dm cache: share cache-metadata object across inactive and active DM tables
[firefly-linux-kernel-4.4.55.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76                                  struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81  * Default number of read corrections we'll attempt on an rdev
82  * before ejecting it from the array. We divide the read error
83  * count by 2 for every hour elapsed between read errors.
84  */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88  * is 1000 KB/sec, so the extra system load does not show up that much.
89  * Increase it if you want to have more _guaranteed_ speed. Note that
90  * the RAID driver will use the maximum available bandwidth if the IO
91  * subsystem is idle. There is also an 'absolute maximum' reconstruction
92  * speed limit - in case reconstruction slows down your system despite
93  * idle IO detection.
94  *
95  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96  * or /sys/block/mdX/md/sync_speed_{min,max}
97  */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103         return mddev->sync_speed_min ?
104                 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109         return mddev->sync_speed_max ?
110                 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static ctl_table raid_table[] = {
116         {
117                 .procname       = "speed_limit_min",
118                 .data           = &sysctl_speed_limit_min,
119                 .maxlen         = sizeof(int),
120                 .mode           = S_IRUGO|S_IWUSR,
121                 .proc_handler   = proc_dointvec,
122         },
123         {
124                 .procname       = "speed_limit_max",
125                 .data           = &sysctl_speed_limit_max,
126                 .maxlen         = sizeof(int),
127                 .mode           = S_IRUGO|S_IWUSR,
128                 .proc_handler   = proc_dointvec,
129         },
130         { }
131 };
132
133 static ctl_table raid_dir_table[] = {
134         {
135                 .procname       = "raid",
136                 .maxlen         = 0,
137                 .mode           = S_IRUGO|S_IXUGO,
138                 .child          = raid_table,
139         },
140         { }
141 };
142
143 static ctl_table raid_root_table[] = {
144         {
145                 .procname       = "dev",
146                 .maxlen         = 0,
147                 .mode           = 0555,
148                 .child          = raid_dir_table,
149         },
150         {  }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158  * like bio_clone, but with a local bio set
159  */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162                             struct mddev *mddev)
163 {
164         struct bio *b;
165
166         if (!mddev || !mddev->bio_set)
167                 return bio_alloc(gfp_mask, nr_iovecs);
168
169         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170         if (!b)
171                 return NULL;
172         return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177                             struct mddev *mddev)
178 {
179         if (!mddev || !mddev->bio_set)
180                 return bio_clone(bio, gfp_mask);
181
182         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 void md_trim_bio(struct bio *bio, int offset, int size)
187 {
188         /* 'bio' is a cloned bio which we need to trim to match
189          * the given offset and size.
190          * This requires adjusting bi_sector, bi_size, and bi_io_vec
191          */
192         int i;
193         struct bio_vec *bvec;
194         int sofar = 0;
195
196         size <<= 9;
197         if (offset == 0 && size == bio->bi_size)
198                 return;
199
200         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201
202         bio_advance(bio, offset << 9);
203
204         bio->bi_size = size;
205
206         /* avoid any complications with bi_idx being non-zero*/
207         if (bio->bi_idx) {
208                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
209                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
210                 bio->bi_vcnt -= bio->bi_idx;
211                 bio->bi_idx = 0;
212         }
213         /* Make sure vcnt and last bv are not too big */
214         bio_for_each_segment(bvec, bio, i) {
215                 if (sofar + bvec->bv_len > size)
216                         bvec->bv_len = size - sofar;
217                 if (bvec->bv_len == 0) {
218                         bio->bi_vcnt = i;
219                         break;
220                 }
221                 sofar += bvec->bv_len;
222         }
223 }
224 EXPORT_SYMBOL_GPL(md_trim_bio);
225
226 /*
227  * We have a system wide 'event count' that is incremented
228  * on any 'interesting' event, and readers of /proc/mdstat
229  * can use 'poll' or 'select' to find out when the event
230  * count increases.
231  *
232  * Events are:
233  *  start array, stop array, error, add device, remove device,
234  *  start build, activate spare
235  */
236 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
237 static atomic_t md_event_count;
238 void md_new_event(struct mddev *mddev)
239 {
240         atomic_inc(&md_event_count);
241         wake_up(&md_event_waiters);
242 }
243 EXPORT_SYMBOL_GPL(md_new_event);
244
245 /* Alternate version that can be called from interrupts
246  * when calling sysfs_notify isn't needed.
247  */
248 static void md_new_event_inintr(struct mddev *mddev)
249 {
250         atomic_inc(&md_event_count);
251         wake_up(&md_event_waiters);
252 }
253
254 /*
255  * Enables to iterate over all existing md arrays
256  * all_mddevs_lock protects this list.
257  */
258 static LIST_HEAD(all_mddevs);
259 static DEFINE_SPINLOCK(all_mddevs_lock);
260
261
262 /*
263  * iterates through all used mddevs in the system.
264  * We take care to grab the all_mddevs_lock whenever navigating
265  * the list, and to always hold a refcount when unlocked.
266  * Any code which breaks out of this loop while own
267  * a reference to the current mddev and must mddev_put it.
268  */
269 #define for_each_mddev(_mddev,_tmp)                                     \
270                                                                         \
271         for (({ spin_lock(&all_mddevs_lock);                            \
272                 _tmp = all_mddevs.next;                                 \
273                 _mddev = NULL;});                                       \
274              ({ if (_tmp != &all_mddevs)                                \
275                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
276                 spin_unlock(&all_mddevs_lock);                          \
277                 if (_mddev) mddev_put(_mddev);                          \
278                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
279                 _tmp != &all_mddevs;});                                 \
280              ({ spin_lock(&all_mddevs_lock);                            \
281                 _tmp = _tmp->next;})                                    \
282                 )
283
284
285 /* Rather than calling directly into the personality make_request function,
286  * IO requests come here first so that we can check if the device is
287  * being suspended pending a reconfiguration.
288  * We hold a refcount over the call to ->make_request.  By the time that
289  * call has finished, the bio has been linked into some internal structure
290  * and so is visible to ->quiesce(), so we don't need the refcount any more.
291  */
292 static void md_make_request(struct request_queue *q, struct bio *bio)
293 {
294         const int rw = bio_data_dir(bio);
295         struct mddev *mddev = q->queuedata;
296         int cpu;
297         unsigned int sectors;
298
299         if (mddev == NULL || mddev->pers == NULL
300             || !mddev->ready) {
301                 bio_io_error(bio);
302                 return;
303         }
304         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
305                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
306                 return;
307         }
308         smp_rmb(); /* Ensure implications of  'active' are visible */
309         rcu_read_lock();
310         if (mddev->suspended) {
311                 DEFINE_WAIT(__wait);
312                 for (;;) {
313                         prepare_to_wait(&mddev->sb_wait, &__wait,
314                                         TASK_UNINTERRUPTIBLE);
315                         if (!mddev->suspended)
316                                 break;
317                         rcu_read_unlock();
318                         schedule();
319                         rcu_read_lock();
320                 }
321                 finish_wait(&mddev->sb_wait, &__wait);
322         }
323         atomic_inc(&mddev->active_io);
324         rcu_read_unlock();
325
326         /*
327          * save the sectors now since our bio can
328          * go away inside make_request
329          */
330         sectors = bio_sectors(bio);
331         mddev->pers->make_request(mddev, bio);
332
333         cpu = part_stat_lock();
334         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
335         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
336         part_stat_unlock();
337
338         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
339                 wake_up(&mddev->sb_wait);
340 }
341
342 /* mddev_suspend makes sure no new requests are submitted
343  * to the device, and that any requests that have been submitted
344  * are completely handled.
345  * Once ->stop is called and completes, the module will be completely
346  * unused.
347  */
348 void mddev_suspend(struct mddev *mddev)
349 {
350         BUG_ON(mddev->suspended);
351         mddev->suspended = 1;
352         synchronize_rcu();
353         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
354         mddev->pers->quiesce(mddev, 1);
355
356         del_timer_sync(&mddev->safemode_timer);
357 }
358 EXPORT_SYMBOL_GPL(mddev_suspend);
359
360 void mddev_resume(struct mddev *mddev)
361 {
362         mddev->suspended = 0;
363         wake_up(&mddev->sb_wait);
364         mddev->pers->quiesce(mddev, 0);
365
366         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
367         md_wakeup_thread(mddev->thread);
368         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
369 }
370 EXPORT_SYMBOL_GPL(mddev_resume);
371
372 int mddev_congested(struct mddev *mddev, int bits)
373 {
374         return mddev->suspended;
375 }
376 EXPORT_SYMBOL(mddev_congested);
377
378 /*
379  * Generic flush handling for md
380  */
381
382 static void md_end_flush(struct bio *bio, int err)
383 {
384         struct md_rdev *rdev = bio->bi_private;
385         struct mddev *mddev = rdev->mddev;
386
387         rdev_dec_pending(rdev, mddev);
388
389         if (atomic_dec_and_test(&mddev->flush_pending)) {
390                 /* The pre-request flush has finished */
391                 queue_work(md_wq, &mddev->flush_work);
392         }
393         bio_put(bio);
394 }
395
396 static void md_submit_flush_data(struct work_struct *ws);
397
398 static void submit_flushes(struct work_struct *ws)
399 {
400         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
401         struct md_rdev *rdev;
402
403         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
404         atomic_set(&mddev->flush_pending, 1);
405         rcu_read_lock();
406         rdev_for_each_rcu(rdev, mddev)
407                 if (rdev->raid_disk >= 0 &&
408                     !test_bit(Faulty, &rdev->flags)) {
409                         /* Take two references, one is dropped
410                          * when request finishes, one after
411                          * we reclaim rcu_read_lock
412                          */
413                         struct bio *bi;
414                         atomic_inc(&rdev->nr_pending);
415                         atomic_inc(&rdev->nr_pending);
416                         rcu_read_unlock();
417                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
418                         bi->bi_end_io = md_end_flush;
419                         bi->bi_private = rdev;
420                         bi->bi_bdev = rdev->bdev;
421                         atomic_inc(&mddev->flush_pending);
422                         submit_bio(WRITE_FLUSH, bi);
423                         rcu_read_lock();
424                         rdev_dec_pending(rdev, mddev);
425                 }
426         rcu_read_unlock();
427         if (atomic_dec_and_test(&mddev->flush_pending))
428                 queue_work(md_wq, &mddev->flush_work);
429 }
430
431 static void md_submit_flush_data(struct work_struct *ws)
432 {
433         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
434         struct bio *bio = mddev->flush_bio;
435
436         if (bio->bi_size == 0)
437                 /* an empty barrier - all done */
438                 bio_endio(bio, 0);
439         else {
440                 bio->bi_rw &= ~REQ_FLUSH;
441                 mddev->pers->make_request(mddev, bio);
442         }
443
444         mddev->flush_bio = NULL;
445         wake_up(&mddev->sb_wait);
446 }
447
448 void md_flush_request(struct mddev *mddev, struct bio *bio)
449 {
450         spin_lock_irq(&mddev->write_lock);
451         wait_event_lock_irq(mddev->sb_wait,
452                             !mddev->flush_bio,
453                             mddev->write_lock);
454         mddev->flush_bio = bio;
455         spin_unlock_irq(&mddev->write_lock);
456
457         INIT_WORK(&mddev->flush_work, submit_flushes);
458         queue_work(md_wq, &mddev->flush_work);
459 }
460 EXPORT_SYMBOL(md_flush_request);
461
462 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
463 {
464         struct mddev *mddev = cb->data;
465         md_wakeup_thread(mddev->thread);
466         kfree(cb);
467 }
468 EXPORT_SYMBOL(md_unplug);
469
470 static inline struct mddev *mddev_get(struct mddev *mddev)
471 {
472         atomic_inc(&mddev->active);
473         return mddev;
474 }
475
476 static void mddev_delayed_delete(struct work_struct *ws);
477
478 static void mddev_put(struct mddev *mddev)
479 {
480         struct bio_set *bs = NULL;
481
482         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
483                 return;
484         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
485             mddev->ctime == 0 && !mddev->hold_active) {
486                 /* Array is not configured at all, and not held active,
487                  * so destroy it */
488                 list_del_init(&mddev->all_mddevs);
489                 bs = mddev->bio_set;
490                 mddev->bio_set = NULL;
491                 if (mddev->gendisk) {
492                         /* We did a probe so need to clean up.  Call
493                          * queue_work inside the spinlock so that
494                          * flush_workqueue() after mddev_find will
495                          * succeed in waiting for the work to be done.
496                          */
497                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498                         queue_work(md_misc_wq, &mddev->del_work);
499                 } else
500                         kfree(mddev);
501         }
502         spin_unlock(&all_mddevs_lock);
503         if (bs)
504                 bioset_free(bs);
505 }
506
507 void mddev_init(struct mddev *mddev)
508 {
509         mutex_init(&mddev->open_mutex);
510         mutex_init(&mddev->reconfig_mutex);
511         mutex_init(&mddev->bitmap_info.mutex);
512         INIT_LIST_HEAD(&mddev->disks);
513         INIT_LIST_HEAD(&mddev->all_mddevs);
514         init_timer(&mddev->safemode_timer);
515         atomic_set(&mddev->active, 1);
516         atomic_set(&mddev->openers, 0);
517         atomic_set(&mddev->active_io, 0);
518         spin_lock_init(&mddev->write_lock);
519         atomic_set(&mddev->flush_pending, 0);
520         init_waitqueue_head(&mddev->sb_wait);
521         init_waitqueue_head(&mddev->recovery_wait);
522         mddev->reshape_position = MaxSector;
523         mddev->reshape_backwards = 0;
524         mddev->resync_min = 0;
525         mddev->resync_max = MaxSector;
526         mddev->level = LEVEL_NONE;
527 }
528 EXPORT_SYMBOL_GPL(mddev_init);
529
530 static struct mddev * mddev_find(dev_t unit)
531 {
532         struct mddev *mddev, *new = NULL;
533
534         if (unit && MAJOR(unit) != MD_MAJOR)
535                 unit &= ~((1<<MdpMinorShift)-1);
536
537  retry:
538         spin_lock(&all_mddevs_lock);
539
540         if (unit) {
541                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
542                         if (mddev->unit == unit) {
543                                 mddev_get(mddev);
544                                 spin_unlock(&all_mddevs_lock);
545                                 kfree(new);
546                                 return mddev;
547                         }
548
549                 if (new) {
550                         list_add(&new->all_mddevs, &all_mddevs);
551                         spin_unlock(&all_mddevs_lock);
552                         new->hold_active = UNTIL_IOCTL;
553                         return new;
554                 }
555         } else if (new) {
556                 /* find an unused unit number */
557                 static int next_minor = 512;
558                 int start = next_minor;
559                 int is_free = 0;
560                 int dev = 0;
561                 while (!is_free) {
562                         dev = MKDEV(MD_MAJOR, next_minor);
563                         next_minor++;
564                         if (next_minor > MINORMASK)
565                                 next_minor = 0;
566                         if (next_minor == start) {
567                                 /* Oh dear, all in use. */
568                                 spin_unlock(&all_mddevs_lock);
569                                 kfree(new);
570                                 return NULL;
571                         }
572                                 
573                         is_free = 1;
574                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
575                                 if (mddev->unit == dev) {
576                                         is_free = 0;
577                                         break;
578                                 }
579                 }
580                 new->unit = dev;
581                 new->md_minor = MINOR(dev);
582                 new->hold_active = UNTIL_STOP;
583                 list_add(&new->all_mddevs, &all_mddevs);
584                 spin_unlock(&all_mddevs_lock);
585                 return new;
586         }
587         spin_unlock(&all_mddevs_lock);
588
589         new = kzalloc(sizeof(*new), GFP_KERNEL);
590         if (!new)
591                 return NULL;
592
593         new->unit = unit;
594         if (MAJOR(unit) == MD_MAJOR)
595                 new->md_minor = MINOR(unit);
596         else
597                 new->md_minor = MINOR(unit) >> MdpMinorShift;
598
599         mddev_init(new);
600
601         goto retry;
602 }
603
604 static inline int mddev_lock(struct mddev * mddev)
605 {
606         return mutex_lock_interruptible(&mddev->reconfig_mutex);
607 }
608
609 static inline int mddev_is_locked(struct mddev *mddev)
610 {
611         return mutex_is_locked(&mddev->reconfig_mutex);
612 }
613
614 static inline int mddev_trylock(struct mddev * mddev)
615 {
616         return mutex_trylock(&mddev->reconfig_mutex);
617 }
618
619 static struct attribute_group md_redundancy_group;
620
621 static void mddev_unlock(struct mddev * mddev)
622 {
623         if (mddev->to_remove) {
624                 /* These cannot be removed under reconfig_mutex as
625                  * an access to the files will try to take reconfig_mutex
626                  * while holding the file unremovable, which leads to
627                  * a deadlock.
628                  * So hold set sysfs_active while the remove in happeing,
629                  * and anything else which might set ->to_remove or my
630                  * otherwise change the sysfs namespace will fail with
631                  * -EBUSY if sysfs_active is still set.
632                  * We set sysfs_active under reconfig_mutex and elsewhere
633                  * test it under the same mutex to ensure its correct value
634                  * is seen.
635                  */
636                 struct attribute_group *to_remove = mddev->to_remove;
637                 mddev->to_remove = NULL;
638                 mddev->sysfs_active = 1;
639                 mutex_unlock(&mddev->reconfig_mutex);
640
641                 if (mddev->kobj.sd) {
642                         if (to_remove != &md_redundancy_group)
643                                 sysfs_remove_group(&mddev->kobj, to_remove);
644                         if (mddev->pers == NULL ||
645                             mddev->pers->sync_request == NULL) {
646                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
647                                 if (mddev->sysfs_action)
648                                         sysfs_put(mddev->sysfs_action);
649                                 mddev->sysfs_action = NULL;
650                         }
651                 }
652                 mddev->sysfs_active = 0;
653         } else
654                 mutex_unlock(&mddev->reconfig_mutex);
655
656         /* As we've dropped the mutex we need a spinlock to
657          * make sure the thread doesn't disappear
658          */
659         spin_lock(&pers_lock);
660         md_wakeup_thread(mddev->thread);
661         spin_unlock(&pers_lock);
662 }
663
664 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
665 {
666         struct md_rdev *rdev;
667
668         rdev_for_each(rdev, mddev)
669                 if (rdev->desc_nr == nr)
670                         return rdev;
671
672         return NULL;
673 }
674
675 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
676 {
677         struct md_rdev *rdev;
678
679         rdev_for_each_rcu(rdev, mddev)
680                 if (rdev->desc_nr == nr)
681                         return rdev;
682
683         return NULL;
684 }
685
686 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
687 {
688         struct md_rdev *rdev;
689
690         rdev_for_each(rdev, mddev)
691                 if (rdev->bdev->bd_dev == dev)
692                         return rdev;
693
694         return NULL;
695 }
696
697 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
698 {
699         struct md_rdev *rdev;
700
701         rdev_for_each_rcu(rdev, mddev)
702                 if (rdev->bdev->bd_dev == dev)
703                         return rdev;
704
705         return NULL;
706 }
707
708 static struct md_personality *find_pers(int level, char *clevel)
709 {
710         struct md_personality *pers;
711         list_for_each_entry(pers, &pers_list, list) {
712                 if (level != LEVEL_NONE && pers->level == level)
713                         return pers;
714                 if (strcmp(pers->name, clevel)==0)
715                         return pers;
716         }
717         return NULL;
718 }
719
720 /* return the offset of the super block in 512byte sectors */
721 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
722 {
723         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
724         return MD_NEW_SIZE_SECTORS(num_sectors);
725 }
726
727 static int alloc_disk_sb(struct md_rdev * rdev)
728 {
729         if (rdev->sb_page)
730                 MD_BUG();
731
732         rdev->sb_page = alloc_page(GFP_KERNEL);
733         if (!rdev->sb_page) {
734                 printk(KERN_ALERT "md: out of memory.\n");
735                 return -ENOMEM;
736         }
737
738         return 0;
739 }
740
741 void md_rdev_clear(struct md_rdev *rdev)
742 {
743         if (rdev->sb_page) {
744                 put_page(rdev->sb_page);
745                 rdev->sb_loaded = 0;
746                 rdev->sb_page = NULL;
747                 rdev->sb_start = 0;
748                 rdev->sectors = 0;
749         }
750         if (rdev->bb_page) {
751                 put_page(rdev->bb_page);
752                 rdev->bb_page = NULL;
753         }
754         kfree(rdev->badblocks.page);
755         rdev->badblocks.page = NULL;
756 }
757 EXPORT_SYMBOL_GPL(md_rdev_clear);
758
759 static void super_written(struct bio *bio, int error)
760 {
761         struct md_rdev *rdev = bio->bi_private;
762         struct mddev *mddev = rdev->mddev;
763
764         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
765                 printk("md: super_written gets error=%d, uptodate=%d\n",
766                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
767                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
768                 md_error(mddev, rdev);
769         }
770
771         if (atomic_dec_and_test(&mddev->pending_writes))
772                 wake_up(&mddev->sb_wait);
773         bio_put(bio);
774 }
775
776 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
777                    sector_t sector, int size, struct page *page)
778 {
779         /* write first size bytes of page to sector of rdev
780          * Increment mddev->pending_writes before returning
781          * and decrement it on completion, waking up sb_wait
782          * if zero is reached.
783          * If an error occurred, call md_error
784          */
785         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
786
787         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
788         bio->bi_sector = sector;
789         bio_add_page(bio, page, size, 0);
790         bio->bi_private = rdev;
791         bio->bi_end_io = super_written;
792
793         atomic_inc(&mddev->pending_writes);
794         submit_bio(WRITE_FLUSH_FUA, bio);
795 }
796
797 void md_super_wait(struct mddev *mddev)
798 {
799         /* wait for all superblock writes that were scheduled to complete */
800         DEFINE_WAIT(wq);
801         for(;;) {
802                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
803                 if (atomic_read(&mddev->pending_writes)==0)
804                         break;
805                 schedule();
806         }
807         finish_wait(&mddev->sb_wait, &wq);
808 }
809
810 static void bi_complete(struct bio *bio, int error)
811 {
812         complete((struct completion*)bio->bi_private);
813 }
814
815 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
816                  struct page *page, int rw, bool metadata_op)
817 {
818         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
819         struct completion event;
820         int ret;
821
822         rw |= REQ_SYNC;
823
824         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
825                 rdev->meta_bdev : rdev->bdev;
826         if (metadata_op)
827                 bio->bi_sector = sector + rdev->sb_start;
828         else if (rdev->mddev->reshape_position != MaxSector &&
829                  (rdev->mddev->reshape_backwards ==
830                   (sector >= rdev->mddev->reshape_position)))
831                 bio->bi_sector = sector + rdev->new_data_offset;
832         else
833                 bio->bi_sector = sector + rdev->data_offset;
834         bio_add_page(bio, page, size, 0);
835         init_completion(&event);
836         bio->bi_private = &event;
837         bio->bi_end_io = bi_complete;
838         submit_bio(rw, bio);
839         wait_for_completion(&event);
840
841         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
842         bio_put(bio);
843         return ret;
844 }
845 EXPORT_SYMBOL_GPL(sync_page_io);
846
847 static int read_disk_sb(struct md_rdev * rdev, int size)
848 {
849         char b[BDEVNAME_SIZE];
850         if (!rdev->sb_page) {
851                 MD_BUG();
852                 return -EINVAL;
853         }
854         if (rdev->sb_loaded)
855                 return 0;
856
857
858         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
859                 goto fail;
860         rdev->sb_loaded = 1;
861         return 0;
862
863 fail:
864         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
865                 bdevname(rdev->bdev,b));
866         return -EINVAL;
867 }
868
869 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
870 {
871         return  sb1->set_uuid0 == sb2->set_uuid0 &&
872                 sb1->set_uuid1 == sb2->set_uuid1 &&
873                 sb1->set_uuid2 == sb2->set_uuid2 &&
874                 sb1->set_uuid3 == sb2->set_uuid3;
875 }
876
877 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
878 {
879         int ret;
880         mdp_super_t *tmp1, *tmp2;
881
882         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
883         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
884
885         if (!tmp1 || !tmp2) {
886                 ret = 0;
887                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
888                 goto abort;
889         }
890
891         *tmp1 = *sb1;
892         *tmp2 = *sb2;
893
894         /*
895          * nr_disks is not constant
896          */
897         tmp1->nr_disks = 0;
898         tmp2->nr_disks = 0;
899
900         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
901 abort:
902         kfree(tmp1);
903         kfree(tmp2);
904         return ret;
905 }
906
907
908 static u32 md_csum_fold(u32 csum)
909 {
910         csum = (csum & 0xffff) + (csum >> 16);
911         return (csum & 0xffff) + (csum >> 16);
912 }
913
914 static unsigned int calc_sb_csum(mdp_super_t * sb)
915 {
916         u64 newcsum = 0;
917         u32 *sb32 = (u32*)sb;
918         int i;
919         unsigned int disk_csum, csum;
920
921         disk_csum = sb->sb_csum;
922         sb->sb_csum = 0;
923
924         for (i = 0; i < MD_SB_BYTES/4 ; i++)
925                 newcsum += sb32[i];
926         csum = (newcsum & 0xffffffff) + (newcsum>>32);
927
928
929 #ifdef CONFIG_ALPHA
930         /* This used to use csum_partial, which was wrong for several
931          * reasons including that different results are returned on
932          * different architectures.  It isn't critical that we get exactly
933          * the same return value as before (we always csum_fold before
934          * testing, and that removes any differences).  However as we
935          * know that csum_partial always returned a 16bit value on
936          * alphas, do a fold to maximise conformity to previous behaviour.
937          */
938         sb->sb_csum = md_csum_fold(disk_csum);
939 #else
940         sb->sb_csum = disk_csum;
941 #endif
942         return csum;
943 }
944
945
946 /*
947  * Handle superblock details.
948  * We want to be able to handle multiple superblock formats
949  * so we have a common interface to them all, and an array of
950  * different handlers.
951  * We rely on user-space to write the initial superblock, and support
952  * reading and updating of superblocks.
953  * Interface methods are:
954  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
955  *      loads and validates a superblock on dev.
956  *      if refdev != NULL, compare superblocks on both devices
957  *    Return:
958  *      0 - dev has a superblock that is compatible with refdev
959  *      1 - dev has a superblock that is compatible and newer than refdev
960  *          so dev should be used as the refdev in future
961  *     -EINVAL superblock incompatible or invalid
962  *     -othererror e.g. -EIO
963  *
964  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
965  *      Verify that dev is acceptable into mddev.
966  *       The first time, mddev->raid_disks will be 0, and data from
967  *       dev should be merged in.  Subsequent calls check that dev
968  *       is new enough.  Return 0 or -EINVAL
969  *
970  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
971  *     Update the superblock for rdev with data in mddev
972  *     This does not write to disc.
973  *
974  */
975
976 struct super_type  {
977         char                *name;
978         struct module       *owner;
979         int                 (*load_super)(struct md_rdev *rdev,
980                                           struct md_rdev *refdev,
981                                           int minor_version);
982         int                 (*validate_super)(struct mddev *mddev,
983                                               struct md_rdev *rdev);
984         void                (*sync_super)(struct mddev *mddev,
985                                           struct md_rdev *rdev);
986         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
987                                                 sector_t num_sectors);
988         int                 (*allow_new_offset)(struct md_rdev *rdev,
989                                                 unsigned long long new_offset);
990 };
991
992 /*
993  * Check that the given mddev has no bitmap.
994  *
995  * This function is called from the run method of all personalities that do not
996  * support bitmaps. It prints an error message and returns non-zero if mddev
997  * has a bitmap. Otherwise, it returns 0.
998  *
999  */
1000 int md_check_no_bitmap(struct mddev *mddev)
1001 {
1002         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1003                 return 0;
1004         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1005                 mdname(mddev), mddev->pers->name);
1006         return 1;
1007 }
1008 EXPORT_SYMBOL(md_check_no_bitmap);
1009
1010 /*
1011  * load_super for 0.90.0 
1012  */
1013 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1014 {
1015         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1016         mdp_super_t *sb;
1017         int ret;
1018
1019         /*
1020          * Calculate the position of the superblock (512byte sectors),
1021          * it's at the end of the disk.
1022          *
1023          * It also happens to be a multiple of 4Kb.
1024          */
1025         rdev->sb_start = calc_dev_sboffset(rdev);
1026
1027         ret = read_disk_sb(rdev, MD_SB_BYTES);
1028         if (ret) return ret;
1029
1030         ret = -EINVAL;
1031
1032         bdevname(rdev->bdev, b);
1033         sb = page_address(rdev->sb_page);
1034
1035         if (sb->md_magic != MD_SB_MAGIC) {
1036                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1037                        b);
1038                 goto abort;
1039         }
1040
1041         if (sb->major_version != 0 ||
1042             sb->minor_version < 90 ||
1043             sb->minor_version > 91) {
1044                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1045                         sb->major_version, sb->minor_version,
1046                         b);
1047                 goto abort;
1048         }
1049
1050         if (sb->raid_disks <= 0)
1051                 goto abort;
1052
1053         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1054                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1055                         b);
1056                 goto abort;
1057         }
1058
1059         rdev->preferred_minor = sb->md_minor;
1060         rdev->data_offset = 0;
1061         rdev->new_data_offset = 0;
1062         rdev->sb_size = MD_SB_BYTES;
1063         rdev->badblocks.shift = -1;
1064
1065         if (sb->level == LEVEL_MULTIPATH)
1066                 rdev->desc_nr = -1;
1067         else
1068                 rdev->desc_nr = sb->this_disk.number;
1069
1070         if (!refdev) {
1071                 ret = 1;
1072         } else {
1073                 __u64 ev1, ev2;
1074                 mdp_super_t *refsb = page_address(refdev->sb_page);
1075                 if (!uuid_equal(refsb, sb)) {
1076                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1077                                 b, bdevname(refdev->bdev,b2));
1078                         goto abort;
1079                 }
1080                 if (!sb_equal(refsb, sb)) {
1081                         printk(KERN_WARNING "md: %s has same UUID"
1082                                " but different superblock to %s\n",
1083                                b, bdevname(refdev->bdev, b2));
1084                         goto abort;
1085                 }
1086                 ev1 = md_event(sb);
1087                 ev2 = md_event(refsb);
1088                 if (ev1 > ev2)
1089                         ret = 1;
1090                 else 
1091                         ret = 0;
1092         }
1093         rdev->sectors = rdev->sb_start;
1094         /* Limit to 4TB as metadata cannot record more than that.
1095          * (not needed for Linear and RAID0 as metadata doesn't
1096          * record this size)
1097          */
1098         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1099                 rdev->sectors = (2ULL << 32) - 2;
1100
1101         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1102                 /* "this cannot possibly happen" ... */
1103                 ret = -EINVAL;
1104
1105  abort:
1106         return ret;
1107 }
1108
1109 /*
1110  * validate_super for 0.90.0
1111  */
1112 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1113 {
1114         mdp_disk_t *desc;
1115         mdp_super_t *sb = page_address(rdev->sb_page);
1116         __u64 ev1 = md_event(sb);
1117
1118         rdev->raid_disk = -1;
1119         clear_bit(Faulty, &rdev->flags);
1120         clear_bit(In_sync, &rdev->flags);
1121         clear_bit(Bitmap_sync, &rdev->flags);
1122         clear_bit(WriteMostly, &rdev->flags);
1123
1124         if (mddev->raid_disks == 0) {
1125                 mddev->major_version = 0;
1126                 mddev->minor_version = sb->minor_version;
1127                 mddev->patch_version = sb->patch_version;
1128                 mddev->external = 0;
1129                 mddev->chunk_sectors = sb->chunk_size >> 9;
1130                 mddev->ctime = sb->ctime;
1131                 mddev->utime = sb->utime;
1132                 mddev->level = sb->level;
1133                 mddev->clevel[0] = 0;
1134                 mddev->layout = sb->layout;
1135                 mddev->raid_disks = sb->raid_disks;
1136                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1137                 mddev->events = ev1;
1138                 mddev->bitmap_info.offset = 0;
1139                 mddev->bitmap_info.space = 0;
1140                 /* bitmap can use 60 K after the 4K superblocks */
1141                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1142                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1143                 mddev->reshape_backwards = 0;
1144
1145                 if (mddev->minor_version >= 91) {
1146                         mddev->reshape_position = sb->reshape_position;
1147                         mddev->delta_disks = sb->delta_disks;
1148                         mddev->new_level = sb->new_level;
1149                         mddev->new_layout = sb->new_layout;
1150                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1151                         if (mddev->delta_disks < 0)
1152                                 mddev->reshape_backwards = 1;
1153                 } else {
1154                         mddev->reshape_position = MaxSector;
1155                         mddev->delta_disks = 0;
1156                         mddev->new_level = mddev->level;
1157                         mddev->new_layout = mddev->layout;
1158                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1159                 }
1160
1161                 if (sb->state & (1<<MD_SB_CLEAN))
1162                         mddev->recovery_cp = MaxSector;
1163                 else {
1164                         if (sb->events_hi == sb->cp_events_hi && 
1165                                 sb->events_lo == sb->cp_events_lo) {
1166                                 mddev->recovery_cp = sb->recovery_cp;
1167                         } else
1168                                 mddev->recovery_cp = 0;
1169                 }
1170
1171                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1172                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1173                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1174                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1175
1176                 mddev->max_disks = MD_SB_DISKS;
1177
1178                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1179                     mddev->bitmap_info.file == NULL) {
1180                         mddev->bitmap_info.offset =
1181                                 mddev->bitmap_info.default_offset;
1182                         mddev->bitmap_info.space =
1183                                 mddev->bitmap_info.space;
1184                 }
1185
1186         } else if (mddev->pers == NULL) {
1187                 /* Insist on good event counter while assembling, except
1188                  * for spares (which don't need an event count) */
1189                 ++ev1;
1190                 if (sb->disks[rdev->desc_nr].state & (
1191                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1192                         if (ev1 < mddev->events) 
1193                                 return -EINVAL;
1194         } else if (mddev->bitmap) {
1195                 /* if adding to array with a bitmap, then we can accept an
1196                  * older device ... but not too old.
