Merge tag 'md-3.7' of git://neil.brown.name/md
[firefly-linux-kernel-4.4.55.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159                             struct mddev *mddev)
160 {
161         struct bio *b;
162
163         if (!mddev || !mddev->bio_set)
164                 return bio_alloc(gfp_mask, nr_iovecs);
165
166         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167         if (!b)
168                 return NULL;
169         return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174                             struct mddev *mddev)
175 {
176         if (!mddev || !mddev->bio_set)
177                 return bio_clone(bio, gfp_mask);
178
179         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182
183 void md_trim_bio(struct bio *bio, int offset, int size)
184 {
185         /* 'bio' is a cloned bio which we need to trim to match
186          * the given offset and size.
187          * This requires adjusting bi_sector, bi_size, and bi_io_vec
188          */
189         int i;
190         struct bio_vec *bvec;
191         int sofar = 0;
192
193         size <<= 9;
194         if (offset == 0 && size == bio->bi_size)
195                 return;
196
197         bio->bi_sector += offset;
198         bio->bi_size = size;
199         offset <<= 9;
200         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201
202         while (bio->bi_idx < bio->bi_vcnt &&
203                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
204                 /* remove this whole bio_vec */
205                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
206                 bio->bi_idx++;
207         }
208         if (bio->bi_idx < bio->bi_vcnt) {
209                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
210                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
211         }
212         /* avoid any complications with bi_idx being non-zero*/
213         if (bio->bi_idx) {
214                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
215                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
216                 bio->bi_vcnt -= bio->bi_idx;
217                 bio->bi_idx = 0;
218         }
219         /* Make sure vcnt and last bv are not too big */
220         bio_for_each_segment(bvec, bio, i) {
221                 if (sofar + bvec->bv_len > size)
222                         bvec->bv_len = size - sofar;
223                 if (bvec->bv_len == 0) {
224                         bio->bi_vcnt = i;
225                         break;
226                 }
227                 sofar += bvec->bv_len;
228         }
229 }
230 EXPORT_SYMBOL_GPL(md_trim_bio);
231
232 /*
233  * We have a system wide 'event count' that is incremented
234  * on any 'interesting' event, and readers of /proc/mdstat
235  * can use 'poll' or 'select' to find out when the event
236  * count increases.
237  *
238  * Events are:
239  *  start array, stop array, error, add device, remove device,
240  *  start build, activate spare
241  */
242 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
243 static atomic_t md_event_count;
244 void md_new_event(struct mddev *mddev)
245 {
246         atomic_inc(&md_event_count);
247         wake_up(&md_event_waiters);
248 }
249 EXPORT_SYMBOL_GPL(md_new_event);
250
251 /* Alternate version that can be called from interrupts
252  * when calling sysfs_notify isn't needed.
253  */
254 static void md_new_event_inintr(struct mddev *mddev)
255 {
256         atomic_inc(&md_event_count);
257         wake_up(&md_event_waiters);
258 }
259
260 /*
261  * Enables to iterate over all existing md arrays
262  * all_mddevs_lock protects this list.
263  */
264 static LIST_HEAD(all_mddevs);
265 static DEFINE_SPINLOCK(all_mddevs_lock);
266
267
268 /*
269  * iterates through all used mddevs in the system.
270  * We take care to grab the all_mddevs_lock whenever navigating
271  * the list, and to always hold a refcount when unlocked.
272  * Any code which breaks out of this loop while own
273  * a reference to the current mddev and must mddev_put it.
274  */
275 #define for_each_mddev(_mddev,_tmp)                                     \
276                                                                         \
277         for (({ spin_lock(&all_mddevs_lock);                            \
278                 _tmp = all_mddevs.next;                                 \
279                 _mddev = NULL;});                                       \
280              ({ if (_tmp != &all_mddevs)                                \
281                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
282                 spin_unlock(&all_mddevs_lock);                          \
283                 if (_mddev) mddev_put(_mddev);                          \
284                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
285                 _tmp != &all_mddevs;});                                 \
286              ({ spin_lock(&all_mddevs_lock);                            \
287                 _tmp = _tmp->next;})                                    \
288                 )
289
290
291 /* Rather than calling directly into the personality make_request function,
292  * IO requests come here first so that we can check if the device is
293  * being suspended pending a reconfiguration.
294  * We hold a refcount over the call to ->make_request.  By the time that
295  * call has finished, the bio has been linked into some internal structure
296  * and so is visible to ->quiesce(), so we don't need the refcount any more.
297  */
298 static void md_make_request(struct request_queue *q, struct bio *bio)
299 {
300         const int rw = bio_data_dir(bio);
301         struct mddev *mddev = q->queuedata;
302         int cpu;
303         unsigned int sectors;
304
305         if (mddev == NULL || mddev->pers == NULL
306             || !mddev->ready) {
307                 bio_io_error(bio);
308                 return;
309         }
310         smp_rmb(); /* Ensure implications of  'active' are visible */
311         rcu_read_lock();
312         if (mddev->suspended) {
313                 DEFINE_WAIT(__wait);
314                 for (;;) {
315                         prepare_to_wait(&mddev->sb_wait, &__wait,
316                                         TASK_UNINTERRUPTIBLE);
317                         if (!mddev->suspended)
318                                 break;
319                         rcu_read_unlock();
320                         schedule();
321                         rcu_read_lock();
322                 }
323                 finish_wait(&mddev->sb_wait, &__wait);
324         }
325         atomic_inc(&mddev->active_io);
326         rcu_read_unlock();
327
328         /*
329          * save the sectors now since our bio can
330          * go away inside make_request
331          */
332         sectors = bio_sectors(bio);
333         mddev->pers->make_request(mddev, bio);
334
335         cpu = part_stat_lock();
336         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
337         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
338         part_stat_unlock();
339
340         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
341                 wake_up(&mddev->sb_wait);
342 }
343
344 /* mddev_suspend makes sure no new requests are submitted
345  * to the device, and that any requests that have been submitted
346  * are completely handled.
347  * Once ->stop is called and completes, the module will be completely
348  * unused.
349  */
350 void mddev_suspend(struct mddev *mddev)
351 {
352         BUG_ON(mddev->suspended);
353         mddev->suspended = 1;
354         synchronize_rcu();
355         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
356         mddev->pers->quiesce(mddev, 1);
357
358         del_timer_sync(&mddev->safemode_timer);
359 }
360 EXPORT_SYMBOL_GPL(mddev_suspend);
361
362 void mddev_resume(struct mddev *mddev)
363 {
364         mddev->suspended = 0;
365         wake_up(&mddev->sb_wait);
366         mddev->pers->quiesce(mddev, 0);
367
368         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
369         md_wakeup_thread(mddev->thread);
370         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
371 }
372 EXPORT_SYMBOL_GPL(mddev_resume);
373
374 int mddev_congested(struct mddev *mddev, int bits)
375 {
376         return mddev->suspended;
377 }
378 EXPORT_SYMBOL(mddev_congested);
379
380 /*
381  * Generic flush handling for md
382  */
383
384 static void md_end_flush(struct bio *bio, int err)
385 {
386         struct md_rdev *rdev = bio->bi_private;
387         struct mddev *mddev = rdev->mddev;
388
389         rdev_dec_pending(rdev, mddev);
390
391         if (atomic_dec_and_test(&mddev->flush_pending)) {
392                 /* The pre-request flush has finished */
393                 queue_work(md_wq, &mddev->flush_work);
394         }
395         bio_put(bio);
396 }
397
398 static void md_submit_flush_data(struct work_struct *ws);
399
400 static void submit_flushes(struct work_struct *ws)
401 {
402         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
403         struct md_rdev *rdev;
404
405         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
406         atomic_set(&mddev->flush_pending, 1);
407         rcu_read_lock();
408         rdev_for_each_rcu(rdev, mddev)
409                 if (rdev->raid_disk >= 0 &&
410                     !test_bit(Faulty, &rdev->flags)) {
411                         /* Take two references, one is dropped
412                          * when request finishes, one after
413                          * we reclaim rcu_read_lock
414                          */
415                         struct bio *bi;
416                         atomic_inc(&rdev->nr_pending);
417                         atomic_inc(&rdev->nr_pending);
418                         rcu_read_unlock();
419                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
420                         bi->bi_end_io = md_end_flush;
421                         bi->bi_private = rdev;
422                         bi->bi_bdev = rdev->bdev;
423                         atomic_inc(&mddev->flush_pending);
424                         submit_bio(WRITE_FLUSH, bi);
425                         rcu_read_lock();
426                         rdev_dec_pending(rdev, mddev);
427                 }
428         rcu_read_unlock();
429         if (atomic_dec_and_test(&mddev->flush_pending))
430                 queue_work(md_wq, &mddev->flush_work);
431 }
432
433 static void md_submit_flush_data(struct work_struct *ws)
434 {
435         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
436         struct bio *bio = mddev->flush_bio;
437
438         if (bio->bi_size == 0)
439                 /* an empty barrier - all done */
440                 bio_endio(bio, 0);
441         else {
442                 bio->bi_rw &= ~REQ_FLUSH;
443                 mddev->pers->make_request(mddev, bio);
444         }
445
446         mddev->flush_bio = NULL;
447         wake_up(&mddev->sb_wait);
448 }
449
450 void md_flush_request(struct mddev *mddev, struct bio *bio)
451 {
452         spin_lock_irq(&mddev->write_lock);
453         wait_event_lock_irq(mddev->sb_wait,
454                             !mddev->flush_bio,
455                             mddev->write_lock, /*nothing*/);
456         mddev->flush_bio = bio;
457         spin_unlock_irq(&mddev->write_lock);
458
459         INIT_WORK(&mddev->flush_work, submit_flushes);
460         queue_work(md_wq, &mddev->flush_work);
461 }
462 EXPORT_SYMBOL(md_flush_request);
463
464 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
465 {
466         struct mddev *mddev = cb->data;
467         md_wakeup_thread(mddev->thread);
468         kfree(cb);
469 }
470 EXPORT_SYMBOL(md_unplug);
471
472 static inline struct mddev *mddev_get(struct mddev *mddev)
473 {
474         atomic_inc(&mddev->active);
475         return mddev;
476 }
477
478 static void mddev_delayed_delete(struct work_struct *ws);
479
480 static void mddev_put(struct mddev *mddev)
481 {
482         struct bio_set *bs = NULL;
483
484         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
485                 return;
486         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
487             mddev->ctime == 0 && !mddev->hold_active) {
488                 /* Array is not configured at all, and not held active,
489                  * so destroy it */
490                 list_del_init(&mddev->all_mddevs);
491                 bs = mddev->bio_set;
492                 mddev->bio_set = NULL;
493                 if (mddev->gendisk) {
494                         /* We did a probe so need to clean up.  Call
495                          * queue_work inside the spinlock so that
496                          * flush_workqueue() after mddev_find will
497                          * succeed in waiting for the work to be done.
498                          */
499                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
500                         queue_work(md_misc_wq, &mddev->del_work);
501                 } else
502                         kfree(mddev);
503         }
504         spin_unlock(&all_mddevs_lock);
505         if (bs)
506                 bioset_free(bs);
507 }
508
509 void mddev_init(struct mddev *mddev)
510 {
511         mutex_init(&mddev->open_mutex);
512         mutex_init(&mddev->reconfig_mutex);
513         mutex_init(&mddev->bitmap_info.mutex);
514         INIT_LIST_HEAD(&mddev->disks);
515         INIT_LIST_HEAD(&mddev->all_mddevs);
516         init_timer(&mddev->safemode_timer);
517         atomic_set(&mddev->active, 1);
518         atomic_set(&mddev->openers, 0);
519         atomic_set(&mddev->active_io, 0);
520         spin_lock_init(&mddev->write_lock);
521         atomic_set(&mddev->flush_pending, 0);
522         init_waitqueue_head(&mddev->sb_wait);
523         init_waitqueue_head(&mddev->recovery_wait);
524         mddev->reshape_position = MaxSector;
525         mddev->reshape_backwards = 0;
526         mddev->resync_min = 0;
527         mddev->resync_max = MaxSector;
528         mddev->level = LEVEL_NONE;
529 }
530 EXPORT_SYMBOL_GPL(mddev_init);
531
532 static struct mddev * mddev_find(dev_t unit)
533 {
534         struct mddev *mddev, *new = NULL;
535
536         if (unit && MAJOR(unit) != MD_MAJOR)
537                 unit &= ~((1<<MdpMinorShift)-1);
538
539  retry:
540         spin_lock(&all_mddevs_lock);
541
542         if (unit) {
543                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
544                         if (mddev->unit == unit) {
545                                 mddev_get(mddev);
546                                 spin_unlock(&all_mddevs_lock);
547                                 kfree(new);
548                                 return mddev;
549                         }
550
551                 if (new) {
552                         list_add(&new->all_mddevs, &all_mddevs);
553                         spin_unlock(&all_mddevs_lock);
554                         new->hold_active = UNTIL_IOCTL;
555                         return new;
556                 }
557         } else if (new) {
558                 /* find an unused unit number */
559                 static int next_minor = 512;
560                 int start = next_minor;
561                 int is_free = 0;
562                 int dev = 0;
563                 while (!is_free) {
564                         dev = MKDEV(MD_MAJOR, next_minor);
565                         next_minor++;
566                         if (next_minor > MINORMASK)
567                                 next_minor = 0;
568                         if (next_minor == start) {
569                                 /* Oh dear, all in use. */
570                                 spin_unlock(&all_mddevs_lock);
571                                 kfree(new);
572                                 return NULL;
573                         }
574                                 
575                         is_free = 1;
576                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
577                                 if (mddev->unit == dev) {
578                                         is_free = 0;
579                                         break;
580                                 }
581                 }
582                 new->unit = dev;
583                 new->md_minor = MINOR(dev);
584                 new->hold_active = UNTIL_STOP;
585                 list_add(&new->all_mddevs, &all_mddevs);
586                 spin_unlock(&all_mddevs_lock);
587                 return new;
588         }
589         spin_unlock(&all_mddevs_lock);
590
591         new = kzalloc(sizeof(*new), GFP_KERNEL);
592         if (!new)
593                 return NULL;
594
595         new->unit = unit;
596         if (MAJOR(unit) == MD_MAJOR)
597                 new->md_minor = MINOR(unit);
598         else
599                 new->md_minor = MINOR(unit) >> MdpMinorShift;
600
601         mddev_init(new);
602
603         goto retry;
604 }
605
606 static inline int mddev_lock(struct mddev * mddev)
607 {
608         return mutex_lock_interruptible(&mddev->reconfig_mutex);
609 }
610
611 static inline int mddev_is_locked(struct mddev *mddev)
612 {
613         return mutex_is_locked(&mddev->reconfig_mutex);
614 }
615
616 static inline int mddev_trylock(struct mddev * mddev)
617 {
618         return mutex_trylock(&mddev->reconfig_mutex);
619 }
620
621 static struct attribute_group md_redundancy_group;
622
623 static void mddev_unlock(struct mddev * mddev)
624 {
625         if (mddev->to_remove) {
626                 /* These cannot be removed under reconfig_mutex as
627                  * an access to the files will try to take reconfig_mutex
628                  * while holding the file unremovable, which leads to
629                  * a deadlock.
630                  * So hold set sysfs_active while the remove in happeing,
631                  * and anything else which might set ->to_remove or my
632                  * otherwise change the sysfs namespace will fail with
633                  * -EBUSY if sysfs_active is still set.
634                  * We set sysfs_active under reconfig_mutex and elsewhere
635                  * test it under the same mutex to ensure its correct value
636                  * is seen.
637                  */
638                 struct attribute_group *to_remove = mddev->to_remove;
639                 mddev->to_remove = NULL;
640                 mddev->sysfs_active = 1;
641                 mutex_unlock(&mddev->reconfig_mutex);
642
643                 if (mddev->kobj.sd) {
644                         if (to_remove != &md_redundancy_group)
645                                 sysfs_remove_group(&mddev->kobj, to_remove);
646                         if (mddev->pers == NULL ||
647                             mddev->pers->sync_request == NULL) {
648                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
649                                 if (mddev->sysfs_action)
650                                         sysfs_put(mddev->sysfs_action);
651                                 mddev->sysfs_action = NULL;
652                         }
653                 }
654                 mddev->sysfs_active = 0;
655         } else
656                 mutex_unlock(&mddev->reconfig_mutex);
657
658         /* As we've dropped the mutex we need a spinlock to
659          * make sure the thread doesn't disappear
660          */
661         spin_lock(&pers_lock);
662         md_wakeup_thread(mddev->thread);
663         spin_unlock(&pers_lock);
664 }
665
666 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
667 {
668         struct md_rdev *rdev;
669
670         rdev_for_each(rdev, mddev)
671                 if (rdev->desc_nr == nr)
672                         return rdev;
673
674         return NULL;
675 }
676
677 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
678 {
679         struct md_rdev *rdev;
680
681         rdev_for_each_rcu(rdev, mddev)
682                 if (rdev->desc_nr == nr)
683                         return rdev;
684
685         return NULL;
686 }
687
688 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
689 {
690         struct md_rdev *rdev;
691
692         rdev_for_each(rdev, mddev)
693                 if (rdev->bdev->bd_dev == dev)
694                         return rdev;
695
696         return NULL;
697 }
698
699 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
700 {
701         struct md_rdev *rdev;
702
703         rdev_for_each_rcu(rdev, mddev)
704                 if (rdev->bdev->bd_dev == dev)
705                         return rdev;
706
707         return NULL;
708 }
709
710 static struct md_personality *find_pers(int level, char *clevel)
711 {
712         struct md_personality *pers;
713         list_for_each_entry(pers, &pers_list, list) {
714                 if (level != LEVEL_NONE && pers->level == level)
715                         return pers;
716                 if (strcmp(pers->name, clevel)==0)
717                         return pers;
718         }
719         return NULL;
720 }
721
722 /* return the offset of the super block in 512byte sectors */
723 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
724 {
725         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
726         return MD_NEW_SIZE_SECTORS(num_sectors);
727 }
728
729 static int alloc_disk_sb(struct md_rdev * rdev)
730 {
731         if (rdev->sb_page)
732                 MD_BUG();
733
734         rdev->sb_page = alloc_page(GFP_KERNEL);
735         if (!rdev->sb_page) {
736                 printk(KERN_ALERT "md: out of memory.\n");
737                 return -ENOMEM;
738         }
739
740         return 0;
741 }
742
743 void md_rdev_clear(struct md_rdev *rdev)
744 {
745         if (rdev->sb_page) {
746                 put_page(rdev->sb_page);
747                 rdev->sb_loaded = 0;
748                 rdev->sb_page = NULL;
749                 rdev->sb_start = 0;
750                 rdev->sectors = 0;
751         }
752         if (rdev->bb_page) {
753                 put_page(rdev->bb_page);
754                 rdev->bb_page = NULL;
755         }
756         kfree(rdev->badblocks.page);
757         rdev->badblocks.page = NULL;
758 }
759 EXPORT_SYMBOL_GPL(md_rdev_clear);
760
761 static void super_written(struct bio *bio, int error)
762 {
763         struct md_rdev *rdev = bio->bi_private;
764         struct mddev *mddev = rdev->mddev;
765
766         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
767                 printk("md: super_written gets error=%d, uptodate=%d\n",
768                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
769                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
770                 md_error(mddev, rdev);
771         }
772
773         if (atomic_dec_and_test(&mddev->pending_writes))
774                 wake_up(&mddev->sb_wait);
775         bio_put(bio);
776 }
777
778 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
779                    sector_t sector, int size, struct page *page)
780 {
781         /* write first size bytes of page to sector of rdev
782          * Increment mddev->pending_writes before returning
783          * and decrement it on completion, waking up sb_wait
784          * if zero is reached.
