR "md/raid1:%s: %s: "
331                         "rescheduling sector %llu\n",
332                         mdname(conf->mddev),
333                         bdevname(conf->mirrors[mirror].rdev->bdev,
334                                  b),
335                         (unsigned long long)r1_bio->sector);
336                 set_bit(R1BIO_ReadError, &r1_bio->state);
337                 reschedule_retry(r1_bio);
338         }
339
340         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
341 }
342
343 static void close_write(struct r1bio *r1_bio)
344 {
345         /* it really is the end of this request */
346         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
347                 /* free extra copy of the data pages */
348                 int i = r1_bio->behind_page_count;
349                 while (i--)
350                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
351                 kfree(r1_bio->behind_bvecs);
352                 r1_bio->behind_bvecs = NULL;
353         }
354         /* clear the bitmap if all writes complete successfully */
355         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
356                         r1_bio->sectors,
357                         !test_bit(R1BIO_Degraded, &r1_bio->state),
358                         test_bit(R1BIO_BehindIO, &r1_bio->state));
359         md_write_end(r1_bio->mddev);
360 }
361
362 static void r1_bio_write_done(struct r1bio *r1_bio)
363 {
364         if (!atomic_dec_and_test(&r1_bio->remaining))
365                 return;
366
367         if (test_bit(R1BIO_WriteError, &r1_bio->state))
368                 reschedule_retry(r1_bio);
369         else {
370                 close_write(r1_bio);
371                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
372                         reschedule_retry(r1_bio);
373                 else
374                         raid_end_bio_io(r1_bio);
375         }
376 }
377
378 static void raid1_end_write_request(struct bio *bio, int error)
379 {
380         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
381         struct r1bio *r1_bio = bio->bi_private;
382         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
383         struct r1conf *conf = r1_bio->mddev->private;
384         struct bio *to_put = NULL;
385
386         mirror = find_bio_disk(r1_bio, bio);
387
388         /*
389          * 'one mirror IO has finished' event handler:
390          */
391         if (!uptodate) {
392                 set_bit(WriteErrorSeen,
393                         &conf->mirrors[mirror].rdev->flags);
394                 if (!test_and_set_bit(WantReplacement,
395                                       &conf->mirrors[mirror].rdev->flags))
396                         set_bit(MD_RECOVERY_NEEDED, &
397                                 conf->mddev->recovery);
398
399                 set_bit(R1BIO_WriteError, &r1_bio->state);
400         } else {
401                 /*
402                  * Set R1BIO_Uptodate in our master bio, so that we
403                  * will return a good error code for to the higher
404                  * levels even if IO on some other mirrored buffer
405                  * fails.
406                  *
407                  * The 'master' represents the composite IO operation
408                  * to user-side. So if something waits for IO, then it
409                  * will wait for the 'master' bio.
410                  */
411                 sector_t first_bad;
412                 int bad_sectors;
413
414                 r1_bio->bios[mirror] = NULL;
415                 to_put = bio;
416                 set_bit(R1BIO_Uptodate, &r1_bio->state);
417
418                 /* Maybe we can clear some bad blocks. */
419                 if (is_badblock(conf->mirrors[mirror].rdev,
420                                 r1_bio->sector, r1_bio->sectors,
421                                 &first_bad, &bad_sectors)) {
422                         r1_bio->bios[mirror] = IO_MADE_GOOD;
423                         set_bit(R1BIO_MadeGood, &r1_bio->state);
424                 }
425         }
426
427         if (behind) {
428                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
429                         atomic_dec(&r1_bio->behind_remaining);
430
431                 /*
432                  * In behind mode, we ACK the master bio once the I/O
433                  * has safely reached all non-writemostly
434                  * disks. Setting the Returned bit ensures that this
435                  * gets done only once -- we don't ever want to return
436                  * -EIO here, instead we'll wait
437                  */
438                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
439                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
440                         /* Maybe we can return now */
441                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
442                                 struct bio *mbio = r1_bio->master_bio;
443                                 pr_debug("raid1: behind end write sectors"
444                                          " %llu-%llu\n",
445                                          (unsigned long long) mbio->bi_sector,
446                                          (unsigned long long) mbio->bi_sector +
447                                          (mbio->bi_size >> 9) - 1);
448                                 call_bio_endio(r1_bio);
449                         }
450                 }
451         }
452         if (r1_bio->bios[mirror] == NULL)
453                 rdev_dec_pending(conf->mirrors[mirror].rdev,
454                                  conf->mddev);
455
456         /*
457          * Let's see if all mirrored write operations have finished
458          * already.
459          */
460         r1_bio_write_done(r1_bio);
461
462         if (to_put)
463                 bio_put(to_put);
464 }
465
466
467 /*
468  * This routine returns the disk from which the requested read should
469  * be done. There is a per-array 'next expected sequential IO' sector
470  * number - if this matches on the next IO then we use the last disk.
471  * There is also a per-disk 'last know head position' sector that is
472  * maintained from IRQ contexts, both the normal and the resync IO
473  * completion handlers update this position correctly. If there is no
474  * perfect sequential match then we pick the disk whose head is closest.
475  *
476  * If there are 2 mirrors in the same 2 devices, performance degrades
477  * because position is mirror, not device based.
478  *
479  * The rdev for the device selected will have nr_pending incremented.
480  */
481 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
482 {
483         const sector_t this_sector = r1_bio->sector;
484         int sectors;
485         int best_good_sectors;
486         int start_disk;
487         int best_disk;
488         int i;
489         sector_t best_dist;
490         struct md_rdev *rdev;
491         int choose_first;
492
493         rcu_read_lock();
494         /*
495          * Check if we can balance. We can balance on the whole
496          * device if no resync is going on, or below the resync window.
497          * We take the first readable disk when above the resync window.
498          */
499  retry:
500         sectors = r1_bio->sectors;
501         best_disk = -1;
502         best_dist = MaxSector;
503         best_good_sectors = 0;
504
505         if (conf->mddev->recovery_cp < MaxSector &&
506             (this_sector + sectors >= conf->next_resync)) {
507                 choose_first = 1;
508                 start_disk = 0;
509         } else {
510                 choose_first = 0;
511                 start_disk = conf->last_used;
512         }
513
514         for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
515                 sector_t dist;
516                 sector_t first_bad;
517                 int bad_sectors;
518
519                 int disk = start_disk + i;
520                 if (disk >= conf->raid_disks)
521                         disk -= conf->raid_disks;
522
523                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
524                 if (r1_bio->bios[disk] == IO_BLOCKED
525                     || rdev == NULL
526                     || test_bit(Unmerged, &rdev->flags)
527                     || test_bit(Faulty, &rdev->flags))
528                         continue;
529                 if (!test_bit(In_sync, &rdev->flags) &&
530                     rdev->recovery_offset < this_sector + sectors)
531                         continue;
532                 if (test_bit(WriteMostly, &rdev->flags)) {
533                         /* Don't balance among write-mostly, just
534                          * use the first as a last resort */
535                         if (best_disk < 0) {
536                                 if (is_badblock(rdev, this_sector, sectors,
537                                                 &first_bad, &bad_sectors)) {
538                                         if (first_bad < this_sector)
539                                                 /* Cannot use this */
540                                                 continue;
541                                         best_good_sectors = first_bad - this_sector;
542                                 } else
543                                         best_good_sectors = sectors;
544                                 best_disk = disk;
545                         }
546                         continue;
547                 }
548                 /* This is a reasonable device to use.  It might
549                  * even be best.
550                  */
551                 if (is_badblock(rdev, this_sector, sectors,
552                                 &first_bad, &bad_sectors)) {
553                         if (best_dist < MaxSector)
554                                 /* already have a better device */
555                                 continue;
556                         if (first_bad <= this_sector) {
557                                 /* cannot read here. If this is the 'primary'
558                                  * device, then we must not read beyond
559                                  * bad_sectors from another device..
560                                  */
561                                 bad_sectors -= (this_sector - first_bad);
562                                 if (choose_first && sectors > bad_sectors)
563                                         sectors = bad_sectors;
564                                 if (best_good_sectors > sectors)
565                                         best_good_sectors = sectors;
566
567                         } else {
568                                 sector_t good_sectors = first_bad - this_sector;
569                                 if (good_sectors > best_good_sectors) {
570                                         best_good_sectors = good_sectors;
571                                         best_disk = disk;
572                                 }
573                                 if (choose_first)
574                                         break;
575                         }
576                         continue;
577                 } else
578                         best_good_sectors = sectors;
579
580                 dist = abs(this_sector - conf->mirrors[disk].head_position);
581                 if (choose_first
582                     /* Don't change to another disk for sequential reads */
583                     || conf->next_seq_sect == this_sector
584                     || dist == 0
585                     /* If device is idle, use it */
586                     || atomic_read(&rdev->nr_pending) == 0) {
587                         best_disk = disk;
588                         break;
589                 }
590                 if (dist < best_dist) {
591                         best_dist = dist;
592                         best_disk = disk;
593                 }
594         }
595
596         if (best_disk >= 0) {
597                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
598                 if (!rdev)
599                         goto retry;
600                 atomic_inc(&rdev->nr_pending);
601                 if (test_bit(Faulty, &rdev->flags)) {
602                         /* cannot risk returning a device that failed
603                          * before we inc'ed nr_pending
604                          */
605                         rdev_dec_pending(rdev, conf->mddev);
606                         goto retry;
607                 }
608                 sectors = best_good_sectors;
609                 conf->next_seq_sect = this_sector + sectors;
610                 conf->last_used = best_disk;
611         }
612         rcu_read_unlock();
613         *max_sectors = sectors;
614
615         return best_disk;
616 }
617
618 static int raid1_mergeable_bvec(struct request_queue *q,
619                                 struct bvec_merge_data *bvm,
620                                 struct bio_vec *biovec)
621 {
622         struct mddev *mddev = q->queuedata;
623         struct r1conf *conf = mddev->private;
624         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
625         int max = biovec->bv_len;
626
627         if (mddev->merge_check_needed) {
628                 int disk;
629                 rcu_read_lock();
630                 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
631                         struct md_rdev *rdev = rcu_dereference(
632                                 conf->mirrors[disk].rdev);
633                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
634                                 struct request_queue *q =
635                                         bdev_get_queue(rdev->bdev);
636                                 if (q->merge_bvec_fn) {
637                                         bvm->bi_sector = sector +
638                                                 rdev->data_offset;
639                                         bvm->bi_bdev = rdev->bdev;
640                                         max = min(max, q->merge_bvec_fn(
641                                                           q, bvm, biovec));
642                                 }
643                         }
644                 }
645                 rcu_read_unlock();
646         }
647         return max;
648
649 }
650
651 int md_raid1_congested(struct mddev *mddev, int bits)
652 {
653         struct r1conf *conf = mddev->private;
654         int i, ret = 0;
655
656         if ((bits & (1 << BDI_async_congested)) &&
657             conf->pending_count >= max_queued_requests)
658                 return 1;
659
660         rcu_read_lock();
661         for (i = 0; i < conf->raid_disks * 2; i++) {
662                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
663                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
664                         struct request_queue *q = bdev_get_queue(rdev->bdev);
665
666                         BUG_ON(!q);
667
668                         /* Note the '|| 1' - when read_balance prefers
669                          * non-congested targets, it can be removed
670                          */
671                         if ((bits & (1<<BDI_async_congested)) || 1)
672                                 ret |= bdi_congested(&q->backing_dev_info, bits);
673                         else
674                                 ret &= bdi_congested(&q->backing_dev_info, bits);
675                 }
676         }
677         rcu_read_unlock();
678         return ret;
679 }
680 EXPORT_SYMBOL_GPL(md_raid1_congested);
681
682 static int raid1_congested(void *data, int bits)
683 {
684         struct mddev *mddev = data;
685
686         return mddev_congested(mddev, bits) ||
687                 md_raid1_congested(mddev, bits);
688 }
689
690 static void flush_pending_writes(struct r1conf *conf)
691 {
692         /* Any writes that have been queued but are awaiting
693          * bitmap updates get flushed here.