1197                  */
1198                 if (ev1 < mddev->bitmap->events_cleared)
1199                         return 0;
1200                 if (ev1 < mddev->events)
1201                         set_bit(Bitmap_sync, &rdev->flags);
1202         } else {
1203                 if (ev1 < mddev->events)
1204                         /* just a hot-add of a new device, leave raid_disk at -1 */
1205                         return 0;
1206         }
1207
1208         if (mddev->level != LEVEL_MULTIPATH) {
1209                 desc = sb->disks + rdev->desc_nr;
1210
1211                 if (desc->state & (1<<MD_DISK_FAULTY))
1212                         set_bit(Faulty, &rdev->flags);
1213                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1214                             desc->raid_disk < mddev->raid_disks */) {
1215                         set_bit(In_sync, &rdev->flags);
1216                         rdev->raid_disk = desc->raid_disk;
1217                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1218                         /* active but not in sync implies recovery up to
1219                          * reshape position.  We don't know exactly where
1220                          * that is, so set to zero for now */
1221                         if (mddev->minor_version >= 91) {
1222                                 rdev->recovery_offset = 0;
1223                                 rdev->raid_disk = desc->raid_disk;
1224                         }
1225                 }
1226                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1227                         set_bit(WriteMostly, &rdev->flags);
1228         } else /* MULTIPATH are always insync */
1229                 set_bit(In_sync, &rdev->flags);
1230         return 0;
1231 }
1232
1233 /*
1234  * sync_super for 0.90.0
1235  */
1236 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1237 {
1238         mdp_super_t *sb;
1239         struct md_rdev *rdev2;
1240         int next_spare = mddev->raid_disks;
1241
1242
1243         /* make rdev->sb match mddev data..
1244          *
1245          * 1/ zero out disks
1246          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1247          * 3/ any empty disks < next_spare become removed
1248          *
1249          * disks[0] gets initialised to REMOVED because
1250          * we cannot be sure from other fields if it has
1251          * been initialised or not.
1252          */
1253         int i;
1254         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1255
1256         rdev->sb_size = MD_SB_BYTES;
1257
1258         sb = page_address(rdev->sb_page);
1259
1260         memset(sb, 0, sizeof(*sb));
1261
1262         sb->md_magic = MD_SB_MAGIC;
1263         sb->major_version = mddev->major_version;
1264         sb->patch_version = mddev->patch_version;
1265         sb->gvalid_words  = 0; /* ignored */
1266         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1267         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1268         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1269         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1270
1271         sb->ctime = mddev->ctime;
1272         sb->level = mddev->level;
1273         sb->size = mddev->dev_sectors / 2;
1274         sb->raid_disks = mddev->raid_disks;
1275         sb->md_minor = mddev->md_minor;
1276         sb->not_persistent = 0;
1277         sb->utime = mddev->utime;
1278         sb->state = 0;
1279         sb->events_hi = (mddev->events>>32);
1280         sb->events_lo = (u32)mddev->events;
1281
1282         if (mddev->reshape_position == MaxSector)
1283                 sb->minor_version = 90;
1284         else {
1285                 sb->minor_version = 91;
1286                 sb->reshape_position = mddev->reshape_position;
1287                 sb->new_level = mddev->new_level;
1288                 sb->delta_disks = mddev->delta_disks;
1289                 sb->new_layout = mddev->new_layout;
1290                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1291         }
1292         mddev->minor_version = sb->minor_version;
1293         if (mddev->in_sync)
1294         {
1295                 sb->recovery_cp = mddev->recovery_cp;
1296                 sb->cp_events_hi = (mddev->events>>32);
1297                 sb->cp_events_lo = (u32)mddev->events;
1298                 if (mddev->recovery_cp == MaxSector)
1299                         sb->state = (1<< MD_SB_CLEAN);
1300         } else
1301                 sb->recovery_cp = 0;
1302
1303         sb->layout = mddev->layout;
1304         sb->chunk_size = mddev->chunk_sectors << 9;
1305
1306         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1307                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1308
1309         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1310         rdev_for_each(rdev2, mddev) {
1311                 mdp_disk_t *d;
1312                 int desc_nr;
1313                 int is_active = test_bit(In_sync, &rdev2->flags);
1314
1315                 if (rdev2->raid_disk >= 0 &&
1316                     sb->minor_version >= 91)
1317                         /* we have nowhere to store the recovery_offset,
1318                          * but if it is not below the reshape_position,
1319                          * we can piggy-back on that.
1320                          */
1321                         is_active = 1;
1322                 if (rdev2->raid_disk < 0 ||
1323                     test_bit(Faulty, &rdev2->flags))
1324                         is_active = 0;
1325                 if (is_active)
1326                         desc_nr = rdev2->raid_disk;
1327                 else
1328                         desc_nr = next_spare++;
1329                 rdev2->desc_nr = desc_nr;
1330                 d = &sb->disks[rdev2->desc_nr];
1331                 nr_disks++;
1332                 d->number = rdev2->desc_nr;
1333                 d->major = MAJOR(rdev2->bdev->bd_dev);
1334                 d->minor = MINOR(rdev2->bdev->bd_dev);
1335                 if (is_active)
1336                         d->raid_disk = rdev2->raid_disk;
1337                 else
1338                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1339                 if (test_bit(Faulty, &rdev2->flags))
1340                         d->state = (1<<MD_DISK_FAULTY);
1341                 else if (is_active) {
1342                         d->state = (1<<MD_DISK_ACTIVE);
1343                         if (test_bit(In_sync, &rdev2->flags))
1344                                 d->state |= (1<<MD_DISK_SYNC);
1345                         active++;
1346                         working++;
1347                 } else {
1348                         d->state = 0;
1349                         spare++;
1350                         working++;
1351                 }
1352                 if (test_bit(WriteMostly, &rdev2->flags))
1353                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1354         }
1355         /* now set the "removed" and "faulty" bits on any missing devices */
1356         for (i=0 ; i < mddev->raid_disks ; i++) {
1357                 mdp_disk_t *d = &sb->disks[i];
1358                 if (d->state == 0 && d->number == 0) {
1359                         d->number = i;
1360                         d->raid_disk = i;
1361                         d->state = (1<<MD_DISK_REMOVED);
1362                         d->state |= (1<<MD_DISK_FAULTY);
1363                         failed++;
1364                 }
1365         }
1366         sb->nr_disks = nr_disks;
1367         sb->active_disks = active;
1368         sb->working_disks = working;
1369         sb->failed_disks = failed;
1370         sb->spare_disks = spare;
1371
1372         sb->this_disk = sb->disks[rdev->desc_nr];
1373         sb->sb_csum = calc_sb_csum(sb);
1374 }
1375
1376 /*
1377  * rdev_size_change for 0.90.0
1378  */
1379 static unsigned long long
1380 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1381 {
1382         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1383                 return 0; /* component must fit device */
1384         if (rdev->mddev->bitmap_info.offset)
1385                 return 0; /* can't move bitmap */
1386         rdev->sb_start = calc_dev_sboffset(rdev);
1387         if (!num_sectors || num_sectors > rdev->sb_start)
1388                 num_sectors = rdev->sb_start;
1389         /* Limit to 4TB as metadata cannot record more than that.
1390          * 4TB == 2^32 KB, or 2*2^32 sectors.
1391          */
1392         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1393                 num_sectors = (2ULL << 32) - 2;
1394         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1395                        rdev->sb_page);
1396         md_super_wait(rdev->mddev);
1397         return num_sectors;
1398 }
1399
1400 static int
1401 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1402 {
1403         /* non-zero offset changes not possible with v0.90 */
1404         return new_offset == 0;
1405 }
1406
1407 /*
1408  * version 1 superblock
1409  */
1410
1411 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1412 {
1413         __le32 disk_csum;
1414         u32 csum;
1415         unsigned long long newcsum;
1416         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1417         __le32 *isuper = (__le32*)sb;
1418
1419         disk_csum = sb->sb_csum;
1420         sb->sb_csum = 0;
1421         newcsum = 0;
1422         for (; size >= 4; size -= 4)
1423                 newcsum += le32_to_cpu(*isuper++);
1424
1425         if (size == 2)
1426                 newcsum += le16_to_cpu(*(__le16*) isuper);
1427
1428         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1429         sb->sb_csum = disk_csum;
1430         return cpu_to_le32(csum);
1431 }
1432
1433 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1434                             int acknowledged);
1435 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1436 {
1437         struct mdp_superblock_1 *sb;
1438         int ret;
1439         sector_t sb_start;
1440         sector_t sectors;
1441         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1442         int bmask;
1443
1444         /*
1445          * Calculate the position of the superblock in 512byte sectors.
1446          * It is always aligned to a 4K boundary and
1447          * depeding on minor_version, it can be:
1448          * 0: At least 8K, but less than 12K, from end of device
1449          * 1: At start of device
1450          * 2: 4K from start of device.
1451          */
1452         switch(minor_version) {
1453         case 0:
1454                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1455                 sb_start -= 8*2;
1456                 sb_start &= ~(sector_t)(4*2-1);
1457                 break;
1458         case 1:
1459                 sb_start = 0;
1460                 break;
1461         case 2:
1462                 sb_start = 8;
1463                 break;
1464         default:
1465                 return -EINVAL;
1466         }
1467         rdev->sb_start = sb_start;
1468
1469         /* superblock is rarely larger than 1K, but it can be larger,
1470          * and it is safe to read 4k, so we do that
1471          */
1472         ret = read_disk_sb(rdev, 4096);
1473         if (ret) return ret;
1474
1475
1476         sb = page_address(rdev->sb_page);
1477
1478         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1479             sb->major_version != cpu_to_le32(1) ||
1480             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1481             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1482             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1483                 return -EINVAL;
1484
1485         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1486                 printk("md: invalid superblock checksum on %s\n",
1487                         bdevname(rdev->bdev,b));
1488                 return -EINVAL;
1489         }
1490         if (le64_to_cpu(sb->data_size) < 10) {
1491                 printk("md: data_size too small on %s\n",
1492                        bdevname(rdev->bdev,b));
1493                 return -EINVAL;
1494         }
1495         if (sb->pad0 ||
1496             sb->pad3[0] ||
1497             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1498                 /* Some padding is non-zero, might be a new feature */
1499                 return -EINVAL;
1500
1501         rdev->preferred_minor = 0xffff;
1502         rdev->data_offset = le64_to_cpu(sb->data_offset);
1503         rdev->new_data_offset = rdev->data_offset;
1504         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1505             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1506                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1507         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1508
1509         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1510         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1511         if (rdev->sb_size & bmask)
1512                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1513
1514         if (minor_version
1515             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1516                 return -EINVAL;
1517         if (minor_version
1518             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1519                 return -EINVAL;
1520
1521         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1522                 rdev->desc_nr = -1;
1523         else
1524                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1525
1526         if (!rdev->bb_page) {
1527                 rdev->bb_page = alloc_page(GFP_KERNEL);
1528                 if (!rdev->bb_page)
1529                         return -ENOMEM;
1530         }
1531         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1532             rdev->badblocks.count == 0) {
1533                 /* need to load the bad block list.
1534                  * Currently we limit it to one page.
1535                  */
1536                 s32 offset;
1537                 sector_t bb_sector;
1538                 u64 *bbp;
1539                 int i;
1540                 int sectors = le16_to_cpu(sb->bblog_size);
1541                 if (sectors > (PAGE_SIZE / 512))
1542                         return -EINVAL;
1543                 offset = le32_to_cpu(sb->bblog_offset);
1544                 if (offset == 0)
1545                         return -EINVAL;
1546                 bb_sector = (long long)offset;
1547                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1548                                   rdev->bb_page, READ, true))
1549                         return -EIO;
1550                 bbp = (u64 *)page_address(rdev->bb_page);
1551                 rdev->badblocks.shift = sb->bblog_shift;
1552                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1553                         u64 bb = le64_to_cpu(*bbp);
1554                         int count = bb & (0x3ff);
1555                         u64 sector = bb >> 10;
1556                         sector <<= sb->bblog_shift;
1557                         count <<= sb->bblog_shift;
1558                         if (bb + 1 == 0)
1559                                 break;
1560                         if (md_set_badblocks(&rdev->badblocks,
1561                                              sector, count, 1) == 0)
1562                                 return -EINVAL;
1563                 }
1564         } else if (sb->bblog_offset != 0)
1565                 rdev->badblocks.shift = 0;
1566
1567         if (!refdev) {
1568                 ret = 1;
1569         } else {
1570                 __u64 ev1, ev2;
1571                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1572
1573                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1574                     sb->level != refsb->level ||
1575                     sb->layout != refsb->layout ||
1576                     sb->chunksize != refsb->chunksize) {
1577                         printk(KERN_WARNING "md: %s has strangely different"
1578                                 " superblock to %s\n",
1579                                 bdevname(rdev->bdev,b),
1580                                 bdevname(refdev->bdev,b2));
1581                         return -EINVAL;
1582                 }
1583                 ev1 = le64_to_cpu(sb->events);
1584                 ev2 = le64_to_cpu(refsb->events);
1585
1586                 if (ev1 > ev2)
1587                         ret = 1;
1588                 else
1589                         ret = 0;
1590         }
1591         if (minor_version) {
1592                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1593                 sectors -= rdev->data_offset;
1594         } else
1595                 sectors = rdev->sb_start;
1596         if (sectors < le64_to_cpu(sb->data_size))
1597                 return -EINVAL;
1598         rdev->sectors = le64_to_cpu(sb->data_size);
1599         return ret;
1600 }
1601
1602 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1603 {
1604         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1605         __u64 ev1 = le64_to_cpu(sb->events);
1606
1607         rdev->raid_disk = -1;
1608         clear_bit(Faulty, &rdev->flags);
1609         clear_bit(In_sync, &rdev->flags);
1610         clear_bit(Bitmap_sync, &rdev->flags);
1611         clear_bit(WriteMostly, &rdev->flags);
1612
1613         if (mddev->raid_disks == 0) {
1614                 mddev->major_version = 1;
1615                 mddev->patch_version = 0;
1616                 mddev->external = 0;
1617                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1618                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1619                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1620                 mddev->level = le32_to_cpu(sb->level);
1621                 mddev->clevel[0] = 0;
1622                 mddev->layout = le32_to_cpu(sb->layout);
1623                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1624                 mddev->dev_sectors = le64_to_cpu(sb->size);
1625                 mddev->events = ev1;
1626                 mddev->bitmap_info.offset = 0;
1627                 mddev->bitmap_info.space = 0;
1628                 /* Default location for bitmap is 1K after superblock
1629                  * using 3K - total of 4K
1630                  */
1631                 mddev->bitmap_info.default_offset = 1024 >> 9;
1632                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1633                 mddev->reshape_backwards = 0;
1634
1635                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1636                 memcpy(mddev->uuid, sb->set_uuid, 16);
1637
1638                 mddev->max_disks =  (4096-256)/2;
1639
1640                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1641                     mddev->bitmap_info.file == NULL) {
1642                         mddev->bitmap_info.offset =
1643                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1644                         /* Metadata doesn't record how much space is available.
1645                          * For 1.0, we assume we can use up to the superblock
1646                          * if before, else to 4K beyond superblock.
1647                          * For others, assume no change is possible.
1648                          */
1649                         if (mddev->minor_version > 0)
1650                                 mddev->bitmap_info.space = 0;
1651                         else if (mddev->bitmap_info.offset > 0)
1652                                 mddev->bitmap_info.space =
1653                                         8 - mddev->bitmap_info.offset;
1654                         else
1655                                 mddev->bitmap_info.space =
1656                                         -mddev->bitmap_info.offset;
1657                 }
1658
1659                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1660                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1661                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1662                         mddev->new_level = le32_to_cpu(sb->new_level);
1663                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1664                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1665                         if (mddev->delta_disks < 0 ||
1666                             (mddev->delta_disks == 0 &&
1667                              (le32_to_cpu(sb->feature_map)
1668                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1669                                 mddev->reshape_backwards = 1;
1670                 } else {
1671                         mddev->reshape_position = MaxSector;
1672                         mddev->delta_disks = 0;
1673                         mddev->new_level = mddev->level;
1674                         mddev->new_layout = mddev->layout;
1675                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1676                 }
1677
1678         } else if (mddev->pers == NULL) {
1679                 /* Insist of good event counter while assembling, except for
1680                  * spares (which don't need an event count) */
1681                 ++ev1;
1682                 if (rdev->desc_nr >= 0 &&
1683                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1684                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1685                         if (ev1 < mddev->events)
1686                                 return -EINVAL;
1687         } else if (mddev->bitmap) {
1688                 /* If adding to array with a bitmap, then we can accept an
1689                  * older device, but not too old.
1690                  */
1691                 if (ev1 < mddev->bitmap->events_cleared)
1692                         return 0;
1693                 if (ev1 < mddev->events)
1694                         set_bit(Bitmap_sync, &rdev->flags);
1695         } else {
1696                 if (ev1 < mddev->events)
1697                         /* just a hot-add of a new device, leave raid_disk at -1 */
1698                         return 0;
1699         }
1700         if (mddev->level != LEVEL_MULTIPATH) {
1701                 int role;
1702                 if (rdev->desc_nr < 0 ||
1703                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1704                         role = 0xffff;
1705                         rdev->desc_nr = -1;
1706                 } else
1707                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1708                 switch(role) {
1709                 case 0xffff: /* spare */
1710                         break;
1711                 case 0xfffe: /* faulty */
1712                         set_bit(Faulty, &rdev->flags);
1713                         break;
1714                 default:
1715                         if ((le32_to_cpu(sb->feature_map) &
1716                              MD_FEATURE_RECOVERY_OFFSET))
1717                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1718                         else
1719                                 set_bit(In_sync, &rdev->flags);
1720                         rdev->raid_disk = role;
1721                         break;
1722                 }
1723                 if (sb->devflags & WriteMostly1)
1724                         set_bit(WriteMostly, &rdev->flags);
1725                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1726                         set_bit(Replacement, &rdev->flags);
1727         } else /* MULTIPATH are always insync */
1728                 set_bit(In_sync, &rdev->flags);
1729
1730         return 0;
1731 }
1732
1733 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1734 {
1735         struct mdp_superblock_1 *sb;
1736         struct md_rdev *rdev2;
1737         int max_dev, i;
1738         /* make rdev->sb match mddev and rdev data. */
1739
1740         sb = page_address(rdev->sb_page);
1741
1742         sb->feature_map = 0;
1743         sb->pad0 = 0;
1744         sb->recovery_offset = cpu_to_le64(0);
1745         memset(sb->pad3, 0, sizeof(sb->pad3));
1746
1747         sb->utime = cpu_to_le64((__u64)mddev->utime);
1748         sb->events = cpu_to_le64(mddev->events);
1749         if (mddev->in_sync)
1750                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1751         else
1752                 sb->resync_offset = cpu_to_le64(0);
1753
1754         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1755
1756         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1757         sb->size = cpu_to_le64(mddev->dev_sectors);
1758         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1759         sb->level = cpu_to_le32(mddev->level);
1760         sb->layout = cpu_to_le32(mddev->layout);
1761
1762         if (test_bit(WriteMostly, &rdev->flags))
1763                 sb->devflags |= WriteMostly1;
1764         else
1765                 sb->devflags &= ~WriteMostly1;
1766         sb->data_offset = cpu_to_le64(rdev->data_offset);
1767         sb->data_size = cpu_to_le64(rdev->sectors);
1768
1769         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1770                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1771                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1772         }
1773
1774         if (rdev->raid_disk >= 0 &&
1775             !test_bit(In_sync, &rdev->flags)) {
1776                 sb->feature_map |=
1777                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1778                 sb->recovery_offset =
1779                         cpu_to_le64(rdev->recovery_offset);
1780         }
1781         if (test_bit(Replacement, &rdev->flags))
1782                 sb->feature_map |=
1783                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1784
1785         if (mddev->reshape_position != MaxSector) {
1786                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1787                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1788                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1789                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1790                 sb->new_level = cpu_to_le32(mddev->new_level);
1791                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1792                 if (mddev->delta_disks == 0 &&
1793                     mddev->reshape_backwards)
1794                         sb->feature_map
1795                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1796                 if (rdev->new_data_offset != rdev->data_offset) {
1797                         sb->feature_map
1798                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1799                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1800                                                              - rdev->data_offset));
1801                 }
1802         }
1803
1804         if (rdev->badblocks.count == 0)
1805                 /* Nothing to do for bad blocks*/ ;
1806         else if (sb->bblog_offset == 0)
1807                 /* Cannot record bad blocks on this device */
1808                 md_error(mddev, rdev);
1809         else {
1810                 struct badblocks *bb = &rdev->badblocks;
1811                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1812                 u64 *p = bb->page;
1813                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1814                 if (bb->changed) {
1815                         unsigned seq;
1816
1817 retry:
1818                         seq = read_seqbegin(&bb->lock);
1819
1820                         memset(bbp, 0xff, PAGE_SIZE);
1821
1822                         for (i = 0 ; i < bb->count ; i++) {
1823                                 u64 internal_bb = p[i];
1824                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1825                                                 | BB_LEN(internal_bb));
1826                                 bbp[i] = cpu_to_le64(store_bb);
1827                         }
1828                         bb->changed = 0;
1829                         if (read_seqretry(&bb->lock, seq))
1830                                 goto retry;
1831
1832                         bb->sector = (rdev->sb_start +
1833                                       (int)le32_to_cpu(sb->bblog_offset));
1834                         bb->size = le16_to_cpu(sb->bblog_size);
1835                 }
1836         }
1837
1838         max_dev = 0;
1839         rdev_for_each(rdev2, mddev)
1840                 if (rdev2->desc_nr+1 > max_dev)
1841                         max_dev = rdev2->desc_nr+1;
1842
1843         if (max_dev > le32_to_cpu(sb->max_dev)) {
1844                 int bmask;
1845                 sb->max_dev = cpu_to_le32(max_dev);
1846                 rdev->sb_size = max_dev * 2 + 256;
1847                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1848                 if (rdev->sb_size & bmask)
1849                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1850         } else
1851                 max_dev = le32_to_cpu(sb->max_dev);
1852
1853         for (i=0; i<max_dev;i++)
1854                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1855         
1856         rdev_for_each(rdev2, mddev) {
1857                 i = rdev2->desc_nr;
1858                 if (test_bit(Faulty, &rdev2->flags))
1859                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1860                 else if (test_bit(In_sync, &rdev2->flags))
1861                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1862                 else if (rdev2->raid_disk >= 0)
1863                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1864                 else
1865                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1866         }
1867
1868         sb->sb_csum = calc_sb_1_csum(sb);
1869 }
1870
1871 static unsigned long long
1872 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1873 {
1874         struct mdp_superblock_1 *sb;
1875         sector_t max_sectors;
1876         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1877                 return 0; /* component must fit device */
1878         if (rdev->data_offset != rdev->new_data_offset)
1879                 return 0; /* too confusing */
1880         if (rdev->sb_start < rdev->data_offset) {
1881                 /* minor versions 1 and 2; superblock before data */
1882                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1883                 max_sectors -= rdev->data_offset;
1884                 if (!num_sectors || num_sectors > max_sectors)
1885                         num_sectors = max_sectors;
1886         } else if (rdev->mddev->bitmap_info.offset) {
1887                 /* minor version 0 with bitmap we can't move */
1888                 return 0;
1889         } else {
1890                 /* minor version 0; superblock after data */
1891                 sector_t sb_start;
1892                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1893                 sb_start &= ~(sector_t)(4*2 - 1);
1894                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1895                 if (!num_sectors || num_sectors > max_sectors)
1896                         num_sectors = max_sectors;
1897                 rdev->sb_start = sb_start;
1898         }
1899         sb = page_address(rdev->sb_page);
1900         sb->data_size = cpu_to_le64(num_sectors);
1901         sb->super_offset = rdev->sb_start;
1902         sb->sb_csum = calc_sb_1_csum(sb);
1903         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1904                        rdev->sb_page);
1905         md_super_wait(rdev->mddev);
1906         return num_sectors;
1907
1908 }
1909
1910 static int
1911 super_1_allow_new_offset(struct md_rdev *rdev,
1912                          unsigned long long new_offset)
1913 {
1914         /* All necessary checks on new >= old have been done */
1915         struct bitmap *bitmap;
1916         if (new_offset >= rdev->data_offset)
1917                 return 1;
1918
1919         /* with 1.0 metadata, there is no metadata to tread on
1920          * so we can always move back */
1921         if (rdev->mddev->minor_version == 0)
1922                 return 1;
1923
1924         /* otherwise we must be sure not to step on
1925          * any metadata, so stay:
1926          * 36K beyond start of superblock
1927          * beyond end of badblocks
1928          * beyond write-intent bitmap
1929          */
1930         if (rdev->sb_start + (32+4)*2 > new_offset)
1931                 return 0;
1932         bitmap = rdev->mddev->bitmap;
1933         if (bitmap && !rdev->mddev->bitmap_info.file &&
1934             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1935             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1936                 return 0;
1937         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1938                 return 0;
1939
1940         return 1;
1941 }
1942
1943 static struct super_type super_types[] = {
1944         [0] = {
1945                 .name   = "0.90.0",
1946                 .owner  = THIS_MODULE,
1947                 .load_super         = super_90_load,
1948                 .validate_super     = super_90_validate,
1949                 .sync_super         = super_90_sync,
1950                 .rdev_size_change   = super_90_rdev_size_change,
1951                 .allow_new_offset   = super_90_allow_new_offset,
1952         },
1953         [1] = {
1954                 .name   = "md-1",
1955                 .owner  = THIS_MODULE,
1956                 .load_super         = super_1_load,
1957                 .validate_super     = super_1_validate,
1958                 .sync_super         = super_1_sync,
1959                 .rdev_size_change   = super_1_rdev_size_change,
1960                 .allow_new_offset   = super_1_allow_new_offset,
1961         },
1962 };
1963
1964 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1965 {
1966         if (mddev->sync_super) {
1967                 mddev->sync_super(mddev, rdev);
1968                 return;
1969         }
1970
1971         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1972
1973         super_types[mddev->major_version].sync_super(mddev, rdev);
1974 }
1975
1976 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1977 {
1978         struct md_rdev *rdev, *rdev2;
1979
1980         rcu_read_lock();
1981         rdev_for_each_rcu(rdev, mddev1)
1982                 rdev_for_each_rcu(rdev2, mddev2)
1983                         if (rdev->bdev->bd_contains ==
1984                             rdev2->bdev->bd_contains) {
1985                                 rcu_read_unlock();
1986                                 return 1;
1987                         }
1988         rcu_read_unlock();
1989         return 0;
1990 }
1991
1992 static LIST_HEAD(pending_raid_disks);
1993
1994 /*
1995  * Try to register data integrity profile for an mddev
1996  *
1997  * This is called when an array is started and after a disk has been kicked
1998  * from the array. It only succeeds if all working and active component devices
1999  * are integrity capable with matching profiles.
2000  */
2001 int md_integrity_register(struct mddev *mddev)
2002 {
2003         struct md_rdev *rdev, *reference = NULL;
2004
2005         if (list_empty(&mddev->disks))
2006                 return 0; /* nothing to do */
2007         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2008                 return 0; /* shouldn't register, or already is */
2009         rdev_for_each(rdev, mddev) {
2010                 /* skip spares and non-functional disks */
2011                 if (test_bit(Faulty, &rdev->flags))
2012                         continue;
2013                 if (rdev->raid_disk < 0)
2014                         continue;
2015                 if (!reference) {
2016                         /* Use the first rdev as the reference */
2017                         reference = rdev;
2018                         continue;
2019                 }
2020                 /* does this rdev's profile match the reference profile? */
2021                 if (blk_integrity_compare(reference->bdev->bd_disk,
2022                                 rdev->bdev->bd_disk) < 0)
2023                         return -EINVAL;
2024         }
2025         if (!reference || !bdev_get_integrity(reference->bdev))
2026                 return 0;
2027         /*
2028          * All component devices are integrity capable and have matching
2029          * profiles, register the common profile for the md device.
2030          */
2031         if (blk_integrity_register(mddev->gendisk,
2032                         bdev_get_integrity(reference->bdev)) != 0) {
2033                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2034                         mdname(mddev));
2035                 return -EINVAL;
2036         }
2037         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2038         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2039                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2040                        mdname(mddev));
2041                 return -EINVAL;
2042         }
2043         return 0;
2044 }
2045 EXPORT_SYMBOL(md_integrity_register);
2046
2047 /* Disable data integrity if non-capable/non-matching disk is being added */
2048 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2049 {
2050         struct blk_integrity *bi_rdev;
2051         struct blk_integrity *bi_mddev;
2052
2053         if (!mddev->gendisk)
2054                 return;
2055
2056         bi_rdev = bdev_get_integrity(rdev->bdev);
2057         bi_mddev = blk_get_integrity(mddev->gendisk);
2058
2059         if (!bi_mddev) /* nothing to do */
2060                 return;
2061         if (rdev->raid_disk < 0) /* skip spares */
2062                 return;
2063         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2064                                              rdev->bdev->bd_disk) >= 0)
2065                 return;
2066         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2067         blk_integrity_unregister(mddev->gendisk);
2068 }
2069 EXPORT_SYMBOL(md_integrity_add_rdev);
2070
2071 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2072 {
2073         char b[BDEVNAME_SIZE];
2074         struct kobject *ko;
2075         char *s;
2076         int err;
2077
2078         if (rdev->mddev) {
2079                 MD_BUG();
2080                 return -EINVAL;
2081         }
2082
2083         /* prevent duplicates */
2084         if (find_rdev(mddev, rdev->bdev->bd_dev))
2085                 return -EEXIST;
2086
2087         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2088         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2089                         rdev->sectors < mddev->dev_sectors)) {
2090                 if (mddev->pers) {
2091                         /* Cannot change size, so fail
2092                          * If mddev->level <= 0, then we don't care
2093                          * about aligning sizes (e.g. linear)
2094                          */
2095                         if (mddev->level > 0)
2096                                 return -ENOSPC;
2097                 } else
2098                         mddev->dev_sectors = rdev->sectors;
2099         }
2100
2101         /* Verify rdev->desc_nr is unique.
2102          * If it is -1, assign a free number, else
2103          * check number is not in use
2104          */
2105         if (rdev->desc_nr < 0) {
2106                 int choice = 0;
2107                 if (mddev->pers) choice = mddev->raid_disks;
2108                 while (find_rdev_nr(mddev, choice))
2109                         choice++;
2110                 rdev->desc_nr = choice;
2111         } else {
2112                 if (find_rdev_nr(mddev, rdev->desc_nr))
2113                         return -EBUSY;
2114         }
2115         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2116                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2117                        mdname(mddev), mddev->max_disks);
2118                 return -EBUSY;
2119         }
2120         bdevname(rdev->bdev,b);
2121         while ( (s=strchr(b, '/')) != NULL)
2122                 *s = '!';
2123
2124         rdev->mddev = mddev;
2125         printk(KERN_INFO "md: bind<%s>\n", b);
2126
2127         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2128                 goto fail;
2129
2130         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2131         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2132                 /* failure here is OK */;
2133         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2134
2135         list_add_rcu(&rdev->same_set, &mddev->disks);
2136         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2137
2138         /* May as well allow recovery to be retried once */
2139         mddev->recovery_disabled++;
2140
2141         return 0;
2142
2143  fail:
2144         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2145                b, mdname(mddev));
2146         return err;
2147 }
2148
2149 static void md_delayed_delete(struct work_struct *ws)
2150 {
2151         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2152         kobject_del(&rdev->kobj);
2153         kobject_put(&rdev->kobj);
2154 }
2155
2156 static void unbind_rdev_from_array(struct md_rdev * rdev)
2157 {
2158         char b[BDEVNAME_SIZE];
2159         if (!rdev->mddev) {
2160                 MD_BUG();
2161                 return;
2162         }
2163         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2164         list_del_rcu(&rdev->same_set);
2165         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2166         rdev->mddev = NULL;
2167         sysfs_remove_link(&rdev->kobj, "block");
2168         sysfs_put(rdev->sysfs_state);
2169         rdev->sysfs_state = NULL;
2170         rdev->badblocks.count = 0;
2171         /* We need to delay this, otherwise we can deadlock when
2172          * writing to 'remove' to "dev/state".  We also need
2173          * to delay it due to rcu usage.
2174          */
2175         synchronize_rcu();
2176         INIT_WORK(&rdev->del_work, md_delayed_delete);
2177         kobject_get(&rdev->kobj);
2178         queue_work(md_misc_wq, &rdev->del_work);
2179 }
2180
2181 /*
2182  * prevent the device from being mounted, repartitioned or
2183  * otherwise reused by a RAID array (or any other kernel
2184  * subsystem), by bd_claiming the device.