785          * If an error occurred, call md_error
786          */
787         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
788
789         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
790         bio->bi_sector = sector;
791         bio_add_page(bio, page, size, 0);
792         bio->bi_private = rdev;
793         bio->bi_end_io = super_written;
794
795         atomic_inc(&mddev->pending_writes);
796         submit_bio(WRITE_FLUSH_FUA, bio);
797 }
798
799 void md_super_wait(struct mddev *mddev)
800 {
801         /* wait for all superblock writes that were scheduled to complete */
802         DEFINE_WAIT(wq);
803         for(;;) {
804                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
805                 if (atomic_read(&mddev->pending_writes)==0)
806                         break;
807                 schedule();
808         }
809         finish_wait(&mddev->sb_wait, &wq);
810 }
811
812 static void bi_complete(struct bio *bio, int error)
813 {
814         complete((struct completion*)bio->bi_private);
815 }
816
817 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
818                  struct page *page, int rw, bool metadata_op)
819 {
820         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
821         struct completion event;
822         int ret;
823
824         rw |= REQ_SYNC;
825
826         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
827                 rdev->meta_bdev : rdev->bdev;
828         if (metadata_op)
829                 bio->bi_sector = sector + rdev->sb_start;
830         else if (rdev->mddev->reshape_position != MaxSector &&
831                  (rdev->mddev->reshape_backwards ==
832                   (sector >= rdev->mddev->reshape_position)))
833                 bio->bi_sector = sector + rdev->new_data_offset;
834         else
835                 bio->bi_sector = sector + rdev->data_offset;
836         bio_add_page(bio, page, size, 0);
837         init_completion(&event);
838         bio->bi_private = &event;
839         bio->bi_end_io = bi_complete;
840         submit_bio(rw, bio);
841         wait_for_completion(&event);
842
843         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
844         bio_put(bio);
845         return ret;
846 }
847 EXPORT_SYMBOL_GPL(sync_page_io);
848
849 static int read_disk_sb(struct md_rdev * rdev, int size)
850 {
851         char b[BDEVNAME_SIZE];
852         if (!rdev->sb_page) {
853                 MD_BUG();
854                 return -EINVAL;
855         }
856         if (rdev->sb_loaded)
857                 return 0;
858
859
860         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
861                 goto fail;
862         rdev->sb_loaded = 1;
863         return 0;
864
865 fail:
866         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
867                 bdevname(rdev->bdev,b));
868         return -EINVAL;
869 }
870
871 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
872 {
873         return  sb1->set_uuid0 == sb2->set_uuid0 &&
874                 sb1->set_uuid1 == sb2->set_uuid1 &&
875                 sb1->set_uuid2 == sb2->set_uuid2 &&
876                 sb1->set_uuid3 == sb2->set_uuid3;
877 }
878
879 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
880 {
881         int ret;
882         mdp_super_t *tmp1, *tmp2;
883
884         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
885         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
886
887         if (!tmp1 || !tmp2) {
888                 ret = 0;
889                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
890                 goto abort;
891         }
892
893         *tmp1 = *sb1;
894         *tmp2 = *sb2;
895
896         /*
897          * nr_disks is not constant
898          */
899         tmp1->nr_disks = 0;
900         tmp2->nr_disks = 0;
901
902         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
903 abort:
904         kfree(tmp1);
905         kfree(tmp2);
906         return ret;
907 }
908
909
910 static u32 md_csum_fold(u32 csum)
911 {
912         csum = (csum & 0xffff) + (csum >> 16);
913         return (csum & 0xffff) + (csum >> 16);
914 }
915
916 static unsigned int calc_sb_csum(mdp_super_t * sb)
917 {
918         u64 newcsum = 0;
919         u32 *sb32 = (u32*)sb;
920         int i;
921         unsigned int disk_csum, csum;
922
923         disk_csum = sb->sb_csum;
924         sb->sb_csum = 0;
925
926         for (i = 0; i < MD_SB_BYTES/4 ; i++)
927                 newcsum += sb32[i];
928         csum = (newcsum & 0xffffffff) + (newcsum>>32);
929
930
931 #ifdef CONFIG_ALPHA
932         /* This used to use csum_partial, which was wrong for several
933          * reasons including that different results are returned on
934          * different architectures.  It isn't critical that we get exactly
935          * the same return value as before (we always csum_fold before
936          * testing, and that removes any differences).  However as we
937          * know that csum_partial always returned a 16bit value on
938          * alphas, do a fold to maximise conformity to previous behaviour.
939          */
940         sb->sb_csum = md_csum_fold(disk_csum);
941 #else
942         sb->sb_csum = disk_csum;
943 #endif
944         return csum;
945 }
946
947
948 /*
949  * Handle superblock details.
950  * We want to be able to handle multiple superblock formats
951  * so we have a common interface to them all, and an array of
952  * different handlers.
953  * We rely on user-space to write the initial superblock, and support
954  * reading and updating of superblocks.
955  * Interface methods are:
956  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
957  *      loads and validates a superblock on dev.
958  *      if refdev != NULL, compare superblocks on both devices
959  *    Return:
960  *      0 - dev has a superblock that is compatible with refdev
961  *      1 - dev has a superblock that is compatible and newer than refdev
962  *          so dev should be used as the refdev in future
963  *     -EINVAL superblock incompatible or invalid
964  *     -othererror e.g. -EIO
965  *
966  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
967  *      Verify that dev is acceptable into mddev.
968  *       The first time, mddev->raid_disks will be 0, and data from
969  *       dev should be merged in.  Subsequent calls check that dev
970  *       is new enough.  Return 0 or -EINVAL
971  *
972  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
973  *     Update the superblock for rdev with data in mddev
974  *     This does not write to disc.
975  *
976  */
977
978 struct super_type  {
979         char                *name;
980         struct module       *owner;
981         int                 (*load_super)(struct md_rdev *rdev,
982                                           struct md_rdev *refdev,
983                                           int minor_version);
984         int                 (*validate_super)(struct mddev *mddev,
985                                               struct md_rdev *rdev);
986         void                (*sync_super)(struct mddev *mddev,
987                                           struct md_rdev *rdev);
988         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
989                                                 sector_t num_sectors);
990         int                 (*allow_new_offset)(struct md_rdev *rdev,
991                                                 unsigned long long new_offset);
992 };
993
994 /*
995  * Check that the given mddev has no bitmap.
996  *
997  * This function is called from the run method of all personalities that do not
998  * support bitmaps. It prints an error message and returns non-zero if mddev
999  * has a bitmap. Otherwise, it returns 0.
1000  *
1001  */
1002 int md_check_no_bitmap(struct mddev *mddev)
1003 {
1004         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1005                 return 0;
1006         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1007                 mdname(mddev), mddev->pers->name);
1008         return 1;
1009 }
1010 EXPORT_SYMBOL(md_check_no_bitmap);
1011
1012 /*
1013  * load_super for 0.90.0 
1014  */
1015 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1016 {
1017         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1018         mdp_super_t *sb;
1019         int ret;
1020
1021         /*
1022          * Calculate the position of the superblock (512byte sectors),
1023          * it's at the end of the disk.
1024          *
1025          * It also happens to be a multiple of 4Kb.
1026          */
1027         rdev->sb_start = calc_dev_sboffset(rdev);
1028
1029         ret = read_disk_sb(rdev, MD_SB_BYTES);
1030         if (ret) return ret;
1031
1032         ret = -EINVAL;
1033
1034         bdevname(rdev->bdev, b);
1035         sb = page_address(rdev->sb_page);
1036
1037         if (sb->md_magic != MD_SB_MAGIC) {
1038                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1039                        b);
1040                 goto abort;
1041         }
1042
1043         if (sb->major_version != 0 ||
1044             sb->minor_version < 90 ||
1045             sb->minor_version > 91) {
1046                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1047                         sb->major_version, sb->minor_version,
1048                         b);
1049                 goto abort;
1050         }
1051
1052         if (sb->raid_disks <= 0)
1053                 goto abort;
1054
1055         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1056                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1057                         b);
1058                 goto abort;
1059         }
1060
1061         rdev->preferred_minor = sb->md_minor;
1062         rdev->data_offset = 0;
1063         rdev->new_data_offset = 0;
1064         rdev->sb_size = MD_SB_BYTES;
1065         rdev->badblocks.shift = -1;
1066
1067         if (sb->level == LEVEL_MULTIPATH)
1068                 rdev->desc_nr = -1;
1069         else
1070                 rdev->desc_nr = sb->this_disk.number;
1071
1072         if (!refdev) {
1073                 ret = 1;
1074         } else {
1075                 __u64 ev1, ev2;
1076                 mdp_super_t *refsb = page_address(refdev->sb_page);
1077                 if (!uuid_equal(refsb, sb)) {
1078                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1079                                 b, bdevname(refdev->bdev,b2));
1080                         goto abort;
1081                 }
1082                 if (!sb_equal(refsb, sb)) {
1083                         printk(KERN_WARNING "md: %s has same UUID"
1084                                " but different superblock to %s\n",
1085                                b, bdevname(refdev->bdev, b2));
1086                         goto abort;
1087                 }
1088                 ev1 = md_event(sb);
1089                 ev2 = md_event(refsb);
1090                 if (ev1 > ev2)
1091                         ret = 1;
1092                 else 
1093                         ret = 0;
1094         }
1095         rdev->sectors = rdev->sb_start;
1096         /* Limit to 4TB as metadata cannot record more than that.
1097          * (not needed for Linear and RAID0 as metadata doesn't
1098          * record this size)
1099          */
1100         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1101                 rdev->sectors = (2ULL << 32) - 2;
1102
1103         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1104                 /* "this cannot possibly happen" ... */
1105                 ret = -EINVAL;
1106
1107  abort:
1108         return ret;
1109 }
1110
1111 /*
1112  * validate_super for 0.90.0
1113  */
1114 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1115 {
1116         mdp_disk_t *desc;
1117         mdp_super_t *sb = page_address(rdev->sb_page);
1118         __u64 ev1 = md_event(sb);
1119
1120         rdev->raid_disk = -1;
1121         clear_bit(Faulty, &rdev->flags);
1122         clear_bit(In_sync, &rdev->flags);
1123         clear_bit(WriteMostly, &rdev->flags);
1124
1125         if (mddev->raid_disks == 0) {
1126                 mddev->major_version = 0;
1127                 mddev->minor_version = sb->minor_version;
1128                 mddev->patch_version = sb->patch_version;
1129                 mddev->external = 0;
1130                 mddev->chunk_sectors = sb->chunk_size >> 9;
1131                 mddev->ctime = sb->ctime;
1132                 mddev->utime = sb->utime;
1133                 mddev->level = sb->level;
1134                 mddev->clevel[0] = 0;
1135                 mddev->layout = sb->layout;
1136                 mddev->raid_disks = sb->raid_disks;
1137                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1138                 mddev->events = ev1;
1139                 mddev->bitmap_info.offset = 0;
1140                 mddev->bitmap_info.space = 0;
1141                 /* bitmap can use 60 K after the 4K superblocks */
1142                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1143                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1144                 mddev->reshape_backwards = 0;
1145
1146                 if (mddev->minor_version >= 91) {
1147                         mddev->reshape_position = sb->reshape_position;
1148                         mddev->delta_disks = sb->delta_disks;
1149                         mddev->new_level = sb->new_level;
1150                         mddev->new_layout = sb->new_layout;
1151                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1152                         if (mddev->delta_disks < 0)
1153                                 mddev->reshape_backwards = 1;
1154                 } else {
1155                         mddev->reshape_position = MaxSector;
1156                         mddev->delta_disks = 0;
1157                         mddev->new_level = mddev->level;
1158                         mddev->new_layout = mddev->layout;
1159                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1160                 }
1161
1162                 if (sb->state & (1<<MD_SB_CLEAN))
1163                         mddev->recovery_cp = MaxSector;
1164                 else {
1165                         if (sb->events_hi == sb->cp_events_hi && 
1166                                 sb->events_lo == sb->cp_events_lo) {
1167                                 mddev->recovery_cp = sb->recovery_cp;
1168                         } else
1169                                 mddev->recovery_cp = 0;
1170                 }
1171
1172                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1173                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1174                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1175                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1176
1177                 mddev->max_disks = MD_SB_DISKS;
1178
1179                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1180                     mddev->bitmap_info.file == NULL) {
1181                         mddev->bitmap_info.offset =
1182                                 mddev->bitmap_info.default_offset;
1183                         mddev->bitmap_info.space =
1184                                 mddev->bitmap_info.space;
1185                 }
1186
1187         } else if (mddev->pers == NULL) {
1188                 /* Insist on good event counter while assembling, except
1189                  * for spares (which don't need an event count) */
1190                 ++ev1;
1191                 if (sb->disks[rdev->desc_nr].state & (
1192                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1193                         if (ev1 < mddev->events) 
1194                                 return -EINVAL;
1195         } else if (mddev->bitmap) {
1196                 /* if adding to array with a bitmap, then we can accept an
1197                  * older device ... but not too old.
1198                  */
1199                 if (ev1 < mddev->bitmap->events_cleared)
1200                         return 0;
1201         } else {
1202                 if (ev1 < mddev->events)
1203                         /* just a hot-add of a new device, leave raid_disk at -1 */
1204                         return 0;
1205         }
1206
1207         if (mddev->level != LEVEL_MULTIPATH) {
1208                 desc = sb->disks + rdev->desc_nr;
1209
1210                 if (desc->state & (1<<MD_DISK_FAULTY))
1211                         set_bit(Faulty, &rdev->flags);
1212                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1213                             desc->raid_disk < mddev->raid_disks */) {
1214                         set_bit(In_sync, &rdev->flags);
1215                         rdev->raid_disk = desc->raid_disk;
1216                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1217                         /* active but not in sync implies recovery up to
1218                          * reshape position.  We don't know exactly where
1219                          * that is, so set to zero for now */
1220                         if (mddev->minor_version >= 91) {
1221                                 rdev->recovery_offset = 0;
1222                                 rdev->raid_disk = desc->raid_disk;
1223                         }
1224                 }
1225                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1226                         set_bit(WriteMostly, &rdev->flags);
1227         } else /* MULTIPATH are always insync */
1228                 set_bit(In_sync, &rdev->flags);
1229         return 0;
1230 }
1231
1232 /*
1233  * sync_super for 0.90.0
1234  */
1235 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1236 {
1237         mdp_super_t *sb;
1238         struct md_rdev *rdev2;
1239         int next_spare = mddev->raid_disks;
1240
1241
1242         /* make rdev->sb match mddev data..
1243          *
1244          * 1/ zero out disks
1245          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1246          * 3/ any empty disks < next_spare become removed
1247          *
1248          * disks[0] gets initialised to REMOVED because
1249          * we cannot be sure from other fields if it has
1250          * been initialised or not.
1251          */
1252         int i;
1253         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1254
1255         rdev->sb_size = MD_SB_BYTES;
1256
1257         sb = page_address(rdev->sb_page);
1258
1259         memset(sb, 0, sizeof(*sb));
1260
1261         sb->md_magic = MD_SB_MAGIC;
1262         sb->major_version = mddev->major_version;
1263         sb->patch_version = mddev->patch_version;
1264         sb->gvalid_words  = 0; /* ignored */
1265         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1266         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1267         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1268         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1269
1270         sb->ctime = mddev->ctime;
1271         sb->level = mddev->level;
1272         sb->size = mddev->dev_sectors / 2;
1273         sb->raid_disks = mddev->raid_disks;
1274         sb->md_minor = mddev->md_minor;
1275         sb->not_persistent = 0;
1276         sb->utime = mddev->utime;
1277         sb->state = 0;
1278         sb->events_hi = (mddev->events>>32);
1279         sb->events_lo = (u32)mddev->events;
1280
1281         if (mddev->reshape_position == MaxSector)
1282                 sb->minor_version = 90;
1283         else {
1284                 sb->minor_version = 91;
1285                 sb->reshape_position = mddev->reshape_position;
1286                 sb->new_level = mddev->new_level;
1287                 sb->delta_disks = mddev->delta_disks;
1288                 sb->new_layout = mddev->new_layout;
1289                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1290         }
1291         mddev->minor_version = sb->minor_version;
1292         if (mddev->in_sync)
1293         {
1294                 sb->recovery_cp = mddev->recovery_cp;
1295                 sb->cp_events_hi = (mddev->events>>32);
1296                 sb->cp_events_lo = (u32)mddev->events;
1297                 if (mddev->recovery_cp == MaxSector)
1298                         sb->state = (1<< MD_SB_CLEAN);
1299         } else
1300                 sb->recovery_cp = 0;
1301
1302         sb->layout = mddev->layout;
1303         sb->chunk_size = mddev->chunk_sectors << 9;
1304
1305         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1306                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1307
1308         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1309         rdev_for_each(rdev2, mddev) {
1310                 mdp_disk_t *d;
1311                 int desc_nr;
1312                 int is_active = test_bit(In_sync, &rdev2->flags);
1313
1314                 if (rdev2->raid_disk >= 0 &&
1315                     sb->minor_version >= 91)
1316                         /* we have nowhere to store the recovery_offset,
1317                          * but if it is not below the reshape_position,
1318                          * we can piggy-back on that.
1319                          */
1320                         is_active = 1;
1321                 if (rdev2->raid_disk < 0 ||
1322                     test_bit(Faulty, &rdev2->flags))
1323                         is_active = 0;
1324                 if (is_active)
1325                         desc_nr = rdev2->raid_disk;
1326                 else
1327                         desc_nr = next_spare++;
1328                 rdev2->desc_nr = desc_nr;
1329                 d = &sb->disks[rdev2->desc_nr];
1330                 nr_disks++;
1331                 d->number = rdev2->desc_nr;
1332                 d->major = MAJOR(rdev2->bdev->bd_dev);
1333                 d->minor = MINOR(rdev2->bdev->bd_dev);
1334                 if (is_active)
1335                         d->raid_disk = rdev2->raid_disk;
1336                 else
1337                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1338                 if (test_bit(Faulty, &rdev2->flags))
1339                         d->state = (1<<MD_DISK_FAULTY);
1340                 else if (is_active) {
1341                         d->state = (1<<MD_DISK_ACTIVE);
1342                         if (test_bit(In_sync, &rdev2->flags))
1343                                 d->state |= (1<<MD_DISK_SYNC);
1344                         active++;
1345                         working++;
1346                 } else {
1347                         d->state = 0;
1348                         spare++;
1349                         working++;
1350                 }
1351                 if (test_bit(WriteMostly, &rdev2->flags))
1352                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1353         }
1354         /* now set the "removed" and "faulty" bits on any missing devices */
1355         for (i=0 ; i < mddev->raid_disks ; i++) {
1356                 mdp_disk_t *d = &sb->disks[i];
1357                 if (d->state == 0 && d->number == 0) {
1358                         d->number = i;
1359                         d->raid_disk = i;
1360                         d->state = (1<<MD_DISK_REMOVED);
1361                         d->state |= (1<<MD_DISK_FAULTY);
1362                         failed++;
1363                 }
1364         }
1365         sb->nr_disks = nr_disks;
1366         sb->active_disks = active;
1367         sb->working_disks = working;
1368         sb->failed_disks = failed;
1369         sb->spare_disks = spare;
1370
1371         sb->this_disk = sb->disks[rdev->desc_nr];
1372         sb->sb_csum = calc_sb_csum(sb);
1373 }
1374
1375 /*
1376  * rdev_size_change for 0.90.0
1377  */
1378 static unsigned long long
1379 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1380 {
1381         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1382                 return 0; /* component must fit device */
1383         if (rdev->mddev->bitmap_info.offset)
1384                 return 0; /* can't move bitmap */
1385         rdev->sb_start = calc_dev_sboffset(rdev);
1386         if (!num_sectors || num_sectors > rdev->sb_start)
1387                 num_sectors = rdev->sb_start;
1388         /* Limit to 4TB as metadata cannot record more than that.