694          */
695         spin_lock_irq(&conf->device_lock);
696
697         if (conf->pending_bio_list.head) {
698                 struct bio *bio;
699                 bio = bio_list_get(&conf->pending_bio_list);
700                 conf->pending_count = 0;
701                 spin_unlock_irq(&conf->device_lock);
702                 /* flush any pending bitmap writes to
703                  * disk before proceeding w/ I/O */
704                 bitmap_unplug(conf->mddev->bitmap);
705                 wake_up(&conf->wait_barrier);
706
707                 while (bio) { /* submit pending writes */
708                         struct bio *next = bio->bi_next;
709                         bio->bi_next = NULL;
710                         generic_make_request(bio);
711                         bio = next;
712                 }
713         } else
714                 spin_unlock_irq(&conf->device_lock);
715 }
716
717 /* Barriers....
718  * Sometimes we need to suspend IO while we do something else,
719  * either some resync/recovery, or reconfigure the array.
720  * To do this we raise a 'barrier'.
721  * The 'barrier' is a counter that can be raised multiple times
722  * to count how many activities are happening which preclude
723  * normal IO.
724  * We can only raise the barrier if there is no pending IO.
725  * i.e. if nr_pending == 0.
726  * We choose only to raise the barrier if no-one is waiting for the
727  * barrier to go down.  This means that as soon as an IO request
728  * is ready, no other operations which require a barrier will start
729  * until the IO request has had a chance.
730  *
731  * So: regular IO calls 'wait_barrier'.  When that returns there
732  *    is no backgroup IO happening,  It must arrange to call
733  *    allow_barrier when it has finished its IO.
734  * backgroup IO calls must call raise_barrier.  Once that returns
735  *    there is no normal IO happeing.  It must arrange to call
736  *    lower_barrier when the particular background IO completes.
737  */
738 #define RESYNC_DEPTH 32
739
740 static void raise_barrier(struct r1conf *conf)
741 {
742         spin_lock_irq(&conf->resync_lock);
743
744         /* Wait until no block IO is waiting */
745         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
746                             conf->resync_lock, );
747
748         /* block any new IO from starting */
749         conf->barrier++;
750
751         /* Now wait for all pending IO to complete */
752         wait_event_lock_irq(conf->wait_barrier,
753                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
754                             conf->resync_lock, );
755
756         spin_unlock_irq(&conf->resync_lock);
757 }
758
759 static void lower_barrier(struct r1conf *conf)
760 {
761         unsigned long flags;
762         BUG_ON(conf->barrier <= 0);
763         spin_lock_irqsave(&conf->resync_lock, flags);
764         conf->barrier--;
765         spin_unlock_irqrestore(&conf->resync_lock, flags);
766         wake_up(&conf->wait_barrier);
767 }
768
769 static void wait_barrier(struct r1conf *conf)
770 {
771         spin_lock_irq(&conf->resync_lock);
772         if (conf->barrier) {
773                 conf->nr_waiting++;
774                 /* Wait for the barrier to drop.
775                  * However if there are already pending
776                  * requests (preventing the barrier from
777                  * rising completely), and the
778                  * pre-process bio queue isn't empty,
779                  * then don't wait, as we need to empty
780                  * that queue to get the nr_pending
781                  * count down.
782                  */
783                 wait_event_lock_irq(conf->wait_barrier,
784                                     !conf->barrier ||
785                                     (conf->nr_pending &&
786                                      current->bio_list &&
787                                      !bio_list_empty(current->bio_list)),
788                                     conf->resync_lock,
789                         );
790                 conf->nr_waiting--;
791         }
792         conf->nr_pending++;
793         spin_unlock_irq(&conf->resync_lock);
794 }
795
796 static void allow_barrier(struct r1conf *conf)
797 {
798         unsigned long flags;
799         spin_lock_irqsave(&conf->resync_lock, flags);
800         conf->nr_pending--;
801         spin_unlock_irqrestore(&conf->resync_lock, flags);
802         wake_up(&conf->wait_barrier);
803 }
804
805 static void freeze_array(struct r1conf *conf)
806 {
807         /* stop syncio and normal IO and wait for everything to
808          * go quite.
809          * We increment barrier and nr_waiting, and then
810          * wait until nr_pending match nr_queued+1
811          * This is called in the context of one normal IO request
812          * that has failed. Thus any sync request that might be pending
813          * will be blocked by nr_pending, and we need to wait for
814          * pending IO requests to complete or be queued for re-try.
815          * Thus the number queued (nr_queued) plus this request (1)
816          * must match the number of pending IOs (nr_pending) before
817          * we continue.
818          */
819         spin_lock_irq(&conf->resync_lock);
820         conf->barrier++;
821         conf->nr_waiting++;
822         wait_event_lock_irq(conf->wait_barrier,
823                             conf->nr_pending == conf->nr_queued+1,
824                             conf->resync_lock,
825                             flush_pending_writes(conf));
826         spin_unlock_irq(&conf->resync_lock);
827 }
828 static void unfreeze_array(struct r1conf *conf)
829 {
830         /* reverse the effect of the freeze */
831         spin_lock_irq(&conf->resync_lock);
832         conf->barrier--;
833         conf->nr_waiting--;
834         wake_up(&conf->wait_barrier);
835         spin_unlock_irq(&conf->resync_lock);
836 }
837
838
839 /* duplicate the data pages for behind I/O 
840  */
841 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
842 {
843         int i;
844         struct bio_vec *bvec;
845         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
846                                         GFP_NOIO);
847         if (unlikely(!bvecs))
848                 return;
849
850         bio_for_each_segment(bvec, bio, i) {
851                 bvecs[i] = *bvec;
852                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
853                 if (unlikely(!bvecs[i].bv_page))
854                         goto do_sync_io;
855                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
856                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
857                 kunmap(bvecs[i].bv_page);
858                 kunmap(bvec->bv_page);
859         }
860         r1_bio->behind_bvecs = bvecs;
861         r1_bio->behind_page_count = bio->bi_vcnt;
862         set_bit(R1BIO_BehindIO, &r1_bio->state);
863         return;
864
865 do_sync_io:
866         for (i = 0; i < bio->bi_vcnt; i++)
867                 if (bvecs[i].bv_page)
868                         put_page(bvecs[i].bv_page);
869         kfree(bvecs);
870         pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
871 }
872
873 static void make_request(struct mddev *mddev, struct bio * bio)
874 {
875         struct r1conf *conf = mddev->private;
876         struct mirror_info *mirror;
877         struct r1bio *r1_bio;
878         struct bio *read_bio;
879         int i, disks;
880         struct bitmap *bitmap;
881         unsigned long flags;
882         const int rw = bio_data_dir(bio);
883         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
884         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
885         struct md_rdev *blocked_rdev;
886         int plugged;
887         int first_clone;
888         int sectors_handled;
889         int max_sectors;
890
891         /*
892          * Register the new request and wait if the reconstruction
893          * thread has put up a bar for new requests.
894          * Continue immediately if no resync is active currently.
895          */
896
897         md_write_start(mddev, bio); /* wait on superblock update early */
898
899         if (bio_data_dir(bio) == WRITE &&
900             bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
901             bio->bi_sector < mddev->suspend_hi) {
902                 /* As the suspend_* range is controlled by
903                  * userspace, we want an interruptible
904                  * wait.
905                  */
906                 DEFINE_WAIT(w);
907                 for (;;) {
908                         flush_signals(current);
909                         prepare_to_wait(&conf->wait_barrier,
910                                         &w, TASK_INTERRUPTIBLE);
911                         if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
912                             bio->bi_sector >= mddev->suspend_hi)
913                                 break;
914                         schedule();
915                 }
916                 finish_wait(&conf->wait_barrier, &w);
917         }
918
919         wait_barrier(conf);
920
921         bitmap = mddev->bitmap;
922
923         /*
924          * make_request() can abort the operation when READA is being
925          * used and no empty request is available.
926          *
927          */
928         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
929
930         r1_bio->master_bio = bio;
931         r1_bio->sectors = bio->bi_size >> 9;
932         r1_bio->state = 0;
933         r1_bio->mddev = mddev;
934         r1_bio->sector = bio->bi_sector;
935
936         /* We might need to issue multiple reads to different
937          * devices if there are bad blocks around, so we keep
938          * track of the number of reads in bio->bi_phys_segments.
939          * If this is 0, there is only one r1_bio and no locking
940          * will be needed when requests complete.  If it is
941          * non-zero, then it is the number of not-completed requests.
942          */
943         bio->bi_phys_segments = 0;
944         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
945
946         if (rw == READ) {
947                 /*
948                  * read balancing logic:
949                  */
950                 int rdisk;
951
952 read_again:
953                 rdisk = read_balance(conf, r1_bio, &max_sectors);
954
955                 if (rdisk < 0) {
956                         /* couldn't find anywhere to read from */
957                         raid_end_bio_io(r1_bio);
958                         return;
959                 }
960                 mirror = conf->mirrors + rdisk;
961
962                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
963                     bitmap) {
964                         /* Reading from a write-mostly device must
965                          * take care not to over-take any writes
966                          * that are 'behind'
967                          */
968                         wait_event(bitmap->behind_wait,
969                                    atomic_read(&bitmap->behind_writes) == 0);
970                 }
971                 r1_bio->read_disk = rdisk;
972
973                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
974                 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
975                             max_sectors);
976
977                 r1_bio->bios[rdisk] = read_bio;
978
979                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
980                 read_bio->bi_bdev = mirror->rdev->bdev;
981                 read_bio->bi_end_io = raid1_end_read_request;
982                 read_bio->bi_rw = READ | do_sync;
983                 read_bio->bi_private = r1_bio;
984
985                 if (max_sectors < r1_bio->sectors) {
986                         /* could not read all from this device, so we will
987                          * need another r1_bio.
988                          */
989
990                         sectors_handled = (r1_bio->sector + max_sectors
991                                            - bio->bi_sector);
992                         r1_bio->sectors = max_sectors;
993                         spin_lock_irq(&conf->device_lock);
994                         if (bio->bi_phys_segments == 0)
995                                 bio->bi_phys_segments = 2;
996                         else
997                                 bio->bi_phys_segments++;
998                         spin_unlock_irq(&conf->device_lock);
999                         /* Cannot call generic_make_request directly
1000                          * as that will be queued in __make_request
1001                          * and subsequent mempool_alloc might block waiting
1002                          * for it.  So hand bio over to raid1d.