2185  */
2186 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2187 {
2188         int err = 0;
2189         struct block_device *bdev;
2190         char b[BDEVNAME_SIZE];
2191
2192         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2193                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2194         if (IS_ERR(bdev)) {
2195                 printk(KERN_ERR "md: could not open %s.\n",
2196                         __bdevname(dev, b));
2197                 return PTR_ERR(bdev);
2198         }
2199         rdev->bdev = bdev;
2200         return err;
2201 }
2202
2203 static void unlock_rdev(struct md_rdev *rdev)
2204 {
2205         struct block_device *bdev = rdev->bdev;
2206         rdev->bdev = NULL;
2207         if (!bdev)
2208                 MD_BUG();
2209         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2210 }
2211
2212 void md_autodetect_dev(dev_t dev);
2213
2214 static void export_rdev(struct md_rdev * rdev)
2215 {
2216         char b[BDEVNAME_SIZE];
2217         printk(KERN_INFO "md: export_rdev(%s)\n",
2218                 bdevname(rdev->bdev,b));
2219         if (rdev->mddev)
2220                 MD_BUG();
2221         md_rdev_clear(rdev);
2222 #ifndef MODULE
2223         if (test_bit(AutoDetected, &rdev->flags))
2224                 md_autodetect_dev(rdev->bdev->bd_dev);
2225 #endif
2226         unlock_rdev(rdev);
2227         kobject_put(&rdev->kobj);
2228 }
2229
2230 static void kick_rdev_from_array(struct md_rdev * rdev)
2231 {
2232         unbind_rdev_from_array(rdev);
2233         export_rdev(rdev);
2234 }
2235
2236 static void export_array(struct mddev *mddev)
2237 {
2238         struct md_rdev *rdev, *tmp;
2239
2240         rdev_for_each_safe(rdev, tmp, mddev) {
2241                 if (!rdev->mddev) {
2242                         MD_BUG();
2243                         continue;
2244                 }
2245                 kick_rdev_from_array(rdev);
2246         }
2247         if (!list_empty(&mddev->disks))
2248                 MD_BUG();
2249         mddev->raid_disks = 0;
2250         mddev->major_version = 0;
2251 }
2252
2253 static void print_desc(mdp_disk_t *desc)
2254 {
2255         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2256                 desc->major,desc->minor,desc->raid_disk,desc->state);
2257 }
2258
2259 static void print_sb_90(mdp_super_t *sb)
2260 {
2261         int i;
2262
2263         printk(KERN_INFO 
2264                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2265                 sb->major_version, sb->minor_version, sb->patch_version,
2266                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2267                 sb->ctime);
2268         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2269                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2270                 sb->md_minor, sb->layout, sb->chunk_size);
2271         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2272                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2273                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2274                 sb->failed_disks, sb->spare_disks,
2275                 sb->sb_csum, (unsigned long)sb->events_lo);
2276
2277         printk(KERN_INFO);
2278         for (i = 0; i < MD_SB_DISKS; i++) {
2279                 mdp_disk_t *desc;
2280
2281                 desc = sb->disks + i;
2282                 if (desc->number || desc->major || desc->minor ||
2283                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2284                         printk("     D %2d: ", i);
2285                         print_desc(desc);
2286                 }
2287         }
2288         printk(KERN_INFO "md:     THIS: ");
2289         print_desc(&sb->this_disk);
2290 }
2291
2292 static void print_sb_1(struct mdp_superblock_1 *sb)
2293 {
2294         __u8 *uuid;
2295
2296         uuid = sb->set_uuid;
2297         printk(KERN_INFO
2298                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2299                "md:    Name: \"%s\" CT:%llu\n",
2300                 le32_to_cpu(sb->major_version),
2301                 le32_to_cpu(sb->feature_map),
2302                 uuid,
2303                 sb->set_name,
2304                 (unsigned long long)le64_to_cpu(sb->ctime)
2305                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2306
2307         uuid = sb->device_uuid;
2308         printk(KERN_INFO
2309                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2310                         " RO:%llu\n"
2311                "md:     Dev:%08x UUID: %pU\n"
2312                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2313                "md:         (MaxDev:%u) \n",
2314                 le32_to_cpu(sb->level),
2315                 (unsigned long long)le64_to_cpu(sb->size),
2316                 le32_to_cpu(sb->raid_disks),
2317                 le32_to_cpu(sb->layout),
2318                 le32_to_cpu(sb->chunksize),
2319                 (unsigned long long)le64_to_cpu(sb->data_offset),
2320                 (unsigned long long)le64_to_cpu(sb->data_size),
2321                 (unsigned long long)le64_to_cpu(sb->super_offset),
2322                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2323                 le32_to_cpu(sb->dev_number),
2324                 uuid,
2325                 sb->devflags,
2326                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2327                 (unsigned long long)le64_to_cpu(sb->events),
2328                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2329                 le32_to_cpu(sb->sb_csum),
2330                 le32_to_cpu(sb->max_dev)
2331                 );
2332 }
2333
2334 static void print_rdev(struct md_rdev *rdev, int major_version)
2335 {
2336         char b[BDEVNAME_SIZE];
2337         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2338                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2339                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2340                 rdev->desc_nr);
2341         if (rdev->sb_loaded) {
2342                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2343                 switch (major_version) {
2344                 case 0:
2345                         print_sb_90(page_address(rdev->sb_page));
2346                         break;
2347                 case 1:
2348                         print_sb_1(page_address(rdev->sb_page));
2349                         break;
2350                 }
2351         } else
2352                 printk(KERN_INFO "md: no rdev superblock!\n");
2353 }
2354
2355 static void md_print_devices(void)
2356 {
2357         struct list_head *tmp;
2358         struct md_rdev *rdev;
2359         struct mddev *mddev;
2360         char b[BDEVNAME_SIZE];
2361
2362         printk("\n");
2363         printk("md:     **********************************\n");
2364         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2365         printk("md:     **********************************\n");
2366         for_each_mddev(mddev, tmp) {
2367
2368                 if (mddev->bitmap)
2369                         bitmap_print_sb(mddev->bitmap);
2370                 else
2371                         printk("%s: ", mdname(mddev));
2372                 rdev_for_each(rdev, mddev)
2373                         printk("<%s>", bdevname(rdev->bdev,b));
2374                 printk("\n");
2375
2376                 rdev_for_each(rdev, mddev)
2377                         print_rdev(rdev, mddev->major_version);
2378         }
2379         printk("md:     **********************************\n");
2380         printk("\n");
2381 }
2382
2383
2384 static void sync_sbs(struct mddev * mddev, int nospares)
2385 {
2386         /* Update each superblock (in-memory image), but
2387          * if we are allowed to, skip spares which already
2388          * have the right event counter, or have one earlier
2389          * (which would mean they aren't being marked as dirty
2390          * with the rest of the array)
2391          */
2392         struct md_rdev *rdev;
2393         rdev_for_each(rdev, mddev) {
2394                 if (rdev->sb_events == mddev->events ||
2395                     (nospares &&
2396                      rdev->raid_disk < 0 &&
2397                      rdev->sb_events+1 == mddev->events)) {
2398                         /* Don't update this superblock */
2399                         rdev->sb_loaded = 2;
2400                 } else {
2401                         sync_super(mddev, rdev);
2402                         rdev->sb_loaded = 1;
2403                 }
2404         }
2405 }
2406
2407 static void md_update_sb(struct mddev * mddev, int force_change)
2408 {
2409         struct md_rdev *rdev;
2410         int sync_req;
2411         int nospares = 0;
2412         int any_badblocks_changed = 0;
2413
2414         if (mddev->ro) {
2415                 if (force_change)
2416                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2417                 return;
2418         }
2419 repeat:
2420         /* First make sure individual recovery_offsets are correct */
2421         rdev_for_each(rdev, mddev) {
2422                 if (rdev->raid_disk >= 0 &&
2423                     mddev->delta_disks >= 0 &&
2424                     !test_bit(In_sync, &rdev->flags) &&
2425                     mddev->curr_resync_completed > rdev->recovery_offset)
2426                                 rdev->recovery_offset = mddev->curr_resync_completed;
2427
2428         }       
2429         if (!mddev->persistent) {
2430                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2431                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2432                 if (!mddev->external) {
2433                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2434                         rdev_for_each(rdev, mddev) {
2435                                 if (rdev->badblocks.changed) {
2436                                         rdev->badblocks.changed = 0;
2437                                         md_ack_all_badblocks(&rdev->badblocks);
2438                                         md_error(mddev, rdev);
2439                                 }
2440                                 clear_bit(Blocked, &rdev->flags);
2441                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2442                                 wake_up(&rdev->blocked_wait);
2443                         }
2444                 }
2445                 wake_up(&mddev->sb_wait);
2446                 return;
2447         }
2448
2449         spin_lock_irq(&mddev->write_lock);
2450
2451         mddev->utime = get_seconds();
2452
2453         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2454                 force_change = 1;
2455         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2456                 /* just a clean<-> dirty transition, possibly leave spares alone,
2457                  * though if events isn't the right even/odd, we will have to do
2458                  * spares after all
2459                  */
2460                 nospares = 1;
2461         if (force_change)
2462                 nospares = 0;
2463         if (mddev->degraded)
2464                 /* If the array is degraded, then skipping spares is both
2465                  * dangerous and fairly pointless.
2466                  * Dangerous because a device that was removed from the array
2467                  * might have a event_count that still looks up-to-date,
2468                  * so it can be re-added without a resync.
2469                  * Pointless because if there are any spares to skip,
2470                  * then a recovery will happen and soon that array won't
2471                  * be degraded any more and the spare can go back to sleep then.
2472                  */
2473                 nospares = 0;
2474
2475         sync_req = mddev->in_sync;
2476
2477         /* If this is just a dirty<->clean transition, and the array is clean
2478          * and 'events' is odd, we can roll back to the previous clean state */
2479         if (nospares
2480             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2481             && mddev->can_decrease_events
2482             && mddev->events != 1) {
2483                 mddev->events--;
2484                 mddev->can_decrease_events = 0;
2485         } else {
2486                 /* otherwise we have to go forward and ... */
2487                 mddev->events ++;
2488                 mddev->can_decrease_events = nospares;
2489         }
2490
2491         if (!mddev->events) {
2492                 /*
2493                  * oops, this 64-bit counter should never wrap.
2494                  * Either we are in around ~1 trillion A.C., assuming
2495                  * 1 reboot per second, or we have a bug:
2496                  */
2497                 MD_BUG();
2498                 mddev->events --;
2499         }
2500
2501         rdev_for_each(rdev, mddev) {
2502                 if (rdev->badblocks.changed)
2503                         any_badblocks_changed++;
2504                 if (test_bit(Faulty, &rdev->flags))
2505                         set_bit(FaultRecorded, &rdev->flags);
2506         }
2507
2508         sync_sbs(mddev, nospares);
2509         spin_unlock_irq(&mddev->write_lock);
2510
2511         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2512                  mdname(mddev), mddev->in_sync);
2513
2514         bitmap_update_sb(mddev->bitmap);
2515         rdev_for_each(rdev, mddev) {
2516                 char b[BDEVNAME_SIZE];
2517
2518                 if (rdev->sb_loaded != 1)
2519                         continue; /* no noise on spare devices */
2520
2521                 if (!test_bit(Faulty, &rdev->flags) &&
2522                     rdev->saved_raid_disk == -1) {
2523                         md_super_write(mddev,rdev,
2524                                        rdev->sb_start, rdev->sb_size,
2525                                        rdev->sb_page);
2526                         pr_debug("md: (write) %s's sb offset: %llu\n",
2527                                  bdevname(rdev->bdev, b),
2528                                  (unsigned long long)rdev->sb_start);
2529                         rdev->sb_events = mddev->events;
2530                         if (rdev->badblocks.size) {
2531                                 md_super_write(mddev, rdev,
2532                                                rdev->badblocks.sector,
2533                                                rdev->badblocks.size << 9,
2534                                                rdev->bb_page);
2535                                 rdev->badblocks.size = 0;
2536                         }
2537
2538                 } else if (test_bit(Faulty, &rdev->flags))
2539                         pr_debug("md: %s (skipping faulty)\n",
2540                                  bdevname(rdev->bdev, b));
2541                 else
2542                         pr_debug("(skipping incremental s/r ");
2543
2544                 if (mddev->level == LEVEL_MULTIPATH)
2545                         /* only need to write one superblock... */
2546                         break;
2547         }
2548         md_super_wait(mddev);
2549         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2550
2551         spin_lock_irq(&mddev->write_lock);
2552         if (mddev->in_sync != sync_req ||
2553             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2554                 /* have to write it out again */
2555                 spin_unlock_irq(&mddev->write_lock);
2556                 goto repeat;
2557         }
2558         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2559         spin_unlock_irq(&mddev->write_lock);
2560         wake_up(&mddev->sb_wait);
2561         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2562                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2563
2564         rdev_for_each(rdev, mddev) {
2565                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2566                         clear_bit(Blocked, &rdev->flags);
2567
2568                 if (any_badblocks_changed)
2569                         md_ack_all_badblocks(&rdev->badblocks);
2570                 clear_bit(BlockedBadBlocks, &rdev->flags);
2571                 wake_up(&rdev->blocked_wait);
2572         }
2573 }
2574
2575 /* words written to sysfs files may, or may not, be \n terminated.
2576  * We want to accept with case. For this we use cmd_match.
2577  */
2578 static int cmd_match(const char *cmd, const char *str)
2579 {
2580         /* See if cmd, written into a sysfs file, matches
2581          * str.  They must either be the same, or cmd can
2582          * have a trailing newline
2583          */
2584         while (*cmd && *str && *cmd == *str) {
2585                 cmd++;
2586                 str++;
2587         }
2588         if (*cmd == '\n')
2589                 cmd++;
2590         if (*str || *cmd)
2591                 return 0;
2592         return 1;
2593 }
2594
2595 struct rdev_sysfs_entry {
2596         struct attribute attr;
2597         ssize_t (*show)(struct md_rdev *, char *);
2598         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2599 };
2600
2601 static ssize_t
2602 state_show(struct md_rdev *rdev, char *page)
2603 {
2604         char *sep = "";
2605         size_t len = 0;
2606
2607         if (test_bit(Faulty, &rdev->flags) ||
2608             rdev->badblocks.unacked_exist) {
2609                 len+= sprintf(page+len, "%sfaulty",sep);
2610                 sep = ",";
2611         }
2612         if (test_bit(In_sync, &rdev->flags)) {
2613                 len += sprintf(page+len, "%sin_sync",sep);
2614                 sep = ",";
2615         }
2616         if (test_bit(WriteMostly, &rdev->flags)) {
2617                 len += sprintf(page+len, "%swrite_mostly",sep);
2618                 sep = ",";
2619         }
2620         if (test_bit(Blocked, &rdev->flags) ||
2621             (rdev->badblocks.unacked_exist
2622              && !test_bit(Faulty, &rdev->flags))) {
2623                 len += sprintf(page+len, "%sblocked", sep);
2624                 sep = ",";
2625         }
2626         if (!test_bit(Faulty, &rdev->flags) &&
2627             !test_bit(In_sync, &rdev->flags)) {
2628                 len += sprintf(page+len, "%sspare", sep);
2629                 sep = ",";
2630         }
2631         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2632                 len += sprintf(page+len, "%swrite_error", sep);
2633                 sep = ",";
2634         }
2635         if (test_bit(WantReplacement, &rdev->flags)) {
2636                 len += sprintf(page+len, "%swant_replacement", sep);
2637                 sep = ",";
2638         }
2639         if (test_bit(Replacement, &rdev->flags)) {
2640                 len += sprintf(page+len, "%sreplacement", sep);
2641                 sep = ",";
2642         }
2643
2644         return len+sprintf(page+len, "\n");
2645 }
2646
2647 static ssize_t
2648 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2649 {
2650         /* can write
2651          *  faulty  - simulates an error
2652          *  remove  - disconnects the device
2653          *  writemostly - sets write_mostly
2654          *  -writemostly - clears write_mostly
2655          *  blocked - sets the Blocked flags
2656          *  -blocked - clears the Blocked and possibly simulates an error
2657          *  insync - sets Insync providing device isn't active
2658          *  write_error - sets WriteErrorSeen
2659          *  -write_error - clears WriteErrorSeen
2660          */
2661         int err = -EINVAL;
2662         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2663                 md_error(rdev->mddev, rdev);
2664                 if (test_bit(Faulty, &rdev->flags))
2665                         err = 0;
2666                 else
2667                         err = -EBUSY;
2668         } else if (cmd_match(buf, "remove")) {
2669                 if (rdev->raid_disk >= 0)
2670                         err = -EBUSY;
2671                 else {
2672                         struct mddev *mddev = rdev->mddev;
2673                         kick_rdev_from_array(rdev);
2674                         if (mddev->pers)
2675                                 md_update_sb(mddev, 1);
2676                         md_new_event(mddev);
2677                         err = 0;
2678                 }
2679         } else if (cmd_match(buf, "writemostly")) {
2680                 set_bit(WriteMostly, &rdev->flags);
2681                 err = 0;
2682         } else if (cmd_match(buf, "-writemostly")) {
2683                 clear_bit(WriteMostly, &rdev->flags);
2684                 err = 0;
2685         } else if (cmd_match(buf, "blocked")) {
2686                 set_bit(Blocked, &rdev->flags);
2687                 err = 0;
2688         } else if (cmd_match(buf, "-blocked")) {
2689                 if (!test_bit(Faulty, &rdev->flags) &&
2690                     rdev->badblocks.unacked_exist) {
2691                         /* metadata handler doesn't understand badblocks,
2692                          * so we need to fail the device
2693                          */
2694                         md_error(rdev->mddev, rdev);
2695                 }
2696                 clear_bit(Blocked, &rdev->flags);
2697                 clear_bit(BlockedBadBlocks, &rdev->flags);
2698                 wake_up(&rdev->blocked_wait);
2699                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2700                 md_wakeup_thread(rdev->mddev->thread);
2701
2702                 err = 0;
2703         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2704                 set_bit(In_sync, &rdev->flags);
2705                 err = 0;
2706         } else if (cmd_match(buf, "write_error")) {
2707                 set_bit(WriteErrorSeen, &rdev->flags);
2708                 err = 0;
2709         } else if (cmd_match(buf, "-write_error")) {
2710                 clear_bit(WriteErrorSeen, &rdev->flags);
2711                 err = 0;
2712         } else if (cmd_match(buf, "want_replacement")) {
2713                 /* Any non-spare device that is not a replacement can
2714                  * become want_replacement at any time, but we then need to
2715                  * check if recovery is needed.
2716                  */
2717                 if (rdev->raid_disk >= 0 &&
2718                     !test_bit(Replacement, &rdev->flags))
2719                         set_bit(WantReplacement, &rdev->flags);
2720                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2721                 md_wakeup_thread(rdev->mddev->thread);
2722                 err = 0;
2723         } else if (cmd_match(buf, "-want_replacement")) {
2724                 /* Clearing 'want_replacement' is always allowed.
2725                  * Once replacements starts it is too late though.
2726                  */
2727                 err = 0;
2728                 clear_bit(WantReplacement, &rdev->flags);
2729         } else if (cmd_match(buf, "replacement")) {
2730                 /* Can only set a device as a replacement when array has not
2731                  * yet been started.  Once running, replacement is automatic
2732                  * from spares, or by assigning 'slot'.
2733                  */
2734                 if (rdev->mddev->pers)
2735                         err = -EBUSY;
2736                 else {
2737                         set_bit(Replacement, &rdev->flags);
2738                         err = 0;
2739                 }
2740         } else if (cmd_match(buf, "-replacement")) {
2741                 /* Similarly, can only clear Replacement before start */
2742                 if (rdev->mddev->pers)
2743                         err = -EBUSY;
2744                 else {
2745                         clear_bit(Replacement, &rdev->flags);
2746                         err = 0;
2747                 }
2748         }
2749         if (!err)
2750                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2751         return err ? err : len;
2752 }
2753 static struct rdev_sysfs_entry rdev_state =
2754 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2755
2756 static ssize_t
2757 errors_show(struct md_rdev *rdev, char *page)
2758 {
2759         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2760 }
2761
2762 static ssize_t
2763 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2764 {
2765         char *e;
2766         unsigned long n = simple_strtoul(buf, &e, 10);
2767         if (*buf && (*e == 0 || *e == '\n')) {
2768                 atomic_set(&rdev->corrected_errors, n);
2769                 return len;
2770         }
2771         return -EINVAL;
2772 }
2773 static struct rdev_sysfs_entry rdev_errors =
2774 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2775
2776 static ssize_t
2777 slot_show(struct md_rdev *rdev, char *page)
2778 {
2779         if (rdev->raid_disk < 0)
2780                 return sprintf(page, "none\n");
2781         else
2782                 return sprintf(page, "%d\n", rdev->raid_disk);
2783 }
2784
2785 static ssize_t
2786 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2787 {
2788         char *e;
2789         int err;
2790         int slot = simple_strtoul(buf, &e, 10);
2791         if (strncmp(buf, "none", 4)==0)
2792                 slot = -1;
2793         else if (e==buf || (*e && *e!= '\n'))
2794                 return -EINVAL;
2795         if (rdev->mddev->pers && slot == -1) {
2796                 /* Setting 'slot' on an active array requires also
2797                  * updating the 'rd%d' link, and communicating
2798                  * with the personality with ->hot_*_disk.
2799                  * For now we only support removing
2800                  * failed/spare devices.  This normally happens automatically,
2801                  * but not when the metadata is externally managed.
2802                  */
2803                 if (rdev->raid_disk == -1)
2804                         return -EEXIST;
2805                 /* personality does all needed checks */
2806                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2807                         return -EINVAL;
2808                 clear_bit(Blocked, &rdev->flags);
2809                 remove_and_add_spares(rdev->mddev, rdev);
2810                 if (rdev->raid_disk >= 0)
2811                         return -EBUSY;
2812                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2813                 md_wakeup_thread(rdev->mddev->thread);
2814         } else if (rdev->mddev->pers) {
2815                 /* Activating a spare .. or possibly reactivating
2816                  * if we ever get bitmaps working here.
2817                  */
2818
2819                 if (rdev->raid_disk != -1)
2820                         return -EBUSY;
2821
2822                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2823                         return -EBUSY;
2824
2825                 if (rdev->mddev->pers->hot_add_disk == NULL)
2826                         return -EINVAL;
2827
2828                 if (slot >= rdev->mddev->raid_disks &&
2829                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2830                         return -ENOSPC;
2831
2832                 rdev->raid_disk = slot;
2833                 if (test_bit(In_sync, &rdev->flags))
2834                         rdev->saved_raid_disk = slot;
2835                 else
2836                         rdev->saved_raid_disk = -1;
2837                 clear_bit(In_sync, &rdev->flags);
2838                 clear_bit(Bitmap_sync, &rdev->flags);
2839                 err = rdev->mddev->pers->
2840                         hot_add_disk(rdev->mddev, rdev);
2841                 if (err) {
2842                         rdev->raid_disk = -1;
2843                         return err;
2844                 } else
2845                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2846                 if (sysfs_link_rdev(rdev->mddev, rdev))
2847                         /* failure here is OK */;
2848                 /* don't wakeup anyone, leave that to userspace. */
2849         } else {
2850                 if (slot >= rdev->mddev->raid_disks &&
2851                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2852                         return -ENOSPC;
2853                 rdev->raid_disk = slot;
2854                 /* assume it is working */
2855                 clear_bit(Faulty, &rdev->flags);
2856                 clear_bit(WriteMostly, &rdev->flags);
2857                 set_bit(In_sync, &rdev->flags);
2858                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2859         }
2860         return len;
2861 }
2862
2863
2864 static struct rdev_sysfs_entry rdev_slot =
2865 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2866
2867 static ssize_t
2868 offset_show(struct md_rdev *rdev, char *page)
2869 {
2870         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2871 }
2872
2873 static ssize_t
2874 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2875 {
2876         unsigned long long offset;
2877         if (strict_strtoull(buf, 10, &offset) < 0)
2878                 return -EINVAL;
2879         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2880                 return -EBUSY;
2881         if (rdev->sectors && rdev->mddev->external)
2882                 /* Must set offset before size, so overlap checks
2883                  * can be sane */
2884                 return -EBUSY;
2885         rdev->data_offset = offset;
2886         rdev->new_data_offset = offset;
2887         return len;
2888 }
2889
2890 static struct rdev_sysfs_entry rdev_offset =
2891 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2892
2893 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2894 {
2895         return sprintf(page, "%llu\n",
2896                        (unsigned long long)rdev->new_data_offset);
2897 }
2898
2899 static ssize_t new_offset_store(struct md_rdev *rdev,
2900                                 const char *buf, size_t len)
2901 {
2902         unsigned long long new_offset;
2903         struct mddev *mddev = rdev->mddev;
2904
2905         if (strict_strtoull(buf, 10, &new_offset) < 0)
2906                 return -EINVAL;
2907
2908         if (mddev->sync_thread)
2909                 return -EBUSY;
2910         if (new_offset == rdev->data_offset)
2911                 /* reset is always permitted */
2912                 ;
2913         else if (new_offset > rdev->data_offset) {
2914                 /* must not push array size beyond rdev_sectors */
2915                 if (new_offset - rdev->data_offset
2916                     + mddev->dev_sectors > rdev->sectors)
2917                                 return -E2BIG;
2918         }
2919         /* Metadata worries about other space details. */
2920
2921         /* decreasing the offset is inconsistent with a backwards
2922          * reshape.
2923          */
2924         if (new_offset < rdev->data_offset &&
2925             mddev->reshape_backwards)
2926                 return -EINVAL;
2927         /* Increasing offset is inconsistent with forwards
2928          * reshape.  reshape_direction should be set to
2929          * 'backwards' first.
2930          */
2931         if (new_offset > rdev->data_offset &&
2932             !mddev->reshape_backwards)
2933                 return -EINVAL;
2934
2935         if (mddev->pers && mddev->persistent &&
2936             !super_types[mddev->major_version]
2937             .allow_new_offset(rdev, new_offset))
2938                 return -E2BIG;
2939         rdev->new_data_offset = new_offset;
2940         if (new_offset > rdev->data_offset)
2941                 mddev->reshape_backwards = 1;
2942         else if (new_offset < rdev->data_offset)
2943                 mddev->reshape_backwards = 0;
2944
2945         return len;
2946 }
2947 static struct rdev_sysfs_entry rdev_new_offset =
2948 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2949
2950 static ssize_t
2951 rdev_size_show(struct md_rdev *rdev, char *page)
2952 {
2953         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2954 }
2955
2956 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2957 {
2958         /* check if two start/length pairs overlap */
2959         if (s1+l1 <= s2)
2960                 return 0;
2961         if (s2+l2 <= s1)
2962                 return 0;
2963         return 1;
2964 }
2965
2966 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2967 {
2968         unsigned long long blocks;
2969         sector_t new;
2970
2971         if (strict_strtoull(buf, 10, &blocks) < 0)
2972                 return -EINVAL;
2973
2974         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2975                 return -EINVAL; /* sector conversion overflow */
2976
2977         new = blocks * 2;
2978         if (new != blocks * 2)
2979                 return -EINVAL; /* unsigned long long to sector_t overflow */
2980
2981         *sectors = new;
2982         return 0;
2983 }
2984
2985 static ssize_t
2986 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2987 {
2988         struct mddev *my_mddev = rdev->mddev;
2989         sector_t oldsectors = rdev->sectors;
2990         sector_t sectors;
2991
2992         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2993                 return -EINVAL;
2994         if (rdev->data_offset != rdev->new_data_offset)
2995                 return -EINVAL; /* too confusing */
2996         if (my_mddev->pers && rdev->raid_disk >= 0) {
2997                 if (my_mddev->persistent) {
2998                         sectors = super_types[my_mddev->major_version].
2999                                 rdev_size_change(rdev, sectors);
3000                         if (!sectors)
3001                                 return -EBUSY;
3002                 } else if (!sectors)
3003                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3004                                 rdev->data_offset;
3005                 if (!my_mddev->pers->resize)
3006                         /* Cannot change size for RAID0 or Linear etc */
3007                         return -EINVAL;
3008         }
3009         if (sectors < my_mddev->dev_sectors)
3010                 return -EINVAL; /* component must fit device */
3011
3012         rdev->sectors = sectors;
3013         if (sectors > oldsectors && my_mddev->external) {
3014                 /* need to check that all other rdevs with the same ->bdev
3015                  * do not overlap.  We need to unlock the mddev to avoid
3016                  * a deadlock.  We have already changed rdev->sectors, and if
3017                  * we have to change it back, we will have the lock again.
3018                  */
3019                 struct mddev *mddev;
3020                 int overlap = 0;
3021                 struct list_head *tmp;
3022
3023                 mddev_unlock(my_mddev);
3024                 for_each_mddev(mddev, tmp) {
3025                         struct md_rdev *rdev2;
3026
3027                         mddev_lock(mddev);
3028                         rdev_for_each(rdev2, mddev)
3029                                 if (rdev->bdev == rdev2->bdev &&
3030                                     rdev != rdev2 &&
3031                                     overlaps(rdev->data_offset, rdev->sectors,
3032                                              rdev2->data_offset,
3033                                              rdev2->sectors)) {
3034                                         overlap = 1;
3035                                         break;
3036                                 }
3037                         mddev_unlock(mddev);
3038                         if (overlap) {
3039                                 mddev_put(mddev);
3040                                 break;
3041                         }
3042                 }
3043                 mddev_lock(my_mddev);
3044                 if (overlap) {
3045                         /* Someone else could have slipped in a size
3046                          * change here, but doing so is just silly.
3047                          * We put oldsectors back because we *know* it is
3048                          * safe, and trust userspace not to race with
3049                          * itself
3050                          */
3051                         rdev->sectors = oldsectors;
3052                         return -EBUSY;
3053                 }
3054         }
3055         return len;
3056 }
3057
3058 static struct rdev_sysfs_entry rdev_size =
3059 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3060
3061
3062 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3063 {
3064         unsigned long long recovery_start = rdev->recovery_offset;
3065
3066         if (test_bit(In_sync, &rdev->flags) ||
3067             recovery_start == MaxSector)
3068                 return sprintf(page, "none\n");
3069
3070         return sprintf(page, "%llu\n", recovery_start);
3071 }
3072
3073 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3074 {
3075         unsigned long long recovery_start;
3076
3077         if (cmd_match(buf, "none"))
3078                 recovery_start = MaxSector;
3079         else if (strict_strtoull(buf, 10, &recovery_start))
3080                 return -EINVAL;
3081
3082         if (rdev->mddev->pers &&
3083             rdev->raid_disk >= 0)
3084                 return -EBUSY;
3085
3086         rdev->recovery_offset = recovery_start;
3087         if (recovery_start == MaxSector)
3088                 set_bit(In_sync, &rdev->flags);
3089         else
3090                 clear_bit(In_sync, &rdev->flags);
3091         return len;
3092 }
3093
3094 static struct rdev_sysfs_entry rdev_recovery_start =
3095 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3096
3097
3098 static ssize_t
3099 badblocks_show(struct badblocks *bb, char *page, int unack);
3100 static ssize_t
3101 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3102
3103 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3104 {
3105         return badblocks_show(&rdev->badblocks, page, 0);
3106 }
3107 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3108 {
3109         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3110         /* Maybe that ack was all we needed */
3111         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3112                 wake_up(&rdev->blocked_wait);
3113         return rv;
3114 }
3115 static struct rdev_sysfs_entry rdev_bad_blocks =
3116 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3117
3118
3119 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3120 {
3121         return badblocks_show(&rdev->badblocks, page, 1);
3122 }
3123 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3124 {
3125         return badblocks_store(&rdev->badblocks, page, len, 1);
3126 }
3127 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3128 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3129
3130 static struct attribute *rdev_default_attrs[] = {
3131         &rdev_state.attr,
3132         &rdev_errors.attr,
3133         &rdev_slot.attr,
3134         &rdev_offset.attr,
3135         &rdev_new_offset.attr,
3136         &rdev_size.attr,
3137         &rdev_recovery_start.attr,
3138         &rdev_bad_blocks.attr,
3139         &rdev_unack_bad_blocks.attr,
3140         NULL,
3141 };
3142 static ssize_t
3143 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3144 {
3145         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3146         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3147         struct mddev *mddev = rdev->mddev;
3148         ssize_t rv;
3149
3150         if (!entry->show)
3151                 return -EIO;
3152
3153         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3154         if (!rv) {
3155                 if (rdev->mddev == NULL)
3156                         rv = -EBUSY;
3157                 else
3158                         rv = entry->show(rdev, page);
3159                 mddev_unlock(mddev);
3160         }
3161         return rv;
3162 }
3163
3164 static ssize_t
3165 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3166               const char *page, size_t length)
3167 {
3168         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3169         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3170         ssize_t rv;
3171         struct mddev *mddev = rdev->mddev;
3172
3173         if (!entry->store)
3174                 return -EIO;
3175         if (!capable(CAP_SYS_ADMIN))
3176                 return -EACCES;
3177         rv = mddev ? mddev_lock(mddev): -EBUSY;
3178         if (!rv) {
3179                 if (rdev->mddev == NULL)
3180                         rv = -EBUSY;
3181                 else
3182                         rv = entry->store(rdev, page, length);
3183                 mddev_unlock(mddev);
3184         }
3185         return rv;
3186 }
3187
3188 static void rdev_free(struct kobject *ko)
3189 {
3190         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3191         kfree(rdev);
3192 }
3193 static const struct sysfs_ops rdev_sysfs_ops = {
3194         .show           = rdev_attr_show,
3195         .store          = rdev_attr_store,
3196 };
3197 static struct kobj_type rdev_ktype = {
3198         .release        = rdev_free,
3199         .sysfs_ops      = &rdev_sysfs_ops,
3200         .default_attrs  = rdev_default_attrs,
3201 };
3202
3203 int md_rdev_init(struct md_rdev *rdev)
3204 {
3205         rdev->desc_nr = -1;
3206         rdev->saved_raid_disk = -1;
3207         rdev->raid_disk = -1;
3208         rdev->flags = 0;
3209         rdev->data_offset = 0;
3210         rdev->new_data_offset = 0;
3211         rdev->sb_events = 0;
3212         rdev->last_read_error.tv_sec  = 0;
3213         rdev->last_read_error.tv_nsec = 0;
3214         rdev->sb_loaded = 0;
3215         rdev->bb_page = NULL;
3216         atomic_set(&rdev->nr_pending, 0);
3217         atomic_set(&rdev->read_errors, 0);
3218         atomic_set(&rdev->corrected_errors, 0);
3219
3220         INIT_LIST_HEAD(&rdev->same_set);
3221         init_waitqueue_head(&rdev->blocked_wait);
3222
3223         /* Add space to store bad block list.
3224          * This reserves the space even on arrays where it cannot
3225          * be used - I wonder if that matters
3226          */
3227         rdev->badblocks.count = 0;
3228         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3229         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3230         seqlock_init(&rdev->badblocks.lock);
3231         if (rdev->badblocks.page == NULL)
3232                 return -ENOMEM;
3233
3234         return 0;
3235 }
3236 EXPORT_SYMBOL_GPL(md_rdev_init);
3237 /*
3238  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3239  *
3240  * mark the device faulty if:
3241  *
3242  *   - the device is nonexistent (zero size)
3243  *   - the device has no valid superblock
3244  *
3245  * a faulty rdev _never_ has rdev->sb set.
3246  */
3247 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3248 {
3249         char b[BDEVNAME_SIZE];
3250         int err;
3251         struct md_rdev *rdev;
3252         sector_t size;
3253
3254         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3255         if (!rdev) {
3256                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3257                 return ERR_PTR(-ENOMEM);
3258         }
3259
3260         err = md_rdev_init(rdev);
3261         if (err)
3262                 goto abort_free;
3263         err = alloc_disk_sb(rdev);
3264         if (err)
3265                 goto abort_free;
3266
3267         err = lock_rdev(rdev, newdev, super_format == -2);
3268         if (err)
3269                 goto abort_free;
3270
3271         kobject_init(&rdev->kobj, &rdev_ktype);
3272
3273         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3274         if (!size) {
3275                 printk(KERN_WARNING 
3276                         "md: %s has zero or unknown size, marking faulty!\n",
3277                         bdevname(rdev->bdev,b));
3278                 err = -EINVAL;
3279                 goto abort_free;
3280         }
3281
3282         if (super_format >= 0) {
3283                 err = super_types[super_format].