1389          * 4TB == 2^32 KB, or 2*2^32 sectors.
1390          */
1391         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1392                 num_sectors = (2ULL << 32) - 2;
1393         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1394                        rdev->sb_page);
1395         md_super_wait(rdev->mddev);
1396         return num_sectors;
1397 }
1398
1399 static int
1400 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1401 {
1402         /* non-zero offset changes not possible with v0.90 */
1403         return new_offset == 0;
1404 }
1405
1406 /*
1407  * version 1 superblock
1408  */
1409
1410 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1411 {
1412         __le32 disk_csum;
1413         u32 csum;
1414         unsigned long long newcsum;
1415         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1416         __le32 *isuper = (__le32*)sb;
1417         int i;
1418
1419         disk_csum = sb->sb_csum;
1420         sb->sb_csum = 0;
1421         newcsum = 0;
1422         for (i=0; size>=4; size -= 4 )
1423                 newcsum += le32_to_cpu(*isuper++);
1424
1425         if (size == 2)
1426                 newcsum += le16_to_cpu(*(__le16*) isuper);
1427
1428         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1429         sb->sb_csum = disk_csum;
1430         return cpu_to_le32(csum);
1431 }
1432
1433 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1434                             int acknowledged);
1435 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1436 {
1437         struct mdp_superblock_1 *sb;
1438         int ret;
1439         sector_t sb_start;
1440         sector_t sectors;
1441         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1442         int bmask;
1443
1444         /*
1445          * Calculate the position of the superblock in 512byte sectors.
1446          * It is always aligned to a 4K boundary and
1447          * depeding on minor_version, it can be:
1448          * 0: At least 8K, but less than 12K, from end of device
1449          * 1: At start of device
1450          * 2: 4K from start of device.
1451          */
1452         switch(minor_version) {
1453         case 0:
1454                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1455                 sb_start -= 8*2;
1456                 sb_start &= ~(sector_t)(4*2-1);
1457                 break;
1458         case 1:
1459                 sb_start = 0;
1460                 break;
1461         case 2:
1462                 sb_start = 8;
1463                 break;
1464         default:
1465                 return -EINVAL;
1466         }
1467         rdev->sb_start = sb_start;
1468
1469         /* superblock is rarely larger than 1K, but it can be larger,
1470          * and it is safe to read 4k, so we do that
1471          */
1472         ret = read_disk_sb(rdev, 4096);
1473         if (ret) return ret;
1474
1475
1476         sb = page_address(rdev->sb_page);
1477
1478         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1479             sb->major_version != cpu_to_le32(1) ||
1480             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1481             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1482             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1483                 return -EINVAL;
1484
1485         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1486                 printk("md: invalid superblock checksum on %s\n",
1487                         bdevname(rdev->bdev,b));
1488                 return -EINVAL;
1489         }
1490         if (le64_to_cpu(sb->data_size) < 10) {
1491                 printk("md: data_size too small on %s\n",
1492                        bdevname(rdev->bdev,b));
1493                 return -EINVAL;
1494         }
1495         if (sb->pad0 ||
1496             sb->pad3[0] ||
1497             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1498                 /* Some padding is non-zero, might be a new feature */
1499                 return -EINVAL;
1500
1501         rdev->preferred_minor = 0xffff;
1502         rdev->data_offset = le64_to_cpu(sb->data_offset);
1503         rdev->new_data_offset = rdev->data_offset;
1504         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1505             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1506                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1507         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1508
1509         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1510         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1511         if (rdev->sb_size & bmask)
1512                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1513
1514         if (minor_version
1515             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1516                 return -EINVAL;
1517         if (minor_version
1518             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1519                 return -EINVAL;
1520
1521         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1522                 rdev->desc_nr = -1;
1523         else
1524                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1525
1526         if (!rdev->bb_page) {
1527                 rdev->bb_page = alloc_page(GFP_KERNEL);
1528                 if (!rdev->bb_page)
1529                         return -ENOMEM;
1530         }
1531         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1532             rdev->badblocks.count == 0) {
1533                 /* need to load the bad block list.
1534                  * Currently we limit it to one page.
1535                  */
1536                 s32 offset;
1537                 sector_t bb_sector;
1538                 u64 *bbp;
1539                 int i;
1540                 int sectors = le16_to_cpu(sb->bblog_size);
1541                 if (sectors > (PAGE_SIZE / 512))
1542                         return -EINVAL;
1543                 offset = le32_to_cpu(sb->bblog_offset);
1544                 if (offset == 0)
1545                         return -EINVAL;
1546                 bb_sector = (long long)offset;
1547                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1548                                   rdev->bb_page, READ, true))
1549                         return -EIO;
1550                 bbp = (u64 *)page_address(rdev->bb_page);
1551                 rdev->badblocks.shift = sb->bblog_shift;
1552                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1553                         u64 bb = le64_to_cpu(*bbp);
1554                         int count = bb & (0x3ff);
1555                         u64 sector = bb >> 10;
1556                         sector <<= sb->bblog_shift;
1557                         count <<= sb->bblog_shift;
1558                         if (bb + 1 == 0)
1559                                 break;
1560                         if (md_set_badblocks(&rdev->badblocks,
1561                                              sector, count, 1) == 0)
1562                                 return -EINVAL;
1563                 }
1564         } else if (sb->bblog_offset == 0)
1565                 rdev->badblocks.shift = -1;
1566
1567         if (!refdev) {
1568                 ret = 1;
1569         } else {
1570                 __u64 ev1, ev2;
1571                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1572
1573                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1574                     sb->level != refsb->level ||
1575                     sb->layout != refsb->layout ||
1576                     sb->chunksize != refsb->chunksize) {
1577                         printk(KERN_WARNING "md: %s has strangely different"
1578                                 " superblock to %s\n",
1579                                 bdevname(rdev->bdev,b),
1580                                 bdevname(refdev->bdev,b2));
1581                         return -EINVAL;
1582                 }
1583                 ev1 = le64_to_cpu(sb->events);
1584                 ev2 = le64_to_cpu(refsb->events);
1585
1586                 if (ev1 > ev2)
1587                         ret = 1;
1588                 else
1589                         ret = 0;
1590         }
1591         if (minor_version) {
1592                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1593                 sectors -= rdev->data_offset;
1594         } else
1595                 sectors = rdev->sb_start;
1596         if (sectors < le64_to_cpu(sb->data_size))
1597                 return -EINVAL;
1598         rdev->sectors = le64_to_cpu(sb->data_size);
1599         return ret;
1600 }
1601
1602 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1603 {
1604         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1605         __u64 ev1 = le64_to_cpu(sb->events);
1606
1607         rdev->raid_disk = -1;
1608         clear_bit(Faulty, &rdev->flags);
1609         clear_bit(In_sync, &rdev->flags);
1610         clear_bit(WriteMostly, &rdev->flags);
1611
1612         if (mddev->raid_disks == 0) {
1613                 mddev->major_version = 1;
1614                 mddev->patch_version = 0;
1615                 mddev->external = 0;
1616                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1617                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1618                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1619                 mddev->level = le32_to_cpu(sb->level);
1620                 mddev->clevel[0] = 0;
1621                 mddev->layout = le32_to_cpu(sb->layout);
1622                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1623                 mddev->dev_sectors = le64_to_cpu(sb->size);
1624                 mddev->events = ev1;
1625                 mddev->bitmap_info.offset = 0;
1626                 mddev->bitmap_info.space = 0;
1627                 /* Default location for bitmap is 1K after superblock
1628                  * using 3K - total of 4K
1629                  */
1630                 mddev->bitmap_info.default_offset = 1024 >> 9;
1631                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1632                 mddev->reshape_backwards = 0;
1633
1634                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1635                 memcpy(mddev->uuid, sb->set_uuid, 16);
1636
1637                 mddev->max_disks =  (4096-256)/2;
1638
1639                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1640                     mddev->bitmap_info.file == NULL) {
1641                         mddev->bitmap_info.offset =
1642                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1643                         /* Metadata doesn't record how much space is available.
1644                          * For 1.0, we assume we can use up to the superblock
1645                          * if before, else to 4K beyond superblock.
1646                          * For others, assume no change is possible.
1647                          */
1648                         if (mddev->minor_version > 0)
1649                                 mddev->bitmap_info.space = 0;
1650                         else if (mddev->bitmap_info.offset > 0)
1651                                 mddev->bitmap_info.space =
1652                                         8 - mddev->bitmap_info.offset;
1653                         else
1654                                 mddev->bitmap_info.space =
1655                                         -mddev->bitmap_info.offset;
1656                 }
1657
1658                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1659                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1660                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1661                         mddev->new_level = le32_to_cpu(sb->new_level);
1662                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1663                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1664                         if (mddev->delta_disks < 0 ||
1665                             (mddev->delta_disks == 0 &&
1666                              (le32_to_cpu(sb->feature_map)
1667                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1668                                 mddev->reshape_backwards = 1;
1669                 } else {
1670                         mddev->reshape_position = MaxSector;
1671                         mddev->delta_disks = 0;
1672                         mddev->new_level = mddev->level;
1673                         mddev->new_layout = mddev->layout;
1674                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1675                 }
1676
1677         } else if (mddev->pers == NULL) {
1678                 /* Insist of good event counter while assembling, except for
1679                  * spares (which don't need an event count) */
1680                 ++ev1;
1681                 if (rdev->desc_nr >= 0 &&
1682                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1683                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1684                         if (ev1 < mddev->events)
1685                                 return -EINVAL;
1686         } else if (mddev->bitmap) {
1687                 /* If adding to array with a bitmap, then we can accept an
1688                  * older device, but not too old.
1689                  */
1690                 if (ev1 < mddev->bitmap->events_cleared)
1691                         return 0;
1692         } else {
1693                 if (ev1 < mddev->events)
1694                         /* just a hot-add of a new device, leave raid_disk at -1 */
1695                         return 0;
1696         }
1697         if (mddev->level != LEVEL_MULTIPATH) {
1698                 int role;
1699                 if (rdev->desc_nr < 0 ||
1700                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1701                         role = 0xffff;
1702                         rdev->desc_nr = -1;
1703                 } else
1704                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1705                 switch(role) {
1706                 case 0xffff: /* spare */
1707                         break;
1708                 case 0xfffe: /* faulty */
1709                         set_bit(Faulty, &rdev->flags);
1710                         break;
1711                 default:
1712                         if ((le32_to_cpu(sb->feature_map) &
1713                              MD_FEATURE_RECOVERY_OFFSET))
1714                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1715                         else
1716                                 set_bit(In_sync, &rdev->flags);
1717                         rdev->raid_disk = role;
1718                         break;
1719                 }
1720                 if (sb->devflags & WriteMostly1)
1721                         set_bit(WriteMostly, &rdev->flags);
1722                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1723                         set_bit(Replacement, &rdev->flags);
1724         } else /* MULTIPATH are always insync */
1725                 set_bit(In_sync, &rdev->flags);
1726
1727         return 0;
1728 }
1729
1730 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1731 {
1732         struct mdp_superblock_1 *sb;
1733         struct md_rdev *rdev2;
1734         int max_dev, i;
1735         /* make rdev->sb match mddev and rdev data. */
1736
1737         sb = page_address(rdev->sb_page);
1738
1739         sb->feature_map = 0;
1740         sb->pad0 = 0;
1741         sb->recovery_offset = cpu_to_le64(0);
1742         memset(sb->pad3, 0, sizeof(sb->pad3));
1743
1744         sb->utime = cpu_to_le64((__u64)mddev->utime);
1745         sb->events = cpu_to_le64(mddev->events);
1746         if (mddev->in_sync)
1747                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1748         else
1749                 sb->resync_offset = cpu_to_le64(0);
1750
1751         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1752
1753         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1754         sb->size = cpu_to_le64(mddev->dev_sectors);
1755         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1756         sb->level = cpu_to_le32(mddev->level);
1757         sb->layout = cpu_to_le32(mddev->layout);
1758
1759         if (test_bit(WriteMostly, &rdev->flags))
1760                 sb->devflags |= WriteMostly1;
1761         else
1762                 sb->devflags &= ~WriteMostly1;
1763         sb->data_offset = cpu_to_le64(rdev->data_offset);
1764         sb->data_size = cpu_to_le64(rdev->sectors);
1765
1766         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1767                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1768                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1769         }
1770
1771         if (rdev->raid_disk >= 0 &&
1772             !test_bit(In_sync, &rdev->flags)) {
1773                 sb->feature_map |=
1774                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1775                 sb->recovery_offset =
1776                         cpu_to_le64(rdev->recovery_offset);
1777         }
1778         if (test_bit(Replacement, &rdev->flags))
1779                 sb->feature_map |=
1780                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1781
1782         if (mddev->reshape_position != MaxSector) {
1783                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1784                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1785                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1786                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1787                 sb->new_level = cpu_to_le32(mddev->new_level);
1788                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1789                 if (mddev->delta_disks == 0 &&
1790                     mddev->reshape_backwards)
1791                         sb->feature_map
1792                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1793                 if (rdev->new_data_offset != rdev->data_offset) {
1794                         sb->feature_map
1795                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1796                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1797                                                              - rdev->data_offset));
1798                 }
1799         }
1800
1801         if (rdev->badblocks.count == 0)
1802                 /* Nothing to do for bad blocks*/ ;
1803         else if (sb->bblog_offset == 0)
1804                 /* Cannot record bad blocks on this device */
1805                 md_error(mddev, rdev);
1806         else {
1807                 struct badblocks *bb = &rdev->badblocks;
1808                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1809                 u64 *p = bb->page;
1810                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1811                 if (bb->changed) {
1812                         unsigned seq;
1813
1814 retry:
1815                         seq = read_seqbegin(&bb->lock);
1816
1817                         memset(bbp, 0xff, PAGE_SIZE);
1818
1819                         for (i = 0 ; i < bb->count ; i++) {
1820                                 u64 internal_bb = *p++;
1821                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1822                                                 | BB_LEN(internal_bb));
1823                                 *bbp++ = cpu_to_le64(store_bb);
1824                         }
1825                         bb->changed = 0;
1826                         if (read_seqretry(&bb->lock, seq))
1827                                 goto retry;
1828
1829                         bb->sector = (rdev->sb_start +
1830                                       (int)le32_to_cpu(sb->bblog_offset));
1831                         bb->size = le16_to_cpu(sb->bblog_size);
1832                 }
1833         }
1834
1835         max_dev = 0;
1836         rdev_for_each(rdev2, mddev)
1837                 if (rdev2->desc_nr+1 > max_dev)
1838                         max_dev = rdev2->desc_nr+1;
1839
1840         if (max_dev > le32_to_cpu(sb->max_dev)) {
1841                 int bmask;
1842                 sb->max_dev = cpu_to_le32(max_dev);
1843                 rdev->sb_size = max_dev * 2 + 256;
1844                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1845                 if (rdev->sb_size & bmask)
1846                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1847         } else
1848                 max_dev = le32_to_cpu(sb->max_dev);
1849
1850         for (i=0; i<max_dev;i++)
1851                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1852         
1853         rdev_for_each(rdev2, mddev) {
1854                 i = rdev2->desc_nr;
1855                 if (test_bit(Faulty, &rdev2->flags))
1856                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1857                 else if (test_bit(In_sync, &rdev2->flags))
1858                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1859                 else if (rdev2->raid_disk >= 0)
1860                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1861                 else
1862                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1863         }
1864
1865         sb->sb_csum = calc_sb_1_csum(sb);
1866 }
1867
1868 static unsigned long long
1869 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1870 {
1871         struct mdp_superblock_1 *sb;
1872         sector_t max_sectors;
1873         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1874                 return 0; /* component must fit device */
1875         if (rdev->data_offset != rdev->new_data_offset)
1876                 return 0; /* too confusing */
1877         if (rdev->sb_start < rdev->data_offset) {
1878                 /* minor versions 1 and 2; superblock before data */
1879                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1880                 max_sectors -= rdev->data_offset;
1881                 if (!num_sectors || num_sectors > max_sectors)
1882                         num_sectors = max_sectors;
1883         } else if (rdev->mddev->bitmap_info.offset) {
1884                 /* minor version 0 with bitmap we can't move */
1885                 return 0;
1886         } else {
1887                 /* minor version 0; superblock after data */
1888                 sector_t sb_start;
1889                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1890                 sb_start &= ~(sector_t)(4*2 - 1);
1891                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1892                 if (!num_sectors || num_sectors > max_sectors)
1893                         num_sectors = max_sectors;
1894                 rdev->sb_start = sb_start;
1895         }
1896         sb = page_address(rdev->sb_page);
1897         sb->data_size = cpu_to_le64(num_sectors);
1898         sb->super_offset = rdev->sb_start;
1899         sb->sb_csum = calc_sb_1_csum(sb);
1900         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1901                        rdev->sb_page);
1902         md_super_wait(rdev->mddev);
1903         return num_sectors;
1904
1905 }
1906
1907 static int
1908 super_1_allow_new_offset(struct md_rdev *rdev,
1909                          unsigned long long new_offset)
1910 {
1911         /* All necessary checks on new >= old have been done */
1912         struct bitmap *bitmap;
1913         if (new_offset >= rdev->data_offset)
1914                 return 1;
1915
1916         /* with 1.0 metadata, there is no metadata to tread on
1917          * so we can always move back */
1918         if (rdev->mddev->minor_version == 0)
1919                 return 1;
1920
1921         /* otherwise we must be sure not to step on
1922          * any metadata, so stay:
1923          * 36K beyond start of superblock
1924          * beyond end of badblocks
1925          * beyond write-intent bitmap
1926          */
1927         if (rdev->sb_start + (32+4)*2 > new_offset)
1928                 return 0;
1929         bitmap = rdev->mddev->bitmap;
1930         if (bitmap && !rdev->mddev->bitmap_info.file &&
1931             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1932             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1933                 return 0;
1934         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1935                 return 0;
1936
1937         return 1;
1938 }
1939
1940 static struct super_type super_types[] = {
1941         [0] = {
1942                 .name   = "0.90.0",
1943                 .owner  = THIS_MODULE,
1944                 .load_super         = super_90_load,
1945                 .validate_super     = super_90_validate,
1946                 .sync_super         = super_90_sync,
1947                 .rdev_size_change   = super_90_rdev_size_change,
1948                 .allow_new_offset   = super_90_allow_new_offset,
1949         },
1950         [1] = {
1951                 .name   = "md-1",
1952                 .owner  = THIS_MODULE,
1953                 .load_super         = super_1_load,
1954                 .validate_super     = super_1_validate,
1955                 .sync_super         = super_1_sync,
1956                 .rdev_size_change   = super_1_rdev_size_change,
1957                 .allow_new_offset   = super_1_allow_new_offset,
1958         },
1959 };
1960
1961 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1962 {
1963         if (mddev->sync_super) {
1964                 mddev->sync_super(mddev, rdev);
1965                 return;
1966         }
1967
1968         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1969
1970         super_types[mddev->major_version].sync_super(mddev, rdev);
1971 }
1972
1973 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1974 {
1975         struct md_rdev *rdev, *rdev2;
1976
1977         rcu_read_lock();
1978         rdev_for_each_rcu(rdev, mddev1)
1979                 rdev_for_each_rcu(rdev2, mddev2)
1980                         if (rdev->bdev->bd_contains ==
1981                             rdev2->bdev->bd_contains) {
1982                                 rcu_read_unlock();
1983                                 return 1;
1984                         }
1985         rcu_read_unlock();
1986         return 0;
1987 }
1988
1989 static LIST_HEAD(pending_raid_disks);
1990
1991 /*
1992  * Try to register data integrity profile for an mddev
1993  *
1994  * This is called when an array is started and after a disk has been kicked
1995  * from the array. It only succeeds if all working and active component devices
1996  * are integrity capable with matching profiles.