1003                          */
1004                         reschedule_retry(r1_bio);
1005
1006                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1007
1008                         r1_bio->master_bio = bio;
1009                         r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1010                         r1_bio->state = 0;
1011                         r1_bio->mddev = mddev;
1012                         r1_bio->sector = bio->bi_sector + sectors_handled;
1013                         goto read_again;
1014                 } else
1015                         generic_make_request(read_bio);
1016                 return;
1017         }
1018
1019         /*
1020          * WRITE:
1021          */
1022         if (conf->pending_count >= max_queued_requests) {
1023                 md_wakeup_thread(mddev->thread);
1024                 wait_event(conf->wait_barrier,
1025                            conf->pending_count < max_queued_requests);
1026         }
1027         /* first select target devices under rcu_lock and
1028          * inc refcount on their rdev.  Record them by setting
1029          * bios[x] to bio
1030          * If there are known/acknowledged bad blocks on any device on
1031          * which we have seen a write error, we want to avoid writing those
1032          * blocks.
1033          * This potentially requires several writes to write around
1034          * the bad blocks.  Each set of writes gets it's own r1bio
1035          * with a set of bios attached.
1036          */
1037         plugged = mddev_check_plugged(mddev);
1038
1039         disks = conf->raid_disks * 2;
1040  retry_write:
1041         blocked_rdev = NULL;
1042         rcu_read_lock();
1043         max_sectors = r1_bio->sectors;
1044         for (i = 0;  i < disks; i++) {
1045                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1046                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1047                         atomic_inc(&rdev->nr_pending);
1048                         blocked_rdev = rdev;
1049                         break;
1050                 }
1051                 r1_bio->bios[i] = NULL;
1052                 if (!rdev || test_bit(Faulty, &rdev->flags)
1053                     || test_bit(Unmerged, &rdev->flags)) {
1054                         if (i < conf->raid_disks)
1055                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1056                         continue;
1057                 }
1058
1059                 atomic_inc(&rdev->nr_pending);
1060                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1061                         sector_t first_bad;
1062                         int bad_sectors;
1063                         int is_bad;
1064
1065                         is_bad = is_badblock(rdev, r1_bio->sector,
1066                                              max_sectors,
1067                                              &first_bad, &bad_sectors);
1068                         if (is_bad < 0) {
1069                                 /* mustn't write here until the bad block is
1070                                  * acknowledged*/
1071                                 set_bit(BlockedBadBlocks, &rdev->flags);
1072                                 blocked_rdev = rdev;
1073                                 break;
1074                         }
1075                         if (is_bad && first_bad <= r1_bio->sector) {
1076                                 /* Cannot write here at all */
1077                                 bad_sectors -= (r1_bio->sector - first_bad);
1078                                 if (bad_sectors < max_sectors)
1079                                         /* mustn't write more than bad_sectors
1080                                          * to other devices yet
1081                                          */
1082                                         max_sectors = bad_sectors;
1083                                 rdev_dec_pending(rdev, mddev);
1084                                 /* We don't set R1BIO_Degraded as that
1085                                  * only applies if the disk is
1086                                  * missing, so it might be re-added,
1087                                  * and we want to know to recover this
1088                                  * chunk.
1089                                  * In this case the device is here,
1090                                  * and the fact that this chunk is not
1091                                  * in-sync is recorded in the bad
1092                                  * block log
1093                                  */
1094                                 continue;
1095                         }
1096                         if (is_bad) {
1097                                 int good_sectors = first_bad - r1_bio->sector;
1098                                 if (good_sectors < max_sectors)
1099                                         max_sectors = good_sectors;
1100                         }
1101                 }
1102                 r1_bio->bios[i] = bio;
1103         }
1104         rcu_read_unlock();
1105
1106         if (unlikely(blocked_rdev)) {
1107                 /* Wait for this device to become unblocked */
1108                 int j;
1109
1110                 for (j = 0; j < i; j++)
1111                         if (r1_bio->bios[j])
1112                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1113                 r1_bio->state = 0;
1114                 allow_barrier(conf);
1115                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1116                 wait_barrier(conf);
1117                 goto retry_write;
1118         }
1119
1120         if (max_sectors < r1_bio->sectors) {
1121                 /* We are splitting this write into multiple parts, so
1122                  * we need to prepare for allocating another r1_bio.
1123                  */
1124                 r1_bio->sectors = max_sectors;
1125                 spin_lock_irq(&conf->device_lock);
1126                 if (bio->bi_phys_segments == 0)
1127                         bio->bi_phys_segments = 2;
1128                 else
1129                         bio->bi_phys_segments++;
1130                 spin_unlock_irq(&conf->device_lock);
1131         }
1132         sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1133
1134         atomic_set(&r1_bio->remaining, 1);
1135         atomic_set(&r1_bio->behind_remaining, 0);
1136
1137         first_clone = 1;
1138         for (i = 0; i < disks; i++) {
1139                 struct bio *mbio;
1140                 if (!r1_bio->bios[i])
1141                         continue;
1142
1143                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1144                 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1145
1146                 if (first_clone) {
1147                         /* do behind I/O ?
1148                          * Not if there are too many, or cannot
1149                          * allocate memory, or a reader on WriteMostly
1150                          * is waiting for behind writes to flush */
1151                         if (bitmap &&
1152                             (atomic_read(&bitmap->behind_writes)
1153                              < mddev->bitmap_info.max_write_behind) &&
1154                             !waitqueue_active(&bitmap->behind_wait))
1155                                 alloc_behind_pages(mbio, r1_bio);
1156
1157                         bitmap_startwrite(bitmap, r1_bio->sector,
1158                                           r1_bio->sectors,
1159                                           test_bit(R1BIO_BehindIO,
1160                                                    &r1_bio->state));
1161                         first_clone = 0;
1162                 }
1163                 if (r1_bio->behind_bvecs) {
1164                         struct bio_vec *bvec;
1165                         int j;
1166
1167                         /* Yes, I really want the '__' version so that
1168                          * we clear any unused pointer in the io_vec, rather
1169                          * than leave them unchanged.  This is important
1170                          * because when we come to free the pages, we won't
1171                          * know the original bi_idx, so we just free
1172                          * them all
1173                          */
1174                         __bio_for_each_segment(bvec, mbio, j, 0)
1175                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1176                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1177                                 atomic_inc(&r1_bio->behind_remaining);
1178                 }
1179
1180                 r1_bio->bios[i] = mbio;
1181
1182                 mbio->bi_sector = (r1_bio->sector +
1183                                    conf->mirrors[i].rdev->data_offset);
1184                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1185                 mbio->bi_end_io = raid1_end_write_request;
1186                 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1187                 mbio->bi_private = r1_bio;
1188
1189                 atomic_inc(&r1_bio->remaining);
1190                 spin_lock_irqsave(&conf->device_lock, flags);
1191                 bio_list_add(&conf->pending_bio_list, mbio);
1192                 conf->pending_count++;
1193                 spin_unlock_irqrestore(&conf->device_lock, flags);
1194         }
1195         /* Mustn't call r1_bio_write_done before this next test,
1196          * as it could result in the bio being freed.
1197          */
1198         if (sectors_handled < (bio->bi_size >> 9)) {
1199                 r1_bio_write_done(r1_bio);
1200                 /* We need another r1_bio.  It has already been counted
1201                  * in bio->bi_phys_segments
1202                  */
1203                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1204                 r1_bio->master_bio = bio;
1205                 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1206                 r1_bio->state = 0;
1207                 r1_bio->mddev = mddev;
1208                 r1_bio->sector = bio->bi_sector + sectors_handled;
1209                 goto retry_write;
1210         }
1211
1212         r1_bio_write_done(r1_bio);
1213
1214         /* In case raid1d snuck in to freeze_array */
1215         wake_up(&conf->wait_barrier);
1216
1217         if (do_sync || !bitmap || !plugged)
1218                 md_wakeup_thread(mddev->thread);
1219 }
1220
1221 static void status(struct seq_file *seq, struct mddev *mddev)
1222 {
1223         struct r1conf *conf = mddev->private;
1224         int i;
1225
1226         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1227                    conf->raid_disks - mddev->degraded);
1228         rcu_read_lock();
1229         for (i = 0; i < conf->raid_disks; i++) {
1230                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1231                 seq_printf(seq, "%s",
1232                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1233         }
1234         rcu_read_unlock();
1235         seq_printf(seq, "]");
1236 }
1237
1238
1239 static void error(struct mddev *mddev, struct md_rdev *rdev)
1240 {
1241         char b[BDEVNAME_SIZE];
1242         struct r1conf *conf = mddev->private;
1243
1244         /*
1245          * If it is not operational, then we have already marked it as dead
1246          * else if it is the last working disks, ignore the error, let the
1247          * next level up know.
1248          * else mark the drive as failed
1249          */
1250         if (test_bit(In_sync, &rdev->flags)
1251             && (conf->raid_disks - mddev->degraded) == 1) {
1252                 /*
1253                  * Don't fail the drive, act as though we were just a
1254                  * normal single drive.
1255                  * However don't try a recovery from this drive as
1256                  * it is very likely to fail.
1257                  */
1258                 conf->recovery_disabled = mddev->recovery_disabled;
1259                 return;
1260         }
1261         set_bit(Blocked, &rdev->flags);
1262         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1263                 unsigned long flags;
1264                 spin_lock_irqsave(&conf->device_lock, flags);
1265                 mddev->degraded++;
1266                 set_bit(Faulty, &rdev->flags);
1267                 spin_unlock_irqrestore(&conf->device_lock, flags);
1268                 /*
1269                  * if recovery is running, make sure it aborts.
1270                  */
1271                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1272         } else
1273                 set_bit(Faulty, &rdev->flags);
1274         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1275         printk(KERN_ALERT
1276                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1277                "md/raid1:%s: Operation continuing on %d devices.\n",
1278                mdname(mddev), bdevname(rdev->bdev, b),
1279                mdname(mddev), conf->raid_disks - mddev->degraded);
1280 }
1281
1282 static void print_conf(struct r1conf *conf)
1283 {
1284         int i;
1285
1286         printk(KERN_DEBUG "RAID1 conf printout:\n");
1287         if (!conf) {
1288                 printk(KERN_DEBUG "(!conf)\n");
1289                 return;
1290         }
1291         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1292                 conf->raid_disks);
1293
1294         rcu_read_lock();
1295         for (i = 0; i < conf->raid_disks; i++) {
1296                 char b[BDEVNAME_SIZE];
1297                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1298                 if (rdev)
1299                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1300                                i, !test_bit(In_sync, &rdev->flags),
1301                                !test_bit(Faulty, &rdev->flags),
1302                                bdevname(rdev->bdev,b));
1303         }
1304         rcu_read_unlock();
1305 }
1306
1307 static void close_sync(struct r1conf *conf)
1308 {
1309         wait_barrier(conf);
1310         allow_barrier(conf);
1311
1312         mempool_destroy(conf->r1buf_pool);
1313         conf->r1buf_pool = NULL;
1314 }
1315
1316 static int raid1_spare_active(struct mddev *mddev)
1317 {
1318         int i;
1319         struct r1conf *conf = mddev->private;
1320         int count = 0;
1321         unsigned long flags;
1322
1323         /*
1324          * Find all failed disks within the RAID1 configuration 
1325          * and mark them readable.