3284                         load_super(rdev, NULL, super_minor);
3285                 if (err == -EINVAL) {
3286                         printk(KERN_WARNING
3287                                 "md: %s does not have a valid v%d.%d "
3288                                "superblock, not importing!\n",
3289                                 bdevname(rdev->bdev,b),
3290                                super_format, super_minor);
3291                         goto abort_free;
3292                 }
3293                 if (err < 0) {
3294                         printk(KERN_WARNING 
3295                                 "md: could not read %s's sb, not importing!\n",
3296                                 bdevname(rdev->bdev,b));
3297                         goto abort_free;
3298                 }
3299         }
3300
3301         return rdev;
3302
3303 abort_free:
3304         if (rdev->bdev)
3305                 unlock_rdev(rdev);
3306         md_rdev_clear(rdev);
3307         kfree(rdev);
3308         return ERR_PTR(err);
3309 }
3310
3311 /*
3312  * Check a full RAID array for plausibility
3313  */
3314
3315
3316 static void analyze_sbs(struct mddev * mddev)
3317 {
3318         int i;
3319         struct md_rdev *rdev, *freshest, *tmp;
3320         char b[BDEVNAME_SIZE];
3321
3322         freshest = NULL;
3323         rdev_for_each_safe(rdev, tmp, mddev)
3324                 switch (super_types[mddev->major_version].
3325                         load_super(rdev, freshest, mddev->minor_version)) {
3326                 case 1:
3327                         freshest = rdev;
3328                         break;
3329                 case 0:
3330                         break;
3331                 default:
3332                         printk( KERN_ERR \
3333                                 "md: fatal superblock inconsistency in %s"
3334                                 " -- removing from array\n", 
3335                                 bdevname(rdev->bdev,b));
3336                         kick_rdev_from_array(rdev);
3337                 }
3338
3339
3340         super_types[mddev->major_version].
3341                 validate_super(mddev, freshest);
3342
3343         i = 0;
3344         rdev_for_each_safe(rdev, tmp, mddev) {
3345                 if (mddev->max_disks &&
3346                     (rdev->desc_nr >= mddev->max_disks ||
3347                      i > mddev->max_disks)) {
3348                         printk(KERN_WARNING
3349                                "md: %s: %s: only %d devices permitted\n",
3350                                mdname(mddev), bdevname(rdev->bdev, b),
3351                                mddev->max_disks);
3352                         kick_rdev_from_array(rdev);
3353                         continue;
3354                 }
3355                 if (rdev != freshest)
3356                         if (super_types[mddev->major_version].
3357                             validate_super(mddev, rdev)) {
3358                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3359                                         " from array!\n",
3360                                         bdevname(rdev->bdev,b));
3361                                 kick_rdev_from_array(rdev);
3362                                 continue;
3363                         }
3364                 if (mddev->level == LEVEL_MULTIPATH) {
3365                         rdev->desc_nr = i++;
3366                         rdev->raid_disk = rdev->desc_nr;
3367                         set_bit(In_sync, &rdev->flags);
3368                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3369                         rdev->raid_disk = -1;
3370                         clear_bit(In_sync, &rdev->flags);
3371                 }
3372         }
3373 }
3374
3375 /* Read a fixed-point number.
3376  * Numbers in sysfs attributes should be in "standard" units where
3377  * possible, so time should be in seconds.
3378  * However we internally use a a much smaller unit such as 
3379  * milliseconds or jiffies.
3380  * This function takes a decimal number with a possible fractional
3381  * component, and produces an integer which is the result of
3382  * multiplying that number by 10^'scale'.
3383  * all without any floating-point arithmetic.
3384  */
3385 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3386 {
3387         unsigned long result = 0;
3388         long decimals = -1;
3389         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3390                 if (*cp == '.')
3391                         decimals = 0;
3392                 else if (decimals < scale) {
3393                         unsigned int value;
3394                         value = *cp - '0';
3395                         result = result * 10 + value;
3396                         if (decimals >= 0)
3397                                 decimals++;
3398                 }
3399                 cp++;
3400         }
3401         if (*cp == '\n')
3402                 cp++;
3403         if (*cp)
3404                 return -EINVAL;
3405         if (decimals < 0)
3406                 decimals = 0;
3407         while (decimals < scale) {
3408                 result *= 10;
3409                 decimals ++;
3410         }
3411         *res = result;
3412         return 0;
3413 }
3414
3415
3416 static void md_safemode_timeout(unsigned long data);
3417
3418 static ssize_t
3419 safe_delay_show(struct mddev *mddev, char *page)
3420 {
3421         int msec = (mddev->safemode_delay*1000)/HZ;
3422         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3423 }
3424 static ssize_t
3425 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3426 {
3427         unsigned long msec;
3428
3429         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3430                 return -EINVAL;
3431         if (msec == 0)
3432                 mddev->safemode_delay = 0;
3433         else {
3434                 unsigned long old_delay = mddev->safemode_delay;
3435                 mddev->safemode_delay = (msec*HZ)/1000;
3436                 if (mddev->safemode_delay == 0)
3437                         mddev->safemode_delay = 1;
3438                 if (mddev->safemode_delay < old_delay)
3439                         md_safemode_timeout((unsigned long)mddev);
3440         }
3441         return len;
3442 }
3443 static struct md_sysfs_entry md_safe_delay =
3444 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3445
3446 static ssize_t
3447 level_show(struct mddev *mddev, char *page)
3448 {
3449         struct md_personality *p = mddev->pers;
3450         if (p)
3451                 return sprintf(page, "%s\n", p->name);
3452         else if (mddev->clevel[0])
3453                 return sprintf(page, "%s\n", mddev->clevel);
3454         else if (mddev->level != LEVEL_NONE)
3455                 return sprintf(page, "%d\n", mddev->level);
3456         else
3457                 return 0;
3458 }
3459
3460 static ssize_t
3461 level_store(struct mddev *mddev, const char *buf, size_t len)
3462 {
3463         char clevel[16];
3464         ssize_t rv = len;
3465         struct md_personality *pers;
3466         long level;
3467         void *priv;
3468         struct md_rdev *rdev;
3469
3470         if (mddev->pers == NULL) {
3471                 if (len == 0)
3472                         return 0;
3473                 if (len >= sizeof(mddev->clevel))
3474                         return -ENOSPC;
3475                 strncpy(mddev->clevel, buf, len);
3476                 if (mddev->clevel[len-1] == '\n')
3477                         len--;
3478                 mddev->clevel[len] = 0;
3479                 mddev->level = LEVEL_NONE;
3480                 return rv;
3481         }
3482
3483         /* request to change the personality.  Need to ensure:
3484          *  - array is not engaged in resync/recovery/reshape
3485          *  - old personality can be suspended
3486          *  - new personality will access other array.
3487          */
3488
3489         if (mddev->sync_thread ||
3490             mddev->reshape_position != MaxSector ||
3491             mddev->sysfs_active)
3492                 return -EBUSY;
3493
3494         if (!mddev->pers->quiesce) {
3495                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3496                        mdname(mddev), mddev->pers->name);
3497                 return -EINVAL;
3498         }
3499
3500         /* Now find the new personality */
3501         if (len == 0 || len >= sizeof(clevel))
3502                 return -EINVAL;
3503         strncpy(clevel, buf, len);
3504         if (clevel[len-1] == '\n')
3505                 len--;
3506         clevel[len] = 0;
3507         if (strict_strtol(clevel, 10, &level))
3508                 level = LEVEL_NONE;
3509
3510         if (request_module("md-%s", clevel) != 0)
3511                 request_module("md-level-%s", clevel);
3512         spin_lock(&pers_lock);
3513         pers = find_pers(level, clevel);
3514         if (!pers || !try_module_get(pers->owner)) {
3515                 spin_unlock(&pers_lock);
3516                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3517                 return -EINVAL;
3518         }
3519         spin_unlock(&pers_lock);
3520
3521         if (pers == mddev->pers) {
3522                 /* Nothing to do! */
3523                 module_put(pers->owner);
3524                 return rv;
3525         }
3526         if (!pers->takeover) {
3527                 module_put(pers->owner);
3528                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3529                        mdname(mddev), clevel);
3530                 return -EINVAL;
3531         }
3532
3533         rdev_for_each(rdev, mddev)
3534                 rdev->new_raid_disk = rdev->raid_disk;
3535
3536         /* ->takeover must set new_* and/or delta_disks
3537          * if it succeeds, and may set them when it fails.
3538          */
3539         priv = pers->takeover(mddev);
3540         if (IS_ERR(priv)) {
3541                 mddev->new_level = mddev->level;
3542                 mddev->new_layout = mddev->layout;
3543                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3544                 mddev->raid_disks -= mddev->delta_disks;
3545                 mddev->delta_disks = 0;
3546                 mddev->reshape_backwards = 0;
3547                 module_put(pers->owner);
3548                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3549                        mdname(mddev), clevel);
3550                 return PTR_ERR(priv);
3551         }
3552
3553         /* Looks like we have a winner */
3554         mddev_suspend(mddev);
3555         mddev->pers->stop(mddev);
3556         
3557         if (mddev->pers->sync_request == NULL &&
3558             pers->sync_request != NULL) {
3559                 /* need to add the md_redundancy_group */
3560                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3561                         printk(KERN_WARNING
3562                                "md: cannot register extra attributes for %s\n",
3563                                mdname(mddev));
3564                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3565         }               
3566         if (mddev->pers->sync_request != NULL &&
3567             pers->sync_request == NULL) {
3568                 /* need to remove the md_redundancy_group */
3569                 if (mddev->to_remove == NULL)
3570                         mddev->to_remove = &md_redundancy_group;
3571         }
3572
3573         if (mddev->pers->sync_request == NULL &&
3574             mddev->external) {
3575                 /* We are converting from a no-redundancy array
3576                  * to a redundancy array and metadata is managed
3577                  * externally so we need to be sure that writes
3578                  * won't block due to a need to transition
3579                  *      clean->dirty
3580                  * until external management is started.
3581                  */
3582                 mddev->in_sync = 0;
3583                 mddev->safemode_delay = 0;
3584                 mddev->safemode = 0;
3585         }
3586
3587         rdev_for_each(rdev, mddev) {
3588                 if (rdev->raid_disk < 0)
3589                         continue;
3590                 if (rdev->new_raid_disk >= mddev->raid_disks)
3591                         rdev->new_raid_disk = -1;
3592                 if (rdev->new_raid_disk == rdev->raid_disk)
3593                         continue;
3594                 sysfs_unlink_rdev(mddev, rdev);
3595         }
3596         rdev_for_each(rdev, mddev) {
3597                 if (rdev->raid_disk < 0)
3598                         continue;
3599                 if (rdev->new_raid_disk == rdev->raid_disk)
3600                         continue;
3601                 rdev->raid_disk = rdev->new_raid_disk;
3602                 if (rdev->raid_disk < 0)
3603                         clear_bit(In_sync, &rdev->flags);
3604                 else {
3605                         if (sysfs_link_rdev(mddev, rdev))
3606                                 printk(KERN_WARNING "md: cannot register rd%d"
3607                                        " for %s after level change\n",
3608                                        rdev->raid_disk, mdname(mddev));
3609                 }
3610         }
3611
3612         module_put(mddev->pers->owner);
3613         mddev->pers = pers;
3614         mddev->private = priv;
3615         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3616         mddev->level = mddev->new_level;
3617         mddev->layout = mddev->new_layout;
3618         mddev->chunk_sectors = mddev->new_chunk_sectors;
3619         mddev->delta_disks = 0;
3620         mddev->reshape_backwards = 0;
3621         mddev->degraded = 0;
3622         if (mddev->pers->sync_request == NULL) {
3623                 /* this is now an array without redundancy, so
3624                  * it must always be in_sync
3625                  */
3626                 mddev->in_sync = 1;
3627                 del_timer_sync(&mddev->safemode_timer);
3628         }
3629         blk_set_stacking_limits(&mddev->queue->limits);
3630         pers->run(mddev);
3631         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3632         mddev_resume(mddev);
3633         sysfs_notify(&mddev->kobj, NULL, "level");
3634         md_new_event(mddev);
3635         return rv;
3636 }
3637
3638 static struct md_sysfs_entry md_level =
3639 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3640
3641
3642 static ssize_t
3643 layout_show(struct mddev *mddev, char *page)
3644 {
3645         /* just a number, not meaningful for all levels */
3646         if (mddev->reshape_position != MaxSector &&
3647             mddev->layout != mddev->new_layout)
3648                 return sprintf(page, "%d (%d)\n",
3649                                mddev->new_layout, mddev->layout);
3650         return sprintf(page, "%d\n", mddev->layout);
3651 }
3652
3653 static ssize_t
3654 layout_store(struct mddev *mddev, const char *buf, size_t len)
3655 {
3656         char *e;
3657         unsigned long n = simple_strtoul(buf, &e, 10);
3658
3659         if (!*buf || (*e && *e != '\n'))
3660                 return -EINVAL;
3661
3662         if (mddev->pers) {
3663                 int err;
3664                 if (mddev->pers->check_reshape == NULL)
3665                         return -EBUSY;
3666                 mddev->new_layout = n;
3667                 err = mddev->pers->check_reshape(mddev);
3668                 if (err) {
3669                         mddev->new_layout = mddev->layout;
3670                         return err;
3671                 }
3672         } else {
3673                 mddev->new_layout = n;
3674                 if (mddev->reshape_position == MaxSector)
3675                         mddev->layout = n;
3676         }
3677         return len;
3678 }
3679 static struct md_sysfs_entry md_layout =
3680 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3681
3682
3683 static ssize_t
3684 raid_disks_show(struct mddev *mddev, char *page)
3685 {
3686         if (mddev->raid_disks == 0)
3687                 return 0;
3688         if (mddev->reshape_position != MaxSector &&
3689             mddev->delta_disks != 0)
3690                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3691                                mddev->raid_disks - mddev->delta_disks);
3692         return sprintf(page, "%d\n", mddev->raid_disks);
3693 }
3694
3695 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3696
3697 static ssize_t
3698 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3699 {
3700         char *e;
3701         int rv = 0;
3702         unsigned long n = simple_strtoul(buf, &e, 10);
3703
3704         if (!*buf || (*e && *e != '\n'))
3705                 return -EINVAL;
3706
3707         if (mddev->pers)
3708                 rv = update_raid_disks(mddev, n);
3709         else if (mddev->reshape_position != MaxSector) {
3710                 struct md_rdev *rdev;
3711                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3712
3713                 rdev_for_each(rdev, mddev) {
3714                         if (olddisks < n &&
3715                             rdev->data_offset < rdev->new_data_offset)
3716                                 return -EINVAL;
3717                         if (olddisks > n &&
3718                             rdev->data_offset > rdev->new_data_offset)
3719                                 return -EINVAL;
3720                 }
3721                 mddev->delta_disks = n - olddisks;
3722                 mddev->raid_disks = n;
3723                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3724         } else
3725                 mddev->raid_disks = n;
3726         return rv ? rv : len;
3727 }
3728 static struct md_sysfs_entry md_raid_disks =
3729 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3730
3731 static ssize_t
3732 chunk_size_show(struct mddev *mddev, char *page)
3733 {
3734         if (mddev->reshape_position != MaxSector &&
3735             mddev->chunk_sectors != mddev->new_chunk_sectors)
3736                 return sprintf(page, "%d (%d)\n",
3737                                mddev->new_chunk_sectors << 9,
3738                                mddev->chunk_sectors << 9);
3739         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3740 }
3741
3742 static ssize_t
3743 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3744 {
3745         char *e;
3746         unsigned long n = simple_strtoul(buf, &e, 10);
3747
3748         if (!*buf || (*e && *e != '\n'))
3749                 return -EINVAL;
3750
3751         if (mddev->pers) {
3752                 int err;
3753                 if (mddev->pers->check_reshape == NULL)
3754                         return -EBUSY;
3755                 mddev->new_chunk_sectors = n >> 9;
3756                 err = mddev->pers->check_reshape(mddev);
3757                 if (err) {
3758                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3759                         return err;
3760                 }
3761         } else {
3762                 mddev->new_chunk_sectors = n >> 9;
3763                 if (mddev->reshape_position == MaxSector)
3764                         mddev->chunk_sectors = n >> 9;
3765         }
3766         return len;
3767 }
3768 static struct md_sysfs_entry md_chunk_size =
3769 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3770
3771 static ssize_t
3772 resync_start_show(struct mddev *mddev, char *page)
3773 {
3774         if (mddev->recovery_cp == MaxSector)
3775                 return sprintf(page, "none\n");
3776         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3777 }
3778
3779 static ssize_t
3780 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3781 {
3782         char *e;
3783         unsigned long long n = simple_strtoull(buf, &e, 10);
3784
3785         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3786                 return -EBUSY;
3787         if (cmd_match(buf, "none"))
3788                 n = MaxSector;
3789         else if (!*buf || (*e && *e != '\n'))
3790                 return -EINVAL;
3791
3792         mddev->recovery_cp = n;
3793         if (mddev->pers)
3794                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3795         return len;
3796 }
3797 static struct md_sysfs_entry md_resync_start =
3798 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3799
3800 /*
3801  * The array state can be:
3802  *
3803  * clear
3804  *     No devices, no size, no level
3805  *     Equivalent to STOP_ARRAY ioctl
3806  * inactive
3807  *     May have some settings, but array is not active
3808  *        all IO results in error
3809  *     When written, doesn't tear down array, but just stops it
3810  * suspended (not supported yet)
3811  *     All IO requests will block. The array can be reconfigured.
3812  *     Writing this, if accepted, will block until array is quiescent
3813  * readonly
3814  *     no resync can happen.  no superblocks get written.
3815  *     write requests fail
3816  * read-auto
3817  *     like readonly, but behaves like 'clean' on a write request.
3818  *
3819  * clean - no pending writes, but otherwise active.
3820  *     When written to inactive array, starts without resync
3821  *     If a write request arrives then
3822  *       if metadata is known, mark 'dirty' and switch to 'active'.
3823  *       if not known, block and switch to write-pending
3824  *     If written to an active array that has pending writes, then fails.
3825  * active
3826  *     fully active: IO and resync can be happening.
3827  *     When written to inactive array, starts with resync
3828  *
3829  * write-pending
3830  *     clean, but writes are blocked waiting for 'active' to be written.
3831  *
3832  * active-idle
3833  *     like active, but no writes have been seen for a while (100msec).
3834  *
3835  */
3836 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3837                    write_pending, active_idle, bad_word};
3838 static char *array_states[] = {
3839         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3840         "write-pending", "active-idle", NULL };
3841
3842 static int match_word(const char *word, char **list)
3843 {
3844         int n;
3845         for (n=0; list[n]; n++)
3846                 if (cmd_match(word, list[n]))
3847                         break;
3848         return n;
3849 }
3850
3851 static ssize_t
3852 array_state_show(struct mddev *mddev, char *page)
3853 {
3854         enum array_state st = inactive;
3855
3856         if (mddev->pers)
3857                 switch(mddev->ro) {
3858                 case 1:
3859                         st = readonly;
3860                         break;
3861                 case 2:
3862                         st = read_auto;
3863                         break;
3864                 case 0:
3865                         if (mddev->in_sync)
3866                                 st = clean;
3867                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3868                                 st = write_pending;
3869                         else if (mddev->safemode)
3870                                 st = active_idle;
3871                         else
3872                                 st = active;
3873                 }
3874         else {
3875                 if (list_empty(&mddev->disks) &&
3876                     mddev->raid_disks == 0 &&
3877                     mddev->dev_sectors == 0)
3878                         st = clear;
3879                 else
3880                         st = inactive;
3881         }
3882         return sprintf(page, "%s\n", array_states[st]);
3883 }
3884
3885 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3886 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3887 static int do_md_run(struct mddev * mddev);
3888 static int restart_array(struct mddev *mddev);
3889
3890 static ssize_t
3891 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3892 {
3893         int err = -EINVAL;
3894         enum array_state st = match_word(buf, array_states);
3895         switch(st) {
3896         case bad_word:
3897                 break;
3898         case clear:
3899                 /* stopping an active array */
3900                 err = do_md_stop(mddev, 0, NULL);
3901                 break;
3902         case inactive:
3903                 /* stopping an active array */
3904                 if (mddev->pers)
3905                         err = do_md_stop(mddev, 2, NULL);
3906                 else
3907                         err = 0; /* already inactive */
3908                 break;
3909         case suspended:
3910                 break; /* not supported yet */
3911         case readonly:
3912                 if (mddev->pers)
3913                         err = md_set_readonly(mddev, NULL);
3914                 else {
3915                         mddev->ro = 1;
3916                         set_disk_ro(mddev->gendisk, 1);
3917                         err = do_md_run(mddev);
3918                 }
3919                 break;
3920         case read_auto:
3921                 if (mddev->pers) {
3922                         if (mddev->ro == 0)
3923                                 err = md_set_readonly(mddev, NULL);
3924                         else if (mddev->ro == 1)
3925                                 err = restart_array(mddev);
3926                         if (err == 0) {
3927                                 mddev->ro = 2;
3928                                 set_disk_ro(mddev->gendisk, 0);
3929                         }
3930                 } else {
3931                         mddev->ro = 2;
3932                         err = do_md_run(mddev);
3933                 }
3934                 break;
3935         case clean:
3936                 if (mddev->pers) {
3937                         restart_array(mddev);
3938                         spin_lock_irq(&mddev->write_lock);
3939                         if (atomic_read(&mddev->writes_pending) == 0) {
3940                                 if (mddev->in_sync == 0) {
3941                                         mddev->in_sync = 1;
3942                                         if (mddev->safemode == 1)
3943                                                 mddev->safemode = 0;
3944                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3945                                 }
3946                                 err = 0;
3947                         } else
3948                                 err = -EBUSY;
3949                         spin_unlock_irq(&mddev->write_lock);
3950                 } else
3951                         err = -EINVAL;
3952                 break;
3953         case active:
3954                 if (mddev->pers) {
3955                         restart_array(mddev);
3956                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3957                         wake_up(&mddev->sb_wait);
3958                         err = 0;
3959                 } else {
3960                         mddev->ro = 0;
3961                         set_disk_ro(mddev->gendisk, 0);
3962                         err = do_md_run(mddev);
3963                 }
3964                 break;
3965         case write_pending:
3966         case active_idle:
3967                 /* these cannot be set */
3968                 break;
3969         }
3970         if (err)
3971                 return err;
3972         else {
3973                 if (mddev->hold_active == UNTIL_IOCTL)
3974                         mddev->hold_active = 0;
3975                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3976                 return len;
3977         }
3978 }
3979 static struct md_sysfs_entry md_array_state =
3980 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3981
3982 static ssize_t
3983 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3984         return sprintf(page, "%d\n",
3985                        atomic_read(&mddev->max_corr_read_errors));
3986 }
3987
3988 static ssize_t
3989 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3990 {
3991         char *e;
3992         unsigned long n = simple_strtoul(buf, &e, 10);
3993
3994         if (*buf && (*e == 0 || *e == '\n')) {
3995                 atomic_set(&mddev->max_corr_read_errors, n);
3996                 return len;
3997         }
3998         return -EINVAL;
3999 }
4000
4001 static struct md_sysfs_entry max_corr_read_errors =
4002 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4003         max_corrected_read_errors_store);
4004
4005 static ssize_t
4006 null_show(struct mddev *mddev, char *page)
4007 {
4008         return -EINVAL;
4009 }
4010
4011 static ssize_t
4012 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4013 {
4014         /* buf must be %d:%d\n? giving major and minor numbers */
4015         /* The new device is added to the array.
4016          * If the array has a persistent superblock, we read the
4017          * superblock to initialise info and check validity.
4018          * Otherwise, only checking done is that in bind_rdev_to_array,
4019          * which mainly checks size.
4020          */
4021         char *e;
4022         int major = simple_strtoul(buf, &e, 10);
4023         int minor;
4024         dev_t dev;
4025         struct md_rdev *rdev;
4026         int err;
4027
4028         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4029                 return -EINVAL;
4030         minor = simple_strtoul(e+1, &e, 10);
4031         if (*e && *e != '\n')
4032                 return -EINVAL;
4033         dev = MKDEV(major, minor);
4034         if (major != MAJOR(dev) ||
4035             minor != MINOR(dev))
4036                 return -EOVERFLOW;
4037
4038
4039         if (mddev->persistent) {
4040                 rdev = md_import_device(dev, mddev->major_version,
4041                                         mddev->minor_version);
4042                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4043                         struct md_rdev *rdev0
4044                                 = list_entry(mddev->disks.next,
4045                                              struct md_rdev, same_set);
4046                         err = super_types[mddev->major_version]
4047                                 .load_super(rdev, rdev0, mddev->minor_version);
4048                         if (err < 0)
4049                                 goto out;
4050                 }
4051         } else if (mddev->external)
4052                 rdev = md_import_device(dev, -2, -1);
4053         else
4054                 rdev = md_import_device(dev, -1, -1);
4055
4056         if (IS_ERR(rdev))
4057                 return PTR_ERR(rdev);
4058         err = bind_rdev_to_array(rdev, mddev);
4059  out:
4060         if (err)
4061                 export_rdev(rdev);
4062         return err ? err : len;
4063 }
4064
4065 static struct md_sysfs_entry md_new_device =
4066 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4067
4068 static ssize_t
4069 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4070 {
4071         char *end;
4072         unsigned long chunk, end_chunk;
4073
4074         if (!mddev->bitmap)
4075                 goto out;
4076         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4077         while (*buf) {
4078                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4079                 if (buf == end) break;
4080                 if (*end == '-') { /* range */
4081                         buf = end + 1;
4082                         end_chunk = simple_strtoul(buf, &end, 0);
4083                         if (buf == end) break;
4084                 }
4085                 if (*end && !isspace(*end)) break;
4086                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4087                 buf = skip_spaces(end);
4088         }
4089         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4090 out:
4091         return len;
4092 }
4093
4094 static struct md_sysfs_entry md_bitmap =
4095 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4096
4097 static ssize_t
4098 size_show(struct mddev *mddev, char *page)
4099 {
4100         return sprintf(page, "%llu\n",
4101                 (unsigned long long)mddev->dev_sectors / 2);
4102 }
4103
4104 static int update_size(struct mddev *mddev, sector_t num_sectors);
4105
4106 static ssize_t
4107 size_store(struct mddev *mddev, const char *buf, size_t len)
4108 {
4109         /* If array is inactive, we can reduce the component size, but
4110          * not increase it (except from 0).
4111          * If array is active, we can try an on-line resize
4112          */
4113         sector_t sectors;
4114         int err = strict_blocks_to_sectors(buf, &sectors);
4115
4116         if (err < 0)
4117                 return err;
4118         if (mddev->pers) {
4119                 err = update_size(mddev, sectors);
4120                 md_update_sb(mddev, 1);
4121         } else {
4122                 if (mddev->dev_sectors == 0 ||
4123                     mddev->dev_sectors > sectors)
4124                         mddev->dev_sectors = sectors;
4125                 else
4126                         err = -ENOSPC;
4127         }
4128         return err ? err : len;
4129 }
4130
4131 static struct md_sysfs_entry md_size =
4132 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4133
4134
4135 /* Metadata version.
4136  * This is one of
4137  *   'none' for arrays with no metadata (good luck...)
4138  *   'external' for arrays with externally managed metadata,
4139  * or N.M for internally known formats
4140  */
4141 static ssize_t
4142 metadata_show(struct mddev *mddev, char *page)
4143 {
4144         if (mddev->persistent)
4145                 return sprintf(page, "%d.%d\n",
4146                                mddev->major_version, mddev->minor_version);
4147         else if (mddev->external)
4148                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4149         else
4150                 return sprintf(page, "none\n");
4151 }
4152
4153 static ssize_t
4154 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4155 {
4156         int major, minor;
4157         char *e;
4158         /* Changing the details of 'external' metadata is
4159          * always permitted.  Otherwise there must be
4160          * no devices attached to the array.
4161          */
4162         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4163                 ;
4164         else if (!list_empty(&mddev->disks))
4165                 return -EBUSY;
4166
4167         if (cmd_match(buf, "none")) {
4168                 mddev->persistent = 0;
4169                 mddev->external = 0;
4170                 mddev->major_version = 0;
4171                 mddev->minor_version = 90;
4172                 return len;
4173         }
4174         if (strncmp(buf, "external:", 9) == 0) {
4175                 size_t namelen = len-9;
4176                 if (namelen >= sizeof(mddev->metadata_type))
4177                         namelen = sizeof(mddev->metadata_type)-1;
4178                 strncpy(mddev->metadata_type, buf+9, namelen);
4179                 mddev->metadata_type[namelen] = 0;
4180                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4181                         mddev->metadata_type[--namelen] = 0;
4182                 mddev->persistent = 0;
4183                 mddev->external = 1;
4184                 mddev->major_version = 0;
4185                 mddev->minor_version = 90;
4186                 return len;
4187         }
4188         major = simple_strtoul(buf, &e, 10);
4189         if (e==buf || *e != '.')