1997  */
1998 int md_integrity_register(struct mddev *mddev)
1999 {
2000         struct md_rdev *rdev, *reference = NULL;
2001
2002         if (list_empty(&mddev->disks))
2003                 return 0; /* nothing to do */
2004         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2005                 return 0; /* shouldn't register, or already is */
2006         rdev_for_each(rdev, mddev) {
2007                 /* skip spares and non-functional disks */
2008                 if (test_bit(Faulty, &rdev->flags))
2009                         continue;
2010                 if (rdev->raid_disk < 0)
2011                         continue;
2012                 if (!reference) {
2013                         /* Use the first rdev as the reference */
2014                         reference = rdev;
2015                         continue;
2016                 }
2017                 /* does this rdev's profile match the reference profile? */
2018                 if (blk_integrity_compare(reference->bdev->bd_disk,
2019                                 rdev->bdev->bd_disk) < 0)
2020                         return -EINVAL;
2021         }
2022         if (!reference || !bdev_get_integrity(reference->bdev))
2023                 return 0;
2024         /*
2025          * All component devices are integrity capable and have matching
2026          * profiles, register the common profile for the md device.
2027          */
2028         if (blk_integrity_register(mddev->gendisk,
2029                         bdev_get_integrity(reference->bdev)) != 0) {
2030                 printk(KERN_ERR "md: failed to register integrity for %s\n",
2031                         mdname(mddev));
2032                 return -EINVAL;
2033         }
2034         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2035         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2036                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2037                        mdname(mddev));
2038                 return -EINVAL;
2039         }
2040         return 0;
2041 }
2042 EXPORT_SYMBOL(md_integrity_register);
2043
2044 /* Disable data integrity if non-capable/non-matching disk is being added */
2045 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2046 {
2047         struct blk_integrity *bi_rdev;
2048         struct blk_integrity *bi_mddev;
2049
2050         if (!mddev->gendisk)
2051                 return;
2052
2053         bi_rdev = bdev_get_integrity(rdev->bdev);
2054         bi_mddev = blk_get_integrity(mddev->gendisk);
2055
2056         if (!bi_mddev) /* nothing to do */
2057                 return;
2058         if (rdev->raid_disk < 0) /* skip spares */
2059                 return;
2060         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2061                                              rdev->bdev->bd_disk) >= 0)
2062                 return;
2063         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2064         blk_integrity_unregister(mddev->gendisk);
2065 }
2066 EXPORT_SYMBOL(md_integrity_add_rdev);
2067
2068 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2069 {
2070         char b[BDEVNAME_SIZE];
2071         struct kobject *ko;
2072         char *s;
2073         int err;
2074
2075         if (rdev->mddev) {
2076                 MD_BUG();
2077                 return -EINVAL;
2078         }
2079
2080         /* prevent duplicates */
2081         if (find_rdev(mddev, rdev->bdev->bd_dev))
2082                 return -EEXIST;
2083
2084         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2085         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2086                         rdev->sectors < mddev->dev_sectors)) {
2087                 if (mddev->pers) {
2088                         /* Cannot change size, so fail
2089                          * If mddev->level <= 0, then we don't care
2090                          * about aligning sizes (e.g. linear)
2091                          */
2092                         if (mddev->level > 0)
2093                                 return -ENOSPC;
2094                 } else
2095                         mddev->dev_sectors = rdev->sectors;
2096         }
2097
2098         /* Verify rdev->desc_nr is unique.
2099          * If it is -1, assign a free number, else
2100          * check number is not in use
2101          */
2102         if (rdev->desc_nr < 0) {
2103                 int choice = 0;
2104                 if (mddev->pers) choice = mddev->raid_disks;
2105                 while (find_rdev_nr(mddev, choice))
2106                         choice++;
2107                 rdev->desc_nr = choice;
2108         } else {
2109                 if (find_rdev_nr(mddev, rdev->desc_nr))
2110                         return -EBUSY;
2111         }
2112         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2113                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2114                        mdname(mddev), mddev->max_disks);
2115                 return -EBUSY;
2116         }
2117         bdevname(rdev->bdev,b);
2118         while ( (s=strchr(b, '/')) != NULL)
2119                 *s = '!';
2120
2121         rdev->mddev = mddev;
2122         printk(KERN_INFO "md: bind<%s>\n", b);
2123
2124         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2125                 goto fail;
2126
2127         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2128         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2129                 /* failure here is OK */;
2130         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2131
2132         list_add_rcu(&rdev->same_set, &mddev->disks);
2133         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2134
2135         /* May as well allow recovery to be retried once */
2136         mddev->recovery_disabled++;
2137
2138         return 0;
2139
2140  fail:
2141         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2142                b, mdname(mddev));
2143         return err;
2144 }
2145
2146 static void md_delayed_delete(struct work_struct *ws)
2147 {
2148         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2149         kobject_del(&rdev->kobj);
2150         kobject_put(&rdev->kobj);
2151 }
2152
2153 static void unbind_rdev_from_array(struct md_rdev * rdev)
2154 {
2155         char b[BDEVNAME_SIZE];
2156         if (!rdev->mddev) {
2157                 MD_BUG();
2158                 return;
2159         }
2160         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2161         list_del_rcu(&rdev->same_set);
2162         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2163         rdev->mddev = NULL;
2164         sysfs_remove_link(&rdev->kobj, "block");
2165         sysfs_put(rdev->sysfs_state);
2166         rdev->sysfs_state = NULL;
2167         rdev->badblocks.count = 0;
2168         /* We need to delay this, otherwise we can deadlock when
2169          * writing to 'remove' to "dev/state".  We also need
2170          * to delay it due to rcu usage.
2171          */
2172         synchronize_rcu();
2173         INIT_WORK(&rdev->del_work, md_delayed_delete);
2174         kobject_get(&rdev->kobj);
2175         queue_work(md_misc_wq, &rdev->del_work);
2176 }
2177
2178 /*
2179  * prevent the device from being mounted, repartitioned or
2180  * otherwise reused by a RAID array (or any other kernel
2181  * subsystem), by bd_claiming the device.
2182  */
2183 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2184 {
2185         int err = 0;
2186         struct block_device *bdev;
2187         char b[BDEVNAME_SIZE];
2188
2189         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2190                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2191         if (IS_ERR(bdev)) {
2192                 printk(KERN_ERR "md: could not open %s.\n",
2193                         __bdevname(dev, b));
2194                 return PTR_ERR(bdev);
2195         }
2196         rdev->bdev = bdev;
2197         return err;
2198 }
2199
2200 static void unlock_rdev(struct md_rdev *rdev)
2201 {
2202         struct block_device *bdev = rdev->bdev;
2203         rdev->bdev = NULL;
2204         if (!bdev)
2205                 MD_BUG();
2206         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2207 }
2208
2209 void md_autodetect_dev(dev_t dev);
2210
2211 static void export_rdev(struct md_rdev * rdev)
2212 {
2213         char b[BDEVNAME_SIZE];
2214         printk(KERN_INFO "md: export_rdev(%s)\n",
2215                 bdevname(rdev->bdev,b));
2216         if (rdev->mddev)
2217                 MD_BUG();
2218         md_rdev_clear(rdev);
2219 #ifndef MODULE
2220         if (test_bit(AutoDetected, &rdev->flags))
2221                 md_autodetect_dev(rdev->bdev->bd_dev);
2222 #endif
2223         unlock_rdev(rdev);
2224         kobject_put(&rdev->kobj);
2225 }
2226
2227 static void kick_rdev_from_array(struct md_rdev * rdev)
2228 {
2229         unbind_rdev_from_array(rdev);
2230         export_rdev(rdev);
2231 }
2232
2233 static void export_array(struct mddev *mddev)
2234 {
2235         struct md_rdev *rdev, *tmp;
2236
2237         rdev_for_each_safe(rdev, tmp, mddev) {
2238                 if (!rdev->mddev) {
2239                         MD_BUG();
2240                         continue;
2241                 }
2242                 kick_rdev_from_array(rdev);
2243         }
2244         if (!list_empty(&mddev->disks))
2245                 MD_BUG();
2246         mddev->raid_disks = 0;
2247         mddev->major_version = 0;
2248 }
2249
2250 static void print_desc(mdp_disk_t *desc)
2251 {
2252         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2253                 desc->major,desc->minor,desc->raid_disk,desc->state);
2254 }
2255
2256 static void print_sb_90(mdp_super_t *sb)
2257 {
2258         int i;
2259
2260         printk(KERN_INFO 
2261                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2262                 sb->major_version, sb->minor_version, sb->patch_version,
2263                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2264                 sb->ctime);
2265         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2266                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2267                 sb->md_minor, sb->layout, sb->chunk_size);
2268         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2269                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2270                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2271                 sb->failed_disks, sb->spare_disks,
2272                 sb->sb_csum, (unsigned long)sb->events_lo);
2273
2274         printk(KERN_INFO);
2275         for (i = 0; i < MD_SB_DISKS; i++) {
2276                 mdp_disk_t *desc;
2277
2278                 desc = sb->disks + i;
2279                 if (desc->number || desc->major || desc->minor ||
2280                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2281                         printk("     D %2d: ", i);
2282                         print_desc(desc);
2283                 }
2284         }
2285         printk(KERN_INFO "md:     THIS: ");
2286         print_desc(&sb->this_disk);
2287 }
2288
2289 static void print_sb_1(struct mdp_superblock_1 *sb)
2290 {
2291         __u8 *uuid;
2292
2293         uuid = sb->set_uuid;
2294         printk(KERN_INFO
2295                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2296                "md:    Name: \"%s\" CT:%llu\n",
2297                 le32_to_cpu(sb->major_version),
2298                 le32_to_cpu(sb->feature_map),
2299                 uuid,
2300                 sb->set_name,
2301                 (unsigned long long)le64_to_cpu(sb->ctime)
2302                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2303
2304         uuid = sb->device_uuid;
2305         printk(KERN_INFO
2306                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2307                         " RO:%llu\n"
2308                "md:     Dev:%08x UUID: %pU\n"
2309                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2310                "md:         (MaxDev:%u) \n",
2311                 le32_to_cpu(sb->level),
2312                 (unsigned long long)le64_to_cpu(sb->size),
2313                 le32_to_cpu(sb->raid_disks),
2314                 le32_to_cpu(sb->layout),
2315                 le32_to_cpu(sb->chunksize),
2316                 (unsigned long long)le64_to_cpu(sb->data_offset),
2317                 (unsigned long long)le64_to_cpu(sb->data_size),
2318                 (unsigned long long)le64_to_cpu(sb->super_offset),
2319                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2320                 le32_to_cpu(sb->dev_number),
2321                 uuid,
2322                 sb->devflags,
2323                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2324                 (unsigned long long)le64_to_cpu(sb->events),
2325                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2326                 le32_to_cpu(sb->sb_csum),
2327                 le32_to_cpu(sb->max_dev)
2328                 );
2329 }
2330
2331 static void print_rdev(struct md_rdev *rdev, int major_version)
2332 {
2333         char b[BDEVNAME_SIZE];
2334         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2335                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2336                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2337                 rdev->desc_nr);
2338         if (rdev->sb_loaded) {
2339                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2340                 switch (major_version) {
2341                 case 0:
2342                         print_sb_90(page_address(rdev->sb_page));
2343                         break;
2344                 case 1:
2345                         print_sb_1(page_address(rdev->sb_page));
2346                         break;
2347                 }
2348         } else
2349                 printk(KERN_INFO "md: no rdev superblock!\n");
2350 }
2351
2352 static void md_print_devices(void)
2353 {
2354         struct list_head *tmp;
2355         struct md_rdev *rdev;
2356         struct mddev *mddev;
2357         char b[BDEVNAME_SIZE];
2358
2359         printk("\n");
2360         printk("md:     **********************************\n");
2361         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2362         printk("md:     **********************************\n");
2363         for_each_mddev(mddev, tmp) {
2364
2365                 if (mddev->bitmap)
2366                         bitmap_print_sb(mddev->bitmap);
2367                 else
2368                         printk("%s: ", mdname(mddev));
2369                 rdev_for_each(rdev, mddev)
2370                         printk("<%s>", bdevname(rdev->bdev,b));
2371                 printk("\n");
2372
2373                 rdev_for_each(rdev, mddev)
2374                         print_rdev(rdev, mddev->major_version);
2375         }
2376         printk("md:     **********************************\n");
2377         printk("\n");
2378 }
2379
2380
2381 static void sync_sbs(struct mddev * mddev, int nospares)
2382 {
2383         /* Update each superblock (in-memory image), but
2384          * if we are allowed to, skip spares which already
2385          * have the right event counter, or have one earlier
2386          * (which would mean they aren't being marked as dirty
2387          * with the rest of the array)
2388          */
2389         struct md_rdev *rdev;
2390         rdev_for_each(rdev, mddev) {
2391                 if (rdev->sb_events == mddev->events ||
2392                     (nospares &&
2393                      rdev->raid_disk < 0 &&
2394                      rdev->sb_events+1 == mddev->events)) {
2395                         /* Don't update this superblock */
2396                         rdev->sb_loaded = 2;
2397                 } else {
2398                         sync_super(mddev, rdev);
2399                         rdev->sb_loaded = 1;
2400                 }
2401         }
2402 }
2403
2404 static void md_update_sb(struct mddev * mddev, int force_change)
2405 {
2406         struct md_rdev *rdev;
2407         int sync_req;
2408         int nospares = 0;
2409         int any_badblocks_changed = 0;
2410
2411 repeat:
2412         /* First make sure individual recovery_offsets are correct */
2413         rdev_for_each(rdev, mddev) {
2414                 if (rdev->raid_disk >= 0 &&
2415                     mddev->delta_disks >= 0 &&
2416                     !test_bit(In_sync, &rdev->flags) &&
2417                     mddev->curr_resync_completed > rdev->recovery_offset)
2418                                 rdev->recovery_offset = mddev->curr_resync_completed;
2419
2420         }       
2421         if (!mddev->persistent) {
2422                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2423                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2424                 if (!mddev->external) {
2425                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2426                         rdev_for_each(rdev, mddev) {
2427                                 if (rdev->badblocks.changed) {
2428                                         rdev->badblocks.changed = 0;
2429                                         md_ack_all_badblocks(&rdev->badblocks);
2430                                         md_error(mddev, rdev);
2431                                 }
2432                                 clear_bit(Blocked, &rdev->flags);
2433                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2434                                 wake_up(&rdev->blocked_wait);
2435                         }
2436                 }
2437                 wake_up(&mddev->sb_wait);
2438                 return;
2439         }
2440
2441         spin_lock_irq(&mddev->write_lock);
2442
2443         mddev->utime = get_seconds();
2444
2445         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2446                 force_change = 1;
2447         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2448                 /* just a clean<-> dirty transition, possibly leave spares alone,
2449                  * though if events isn't the right even/odd, we will have to do
2450                  * spares after all
2451                  */
2452                 nospares = 1;
2453         if (force_change)
2454                 nospares = 0;
2455         if (mddev->degraded)
2456                 /* If the array is degraded, then skipping spares is both
2457                  * dangerous and fairly pointless.
2458                  * Dangerous because a device that was removed from the array
2459                  * might have a event_count that still looks up-to-date,
2460                  * so it can be re-added without a resync.
2461                  * Pointless because if there are any spares to skip,
2462                  * then a recovery will happen and soon that array won't
2463                  * be degraded any more and the spare can go back to sleep then.
2464                  */
2465                 nospares = 0;
2466
2467         sync_req = mddev->in_sync;
2468
2469         /* If this is just a dirty<->clean transition, and the array is clean
2470          * and 'events' is odd, we can roll back to the previous clean state */
2471         if (nospares
2472             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2473             && mddev->can_decrease_events
2474             && mddev->events != 1) {
2475                 mddev->events--;
2476                 mddev->can_decrease_events = 0;
2477         } else {
2478                 /* otherwise we have to go forward and ... */
2479                 mddev->events ++;
2480                 mddev->can_decrease_events = nospares;
2481         }
2482
2483         if (!mddev->events) {
2484                 /*
2485                  * oops, this 64-bit counter should never wrap.
2486                  * Either we are in around ~1 trillion A.C., assuming
2487                  * 1 reboot per second, or we have a bug:
2488                  */
2489                 MD_BUG();
2490                 mddev->events --;
2491         }
2492
2493         rdev_for_each(rdev, mddev) {
2494                 if (rdev->badblocks.changed)
2495                         any_badblocks_changed++;
2496                 if (test_bit(Faulty, &rdev->flags))
2497                         set_bit(FaultRecorded, &rdev->flags);
2498         }
2499
2500         sync_sbs(mddev, nospares);
2501         spin_unlock_irq(&mddev->write_lock);
2502
2503         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2504                  mdname(mddev), mddev->in_sync);
2505
2506         bitmap_update_sb(mddev->bitmap);
2507         rdev_for_each(rdev, mddev) {
2508                 char b[BDEVNAME_SIZE];
2509
2510                 if (rdev->sb_loaded != 1)
2511                         continue; /* no noise on spare devices */
2512
2513                 if (!test_bit(Faulty, &rdev->flags) &&
2514                     rdev->saved_raid_disk == -1) {
2515                         md_super_write(mddev,rdev,
2516                                        rdev->sb_start, rdev->sb_size,
2517                                        rdev->sb_page);
2518                         pr_debug("md: (write) %s's sb offset: %llu\n",
2519                                  bdevname(rdev->bdev, b),
2520                                  (unsigned long long)rdev->sb_start);
2521                         rdev->sb_events = mddev->events;
2522                         if (rdev->badblocks.size) {
2523                                 md_super_write(mddev, rdev,
2524                                                rdev->badblocks.sector,
2525                                                rdev->badblocks.size << 9,
2526                                                rdev->bb_page);
2527                                 rdev->badblocks.size = 0;
2528                         }
2529
2530                 } else if (test_bit(Faulty, &rdev->flags))
2531                         pr_debug("md: %s (skipping faulty)\n",
2532                                  bdevname(rdev->bdev, b));
2533                 else
2534                         pr_debug("(skipping incremental s/r ");
2535
2536                 if (mddev->level == LEVEL_MULTIPATH)
2537                         /* only need to write one superblock... */
2538                         break;
2539         }
2540         md_super_wait(mddev);
2541         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2542
2543         spin_lock_irq(&mddev->write_lock);
2544         if (mddev->in_sync != sync_req ||
2545             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2546                 /* have to write it out again */
2547                 spin_unlock_irq(&mddev->write_lock);
2548                 goto repeat;
2549         }
2550         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2551         spin_unlock_irq(&mddev->write_lock);
2552         wake_up(&mddev->sb_wait);
2553         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2554                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2555
2556         rdev_for_each(rdev, mddev) {
2557                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2558                         clear_bit(Blocked, &rdev->flags);
2559
2560                 if (any_badblocks_changed)
2561                         md_ack_all_badblocks(&rdev->badblocks);
2562                 clear_bit(BlockedBadBlocks, &rdev->flags);
2563                 wake_up(&rdev->blocked_wait);
2564         }
2565 }
2566
2567 /* words written to sysfs files may, or may not, be \n terminated.