1326          * Called under mddev lock, so rcu protection not needed.
1327          */
1328         for (i = 0; i < conf->raid_disks; i++) {
1329                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1330                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1331                 if (repl
1332                     && repl->recovery_offset == MaxSector
1333                     && !test_bit(Faulty, &repl->flags)
1334                     && !test_and_set_bit(In_sync, &repl->flags)) {
1335                         /* replacement has just become active */
1336                         if (!rdev ||
1337                             !test_and_clear_bit(In_sync, &rdev->flags))
1338                                 count++;
1339                         if (rdev) {
1340                                 /* Replaced device not technically
1341                                  * faulty, but we need to be sure
1342                                  * it gets removed and never re-added
1343                                  */
1344                                 set_bit(Faulty, &rdev->flags);
1345                                 sysfs_notify_dirent_safe(
1346                                         rdev->sysfs_state);
1347                         }
1348                 }
1349                 if (rdev
1350                     && !test_bit(Faulty, &rdev->flags)
1351                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1352                         count++;
1353                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1354                 }
1355         }
1356         spin_lock_irqsave(&conf->device_lock, flags);
1357         mddev->degraded -= count;
1358         spin_unlock_irqrestore(&conf->device_lock, flags);
1359
1360         print_conf(conf);
1361         return count;
1362 }
1363
1364
1365 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1366 {
1367         struct r1conf *conf = mddev->private;
1368         int err = -EEXIST;
1369         int mirror = 0;
1370         struct mirror_info *p;
1371         int first = 0;
1372         int last = conf->raid_disks - 1;
1373         struct request_queue *q = bdev_get_queue(rdev->bdev);
1374
1375         if (mddev->recovery_disabled == conf->recovery_disabled)
1376                 return -EBUSY;
1377
1378         if (rdev->raid_disk >= 0)
1379                 first = last = rdev->raid_disk;
1380
1381         if (q->merge_bvec_fn) {
1382                 set_bit(Unmerged, &rdev->flags);
1383                 mddev->merge_check_needed = 1;
1384         }
1385
1386         for (mirror = first; mirror <= last; mirror++) {
1387                 p = conf->mirrors+mirror;
1388                 if (!p->rdev) {
1389
1390                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1391                                           rdev->data_offset << 9);
1392
1393                         p->head_position = 0;
1394                         rdev->raid_disk = mirror;
1395                         err = 0;
1396                         /* As all devices are equivalent, we don't need a full recovery
1397                          * if this was recently any drive of the array
1398                          */
1399                         if (rdev->saved_raid_disk < 0)
1400                                 conf->fullsync = 1;
1401                         rcu_assign_pointer(p->rdev, rdev);
1402                         break;
1403                 }
1404                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1405                     p[conf->raid_disks].rdev == NULL) {
1406                         /* Add this device as a replacement */
1407                         clear_bit(In_sync, &rdev->flags);
1408                         set_bit(Replacement, &rdev->flags);
1409                         rdev->raid_disk = mirror;
1410                         err = 0;
1411                         conf->fullsync = 1;
1412                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1413                         break;
1414                 }
1415         }
1416         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1417                 /* Some requests might not have seen this new
1418                  * merge_bvec_fn.  We must wait for them to complete
1419                  * before merging the device fully.
1420                  * First we make sure any code which has tested
1421                  * our function has submitted the request, then
1422                  * we wait for all outstanding requests to complete.
1423                  */
1424                 synchronize_sched();
1425                 raise_barrier(conf);
1426                 lower_barrier(conf);
1427                 clear_bit(Unmerged, &rdev->flags);
1428         }
1429         md_integrity_add_rdev(rdev, mddev);
1430         print_conf(conf);
1431         return err;
1432 }
1433
1434 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1435 {
1436         struct r1conf *conf = mddev->private;
1437         int err = 0;
1438         int number = rdev->raid_disk;
1439         struct mirror_info *p = conf->mirrors+ number;
1440
1441         if (rdev != p->rdev)
1442                 p = conf->mirrors + conf->raid_disks + number;
1443
1444         print_conf(conf);
1445         if (rdev == p->rdev) {
1446                 if (test_bit(In_sync, &rdev->flags) ||
1447                     atomic_read(&rdev->nr_pending)) {
1448                         err = -EBUSY;
1449                         goto abort;
1450                 }
1451                 /* Only remove non-faulty devices if recovery
1452                  * is not possible.
1453                  */
1454                 if (!test_bit(Faulty, &rdev->flags) &&
1455                     mddev->recovery_disabled != conf->recovery_disabled &&
1456                     mddev->degraded < conf->raid_disks) {
1457                         err = -EBUSY;
1458                         goto abort;
1459                 }
1460                 p->rdev = NULL;
1461                 synchronize_rcu();
1462                 if (atomic_read(&rdev->nr_pending)) {
1463                         /* lost the race, try later */
1464                         err = -EBUSY;
1465                         p->rdev = rdev;
1466                         goto abort;
1467                 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1468                         /* We just removed a device that is being replaced.
1469                          * Move down the replacement.  We drain all IO before
1470                          * doing this to avoid confusion.
1471                          */
1472                         struct md_rdev *repl =
1473                                 conf->mirrors[conf->raid_disks + number].rdev;
1474                         raise_barrier(conf);
1475                         clear_bit(Replacement, &repl->flags);
1476                         p->rdev = repl;
1477                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1478                         lower_barrier(conf);
1479                         clear_bit(WantReplacement, &rdev->flags);
1480                 } else
1481                         clear_bit(WantReplacement, &rdev->flags);
1482                 err = md_integrity_register(mddev);
1483         }
1484 abort:
1485
1486         print_conf(conf);
1487         return err;
1488 }
1489
1490
1491 static void end_sync_read(struct bio *bio, int error)
1492 {
1493         struct r1bio *r1_bio = bio->bi_private;
1494
1495         update_head_pos(r1_bio->read_disk, r1_bio);
1496
1497         /*
1498          * we have read a block, now it needs to be re-written,
1499          * or re-read if the read failed.
1500          * We don't do much here, just schedule handling by raid1d
1501          */
1502         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1503                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1504
1505         if (atomic_dec_and_test(&r1_bio->remaining))
1506                 reschedule_retry(r1_bio);
1507 }
1508
1509 static void end_sync_write(struct bio *bio, int error)
1510 {
1511         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1512         struct r1bio *r1_bio = bio->bi_private;
1513         struct mddev *mddev = r1_bio->mddev;
1514         struct r1conf *conf = mddev->private;
1515         int mirror=0;
1516         sector_t first_bad;
1517         int bad_sectors;
1518
1519         mirror = find_bio_disk(r1_bio, bio);
1520
1521         if (!uptodate) {
1522                 sector_t sync_blocks = 0;
1523                 sector_t s = r1_bio->sector;
1524                 long sectors_to_go = r1_bio->sectors;
1525                 /* make sure these bits doesn't get cleared. */
1526                 do {
1527                         bitmap_end_sync(mddev->bitmap, s,
1528                                         &sync_blocks, 1);
1529                         s += sync_blocks;
1530                         sectors_to_go -= sync_blocks;
1531                 } while (sectors_to_go > 0);
1532                 set_bit(WriteErrorSeen,
1533                         &conf->mirrors[mirror].rdev->flags);
1534                 if (!test_and_set_bit(WantReplacement,
1535                                       &conf->mirrors[mirror].rdev->flags))
1536                         set_bit(MD_RECOVERY_NEEDED, &
1537                                 mddev->recovery);
1538                 set_bit(R1BIO_WriteError, &r1_bio->state);
1539         } else if (is_badblock(conf->mirrors[mirror].rdev,
1540                                r1_bio->sector,
1541                                r1_bio->sectors,
1542                                &first_bad, &bad_sectors) &&
1543                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1544                                 r1_bio->sector,
1545                                 r1_bio->sectors,
1546                                 &first_bad, &bad_sectors)
1547                 )
1548                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1549
1550         if (atomic_dec_and_test(&r1_bio->remaining)) {
1551                 int s = r1_bio->sectors;
1552                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1553                     test_bit(R1BIO_WriteError, &r1_bio->state))
1554                         reschedule_retry(r1_bio);
1555                 else {
1556                         put_buf(r1_bio);
1557                         md_done_sync(mddev, s, uptodate);
1558                 }
1559         }
1560 }
1561
1562 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1563                             int sectors, struct page *page, int rw)
1564 {
1565         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1566                 /* success */
1567                 return 1;
1568         if (rw == WRITE) {
1569                 set_bit(WriteErrorSeen, &rdev->flags);
1570                 if (!test_and_set_bit(WantReplacement,
1571                                       &rdev->flags))
1572                         set_bit(MD_RECOVERY_NEEDED, &
1573                                 rdev->mddev->recovery);
1574         }
1575         /* need to record an error - either for the block or the device */
1576         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1577                 md_error(rdev->mddev, rdev);
1578         return 0;
1579 }
1580
1581 static int fix_sync_read_error(struct r1bio *r1_bio)
1582 {
1583         /* Try some synchronous reads of other devices to get
1584          * good data, much like with normal read errors.  Only
1585          * read into the pages we already have so we don't
1586          * need to re-issue the read request.
1587          * We don't need to freeze the array, because being in an
1588          * active sync request, there is no normal IO, and
1589          * no overlapping syncs.
1590          * We don't need to check is_badblock() again as we
1591          * made sure that anything with a bad block in range
1592          * will have bi_end_io clear.
1593          */
1594         struct mddev *mddev = r1_bio->mddev;
1595         struct r1conf *conf = mddev->private;
1596         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1597         sector_t sect = r1_bio->sector;
1598         int sectors = r1_bio->sectors;
1599         int idx = 0;
1600
1601         while(sectors) {
1602                 int s = sectors;
1603                 int d = r1_bio->read_disk;
1604                 int success = 0;
1605                 struct md_rdev *rdev;
1606                 int start;
1607
1608                 if (s > (PAGE_SIZE>>9))
1609                         s = PAGE_SIZE >> 9;
1610                 do {
1611                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1612                                 /* No rcu protection needed here devices
1613                                  * can only be removed when no resync is
1614                                  * active, and resync is currently active
1615                                  */
1616                                 rdev = conf->mirrors[d].rdev;
1617                                 if (sync_page_io(rdev, sect, s<<9,
1618                                                  bio->bi_io_vec[idx].bv_page,
1619                                                  READ, false)) {
1620                                         success = 1;
1621                                         break;
1622                                 }
1623                         }
1624                         d++;
1625                         if (d == conf->raid_disks * 2)
1626                                 d = 0;
1627                 } while (!success && d != r1_bio->read_disk);
1628
1629                 if (!success) {
1630                         char b[BDEVNAME_SIZE];
1631                         int abort = 0;
1632                         /* Cannot read from anywhere, this block is lost.
1633                          * Record a bad block on each device.  If that doesn't
1634                          * work just disable and interrupt the recovery.
1635                          * Don't fail devices as that won't really help.