4190                 return -EINVAL;
4191         buf = e+1;
4192         minor = simple_strtoul(buf, &e, 10);
4193         if (e==buf || (*e && *e != '\n') )
4194                 return -EINVAL;
4195         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4196                 return -ENOENT;
4197         mddev->major_version = major;
4198         mddev->minor_version = minor;
4199         mddev->persistent = 1;
4200         mddev->external = 0;
4201         return len;
4202 }
4203
4204 static struct md_sysfs_entry md_metadata =
4205 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4206
4207 static ssize_t
4208 action_show(struct mddev *mddev, char *page)
4209 {
4210         char *type = "idle";
4211         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4212                 type = "frozen";
4213         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4214             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4215                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4216                         type = "reshape";
4217                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4218                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4219                                 type = "resync";
4220                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4221                                 type = "check";
4222                         else
4223                                 type = "repair";
4224                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4225                         type = "recover";
4226         }
4227         return sprintf(page, "%s\n", type);
4228 }
4229
4230 static ssize_t
4231 action_store(struct mddev *mddev, const char *page, size_t len)
4232 {
4233         if (!mddev->pers || !mddev->pers->sync_request)
4234                 return -EINVAL;
4235
4236         if (cmd_match(page, "frozen"))
4237                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4238         else
4239                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4240
4241         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4242                 if (mddev->sync_thread) {
4243                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4244                         md_reap_sync_thread(mddev);
4245                 }
4246         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4247                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4248                 return -EBUSY;
4249         else if (cmd_match(page, "resync"))
4250                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4251         else if (cmd_match(page, "recover")) {
4252                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4253                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4254         } else if (cmd_match(page, "reshape")) {
4255                 int err;
4256                 if (mddev->pers->start_reshape == NULL)
4257                         return -EINVAL;
4258                 err = mddev->pers->start_reshape(mddev);
4259                 if (err)
4260                         return err;
4261                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4262         } else {
4263                 if (cmd_match(page, "check"))
4264                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4265                 else if (!cmd_match(page, "repair"))
4266                         return -EINVAL;
4267                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4268                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4269         }
4270         if (mddev->ro == 2) {
4271                 /* A write to sync_action is enough to justify
4272                  * canceling read-auto mode
4273                  */
4274                 mddev->ro = 0;
4275                 md_wakeup_thread(mddev->sync_thread);
4276         }
4277         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4278         md_wakeup_thread(mddev->thread);
4279         sysfs_notify_dirent_safe(mddev->sysfs_action);
4280         return len;
4281 }
4282
4283 static ssize_t
4284 mismatch_cnt_show(struct mddev *mddev, char *page)
4285 {
4286         return sprintf(page, "%llu\n",
4287                        (unsigned long long)
4288                        atomic64_read(&mddev->resync_mismatches));
4289 }
4290
4291 static struct md_sysfs_entry md_scan_mode =
4292 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4293
4294
4295 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4296
4297 static ssize_t
4298 sync_min_show(struct mddev *mddev, char *page)
4299 {
4300         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4301                        mddev->sync_speed_min ? "local": "system");
4302 }
4303
4304 static ssize_t
4305 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4306 {
4307         int min;
4308         char *e;
4309         if (strncmp(buf, "system", 6)==0) {
4310                 mddev->sync_speed_min = 0;
4311                 return len;
4312         }
4313         min = simple_strtoul(buf, &e, 10);
4314         if (buf == e || (*e && *e != '\n') || min <= 0)
4315                 return -EINVAL;
4316         mddev->sync_speed_min = min;
4317         return len;
4318 }
4319
4320 static struct md_sysfs_entry md_sync_min =
4321 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4322
4323 static ssize_t
4324 sync_max_show(struct mddev *mddev, char *page)
4325 {
4326         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4327                        mddev->sync_speed_max ? "local": "system");
4328 }
4329
4330 static ssize_t
4331 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4332 {
4333         int max;
4334         char *e;
4335         if (strncmp(buf, "system", 6)==0) {
4336                 mddev->sync_speed_max = 0;
4337                 return len;
4338         }
4339         max = simple_strtoul(buf, &e, 10);
4340         if (buf == e || (*e && *e != '\n') || max <= 0)
4341                 return -EINVAL;
4342         mddev->sync_speed_max = max;
4343         return len;
4344 }
4345
4346 static struct md_sysfs_entry md_sync_max =
4347 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4348
4349 static ssize_t
4350 degraded_show(struct mddev *mddev, char *page)
4351 {
4352         return sprintf(page, "%d\n", mddev->degraded);
4353 }
4354 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4355
4356 static ssize_t
4357 sync_force_parallel_show(struct mddev *mddev, char *page)
4358 {
4359         return sprintf(page, "%d\n", mddev->parallel_resync);
4360 }
4361
4362 static ssize_t
4363 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4364 {
4365         long n;
4366
4367         if (strict_strtol(buf, 10, &n))
4368                 return -EINVAL;
4369
4370         if (n != 0 && n != 1)
4371                 return -EINVAL;
4372
4373         mddev->parallel_resync = n;
4374
4375         if (mddev->sync_thread)
4376                 wake_up(&resync_wait);
4377
4378         return len;
4379 }
4380
4381 /* force parallel resync, even with shared block devices */
4382 static struct md_sysfs_entry md_sync_force_parallel =
4383 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4384        sync_force_parallel_show, sync_force_parallel_store);
4385
4386 static ssize_t
4387 sync_speed_show(struct mddev *mddev, char *page)
4388 {
4389         unsigned long resync, dt, db;
4390         if (mddev->curr_resync == 0)
4391                 return sprintf(page, "none\n");
4392         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4393         dt = (jiffies - mddev->resync_mark) / HZ;
4394         if (!dt) dt++;
4395         db = resync - mddev->resync_mark_cnt;
4396         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4397 }
4398
4399 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4400
4401 static ssize_t
4402 sync_completed_show(struct mddev *mddev, char *page)
4403 {
4404         unsigned long long max_sectors, resync;
4405
4406         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4407                 return sprintf(page, "none\n");
4408
4409         if (mddev->curr_resync == 1 ||
4410             mddev->curr_resync == 2)
4411                 return sprintf(page, "delayed\n");
4412
4413         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4414             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4415                 max_sectors = mddev->resync_max_sectors;
4416         else
4417                 max_sectors = mddev->dev_sectors;
4418
4419         resync = mddev->curr_resync_completed;
4420         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4421 }
4422
4423 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4424
4425 static ssize_t
4426 min_sync_show(struct mddev *mddev, char *page)
4427 {
4428         return sprintf(page, "%llu\n",
4429                        (unsigned long long)mddev->resync_min);
4430 }
4431 static ssize_t
4432 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4433 {
4434         unsigned long long min;
4435         if (strict_strtoull(buf, 10, &min))
4436                 return -EINVAL;
4437         if (min > mddev->resync_max)
4438                 return -EINVAL;
4439         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4440                 return -EBUSY;
4441
4442         /* Must be a multiple of chunk_size */
4443         if (mddev->chunk_sectors) {
4444                 sector_t temp = min;
4445                 if (sector_div(temp, mddev->chunk_sectors))
4446                         return -EINVAL;
4447         }
4448         mddev->resync_min = min;
4449
4450         return len;
4451 }
4452
4453 static struct md_sysfs_entry md_min_sync =
4454 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4455
4456 static ssize_t
4457 max_sync_show(struct mddev *mddev, char *page)
4458 {
4459         if (mddev->resync_max == MaxSector)
4460                 return sprintf(page, "max\n");
4461         else
4462                 return sprintf(page, "%llu\n",
4463                                (unsigned long long)mddev->resync_max);
4464 }
4465 static ssize_t
4466 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4467 {
4468         if (strncmp(buf, "max", 3) == 0)
4469                 mddev->resync_max = MaxSector;
4470         else {
4471                 unsigned long long max;
4472                 if (strict_strtoull(buf, 10, &max))
4473                         return -EINVAL;
4474                 if (max < mddev->resync_min)
4475                         return -EINVAL;
4476                 if (max < mddev->resync_max &&
4477                     mddev->ro == 0 &&
4478                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4479                         return -EBUSY;
4480
4481                 /* Must be a multiple of chunk_size */
4482                 if (mddev->chunk_sectors) {
4483                         sector_t temp = max;
4484                         if (sector_div(temp, mddev->chunk_sectors))
4485                                 return -EINVAL;
4486                 }
4487                 mddev->resync_max = max;
4488         }
4489         wake_up(&mddev->recovery_wait);
4490         return len;
4491 }
4492
4493 static struct md_sysfs_entry md_max_sync =
4494 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4495
4496 static ssize_t
4497 suspend_lo_show(struct mddev *mddev, char *page)
4498 {
4499         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4500 }
4501
4502 static ssize_t
4503 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4504 {
4505         char *e;
4506         unsigned long long new = simple_strtoull(buf, &e, 10);
4507         unsigned long long old = mddev->suspend_lo;
4508
4509         if (mddev->pers == NULL || 
4510             mddev->pers->quiesce == NULL)
4511                 return -EINVAL;
4512         if (buf == e || (*e && *e != '\n'))
4513                 return -EINVAL;
4514
4515         mddev->suspend_lo = new;
4516         if (new >= old)
4517                 /* Shrinking suspended region */
4518                 mddev->pers->quiesce(mddev, 2);
4519         else {
4520                 /* Expanding suspended region - need to wait */
4521                 mddev->pers->quiesce(mddev, 1);
4522                 mddev->pers->quiesce(mddev, 0);
4523         }
4524         return len;
4525 }
4526 static struct md_sysfs_entry md_suspend_lo =
4527 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4528
4529
4530 static ssize_t
4531 suspend_hi_show(struct mddev *mddev, char *page)
4532 {
4533         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4534 }
4535
4536 static ssize_t
4537 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4538 {
4539         char *e;
4540         unsigned long long new = simple_strtoull(buf, &e, 10);
4541         unsigned long long old = mddev->suspend_hi;
4542
4543         if (mddev->pers == NULL ||
4544             mddev->pers->quiesce == NULL)
4545                 return -EINVAL;
4546         if (buf == e || (*e && *e != '\n'))
4547                 return -EINVAL;
4548
4549         mddev->suspend_hi = new;
4550         if (new <= old)
4551                 /* Shrinking suspended region */
4552                 mddev->pers->quiesce(mddev, 2);
4553         else {
4554                 /* Expanding suspended region - need to wait */
4555                 mddev->pers->quiesce(mddev, 1);
4556                 mddev->pers->quiesce(mddev, 0);
4557         }
4558         return len;
4559 }
4560 static struct md_sysfs_entry md_suspend_hi =
4561 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4562
4563 static ssize_t
4564 reshape_position_show(struct mddev *mddev, char *page)
4565 {
4566         if (mddev->reshape_position != MaxSector)
4567                 return sprintf(page, "%llu\n",
4568                                (unsigned long long)mddev->reshape_position);
4569         strcpy(page, "none\n");
4570         return 5;
4571 }
4572
4573 static ssize_t
4574 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4575 {
4576         struct md_rdev *rdev;
4577         char *e;
4578         unsigned long long new = simple_strtoull(buf, &e, 10);
4579         if (mddev->pers)
4580                 return -EBUSY;
4581         if (buf == e || (*e && *e != '\n'))
4582                 return -EINVAL;
4583         mddev->reshape_position = new;
4584         mddev->delta_disks = 0;
4585         mddev->reshape_backwards = 0;
4586         mddev->new_level = mddev->level;
4587         mddev->new_layout = mddev->layout;
4588         mddev->new_chunk_sectors = mddev->chunk_sectors;
4589         rdev_for_each(rdev, mddev)
4590                 rdev->new_data_offset = rdev->data_offset;
4591         return len;
4592 }
4593
4594 static struct md_sysfs_entry md_reshape_position =
4595 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4596        reshape_position_store);
4597
4598 static ssize_t
4599 reshape_direction_show(struct mddev *mddev, char *page)
4600 {
4601         return sprintf(page, "%s\n",
4602                        mddev->reshape_backwards ? "backwards" : "forwards");
4603 }
4604
4605 static ssize_t
4606 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4607 {
4608         int backwards = 0;
4609         if (cmd_match(buf, "forwards"))
4610                 backwards = 0;
4611         else if (cmd_match(buf, "backwards"))
4612                 backwards = 1;
4613         else
4614                 return -EINVAL;
4615         if (mddev->reshape_backwards == backwards)
4616                 return len;
4617
4618         /* check if we are allowed to change */
4619         if (mddev->delta_disks)
4620                 return -EBUSY;
4621
4622         if (mddev->persistent &&
4623             mddev->major_version == 0)
4624                 return -EINVAL;
4625
4626         mddev->reshape_backwards = backwards;
4627         return len;
4628 }
4629
4630 static struct md_sysfs_entry md_reshape_direction =
4631 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4632        reshape_direction_store);
4633
4634 static ssize_t
4635 array_size_show(struct mddev *mddev, char *page)
4636 {
4637         if (mddev->external_size)
4638                 return sprintf(page, "%llu\n",
4639                                (unsigned long long)mddev->array_sectors/2);
4640         else
4641                 return sprintf(page, "default\n");
4642 }
4643
4644 static ssize_t
4645 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4646 {
4647         sector_t sectors;
4648
4649         if (strncmp(buf, "default", 7) == 0) {
4650                 if (mddev->pers)
4651                         sectors = mddev->pers->size(mddev, 0, 0);
4652                 else
4653                         sectors = mddev->array_sectors;
4654
4655                 mddev->external_size = 0;
4656         } else {
4657                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4658                         return -EINVAL;
4659                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4660                         return -E2BIG;
4661
4662                 mddev->external_size = 1;
4663         }
4664
4665         mddev->array_sectors = sectors;
4666         if (mddev->pers) {
4667                 set_capacity(mddev->gendisk, mddev->array_sectors);
4668                 revalidate_disk(mddev->gendisk);
4669         }
4670         return len;
4671 }
4672
4673 static struct md_sysfs_entry md_array_size =
4674 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4675        array_size_store);
4676
4677 static struct attribute *md_default_attrs[] = {
4678         &md_level.attr,
4679         &md_layout.attr,
4680         &md_raid_disks.attr,
4681         &md_chunk_size.attr,
4682         &md_size.attr,
4683         &md_resync_start.attr,
4684         &md_metadata.attr,
4685         &md_new_device.attr,
4686         &md_safe_delay.attr,
4687         &md_array_state.attr,
4688         &md_reshape_position.attr,
4689         &md_reshape_direction.attr,
4690         &md_array_size.attr,
4691         &max_corr_read_errors.attr,
4692         NULL,
4693 };
4694
4695 static struct attribute *md_redundancy_attrs[] = {
4696         &md_scan_mode.attr,
4697         &md_mismatches.attr,
4698         &md_sync_min.attr,
4699         &md_sync_max.attr,
4700         &md_sync_speed.attr,
4701         &md_sync_force_parallel.attr,
4702         &md_sync_completed.attr,
4703         &md_min_sync.attr,
4704         &md_max_sync.attr,
4705         &md_suspend_lo.attr,
4706         &md_suspend_hi.attr,
4707         &md_bitmap.attr,
4708         &md_degraded.attr,
4709         NULL,
4710 };
4711 static struct attribute_group md_redundancy_group = {
4712         .name = NULL,
4713         .attrs = md_redundancy_attrs,
4714 };
4715
4716
4717 static ssize_t
4718 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4719 {
4720         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4721         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4722         ssize_t rv;
4723
4724         if (!entry->show)
4725                 return -EIO;
4726         spin_lock(&all_mddevs_lock);
4727         if (list_empty(&mddev->all_mddevs)) {
4728                 spin_unlock(&all_mddevs_lock);
4729                 return -EBUSY;
4730         }
4731         mddev_get(mddev);
4732         spin_unlock(&all_mddevs_lock);
4733
4734         rv = mddev_lock(mddev);
4735         if (!rv) {
4736                 rv = entry->show(mddev, page);
4737                 mddev_unlock(mddev);
4738         }
4739         mddev_put(mddev);
4740         return rv;
4741 }
4742
4743 static ssize_t
4744 md_attr_store(struct kobject *kobj, struct attribute *attr,
4745               const char *page, size_t length)
4746 {
4747         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4748         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4749         ssize_t rv;
4750
4751         if (!entry->store)
4752                 return -EIO;
4753         if (!capable(CAP_SYS_ADMIN))
4754                 return -EACCES;
4755         spin_lock(&all_mddevs_lock);
4756         if (list_empty(&mddev->all_mddevs)) {
4757                 spin_unlock(&all_mddevs_lock);
4758                 return -EBUSY;
4759         }
4760         mddev_get(mddev);
4761         spin_unlock(&all_mddevs_lock);
4762         if (entry->store == new_dev_store)
4763                 flush_workqueue(md_misc_wq);
4764         rv = mddev_lock(mddev);
4765         if (!rv) {
4766                 rv = entry->store(mddev, page, length);
4767                 mddev_unlock(mddev);
4768         }
4769         mddev_put(mddev);
4770         return rv;
4771 }
4772
4773 static void md_free(struct kobject *ko)
4774 {
4775         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4776
4777         if (mddev->sysfs_state)
4778                 sysfs_put(mddev->sysfs_state);
4779
4780         if (mddev->gendisk) {
4781                 del_gendisk(mddev->gendisk);
4782                 put_disk(mddev->gendisk);
4783         }
4784         if (mddev->queue)
4785                 blk_cleanup_queue(mddev->queue);
4786
4787         kfree(mddev);
4788 }
4789
4790 static const struct sysfs_ops md_sysfs_ops = {
4791         .show   = md_attr_show,
4792         .store  = md_attr_store,
4793 };
4794 static struct kobj_type md_ktype = {
4795         .release        = md_free,
4796         .sysfs_ops      = &md_sysfs_ops,
4797         .default_attrs  = md_default_attrs,
4798 };
4799
4800 int mdp_major = 0;
4801
4802 static void mddev_delayed_delete(struct work_struct *ws)
4803 {
4804         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4805
4806         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4807         kobject_del(&mddev->kobj);
4808         kobject_put(&mddev->kobj);
4809 }
4810
4811 static int md_alloc(dev_t dev, char *name)
4812 {
4813         static DEFINE_MUTEX(disks_mutex);
4814         struct mddev *mddev = mddev_find(dev);
4815         struct gendisk *disk;
4816         int partitioned;
4817         int shift;
4818         int unit;
4819         int error;
4820
4821         if (!mddev)
4822                 return -ENODEV;
4823
4824         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4825         shift = partitioned ? MdpMinorShift : 0;
4826         unit = MINOR(mddev->unit) >> shift;
4827
4828         /* wait for any previous instance of this device to be
4829          * completely removed (mddev_delayed_delete).
4830          */
4831         flush_workqueue(md_misc_wq);
4832
4833         mutex_lock(&disks_mutex);
4834         error = -EEXIST;
4835         if (mddev->gendisk)
4836                 goto abort;
4837
4838         if (name) {
4839                 /* Need to ensure that 'name' is not a duplicate.
4840                  */
4841                 struct mddev *mddev2;
4842                 spin_lock(&all_mddevs_lock);
4843
4844                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4845                         if (mddev2->gendisk &&
4846                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4847                                 spin_unlock(&all_mddevs_lock);
4848                                 goto abort;
4849                         }
4850                 spin_unlock(&all_mddevs_lock);
4851         }
4852
4853         error = -ENOMEM;
4854         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4855         if (!mddev->queue)
4856                 goto abort;
4857         mddev->queue->queuedata = mddev;
4858
4859         blk_queue_make_request(mddev->queue, md_make_request);
4860         blk_set_stacking_limits(&mddev->queue->limits);
4861
4862         disk = alloc_disk(1 << shift);
4863         if (!disk) {
4864                 blk_cleanup_queue(mddev->queue);
4865                 mddev->queue = NULL;
4866                 goto abort;
4867         }
4868         disk->major = MAJOR(mddev->unit);
4869         disk->first_minor = unit << shift;
4870         if (name)
4871                 strcpy(disk->disk_name, name);
4872         else if (partitioned)
4873                 sprintf(disk->disk_name, "md_d%d", unit);
4874         else
4875                 sprintf(disk->disk_name, "md%d", unit);
4876         disk->fops = &md_fops;
4877         disk->private_data = mddev;
4878         disk->queue = mddev->queue;
4879         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4880         /* Allow extended partitions.  This makes the
4881          * 'mdp' device redundant, but we can't really
4882          * remove it now.
4883          */
4884         disk->flags |= GENHD_FL_EXT_DEVT;
4885         mddev->gendisk = disk;
4886         /* As soon as we call add_disk(), another thread could get
4887          * through to md_open, so make sure it doesn't get too far
4888          */
4889         mutex_lock(&mddev->open_mutex);
4890         add_disk(disk);
4891
4892         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4893                                      &disk_to_dev(disk)->kobj, "%s", "md");
4894         if (error) {
4895                 /* This isn't possible, but as kobject_init_and_add is marked
4896                  * __must_check, we must do something with the result
4897                  */
4898                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4899                        disk->disk_name);
4900                 error = 0;
4901         }
4902         if (mddev->kobj.sd &&
4903             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4904                 printk(KERN_DEBUG "pointless warning\n");
4905         mutex_unlock(&mddev->open_mutex);
4906  abort:
4907         mutex_unlock(&disks_mutex);
4908         if (!error && mddev->kobj.sd) {
4909                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4910                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4911         }
4912         mddev_put(mddev);
4913         return error;
4914 }
4915
4916 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4917 {
4918         md_alloc(dev, NULL);
4919         return NULL;
4920 }
4921
4922 static int add_named_array(const char *val, struct kernel_param *kp)
4923 {
4924         /* val must be "md_*" where * is not all digits.
4925          * We allocate an array with a large free minor number, and
4926          * set the name to val.  val must not already be an active name.
4927          */
4928         int len = strlen(val);
4929         char buf[DISK_NAME_LEN];
4930
4931         while (len && val[len-1] == '\n')
4932                 len--;
4933         if (len >= DISK_NAME_LEN)
4934                 return -E2BIG;
4935         strlcpy(buf, val, len+1);
4936         if (strncmp(buf, "md_", 3) != 0)
4937                 return -EINVAL;
4938         return md_alloc(0, buf);
4939 }
4940
4941 static void md_safemode_timeout(unsigned long data)
4942 {
4943         struct mddev *mddev = (struct mddev *) data;
4944
4945         if (!atomic_read(&mddev->writes_pending)) {
4946                 mddev->safemode = 1;
4947                 if (mddev->external)
4948                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4949         }
4950         md_wakeup_thread(mddev->thread);
4951 }
4952
4953 static int start_dirty_degraded;
4954
4955 int md_run(struct mddev *mddev)
4956 {
4957         int err;
4958         struct md_rdev *rdev;
4959         struct md_personality *pers;
4960
4961         if (list_empty(&mddev->disks))
4962                 /* cannot run an array with no devices.. */
4963                 return -EINVAL;
4964
4965         if (mddev->pers)
4966                 return -EBUSY;
4967         /* Cannot run until previous stop completes properly */
4968         if (mddev->sysfs_active)
4969                 return -EBUSY;
4970
4971         /*
4972          * Analyze all RAID superblock(s)
4973          */
4974         if (!mddev->raid_disks) {
4975                 if (!mddev->persistent)
4976                         return -EINVAL;
4977                 analyze_sbs(mddev);
4978         }
4979
4980         if (mddev->level != LEVEL_NONE)
4981                 request_module("md-level-%d", mddev->level);
4982         else if (mddev->clevel[0])
4983                 request_module("md-%s", mddev->clevel);
4984
4985         /*
4986          * Drop all container device buffers, from now on
4987          * the only valid external interface is through the md
4988          * device.
4989          */
4990         rdev_for_each(rdev, mddev) {
4991                 if (test_bit(Faulty, &rdev->flags))
4992                         continue;
4993                 sync_blockdev(rdev->bdev);
4994                 invalidate_bdev(rdev->bdev);
4995
4996                 /* perform some consistency tests on the device.
4997                  * We don't want the data to overlap the metadata,
4998                  * Internal Bitmap issues have been handled elsewhere.
4999                  */
5000                 if (rdev->meta_bdev) {
5001                         /* Nothing to check */;
5002                 } else if (rdev->data_offset < rdev->sb_start) {
5003                         if (mddev->dev_sectors &&
5004                             rdev->data_offset + mddev->dev_sectors
5005                             > rdev->sb_start) {
5006                                 printk("md: %s: data overlaps metadata\n",
5007                                        mdname(mddev));
5008                                 return -EINVAL;
5009                         }
5010                 } else {
5011                         if (rdev->sb_start + rdev->sb_size/512
5012                             > rdev->data_offset) {
5013                                 printk("md: %s: metadata overlaps data\n",
5014                                        mdname(mddev));
5015                                 return -EINVAL;
5016                         }
5017                 }
5018                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5019         }
5020
5021         if (mddev->bio_set == NULL)
5022                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5023
5024         spin_lock(&pers_lock);
5025         pers = find_pers(mddev->level, mddev->clevel);
5026         if (!pers || !try_module_get(pers->owner)) {
5027                 spin_unlock(&pers_lock);
5028                 if (mddev->level != LEVEL_NONE)
5029                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5030                                mddev->level);
5031                 else
5032                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5033                                mddev->clevel);
5034                 return -EINVAL;
5035         }
5036         mddev->pers = pers;
5037         spin_unlock(&pers_lock);
5038         if (mddev->level != pers->level) {
5039                 mddev->level = pers->level;
5040                 mddev->new_level = pers->level;
5041         }
5042         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5043
5044         if (mddev->reshape_position != MaxSector &&
5045             pers->start_reshape == NULL) {
5046                 /* This personality cannot handle reshaping... */
5047                 mddev->pers = NULL;
5048                 module_put(pers->owner);
5049                 return -EINVAL;
5050         }
5051
5052         if (pers->sync_request) {
5053                 /* Warn if this is a potentially silly
5054                  * configuration.
5055                  */
5056                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5057                 struct md_rdev *rdev2;
5058                 int warned = 0;
5059
5060                 rdev_for_each(rdev, mddev)
5061                         rdev_for_each(rdev2, mddev) {
5062                                 if (rdev < rdev2 &&
5063                                     rdev->bdev->bd_contains ==
5064                                     rdev2->bdev->bd_contains) {
5065                                         printk(KERN_WARNING
5066                                                "%s: WARNING: %s appears to be"
5067                                                " on the same physical disk as"
5068                                                " %s.\n",
5069                                                mdname(mddev),
5070                                                bdevname(rdev->bdev,b),
5071                                                bdevname(rdev2->bdev,b2));
5072                                         warned = 1;
5073                                 }
5074                         }
5075
5076                 if (warned)
5077                         printk(KERN_WARNING
5078                                "True protection against single-disk"
5079                                " failure might be compromised.\n");
5080         }
5081
5082         mddev->recovery = 0;
5083         /* may be over-ridden by personality */
5084         mddev->resync_max_sectors = mddev->dev_sectors;
5085
5086         mddev->ok_start_degraded = start_dirty_degraded;
5087
5088         if (start_readonly && mddev->ro == 0)
5089                 mddev->ro = 2; /* read-only, but switch on first write */
5090
5091         err = mddev->pers->run(mddev);
5092         if (err)
5093                 printk(KERN_ERR "md: pers->run() failed ...\n");
5094         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5095                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5096                           " but 'external_size' not in effect?\n", __func__);
5097                 printk(KERN_ERR
5098                        "md: invalid array_size %llu > default size %llu\n",
5099                        (unsigned long long)mddev->array_sectors / 2,
5100                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5101                 err = -EINVAL;
5102                 mddev->pers->stop(mddev);
5103         }
5104         if (err == 0 && mddev->pers->sync_request &&
5105             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5106                 err = bitmap_create(mddev);
5107                 if (err) {
5108                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5109                                mdname(mddev), err);
5110                         mddev->pers->stop(mddev);
5111                 }
5112         }
5113         if (err) {
5114                 module_put(mddev->pers->owner);
5115                 mddev->pers = NULL;
5116                 bitmap_destroy(mddev);
5117                 return err;
5118         }
5119         if (mddev->pers->sync_request) {
5120                 if (mddev->kobj.sd &&
5121                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5122                         printk(KERN_WARNING
5123                                "md: cannot register extra attributes for %s\n",
5124                                mdname(mddev));
5125                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5126         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5127                 mddev->ro = 0;
5128
5129         atomic_set(&mddev->writes_pending,0);
5130         atomic_set(&mddev->max_corr_read_errors,
5131                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5132         mddev->safemode = 0;
5133         mddev->safemode_timer.function = md_safemode_timeout;
5134         mddev->safemode_timer.data = (unsigned long) mddev;
5135         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5136         mddev->in_sync = 1;
5137         smp_wmb();
5138         mddev->ready = 1;
5139         rdev_for_each(rdev, mddev)
5140                 if (rdev->raid_disk >= 0)
5141                         if (sysfs_link_rdev(mddev, rdev))
5142                                 /* failure here is OK */;
5143         
5144         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5145         
5146         if (mddev->flags)
5147                 md_update_sb(mddev, 0);
5148
5149         md_new_event(mddev);
5150         sysfs_notify_dirent_safe(mddev->sysfs_state);
5151         sysfs_notify_dirent_safe(mddev->sysfs_action);
5152         sysfs_notify(&mddev->kobj, NULL, "degraded");
5153         return 0;
5154 }
5155 EXPORT_SYMBOL_GPL(md_run);
5156
5157 static int do_md_run(struct mddev *mddev)
5158 {
5159         int err;
5160
5161         err = md_run(mddev);
5162         if (err)
5163                 goto out;
5164         err = bitmap_load(mddev);
5165         if (err) {
5166                 bitmap_destroy(mddev);
5167                 goto out;
5168         }
5169
5170         md_wakeup_thread(mddev->thread);
5171         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5172
5173         set_capacity(mddev->gendisk, mddev->array_sectors);
5174         revalidate_disk(mddev->gendisk);
5175         mddev->changed = 1;
5176         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5177 out:
5178         return err;
5179 }
5180
5181 static int restart_array(struct mddev *mddev)
5182 {
5183         struct gendisk *disk = mddev->gendisk;
5184
5185         /* Complain if it has no devices */
5186         if (list_empty(&mddev->disks))
5187                 return -ENXIO;
5188         if (!mddev->pers)
5189                 return -EINVAL;
5190         if (!mddev->ro)
5191                 return -EBUSY;
5192         mddev->safemode = 0;
5193         mddev->ro = 0;
5194         set_disk_ro(disk, 0);
5195         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5196                 mdname(mddev));
5197         /* Kick recovery or resync if necessary */
5198         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5199         md_wakeup_thread(mddev->thread);
5200         md_wakeup_thread(mddev->sync_thread);
5201         sysfs_notify_dirent_safe(mddev->sysfs_state);
5202         return 0;
5203 }
5204
5205 /* similar to deny_write_access, but accounts for our holding a reference
5206  * to the file ourselves */
5207 static int deny_bitmap_write_access(struct file * file)
5208 {
5209         struct inode *inode = file->f_mapping->host;
5210
5211         spin_lock(&inode->i_lock);
5212         if (atomic_read(&inode->i_writecount) > 1) {
5213                 spin_unlock(&inode->i_lock);
5214                 return -ETXTBSY;
5215         }
5216         atomic_set(&inode->i_writecount, -1);
5217         spin_unlock(&inode->i_lock);
5218
5219         return 0;
5220 }
5221
5222 void restore_bitmap_write_access(struct file *file)
5223 {
5224         struct inode *inode = file->f_mapping->host;
5225
5226         spin_lock(&inode->i_lock);
5227         atomic_set(&inode->i_writecount, 1);
5228         spin_unlock(&inode->i_lock);
5229 }
5230
5231 static void md_clean(struct mddev *mddev)
5232 {
5233         mddev->array_sectors = 0;
5234         mddev->external_size = 0;
5235         mddev->dev_sectors = 0;
5236         mddev->raid_disks = 0;
5237         mddev->recovery_cp = 0;
5238         mddev->resync_min = 0;
5239         mddev->resync_max = MaxSector;
5240         mddev->reshape_position = MaxSector;
5241         mddev->external = 0;
5242         mddev->persistent = 0;
5243         mddev->level = LEVEL_NONE;
5244         mddev->clevel[0] = 0;
5245         mddev->flags = 0;
5246         mddev->ro = 0;
5247         mddev->metadata_type[0] = 0;
5248         mddev->chunk_sectors = 0;
5249         mddev->ctime = mddev->utime = 0;
5250         mddev->layout = 0;
5251         mddev->max_disks = 0;
5252         mddev->events = 0;
5253         mddev->can_decrease_events = 0;
5254         mddev->delta_disks = 0;
5255         mddev->reshape_backwards = 0;
5256         mddev->new_level = LEVEL_NONE;
5257         mddev->new_layout = 0;
5258         mddev->new_chunk_sectors = 0;
5259         mddev->curr_resync = 0;
5260         atomic64_set(&mddev->resync_mismatches, 0);
5261         mddev->suspend_lo = mddev->suspend_hi = 0;
5262         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5263         mddev->recovery = 0;
5264         mddev->in_sync = 0;
5265         mddev->changed = 0;
5266         mddev->degraded = 0;
5267         mddev->safemode = 0;
5268         mddev->merge_check_needed = 0;
5269         mddev->bitmap_info.offset = 0;
5270         mddev->bitmap_info.default_offset = 0;
5271         mddev->bitmap_info.default_space = 0;
5272         mddev->bitmap_info.chunksize = 0;
5273         mddev->bitmap_info.daemon_sleep = 0;
5274         mddev->bitmap_info.max_write_behind = 0;
5275 }
5276
5277 static void __md_stop_writes(struct mddev *mddev)
5278 {
5279         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5280         if (mddev->sync_thread) {
5281                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5282                 md_reap_sync_thread(mddev);
5283         }
5284
5285         del_timer_sync(&mddev->safemode_timer);
5286
5287         bitmap_flush(mddev);
5288         md_super_wait(mddev);
5289
5290         if (mddev->ro == 0 &&
5291             (!mddev->in_sync || mddev->flags)) {
5292                 /* mark array as shutdown cleanly */
5293                 mddev->in_sync = 1;
5294                 md_update_sb(mddev, 1);
5295         }
5296 }
5297
5298 void md_stop_writes(struct mddev *mddev)
5299 {
5300         mddev_lock(mddev);
5301         __md_stop_writes(mddev);
5302         mddev_unlock(mddev);
5303 }
5304 EXPORT_SYMBOL_GPL(md_stop_writes);
5305
5306 static void __md_stop(struct mddev *mddev)
5307 {
5308         mddev->ready = 0;
5309         mddev->pers->stop(mddev);
5310         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5311                 mddev->to_remove = &md_redundancy_group;
5312         module_put(mddev->pers->owner);
5313         mddev->pers = NULL;
5314         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5315 }
5316
5317 void md_stop(struct mddev *mddev)
5318 {
5319         /* stop the array and free an attached data structures.
5320          * This is called from dm-raid
5321          */
5322         __md_stop(mddev);
5323         bitmap_destroy(mddev);
5324         if (mddev->bio_set)
5325                 bioset_free(mddev->bio_set);
5326 }
5327
5328 EXPORT_SYMBOL_GPL(md_stop);
5329
5330 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5331 {
5332         int err = 0;
5333         mutex_lock(&mddev->open_mutex);
5334         if (atomic_read(&mddev->openers) > !!bdev) {
5335                 printk("md: %s still in use.\n",mdname(mddev));
5336                 err = -EBUSY;
5337                 goto out;
5338         }
5339         if (bdev)
5340                 sync_blockdev(bdev);
5341         if (mddev->pers) {
5342                 __md_stop_writes(mddev);
5343
5344                 err  = -ENXIO;
5345                 if (mddev->ro==1)
5346                         goto out;
5347                 mddev->ro = 1;
5348                 set_disk_ro(mddev->gendisk, 1);
5349                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5350                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5351                 err = 0;        
5352         }
5353 out:
5354         mutex_unlock(&mddev->open_mutex);
5355         return err;
5356 }
5357
5358 /* mode:
5359  *   0 - completely stop and dis-assemble array
5360  *   2 - stop but do not disassemble array
5361  */
5362 static int do_md_stop(struct mddev * mddev, int mode,
5363                       struct block_device *bdev)
5364 {
5365         struct gendisk *disk = mddev->gendisk;
5366         struct md_rdev *rdev;
5367
5368         mutex_lock(&mddev->open_mutex);
5369         if (atomic_read(&mddev->openers) > !!bdev ||
5370             mddev->sysfs_active) {
5371                 printk("md: %s still in use.\n",mdname(mddev));
5372                 mutex_unlock(&mddev->open_mutex);
5373                 return -EBUSY;
5374         }
5375         if (bdev)
5376                 /* It is possible IO was issued on some other
5377                  * open file which was closed before we took ->open_mutex.
5378                  * As that was not the last close __blkdev_put will not
5379                  * have called sync_blockdev, so we must.
5380                  */
5381                 sync_blockdev(bdev);
5382
5383         if (mddev->pers) {
5384                 if (mddev->ro)
5385                         set_disk_ro(disk, 0);
5386
5387                 __md_stop_writes(mddev);
5388                 __md_stop(mddev);
5389                 mddev->queue->merge_bvec_fn = NULL;
5390                 mddev->queue->backing_dev_info.congested_fn = NULL;
5391
5392                 /* tell userspace to handle 'inactive' */
5393                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5394
5395                 rdev_for_each(rdev, mddev)
5396                         if (rdev->raid_disk >= 0)
5397                                 sysfs_unlink_rdev(mddev, rdev);
5398
5399                 set_capacity(disk, 0);
5400                 mutex_unlock(&mddev->open_mutex);
5401                 mddev->changed = 1;
5402                 revalidate_disk(disk);
5403
5404                 if (mddev->ro)
5405                         mddev->ro = 0;
5406         } else
5407                 mutex_unlock(&mddev->open_mutex);
5408         /*
5409          * Free resources if final stop
5410          */
5411         if (mode == 0) {
5412                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5413
5414                 bitmap_destroy(mddev);
5415                 if (mddev->bitmap_info.file) {
5416                         restore_bitmap_write_access(mddev->bitmap_info.file);
5417                         fput(mddev->bitmap_info.file);
5418                         mddev->bitmap_info.file = NULL;
5419                 }
5420                 mddev->bitmap_info.offset = 0;
5421
5422                 export_array(mddev);
5423
5424                 md_clean(mddev);
5425                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5426                 if (mddev->hold_active == UNTIL_STOP)
5427                         mddev->hold_active = 0;
5428         }
5429         blk_integrity_unregister(disk);
5430         md_new_event(mddev);
5431         sysfs_notify_dirent_safe(mddev->sysfs_state);
5432         return 0;
5433 }
5434
5435 #ifndef MODULE
5436 static void autorun_array(struct mddev *mddev)
5437 {
5438         struct md_rdev *rdev;
5439         int err;
5440
5441         if (list_empty(&mddev->disks))
5442                 return;
5443
5444         printk(KERN_INFO "md: running: ");
5445
5446         rdev_for_each(rdev, mddev) {
5447                 char b[BDEVNAME_SIZE];
5448                 printk("<%s>", bdevname(rdev->bdev,b));
5449         }
5450         printk("\n");
5451
5452         err = do_md_run(mddev);
5453         if (err) {
5454                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5455                 do_md_stop(mddev, 0, NULL);
5456         }
5457 }
5458
5459 /*
5460  * lets try to run arrays based on all disks that have arrived
5461  * until now. (those are in pending_raid_disks)
5462  *
5463  * the method: pick the first pending disk, collect all disks with
5464  * the same UUID, remove all from the pending list and put them into
5465  * the 'same_array' list. Then order this list based on superblock
5466  * update time (freshest comes first), kick out 'old' disks and
5467  * compare superblocks. If everything's fine then run it.