2568  * We want to accept with case. For this we use cmd_match.
2569  */
2570 static int cmd_match(const char *cmd, const char *str)
2571 {
2572         /* See if cmd, written into a sysfs file, matches
2573          * str.  They must either be the same, or cmd can
2574          * have a trailing newline
2575          */
2576         while (*cmd && *str && *cmd == *str) {
2577                 cmd++;
2578                 str++;
2579         }
2580         if (*cmd == '\n')
2581                 cmd++;
2582         if (*str || *cmd)
2583                 return 0;
2584         return 1;
2585 }
2586
2587 struct rdev_sysfs_entry {
2588         struct attribute attr;
2589         ssize_t (*show)(struct md_rdev *, char *);
2590         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2591 };
2592
2593 static ssize_t
2594 state_show(struct md_rdev *rdev, char *page)
2595 {
2596         char *sep = "";
2597         size_t len = 0;
2598
2599         if (test_bit(Faulty, &rdev->flags) ||
2600             rdev->badblocks.unacked_exist) {
2601                 len+= sprintf(page+len, "%sfaulty",sep);
2602                 sep = ",";
2603         }
2604         if (test_bit(In_sync, &rdev->flags)) {
2605                 len += sprintf(page+len, "%sin_sync",sep);
2606                 sep = ",";
2607         }
2608         if (test_bit(WriteMostly, &rdev->flags)) {
2609                 len += sprintf(page+len, "%swrite_mostly",sep);
2610                 sep = ",";
2611         }
2612         if (test_bit(Blocked, &rdev->flags) ||
2613             (rdev->badblocks.unacked_exist
2614              && !test_bit(Faulty, &rdev->flags))) {
2615                 len += sprintf(page+len, "%sblocked", sep);
2616                 sep = ",";
2617         }
2618         if (!test_bit(Faulty, &rdev->flags) &&
2619             !test_bit(In_sync, &rdev->flags)) {
2620                 len += sprintf(page+len, "%sspare", sep);
2621                 sep = ",";
2622         }
2623         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2624                 len += sprintf(page+len, "%swrite_error", sep);
2625                 sep = ",";
2626         }
2627         if (test_bit(WantReplacement, &rdev->flags)) {
2628                 len += sprintf(page+len, "%swant_replacement", sep);
2629                 sep = ",";
2630         }
2631         if (test_bit(Replacement, &rdev->flags)) {
2632                 len += sprintf(page+len, "%sreplacement", sep);
2633                 sep = ",";
2634         }
2635
2636         return len+sprintf(page+len, "\n");
2637 }
2638
2639 static ssize_t
2640 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2641 {
2642         /* can write
2643          *  faulty  - simulates an error
2644          *  remove  - disconnects the device
2645          *  writemostly - sets write_mostly
2646          *  -writemostly - clears write_mostly
2647          *  blocked - sets the Blocked flags
2648          *  -blocked - clears the Blocked and possibly simulates an error
2649          *  insync - sets Insync providing device isn't active
2650          *  write_error - sets WriteErrorSeen
2651          *  -write_error - clears WriteErrorSeen
2652          */
2653         int err = -EINVAL;
2654         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2655                 md_error(rdev->mddev, rdev);
2656                 if (test_bit(Faulty, &rdev->flags))
2657                         err = 0;
2658                 else
2659                         err = -EBUSY;
2660         } else if (cmd_match(buf, "remove")) {
2661                 if (rdev->raid_disk >= 0)
2662                         err = -EBUSY;
2663                 else {
2664                         struct mddev *mddev = rdev->mddev;
2665                         kick_rdev_from_array(rdev);
2666                         if (mddev->pers)
2667                                 md_update_sb(mddev, 1);
2668                         md_new_event(mddev);
2669                         err = 0;
2670                 }
2671         } else if (cmd_match(buf, "writemostly")) {
2672                 set_bit(WriteMostly, &rdev->flags);
2673                 err = 0;
2674         } else if (cmd_match(buf, "-writemostly")) {
2675                 clear_bit(WriteMostly, &rdev->flags);
2676                 err = 0;
2677         } else if (cmd_match(buf, "blocked")) {
2678                 set_bit(Blocked, &rdev->flags);
2679                 err = 0;
2680         } else if (cmd_match(buf, "-blocked")) {
2681                 if (!test_bit(Faulty, &rdev->flags) &&
2682                     rdev->badblocks.unacked_exist) {
2683                         /* metadata handler doesn't understand badblocks,
2684                          * so we need to fail the device
2685                          */
2686                         md_error(rdev->mddev, rdev);
2687                 }
2688                 clear_bit(Blocked, &rdev->flags);
2689                 clear_bit(BlockedBadBlocks, &rdev->flags);
2690                 wake_up(&rdev->blocked_wait);
2691                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2692                 md_wakeup_thread(rdev->mddev->thread);
2693
2694                 err = 0;
2695         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2696                 set_bit(In_sync, &rdev->flags);
2697                 err = 0;
2698         } else if (cmd_match(buf, "write_error")) {
2699                 set_bit(WriteErrorSeen, &rdev->flags);
2700                 err = 0;
2701         } else if (cmd_match(buf, "-write_error")) {
2702                 clear_bit(WriteErrorSeen, &rdev->flags);
2703                 err = 0;
2704         } else if (cmd_match(buf, "want_replacement")) {
2705                 /* Any non-spare device that is not a replacement can
2706                  * become want_replacement at any time, but we then need to
2707                  * check if recovery is needed.
2708                  */
2709                 if (rdev->raid_disk >= 0 &&
2710                     !test_bit(Replacement, &rdev->flags))
2711                         set_bit(WantReplacement, &rdev->flags);
2712                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2713                 md_wakeup_thread(rdev->mddev->thread);
2714                 err = 0;
2715         } else if (cmd_match(buf, "-want_replacement")) {
2716                 /* Clearing 'want_replacement' is always allowed.
2717                  * Once replacements starts it is too late though.
2718                  */
2719                 err = 0;
2720                 clear_bit(WantReplacement, &rdev->flags);
2721         } else if (cmd_match(buf, "replacement")) {
2722                 /* Can only set a device as a replacement when array has not
2723                  * yet been started.  Once running, replacement is automatic
2724                  * from spares, or by assigning 'slot'.
2725                  */
2726                 if (rdev->mddev->pers)
2727                         err = -EBUSY;
2728                 else {
2729                         set_bit(Replacement, &rdev->flags);
2730                         err = 0;
2731                 }
2732         } else if (cmd_match(buf, "-replacement")) {
2733                 /* Similarly, can only clear Replacement before start */
2734                 if (rdev->mddev->pers)
2735                         err = -EBUSY;
2736                 else {
2737                         clear_bit(Replacement, &rdev->flags);
2738                         err = 0;
2739                 }
2740         }
2741         if (!err)
2742                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2743         return err ? err : len;
2744 }
2745 static struct rdev_sysfs_entry rdev_state =
2746 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2747
2748 static ssize_t
2749 errors_show(struct md_rdev *rdev, char *page)
2750 {
2751         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2752 }
2753
2754 static ssize_t
2755 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2756 {
2757         char *e;
2758         unsigned long n = simple_strtoul(buf, &e, 10);
2759         if (*buf && (*e == 0 || *e == '\n')) {
2760                 atomic_set(&rdev->corrected_errors, n);
2761                 return len;
2762         }
2763         return -EINVAL;
2764 }
2765 static struct rdev_sysfs_entry rdev_errors =
2766 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2767
2768 static ssize_t
2769 slot_show(struct md_rdev *rdev, char *page)
2770 {
2771         if (rdev->raid_disk < 0)
2772                 return sprintf(page, "none\n");
2773         else
2774                 return sprintf(page, "%d\n", rdev->raid_disk);
2775 }
2776
2777 static ssize_t
2778 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2779 {
2780         char *e;
2781         int err;
2782         int slot = simple_strtoul(buf, &e, 10);
2783         if (strncmp(buf, "none", 4)==0)
2784                 slot = -1;
2785         else if (e==buf || (*e && *e!= '\n'))
2786                 return -EINVAL;
2787         if (rdev->mddev->pers && slot == -1) {
2788                 /* Setting 'slot' on an active array requires also
2789                  * updating the 'rd%d' link, and communicating
2790                  * with the personality with ->hot_*_disk.
2791                  * For now we only support removing
2792                  * failed/spare devices.  This normally happens automatically,
2793                  * but not when the metadata is externally managed.
2794                  */
2795                 if (rdev->raid_disk == -1)
2796                         return -EEXIST;
2797                 /* personality does all needed checks */
2798                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2799                         return -EINVAL;
2800                 err = rdev->mddev->pers->
2801                         hot_remove_disk(rdev->mddev, rdev);
2802                 if (err)
2803                         return err;
2804                 sysfs_unlink_rdev(rdev->mddev, rdev);
2805                 rdev->raid_disk = -1;
2806                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2807                 md_wakeup_thread(rdev->mddev->thread);
2808         } else if (rdev->mddev->pers) {
2809                 /* Activating a spare .. or possibly reactivating
2810                  * if we ever get bitmaps working here.
2811                  */
2812
2813                 if (rdev->raid_disk != -1)
2814                         return -EBUSY;
2815
2816                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2817                         return -EBUSY;
2818
2819                 if (rdev->mddev->pers->hot_add_disk == NULL)
2820                         return -EINVAL;
2821
2822                 if (slot >= rdev->mddev->raid_disks &&
2823                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2824                         return -ENOSPC;
2825
2826                 rdev->raid_disk = slot;
2827                 if (test_bit(In_sync, &rdev->flags))
2828                         rdev->saved_raid_disk = slot;
2829                 else
2830                         rdev->saved_raid_disk = -1;
2831                 clear_bit(In_sync, &rdev->flags);
2832                 err = rdev->mddev->pers->
2833                         hot_add_disk(rdev->mddev, rdev);
2834                 if (err) {
2835                         rdev->raid_disk = -1;
2836                         return err;
2837                 } else
2838                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2839                 if (sysfs_link_rdev(rdev->mddev, rdev))
2840                         /* failure here is OK */;
2841                 /* don't wakeup anyone, leave that to userspace. */
2842         } else {
2843                 if (slot >= rdev->mddev->raid_disks &&
2844                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2845                         return -ENOSPC;
2846                 rdev->raid_disk = slot;
2847                 /* assume it is working */
2848                 clear_bit(Faulty, &rdev->flags);
2849                 clear_bit(WriteMostly, &rdev->flags);
2850                 set_bit(In_sync, &rdev->flags);
2851                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2852         }
2853         return len;
2854 }
2855
2856
2857 static struct rdev_sysfs_entry rdev_slot =
2858 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2859
2860 static ssize_t
2861 offset_show(struct md_rdev *rdev, char *page)
2862 {
2863         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2864 }
2865
2866 static ssize_t
2867 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2868 {
2869         unsigned long long offset;
2870         if (strict_strtoull(buf, 10, &offset) < 0)
2871                 return -EINVAL;
2872         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2873                 return -EBUSY;
2874         if (rdev->sectors && rdev->mddev->external)
2875                 /* Must set offset before size, so overlap checks
2876                  * can be sane */
2877                 return -EBUSY;
2878         rdev->data_offset = offset;
2879         rdev->new_data_offset = offset;
2880         return len;
2881 }
2882
2883 static struct rdev_sysfs_entry rdev_offset =
2884 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2885
2886 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2887 {
2888         return sprintf(page, "%llu\n",
2889                        (unsigned long long)rdev->new_data_offset);
2890 }
2891
2892 static ssize_t new_offset_store(struct md_rdev *rdev,
2893                                 const char *buf, size_t len)
2894 {
2895         unsigned long long new_offset;
2896         struct mddev *mddev = rdev->mddev;
2897
2898         if (strict_strtoull(buf, 10, &new_offset) < 0)
2899                 return -EINVAL;
2900
2901         if (mddev->sync_thread)
2902                 return -EBUSY;
2903         if (new_offset == rdev->data_offset)
2904                 /* reset is always permitted */
2905                 ;
2906         else if (new_offset > rdev->data_offset) {
2907                 /* must not push array size beyond rdev_sectors */
2908                 if (new_offset - rdev->data_offset
2909                     + mddev->dev_sectors > rdev->sectors)
2910                                 return -E2BIG;
2911         }
2912         /* Metadata worries about other space details. */
2913
2914         /* decreasing the offset is inconsistent with a backwards
2915          * reshape.
2916          */
2917         if (new_offset < rdev->data_offset &&
2918             mddev->reshape_backwards)
2919                 return -EINVAL;
2920         /* Increasing offset is inconsistent with forwards
2921          * reshape.  reshape_direction should be set to
2922          * 'backwards' first.
2923          */
2924         if (new_offset > rdev->data_offset &&
2925             !mddev->reshape_backwards)
2926                 return -EINVAL;
2927
2928         if (mddev->pers && mddev->persistent &&
2929             !super_types[mddev->major_version]
2930             .allow_new_offset(rdev, new_offset))
2931                 return -E2BIG;
2932         rdev->new_data_offset = new_offset;
2933         if (new_offset > rdev->data_offset)
2934                 mddev->reshape_backwards = 1;
2935         else if (new_offset < rdev->data_offset)
2936                 mddev->reshape_backwards = 0;
2937
2938         return len;
2939 }
2940 static struct rdev_sysfs_entry rdev_new_offset =
2941 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2942
2943 static ssize_t
2944 rdev_size_show(struct md_rdev *rdev, char *page)
2945 {
2946         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2947 }
2948
2949 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2950 {
2951         /* check if two start/length pairs overlap */
2952         if (s1+l1 <= s2)
2953                 return 0;
2954         if (s2+l2 <= s1)
2955                 return 0;
2956         return 1;
2957 }
2958
2959 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2960 {
2961         unsigned long long blocks;
2962         sector_t new;
2963
2964         if (strict_strtoull(buf, 10, &blocks) < 0)
2965                 return -EINVAL;
2966
2967         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2968                 return -EINVAL; /* sector conversion overflow */
2969
2970         new = blocks * 2;
2971         if (new != blocks * 2)
2972                 return -EINVAL; /* unsigned long long to sector_t overflow */
2973
2974         *sectors = new;
2975         return 0;
2976 }
2977
2978 static ssize_t
2979 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2980 {
2981         struct mddev *my_mddev = rdev->mddev;
2982         sector_t oldsectors = rdev->sectors;
2983         sector_t sectors;
2984
2985         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2986                 return -EINVAL;
2987         if (rdev->data_offset != rdev->new_data_offset)
2988                 return -EINVAL; /* too confusing */
2989         if (my_mddev->pers && rdev->raid_disk >= 0) {
2990                 if (my_mddev->persistent) {
2991                         sectors = super_types[my_mddev->major_version].
2992                                 rdev_size_change(rdev, sectors);
2993                         if (!sectors)
2994                                 return -EBUSY;
2995                 } else if (!sectors)
2996                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2997                                 rdev->data_offset;
2998         }
2999         if (sectors < my_mddev->dev_sectors)
3000                 return -EINVAL; /* component must fit device */
3001
3002         rdev->sectors = sectors;
3003         if (sectors > oldsectors && my_mddev->external) {
3004                 /* need to check that all other rdevs with the same ->bdev
3005                  * do not overlap.  We need to unlock the mddev to avoid
3006                  * a deadlock.  We have already changed rdev->sectors, and if
3007                  * we have to change it back, we will have the lock again.
3008                  */
3009                 struct mddev *mddev;
3010                 int overlap = 0;
3011                 struct list_head *tmp;
3012
3013                 mddev_unlock(my_mddev);
3014                 for_each_mddev(mddev, tmp) {
3015                         struct md_rdev *rdev2;
3016
3017                         mddev_lock(mddev);
3018                         rdev_for_each(rdev2, mddev)
3019                                 if (rdev->bdev == rdev2->bdev &&
3020                                     rdev != rdev2 &&
3021                                     overlaps(rdev->data_offset, rdev->sectors,
3022                                              rdev2->data_offset,
3023                                              rdev2->sectors)) {
3024                                         overlap = 1;
3025                                         break;
3026                                 }
3027                         mddev_unlock(mddev);
3028                         if (overlap) {
3029                                 mddev_put(mddev);
3030                                 break;
3031                         }
3032                 }
3033                 mddev_lock(my_mddev);
3034                 if (overlap) {
3035                         /* Someone else could have slipped in a size
3036                          * change here, but doing so is just silly.