1636                          */
1637                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1638                                " for block %llu\n",
1639                                mdname(mddev),
1640                                bdevname(bio->bi_bdev, b),
1641                                (unsigned long long)r1_bio->sector);
1642                         for (d = 0; d < conf->raid_disks * 2; d++) {
1643                                 rdev = conf->mirrors[d].rdev;
1644                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1645                                         continue;
1646                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1647                                         abort = 1;
1648                         }
1649                         if (abort) {
1650                                 conf->recovery_disabled =
1651                                         mddev->recovery_disabled;
1652                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1653                                 md_done_sync(mddev, r1_bio->sectors, 0);
1654                                 put_buf(r1_bio);
1655                                 return 0;
1656                         }
1657                         /* Try next page */
1658                         sectors -= s;
1659                         sect += s;
1660                         idx++;
1661                         continue;
1662                 }
1663
1664                 start = d;
1665                 /* write it back and re-read */
1666                 while (d != r1_bio->read_disk) {
1667                         if (d == 0)
1668                                 d = conf->raid_disks * 2;
1669                         d--;
1670                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1671                                 continue;
1672                         rdev = conf->mirrors[d].rdev;
1673                         if (r1_sync_page_io(rdev, sect, s,
1674                                             bio->bi_io_vec[idx].bv_page,
1675                                             WRITE) == 0) {
1676                                 r1_bio->bios[d]->bi_end_io = NULL;
1677                                 rdev_dec_pending(rdev, mddev);
1678                         }
1679                 }
1680                 d = start;
1681                 while (d != r1_bio->read_disk) {
1682                         if (d == 0)
1683                                 d = conf->raid_disks * 2;
1684                         d--;
1685                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1686                                 continue;
1687                         rdev = conf->mirrors[d].rdev;
1688                         if (r1_sync_page_io(rdev, sect, s,
1689                                             bio->bi_io_vec[idx].bv_page,
1690                                             READ) != 0)
1691                                 atomic_add(s, &rdev->corrected_errors);
1692                 }
1693                 sectors -= s;
1694                 sect += s;
1695                 idx ++;
1696         }
1697         set_bit(R1BIO_Uptodate, &r1_bio->state);
1698         set_bit(BIO_UPTODATE, &bio->bi_flags);
1699         return 1;
1700 }
1701
1702 static int process_checks(struct r1bio *r1_bio)
1703 {
1704         /* We have read all readable devices.  If we haven't
1705          * got the block, then there is no hope left.
1706          * If we have, then we want to do a comparison
1707          * and skip the write if everything is the same.
1708          * If any blocks failed to read, then we need to
1709          * attempt an over-write
1710          */
1711         struct mddev *mddev = r1_bio->mddev;
1712         struct r1conf *conf = mddev->private;
1713         int primary;
1714         int i;
1715         int vcnt;
1716
1717         for (primary = 0; primary < conf->raid_disks * 2; primary++)
1718                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1719                     test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1720                         r1_bio->bios[primary]->bi_end_io = NULL;
1721                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1722                         break;
1723                 }
1724         r1_bio->read_disk = primary;
1725         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1726         for (i = 0; i < conf->raid_disks * 2; i++) {
1727                 int j;
1728                 struct bio *pbio = r1_bio->bios[primary];
1729                 struct bio *sbio = r1_bio->bios[i];
1730                 int size;
1731
1732                 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1733                         continue;
1734
1735                 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1736                         for (j = vcnt; j-- ; ) {
1737                                 struct page *p, *s;
1738                                 p = pbio->bi_io_vec[j].bv_page;
1739                                 s = sbio->bi_io_vec[j].bv_page;
1740                                 if (memcmp(page_address(p),
1741                                            page_address(s),
1742                                            sbio->bi_io_vec[j].bv_len))
1743                                         break;
1744                         }
1745                 } else
1746                         j = 0;
1747                 if (j >= 0)
1748                         mddev->resync_mismatches += r1_bio->sectors;
1749                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1750                               && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1751                         /* No need to write to this device. */
1752                         sbio->bi_end_io = NULL;
1753                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1754                         continue;
1755                 }
1756                 /* fixup the bio for reuse */
1757                 sbio->bi_vcnt = vcnt;
1758                 sbio->bi_size = r1_bio->sectors << 9;
1759                 sbio->bi_idx = 0;
1760                 sbio->bi_phys_segments = 0;
1761                 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1762                 sbio->bi_flags |= 1 << BIO_UPTODATE;
1763                 sbio->bi_next = NULL;
1764                 sbio->bi_sector = r1_bio->sector +
1765                         conf->mirrors[i].rdev->data_offset;
1766                 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1767                 size = sbio->bi_size;
1768                 for (j = 0; j < vcnt ; j++) {
1769                         struct bio_vec *bi;
1770                         bi = &sbio->bi_io_vec[j];
1771                         bi->bv_offset = 0;
1772                         if (size > PAGE_SIZE)
1773                                 bi->bv_len = PAGE_SIZE;
1774                         else
1775                                 bi->bv_len = size;
1776                         size -= PAGE_SIZE;
1777                         memcpy(page_address(bi->bv_page),
1778                                page_address(pbio->bi_io_vec[j].bv_page),
1779                                PAGE_SIZE);
1780                 }
1781         }
1782         return 0;
1783 }
1784
1785 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1786 {
1787         struct r1conf *conf = mddev->private;
1788         int i;
1789         int disks = conf->raid_disks * 2;
1790         struct bio *bio, *wbio;
1791
1792         bio = r1_bio->bios[r1_bio->read_disk];
1793
1794         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1795                 /* ouch - failed to read all of that. */
1796                 if (!fix_sync_read_error(r1_bio))
1797                         return;
1798
1799         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1800                 if (process_checks(r1_bio) < 0)
1801                         return;
1802         /*
1803          * schedule writes
1804          */
1805         atomic_set(&r1_bio->remaining, 1);
1806         for (i = 0; i < disks ; i++) {
1807                 wbio = r1_bio->bios[i];
1808                 if (wbio->bi_end_io == NULL ||
1809                     (wbio->bi_end_io == end_sync_read &&
1810                      (i == r1_bio->read_disk ||
1811                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1812                         continue;
1813
1814                 wbio->bi_rw = WRITE;
1815                 wbio->bi_end_io = end_sync_write;
1816                 atomic_inc(&r1_bio->remaining);
1817                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1818
1819                 generic_make_request(wbio);
1820         }
1821
1822         if (atomic_dec_and_test(&r1_bio->remaining)) {
1823                 /* if we're here, all write(s) have completed, so clean up */
1824                 md_done_sync(mddev, r1_bio->sectors, 1);
1825                 put_buf(r1_bio);
1826         }
1827 }
1828
1829 /*
1830  * This is a kernel thread which:
1831  *
1832  *      1.      Retries failed read operations on working mirrors.
1833  *      2.      Updates the raid superblock when problems encounter.
1834  *      3.      Performs writes following reads for array synchronising.
1835  */
1836
1837 static void fix_read_error(struct r1conf *conf, int read_disk,
1838                            sector_t sect, int sectors)
1839 {
1840         struct mddev *mddev = conf->mddev;
1841         while(sectors) {
1842                 int s = sectors;
1843                 int d = read_disk;
1844                 int success = 0;
1845                 int start;
1846                 struct md_rdev *rdev;
1847
1848                 if (s > (PAGE_SIZE>>9))
1849                         s = PAGE_SIZE >> 9;
1850
1851                 do {
1852                         /* Note: no rcu protection needed here
1853                          * as this is synchronous in the raid1d thread
1854                          * which is the thread that might remove
1855                          * a device.  If raid1d ever becomes multi-threaded....
1856                          */
1857                         sector_t first_bad;
1858                         int bad_sectors;
1859
1860                         rdev = conf->mirrors[d].rdev;
1861                         if (rdev &&
1862                             (test_bit(In_sync, &rdev->flags) ||
1863                              (!test_bit(Faulty, &rdev->flags) &&
1864                               rdev->recovery_offset >= sect + s)) &&
1865                             is_badblock(rdev, sect, s,
1866                                         &first_bad, &bad_sectors) == 0 &&
1867                             sync_page_io(rdev, sect, s<<9,
1868                                          conf->tmppage, READ, false))
1869                                 success = 1;
1870                         else {
1871                                 d++;
1872                                 if (d == conf->raid_disks * 2)
1873                                         d = 0;
1874                         }
1875                 } while (!success && d != read_disk);
1876
1877                 if (!success) {
1878                         /* Cannot read from anywhere - mark it bad */
1879                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1880                         if (!rdev_set_badblocks(rdev, sect, s, 0))
1881                                 md_error(mddev, rdev);
1882                         break;
1883                 }
1884                 /* write it back and re-read */
1885                 start = d;
1886                 while (d != read_disk) {
1887                         if (d==0)
1888                                 d = conf->raid_disks * 2;
1889                         d--;
1890                         rdev = conf->mirrors[d].rdev;
1891                         if (rdev &&
1892                             test_bit(In_sync, &rdev->flags))
1893                                 r1_sync_page_io(rdev, sect, s,
1894                                                 conf->tmppage, WRITE);
1895                 }
1896                 d = start;
1897                 while (d != read_disk) {
1898                         char b[BDEVNAME_SIZE];
1899                         if (d==0)
1900                                 d = conf->raid_disks * 2;
1901                         d--;
1902                         rdev = conf->mirrors[d].rdev;
1903                         if (rdev &&
1904                             test_bit(In_sync, &rdev->flags)) {
1905                                 if (r1_sync_page_io(rdev, sect, s,
1906                                                     conf->tmppage, READ)) {
1907                                         atomic_add(s, &rdev->corrected_errors);
1908                                         printk(KERN_INFO
1909                                                "md/raid1:%s: read error corrected "
1910                                                "(%d sectors at %llu on %s)\n",
1911                                                mdname(mddev), s,
1912                                                (unsigned long long)(sect +
1913                                                    rdev->data_offset),
1914                                                bdevname(rdev->bdev, b));
1915                                 }
1916                         }
1917                 }
1918                 sectors -= s;
1919                 sect += s;
1920         }
1921 }
1922
1923 static void bi_complete(struct bio *bio, int error)
1924 {
1925         complete((struct completion *)bio->bi_private);
1926 }
1927
1928 static int submit_bio_wait(int rw, struct bio *bio)
1929 {
1930         struct completion event;
1931         rw |= REQ_SYNC;
1932
1933         init_completion(&event);
1934         bio->bi_private = &event;
1935         bio->bi_end_io = bi_complete;
1936         submit_bio(rw, bio);
1937         wait_for_completion(&event);
1938
1939         return test_bit(BIO_UPTODATE, &bio->bi_flags);
1940 }
1941
1942 static int narrow_write_error(struct r1bio *r1_bio, int i)
1943 {
1944         struct mddev *mddev = r1_bio->mddev;
1945         struct r1conf *conf = mddev->private;
1946         struct md_rdev *rdev = conf->mirrors[i].rdev;
1947         int vcnt, idx;
1948         struct bio_vec *vec;
1949
1950         /* bio has the data to be written to device 'i' where
1951          * we just recently had a write error.
1952          * We repeatedly clone the bio and trim down to one block,
1953          * then try the write.  Where the write fails we record
1954          * a bad block.
1955          * It is conceivable that the bio doesn't exactly align with
1956          * blocks.  We must handle this somehow.