5468  *
5469  * If "unit" is allocated, then bump its reference count
5470  */
5471 static void autorun_devices(int part)
5472 {
5473         struct md_rdev *rdev0, *rdev, *tmp;
5474         struct mddev *mddev;
5475         char b[BDEVNAME_SIZE];
5476
5477         printk(KERN_INFO "md: autorun ...\n");
5478         while (!list_empty(&pending_raid_disks)) {
5479                 int unit;
5480                 dev_t dev;
5481                 LIST_HEAD(candidates);
5482                 rdev0 = list_entry(pending_raid_disks.next,
5483                                          struct md_rdev, same_set);
5484
5485                 printk(KERN_INFO "md: considering %s ...\n",
5486                         bdevname(rdev0->bdev,b));
5487                 INIT_LIST_HEAD(&candidates);
5488                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5489                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5490                                 printk(KERN_INFO "md:  adding %s ...\n",
5491                                         bdevname(rdev->bdev,b));
5492                                 list_move(&rdev->same_set, &candidates);
5493                         }
5494                 /*
5495                  * now we have a set of devices, with all of them having
5496                  * mostly sane superblocks. It's time to allocate the
5497                  * mddev.
5498                  */
5499                 if (part) {
5500                         dev = MKDEV(mdp_major,
5501                                     rdev0->preferred_minor << MdpMinorShift);
5502                         unit = MINOR(dev) >> MdpMinorShift;
5503                 } else {
5504                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5505                         unit = MINOR(dev);
5506                 }
5507                 if (rdev0->preferred_minor != unit) {
5508                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5509                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5510                         break;
5511                 }
5512
5513                 md_probe(dev, NULL, NULL);
5514                 mddev = mddev_find(dev);
5515                 if (!mddev || !mddev->gendisk) {
5516                         if (mddev)
5517                                 mddev_put(mddev);
5518                         printk(KERN_ERR
5519                                 "md: cannot allocate memory for md drive.\n");
5520                         break;
5521                 }
5522                 if (mddev_lock(mddev)) 
5523                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5524                                mdname(mddev));
5525                 else if (mddev->raid_disks || mddev->major_version
5526                          || !list_empty(&mddev->disks)) {
5527                         printk(KERN_WARNING 
5528                                 "md: %s already running, cannot run %s\n",
5529                                 mdname(mddev), bdevname(rdev0->bdev,b));
5530                         mddev_unlock(mddev);
5531                 } else {
5532                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5533                         mddev->persistent = 1;
5534                         rdev_for_each_list(rdev, tmp, &candidates) {
5535                                 list_del_init(&rdev->same_set);
5536                                 if (bind_rdev_to_array(rdev, mddev))
5537                                         export_rdev(rdev);
5538                         }
5539                         autorun_array(mddev);
5540                         mddev_unlock(mddev);
5541                 }
5542                 /* on success, candidates will be empty, on error
5543                  * it won't...
5544                  */
5545                 rdev_for_each_list(rdev, tmp, &candidates) {
5546                         list_del_init(&rdev->same_set);
5547                         export_rdev(rdev);
5548                 }
5549                 mddev_put(mddev);
5550         }
5551         printk(KERN_INFO "md: ... autorun DONE.\n");
5552 }
5553 #endif /* !MODULE */
5554
5555 static int get_version(void __user * arg)
5556 {
5557         mdu_version_t ver;
5558
5559         ver.major = MD_MAJOR_VERSION;
5560         ver.minor = MD_MINOR_VERSION;
5561         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5562
5563         if (copy_to_user(arg, &ver, sizeof(ver)))
5564                 return -EFAULT;
5565
5566         return 0;
5567 }
5568
5569 static int get_array_info(struct mddev * mddev, void __user * arg)
5570 {
5571         mdu_array_info_t info;
5572         int nr,working,insync,failed,spare;
5573         struct md_rdev *rdev;
5574
5575         nr = working = insync = failed = spare = 0;
5576         rcu_read_lock();
5577         rdev_for_each_rcu(rdev, mddev) {
5578                 nr++;
5579                 if (test_bit(Faulty, &rdev->flags))
5580                         failed++;
5581                 else {
5582                         working++;
5583                         if (test_bit(In_sync, &rdev->flags))
5584                                 insync++;       
5585                         else
5586                                 spare++;
5587                 }
5588         }
5589         rcu_read_unlock();
5590
5591         info.major_version = mddev->major_version;
5592         info.minor_version = mddev->minor_version;
5593         info.patch_version = MD_PATCHLEVEL_VERSION;
5594         info.ctime         = mddev->ctime;
5595         info.level         = mddev->level;
5596         info.size          = mddev->dev_sectors / 2;
5597         if (info.size != mddev->dev_sectors / 2) /* overflow */
5598                 info.size = -1;
5599         info.nr_disks      = nr;
5600         info.raid_disks    = mddev->raid_disks;
5601         info.md_minor      = mddev->md_minor;
5602         info.not_persistent= !mddev->persistent;
5603
5604         info.utime         = mddev->utime;
5605         info.state         = 0;
5606         if (mddev->in_sync)
5607                 info.state = (1<<MD_SB_CLEAN);
5608         if (mddev->bitmap && mddev->bitmap_info.offset)
5609                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5610         info.active_disks  = insync;
5611         info.working_disks = working;
5612         info.failed_disks  = failed;
5613         info.spare_disks   = spare;
5614
5615         info.layout        = mddev->layout;
5616         info.chunk_size    = mddev->chunk_sectors << 9;
5617
5618         if (copy_to_user(arg, &info, sizeof(info)))
5619                 return -EFAULT;
5620
5621         return 0;
5622 }
5623
5624 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5625 {
5626         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5627         char *ptr, *buf = NULL;
5628         int err = -ENOMEM;
5629
5630         if (md_allow_write(mddev))
5631                 file = kmalloc(sizeof(*file), GFP_NOIO);
5632         else
5633                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5634
5635         if (!file)
5636                 goto out;
5637
5638         /* bitmap disabled, zero the first byte and copy out */
5639         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5640                 file->pathname[0] = '\0';
5641                 goto copy_out;
5642         }
5643
5644         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5645         if (!buf)
5646                 goto out;
5647
5648         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5649                      buf, sizeof(file->pathname));
5650         if (IS_ERR(ptr))
5651                 goto out;
5652
5653         strcpy(file->pathname, ptr);
5654
5655 copy_out:
5656         err = 0;
5657         if (copy_to_user(arg, file, sizeof(*file)))
5658                 err = -EFAULT;
5659 out:
5660         kfree(buf);
5661         kfree(file);
5662         return err;
5663 }
5664
5665 static int get_disk_info(struct mddev * mddev, void __user * arg)
5666 {
5667         mdu_disk_info_t info;
5668         struct md_rdev *rdev;
5669
5670         if (copy_from_user(&info, arg, sizeof(info)))
5671                 return -EFAULT;
5672
5673         rcu_read_lock();
5674         rdev = find_rdev_nr_rcu(mddev, info.number);
5675         if (rdev) {
5676                 info.major = MAJOR(rdev->bdev->bd_dev);
5677                 info.minor = MINOR(rdev->bdev->bd_dev);
5678                 info.raid_disk = rdev->raid_disk;
5679                 info.state = 0;
5680                 if (test_bit(Faulty, &rdev->flags))
5681                         info.state |= (1<<MD_DISK_FAULTY);
5682                 else if (test_bit(In_sync, &rdev->flags)) {
5683                         info.state |= (1<<MD_DISK_ACTIVE);
5684                         info.state |= (1<<MD_DISK_SYNC);
5685                 }
5686                 if (test_bit(WriteMostly, &rdev->flags))
5687                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5688         } else {
5689                 info.major = info.minor = 0;
5690                 info.raid_disk = -1;
5691                 info.state = (1<<MD_DISK_REMOVED);
5692         }
5693         rcu_read_unlock();
5694
5695         if (copy_to_user(arg, &info, sizeof(info)))
5696                 return -EFAULT;
5697
5698         return 0;
5699 }
5700
5701 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5702 {
5703         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5704         struct md_rdev *rdev;
5705         dev_t dev = MKDEV(info->major,info->minor);
5706
5707         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5708                 return -EOVERFLOW;
5709
5710         if (!mddev->raid_disks) {
5711                 int err;
5712                 /* expecting a device which has a superblock */
5713                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5714                 if (IS_ERR(rdev)) {
5715                         printk(KERN_WARNING 
5716                                 "md: md_import_device returned %ld\n",
5717                                 PTR_ERR(rdev));
5718                         return PTR_ERR(rdev);
5719                 }
5720                 if (!list_empty(&mddev->disks)) {
5721                         struct md_rdev *rdev0
5722                                 = list_entry(mddev->disks.next,
5723                                              struct md_rdev, same_set);
5724                         err = super_types[mddev->major_version]
5725                                 .load_super(rdev, rdev0, mddev->minor_version);
5726                         if (err < 0) {
5727                                 printk(KERN_WARNING 
5728                                         "md: %s has different UUID to %s\n",
5729                                         bdevname(rdev->bdev,b), 
5730                                         bdevname(rdev0->bdev,b2));
5731                                 export_rdev(rdev);
5732                                 return -EINVAL;
5733                         }
5734                 }
5735                 err = bind_rdev_to_array(rdev, mddev);
5736                 if (err)
5737                         export_rdev(rdev);
5738                 return err;
5739         }
5740
5741         /*
5742          * add_new_disk can be used once the array is assembled
5743          * to add "hot spares".  They must already have a superblock
5744          * written
5745          */
5746         if (mddev->pers) {
5747                 int err;
5748                 if (!mddev->pers->hot_add_disk) {
5749                         printk(KERN_WARNING 
5750                                 "%s: personality does not support diskops!\n",
5751                                mdname(mddev));
5752                         return -EINVAL;
5753                 }
5754                 if (mddev->persistent)
5755                         rdev = md_import_device(dev, mddev->major_version,
5756                                                 mddev->minor_version);
5757                 else
5758                         rdev = md_import_device(dev, -1, -1);
5759                 if (IS_ERR(rdev)) {
5760                         printk(KERN_WARNING 
5761                                 "md: md_import_device returned %ld\n",
5762                                 PTR_ERR(rdev));
5763                         return PTR_ERR(rdev);
5764                 }
5765                 /* set saved_raid_disk if appropriate */
5766                 if (!mddev->persistent) {
5767                         if (info->state & (1<<MD_DISK_SYNC)  &&
5768                             info->raid_disk < mddev->raid_disks) {
5769                                 rdev->raid_disk = info->raid_disk;
5770                                 set_bit(In_sync, &rdev->flags);
5771                                 clear_bit(Bitmap_sync, &rdev->flags);
5772                         } else
5773                                 rdev->raid_disk = -1;
5774                 } else
5775                         super_types[mddev->major_version].
5776                                 validate_super(mddev, rdev);
5777                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5778                      rdev->raid_disk != info->raid_disk) {
5779                         /* This was a hot-add request, but events doesn't
5780                          * match, so reject it.
5781                          */
5782                         export_rdev(rdev);
5783                         return -EINVAL;
5784                 }
5785
5786                 if (test_bit(In_sync, &rdev->flags))
5787                         rdev->saved_raid_disk = rdev->raid_disk;
5788                 else
5789                         rdev->saved_raid_disk = -1;
5790
5791                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5792                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5793                         set_bit(WriteMostly, &rdev->flags);
5794                 else
5795                         clear_bit(WriteMostly, &rdev->flags);
5796
5797                 rdev->raid_disk = -1;
5798                 err = bind_rdev_to_array(rdev, mddev);
5799                 if (!err && !mddev->pers->hot_remove_disk) {
5800                         /* If there is hot_add_disk but no hot_remove_disk
5801                          * then added disks for geometry changes,
5802                          * and should be added immediately.
5803                          */
5804                         super_types[mddev->major_version].
5805                                 validate_super(mddev, rdev);
5806                         err = mddev->pers->hot_add_disk(mddev, rdev);
5807                         if (err)
5808                                 unbind_rdev_from_array(rdev);
5809                 }
5810                 if (err)
5811                         export_rdev(rdev);
5812                 else
5813                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5814
5815                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5816                 if (mddev->degraded)
5817                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5818                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5819                 if (!err)
5820                         md_new_event(mddev);
5821                 md_wakeup_thread(mddev->thread);
5822                 return err;
5823         }
5824
5825         /* otherwise, add_new_disk is only allowed
5826          * for major_version==0 superblocks
5827          */
5828         if (mddev->major_version != 0) {
5829                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5830                        mdname(mddev));
5831                 return -EINVAL;
5832         }
5833
5834         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5835                 int err;
5836                 rdev = md_import_device(dev, -1, 0);
5837                 if (IS_ERR(rdev)) {
5838                         printk(KERN_WARNING 
5839                                 "md: error, md_import_device() returned %ld\n",
5840                                 PTR_ERR(rdev));
5841                         return PTR_ERR(rdev);
5842                 }
5843                 rdev->desc_nr = info->number;
5844                 if (info->raid_disk < mddev->raid_disks)
5845                         rdev->raid_disk = info->raid_disk;
5846                 else
5847                         rdev->raid_disk = -1;
5848
5849                 if (rdev->raid_disk < mddev->raid_disks)
5850                         if (info->state & (1<<MD_DISK_SYNC))
5851                                 set_bit(In_sync, &rdev->flags);
5852
5853                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5854                         set_bit(WriteMostly, &rdev->flags);
5855
5856                 if (!mddev->persistent) {
5857                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5858                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5859                 } else
5860                         rdev->sb_start = calc_dev_sboffset(rdev);
5861                 rdev->sectors = rdev->sb_start;
5862
5863                 err = bind_rdev_to_array(rdev, mddev);
5864                 if (err) {
5865                         export_rdev(rdev);
5866                         return err;
5867                 }
5868         }
5869
5870         return 0;
5871 }
5872
5873 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5874 {
5875         char b[BDEVNAME_SIZE];
5876         struct md_rdev *rdev;
5877
5878         rdev = find_rdev(mddev, dev);
5879         if (!rdev)
5880                 return -ENXIO;
5881
5882         clear_bit(Blocked, &rdev->flags);
5883         remove_and_add_spares(mddev, rdev);
5884
5885         if (rdev->raid_disk >= 0)
5886                 goto busy;
5887
5888         kick_rdev_from_array(rdev);
5889         md_update_sb(mddev, 1);
5890         md_new_event(mddev);
5891
5892         return 0;
5893 busy:
5894         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5895                 bdevname(rdev->bdev,b), mdname(mddev));
5896         return -EBUSY;
5897 }
5898
5899 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5900 {
5901         char b[BDEVNAME_SIZE];
5902         int err;
5903         struct md_rdev *rdev;
5904
5905         if (!mddev->pers)
5906                 return -ENODEV;
5907
5908         if (mddev->major_version != 0) {
5909                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5910                         " version-0 superblocks.\n",
5911                         mdname(mddev));
5912                 return -EINVAL;
5913         }
5914         if (!mddev->pers->hot_add_disk) {
5915                 printk(KERN_WARNING 
5916                         "%s: personality does not support diskops!\n",
5917                         mdname(mddev));
5918                 return -EINVAL;
5919         }
5920
5921         rdev = md_import_device(dev, -1, 0);
5922         if (IS_ERR(rdev)) {
5923                 printk(KERN_WARNING 
5924                         "md: error, md_import_device() returned %ld\n",
5925                         PTR_ERR(rdev));
5926                 return -EINVAL;
5927         }
5928
5929         if (mddev->persistent)
5930                 rdev->sb_start = calc_dev_sboffset(rdev);
5931         else
5932                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5933
5934         rdev->sectors = rdev->sb_start;
5935
5936         if (test_bit(Faulty, &rdev->flags)) {
5937                 printk(KERN_WARNING 
5938                         "md: can not hot-add faulty %s disk to %s!\n",
5939                         bdevname(rdev->bdev,b), mdname(mddev));
5940                 err = -EINVAL;
5941                 goto abort_export;
5942         }
5943         clear_bit(In_sync, &rdev->flags);
5944         rdev->desc_nr = -1;
5945         rdev->saved_raid_disk = -1;
5946         err = bind_rdev_to_array(rdev, mddev);
5947         if (err)
5948                 goto abort_export;
5949
5950         /*
5951          * The rest should better be atomic, we can have disk failures
5952          * noticed in interrupt contexts ...
5953          */
5954
5955         rdev->raid_disk = -1;
5956
5957         md_update_sb(mddev, 1);
5958
5959         /*
5960          * Kick recovery, maybe this spare has to be added to the
5961          * array immediately.
5962          */
5963         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5964         md_wakeup_thread(mddev->thread);
5965         md_new_event(mddev);
5966         return 0;
5967
5968 abort_export:
5969         export_rdev(rdev);
5970         return err;
5971 }
5972
5973 static int set_bitmap_file(struct mddev *mddev, int fd)
5974 {
5975         int err;
5976
5977         if (mddev->pers) {
5978                 if (!mddev->pers->quiesce)
5979                         return -EBUSY;
5980                 if (mddev->recovery || mddev->sync_thread)
5981                         return -EBUSY;
5982                 /* we should be able to change the bitmap.. */
5983         }
5984
5985
5986         if (fd >= 0) {
5987                 if (mddev->bitmap)
5988                         return -EEXIST; /* cannot add when bitmap is present */
5989                 mddev->bitmap_info.file = fget(fd);
5990
5991                 if (mddev->bitmap_info.file == NULL) {
5992                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5993                                mdname(mddev));
5994                         return -EBADF;
5995                 }
5996
5997                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5998                 if (err) {
5999                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6000                                mdname(mddev));
6001                         fput(mddev->bitmap_info.file);
6002                         mddev->bitmap_info.file = NULL;
6003                         return err;
6004                 }
6005                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6006         } else if (mddev->bitmap == NULL)
6007                 return -ENOENT; /* cannot remove what isn't there */
6008         err = 0;
6009         if (mddev->pers) {
6010                 mddev->pers->quiesce(mddev, 1);
6011                 if (fd >= 0) {
6012                         err = bitmap_create(mddev);
6013                         if (!err)
6014                                 err = bitmap_load(mddev);
6015                 }
6016                 if (fd < 0 || err) {
6017                         bitmap_destroy(mddev);
6018                         fd = -1; /* make sure to put the file */
6019                 }
6020                 mddev->pers->quiesce(mddev, 0);
6021         }
6022         if (fd < 0) {
6023                 if (mddev->bitmap_info.file) {
6024                         restore_bitmap_write_access(mddev->bitmap_info.file);
6025                         fput(mddev->bitmap_info.file);
6026                 }
6027                 mddev->bitmap_info.file = NULL;
6028         }
6029
6030         return err;
6031 }
6032
6033 /*
6034  * set_array_info is used two different ways
6035  * The original usage is when creating a new array.
6036  * In this usage, raid_disks is > 0 and it together with
6037  *  level, size, not_persistent,layout,chunksize determine the
6038  *  shape of the array.
6039  *  This will always create an array with a type-0.90.0 superblock.
6040  * The newer usage is when assembling an array.
6041  *  In this case raid_disks will be 0, and the major_version field is
6042  *  use to determine which style super-blocks are to be found on the devices.
6043  *  The minor and patch _version numbers are also kept incase the
6044  *  super_block handler wishes to interpret them.
6045  */
6046 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6047 {
6048
6049         if (info->raid_disks == 0) {
6050                 /* just setting version number for superblock loading */
6051                 if (info->major_version < 0 ||
6052                     info->major_version >= ARRAY_SIZE(super_types) ||
6053                     super_types[info->major_version].name == NULL) {
6054                         /* maybe try to auto-load a module? */
6055                         printk(KERN_INFO 
6056                                 "md: superblock version %d not known\n",
6057                                 info->major_version);
6058                         return -EINVAL;
6059                 }
6060                 mddev->major_version = info->major_version;
6061                 mddev->minor_version = info->minor_version;
6062                 mddev->patch_version = info->patch_version;
6063                 mddev->persistent = !info->not_persistent;
6064                 /* ensure mddev_put doesn't delete this now that there
6065                  * is some minimal configuration.
6066                  */
6067                 mddev->ctime         = get_seconds();
6068                 return 0;
6069         }
6070         mddev->major_version = MD_MAJOR_VERSION;
6071         mddev->minor_version = MD_MINOR_VERSION;
6072         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6073         mddev->ctime         = get_seconds();
6074
6075         mddev->level         = info->level;
6076         mddev->clevel[0]     = 0;
6077         mddev->dev_sectors   = 2 * (sector_t)info->size;
6078         mddev->raid_disks    = info->raid_disks;
6079         /* don't set md_minor, it is determined by which /dev/md* was
6080          * openned
6081          */
6082         if (info->state & (1<<MD_SB_CLEAN))
6083                 mddev->recovery_cp = MaxSector;
6084         else
6085                 mddev->recovery_cp = 0;
6086         mddev->persistent    = ! info->not_persistent;
6087         mddev->external      = 0;
6088
6089         mddev->layout        = info->layout;
6090         mddev->chunk_sectors = info->chunk_size >> 9;
6091
6092         mddev->max_disks     = MD_SB_DISKS;
6093
6094         if (mddev->persistent)
6095                 mddev->flags         = 0;
6096         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6097
6098         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6099         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6100         mddev->bitmap_info.offset = 0;
6101
6102         mddev->reshape_position = MaxSector;
6103
6104         /*
6105          * Generate a 128 bit UUID
6106          */
6107         get_random_bytes(mddev->uuid, 16);
6108
6109         mddev->new_level = mddev->level;
6110         mddev->new_chunk_sectors = mddev->chunk_sectors;
6111         mddev->new_layout = mddev->layout;
6112         mddev->delta_disks = 0;
6113         mddev->reshape_backwards = 0;
6114
6115         return 0;
6116 }
6117
6118 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6119 {
6120         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6121
6122         if (mddev->external_size)
6123                 return;
6124
6125         mddev->array_sectors = array_sectors;
6126 }
6127 EXPORT_SYMBOL(md_set_array_sectors);
6128
6129 static int update_size(struct mddev *mddev, sector_t num_sectors)
6130 {
6131         struct md_rdev *rdev;
6132         int rv;
6133         int fit = (num_sectors == 0);
6134
6135         if (mddev->pers->resize == NULL)
6136                 return -EINVAL;
6137         /* The "num_sectors" is the number of sectors of each device that
6138          * is used.  This can only make sense for arrays with redundancy.
6139          * linear and raid0 always use whatever space is available. We can only
6140          * consider changing this number if no resync or reconstruction is
6141          * happening, and if the new size is acceptable. It must fit before the
6142          * sb_start or, if that is <data_offset, it must fit before the size
6143          * of each device.  If num_sectors is zero, we find the largest size
6144          * that fits.
6145          */
6146         if (mddev->sync_thread)
6147                 return -EBUSY;
6148
6149         rdev_for_each(rdev, mddev) {
6150                 sector_t avail = rdev->sectors;
6151
6152                 if (fit && (num_sectors == 0 || num_sectors > avail))
6153                         num_sectors = avail;
6154                 if (avail < num_sectors)
6155                         return -ENOSPC;
6156         }
6157         rv = mddev->pers->resize(mddev, num_sectors);
6158         if (!rv)
6159                 revalidate_disk(mddev->gendisk);
6160         return rv;
6161 }
6162
6163 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6164 {
6165         int rv;
6166         struct md_rdev *rdev;
6167         /* change the number of raid disks */
6168         if (mddev->pers->check_reshape == NULL)
6169                 return -EINVAL;
6170         if (raid_disks <= 0 ||
6171             (mddev->max_disks && raid_disks >= mddev->max_disks))
6172                 return -EINVAL;
6173         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6174                 return -EBUSY;
6175
6176         rdev_for_each(rdev, mddev) {
6177                 if (mddev->raid_disks < raid_disks &&
6178                     rdev->data_offset < rdev->new_data_offset)
6179                         return -EINVAL;
6180                 if (mddev->raid_disks > raid_disks &&
6181                     rdev->data_offset > rdev->new_data_offset)
6182                         return -EINVAL;
6183         }
6184
6185         mddev->delta_disks = raid_disks - mddev->raid_disks;
6186         if (mddev->delta_disks < 0)
6187                 mddev->reshape_backwards = 1;
6188         else if (mddev->delta_disks > 0)
6189                 mddev->reshape_backwards = 0;
6190
6191         rv = mddev->pers->check_reshape(mddev);
6192         if (rv < 0) {
6193                 mddev->delta_disks = 0;
6194                 mddev->reshape_backwards = 0;
6195         }
6196         return rv;
6197 }
6198
6199
6200 /*
6201  * update_array_info is used to change the configuration of an
6202  * on-line array.
6203  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6204  * fields in the info are checked against the array.
6205  * Any differences that cannot be handled will cause an error.
6206  * Normally, only one change can be managed at a time.
6207  */
6208 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6209 {
6210         int rv = 0;
6211         int cnt = 0;
6212         int state = 0;
6213
6214         /* calculate expected state,ignoring low bits */
6215         if (mddev->bitmap && mddev->bitmap_info.offset)
6216                 state |= (1 << MD_SB_BITMAP_PRESENT);
6217
6218         if (mddev->major_version != info->major_version ||
6219             mddev->minor_version != info->minor_version ||
6220 /*          mddev->patch_version != info->patch_version || */
6221             mddev->ctime         != info->ctime         ||
6222             mddev->level         != info->level         ||
6223 /*          mddev->layout        != info->layout        || */
6224             !mddev->persistent   != info->not_persistent||
6225             mddev->chunk_sectors != info->chunk_size >> 9 ||
6226             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6227             ((state^info->state) & 0xfffffe00)
6228                 )
6229                 return -EINVAL;
6230         /* Check there is only one change */
6231         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6232                 cnt++;
6233         if (mddev->raid_disks != info->raid_disks)
6234                 cnt++;
6235         if (mddev->layout != info->layout)
6236                 cnt++;
6237         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6238                 cnt++;
6239         if (cnt == 0)
6240                 return 0;
6241         if (cnt > 1)
6242                 return -EINVAL;
6243
6244         if (mddev->layout != info->layout) {
6245                 /* Change layout
6246                  * we don't need to do anything at the md level, the
6247                  * personality will take care of it all.
6248                  */
6249                 if (mddev->pers->check_reshape == NULL)
6250                         return -EINVAL;
6251                 else {
6252                         mddev->new_layout = info->layout;
6253                         rv = mddev->pers->check_reshape(mddev);
6254                         if (rv)
6255                                 mddev->new_layout = mddev->layout;
6256                         return rv;
6257                 }
6258         }
6259         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6260                 rv = update_size(mddev, (sector_t)info->size * 2);
6261
6262         if (mddev->raid_disks    != info->raid_disks)
6263                 rv = update_raid_disks(mddev, info->raid_disks);
6264
6265         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6266                 if (mddev->pers->quiesce == NULL)
6267                         return -EINVAL;
6268                 if (mddev->recovery || mddev->sync_thread)
6269                         return -EBUSY;
6270                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6271                         /* add the bitmap */
6272                         if (mddev->bitmap)
6273                                 return -EEXIST;
6274                         if (mddev->bitmap_info.default_offset == 0)
6275                                 return -EINVAL;
6276                         mddev->bitmap_info.offset =
6277                                 mddev->bitmap_info.default_offset;
6278                         mddev->bitmap_info.space =
6279                                 mddev->bitmap_info.default_space;
6280                         mddev->pers->quiesce(mddev, 1);
6281                         rv = bitmap_create(mddev);
6282                         if (!rv)
6283                                 rv = bitmap_load(mddev);
6284                         if (rv)
6285                                 bitmap_destroy(mddev);
6286                         mddev->pers->quiesce(mddev, 0);
6287                 } else {
6288                         /* remove the bitmap */
6289                         if (!mddev->bitmap)
6290                                 return -ENOENT;
6291                         if (mddev->bitmap->storage.file)
6292                                 return -EINVAL;
6293                         mddev->pers->quiesce(mddev, 1);
6294                         bitmap_destroy(mddev);
6295                         mddev->pers->quiesce(mddev, 0);
6296                         mddev->bitmap_info.offset = 0;
6297                 }
6298         }
6299         md_update_sb(mddev, 1);
6300         return rv;
6301 }
6302
6303 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6304 {
6305         struct md_rdev *rdev;
6306         int err = 0;
6307
6308         if (mddev->pers == NULL)
6309                 return -ENODEV;
6310
6311         rcu_read_lock();
6312         rdev = find_rdev_rcu(mddev, dev);
6313         if (!rdev)
6314                 err =  -ENODEV;
6315         else {
6316                 md_error(mddev, rdev);
6317                 if (!test_bit(Faulty, &rdev->flags))
6318                         err = -EBUSY;
6319         }
6320         rcu_read_unlock();
6321         return err;
6322 }
6323
6324 /*
6325  * We have a problem here : there is no easy way to give a CHS
6326  * virtual geometry. We currently pretend that we have a 2 heads
6327  * 4 sectors (with a BIG number of cylinders...). This drives
6328  * dosfs just mad... ;-)
6329  */
6330 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6331 {
6332         struct mddev *mddev = bdev->bd_disk->private_data;
6333
6334         geo->heads = 2;
6335         geo->sectors = 4;
6336         geo->cylinders = mddev->array_sectors / 8;
6337         return 0;
6338 }
6339
6340 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6341                         unsigned int cmd, unsigned long arg)
6342 {
6343         int err = 0;
6344         void __user *argp = (void __user *)arg;
6345         struct mddev *mddev = NULL;
6346         int ro;
6347
6348         switch (cmd) {
6349         case RAID_VERSION:
6350         case GET_ARRAY_INFO:
6351         case GET_DISK_INFO:
6352                 break;
6353         default:
6354                 if (!capable(CAP_SYS_ADMIN))
6355                         return -EACCES;
6356         }
6357
6358         /*
6359          * Commands dealing with the RAID driver but not any
6360          * particular array:
6361          */
6362         switch (cmd) {
6363         case RAID_VERSION:
6364                 err = get_version(argp);
6365                 goto done;
6366
6367         case PRINT_RAID_DEBUG:
6368                 err = 0;
6369                 md_print_devices();
6370                 goto done;
6371
6372 #ifndef MODULE
6373         case RAID_AUTORUN:
6374                 err = 0;
6375                 autostart_arrays(arg);
6376                 goto done;
6377 #endif
6378         default:;
6379         }
6380
6381         /*
6382          * Commands creating/starting a new array:
6383          */
6384
6385         mddev = bdev->bd_disk->private_data;
6386
6387         if (!mddev) {
6388                 BUG();
6389                 goto abort;
6390         }
6391
6392         /* Some actions do not requires the mutex */
6393         switch (cmd) {
6394         case GET_ARRAY_INFO:
6395                 if (!mddev->raid_disks && !mddev->external)
6396                         err = -ENODEV;
6397                 else
6398                         err = get_array_info(mddev, argp);
6399                 goto abort;
6400
6401         case GET_DISK_INFO:
6402                 if (!mddev->raid_disks && !mddev->external)
6403                         err = -ENODEV;
6404                 else
6405                         err = get_disk_info(mddev, argp);
6406                 goto abort;
6407
6408         case SET_DISK_FAULTY:
6409                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6410                 goto abort;
6411         }
6412
6413         if (cmd == ADD_NEW_DISK)
6414                 /* need to ensure md_delayed_delete() has completed */
6415                 flush_workqueue(md_misc_wq);
6416
6417         err = mddev_lock(mddev);
6418         if (err) {
6419                 printk(KERN_INFO 
6420                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6421                         err, cmd);
6422                 goto abort;
6423         }
6424
6425         if (cmd == SET_ARRAY_INFO) {
6426                 mdu_array_info_t info;
6427                 if (!arg)
6428                         memset(&info, 0, sizeof(info));
6429                 else if (copy_from_user(&info, argp, sizeof(info))) {
6430                         err = -EFAULT;
6431                         goto abort_unlock;
6432                 }
6433                 if (mddev->pers) {
6434                         err = update_array_info(mddev, &info);
6435                         if (err) {
6436                                 printk(KERN_WARNING "md: couldn't update"
6437                                        " array info. %d\n", err);
6438                                 goto abort_unlock;
6439                         }
6440                         goto done_unlock;
6441                 }
6442                 if (!list_empty(&mddev->disks)) {
6443                         printk(KERN_WARNING
6444                                "md: array %s already has disks!\n",
6445                                mdname(mddev));
6446                         err = -EBUSY;
6447                         goto abort_unlock;
6448                 }
6449                 if (mddev->raid_disks) {
6450                         printk(KERN_WARNING
6451                                "md: array %s already initialised!\n",
6452                                mdname(mddev));
6453                         err = -EBUSY;
6454                         goto abort_unlock;
6455                 }
6456                 err = set_array_info(mddev, &info);
6457                 if (err) {
6458                         printk(KERN_WARNING "md: couldn't set"
6459                                " array info. %d\n", err);
6460                         goto abort_unlock;
6461                 }
6462                 goto done_unlock;
6463         }
6464
6465         /*
6466          * Commands querying/configuring an existing array:
6467          */
6468         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6469          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6470         if ((!mddev->raid_disks && !mddev->external)
6471             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6472             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6473             && cmd != GET_BITMAP_FILE) {
6474                 err = -ENODEV;
6475                 goto abort_unlock;
6476         }
6477
6478         /*
6479          * Commands even a read-only array can execute:
6480          */
6481         switch (cmd) {
6482         case GET_BITMAP_FILE:
6483                 err = get_bitmap_file(mddev, argp);
6484                 goto done_unlock;
6485
6486         case RESTART_ARRAY_RW:
6487                 err = restart_array(mddev);
6488                 goto done_unlock;
6489
6490         case STOP_ARRAY:
6491                 err = do_md_stop(mddev, 0, bdev);
6492                 goto done_unlock;
6493
6494         case STOP_ARRAY_RO:
6495                 err = md_set_readonly(mddev, bdev);
6496                 goto done_unlock;
6497
6498         case HOT_REMOVE_DISK:
6499                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6500                 goto done_unlock;
6501
6502         case ADD_NEW_DISK:
6503                 /* We can support ADD_NEW_DISK on read-only arrays
6504                  * on if we are re-adding a preexisting device.
6505                  * So require mddev->pers and MD_DISK_SYNC.