3037                          * We put oldsectors back because we *know* it is
3038                          * safe, and trust userspace not to race with
3039                          * itself
3040                          */
3041                         rdev->sectors = oldsectors;
3042                         return -EBUSY;
3043                 }
3044         }
3045         return len;
3046 }
3047
3048 static struct rdev_sysfs_entry rdev_size =
3049 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3050
3051
3052 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3053 {
3054         unsigned long long recovery_start = rdev->recovery_offset;
3055
3056         if (test_bit(In_sync, &rdev->flags) ||
3057             recovery_start == MaxSector)
3058                 return sprintf(page, "none\n");
3059
3060         return sprintf(page, "%llu\n", recovery_start);
3061 }
3062
3063 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3064 {
3065         unsigned long long recovery_start;
3066
3067         if (cmd_match(buf, "none"))
3068                 recovery_start = MaxSector;
3069         else if (strict_strtoull(buf, 10, &recovery_start))
3070                 return -EINVAL;
3071
3072         if (rdev->mddev->pers &&
3073             rdev->raid_disk >= 0)
3074                 return -EBUSY;
3075
3076         rdev->recovery_offset = recovery_start;
3077         if (recovery_start == MaxSector)
3078                 set_bit(In_sync, &rdev->flags);
3079         else
3080                 clear_bit(In_sync, &rdev->flags);
3081         return len;
3082 }
3083
3084 static struct rdev_sysfs_entry rdev_recovery_start =
3085 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3086
3087
3088 static ssize_t
3089 badblocks_show(struct badblocks *bb, char *page, int unack);
3090 static ssize_t
3091 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3092
3093 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3094 {
3095         return badblocks_show(&rdev->badblocks, page, 0);
3096 }
3097 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3098 {
3099         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3100         /* Maybe that ack was all we needed */
3101         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3102                 wake_up(&rdev->blocked_wait);
3103         return rv;
3104 }
3105 static struct rdev_sysfs_entry rdev_bad_blocks =
3106 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3107
3108
3109 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3110 {
3111         return badblocks_show(&rdev->badblocks, page, 1);
3112 }
3113 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3114 {
3115         return badblocks_store(&rdev->badblocks, page, len, 1);
3116 }
3117 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3118 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3119
3120 static struct attribute *rdev_default_attrs[] = {
3121         &rdev_state.attr,
3122         &rdev_errors.attr,
3123         &rdev_slot.attr,
3124         &rdev_offset.attr,
3125         &rdev_new_offset.attr,
3126         &rdev_size.attr,
3127         &rdev_recovery_start.attr,
3128         &rdev_bad_blocks.attr,
3129         &rdev_unack_bad_blocks.attr,
3130         NULL,
3131 };
3132 static ssize_t
3133 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3134 {
3135         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3136         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3137         struct mddev *mddev = rdev->mddev;
3138         ssize_t rv;
3139
3140         if (!entry->show)
3141                 return -EIO;
3142
3143         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3144         if (!rv) {
3145                 if (rdev->mddev == NULL)
3146                         rv = -EBUSY;
3147                 else
3148                         rv = entry->show(rdev, page);
3149                 mddev_unlock(mddev);
3150         }
3151         return rv;
3152 }
3153
3154 static ssize_t
3155 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3156               const char *page, size_t length)
3157 {
3158         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3159         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3160         ssize_t rv;
3161         struct mddev *mddev = rdev->mddev;
3162
3163         if (!entry->store)
3164                 return -EIO;
3165         if (!capable(CAP_SYS_ADMIN))
3166                 return -EACCES;
3167         rv = mddev ? mddev_lock(mddev): -EBUSY;
3168         if (!rv) {
3169                 if (rdev->mddev == NULL)
3170                         rv = -EBUSY;
3171                 else
3172                         rv = entry->store(rdev, page, length);
3173                 mddev_unlock(mddev);
3174         }
3175         return rv;
3176 }
3177
3178 static void rdev_free(struct kobject *ko)
3179 {
3180         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3181         kfree(rdev);
3182 }
3183 static const struct sysfs_ops rdev_sysfs_ops = {
3184         .show           = rdev_attr_show,
3185         .store          = rdev_attr_store,
3186 };
3187 static struct kobj_type rdev_ktype = {
3188         .release        = rdev_free,
3189         .sysfs_ops      = &rdev_sysfs_ops,
3190         .default_attrs  = rdev_default_attrs,
3191 };
3192
3193 int md_rdev_init(struct md_rdev *rdev)
3194 {
3195         rdev->desc_nr = -1;
3196         rdev->saved_raid_disk = -1;
3197         rdev->raid_disk = -1;
3198         rdev->flags = 0;
3199         rdev->data_offset = 0;
3200         rdev->new_data_offset = 0;
3201         rdev->sb_events = 0;
3202         rdev->last_read_error.tv_sec  = 0;
3203         rdev->last_read_error.tv_nsec = 0;
3204         rdev->sb_loaded = 0;
3205         rdev->bb_page = NULL;
3206         atomic_set(&rdev->nr_pending, 0);
3207         atomic_set(&rdev->read_errors, 0);
3208         atomic_set(&rdev->corrected_errors, 0);
3209
3210         INIT_LIST_HEAD(&rdev->same_set);
3211         init_waitqueue_head(&rdev->blocked_wait);
3212
3213         /* Add space to store bad block list.
3214          * This reserves the space even on arrays where it cannot
3215          * be used - I wonder if that matters
3216          */
3217         rdev->badblocks.count = 0;
3218         rdev->badblocks.shift = 0;
3219         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3220         seqlock_init(&rdev->badblocks.lock);
3221         if (rdev->badblocks.page == NULL)
3222                 return -ENOMEM;
3223
3224         return 0;
3225 }
3226 EXPORT_SYMBOL_GPL(md_rdev_init);
3227 /*
3228  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3229  *
3230  * mark the device faulty if:
3231  *
3232  *   - the device is nonexistent (zero size)
3233  *   - the device has no valid superblock
3234  *
3235  * a faulty rdev _never_ has rdev->sb set.
3236  */
3237 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3238 {
3239         char b[BDEVNAME_SIZE];
3240         int err;
3241         struct md_rdev *rdev;
3242         sector_t size;
3243
3244         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3245         if (!rdev) {
3246                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3247                 return ERR_PTR(-ENOMEM);
3248         }
3249
3250         err = md_rdev_init(rdev);
3251         if (err)
3252                 goto abort_free;
3253         err = alloc_disk_sb(rdev);
3254         if (err)
3255                 goto abort_free;
3256
3257         err = lock_rdev(rdev, newdev, super_format == -2);
3258         if (err)
3259                 goto abort_free;
3260
3261         kobject_init(&rdev->kobj, &rdev_ktype);
3262
3263         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3264         if (!size) {
3265                 printk(KERN_WARNING 
3266                         "md: %s has zero or unknown size, marking faulty!\n",
3267                         bdevname(rdev->bdev,b));
3268                 err = -EINVAL;
3269                 goto abort_free;
3270         }
3271
3272         if (super_format >= 0) {
3273                 err = super_types[super_format].
3274                         load_super(rdev, NULL, super_minor);
3275                 if (err == -EINVAL) {
3276                         printk(KERN_WARNING
3277                                 "md: %s does not have a valid v%d.%d "
3278                                "superblock, not importing!\n",
3279                                 bdevname(rdev->bdev,b),
3280                                super_format, super_minor);
3281                         goto abort_free;
3282                 }
3283                 if (err < 0) {
3284                         printk(KERN_WARNING 
3285                                 "md: could not read %s's sb, not importing!\n",
3286                                 bdevname(rdev->bdev,b));
3287                         goto abort_free;
3288                 }
3289         }
3290         if (super_format == -1)
3291                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3292                 rdev->badblocks.shift = -1;
3293
3294         return rdev;
3295
3296 abort_free:
3297         if (rdev->bdev)
3298                 unlock_rdev(rdev);
3299         md_rdev_clear(rdev);
3300         kfree(rdev);
3301         return ERR_PTR(err);
3302 }
3303
3304 /*
3305  * Check a full RAID array for plausibility
3306  */
3307
3308
3309 static void analyze_sbs(struct mddev * mddev)
3310 {
3311         int i;
3312         struct md_rdev *rdev, *freshest, *tmp;
3313         char b[BDEVNAME_SIZE];
3314
3315         freshest = NULL;
3316         rdev_for_each_safe(rdev, tmp, mddev)
3317                 switch (super_types[mddev->major_version].
3318                         load_super(rdev, freshest, mddev->minor_version)) {
3319                 case 1:
3320                         freshest = rdev;
3321                         break;
3322                 case 0:
3323                         break;
3324                 default:
3325                         printk( KERN_ERR \
3326                                 "md: fatal superblock inconsistency in %s"
3327                                 " -- removing from array\n", 
3328                                 bdevname(rdev->bdev,b));
3329                         kick_rdev_from_array(rdev);
3330                 }
3331
3332
3333         super_types[mddev->major_version].
3334                 validate_super(mddev, freshest);
3335
3336         i = 0;
3337         rdev_for_each_safe(rdev, tmp, mddev) {
3338                 if (mddev->max_disks &&
3339                     (rdev->desc_nr >= mddev->max_disks ||
3340                      i > mddev->max_disks)) {
3341                         printk(KERN_WARNING
3342                                "md: %s: %s: only %d devices permitted\n",
3343                                mdname(mddev), bdevname(rdev->bdev, b),
3344                                mddev->max_disks);
3345                         kick_rdev_from_array(rdev);
3346                         continue;
3347                 }
3348                 if (rdev != freshest)
3349                         if (super_types[mddev->major_version].
3350                             validate_super(mddev, rdev)) {
3351                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3352                                         " from array!\n",
3353                                         bdevname(rdev->bdev,b));
3354                                 kick_rdev_from_array(rdev);
3355                                 continue;
3356                         }
3357                 if (mddev->level == LEVEL_MULTIPATH) {
3358                         rdev->desc_nr = i++;
3359                         rdev->raid_disk = rdev->desc_nr;
3360                         set_bit(In_sync, &rdev->flags);
3361                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3362                         rdev->raid_disk = -1;
3363                         clear_bit(In_sync, &rdev->flags);
3364                 }
3365         }
3366 }
3367
3368 /* Read a fixed-point number.
3369  * Numbers in sysfs attributes should be in "standard" units where
3370  * possible, so time should be in seconds.
3371  * However we internally use a a much smaller unit such as 
3372  * milliseconds or jiffies.
3373  * This function takes a decimal number with a possible fractional
3374  * component, and produces an integer which is the result of
3375  * multiplying that number by 10^'scale'.
3376  * all without any floating-point arithmetic.
3377  */
3378 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3379 {
3380         unsigned long result = 0;
3381         long decimals = -1;
3382         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3383                 if (*cp == '.')
3384                         decimals = 0;
3385                 else if (decimals < scale) {
3386                         unsigned int value;
3387                         value = *cp - '0';
3388                         result = result * 10 + value;
3389                         if (decimals >= 0)
3390                                 decimals++;
3391                 }
3392                 cp++;
3393         }
3394         if (*cp == '\n')
3395                 cp++;
3396         if (*cp)
3397                 return -EINVAL;
3398         if (decimals < 0)
3399                 decimals = 0;
3400         while (decimals < scale) {
3401                 result *= 10;
3402                 decimals ++;
3403         }
3404         *res = result;
3405         return 0;
3406 }
3407
3408
3409 static void md_safemode_timeout(unsigned long data);
3410
3411 static ssize_t
3412 safe_delay_show(struct mddev *mddev, char *page)
3413 {
3414         int msec = (mddev->safemode_delay*1000)/HZ;
3415         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3416 }
3417 static ssize_t
3418 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3419 {
3420         unsigned long msec;
3421
3422         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3423                 return -EINVAL;
3424         if (msec == 0)
3425                 mddev->safemode_delay = 0;
3426         else {
3427                 unsigned long old_delay = mddev->safemode_delay;
3428                 mddev->safemode_delay = (msec*HZ)/1000;
3429                 if (mddev->safemode_delay == 0)
3430                         mddev->safemode_delay = 1;
3431                 if (mddev->safemode_delay < old_delay)
3432                         md_safemode_timeout((unsigned long)mddev);
3433         }
3434         return len;
3435 }
3436 static struct md_sysfs_entry md_safe_delay =
3437 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3438
3439 static ssize_t
3440 level_show(struct mddev *mddev, char *page)
3441 {
3442         struct md_personality *p = mddev->pers;
3443         if (p)
3444                 return sprintf(page, "%s\n", p->name);
3445         else if (mddev->clevel[0])
3446                 return sprintf(page, "%s\n", mddev->clevel);
3447         else if (mddev->level != LEVEL_NONE)
3448                 return sprintf(page, "%d\n", mddev->level);
3449         else
3450                 return 0;
3451 }
3452
3453 static ssize_t
3454 level_store(struct mddev *mddev, const char *buf, size_t len)
3455 {
3456         char clevel[16];
3457         ssize_t rv = len;
3458         struct md_personality *pers;
3459         long level;
3460         void *priv;
3461         struct md_rdev *rdev;
3462
3463         if (mddev->pers == NULL) {
3464                 if (len == 0)
3465                         return 0;
3466                 if (len >= sizeof(mddev->clevel))
3467                         return -ENOSPC;
3468                 strncpy(mddev->clevel, buf, len);
3469                 if (mddev->clevel[len-1] == '\n')
3470                         len--;
3471                 mddev->clevel[len] = 0;
3472                 mddev->level = LEVEL_NONE;
3473                 return rv;
3474         }
3475
3476         /* request to change the personality.  Need to ensure:
3477          *  - array is not engaged in resync/recovery/reshape
3478          *  - old personality can be suspended
3479          *  - new personality will access other array.
3480          */
3481
3482         if (mddev->sync_thread ||
3483             mddev->reshape_position != MaxSector ||
3484             mddev->sysfs_active)
3485                 return -EBUSY;
3486
3487         if (!mddev->pers->quiesce) {
3488                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3489                        mdname(mddev), mddev->pers->name);
3490                 return -EINVAL;
3491         }
3492
3493         /* Now find the new personality */
3494         if (len == 0 || len >= sizeof(clevel))
3495                 return -EINVAL;
3496         strncpy(clevel, buf, len);
3497         if (clevel[len-1] == '\n')
3498                 len--;
3499         clevel[len] = 0;
3500         if (strict_strtol(clevel, 10, &level))
3501                 level = LEVEL_NONE;
3502
3503         if (request_module("md-%s", clevel) != 0)
3504                 request_module("md-level-%s", clevel);
3505         spin_lock(&pers_lock);
3506         pers = find_pers(level, clevel);
3507         if (!pers || !try_module_get(pers->owner)) {
3508                 spin_unlock(&pers_lock);
3509                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3510                 return -EINVAL;
3511         }
3512         spin_unlock(&pers_lock);
3513
3514         if (pers == mddev->pers) {
3515                 /* Nothing to do! */
3516                 module_put(pers->owner);
3517                 return rv;
3518         }
3519         if (!pers->takeover) {
3520                 module_put(pers->owner);
3521                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3522                        mdname(mddev), clevel);
3523                 return -EINVAL;
3524         }
3525
3526         rdev_for_each(rdev, mddev)
3527                 rdev->new_raid_disk = rdev->raid_disk;
3528
3529         /* ->takeover must set new_* and/or delta_disks
3530          * if it succeeds, and may set them when it fails.
3531          */
3532         priv = pers->takeover(mddev);
3533         if (IS_ERR(priv)) {
3534                 mddev->new_level = mddev->level;
3535                 mddev->new_layout = mddev->layout;
3536                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3537                 mddev->raid_disks -= mddev->delta_disks;
3538                 mddev->delta_disks = 0;
3539                 mddev->reshape_backwards = 0;
3540                 module_put(pers->owner);
3541                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3542                        mdname(mddev), clevel);
3543                 return PTR_ERR(priv);
3544         }
3545
3546         /* Looks like we have a winner */
3547         mddev_suspend(mddev);
3548         mddev->pers->stop(mddev);
3549         
3550         if (mddev->pers->sync_request == NULL &&
3551             pers->sync_request != NULL) {
3552                 /* need to add the md_redundancy_group */
3553                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3554                         printk(KERN_WARNING
3555                                "md: cannot register extra attributes for %s\n",
3556                                mdname(mddev));
3557                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3558         }               
3559         if (mddev->pers->sync_request != NULL &&
3560             pers->sync_request == NULL) {
3561                 /* need to remove the md_redundancy_group */
3562                 if (mddev->to_remove == NULL)
3563                         mddev->to_remove = &md_redundancy_group;
3564         }
3565
3566         if (mddev->pers->sync_request == NULL &&
3567             mddev->external) {
3568                 /* We are converting from a no-redundancy array
3569                  * to a redundancy array and metadata is managed
3570                  * externally so we need to be sure that writes
3571                  * won't block due to a need to transition
3572                  *      clean->dirty
3573                  * until external management is started.
3574                  */
3575                 mddev->in_sync = 0;
3576                 mddev->safemode_delay = 0;
3577                 mddev->safemode = 0;
3578         }
3579
3580         rdev_for_each(rdev, mddev) {
3581                 if (rdev->raid_disk < 0)
3582                         continue;
3583                 if (rdev->new_raid_disk >= mddev->raid_disks)
3584                         rdev->new_raid_disk = -1;
3585                 if (rdev->new_raid_disk == rdev->raid_disk)
3586                         continue;
3587                 sysfs_unlink_rdev(mddev, rdev);
3588         }
3589         rdev_for_each(rdev, mddev) {
3590                 if (rdev->raid_disk < 0)
3591                         continue;
3592                 if (rdev->new_raid_disk == rdev->raid_disk)
3593                         continue;
3594                 rdev->raid_disk = rdev->new_raid_disk;
3595                 if (rdev->raid_disk < 0)
3596                         clear_bit(In_sync, &rdev->flags);
3597                 else {
3598                         if (sysfs_link_rdev(mddev, rdev))
3599                                 printk(KERN_WARNING "md: cannot register rd%d"
3600                                        " for %s after level change\n",
3601                                        rdev->raid_disk, mdname(mddev));
3602                 }
3603         }
3604
3605         module_put(mddev->pers->owner);
3606         mddev->pers = pers;
3607         mddev->private = priv;
3608         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3609         mddev->level = mddev->new_level;
3610         mddev->layout = mddev->new_layout;
3611         mddev->chunk_sectors = mddev->new_chunk_sectors;
3612         mddev->delta_disks = 0;
3613         mddev->reshape_backwards = 0;
3614         mddev->degraded = 0;
3615         if (mddev->pers->sync_request == NULL) {
3616                 /* this is now an array without redundancy, so
3617                  * it must always be in_sync
3618                  */
3619                 mddev->in_sync = 1;
3620                 del_timer_sync(&mddev->safemode_timer);
3621         }
3622         pers->run(mddev);
3623         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3624         mddev_resume(mddev);
3625         sysfs_notify(&mddev->kobj, NULL, "level");
3626         md_new_event(mddev);
3627         return rv;
3628 }
3629
3630 static struct md_sysfs_entry md_level =
3631 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3632
3633
3634 static ssize_t
3635 layout_show(struct mddev *mddev, char *page)
3636 {
3637         /* just a number, not meaningful for all levels */
3638         if (mddev->reshape_position != MaxSector &&
3639             mddev->layout != mddev->new_layout)
3640                 return sprintf(page, "%d (%d)\n",
3641                                mddev->new_layout, mddev->layout);
3642         return sprintf(page, "%d\n", mddev->layout);
3643 }
3644
3645 static ssize_t
3646 layout_store(struct mddev *mddev, const char *buf, size_t len)
3647 {
3648         char *e;
3649         unsigned long n = simple_strtoul(buf, &e, 10);
3650
3651         if (!*buf || (*e && *e != '\n'))
3652                 return -EINVAL;
3653
3654         if (mddev->pers) {
3655                 int err;
3656                 if (mddev->pers->check_reshape == NULL)
3657                         return -EBUSY;
3658                 mddev->new_layout = n;
3659                 err = mddev->pers->check_reshape(mddev);
3660                 if (err) {
3661                         mddev->new_layout = mddev->layout;
3662                         return err;
3663                 }
3664         } else {
3665                 mddev->new_layout = n;
3666                 if (mddev->reshape_position == MaxSector)
3667                         mddev->layout = n;
3668         }
3669         return len;
3670 }
3671 static struct md_sysfs_entry md_layout =
3672 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3673
3674
3675 static ssize_t
3676 raid_disks_show(struct mddev *mddev, char *page)
3677 {
3678         if (mddev->raid_disks == 0)
3679                 return 0;
3680         if (mddev->reshape_position != MaxSector &&
3681             mddev->delta_disks != 0)
3682                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3683                                mddev->raid_disks - mddev->delta_disks);
3684         return sprintf(page, "%d\n", mddev->raid_disks);
3685 }
3686
3687 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3688
3689 static ssize_t
3690 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3691 {
3692         char *e;
3693         int rv = 0;
3694         unsigned long n = simple_strtoul(buf, &e, 10);
3695
3696         if (!*buf || (*e && *e != '\n'))
3697                 return -EINVAL;
3698
3699         if (mddev->pers)
3700                 rv = update_raid_disks(mddev, n);
3701         else if (mddev->reshape_position != MaxSector) {
3702                 struct md_rdev *rdev;
3703                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3704
3705                 rdev_for_each(rdev, mddev) {
3706                         if (olddisks < n &&
3707                             rdev->data_offset < rdev->new_data_offset)
3708                                 return -EINVAL;
3709                         if (olddisks > n &&
3710                             rdev->data_offset > rdev->new_data_offset)
3711                                 return -EINVAL;
3712                 }
3713                 mddev->delta_disks = n - olddisks;
3714                 mddev->raid_disks = n;
3715                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3716         } else
3717                 mddev->raid_disks = n;
3718         return rv ? rv : len;
3719 }
3720 static struct md_sysfs_entry md_raid_disks =
3721 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3722
3723 static ssize_t
3724 chunk_size_show(struct mddev *mddev, char *page)
3725 {
3726         if (mddev->reshape_position != MaxSector &&
3727             mddev->chunk_sectors != mddev->new_chunk_sectors)
3728                 return sprintf(page, "%d (%d)\n",
3729                                mddev->new_chunk_sectors << 9,
3730                                mddev->chunk_sectors << 9);
3731         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3732 }
3733
3734 static ssize_t
3735 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3736 {
3737         char *e;
3738         unsigned long n = simple_strtoul(buf, &e, 10);
3739
3740         if (!*buf || (*e && *e != '\n'))
3741                 return -EINVAL;
3742
3743         if (mddev->pers) {
3744                 int err;
3745                 if (mddev->pers->check_reshape == NULL)
3746                         return -EBUSY;
3747                 mddev->new_chunk_sectors = n >> 9;
3748                 err = mddev->pers->check_reshape(mddev);
3749                 if (err) {
3750                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3751                         return err;
3752                 }
3753         } else {
3754                 mddev->new_chunk_sectors = n >> 9;
3755                 if (mddev->reshape_position == MaxSector)
3756                         mddev->chunk_sectors = n >> 9;
3757         }
3758         return len;
3759 }
3760 static struct md_sysfs_entry md_chunk_size =
3761 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3762
3763 static ssize_t
3764 resync_start_show(struct mddev *mddev, char *page)
3765 {
3766         if (mddev->recovery_cp == MaxSector)
3767                 return sprintf(page, "none\n");
3768         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3769 }
3770
3771 static ssize_t
3772 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3773 {
3774         char *e;
3775         unsigned long long n = simple_strtoull(buf, &e, 10);
3776
3777         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3778                 return -EBUSY;
3779         if (cmd_match(buf, "none"))
3780                 n = MaxSector;
3781         else if (!*buf || (*e && *e != '\n'))
3782                 return -EINVAL;
3783
3784         mddev->recovery_cp = n;
3785         if (mddev->pers)
3786                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3787         return len;
3788 }
3789 static struct md_sysfs_entry md_resync_start =
3790 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3791
3792 /*
3793  * The array state can be:
3794  *
3795  * clear
3796  *     No devices, no size, no level
3797  *     Equivalent to STOP_ARRAY ioctl
3798  * inactive
3799  *     May have some settings, but array is not active
3800  *        all IO results in error
3801  *     When written, doesn't tear down array, but just stops it
3802  * suspended (not supported yet)
3803  *     All IO requests will block. The array can be reconfigured.