1957          *
1958          * We currently own a reference on the rdev.
1959          */
1960
1961         int block_sectors;
1962         sector_t sector;
1963         int sectors;
1964         int sect_to_write = r1_bio->sectors;
1965         int ok = 1;
1966
1967         if (rdev->badblocks.shift < 0)
1968                 return 0;
1969
1970         block_sectors = 1 << rdev->badblocks.shift;
1971         sector = r1_bio->sector;
1972         sectors = ((sector + block_sectors)
1973                    & ~(sector_t)(block_sectors - 1))
1974                 - sector;
1975
1976         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1977                 vcnt = r1_bio->behind_page_count;
1978                 vec = r1_bio->behind_bvecs;
1979                 idx = 0;
1980                 while (vec[idx].bv_page == NULL)
1981                         idx++;
1982         } else {
1983                 vcnt = r1_bio->master_bio->bi_vcnt;
1984                 vec = r1_bio->master_bio->bi_io_vec;
1985                 idx = r1_bio->master_bio->bi_idx;
1986         }
1987         while (sect_to_write) {
1988                 struct bio *wbio;
1989                 if (sectors > sect_to_write)
1990                         sectors = sect_to_write;
1991                 /* Write at 'sector' for 'sectors'*/
1992
1993                 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1994                 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1995                 wbio->bi_sector = r1_bio->sector;
1996                 wbio->bi_rw = WRITE;
1997                 wbio->bi_vcnt = vcnt;
1998                 wbio->bi_size = r1_bio->sectors << 9;
1999                 wbio->bi_idx = idx;
2000
2001                 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2002                 wbio->bi_sector += rdev->data_offset;
2003                 wbio->bi_bdev = rdev->bdev;
2004                 if (submit_bio_wait(WRITE, wbio) == 0)
2005                         /* failure! */
2006                         ok = rdev_set_badblocks(rdev, sector,
2007                                                 sectors, 0)
2008                                 && ok;
2009
2010                 bio_put(wbio);
2011                 sect_to_write -= sectors;
2012                 sector += sectors;
2013                 sectors = block_sectors;
2014         }
2015         return ok;
2016 }
2017
2018 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2019 {
2020         int m;
2021         int s = r1_bio->sectors;
2022         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2023                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2024                 struct bio *bio = r1_bio->bios[m];
2025                 if (bio->bi_end_io == NULL)
2026                         continue;
2027                 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2028                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2029                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2030                 }
2031                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2032                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2033                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2034                                 md_error(conf->mddev, rdev);
2035                 }
2036         }
2037         put_buf(r1_bio);
2038         md_done_sync(conf->mddev, s, 1);
2039 }
2040
2041 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2042 {
2043         int m;
2044         for (m = 0; m < conf->raid_disks * 2 ; m++)
2045                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2046                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2047                         rdev_clear_badblocks(rdev,
2048                                              r1_bio->sector,
2049                                              r1_bio->sectors, 0);
2050                         rdev_dec_pending(rdev, conf->mddev);
2051                 } else if (r1_bio->bios[m] != NULL) {
2052                         /* This drive got a write error.  We need to
2053                          * narrow down and record precise write
2054                          * errors.
2055                          */
2056                         if (!narrow_write_error(r1_bio, m)) {
2057                                 md_error(conf->mddev,
2058                                          conf->mirrors[m].rdev);
2059                                 /* an I/O failed, we can't clear the bitmap */
2060                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2061                         }
2062                         rdev_dec_pending(conf->mirrors[m].rdev,
2063                                          conf->mddev);
2064                 }
2065         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2066                 close_write(r1_bio);
2067         raid_end_bio_io(r1_bio);
2068 }
2069
2070 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2071 {
2072         int disk;
2073         int max_sectors;
2074         struct mddev *mddev = conf->mddev;
2075         struct bio *bio;
2076         char b[BDEVNAME_SIZE];
2077         struct md_rdev *rdev;
2078
2079         clear_bit(R1BIO_ReadError, &r1_bio->state);
2080         /* we got a read error. Maybe the drive is bad.  Maybe just
2081          * the block and we can fix it.
2082          * We freeze all other IO, and try reading the block from
2083          * other devices.  When we find one, we re-write
2084          * and check it that fixes the read error.
2085          * This is all done synchronously while the array is
2086          * frozen
2087          */
2088         if (mddev->ro == 0) {
2089                 freeze_array(conf);
2090                 fix_read_error(conf, r1_bio->read_disk,
2091                                r1_bio->sector, r1_bio->sectors);
2092                 unfreeze_array(conf);
2093         } else
2094                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2095
2096         bio = r1_bio->bios[r1_bio->read_disk];
2097         bdevname(bio->bi_bdev, b);
2098 read_more:
2099         disk = read_balance(conf, r1_bio, &max_sectors);
2100         if (disk == -1) {
2101                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2102                        " read error for block %llu\n",
2103                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2104                 raid_end_bio_io(r1_bio);
2105         } else {
2106                 const unsigned long do_sync
2107                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2108                 if (bio) {
2109                         r1_bio->bios[r1_bio->read_disk] =
2110                                 mddev->ro ? IO_BLOCKED : NULL;
2111                         bio_put(bio);
2112                 }
2113                 r1_bio->read_disk = disk;
2114                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2115                 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2116                 r1_bio->bios[r1_bio->read_disk] = bio;
2117                 rdev = conf->mirrors[disk].rdev;
2118                 printk_ratelimited(KERN_ERR
2119                                    "md/raid1:%s: redirecting sector %llu"
2120                                    " to other mirror: %s\n",
2121                                    mdname(mddev),
2122                                    (unsigned long long)r1_bio->sector,
2123                                    bdevname(rdev->bdev, b));
2124                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2125                 bio->bi_bdev = rdev->bdev;
2126                 bio->bi_end_io = raid1_end_read_request;
2127                 bio->bi_rw = READ | do_sync;
2128                 bio->bi_private = r1_bio;
2129                 if (max_sectors < r1_bio->sectors) {
2130                         /* Drat - have to split this up more */
2131                         struct bio *mbio = r1_bio->master_bio;
2132                         int sectors_handled = (r1_bio->sector + max_sectors
2133                                                - mbio->bi_sector);
2134                         r1_bio->sectors = max_sectors;
2135                         spin_lock_irq(&conf->device_lock);
2136                         if (mbio->bi_phys_segments == 0)
2137                                 mbio->bi_phys_segments = 2;
2138                         else
2139                                 mbio->bi_phys_segments++;
2140                         spin_unlock_irq(&conf->device_lock);
2141                         generic_make_request(bio);
2142                         bio = NULL;
2143
2144                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2145
2146                         r1_bio->master_bio = mbio;
2147                         r1_bio->sectors = (mbio->bi_size >> 9)
2148                                           - sectors_handled;
2149                         r1_bio->state = 0;
2150                         set_bit(R1BIO_ReadError, &r1_bio->state);
2151                         r1_bio->mddev = mddev;
2152                         r1_bio->sector = mbio->bi_sector + sectors_handled;
2153
2154                         goto read_more;
2155                 } else
2156                         generic_make_request(bio);
2157         }
2158 }
2159
2160 static void raid1d(struct mddev *mddev)
2161 {
2162         struct r1bio *r1_bio;
2163         unsigned long flags;
2164         struct r1conf *conf = mddev->private;
2165         struct list_head *head = &conf->retry_list;
2166         struct blk_plug plug;
2167
2168         md_check_recovery(mddev);
2169
2170         blk_start_plug(&plug);
2171         for (;;) {
2172
2173                 if (atomic_read(&mddev->plug_cnt) == 0)
2174                         flush_pending_writes(conf);
2175
2176                 spin_lock_irqsave(&conf->device_lock, flags);
2177                 if (list_empty(head)) {
2178                         spin_unlock_irqrestore(&conf->device_lock, flags);
2179                         break;
2180                 }
2181                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2182                 list_del(head->prev);
2183                 conf->nr_queued--;
2184                 spin_unlock_irqrestore(&conf->device_lock, flags);
2185
2186                 mddev = r1_bio->mddev;
2187                 conf = mddev->private;
2188                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2189                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2190                             test_bit(R1BIO_WriteError, &r1_bio->state))
2191                                 handle_sync_write_finished(conf, r1_bio);
2192                         else
2193                                 sync_request_write(mddev, r1_bio);
2194                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2195                            test_bit(R1BIO_WriteError, &r1_bio->state))
2196                         handle_write_finished(conf, r1_bio);
2197                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2198                         handle_read_error(conf, r1_bio);
2199                 else
2200                         /* just a partial read to be scheduled from separate
2201                          * context
2202                          */
2203                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2204
2205                 cond_resched();
2206                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2207                         md_check_recovery(mddev);
2208         }
2209         blk_finish_plug(&plug);
2210 }
2211
2212
2213 static int init_resync(struct r1conf *conf)
2214 {
2215         int buffs;
2216
2217         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2218         BUG_ON(conf->r1buf_pool);
2219         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2220                                           conf->poolinfo);
2221         if (!conf->r1buf_pool)
2222                 return -ENOMEM;
2223         conf->next_resync = 0;
2224         return 0;
2225 }
2226
2227 /*
2228  * perform a "sync" on one "block"
2229  *
2230  * We need to make sure that no normal I/O request - particularly write
2231  * requests - conflict with active sync requests.
2232  *
2233  * This is achieved by tracking pending requests and a 'barrier' concept
2234  * that can be installed to exclude normal IO requests.
2235  */
2236
2237 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2238 {
2239         struct r1conf *conf = mddev->private;
2240         struct r1bio *r1_bio;
2241         struct bio *bio;
2242         sector_t max_sector, nr_sectors;
2243         int disk = -1;
2244         int i;
2245         int wonly = -1;
2246         int write_targets = 0, read_targets = 0;
2247         sector_t sync_blocks;
2248         int still_degraded = 0;
2249         int good_sectors = RESYNC_SECTORS;
2250         int min_bad = 0; /* number of sectors that are bad in all devices */
2251
2252         if (!conf->r1buf_pool)
2253                 if (init_resync(conf))
2254                         return 0;
2255
2256         max_sector = mddev->dev_sectors;
2257         if (sector_nr >= max_sector) {
2258                 /* If we aborted, we need to abort the
2259                  * sync on the 'current' bitmap chunk (there will
2260                  * only be one in raid1 resync.
2261                  * We can find the current addess in mddev->curr_resync
2262                  */
2263                 if (mddev->curr_resync < max_sector) /* aborted */
2264                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2265                                                 &sync_blocks, 1);
2266                 else /* completed sync */
2267                         conf->fullsync = 0;
2268
2269                 bitmap_close_sync(mddev->bitmap);
2270                 close_sync(conf);
2271                 return 0;
2272         }
2273
2274         if (mddev->bitmap == NULL &&
2275             mddev->recovery_cp == MaxSector &&
2276             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2277             conf->fullsync == 0) {
2278                 *skipped = 1;
2279                 return max_sector - sector_nr;
2280         }
2281         /* before building a request, check if we can skip these blocks..