6506                  */
6507                 if (mddev->pers) {
6508                         mdu_disk_info_t info;
6509                         if (copy_from_user(&info, argp, sizeof(info)))
6510                                 err = -EFAULT;
6511                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6512                                 /* Need to clear read-only for this */
6513                                 break;
6514                         else
6515                                 err = add_new_disk(mddev, &info);
6516                         goto done_unlock;
6517                 }
6518                 break;
6519
6520         case BLKROSET:
6521                 if (get_user(ro, (int __user *)(arg))) {
6522                         err = -EFAULT;
6523                         goto done_unlock;
6524                 }
6525                 err = -EINVAL;
6526
6527                 /* if the bdev is going readonly the value of mddev->ro
6528                  * does not matter, no writes are coming
6529                  */
6530                 if (ro)
6531                         goto done_unlock;
6532
6533                 /* are we are already prepared for writes? */
6534                 if (mddev->ro != 1)
6535                         goto done_unlock;
6536
6537                 /* transitioning to readauto need only happen for
6538                  * arrays that call md_write_start
6539                  */
6540                 if (mddev->pers) {
6541                         err = restart_array(mddev);
6542                         if (err == 0) {
6543                                 mddev->ro = 2;
6544                                 set_disk_ro(mddev->gendisk, 0);
6545                         }
6546                 }
6547                 goto done_unlock;
6548         }
6549
6550         /*
6551          * The remaining ioctls are changing the state of the
6552          * superblock, so we do not allow them on read-only arrays.
6553          * However non-MD ioctls (e.g. get-size) will still come through
6554          * here and hit the 'default' below, so only disallow
6555          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6556          */
6557         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6558                 if (mddev->ro == 2) {
6559                         mddev->ro = 0;
6560                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6561                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6562                         /* mddev_unlock will wake thread */
6563                         /* If a device failed while we were read-only, we
6564                          * need to make sure the metadata is updated now.
6565                          */
6566                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6567                                 mddev_unlock(mddev);
6568                                 wait_event(mddev->sb_wait,
6569                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6570                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6571                                 mddev_lock(mddev);
6572                         }
6573                 } else {
6574                         err = -EROFS;
6575                         goto abort_unlock;
6576                 }
6577         }
6578
6579         switch (cmd) {
6580         case ADD_NEW_DISK:
6581         {
6582                 mdu_disk_info_t info;
6583                 if (copy_from_user(&info, argp, sizeof(info)))
6584                         err = -EFAULT;
6585                 else
6586                         err = add_new_disk(mddev, &info);
6587                 goto done_unlock;
6588         }
6589
6590         case HOT_ADD_DISK:
6591                 err = hot_add_disk(mddev, new_decode_dev(arg));
6592                 goto done_unlock;
6593
6594         case RUN_ARRAY:
6595                 err = do_md_run(mddev);
6596                 goto done_unlock;
6597
6598         case SET_BITMAP_FILE:
6599                 err = set_bitmap_file(mddev, (int)arg);
6600                 goto done_unlock;
6601
6602         default:
6603                 err = -EINVAL;
6604                 goto abort_unlock;
6605         }
6606
6607 done_unlock:
6608 abort_unlock:
6609         if (mddev->hold_active == UNTIL_IOCTL &&
6610             err != -EINVAL)
6611                 mddev->hold_active = 0;
6612         mddev_unlock(mddev);
6613
6614         return err;
6615 done:
6616         if (err)
6617                 MD_BUG();
6618 abort:
6619         return err;
6620 }
6621 #ifdef CONFIG_COMPAT
6622 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6623                     unsigned int cmd, unsigned long arg)
6624 {
6625         switch (cmd) {
6626         case HOT_REMOVE_DISK:
6627         case HOT_ADD_DISK:
6628         case SET_DISK_FAULTY:
6629         case SET_BITMAP_FILE:
6630                 /* These take in integer arg, do not convert */
6631                 break;
6632         default:
6633                 arg = (unsigned long)compat_ptr(arg);
6634                 break;
6635         }
6636
6637         return md_ioctl(bdev, mode, cmd, arg);
6638 }
6639 #endif /* CONFIG_COMPAT */
6640
6641 static int md_open(struct block_device *bdev, fmode_t mode)
6642 {
6643         /*
6644          * Succeed if we can lock the mddev, which confirms that
6645          * it isn't being stopped right now.
6646          */
6647         struct mddev *mddev = mddev_find(bdev->bd_dev);
6648         int err;
6649
6650         if (!mddev)
6651                 return -ENODEV;
6652
6653         if (mddev->gendisk != bdev->bd_disk) {
6654                 /* we are racing with mddev_put which is discarding this
6655                  * bd_disk.
6656                  */
6657                 mddev_put(mddev);
6658                 /* Wait until bdev->bd_disk is definitely gone */
6659                 flush_workqueue(md_misc_wq);
6660                 /* Then retry the open from the top */
6661                 return -ERESTARTSYS;
6662         }
6663         BUG_ON(mddev != bdev->bd_disk->private_data);
6664
6665         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6666                 goto out;
6667
6668         err = 0;
6669         atomic_inc(&mddev->openers);
6670         mutex_unlock(&mddev->open_mutex);
6671
6672         check_disk_change(bdev);
6673  out:
6674         return err;
6675 }
6676
6677 static void md_release(struct gendisk *disk, fmode_t mode)
6678 {
6679         struct mddev *mddev = disk->private_data;
6680
6681         BUG_ON(!mddev);
6682         atomic_dec(&mddev->openers);
6683         mddev_put(mddev);
6684 }
6685
6686 static int md_media_changed(struct gendisk *disk)
6687 {
6688         struct mddev *mddev = disk->private_data;
6689
6690         return mddev->changed;
6691 }
6692
6693 static int md_revalidate(struct gendisk *disk)
6694 {
6695         struct mddev *mddev = disk->private_data;
6696
6697         mddev->changed = 0;
6698         return 0;
6699 }
6700 static const struct block_device_operations md_fops =
6701 {
6702         .owner          = THIS_MODULE,
6703         .open           = md_open,
6704         .release        = md_release,
6705         .ioctl          = md_ioctl,
6706 #ifdef CONFIG_COMPAT
6707         .compat_ioctl   = md_compat_ioctl,
6708 #endif
6709         .getgeo         = md_getgeo,
6710         .media_changed  = md_media_changed,
6711         .revalidate_disk= md_revalidate,
6712 };
6713
6714 static int md_thread(void * arg)
6715 {
6716         struct md_thread *thread = arg;
6717
6718         /*
6719          * md_thread is a 'system-thread', it's priority should be very
6720          * high. We avoid resource deadlocks individually in each
6721          * raid personality. (RAID5 does preallocation) We also use RR and
6722          * the very same RT priority as kswapd, thus we will never get
6723          * into a priority inversion deadlock.
6724          *
6725          * we definitely have to have equal or higher priority than
6726          * bdflush, otherwise bdflush will deadlock if there are too
6727          * many dirty RAID5 blocks.
6728          */
6729
6730         allow_signal(SIGKILL);
6731         while (!kthread_should_stop()) {
6732
6733                 /* We need to wait INTERRUPTIBLE so that
6734                  * we don't add to the load-average.
6735                  * That means we need to be sure no signals are
6736                  * pending
6737                  */
6738                 if (signal_pending(current))
6739                         flush_signals(current);
6740
6741                 wait_event_interruptible_timeout
6742                         (thread->wqueue,
6743                          test_bit(THREAD_WAKEUP, &thread->flags)
6744                          || kthread_should_stop(),
6745                          thread->timeout);
6746
6747                 clear_bit(THREAD_WAKEUP, &thread->flags);
6748                 if (!kthread_should_stop())
6749                         thread->run(thread);
6750         }
6751
6752         return 0;
6753 }
6754
6755 void md_wakeup_thread(struct md_thread *thread)
6756 {
6757         if (thread) {
6758                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6759                 set_bit(THREAD_WAKEUP, &thread->flags);
6760                 wake_up(&thread->wqueue);
6761         }
6762 }
6763
6764 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6765                 struct mddev *mddev, const char *name)
6766 {
6767         struct md_thread *thread;
6768
6769         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6770         if (!thread)
6771                 return NULL;
6772
6773         init_waitqueue_head(&thread->wqueue);
6774
6775         thread->run = run;
6776         thread->mddev = mddev;
6777         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6778         thread->tsk = kthread_run(md_thread, thread,
6779                                   "%s_%s",
6780                                   mdname(thread->mddev),
6781                                   name);
6782         if (IS_ERR(thread->tsk)) {
6783                 kfree(thread);
6784                 return NULL;
6785         }
6786         return thread;
6787 }
6788
6789 void md_unregister_thread(struct md_thread **threadp)
6790 {
6791         struct md_thread *thread = *threadp;
6792         if (!thread)
6793                 return;
6794         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6795         /* Locking ensures that mddev_unlock does not wake_up a
6796          * non-existent thread
6797          */
6798         spin_lock(&pers_lock);
6799         *threadp = NULL;
6800         spin_unlock(&pers_lock);
6801
6802         kthread_stop(thread->tsk);
6803         kfree(thread);
6804 }
6805
6806 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6807 {
6808         if (!mddev) {
6809                 MD_BUG();
6810                 return;
6811         }
6812
6813         if (!rdev || test_bit(Faulty, &rdev->flags))
6814                 return;
6815
6816         if (!mddev->pers || !mddev->pers->error_handler)
6817                 return;
6818         mddev->pers->error_handler(mddev,rdev);
6819         if (mddev->degraded)
6820                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6821         sysfs_notify_dirent_safe(rdev->sysfs_state);
6822         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6823         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6824         md_wakeup_thread(mddev->thread);
6825         if (mddev->event_work.func)
6826                 queue_work(md_misc_wq, &mddev->event_work);
6827         md_new_event_inintr(mddev);
6828 }
6829
6830 /* seq_file implementation /proc/mdstat */
6831
6832 static void status_unused(struct seq_file *seq)
6833 {
6834         int i = 0;
6835         struct md_rdev *rdev;
6836
6837         seq_printf(seq, "unused devices: ");
6838
6839         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6840                 char b[BDEVNAME_SIZE];
6841                 i++;
6842                 seq_printf(seq, "%s ",
6843                               bdevname(rdev->bdev,b));
6844         }
6845         if (!i)
6846                 seq_printf(seq, "<none>");
6847
6848         seq_printf(seq, "\n");
6849 }
6850
6851
6852 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6853 {
6854         sector_t max_sectors, resync, res;
6855         unsigned long dt, db;
6856         sector_t rt;
6857         int scale;
6858         unsigned int per_milli;
6859
6860         if (mddev->curr_resync <= 3)
6861                 resync = 0;
6862         else
6863                 resync = mddev->curr_resync
6864                         - atomic_read(&mddev->recovery_active);
6865
6866         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6867             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6868                 max_sectors = mddev->resync_max_sectors;
6869         else
6870                 max_sectors = mddev->dev_sectors;
6871
6872         /*
6873          * Should not happen.
6874          */
6875         if (!max_sectors) {
6876                 MD_BUG();
6877                 return;
6878         }
6879         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6880          * in a sector_t, and (max_sectors>>scale) will fit in a
6881          * u32, as those are the requirements for sector_div.
6882          * Thus 'scale' must be at least 10
6883          */
6884         scale = 10;
6885         if (sizeof(sector_t) > sizeof(unsigned long)) {
6886                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6887                         scale++;
6888         }
6889         res = (resync>>scale)*1000;
6890         sector_div(res, (u32)((max_sectors>>scale)+1));
6891
6892         per_milli = res;
6893         {
6894                 int i, x = per_milli/50, y = 20-x;
6895                 seq_printf(seq, "[");
6896                 for (i = 0; i < x; i++)
6897                         seq_printf(seq, "=");
6898                 seq_printf(seq, ">");
6899                 for (i = 0; i < y; i++)
6900                         seq_printf(seq, ".");
6901                 seq_printf(seq, "] ");
6902         }
6903         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6904                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6905                     "reshape" :
6906                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6907                      "check" :
6908                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6909                       "resync" : "recovery"))),
6910                    per_milli/10, per_milli % 10,
6911                    (unsigned long long) resync/2,
6912                    (unsigned long long) max_sectors/2);
6913
6914         /*
6915          * dt: time from mark until now
6916          * db: blocks written from mark until now
6917          * rt: remaining time
6918          *
6919          * rt is a sector_t, so could be 32bit or 64bit.
6920          * So we divide before multiply in case it is 32bit and close
6921          * to the limit.
6922          * We scale the divisor (db) by 32 to avoid losing precision
6923          * near the end of resync when the number of remaining sectors
6924          * is close to 'db'.
6925          * We then divide rt by 32 after multiplying by db to compensate.
6926          * The '+1' avoids division by zero if db is very small.
6927          */
6928         dt = ((jiffies - mddev->resync_mark) / HZ);
6929         if (!dt) dt++;
6930         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6931                 - mddev->resync_mark_cnt;
6932
6933         rt = max_sectors - resync;    /* number of remaining sectors */
6934         sector_div(rt, db/32+1);
6935         rt *= dt;
6936         rt >>= 5;
6937
6938         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6939                    ((unsigned long)rt % 60)/6);
6940
6941         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6942 }
6943
6944 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6945 {
6946         struct list_head *tmp;
6947         loff_t l = *pos;
6948         struct mddev *mddev;
6949
6950         if (l >= 0x10000)
6951                 return NULL;
6952         if (!l--)
6953                 /* header */
6954                 return (void*)1;
6955
6956         spin_lock(&all_mddevs_lock);
6957         list_for_each(tmp,&all_mddevs)
6958                 if (!l--) {
6959                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6960                         mddev_get(mddev);
6961                         spin_unlock(&all_mddevs_lock);
6962                         return mddev;
6963                 }
6964         spin_unlock(&all_mddevs_lock);
6965         if (!l--)
6966                 return (void*)2;/* tail */
6967         return NULL;
6968 }
6969
6970 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6971 {
6972         struct list_head *tmp;
6973         struct mddev *next_mddev, *mddev = v;
6974         
6975         ++*pos;
6976         if (v == (void*)2)
6977                 return NULL;
6978
6979         spin_lock(&all_mddevs_lock);
6980         if (v == (void*)1)
6981                 tmp = all_mddevs.next;
6982         else
6983                 tmp = mddev->all_mddevs.next;
6984         if (tmp != &all_mddevs)
6985                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6986         else {
6987                 next_mddev = (void*)2;
6988                 *pos = 0x10000;
6989         }               
6990         spin_unlock(&all_mddevs_lock);
6991
6992         if (v != (void*)1)
6993                 mddev_put(mddev);
6994         return next_mddev;
6995
6996 }
6997
6998 static void md_seq_stop(struct seq_file *seq, void *v)
6999 {
7000         struct mddev *mddev = v;
7001
7002         if (mddev && v != (void*)1 && v != (void*)2)
7003                 mddev_put(mddev);
7004 }
7005
7006 static int md_seq_show(struct seq_file *seq, void *v)
7007 {
7008         struct mddev *mddev = v;
7009         sector_t sectors;
7010         struct md_rdev *rdev;
7011
7012         if (v == (void*)1) {
7013                 struct md_personality *pers;
7014                 seq_printf(seq, "Personalities : ");
7015                 spin_lock(&pers_lock);
7016                 list_for_each_entry(pers, &pers_list, list)
7017                         seq_printf(seq, "[%s] ", pers->name);
7018
7019                 spin_unlock(&pers_lock);
7020                 seq_printf(seq, "\n");
7021                 seq->poll_event = atomic_read(&md_event_count);
7022                 return 0;
7023         }
7024         if (v == (void*)2) {
7025                 status_unused(seq);
7026                 return 0;
7027         }
7028
7029         if (mddev_lock(mddev) < 0)
7030                 return -EINTR;
7031
7032         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7033                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7034                                                 mddev->pers ? "" : "in");
7035                 if (mddev->pers) {
7036                         if (mddev->ro==1)
7037                                 seq_printf(seq, " (read-only)");
7038                         if (mddev->ro==2)
7039                                 seq_printf(seq, " (auto-read-only)");
7040                         seq_printf(seq, " %s", mddev->pers->name);
7041                 }
7042
7043                 sectors = 0;
7044                 rdev_for_each(rdev, mddev) {
7045                         char b[BDEVNAME_SIZE];
7046                         seq_printf(seq, " %s[%d]",
7047                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7048                         if (test_bit(WriteMostly, &rdev->flags))
7049                                 seq_printf(seq, "(W)");
7050                         if (test_bit(Faulty, &rdev->flags)) {
7051                                 seq_printf(seq, "(F)");
7052                                 continue;
7053                         }
7054                         if (rdev->raid_disk < 0)
7055                                 seq_printf(seq, "(S)"); /* spare */
7056                         if (test_bit(Replacement, &rdev->flags))
7057                                 seq_printf(seq, "(R)");
7058                         sectors += rdev->sectors;
7059                 }
7060
7061                 if (!list_empty(&mddev->disks)) {
7062                         if (mddev->pers)
7063                                 seq_printf(seq, "\n      %llu blocks",
7064                                            (unsigned long long)
7065                                            mddev->array_sectors / 2);
7066                         else
7067                                 seq_printf(seq, "\n      %llu blocks",
7068                                            (unsigned long long)sectors / 2);
7069                 }
7070                 if (mddev->persistent) {
7071                         if (mddev->major_version != 0 ||
7072                             mddev->minor_version != 90) {
7073                                 seq_printf(seq," super %d.%d",
7074                                            mddev->major_version,
7075                                            mddev->minor_version);
7076                         }
7077                 } else if (mddev->external)
7078                         seq_printf(seq, " super external:%s",
7079                                    mddev->metadata_type);
7080                 else
7081                         seq_printf(seq, " super non-persistent");
7082
7083                 if (mddev->pers) {
7084                         mddev->pers->status(seq, mddev);
7085                         seq_printf(seq, "\n      ");
7086                         if (mddev->pers->sync_request) {
7087                                 if (mddev->curr_resync > 2) {
7088                                         status_resync(seq, mddev);
7089                                         seq_printf(seq, "\n      ");
7090                                 } else if (mddev->curr_resync >= 1)
7091                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7092                                 else if (mddev->recovery_cp < MaxSector)
7093                                         seq_printf(seq, "\tresync=PENDING\n      ");
7094                         }
7095                 } else
7096                         seq_printf(seq, "\n       ");
7097
7098                 bitmap_status(seq, mddev->bitmap);
7099
7100                 seq_printf(seq, "\n");
7101         }
7102         mddev_unlock(mddev);
7103         
7104         return 0;
7105 }
7106
7107 static const struct seq_operations md_seq_ops = {
7108         .start  = md_seq_start,
7109         .next   = md_seq_next,
7110         .stop   = md_seq_stop,
7111         .show   = md_seq_show,
7112 };
7113
7114 static int md_seq_open(struct inode *inode, struct file *file)
7115 {
7116         struct seq_file *seq;
7117         int error;
7118
7119         error = seq_open(file, &md_seq_ops);
7120         if (error)
7121                 return error;
7122
7123         seq = file->private_data;
7124         seq->poll_event = atomic_read(&md_event_count);
7125         return error;
7126 }
7127
7128 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7129 {
7130         struct seq_file *seq = filp->private_data;
7131         int mask;
7132
7133         poll_wait(filp, &md_event_waiters, wait);
7134
7135         /* always allow read */
7136         mask = POLLIN | POLLRDNORM;
7137
7138         if (seq->poll_event != atomic_read(&md_event_count))
7139                 mask |= POLLERR | POLLPRI;
7140         return mask;
7141 }
7142
7143 static const struct file_operations md_seq_fops = {
7144         .owner          = THIS_MODULE,
7145         .open           = md_seq_open,
7146         .read           = seq_read,
7147         .llseek         = seq_lseek,
7148         .release        = seq_release_private,
7149         .poll           = mdstat_poll,
7150 };
7151
7152 int register_md_personality(struct md_personality *p)
7153 {
7154         spin_lock(&pers_lock);
7155         list_add_tail(&p->list, &pers_list);
7156         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7157         spin_unlock(&pers_lock);
7158         return 0;
7159 }
7160
7161 int unregister_md_personality(struct md_personality *p)
7162 {
7163         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7164         spin_lock(&pers_lock);
7165         list_del_init(&p->list);
7166         spin_unlock(&pers_lock);
7167         return 0;
7168 }
7169
7170 static int is_mddev_idle(struct mddev *mddev, int init)
7171 {
7172         struct md_rdev * rdev;
7173         int idle;
7174         int curr_events;
7175
7176         idle = 1;
7177         rcu_read_lock();
7178         rdev_for_each_rcu(rdev, mddev) {
7179                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7180                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7181                               (int)part_stat_read(&disk->part0, sectors[1]) -
7182                               atomic_read(&disk->sync_io);
7183                 /* sync IO will cause sync_io to increase before the disk_stats
7184                  * as sync_io is counted when a request starts, and
7185                  * disk_stats is counted when it completes.
7186                  * So resync activity will cause curr_events to be smaller than
7187                  * when there was no such activity.
7188                  * non-sync IO will cause disk_stat to increase without
7189                  * increasing sync_io so curr_events will (eventually)
7190                  * be larger than it was before.  Once it becomes
7191                  * substantially larger, the test below will cause
7192                  * the array to appear non-idle, and resync will slow
7193                  * down.
7194                  * If there is a lot of outstanding resync activity when
7195                  * we set last_event to curr_events, then all that activity
7196                  * completing might cause the array to appear non-idle
7197                  * and resync will be slowed down even though there might
7198                  * not have been non-resync activity.  This will only
7199                  * happen once though.  'last_events' will soon reflect
7200                  * the state where there is little or no outstanding
7201                  * resync requests, and further resync activity will
7202                  * always make curr_events less than last_events.
7203                  *
7204                  */
7205                 if (init || curr_events - rdev->last_events > 64) {
7206                         rdev->last_events = curr_events;
7207                         idle = 0;
7208                 }
7209         }
7210         rcu_read_unlock();
7211         return idle;
7212 }
7213
7214 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7215 {
7216         /* another "blocks" (512byte) blocks have been synced */
7217         atomic_sub(blocks, &mddev->recovery_active);
7218         wake_up(&mddev->recovery_wait);
7219         if (!ok) {
7220                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7221                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7222                 md_wakeup_thread(mddev->thread);
7223                 // stop recovery, signal do_sync ....
7224         }
7225 }
7226
7227
7228 /* md_write_start(mddev, bi)
7229  * If we need to update some array metadata (e.g. 'active' flag
7230  * in superblock) before writing, schedule a superblock update
7231  * and wait for it to complete.
7232  */
7233 void md_write_start(struct mddev *mddev, struct bio *bi)
7234 {
7235         int did_change = 0;
7236         if (bio_data_dir(bi) != WRITE)
7237                 return;
7238
7239         BUG_ON(mddev->ro == 1);
7240         if (mddev->ro == 2) {
7241                 /* need to switch to read/write */
7242                 mddev->ro = 0;
7243                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7244                 md_wakeup_thread(mddev->thread);
7245                 md_wakeup_thread(mddev->sync_thread);
7246                 did_change = 1;
7247         }
7248         atomic_inc(&mddev->writes_pending);
7249         if (mddev->safemode == 1)
7250                 mddev->safemode = 0;
7251         if (mddev->in_sync) {
7252                 spin_lock_irq(&mddev->write_lock);
7253                 if (mddev->in_sync) {
7254                         mddev->in_sync = 0;
7255                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7256                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7257                         md_wakeup_thread(mddev->thread);
7258                         did_change = 1;
7259                 }
7260                 spin_unlock_irq(&mddev->write_lock);
7261         }
7262         if (did_change)
7263                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7264         wait_event(mddev->sb_wait,
7265                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7266 }
7267
7268 void md_write_end(struct mddev *mddev)
7269 {
7270         if (atomic_dec_and_test(&mddev->writes_pending)) {
7271                 if (mddev->safemode == 2)
7272                         md_wakeup_thread(mddev->thread);
7273                 else if (mddev->safemode_delay)
7274                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7275         }
7276 }
7277
7278 /* md_allow_write(mddev)
7279  * Calling this ensures that the array is marked 'active' so that writes
7280  * may proceed without blocking.  It is important to call this before
7281  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7282  * Must be called with mddev_lock held.
7283  *
7284  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7285  * is dropped, so return -EAGAIN after notifying userspace.
7286  */
7287 int md_allow_write(struct mddev *mddev)
7288 {
7289         if (!mddev->pers)
7290                 return 0;
7291         if (mddev->ro)
7292                 return 0;
7293         if (!mddev->pers->sync_request)
7294                 return 0;
7295
7296         spin_lock_irq(&mddev->write_lock);
7297         if (mddev->in_sync) {
7298                 mddev->in_sync = 0;
7299                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7300                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7301                 if (mddev->safemode_delay &&
7302                     mddev->safemode == 0)
7303                         mddev->safemode = 1;
7304                 spin_unlock_irq(&mddev->write_lock);
7305                 md_update_sb(mddev, 0);
7306                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7307         } else
7308                 spin_unlock_irq(&mddev->write_lock);
7309
7310         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7311                 return -EAGAIN;
7312         else
7313                 return 0;
7314 }
7315 EXPORT_SYMBOL_GPL(md_allow_write);
7316
7317 #define SYNC_MARKS      10
7318 #define SYNC_MARK_STEP  (3*HZ)
7319 #define UPDATE_FREQUENCY (5*60*HZ)
7320 void md_do_sync(struct md_thread *thread)
7321 {
7322         struct mddev *mddev = thread->mddev;
7323         struct mddev *mddev2;
7324         unsigned int currspeed = 0,
7325                  window;
7326         sector_t max_sectors,j, io_sectors;
7327         unsigned long mark[SYNC_MARKS];
7328         unsigned long update_time;
7329         sector_t mark_cnt[SYNC_MARKS];
7330         int last_mark,m;
7331         struct list_head *tmp;
7332         sector_t last_check;
7333         int skipped = 0;
7334         struct md_rdev *rdev;
7335         char *desc;
7336         struct blk_plug plug;
7337
7338         /* just incase thread restarts... */
7339         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7340                 return;
7341         if (mddev->ro) {/* never try to sync a read-only array */
7342                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7343                 return;
7344         }
7345
7346         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7347                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7348                         desc = "data-check";
7349                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7350                         desc = "requested-resync";
7351                 else
7352                         desc = "resync";
7353         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7354                 desc = "reshape";
7355         else
7356                 desc = "recovery";
7357
7358         /* we overload curr_resync somewhat here.
7359          * 0 == not engaged in resync at all
7360          * 2 == checking that there is no conflict with another sync
7361          * 1 == like 2, but have yielded to allow conflicting resync to
7362          *              commense
7363          * other == active in resync - this many blocks
7364          *
7365          * Before starting a resync we must have set curr_resync to
7366          * 2, and then checked that every "conflicting" array has curr_resync
7367          * less than ours.  When we find one that is the same or higher
7368          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7369          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7370          * This will mean we have to start checking from the beginning again.
7371          *
7372          */
7373
7374         do {
7375                 mddev->curr_resync = 2;
7376
7377         try_again:
7378                 if (kthread_should_stop())
7379                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7380
7381                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7382                         goto skip;
7383                 for_each_mddev(mddev2, tmp) {
7384                         if (mddev2 == mddev)
7385                                 continue;
7386                         if (!mddev->parallel_resync
7387                         &&  mddev2->curr_resync
7388                         &&  match_mddev_units(mddev, mddev2)) {
7389                                 DEFINE_WAIT(wq);
7390                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7391                                         /* arbitrarily yield */
7392                                         mddev->curr_resync = 1;
7393                                         wake_up(&resync_wait);
7394                                 }
7395                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7396                                         /* no need to wait here, we can wait the next
7397                                          * time 'round when curr_resync == 2
7398                                          */
7399                                         continue;
7400                                 /* We need to wait 'interruptible' so as not to
7401                                  * contribute to the load average, and not to
7402                                  * be caught by 'softlockup'
7403                                  */
7404                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7405                                 if (!kthread_should_stop() &&
7406                                     mddev2->curr_resync >= mddev->curr_resync) {
7407                                         printk(KERN_INFO "md: delaying %s of %s"
7408                                                " until %s has finished (they"
7409                                                " share one or more physical units)\n",
7410                                                desc, mdname(mddev), mdname(mddev2));
7411                                         mddev_put(mddev2);
7412                                         if (signal_pending(current))
7413                                                 flush_signals(current);
7414                                         schedule();
7415                                         finish_wait(&resync_wait, &wq);
7416                                         goto try_again;
7417                                 }
7418                                 finish_wait(&resync_wait, &wq);
7419                         }
7420                 }
7421         } while (mddev->curr_resync < 2);
7422
7423         j = 0;
7424         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7425                 /* resync follows the size requested by the personality,
7426                  * which defaults to physical size, but can be virtual size
7427                  */
7428                 max_sectors = mddev->resync_max_sectors;
7429                 atomic64_set(&mddev->resync_mismatches, 0);
7430                 /* we don't use the checkpoint if there's a bitmap */
7431                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7432                         j = mddev->resync_min;
7433                 else if (!mddev->bitmap)
7434                         j = mddev->recovery_cp;
7435
7436         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7437                 max_sectors = mddev->resync_max_sectors;
7438         else {
7439                 /* recovery follows the physical size of devices */
7440                 max_sectors = mddev->dev_sectors;
7441                 j = MaxSector;
7442                 rcu_read_lock();
7443                 rdev_for_each_rcu(rdev, mddev)
7444                         if (rdev->raid_disk >= 0 &&
7445                             !test_bit(Faulty, &rdev->flags) &&
7446                             !test_bit(In_sync, &rdev->flags) &&
7447                             rdev->recovery_offset < j)
7448                                 j = rdev->recovery_offset;
7449                 rcu_read_unlock();
7450
7451                 /* If there is a bitmap, we need to make sure all
7452                  * writes that started before we added a spare
7453                  * complete before we start doing a recovery.
7454                  * Otherwise the write might complete and (via
7455                  * bitmap_endwrite) set a bit in the bitmap after the
7456                  * recovery has checked that bit and skipped that
7457                  * region.
7458                  */
7459                 if (mddev->bitmap) {
7460                         mddev->pers->quiesce(mddev, 1);
7461                         mddev->pers->quiesce(mddev, 0);
7462                 }
7463         }
7464
7465         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7466         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7467                 " %d KB/sec/disk.\n", speed_min(mddev));
7468         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7469                "(but not more than %d KB/sec) for %s.\n",
7470                speed_max(mddev), desc);
7471
7472         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7473
7474         io_sectors = 0;
7475         for (m = 0; m < SYNC_MARKS; m++) {
7476                 mark[m] = jiffies;
7477                 mark_cnt[m] = io_sectors;
7478         }
7479         last_mark = 0;
7480         mddev->resync_mark = mark[last_mark];
7481         mddev->resync_mark_cnt = mark_cnt[last_mark];
7482
7483         /*
7484          * Tune reconstruction:
7485          */
7486         window = 32*(PAGE_SIZE/512);
7487         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7488                 window/2, (unsigned long long)max_sectors/2);
7489
7490         atomic_set(&mddev->recovery_active, 0);
7491         last_check = 0;
7492
7493         if (j>2) {
7494                 printk(KERN_INFO 
7495                        "md: resuming %s of %s from checkpoint.\n",
7496                        desc, mdname(mddev));
7497                 mddev->curr_resync = j;
7498         } else
7499                 mddev->curr_resync = 3; /* no longer delayed */
7500         mddev->curr_resync_completed = j;
7501         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7502         md_new_event(mddev);
7503         update_time = jiffies;
7504
7505         blk_start_plug(&plug);
7506         while (j < max_sectors) {
7507                 sector_t sectors;
7508
7509                 skipped = 0;
7510
7511                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7512                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7513                       (mddev->curr_resync - mddev->curr_resync_completed)
7514                       > (max_sectors >> 4)) ||
7515                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7516                      (j - mddev->curr_resync_completed)*2
7517                      >= mddev->resync_max - mddev->curr_resync_completed
7518                             )) {
7519                         /* time to update curr_resync_completed */
7520                         wait_event(mddev->recovery_wait,
7521                                    atomic_read(&mddev->recovery_active) == 0);
7522                         mddev->curr_resync_completed = j;
7523                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7524                             j > mddev->recovery_cp)
7525                                 mddev->recovery_cp = j;
7526                         update_time = jiffies;
7527                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7528                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7529                 }
7530
7531                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7532                         /* As this condition is controlled by user-space,
7533                          * we can block indefinitely, so use '_interruptible'
7534                          * to avoid triggering warnings.
7535                          */
7536                         flush_signals(current); /* just in case */
7537                         wait_event_interruptible(mddev->recovery_wait,
7538                                                  mddev->resync_max > j
7539                                                  || kthread_should_stop());
7540                 }
7541
7542                 if (kthread_should_stop())
7543                         goto interrupted;
7544
7545                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7546                                                   currspeed < speed_min(mddev));
7547                 if (sectors == 0) {
7548                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7549                         goto out;
7550                 }
7551
7552                 if (!skipped) { /* actual IO requested */
7553                         io_sectors += sectors;
7554                         atomic_add(sectors, &mddev->recovery_active);
7555                 }
7556
7557                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7558                         break;
7559
7560                 j += sectors;
7561                 if (j > 2)
7562                         mddev->curr_resync = j;
7563                 mddev->curr_mark_cnt = io_sectors;
7564                 if (last_check == 0)
7565                         /* this is the earliest that rebuild will be
7566                          * visible in /proc/mdstat
7567                          */
7568                         md_new_event(mddev);
7569
7570                 if (last_check + window > io_sectors || j == max_sectors)
7571                         continue;
7572
7573                 last_check = io_sectors;
7574         repeat:
7575                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7576                         /* step marks */
7577                         int next = (last_mark+1) % SYNC_MARKS;
7578
7579                         mddev->resync_mark = mark[next];
7580                         mddev->resync_mark_cnt = mark_cnt[next];
7581                         mark[next] = jiffies;
7582                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7583                         last_mark = next;
7584                 }
7585
7586
7587                 if (kthread_should_stop())
7588                         goto interrupted;
7589
7590
7591                 /*
7592                  * this loop exits only if either when we are slower than
7593                  * the 'hard' speed limit, or the system was IO-idle for
7594                  * a jiffy.