3804  *     Writing this, if accepted, will block until array is quiescent
3805  * readonly
3806  *     no resync can happen.  no superblocks get written.
3807  *     write requests fail
3808  * read-auto
3809  *     like readonly, but behaves like 'clean' on a write request.
3810  *
3811  * clean - no pending writes, but otherwise active.
3812  *     When written to inactive array, starts without resync
3813  *     If a write request arrives then
3814  *       if metadata is known, mark 'dirty' and switch to 'active'.
3815  *       if not known, block and switch to write-pending
3816  *     If written to an active array that has pending writes, then fails.
3817  * active
3818  *     fully active: IO and resync can be happening.
3819  *     When written to inactive array, starts with resync
3820  *
3821  * write-pending
3822  *     clean, but writes are blocked waiting for 'active' to be written.
3823  *
3824  * active-idle
3825  *     like active, but no writes have been seen for a while (100msec).
3826  *
3827  */
3828 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3829                    write_pending, active_idle, bad_word};
3830 static char *array_states[] = {
3831         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3832         "write-pending", "active-idle", NULL };
3833
3834 static int match_word(const char *word, char **list)
3835 {
3836         int n;
3837         for (n=0; list[n]; n++)
3838                 if (cmd_match(word, list[n]))
3839                         break;
3840         return n;
3841 }
3842
3843 static ssize_t
3844 array_state_show(struct mddev *mddev, char *page)
3845 {
3846         enum array_state st = inactive;
3847
3848         if (mddev->pers)
3849                 switch(mddev->ro) {
3850                 case 1:
3851                         st = readonly;
3852                         break;
3853                 case 2:
3854                         st = read_auto;
3855                         break;
3856                 case 0:
3857                         if (mddev->in_sync)
3858                                 st = clean;
3859                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3860                                 st = write_pending;
3861                         else if (mddev->safemode)
3862                                 st = active_idle;
3863                         else
3864                                 st = active;
3865                 }
3866         else {
3867                 if (list_empty(&mddev->disks) &&
3868                     mddev->raid_disks == 0 &&
3869                     mddev->dev_sectors == 0)
3870                         st = clear;
3871                 else
3872                         st = inactive;
3873         }
3874         return sprintf(page, "%s\n", array_states[st]);
3875 }
3876
3877 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3878 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3879 static int do_md_run(struct mddev * mddev);
3880 static int restart_array(struct mddev *mddev);
3881
3882 static ssize_t
3883 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3884 {
3885         int err = -EINVAL;
3886         enum array_state st = match_word(buf, array_states);
3887         switch(st) {
3888         case bad_word:
3889                 break;
3890         case clear:
3891                 /* stopping an active array */
3892                 err = do_md_stop(mddev, 0, NULL);
3893                 break;
3894         case inactive:
3895                 /* stopping an active array */
3896                 if (mddev->pers)
3897                         err = do_md_stop(mddev, 2, NULL);
3898                 else
3899                         err = 0; /* already inactive */
3900                 break;
3901         case suspended:
3902                 break; /* not supported yet */
3903         case readonly:
3904                 if (mddev->pers)
3905                         err = md_set_readonly(mddev, NULL);
3906                 else {
3907                         mddev->ro = 1;
3908                         set_disk_ro(mddev->gendisk, 1);
3909                         err = do_md_run(mddev);
3910                 }
3911                 break;
3912         case read_auto:
3913                 if (mddev->pers) {
3914                         if (mddev->ro == 0)
3915                                 err = md_set_readonly(mddev, NULL);
3916                         else if (mddev->ro == 1)
3917                                 err = restart_array(mddev);
3918                         if (err == 0) {
3919                                 mddev->ro = 2;
3920                                 set_disk_ro(mddev->gendisk, 0);
3921                         }
3922                 } else {
3923                         mddev->ro = 2;
3924                         err = do_md_run(mddev);
3925                 }
3926                 break;
3927         case clean:
3928                 if (mddev->pers) {
3929                         restart_array(mddev);
3930                         spin_lock_irq(&mddev->write_lock);
3931                         if (atomic_read(&mddev->writes_pending) == 0) {
3932                                 if (mddev->in_sync == 0) {
3933                                         mddev->in_sync = 1;
3934                                         if (mddev->safemode == 1)
3935                                                 mddev->safemode = 0;
3936                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3937                                 }
3938                                 err = 0;
3939                         } else
3940                                 err = -EBUSY;
3941                         spin_unlock_irq(&mddev->write_lock);
3942                 } else
3943                         err = -EINVAL;
3944                 break;
3945         case active:
3946                 if (mddev->pers) {
3947                         restart_array(mddev);
3948                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3949                         wake_up(&mddev->sb_wait);
3950                         err = 0;
3951                 } else {
3952                         mddev->ro = 0;
3953                         set_disk_ro(mddev->gendisk, 0);
3954                         err = do_md_run(mddev);
3955                 }
3956                 break;
3957         case write_pending:
3958         case active_idle:
3959                 /* these cannot be set */
3960                 break;
3961         }
3962         if (err)
3963                 return err;
3964         else {
3965                 if (mddev->hold_active == UNTIL_IOCTL)
3966                         mddev->hold_active = 0;
3967                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3968                 return len;
3969         }
3970 }
3971 static struct md_sysfs_entry md_array_state =
3972 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3973
3974 static ssize_t
3975 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3976         return sprintf(page, "%d\n",
3977                        atomic_read(&mddev->max_corr_read_errors));
3978 }
3979
3980 static ssize_t
3981 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3982 {
3983         char *e;
3984         unsigned long n = simple_strtoul(buf, &e, 10);
3985
3986         if (*buf && (*e == 0 || *e == '\n')) {
3987                 atomic_set(&mddev->max_corr_read_errors, n);
3988                 return len;
3989         }
3990         return -EINVAL;
3991 }
3992
3993 static struct md_sysfs_entry max_corr_read_errors =
3994 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3995         max_corrected_read_errors_store);
3996
3997 static ssize_t
3998 null_show(struct mddev *mddev, char *page)
3999 {
4000         return -EINVAL;
4001 }
4002
4003 static ssize_t
4004 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4005 {
4006         /* buf must be %d:%d\n? giving major and minor numbers */
4007         /* The new device is added to the array.
4008          * If the array has a persistent superblock, we read the
4009          * superblock to initialise info and check validity.
4010          * Otherwise, only checking done is that in bind_rdev_to_array,
4011          * which mainly checks size.
4012          */
4013         char *e;
4014         int major = simple_strtoul(buf, &e, 10);
4015         int minor;
4016         dev_t dev;
4017         struct md_rdev *rdev;
4018         int err;
4019
4020         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4021                 return -EINVAL;
4022         minor = simple_strtoul(e+1, &e, 10);
4023         if (*e && *e != '\n')
4024                 return -EINVAL;
4025         dev = MKDEV(major, minor);
4026         if (major != MAJOR(dev) ||
4027             minor != MINOR(dev))
4028                 return -EOVERFLOW;
4029
4030
4031         if (mddev->persistent) {
4032                 rdev = md_import_device(dev, mddev->major_version,
4033                                         mddev->minor_version);
4034                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4035                         struct md_rdev *rdev0
4036                                 = list_entry(mddev->disks.next,
4037                                              struct md_rdev, same_set);
4038                         err = super_types[mddev->major_version]
4039                                 .load_super(rdev, rdev0, mddev->minor_version);
4040                         if (err < 0)
4041                                 goto out;
4042                 }
4043         } else if (mddev->external)
4044                 rdev = md_import_device(dev, -2, -1);
4045         else
4046                 rdev = md_import_device(dev, -1, -1);
4047
4048         if (IS_ERR(rdev))
4049                 return PTR_ERR(rdev);
4050         err = bind_rdev_to_array(rdev, mddev);
4051  out:
4052         if (err)
4053                 export_rdev(rdev);
4054         return err ? err : len;
4055 }
4056
4057 static struct md_sysfs_entry md_new_device =
4058 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4059
4060 static ssize_t
4061 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4062 {
4063         char *end;
4064         unsigned long chunk, end_chunk;
4065
4066         if (!mddev->bitmap)
4067                 goto out;
4068         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4069         while (*buf) {
4070                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4071                 if (buf == end) break;
4072                 if (*end == '-') { /* range */
4073                         buf = end + 1;
4074                         end_chunk = simple_strtoul(buf, &end, 0);
4075                         if (buf == end) break;
4076                 }
4077                 if (*end && !isspace(*end)) break;
4078                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4079                 buf = skip_spaces(end);
4080         }
4081         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4082 out:
4083         return len;
4084 }
4085
4086 static struct md_sysfs_entry md_bitmap =
4087 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4088
4089 static ssize_t
4090 size_show(struct mddev *mddev, char *page)
4091 {
4092         return sprintf(page, "%llu\n",
4093                 (unsigned long long)mddev->dev_sectors / 2);
4094 }
4095
4096 static int update_size(struct mddev *mddev, sector_t num_sectors);
4097
4098 static ssize_t
4099 size_store(struct mddev *mddev, const char *buf, size_t len)
4100 {
4101         /* If array is inactive, we can reduce the component size, but
4102          * not increase it (except from 0).
4103          * If array is active, we can try an on-line resize
4104          */
4105         sector_t sectors;
4106         int err = strict_blocks_to_sectors(buf, &sectors);
4107
4108         if (err < 0)
4109                 return err;
4110         if (mddev->pers) {
4111                 err = update_size(mddev, sectors);
4112                 md_update_sb(mddev, 1);
4113         } else {
4114                 if (mddev->dev_sectors == 0 ||
4115                     mddev->dev_sectors > sectors)
4116                         mddev->dev_sectors = sectors;
4117                 else
4118                         err = -ENOSPC;
4119         }
4120         return err ? err : len;
4121 }
4122
4123 static struct md_sysfs_entry md_size =
4124 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4125
4126
4127 /* Metdata version.
4128  * This is one of
4129  *   'none' for arrays with no metadata (good luck...)
4130  *   'external' for arrays with externally managed metadata,
4131  * or N.M for internally known formats
4132  */
4133 static ssize_t
4134 metadata_show(struct mddev *mddev, char *page)
4135 {
4136         if (mddev->persistent)
4137                 return sprintf(page, "%d.%d\n",
4138                                mddev->major_version, mddev->minor_version);
4139         else if (mddev->external)
4140                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4141         else
4142                 return sprintf(page, "none\n");
4143 }
4144
4145 static ssize_t
4146 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4147 {
4148         int major, minor;
4149         char *e;
4150         /* Changing the details of 'external' metadata is
4151          * always permitted.  Otherwise there must be
4152          * no devices attached to the array.
4153          */
4154         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4155                 ;
4156         else if (!list_empty(&mddev->disks))
4157                 return -EBUSY;
4158
4159         if (cmd_match(buf, "none")) {
4160                 mddev->persistent = 0;
4161                 mddev->external = 0;
4162                 mddev->major_version = 0;
4163                 mddev->minor_version = 90;
4164                 return len;
4165         }
4166         if (strncmp(buf, "external:", 9) == 0) {
4167                 size_t namelen = len-9;
4168                 if (namelen >= sizeof(mddev->metadata_type))
4169                         namelen = sizeof(mddev->metadata_type)-1;
4170                 strncpy(mddev->metadata_type, buf+9, namelen);
4171                 mddev->metadata_type[namelen] = 0;
4172                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4173                         mddev->metadata_type[--namelen] = 0;
4174                 mddev->persistent = 0;
4175                 mddev->external = 1;
4176                 mddev->major_version = 0;
4177                 mddev->minor_version = 90;
4178                 return len;
4179         }
4180         major = simple_strtoul(buf, &e, 10);
4181         if (e==buf || *e != '.')