2282          * This call the bitmap_start_sync doesn't actually record anything
2283          */
2284         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2285             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2286                 /* We can skip this block, and probably several more */
2287                 *skipped = 1;
2288                 return sync_blocks;
2289         }
2290         /*
2291          * If there is non-resync activity waiting for a turn,
2292          * and resync is going fast enough,
2293          * then let it though before starting on this new sync request.
2294          */
2295         if (!go_faster && conf->nr_waiting)
2296                 msleep_interruptible(1000);
2297
2298         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2299         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2300         raise_barrier(conf);
2301
2302         conf->next_resync = sector_nr;
2303
2304         rcu_read_lock();
2305         /*
2306          * If we get a correctably read error during resync or recovery,
2307          * we might want to read from a different device.  So we
2308          * flag all drives that could conceivably be read from for READ,
2309          * and any others (which will be non-In_sync devices) for WRITE.
2310          * If a read fails, we try reading from something else for which READ
2311          * is OK.
2312          */
2313
2314         r1_bio->mddev = mddev;
2315         r1_bio->sector = sector_nr;
2316         r1_bio->state = 0;
2317         set_bit(R1BIO_IsSync, &r1_bio->state);
2318
2319         for (i = 0; i < conf->raid_disks * 2; i++) {
2320                 struct md_rdev *rdev;
2321                 bio = r1_bio->bios[i];
2322
2323                 /* take from bio_init */
2324                 bio->bi_next = NULL;
2325                 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2326                 bio->bi_flags |= 1 << BIO_UPTODATE;
2327                 bio->bi_rw = READ;
2328                 bio->bi_vcnt = 0;
2329                 bio->bi_idx = 0;
2330                 bio->bi_phys_segments = 0;
2331                 bio->bi_size = 0;
2332                 bio->bi_end_io = NULL;
2333                 bio->bi_private = NULL;
2334
2335                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2336                 if (rdev == NULL ||
2337                     test_bit(Faulty, &rdev->flags)) {
2338                         if (i < conf->raid_disks)
2339                                 still_degraded = 1;
2340                 } else if (!test_bit(In_sync, &rdev->flags)) {
2341                         bio->bi_rw = WRITE;
2342                         bio->bi_end_io = end_sync_write;
2343                         write_targets ++;
2344                 } else {
2345                         /* may need to read from here */
2346                         sector_t first_bad = MaxSector;
2347                         int bad_sectors;
2348
2349                         if (is_badblock(rdev, sector_nr, good_sectors,
2350                                         &first_bad, &bad_sectors)) {
2351                                 if (first_bad > sector_nr)
2352                                         good_sectors = first_bad - sector_nr;
2353                                 else {
2354                                         bad_sectors -= (sector_nr - first_bad);
2355                                         if (min_bad == 0 ||
2356                                             min_bad > bad_sectors)
2357                                                 min_bad = bad_sectors;
2358                                 }
2359                         }
2360                         if (sector_nr < first_bad) {
2361                                 if (test_bit(WriteMostly, &rdev->flags)) {
2362                                         if (wonly < 0)
2363                                                 wonly = i;
2364                                 } else {
2365                                         if (disk < 0)
2366                                                 disk = i;
2367                                 }
2368                                 bio->bi_rw = READ;
2369                                 bio->bi_end_io = end_sync_read;
2370                                 read_targets++;
2371                         }
2372                 }
2373                 if (bio->bi_end_io) {
2374                         atomic_inc(&rdev->nr_pending);
2375                         bio->bi_sector = sector_nr + rdev->data_offset;
2376                         bio->bi_bdev = rdev->bdev;
2377                         bio->bi_private = r1_bio;
2378                 }
2379         }
2380         rcu_read_unlock();
2381         if (disk < 0)
2382                 disk = wonly;
2383         r1_bio->read_disk = disk;
2384
2385         if (read_targets == 0 && min_bad > 0) {
2386                 /* These sectors are bad on all InSync devices, so we
2387                  * need to mark them bad on all write targets
2388                  */
2389                 int ok = 1;
2390                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2391                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2392                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2393                                 ok = rdev_set_badblocks(rdev, sector_nr,
2394                                                         min_bad, 0
2395                                         ) && ok;
2396                         }
2397                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2398                 *skipped = 1;
2399                 put_buf(r1_bio);
2400
2401                 if (!ok) {
2402                         /* Cannot record the badblocks, so need to
2403                          * abort the resync.
2404                          * If there are multiple read targets, could just
2405                          * fail the really bad ones ???
2406                          */
2407                         conf->recovery_disabled = mddev->recovery_disabled;
2408                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2409                         return 0;
2410                 } else
2411                         return min_bad;
2412
2413         }
2414         if (min_bad > 0 && min_bad < good_sectors) {
2415                 /* only resync enough to reach the next bad->good
2416                  * transition */
2417                 good_sectors = min_bad;
2418         }
2419
2420         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2421                 /* extra read targets are also write targets */
2422                 write_targets += read_targets-1;
2423
2424         if (write_targets == 0 || read_targets == 0) {
2425                 /* There is nowhere to write, so all non-sync
2426                  * drives must be failed - so we are finished
2427                  */
2428                 sector_t rv = max_sector - sector_nr;
2429                 *skipped = 1;
2430                 put_buf(r1_bio);
2431                 return rv;
2432         }
2433
2434         if (max_sector > mddev->resync_max)
2435                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2436         if (max_sector > sector_nr + good_sectors)
2437                 max_sector = sector_nr + good_sectors;
2438         nr_sectors = 0;
2439         sync_blocks = 0;
2440         do {
2441                 struct page *page;
2442                 int len = PAGE_SIZE;
2443                 if (sector_nr + (len>>9) > max_sector)
2444                         len = (max_sector - sector_nr) << 9;
2445                 if (len == 0)
2446                         break;
2447                 if (sync_blocks == 0) {
2448                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2449                                                &sync_blocks, still_degraded) &&
2450                             !conf->fullsync &&
2451                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2452                                 break;
2453                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2454                         if ((len >> 9) > sync_blocks)
2455                                 len = sync_blocks<<9;
2456                 }
2457
2458                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2459                         bio = r1_bio->bios[i];
2460                         if (bio->bi_end_io) {
2461                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2462                                 if (bio_add_page(bio, page, len, 0) == 0) {
2463                                         /* stop here */
2464                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2465                                         while (i > 0) {
2466                                                 i--;
2467                                                 bio = r1_bio->bios[i];
2468                                                 if (bio->bi_end_io==NULL)
2469                                                         continue;
2470                                                 /* remove last page from this bio */
2471                                                 bio->bi_vcnt--;
2472                                                 bio->bi_size -= len;
2473                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2474                                         }
2475                                         goto bio_full;
2476                                 }
2477                         }
2478                 }
2479                 nr_sectors += len>>9;
2480                 sector_nr += len>>9;
2481                 sync_blocks -= (len>>9);
2482         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2483  bio_full:
2484         r1_bio->sectors = nr_sectors;
2485
2486         /* For a user-requested sync, we read all readable devices and do a
2487          * compare
2488          */
2489         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2490                 atomic_set(&r1_bio->remaining, read_targets);
2491                 for (i = 0; i < conf->raid_disks * 2; i++) {
2492                         bio = r1_bio->bios[i];
2493                         if (bio->bi_end_io == end_sync_read) {
2494                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2495                                 generic_make_request(bio);
2496                         }
2497                 }
2498         } else {
2499                 atomic_set(&r1_bio->remaining, 1);
2500                 bio = r1_bio->bios[r1_bio->read_disk];
2501                 md_sync_acct(bio->bi_bdev, nr_sectors);
2502                 generic_make_request(bio);
2503
2504         }
2505         return nr_sectors;
2506 }
2507
2508 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2509 {
2510         if (sectors)
2511                 return sectors;
2512
2513         return mddev->dev_sectors;
2514 }
2515
2516 static struct r1conf *setup_conf(struct mddev *mddev)
2517 {
2518         struct r1conf *conf;
2519         int i;
2520         struct mirror_info *disk;
2521         struct md_rdev *rdev;
2522         int err = -ENOMEM;
2523
2524         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2525         if (!conf)
2526                 goto abort;
2527
2528         conf->mirrors = kzalloc(sizeof(struct mirror_info)
2529                                 * mddev->raid_disks * 2,
2530                                  GFP_KERNEL);
2531         if (!conf->mirrors)
2532                 goto abort;
2533
2534         conf->tmppage = alloc_page(GFP_KERNEL);
2535         if (!conf->tmppage)
2536                 goto abort;
2537
2538         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2539         if (!conf->poolinfo)
2540                 goto abort;
2541         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2542         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2543                                           r1bio_pool_free,
2544                                           conf->poolinfo);
2545         if (!conf->r1bio_pool)
2546                 goto abort;
2547
2548         conf->poolinfo->mddev = mddev;
2549
2550         err = -EINVAL;
2551         spin_lock_init(&conf->device_lock);
2552         rdev_for_each(rdev, mddev) {
2553                 int disk_idx = rdev->raid_disk;
2554                 if (disk_idx >= mddev->raid_disks
2555                     || disk_idx < 0)
2556                         continue;
2557                 if (test_bit(Replacement, &rdev->flags))
2558                         disk = conf->mirrors + conf->raid_disks + disk_idx;
2559                 else
2560                         disk = conf->mirrors + disk_idx;
2561
2562                 if (disk->rdev)
2563                         goto abort;
2564                 disk->rdev = rdev;
2565
2566                 disk->head_position = 0;
2567         }
2568         conf->raid_disks = mddev->raid_disks;
2569         conf->mddev = mddev;
2570         INIT_LIST_HEAD(&conf->retry_list);
2571
2572         spin_lock_init(&conf->resync_lock);
2573         init_waitqueue_head(&conf->wait_barrier);
2574
2575         bio_list_init(&conf->pending_bio_list);
2576         conf->pending_count = 0;
2577         conf->recovery_disabled = mddev->recovery_disabled - 1;
2578
2579         err = -EIO;
2580         conf->last_used = -1;
2581         for (i = 0; i < conf->raid_disks * 2; i++) {
2582
2583                 disk = conf->mirrors + i;
2584
2585                 if (i < conf->raid_disks &&
2586                     disk[conf->raid_disks].rdev) {
2587                         /* This slot has a replacement. */
2588                         if (!disk->rdev) {
2589                                 /* No original, just make the replacement
2590                                  * a recovering spare
2591                                  */
2592                                 disk->rdev =
2593                                         disk[conf->raid_disks].rdev;
2594                                 disk[conf->raid_disks].rdev = NULL;
2595                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2596                                 /* Original is not in_sync - bad */
2597                                 goto abort;
2598                 }
2599
2600                 if (!disk->rdev ||
2601                     !test_bit(In_sync, &disk->rdev->flags)) {
2602                         disk->head_position = 0;
2603                         if (disk->rdev &&
2604                             (disk->rdev->saved_raid_disk < 0))
2605                                 conf->fullsync = 1;
2606                 } else if (conf->last_used < 0)
2607                         /*
2608                          * The first working device is used as a
2609                          * starting point to read balancing.