7595                  * the system might be non-idle CPU-wise, but we only care
7596                  * about not overloading the IO subsystem. (things like an
7597                  * e2fsck being done on the RAID array should execute fast)
7598                  */
7599                 cond_resched();
7600
7601                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7602                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7603
7604                 if (currspeed > speed_min(mddev)) {
7605                         if ((currspeed > speed_max(mddev)) ||
7606                                         !is_mddev_idle(mddev, 0)) {
7607                                 msleep(500);
7608                                 goto repeat;
7609                         }
7610                 }
7611         }
7612         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7613         /*
7614          * this also signals 'finished resyncing' to md_stop
7615          */
7616  out:
7617         blk_finish_plug(&plug);
7618         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7619
7620         /* tell personality that we are finished */
7621         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7622
7623         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7624             mddev->curr_resync > 2) {
7625                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7626                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7627                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7628                                         printk(KERN_INFO
7629                                                "md: checkpointing %s of %s.\n",
7630                                                desc, mdname(mddev));
7631                                         if (test_bit(MD_RECOVERY_ERROR,
7632                                                 &mddev->recovery))
7633                                                 mddev->recovery_cp =
7634                                                         mddev->curr_resync_completed;
7635                                         else
7636                                                 mddev->recovery_cp =
7637                                                         mddev->curr_resync;
7638                                 }
7639                         } else
7640                                 mddev->recovery_cp = MaxSector;
7641                 } else {
7642                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7643                                 mddev->curr_resync = MaxSector;
7644                         rcu_read_lock();
7645                         rdev_for_each_rcu(rdev, mddev)
7646                                 if (rdev->raid_disk >= 0 &&
7647                                     mddev->delta_disks >= 0 &&
7648                                     !test_bit(Faulty, &rdev->flags) &&
7649                                     !test_bit(In_sync, &rdev->flags) &&
7650                                     rdev->recovery_offset < mddev->curr_resync)
7651                                         rdev->recovery_offset = mddev->curr_resync;
7652                         rcu_read_unlock();
7653                 }
7654         }
7655  skip:
7656         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7657
7658         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7659                 /* We completed so min/max setting can be forgotten if used. */
7660                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7661                         mddev->resync_min = 0;
7662                 mddev->resync_max = MaxSector;
7663         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7664                 mddev->resync_min = mddev->curr_resync_completed;
7665         mddev->curr_resync = 0;
7666         wake_up(&resync_wait);
7667         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7668         md_wakeup_thread(mddev->thread);
7669         return;
7670
7671  interrupted:
7672         /*
7673          * got a signal, exit.
7674          */
7675         printk(KERN_INFO
7676                "md: md_do_sync() got signal ... exiting\n");
7677         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7678         goto out;
7679
7680 }
7681 EXPORT_SYMBOL_GPL(md_do_sync);
7682
7683 static int remove_and_add_spares(struct mddev *mddev,
7684                                  struct md_rdev *this)
7685 {
7686         struct md_rdev *rdev;
7687         int spares = 0;
7688         int removed = 0;
7689
7690         rdev_for_each(rdev, mddev)
7691                 if ((this == NULL || rdev == this) &&
7692                     rdev->raid_disk >= 0 &&
7693                     !test_bit(Blocked, &rdev->flags) &&
7694                     (test_bit(Faulty, &rdev->flags) ||
7695                      ! test_bit(In_sync, &rdev->flags)) &&
7696                     atomic_read(&rdev->nr_pending)==0) {
7697                         if (mddev->pers->hot_remove_disk(
7698                                     mddev, rdev) == 0) {
7699                                 sysfs_unlink_rdev(mddev, rdev);
7700                                 rdev->raid_disk = -1;
7701                                 removed++;
7702                         }
7703                 }
7704         if (removed && mddev->kobj.sd)
7705                 sysfs_notify(&mddev->kobj, NULL, "degraded");
7706
7707         if (this)
7708                 goto no_add;
7709
7710         rdev_for_each(rdev, mddev) {
7711                 if (rdev->raid_disk >= 0 &&
7712                     !test_bit(In_sync, &rdev->flags) &&
7713                     !test_bit(Faulty, &rdev->flags))
7714                         spares++;
7715                 if (rdev->raid_disk >= 0)
7716                         continue;
7717                 if (test_bit(Faulty, &rdev->flags))
7718                         continue;
7719                 if (mddev->ro &&
7720                     ! (rdev->saved_raid_disk >= 0 &&
7721                        !test_bit(Bitmap_sync, &rdev->flags)))
7722                         continue;
7723
7724                 rdev->recovery_offset = 0;
7725                 if (mddev->pers->
7726                     hot_add_disk(mddev, rdev) == 0) {
7727                         if (sysfs_link_rdev(mddev, rdev))
7728                                 /* failure here is OK */;
7729                         spares++;
7730                         md_new_event(mddev);
7731                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7732                 }
7733         }
7734 no_add:
7735         if (removed)
7736                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7737         return spares;
7738 }
7739
7740 /*
7741  * This routine is regularly called by all per-raid-array threads to
7742  * deal with generic issues like resync and super-block update.
7743  * Raid personalities that don't have a thread (linear/raid0) do not
7744  * need this as they never do any recovery or update the superblock.
7745  *
7746  * It does not do any resync itself, but rather "forks" off other threads
7747  * to do that as needed.
7748  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7749  * "->recovery" and create a thread at ->sync_thread.
7750  * When the thread finishes it sets MD_RECOVERY_DONE
7751  * and wakeups up this thread which will reap the thread and finish up.
7752  * This thread also removes any faulty devices (with nr_pending == 0).
7753  *
7754  * The overall approach is:
7755  *  1/ if the superblock needs updating, update it.
7756  *  2/ If a recovery thread is running, don't do anything else.
7757  *  3/ If recovery has finished, clean up, possibly marking spares active.
7758  *  4/ If there are any faulty devices, remove them.
7759  *  5/ If array is degraded, try to add spares devices
7760  *  6/ If array has spares or is not in-sync, start a resync thread.
7761  */
7762 void md_check_recovery(struct mddev *mddev)
7763 {
7764         if (mddev->suspended)
7765                 return;
7766
7767         if (mddev->bitmap)
7768                 bitmap_daemon_work(mddev);
7769
7770         if (signal_pending(current)) {
7771                 if (mddev->pers->sync_request && !mddev->external) {
7772                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7773                                mdname(mddev));
7774                         mddev->safemode = 2;
7775                 }
7776                 flush_signals(current);
7777         }
7778
7779         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7780                 return;
7781         if ( ! (
7782                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7783                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7784                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7785                 (mddev->external == 0 && mddev->safemode == 1) ||
7786                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7787                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7788                 ))
7789                 return;
7790
7791         if (mddev_trylock(mddev)) {
7792                 int spares = 0;
7793
7794                 if (mddev->ro) {
7795                         /* On a read-only array we can:
7796                          * - remove failed devices
7797                          * - add already-in_sync devices if the array itself
7798                          *   is in-sync.
7799                          * As we only add devices that are already in-sync,
7800                          * we can activate the spares immediately.
7801                          */
7802                         remove_and_add_spares(mddev, NULL);
7803                         /* There is no thread, but we need to call
7804                          * ->spare_active and clear saved_raid_disk
7805                          */
7806                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7807                         md_reap_sync_thread(mddev);
7808                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7809                         goto unlock;
7810                 }
7811
7812                 if (!mddev->external) {
7813                         int did_change = 0;
7814                         spin_lock_irq(&mddev->write_lock);
7815                         if (mddev->safemode &&
7816                             !atomic_read(&mddev->writes_pending) &&
7817                             !mddev->in_sync &&
7818                             mddev->recovery_cp == MaxSector) {
7819                                 mddev->in_sync = 1;
7820                                 did_change = 1;
7821                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7822                         }
7823                         if (mddev->safemode == 1)
7824                                 mddev->safemode = 0;
7825                         spin_unlock_irq(&mddev->write_lock);
7826                         if (did_change)
7827                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7828                 }
7829
7830                 if (mddev->flags)
7831                         md_update_sb(mddev, 0);
7832
7833                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7834                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7835                         /* resync/recovery still happening */
7836                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7837                         goto unlock;
7838                 }
7839                 if (mddev->sync_thread) {
7840                         md_reap_sync_thread(mddev);
7841                         goto unlock;
7842                 }
7843                 /* Set RUNNING before clearing NEEDED to avoid
7844                  * any transients in the value of "sync_action".
7845                  */
7846                 mddev->curr_resync_completed = 0;
7847                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7848                 /* Clear some bits that don't mean anything, but
7849                  * might be left set
7850                  */
7851                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7852                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7853
7854                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7855                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7856                         goto unlock;
7857                 /* no recovery is running.
7858                  * remove any failed drives, then
7859                  * add spares if possible.
7860                  * Spares are also removed and re-added, to allow
7861                  * the personality to fail the re-add.
7862                  */
7863
7864                 if (mddev->reshape_position != MaxSector) {
7865                         if (mddev->pers->check_reshape == NULL ||
7866                             mddev->pers->check_reshape(mddev) != 0)
7867                                 /* Cannot proceed */
7868                                 goto unlock;
7869                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7870                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7871                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7872                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7873                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7874                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7875                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7876                 } else if (mddev->recovery_cp < MaxSector) {
7877                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7878                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7879                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7880                         /* nothing to be done ... */
7881                         goto unlock;
7882
7883                 if (mddev->pers->sync_request) {
7884                         if (spares) {
7885                                 /* We are adding a device or devices to an array
7886                                  * which has the bitmap stored on all devices.
7887                                  * So make sure all bitmap pages get written
7888                                  */
7889                                 bitmap_write_all(mddev->bitmap);
7890                         }
7891                         mddev->sync_thread = md_register_thread(md_do_sync,
7892                                                                 mddev,
7893                                                                 "resync");
7894                         if (!mddev->sync_thread) {
7895                                 printk(KERN_ERR "%s: could not start resync"
7896                                         " thread...\n", 
7897                                         mdname(mddev));
7898                                 /* leave the spares where they are, it shouldn't hurt */
7899                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7900                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7901                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7902                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7903                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7904                         } else
7905                                 md_wakeup_thread(mddev->sync_thread);
7906                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7907                         md_new_event(mddev);
7908                 }
7909         unlock:
7910                 if (!mddev->sync_thread) {
7911                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7912                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7913                                                &mddev->recovery))
7914                                 if (mddev->sysfs_action)
7915                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7916                 }
7917                 mddev_unlock(mddev);
7918         }
7919 }
7920
7921 void md_reap_sync_thread(struct mddev *mddev)
7922 {
7923         struct md_rdev *rdev;
7924
7925         /* resync has finished, collect result */
7926         md_unregister_thread(&mddev->sync_thread);
7927         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7928             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7929                 /* success...*/
7930                 /* activate any spares */
7931                 if (mddev->pers->spare_active(mddev)) {
7932                         sysfs_notify(&mddev->kobj, NULL,
7933                                      "degraded");
7934                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7935                 }
7936         }
7937         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7938             mddev->pers->finish_reshape)
7939                 mddev->pers->finish_reshape(mddev);
7940
7941         /* If array is no-longer degraded, then any saved_raid_disk
7942          * information must be scrapped.  Also if any device is now
7943          * In_sync we must scrape the saved_raid_disk for that device
7944          * do the superblock for an incrementally recovered device
7945          * written out.
7946          */
7947         rdev_for_each(rdev, mddev)
7948                 if (!mddev->degraded ||
7949                     test_bit(In_sync, &rdev->flags))
7950                         rdev->saved_raid_disk = -1;
7951
7952         md_update_sb(mddev, 1);
7953         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7954         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7955         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7956         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7957         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7958         /* flag recovery needed just to double check */
7959         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7960         sysfs_notify_dirent_safe(mddev->sysfs_action);
7961         md_new_event(mddev);
7962         if (mddev->event_work.func)
7963                 queue_work(md_misc_wq, &mddev->event_work);
7964 }
7965
7966 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7967 {
7968         sysfs_notify_dirent_safe(rdev->sysfs_state);
7969         wait_event_timeout(rdev->blocked_wait,
7970                            !test_bit(Blocked, &rdev->flags) &&
7971                            !test_bit(BlockedBadBlocks, &rdev->flags),
7972                            msecs_to_jiffies(5000));
7973         rdev_dec_pending(rdev, mddev);
7974 }
7975 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7976
7977 void md_finish_reshape(struct mddev *mddev)
7978 {
7979         /* called be personality module when reshape completes. */
7980         struct md_rdev *rdev;
7981
7982         rdev_for_each(rdev, mddev) {
7983                 if (rdev->data_offset > rdev->new_data_offset)
7984                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7985                 else
7986                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7987                 rdev->data_offset = rdev->new_data_offset;
7988         }
7989 }
7990 EXPORT_SYMBOL(md_finish_reshape);
7991
7992 /* Bad block management.
7993  * We can record which blocks on each device are 'bad' and so just
7994  * fail those blocks, or that stripe, rather than the whole device.
7995  * Entries in the bad-block table are 64bits wide.  This comprises:
7996  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7997  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7998  *  A 'shift' can be set so that larger blocks are tracked and
7999  *  consequently larger devices can be covered.
8000  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8001  *
8002  * Locking of the bad-block table uses a seqlock so md_is_badblock
8003  * might need to retry if it is very unlucky.
8004  * We will sometimes want to check for bad blocks in a bi_end_io function,
8005  * so we use the write_seqlock_irq variant.
8006  *
8007  * When looking for a bad block we specify a range and want to
8008  * know if any block in the range is bad.  So we binary-search
8009  * to the last range that starts at-or-before the given endpoint,
8010  * (or "before the sector after the target range")
8011  * then see if it ends after the given start.
8012  * We return
8013  *  0 if there are no known bad blocks in the range
8014  *  1 if there are known bad block which are all acknowledged
8015  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8016  * plus the start/length of the first bad section we overlap.
8017  */
8018 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8019                    sector_t *first_bad, int *bad_sectors)
8020 {
8021         int hi;
8022         int lo;
8023         u64 *p = bb->page;
8024         int rv;
8025         sector_t target = s + sectors;
8026         unsigned seq;
8027
8028         if (bb->shift > 0) {
8029                 /* round the start down, and the end up */
8030                 s >>= bb->shift;
8031                 target += (1<<bb->shift) - 1;
8032                 target >>= bb->shift;
8033                 sectors = target - s;
8034         }
8035         /* 'target' is now the first block after the bad range */
8036
8037 retry:
8038         seq = read_seqbegin(&bb->lock);
8039         lo = 0;
8040         rv = 0;
8041         hi = bb->count;
8042
8043         /* Binary search between lo and hi for 'target'
8044          * i.e. for the last range that starts before 'target'
8045          */
8046         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8047          * are known not to be the last range before target.
8048          * VARIANT: hi-lo is the number of possible
8049          * ranges, and decreases until it reaches 1
8050          */
8051         while (hi - lo > 1) {
8052                 int mid = (lo + hi) / 2;
8053                 sector_t a = BB_OFFSET(p[mid]);
8054                 if (a < target)
8055                         /* This could still be the one, earlier ranges
8056                          * could not. */
8057                         lo = mid;
8058                 else
8059                         /* This and later ranges are definitely out. */
8060                         hi = mid;
8061         }
8062         /* 'lo' might be the last that started before target, but 'hi' isn't */
8063         if (hi > lo) {
8064                 /* need to check all range that end after 's' to see if
8065                  * any are unacknowledged.
8066                  */
8067                 while (lo >= 0 &&
8068                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8069                         if (BB_OFFSET(p[lo]) < target) {
8070                                 /* starts before the end, and finishes after
8071                                  * the start, so they must overlap
8072                                  */
8073                                 if (rv != -1 && BB_ACK(p[lo]))
8074                                         rv = 1;
8075                                 else
8076                                         rv = -1;
8077                                 *first_bad = BB_OFFSET(p[lo]);
8078                                 *bad_sectors = BB_LEN(p[lo]);
8079                         }
8080                         lo--;
8081                 }
8082         }
8083
8084         if (read_seqretry(&bb->lock, seq))
8085                 goto retry;
8086
8087         return rv;
8088 }
8089 EXPORT_SYMBOL_GPL(md_is_badblock);
8090
8091 /*
8092  * Add a range of bad blocks to the table.
8093  * This might extend the table, or might contract it
8094  * if two adjacent ranges can be merged.
8095  * We binary-search to find the 'insertion' point, then
8096  * decide how best to handle it.
8097  */
8098 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8099                             int acknowledged)
8100 {
8101         u64 *p;
8102         int lo, hi;
8103         int rv = 1;
8104         unsigned long flags;
8105
8106         if (bb->shift < 0)
8107                 /* badblocks are disabled */
8108                 return 0;
8109
8110         if (bb->shift) {
8111                 /* round the start down, and the end up */
8112                 sector_t next = s + sectors;
8113                 s >>= bb->shift;
8114                 next += (1<<bb->shift) - 1;
8115                 next >>= bb->shift;
8116                 sectors = next - s;
8117         }
8118
8119         write_seqlock_irqsave(&bb->lock, flags);
8120
8121         p = bb->page;
8122         lo = 0;
8123         hi = bb->count;
8124         /* Find the last range that starts at-or-before 's' */
8125         while (hi - lo > 1) {
8126                 int mid = (lo + hi) / 2;
8127                 sector_t a = BB_OFFSET(p[mid]);
8128                 if (a <= s)
8129                         lo = mid;
8130                 else
8131                         hi = mid;
8132         }
8133         if (hi > lo && BB_OFFSET(p[lo]) > s)
8134                 hi = lo;
8135
8136         if (hi > lo) {
8137                 /* we found a range that might merge with the start
8138                  * of our new range
8139                  */
8140                 sector_t a = BB_OFFSET(p[lo]);
8141                 sector_t e = a + BB_LEN(p[lo]);
8142                 int ack = BB_ACK(p[lo]);
8143                 if (e >= s) {
8144                         /* Yes, we can merge with a previous range */
8145                         if (s == a && s + sectors >= e)
8146                                 /* new range covers old */
8147                                 ack = acknowledged;
8148                         else
8149                                 ack = ack && acknowledged;
8150
8151                         if (e < s + sectors)
8152                                 e = s + sectors;
8153                         if (e - a <= BB_MAX_LEN) {
8154                                 p[lo] = BB_MAKE(a, e-a, ack);
8155                                 s = e;
8156                         } else {
8157                                 /* does not all fit in one range,
8158                                  * make p[lo] maximal
8159                                  */
8160                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8161                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8162                                 s = a + BB_MAX_LEN;
8163                         }
8164                         sectors = e - s;
8165                 }
8166         }
8167         if (sectors && hi < bb->count) {
8168                 /* 'hi' points to the first range that starts after 's'.
8169                  * Maybe we can merge with the start of that range */
8170                 sector_t a = BB_OFFSET(p[hi]);
8171                 sector_t e = a + BB_LEN(p[hi]);
8172                 int ack = BB_ACK(p[hi]);
8173                 if (a <= s + sectors) {
8174                         /* merging is possible */
8175                         if (e <= s + sectors) {
8176                                 /* full overlap */
8177                                 e = s + sectors;
8178                                 ack = acknowledged;
8179                         } else
8180                                 ack = ack && acknowledged;
8181
8182                         a = s;
8183                         if (e - a <= BB_MAX_LEN) {
8184                                 p[hi] = BB_MAKE(a, e-a, ack);
8185                                 s = e;
8186                         } else {
8187                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8188                                 s = a + BB_MAX_LEN;
8189                         }
8190                         sectors = e - s;
8191                         lo = hi;
8192                         hi++;
8193                 }
8194         }
8195         if (sectors == 0 && hi < bb->count) {
8196                 /* we might be able to combine lo and hi */
8197                 /* Note: 's' is at the end of 'lo' */
8198                 sector_t a = BB_OFFSET(p[hi]);
8199                 int lolen = BB_LEN(p[lo]);
8200                 int hilen = BB_LEN(p[hi]);
8201                 int newlen = lolen + hilen - (s - a);
8202                 if (s >= a && newlen < BB_MAX_LEN) {
8203                         /* yes, we can combine them */
8204                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8205                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8206                         memmove(p + hi, p + hi + 1,
8207                                 (bb->count - hi - 1) * 8);
8208                         bb->count--;
8209                 }
8210         }
8211         while (sectors) {
8212                 /* didn't merge (it all).
8213                  * Need to add a range just before 'hi' */
8214                 if (bb->count >= MD_MAX_BADBLOCKS) {
8215                         /* No room for more */
8216                         rv = 0;
8217                         break;
8218                 } else {
8219                         int this_sectors = sectors;
8220                         memmove(p + hi + 1, p + hi,
8221                                 (bb->count - hi) * 8);
8222                         bb->count++;
8223
8224                         if (this_sectors > BB_MAX_LEN)
8225                                 this_sectors = BB_MAX_LEN;
8226                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8227                         sectors -= this_sectors;
8228                         s += this_sectors;
8229                 }
8230         }
8231
8232         bb->changed = 1;
8233         if (!acknowledged)
8234                 bb->unacked_exist = 1;
8235         write_sequnlock_irqrestore(&bb->lock, flags);
8236
8237         return rv;
8238 }
8239
8240 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8241                        int is_new)
8242 {
8243         int rv;
8244         if (is_new)
8245                 s += rdev->new_data_offset;
8246         else
8247                 s += rdev->data_offset;
8248         rv = md_set_badblocks(&rdev->badblocks,
8249                               s, sectors, 0);
8250         if (rv) {
8251                 /* Make sure they get written out promptly */
8252                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8253                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8254                 md_wakeup_thread(rdev->mddev->thread);
8255         }
8256         return rv;
8257 }
8258 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8259
8260 /*
8261  * Remove a range of bad blocks from the table.
8262  * This may involve extending the table if we spilt a region,
8263  * but it must not fail.  So if the table becomes full, we just
8264  * drop the remove request.
8265  */
8266 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8267 {
8268         u64 *p;
8269         int lo, hi;
8270         sector_t target = s + sectors;
8271         int rv = 0;
8272
8273         if (bb->shift > 0) {
8274                 /* When clearing we round the start up and the end down.
8275                  * This should not matter as the shift should align with
8276                  * the block size and no rounding should ever be needed.
8277                  * However it is better the think a block is bad when it
8278                  * isn't than to think a block is not bad when it is.
8279                  */
8280                 s += (1<<bb->shift) - 1;
8281                 s >>= bb->shift;
8282                 target >>= bb->shift;
8283                 sectors = target - s;
8284         }
8285
8286         write_seqlock_irq(&bb->lock);
8287
8288         p = bb->page;
8289         lo = 0;
8290         hi = bb->count;
8291         /* Find the last range that starts before 'target' */
8292         while (hi - lo > 1) {
8293                 int mid = (lo + hi) / 2;
8294                 sector_t a = BB_OFFSET(p[mid]);
8295                 if (a < target)
8296                         lo = mid;
8297                 else
8298                         hi = mid;
8299         }
8300         if (hi > lo) {
8301                 /* p[lo] is the last range that could overlap the
8302                  * current range.  Earlier ranges could also overlap,
8303                  * but only this one can overlap the end of the range.
8304                  */
8305                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8306                         /* Partial overlap, leave the tail of this range */
8307                         int ack = BB_ACK(p[lo]);
8308                         sector_t a = BB_OFFSET(p[lo]);
8309                         sector_t end = a + BB_LEN(p[lo]);
8310
8311                         if (a < s) {
8312                                 /* we need to split this range */
8313                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8314                                         rv = 0;
8315                                         goto out;
8316                                 }
8317                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8318                                 bb->count++;
8319                                 p[lo] = BB_MAKE(a, s-a, ack);
8320                                 lo++;
8321                         }
8322                         p[lo] = BB_MAKE(target, end - target, ack);
8323                         /* there is no longer an overlap */
8324                         hi = lo;
8325                         lo--;
8326                 }
8327                 while (lo >= 0 &&
8328                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8329                         /* This range does overlap */
8330                         if (BB_OFFSET(p[lo]) < s) {
8331                                 /* Keep the early parts of this range. */
8332                                 int ack = BB_ACK(p[lo]);
8333                                 sector_t start = BB_OFFSET(p[lo]);
8334                                 p[lo] = BB_MAKE(start, s - start, ack);
8335                                 /* now low doesn't overlap, so.. */
8336                                 break;
8337                         }
8338                         lo--;
8339                 }
8340                 /* 'lo' is strictly before, 'hi' is strictly after,
8341                  * anything between needs to be discarded
8342                  */
8343                 if (hi - lo > 1) {
8344                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8345                         bb->count -= (hi - lo - 1);
8346                 }
8347         }
8348
8349         bb->changed = 1;
8350 out:
8351         write_sequnlock_irq(&bb->lock);
8352         return rv;
8353 }
8354
8355 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8356                          int is_new)
8357 {
8358         if (is_new)
8359                 s += rdev->new_data_offset;
8360         else
8361                 s += rdev->data_offset;
8362         return md_clear_badblocks(&rdev->badblocks,
8363                                   s, sectors);
8364 }
8365 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8366
8367 /*
8368  * Acknowledge all bad blocks in a list.
8369  * This only succeeds if ->changed is clear.  It is used by
8370  * in-kernel metadata updates
8371  */
8372 void md_ack_all_badblocks(struct badblocks *bb)
8373 {
8374         if (bb->page == NULL || bb->changed)
8375                 /* no point even trying */
8376                 return;
8377         write_seqlock_irq(&bb->lock);
8378
8379         if (bb->changed == 0 && bb->unacked_exist) {
8380                 u64 *p = bb->page;
8381                 int i;
8382                 for (i = 0; i < bb->count ; i++) {
8383                         if (!BB_ACK(p[i])) {
8384                                 sector_t start = BB_OFFSET(p[i]);
8385                                 int len = BB_LEN(p[i]);
8386                                 p[i] = BB_MAKE(start, len, 1);
8387                         }
8388                 }
8389                 bb->unacked_exist = 0;
8390         }
8391         write_sequnlock_irq(&bb->lock);
8392 }
8393 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8394
8395 /* sysfs access to bad-blocks list.
8396  * We present two files.
8397  * 'bad-blocks' lists sector numbers and lengths of ranges that
8398  *    are recorded as bad.  The list is truncated to fit within
8399  *    the one-page limit of sysfs.
8400  *    Writing "sector length" to this file adds an acknowledged
8401  *    bad block list.
8402  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8403  *    been acknowledged.  Writing to this file adds bad blocks
8404  *    without acknowledging them.  This is largely for testing.
8405  */
8406
8407 static ssize_t
8408 badblocks_show(struct badblocks *bb, char *page, int unack)
8409 {
8410         size_t len;
8411         int i;
8412         u64 *p = bb->page;
8413         unsigned seq;
8414
8415         if (bb->shift < 0)
8416                 return 0;
8417
8418 retry:
8419         seq = read_seqbegin(&bb->lock);
8420
8421         len = 0;
8422         i = 0;
8423
8424         while (len < PAGE_SIZE && i < bb->count) {
8425                 sector_t s = BB_OFFSET(p[i]);
8426                 unsigned int length = BB_LEN(p[i]);
8427                 int ack = BB_ACK(p[i]);
8428                 i++;
8429
8430                 if (unack && ack)
8431                         continue;
8432
8433                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8434                                 (unsigned long long)s << bb->shift,
8435                                 length << bb->shift);
8436         }
8437         if (unack && len == 0)
8438                 bb->unacked_exist = 0;
8439
8440         if (read_seqretry(&bb->lock, seq))
8441                 goto retry;
8442
8443         return len;
8444 }
8445
8446 #define DO_DEBUG 1
8447
8448 static ssize_t
8449 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8450 {
8451         unsigned long long sector;
8452         int length;
8453         char newline;
8454 #ifdef DO_DEBUG
8455         /* Allow clearing via sysfs *only* for testing/debugging.
8456          * Normally only a successful write may clear a badblock
8457          */
8458         int clear = 0;
8459         if (page[0] == '-') {
8460                 clear = 1;
8461                 page++;
8462         }
8463 #endif /* DO_DEBUG */
8464
8465         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8466         case 3:
8467                 if (newline != '\n')
8468                         return -EINVAL;
8469         case 2:
8470                 if (length <= 0)
8471                         return -EINVAL;
8472                 break;
8473         default:
8474                 return -EINVAL;
8475         }
8476
8477 #ifdef DO_DEBUG
8478         if (clear) {
8479                 md_clear_badblocks(bb, sector, length);
8480                 return len;
8481         }
8482 #endif /* DO_DEBUG */
8483         if (md_set_badblocks(bb, sector, length, !unack))
8484                 return len;
8485         else
8486                 return -ENOSPC;
8487 }
8488
8489 static int md_notify_reboot(struct notifier_block *this,
8490                             unsigned long code, void *x)
8491 {
8492         struct list_head *tmp;
8493         struct mddev *mddev;
8494         int need_delay = 0;
8495
8496         for_each_mddev(mddev, tmp) {
8497                 if (mddev_trylock(mddev)) {
8498                         if (mddev->pers)
8499                                 __md_stop_writes(mddev);
8500                         if (mddev->persistent)
8501                                 mddev->safemode = 2;
8502                         mddev_unlock(mddev);
8503                 }
8504                 need_delay = 1;
8505         }
8506         /*
8507          * certain more exotic SCSI devices are known to be
8508          * volatile wrt too early system reboots. While the
8509          * right place to handle this issue is the given
8510          * driver, we do want to have a safe RAID driver ...
8511          */
8512         if (need_delay)
8513                 mdelay(1000*1);
8514
8515         return NOTIFY_DONE;
8516 }
8517
8518 static struct notifier_block md_notifier = {
8519         .notifier_call  = md_notify_reboot,
8520         .next           = NULL,
8521         .priority       = INT_MAX, /* before any real devices */
8522 };
8523
8524 static void md_geninit(void)
8525 {
8526         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8527
8528         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8529 }
8530
8531 static int __init md_init(void)
8532 {
8533         int ret = -ENOMEM;
8534
8535         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8536         if (!md_wq)
8537                 goto err_wq;
8538
8539         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8540         if (!md_misc_wq)
8541                 goto err_misc_wq;
8542
8543         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8544                 goto err_md;
8545
8546         if ((ret = register_blkdev(0, "mdp")) < 0)
8547                 goto err_mdp;
8548         mdp_major = ret;
8549
8550         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8551                             md_probe, NULL, NULL);
8552         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8553                             md_probe, NULL, NULL);
8554
8555         register_reboot_notifier(&md_notifier);
8556         raid_table_header = register_sysctl_table(raid_root_table);
8557
8558         md_geninit();
8559         return 0;
8560
8561 err_mdp:
8562         unregister_blkdev(MD_MAJOR, "md");
8563 err_md:
8564         destroy_workqueue(md_misc_wq);
8565 err_misc_wq:
8566         destroy_workqueue(md_wq);
8567 err_wq:
8568         return ret;
8569 }
8570
8571 #ifndef MODULE
8572
8573 /*
8574  * Searches all registered partitions for autorun RAID arrays
8575  * at boot time.
8576  */
8577
8578 static LIST_HEAD(all_detected_devices);
8579 struct detected_devices_node {
8580         struct list_head list;
8581         dev_t dev;
8582 };
8583
8584 void md_autodetect_dev(dev_t dev)
8585 {
8586         struct detected_devices_node *node_detected_dev;
8587
8588         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8589         if (node_detected_dev) {
8590                 node_detected_dev->dev = dev;
8591                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8592         } else {
8593                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8594                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8595         }
8596 }
8597
8598
8599 static void autostart_arrays(int part)
8600 {
8601         struct md_rdev *rdev;
8602         struct detected_devices_node *node_detected_dev;
8603         dev_t dev;
8604         int i_scanned, i_passed;
8605
8606         i_scanned = 0;
8607         i_passed = 0;
8608
8609         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8610
8611         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8612                 i_scanned++;
8613                 node_detected_dev = list_entry(all_detected_devices.next,
8614                                         struct detected_devices_node, list);
8615                 list_del(&node_detected_dev->list);
8616                 dev = node_detected_dev->dev;
8617                 kfree(node_detected_dev);
8618                 rdev = md_import_device(dev,0, 90);
8619                 if (IS_ERR(rdev))
8620                         continue;
8621
8622                 if (test_bit(Faulty, &rdev->flags)) {
8623                         MD_BUG();
8624                         continue;
8625                 }
8626                 set_bit(AutoDetected, &rdev->flags);
8627                 list_add(&rdev->same_set, &pending_raid_disks);
8628                 i_passed++;
8629         }
8630
8631         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8632                                                 i_scanned, i_passed);
8633
8634         autorun_devices(part);
8635 }
8636
8637 #endif /* !MODULE */
8638
8639 static __exit void md_exit(void)
8640 {
8641         struct mddev *mddev;
8642         struct list_head *tmp;
8643
8644         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8645         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8646
8647         unregister_blkdev(MD_MAJOR,"md");
8648         unregister_blkdev(mdp_major, "mdp");
8649         unregister_reboot_notifier(&md_notifier);
8650         unregister_sysctl_table(raid_table_header);
8651         remove_proc_entry("mdstat", NULL);
8652         for_each_mddev(mddev, tmp) {
8653                 export_array(mddev);
8654                 mddev->hold_active = 0;
8655         }
8656         destroy_workqueue(md_misc_wq);
8657         destroy_workqueue(md_wq);
8658 }
8659
8660 subsys_initcall(md_init);
8661 module_exit(md_exit)
8662
8663 static int get_ro(char *buffer, struct kernel_param *kp)
8664 {
8665         return sprintf(buffer, "%d", start_readonly);
8666 }
8667 static int set_ro(const char *val, struct kernel_param *kp)
8668 {
8669         char *e;
8670         int num = simple_strtoul(val, &e, 10);
8671         if (*val && (*e == '\0' || *e == '\n')) {
8672                 start_readonly = num;
8673                 return 0;
8674         }
8675         return -EINVAL;
8676 }
8677
8678 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8679 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8680
8681 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8682
8683 EXPORT_SYMBOL(register_md_personality);
8684 EXPORT_SYMBOL(unregister_md_personality);
8685 EXPORT_SYMBOL(md_error);
8686 EXPORT_SYMBOL(md_done_sync);
8687 EXPORT_SYMBOL(md_write_start);
8688 EXPORT_SYMBOL(md_write_end);
8689 EXPORT_SYMBOL(md_register_thread);
8690 EXPORT_SYMBOL(md_unregister_thread);
8691 EXPORT_SYMBOL(md_wakeup_thread);
8692 EXPORT_SYMBOL(md_check_recovery);
8693 EXPORT_SYMBOL(md_reap_sync_thread);
8694 MODULE_LICENSE("GPL");
8695 MODULE_DESCRIPTION("MD RAID framework");
8696 MODULE_ALIAS("md");
8697 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);