2610                          */
2611                         conf->last_used = i;
2612         }
2613
2614         if (conf->last_used < 0) {
2615                 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2616                        mdname(mddev));
2617                 goto abort;
2618         }
2619         err = -ENOMEM;
2620         conf->thread = md_register_thread(raid1d, mddev, NULL);
2621         if (!conf->thread) {
2622                 printk(KERN_ERR
2623                        "md/raid1:%s: couldn't allocate thread\n",
2624                        mdname(mddev));
2625                 goto abort;
2626         }
2627
2628         return conf;
2629
2630  abort:
2631         if (conf) {
2632                 if (conf->r1bio_pool)
2633                         mempool_destroy(conf->r1bio_pool);
2634                 kfree(conf->mirrors);
2635                 safe_put_page(conf->tmppage);
2636                 kfree(conf->poolinfo);
2637                 kfree(conf);
2638         }
2639         return ERR_PTR(err);
2640 }
2641
2642 static int stop(struct mddev *mddev);
2643 static int run(struct mddev *mddev)
2644 {
2645         struct r1conf *conf;
2646         int i;
2647         struct md_rdev *rdev;
2648         int ret;
2649
2650         if (mddev->level != 1) {
2651                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2652                        mdname(mddev), mddev->level);
2653                 return -EIO;
2654         }
2655         if (mddev->reshape_position != MaxSector) {
2656                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2657                        mdname(mddev));
2658                 return -EIO;
2659         }
2660         /*
2661          * copy the already verified devices into our private RAID1
2662          * bookkeeping area. [whatever we allocate in run(),
2663          * should be freed in stop()]
2664          */
2665         if (mddev->private == NULL)
2666                 conf = setup_conf(mddev);
2667         else
2668                 conf = mddev->private;
2669
2670         if (IS_ERR(conf))
2671                 return PTR_ERR(conf);
2672
2673         rdev_for_each(rdev, mddev) {
2674                 if (!mddev->gendisk)
2675                         continue;
2676                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2677                                   rdev->data_offset << 9);
2678         }
2679
2680         mddev->degraded = 0;
2681         for (i=0; i < conf->raid_disks; i++)
2682                 if (conf->mirrors[i].rdev == NULL ||
2683                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2684                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2685                         mddev->degraded++;
2686
2687         if (conf->raid_disks - mddev->degraded == 1)
2688                 mddev->recovery_cp = MaxSector;
2689
2690         if (mddev->recovery_cp != MaxSector)
2691                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2692                        " -- starting background reconstruction\n",
2693                        mdname(mddev));
2694         printk(KERN_INFO 
2695                 "md/raid1:%s: active with %d out of %d mirrors\n",
2696                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
2697                 mddev->raid_disks);
2698
2699         /*
2700          * Ok, everything is just fine now
2701          */
2702         mddev->thread = conf->thread;
2703         conf->thread = NULL;
2704         mddev->private = conf;
2705
2706         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2707
2708         if (mddev->queue) {
2709                 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2710                 mddev->queue->backing_dev_info.congested_data = mddev;
2711                 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2712         }
2713
2714         ret =  md_integrity_register(mddev);
2715         if (ret)
2716                 stop(mddev);
2717         return ret;
2718 }
2719
2720 static int stop(struct mddev *mddev)
2721 {
2722         struct r1conf *conf = mddev->private;
2723         struct bitmap *bitmap = mddev->bitmap;
2724
2725         /* wait for behind writes to complete */
2726         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2727                 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2728                        mdname(mddev));
2729                 /* need to kick something here to make sure I/O goes? */
2730                 wait_event(bitmap->behind_wait,
2731                            atomic_read(&bitmap->behind_writes) == 0);
2732         }
2733
2734         raise_barrier(conf);
2735         lower_barrier(conf);
2736
2737         md_unregister_thread(&mddev->thread);
2738         if (conf->r1bio_pool)
2739                 mempool_destroy(conf->r1bio_pool);
2740         kfree(conf->mirrors);
2741         kfree(conf->poolinfo);
2742         kfree(conf);
2743         mddev->private = NULL;
2744         return 0;
2745 }
2746
2747 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2748 {
2749         /* no resync is happening, and there is enough space
2750          * on all devices, so we can resize.
2751          * We need to make sure resync covers any new space.
2752          * If the array is shrinking we should possibly wait until
2753          * any io in the removed space completes, but it hardly seems
2754          * worth it.
2755          */
2756         sector_t newsize = raid1_size(mddev, sectors, 0);
2757         if (mddev->external_size &&
2758             mddev->array_sectors > newsize)
2759                 return -EINVAL;
2760         if (mddev->bitmap) {
2761                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2762                 if (ret)
2763                         return ret;
2764         }
2765         md_set_array_sectors(mddev, newsize);
2766         set_capacity(mddev->gendisk, mddev->array_sectors);
2767         revalidate_disk(mddev->gendisk);
2768         if (sectors > mddev->dev_sectors &&
2769             mddev->recovery_cp > mddev->dev_sectors) {
2770                 mddev->recovery_cp = mddev->dev_sectors;
2771                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2772         }
2773         mddev->dev_sectors = sectors;
2774         mddev->resync_max_sectors = sectors;
2775         return 0;
2776 }
2777
2778 static int raid1_reshape(struct mddev *mddev)
2779 {
2780         /* We need to:
2781          * 1/ resize the r1bio_pool
2782          * 2/ resize conf->mirrors
2783          *
2784          * We allocate a new r1bio_pool if we can.
2785          * Then raise a device barrier and wait until all IO stops.
2786          * Then resize conf->mirrors and swap in the new r1bio pool.
2787          *
2788          * At the same time, we "pack" the devices so that all the missing
2789          * devices have the higher raid_disk numbers.
2790          */
2791         mempool_t *newpool, *oldpool;
2792         struct pool_info *newpoolinfo;
2793         struct mirror_info *newmirrors;
2794         struct r1conf *conf = mddev->private;
2795         int cnt, raid_disks;
2796         unsigned long flags;
2797         int d, d2, err;
2798
2799         /* Cannot change chunk_size, layout, or level */
2800         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2801             mddev->layout != mddev->new_layout ||
2802             mddev->level != mddev->new_level) {
2803                 mddev->new_chunk_sectors = mddev->chunk_sectors;
2804                 mddev->new_layout = mddev->layout;
2805                 mddev->new_level = mddev->level;
2806                 return -EINVAL;
2807         }
2808
2809         err = md_allow_write(mddev);
2810         if (err)
2811                 return err;
2812
2813         raid_disks = mddev->raid_disks + mddev->delta_disks;
2814
2815         if (raid_disks < conf->raid_disks) {
2816                 cnt=0;
2817                 for (d= 0; d < conf->raid_disks; d++)
2818                         if (conf->mirrors[d].rdev)
2819                                 cnt++;
2820                 if (cnt > raid_disks)
2821                         return -EBUSY;
2822         }
2823
2824         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2825         if (!newpoolinfo)
2826                 return -ENOMEM;
2827         newpoolinfo->mddev = mddev;
2828         newpoolinfo->raid_disks = raid_disks * 2;
2829
2830         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2831                                  r1bio_pool_free, newpoolinfo);
2832         if (!newpool) {
2833                 kfree(newpoolinfo);
2834                 return -ENOMEM;
2835         }
2836         newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
2837                              GFP_KERNEL);
2838         if (!newmirrors) {
2839                 kfree(newpoolinfo);
2840                 mempool_destroy(newpool);
2841                 return -ENOMEM;
2842         }
2843
2844         raise_barrier(conf);
2845
2846         /* ok, everything is stopped */
2847         oldpool = conf->r1bio_pool;
2848         conf->r1bio_pool = newpool;
2849
2850         for (d = d2 = 0; d < conf->raid_disks; d++) {
2851                 struct md_rdev *rdev = conf->mirrors[d].rdev;
2852                 if (rdev && rdev->raid_disk != d2) {
2853                         sysfs_unlink_rdev(mddev, rdev);
2854                         rdev->raid_disk = d2;
2855                         sysfs_unlink_rdev(mddev, rdev);
2856                         if (sysfs_link_rdev(mddev, rdev))
2857                                 printk(KERN_WARNING
2858                                        "md/raid1:%s: cannot register rd%d\n",
2859                                        mdname(mddev), rdev->raid_disk);
2860                 }
2861                 if (rdev)
2862                         newmirrors[d2++].rdev = rdev;
2863         }
2864         kfree(conf->mirrors);
2865         conf->mirrors = newmirrors;
2866         kfree(conf->poolinfo);
2867         conf->poolinfo = newpoolinfo;
2868
2869         spin_lock_irqsave(&conf->device_lock, flags);
2870         mddev->degraded += (raid_disks - conf->raid_disks);
2871         spin_unlock_irqrestore(&conf->device_lock, flags);
2872         conf->raid_disks = mddev->raid_disks = raid_disks;
2873         mddev->delta_disks = 0;
2874
2875         conf->last_used = 0; /* just make sure it is in-range */
2876         lower_barrier(conf);
2877
2878         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2879         md_wakeup_thread(mddev->thread);
2880
2881         mempool_destroy(oldpool);
2882         return 0;
2883 }
2884
2885 static void raid1_quiesce(struct mddev *mddev, int state)
2886 {
2887         struct r1conf *conf = mddev->private;
2888
2889         switch(state) {
2890         case 2: /* wake for suspend */
2891                 wake_up(&conf->wait_barrier);
2892                 break;
2893         case 1:
2894                 raise_barrier(conf);
2895                 break;
2896         case 0:
2897                 lower_barrier(conf);
2898                 break;
2899         }
2900 }
2901
2902 static void *raid1_takeover(struct mddev *mddev)
2903 {
2904         /* raid1 can take over:
2905          *  raid5 with 2 devices, any layout or chunk size
2906          */
2907         if (mddev->level == 5 && mddev->raid_disks == 2) {
2908                 struct r1conf *conf;
2909                 mddev->new_level = 1;
2910                 mddev->new_layout = 0;
2911                 mddev->new_chunk_sectors = 0;
2912                 conf = setup_conf(mddev);
2913                 if (!IS_ERR(conf))
2914                         conf->barrier = 1;
2915                 return conf;
2916         }
2917         return ERR_PTR(-EINVAL);
2918 }
2919
2920 static struct md_personality raid1_personality =
2921 {
2922         .name           = "raid1",
2923         .level          = 1,
2924         .owner          = THIS_MODULE,
2925         .make_request   = make_request,
2926         .run            = run,
2927         .stop           = stop,
2928         .status         = status,
2929         .error_handler  = error,
2930         .hot_add_disk   = raid1_add_disk,
2931         .hot_remove_disk= raid1_remove_disk,
2932         .spare_active   = raid1_spare_active,
2933         .sync_request   = sync_request,
2934         .resize         = raid1_resize,
2935         .size           = raid1_size,
2936         .check_reshape  = raid1_reshape,
2937         .quiesce        = raid1_quiesce,
2938         .takeover       = raid1_takeover,
2939 };
2940
2941 static int __init raid_init(void)
2942 {
2943         return register_md_personality(&raid1_personality);
2944 }
2945
2946 static void raid_exit(void)
2947 {
2948         unregister_md_personality(&raid1_personality);
2949 }
2950
2951 module_init(raid_init);
2952 module_exit(raid_exit);
2953 MODULE_LICENSE("GPL");
2954 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2955 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2956 MODULE_ALIAS("md-raid1");
2957 MODULE_ALIAS("md-level-1");
2958
2959 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);