4182                 return -EINVAL;
4183         buf = e+1;
4184         minor = simple_strtoul(buf, &e, 10);
4185         if (e==buf || (*e && *e != '\n') )
4186                 return -EINVAL;
4187         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4188                 return -ENOENT;
4189         mddev->major_version = major;
4190         mddev->minor_version = minor;
4191         mddev->persistent = 1;
4192         mddev->external = 0;
4193         return len;
4194 }
4195
4196 static struct md_sysfs_entry md_metadata =
4197 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4198
4199 static ssize_t
4200 action_show(struct mddev *mddev, char *page)
4201 {
4202         char *type = "idle";
4203         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4204                 type = "frozen";
4205         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4206             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4207                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4208                         type = "reshape";
4209                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4210                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4211                                 type = "resync";
4212                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4213                                 type = "check";
4214                         else
4215                                 type = "repair";
4216                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4217                         type = "recover";
4218         }
4219         return sprintf(page, "%s\n", type);
4220 }
4221
4222 static void reap_sync_thread(struct mddev *mddev);
4223
4224 static ssize_t
4225 action_store(struct mddev *mddev, const char *page, size_t len)
4226 {
4227         if (!mddev->pers || !mddev->pers->sync_request)
4228                 return -EINVAL;
4229
4230         if (cmd_match(page, "frozen"))
4231                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4232         else
4233                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4234
4235         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4236                 if (mddev->sync_thread) {
4237                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4238                         reap_sync_thread(mddev);
4239                 }
4240         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4241                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4242                 return -EBUSY;
4243         else if (cmd_match(page, "resync"))
4244                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4245         else if (cmd_match(page, "recover")) {
4246                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4247                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4248         } else if (cmd_match(page, "reshape")) {
4249                 int err;
4250                 if (mddev->pers->start_reshape == NULL)
4251                         return -EINVAL;
4252                 err = mddev->pers->start_reshape(mddev);
4253                 if (err)
4254                         return err;
4255                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4256         } else {
4257                 if (cmd_match(page, "check"))
4258                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4259                 else if (!cmd_match(page, "repair"))
4260                         return -EINVAL;
4261                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4262                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4263         }
4264         if (mddev->ro == 2) {
4265                 /* A write to sync_action is enough to justify
4266                  * canceling read-auto mode
4267                  */
4268                 mddev->ro = 0;
4269                 md_wakeup_thread(mddev->sync_thread);
4270         }
4271         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4272         md_wakeup_thread(mddev->thread);
4273         sysfs_notify_dirent_safe(mddev->sysfs_action);
4274         return len;
4275 }
4276
4277 static ssize_t
4278 mismatch_cnt_show(struct mddev *mddev, char *page)
4279 {
4280         return sprintf(page, "%llu\n",
4281                        (unsigned long long)
4282                        atomic64_read(&mddev->resync_mismatches));
4283 }
4284
4285 static struct md_sysfs_entry md_scan_mode =
4286 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4287
4288
4289 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4290
4291 static ssize_t
4292 sync_min_show(struct mddev *mddev, char *page)
4293 {
4294         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4295                        mddev->sync_speed_min ? "local": "system");
4296 }
4297
4298 static ssize_t
4299 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4300 {
4301         int min;
4302         char *e;
4303         if (strncmp(buf, "system", 6)==0) {
4304                 mddev->sync_speed_min = 0;
4305                 return len;
4306         }
4307         min = simple_strtoul(buf, &e, 10);
4308         if (buf == e || (*e && *e != '\n') || min <= 0)
4309                 return -EINVAL;
4310         mddev->sync_speed_min = min;
4311         return len;
4312 }
4313
4314 static struct md_sysfs_entry md_sync_min =
4315 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4316
4317 static ssize_t
4318 sync_max_show(struct mddev *mddev, char *page)
4319 {
4320         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4321                        mddev->sync_speed_max ? "local": "system");
4322 }
4323
4324 static ssize_t
4325 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4326 {
4327         int max;
4328         char *e;
4329         if (strncmp(buf, "system", 6)==0) {
4330                 mddev->sync_speed_max = 0;
4331                 return len;
4332         }
4333         max = simple_strtoul(buf, &e, 10);
4334         if (buf == e || (*e && *e != '\n') || max <= 0)
4335                 return -EINVAL;
4336         mddev->sync_speed_max = max;
4337         return len;
4338 }
4339
4340 static struct md_sysfs_entry md_sync_max =
4341 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4342
4343 static ssize_t
4344 degraded_show(struct mddev *mddev, char *page)
4345 {
4346         return sprintf(page, "%d\n", mddev->degraded);
4347 }
4348 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4349
4350 static ssize_t
4351 sync_force_parallel_show(struct mddev *mddev, char *page)
4352 {
4353         return sprintf(page, "%d\n", mddev->parallel_resync);
4354 }
4355
4356 static ssize_t
4357 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4358 {
4359         long n;
4360
4361         if (strict_strtol(buf, 10, &n))
4362                 return -EINVAL;
4363
4364         if (n != 0 && n != 1)
4365                 return -EINVAL;
4366
4367         mddev->parallel_resync = n;
4368
4369         if (mddev->sync_thread)
4370                 wake_up(&resync_wait);
4371
4372         return len;
4373 }
4374
4375 /* force parallel resync, even with shared block devices */
4376 static struct md_sysfs_entry md_sync_force_parallel =
4377 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4378        sync_force_parallel_show, sync_force_parallel_store);
4379
4380 static ssize_t
4381 sync_speed_show(struct mddev *mddev, char *page)
4382 {
4383         unsigned long resync, dt, db;
4384         if (mddev->curr_resync == 0)
4385                 return sprintf(page, "none\n");
4386         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4387         dt = (jiffies - mddev->resync_mark) / HZ;
4388         if (!dt) dt++;
4389         db = resync - mddev->resync_mark_cnt;
4390         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4391 }
4392
4393 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4394
4395 static ssize_t
4396 sync_completed_show(struct mddev *mddev, char *page)
4397 {
4398         unsigned long long max_sectors, resync;
4399
4400         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4401                 return sprintf(page, "none\n");
4402
4403         if (mddev->curr_resync == 1 ||
4404             mddev->curr_resync == 2)
4405                 return sprintf(page, "delayed\n");
4406
4407         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4408             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4409                 max_sectors = mddev->resync_max_sectors;
4410         else
4411                 max_sectors = mddev->dev_sectors;
4412
4413         resync = mddev->curr_resync_completed;
4414         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4415 }
4416
4417 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4418
4419 static ssize_t
4420 min_sync_show(struct mddev *mddev, char *page)
4421 {
4422         return sprintf(page, "%llu\n",
4423                        (unsigned long long)mddev->resync_min);
4424 }
4425 static ssize_t
4426 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4427 {
4428         unsigned long long min;
4429         if (strict_strtoull(buf, 10, &min))
4430                 return -EINVAL;
4431         if (min > mddev->resync_max)
4432                 return -EINVAL;
4433         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4434                 return -EBUSY;
4435
4436         /* Must be a multiple of chunk_size */
4437         if (mddev->chunk_sectors) {
4438                 sector_t temp = min;
4439                 if (sector_div(temp, mddev->chunk_sectors))
4440                         return -EINVAL;
4441         }
4442         mddev->resync_min = min;
4443
4444         return len;
4445 }
4446
4447 static struct md_sysfs_entry md_min_sync =
4448 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4449
4450 static ssize_t
4451 max_sync_show(struct mddev *mddev, char *page)
4452 {
4453         if (mddev->resync_max == MaxSector)
4454                 return sprintf(page, "max\n");
4455         else
4456                 return sprintf(page, "%llu\n",
4457                                (unsigned long long)mddev->resync_max);
4458 }
4459 static ssize_t
4460 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4461 {
4462         if (strncmp(buf, "max", 3) == 0)
4463                 mddev->resync_max = MaxSector;
4464         else {
4465                 unsigned long long max;
4466                 if (strict_strtoull(buf, 10, &max))
4467                         return -EINVAL;
4468                 if (max < mddev->resync_min)
4469                         return -EINVAL;
4470                 if (max < mddev->resync_max &&
4471                     mddev->ro == 0 &&
4472                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4473                         return -EBUSY;
4474
4475                 /* Must be a multiple of chunk_size */
4476                 if (mddev->chunk_sectors) {
4477                         sector_t temp = max;
4478                         if (sector_div(temp, mddev->chunk_sectors))
4479                                 return -EINVAL;
4480                 }
4481                 mddev->resync_max = max;
4482         }
4483         wake_up(&mddev->recovery_wait);
4484         return len;
4485 }
4486
4487 static struct md_sysfs_entry md_max_sync =
4488 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4489
4490 static ssize_t
4491 suspend_lo_show(struct mddev *mddev, char *page)
4492 {
4493         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4494 }
4495
4496 static ssize_t
4497 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4498 {
4499         char *e;
4500         unsigned long long new = simple_strtoull(buf, &e, 10);
4501         unsigned long long old = mddev->suspend_lo;
4502
4503         if (mddev->pers == NULL || 
4504             mddev->pers->quiesce == NULL)
4505                 return -EINVAL;
4506         if (buf == e || (*e && *e != '\n'))
4507                 return -EINVAL;
4508
4509         mddev->suspend_lo = new;
4510         if (new >= old)
4511                 /* Shrinking suspended region */
4512                 mddev->pers->quiesce(mddev, 2);
4513         else {
4514                 /* Expanding suspended region - need to wait */
4515                 mddev->pers->quiesce(mddev, 1);
4516                 mddev->pers->quiesce(mddev, 0);
4517         }
4518         return len;
4519 }
4520 static struct md_sysfs_entry md_suspend_lo =
4521 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4522
4523
4524 static ssize_t
4525 suspend_hi_show(struct mddev *mddev, char *page)
4526 {
4527         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4528 }
4529
4530 static ssize_t
4531 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4532 {
4533         char *e;
4534         unsigned long long new = simple_strtoull(buf, &e, 10);
4535         unsigned long long old = mddev->suspend_hi;
4536
4537         if (mddev->pers == NULL ||
4538             mddev->pers->quiesce == NULL)
4539                 return -EINVAL;
4540         if (buf == e || (*e && *e != '\n'))
4541                 return -EINVAL;
4542
4543         mddev->suspend_hi = new;
4544         if (new <= old)
4545                 /* Shrinking suspended region */
4546                 mddev->pers->quiesce(mddev, 2);
4547         else {
4548                 /* Expanding suspended region - need to wait */
4549                 mddev->pers->quiesce(mddev, 1);
4550                 mddev->pers->quiesce(mddev, 0);
4551         }
4552         return len;
4553 }
4554 static struct md_sysfs_entry md_suspend_hi =
4555 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4556
4557 static ssize_t
4558 reshape_position_show(struct mddev *mddev, char *page)
4559 {
4560         if (mddev->reshape_position != MaxSector)
4561                 return sprintf(page, "%llu\n",
4562                                (unsigned long long)mddev->reshape_position);
4563         strcpy(page, "none\n");
4564         return 5;
4565 }
4566
4567 static ssize_t
4568 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4569 {
4570         struct md_rdev *rdev;
4571         char *e;
4572         unsigned long long new = simple_strtoull(buf, &e, 10);
4573         if (mddev->pers)
4574                 return -EBUSY;
4575         if (buf == e || (*e && *e != '\n'))
4576                 return -EINVAL;
4577         mddev->reshape_position = new;
4578         mddev->delta_disks = 0;
4579         mddev->reshape_backwards = 0;
4580         mddev->new_level = mddev->level;
4581         mddev->new_layout = mddev->layout;
4582         mddev->new_chunk_sectors = mddev->chunk_sectors;
4583         rdev_for_each(rdev, mddev)
4584                 rdev->new_data_offset = rdev->data_offset;
4585         return len;
4586 }
4587
4588 static struct md_sysfs_entry md_reshape_position =
4589 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4590        reshape_position_store);
4591
4592 static ssize_t
4593 reshape_direction_show(struct mddev *mddev, char *page)
4594 {
4595         return sprintf(page, "%s\n",
4596                        mddev->reshape_backwards ? "backwards" : "forwards");
4597 }
4598
4599 static ssize_t
4600 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4601 {
4602         int backwards = 0;
4603         if (cmd_match(buf, "forwards"))
4604                 backwards = 0;
4605         else if (cmd_match(buf, "backwards"))
4606                 backwards = 1;
4607         else
4608                 return -EINVAL;
4609         if (mddev->reshape_backwards == backwards)
4610                 return len;
4611
4612         /* check if we are allowed to change */
4613         if (mddev->delta_disks)
4614                 return -EBUSY;
4615
4616         if (mddev->persistent &&
4617             mddev->major_version == 0)
4618                 return -EINVAL;
4619
4620         mddev->reshape_backwards = backwards;
4621         return len;
4622 }
4623
4624 static struct md_sysfs_entry md_reshape_direction =
4625 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4626        reshape_direction_store);
4627
4628 static ssize_t
4629 array_size_show(struct mddev *mddev, char *page)
4630 {
4631         if (mddev->external_size)
4632                 return sprintf(page, "%llu\n",
4633                                (unsigned long long)mddev->array_sectors/2);
4634         else
4635                 return sprintf(page, "default\n");
4636 }
4637
4638 static ssize_t
4639 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4640 {
4641         sector_t sectors;
4642
4643         if (strncmp(buf, "default", 7) == 0) {
4644                 if (mddev->pers)
4645                         sectors = mddev->pers->size(mddev, 0, 0);
4646                 else
4647                         sectors = mddev->array_sectors;
4648
4649                 mddev->external_size = 0;
4650         } else {
4651                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4652                         return -EINVAL;
4653                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4654                         return -E2BIG;
4655
4656                 mddev->external_size = 1;
4657         }
4658
4659         mddev->array_sectors = sectors;
4660         if (mddev->pers) {
4661                 set_capacity(mddev->gendisk, mddev->array_sectors);
4662                 revalidate_disk(mddev->gendisk);
4663         }
4664         return len;
4665 }
4666
4667 static struct md_sysfs_entry md_array_size =
4668 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4669        array_size_store);
4670
4671 static struct attribute *md_default_attrs[] = {
4672         &md_level.attr,
4673         &md_layout.attr,
4674         &md_raid_disks.attr,
4675         &md_chunk_size.attr,
4676         &md_size.attr,
4677         &md_resync_start.attr,
4678         &md_metadata.attr,
4679         &md_new_device.attr,
4680         &md_safe_delay.attr,
4681         &md_array_state.attr,
4682         &md_reshape_position.attr,
4683         &md_reshape_direction.attr,
4684         &md_array_size.attr,
4685         &max_corr_read_errors.attr,
4686         NULL,
4687 };
4688
4689 static struct attribute *md_redundancy_attrs[] = {
4690         &md_scan_mode.attr,
4691         &md_mismatches.attr,
4692         &md_sync_min.attr,
4693         &md_sync_max.attr,
4694         &md_sync_speed.attr,
4695         &md_sync_force_parallel.attr,
4696         &md_sync_completed.attr,
4697         &md_min_sync.attr,
4698         &md_max_sync.attr,
4699         &md_suspend_lo.attr,
4700         &md_suspend_hi.attr,
4701         &md_bitmap.attr,
4702         &md_degraded.attr,
4703         NULL,
4704 };
4705 static struct attribute_group md_redundancy_group = {
4706         .name = NULL,
4707         .attrs = md_redundancy_attrs,
4708 };
4709
4710
4711 static ssize_t
4712 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4713 {
4714         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4715         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4716         ssize_t rv;
4717
4718         if (!entry->show)
4719                 return -EIO;
4720         spin_lock(&all_mddevs_lock);
4721         if (list_empty(&mddev->all_mddevs)) {
4722                 spin_unlock(&all_mddevs_lock);
4723                 return -EBUSY;
4724         }
4725         mddev_get(mddev);
4726         spin_unlock(&all_mddevs_lock);
4727
4728         rv = mddev_lock(mddev);
4729         if (!rv) {
4730                 rv = entry->show(mddev, page);
4731                 mddev_unlock(mddev);
4732         }
4733         mddev_put(mddev);
4734         return rv;
4735 }
4736
4737 static ssize_t
4738 md_attr_store(struct kobject *kobj, struct attribute *attr,
4739               const char *page, size_t length)
4740 {
4741         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4742         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4743         ssize_t rv;
4744
4745         if (!entry->store)
4746                 return -EIO;
4747         if (!capable(CAP_SYS_ADMIN))
4748                 return -EACCES;
4749         spin_lock(&all_mddevs_lock);
4750         if (list_empty(&mddev->all_mddevs)) {
4751                 spin_unlock(&all_mddevs_lock);
4752                 return -EBUSY;
4753         }
4754         mddev_get(mddev);
4755         spin_unlock(&all_mddevs_lock);
4756         rv = mddev_lock(mddev);
4757         if (!rv) {
4758                 rv = entry->store(mddev, page, length);
4759                 mddev_unlock(mddev);
4760         }
4761         mddev_put(mddev);
4762         return rv;
4763 }
4764
4765 static void md_free(struct kobject *ko)
4766 {
4767         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4768
4769         if (mddev->sysfs_state)
4770                 sysfs_put(mddev->sysfs_state);
4771
4772         if (mddev->gendisk) {
4773                 del_gendisk(mddev->gendisk);
4774                 put_disk(mddev->gendisk);
4775         }
4776         if (mddev->queue)
4777                 blk_cleanup_queue(mddev->queue);
4778
4779         kfree(mddev);
4780 }
4781
4782 static const struct sysfs_ops md_sysfs_ops = {
4783         .show   = md_attr_show,
4784         .store  = md_attr_store,
4785 };
4786 static struct kobj_type md_ktype = {
4787         .release        = md_free,
4788         .sysfs_ops      = &md_sysfs_ops,
4789         .default_attrs  = md_default_attrs,
4790 };
4791
4792 int mdp_major = 0;
4793
4794 static void mddev_delayed_delete(struct work_struct *ws)
4795 {
4796         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4797
4798         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4799         kobject_del(&mddev->kobj);
4800         kobject_put(&mddev->kobj);
4801 }
4802
4803 static int md_alloc(dev_t dev, char *name)
4804 {
4805         static DEFINE_MUTEX(disks_mutex);
4806         struct mddev *mddev = mddev_find(dev);
4807         struct gendisk *disk;
4808         int partitioned;
4809         int shift;
4810         int unit;
4811         int error;
4812
4813         if (!mddev)
4814                 return -ENODEV;
4815
4816         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4817         shift = partitioned ? MdpMinorShift : 0;
4818         unit = MINOR(mddev->unit) >> shift;
4819
4820         /* wait for any previous instance of this device to be
4821          * completely removed (mddev_delayed_delete).
4822          */
4823         flush_workqueue(md_misc_wq);
4824
4825         mutex_lock(&disks_mutex);
4826         error = -EEXIST;
4827         if (mddev->gendisk)
4828                 goto abort;
4829
4830         if (name) {
4831                 /* Need to ensure that 'name' is not a duplicate.
4832                  */
4833                 struct mddev *mddev2;
4834                 spin_lock(&all_mddevs_lock);
4835
4836                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4837                         if (mddev2->gendisk &&
4838                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4839                                 spin_unlock(&all_mddevs_lock);
4840                                 goto abort;
4841                         }
4842                 spin_unlock(&all_mddevs_lock);
4843         }
4844
4845         error = -ENOMEM;
4846         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4847         if (!mddev->queue)
4848                 goto abort;
4849         mddev->queue->queuedata = mddev;
4850
4851         blk_queue_make_request(mddev->queue, md_make_request);
4852         blk_set_stacking_limits(&mddev->queue->limits);
4853
4854         disk = alloc_disk(1 << shift);
4855         if (!disk) {
4856                 blk_cleanup_queue(mddev->queue);
4857                 mddev->queue = NULL;
4858                 goto abort;
4859         }
4860         disk->major = MAJOR(mddev->unit);
4861         disk->first_minor = unit << shift;
4862         if (name)
4863                 strcpy(disk->disk_name, name);
4864         else if (partitioned)
4865                 sprintf(disk->disk_name, "md_d%d", unit);
4866         else
4867                 sprintf(disk->disk_name, "md%d", unit);
4868         disk->fops = &md_fops;
4869         disk->private_data = mddev;
4870         disk->queue = mddev->queue;
4871         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4872         /* Allow extended partitions.  This makes the
4873          * 'mdp' device redundant, but we can't really
4874          * remove it now.
4875          */
4876         disk->flags |= GENHD_FL_EXT_DEVT;
4877         mddev->gendisk = disk;
4878         /* As soon as we call add_disk(), another thread could get
4879          * through to md_open, so make sure it doesn't get too far
4880          */
4881         mutex_lock(&mddev->open_mutex);
4882         add_disk(disk);
4883
4884         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4885                                      &disk_to_dev(disk)->kobj, "%s", "md");
4886         if (error) {
4887                 /* This isn't possible, but as kobject_init_and_add is marked
4888                  * __must_check, we must do something with the result
4889                  */
4890                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4891                        disk->disk_name);
4892                 error = 0;
4893         }
4894         if (mddev->kobj.sd &&
4895             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4896                 printk(KERN_DEBUG "pointless warning\n");
4897         mutex_unlock(&mddev->open_mutex);
4898  abort:
4899         mutex_unlock(&disks_mutex);
4900         if (!error && mddev->kobj.sd) {
4901                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4902                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4903         }
4904         mddev_put(mddev);
4905         return error;
4906 }
4907
4908 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4909 {
4910         md_alloc(dev, NULL);
4911         return NULL;
4912 }
4913
4914 static int add_named_array(const char *val, struct kernel_param *kp)
4915 {
4916         /* val must be "md_*" where * is not all digits.
4917          * We allocate an array with a large free minor number, and
4918          * set the name to val.  val must not already be an active name.
4919          */
4920         int len = strlen(val);
4921         char buf[DISK_NAME_LEN];
4922
4923         while (len && val[len-1] == '\n')
4924                 len--;
4925         if (len >= DISK_NAME_LEN)
4926                 return -E2BIG;
4927         strlcpy(buf, val, len+1);
4928         if (strncmp(buf, "md_", 3) != 0)
4929                 return -EINVAL;
4930         return md_alloc(0, buf);
4931 }
4932
4933 static void md_safemode_timeout(unsigned long data)
4934 {
4935         struct mddev *mddev = (struct mddev *) data;
4936
4937         if (!atomic_read(&mddev->writes_pending)) {
4938                 mddev->safemode = 1;
4939                 if (mddev->external)
4940                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4941         }
4942         md_wakeup_thread(mddev->thread);
4943 }
4944
4945 static int start_dirty_degraded;
4946
4947 int md_run(struct mddev *mddev)
4948 {
4949         int err;
4950         struct md_rdev *rdev;
4951         struct md_personality *pers;
4952
4953         if (list_empty(&mddev->disks))
4954                 /* cannot run an array with no devices.. */
4955                 return -EINVAL;
4956
4957         if (mddev->pers)
4958                 return -EBUSY;
4959         /* Cannot run until previous stop completes properly */
4960         if (mddev->sysfs_active)
4961                 return -EBUSY;
4962
4963         /*
4964          * Analyze all RAID superblock(s)
4965          */
4966         if (!mddev->raid_disks) {
4967                 if (!mddev->persistent)
4968                         return -EINVAL;
4969                 analyze_sbs(mddev);
4970         }
4971
4972         if (mddev->level != LEVEL_NONE)
4973                 request_module("md-level-%d", mddev->level);
4974         else if (mddev->clevel[0])
4975                 request_module("md-%s", mddev->clevel);
4976
4977         /*
4978          * Drop all container device buffers, from now on
4979          * the only valid external interface is through the md
4980          * device.
4981          */
4982         rdev_for_each(rdev, mddev) {
4983                 if (test_bit(Faulty, &rdev->flags))
4984                         continue;
4985                 sync_blockdev(rdev->bdev);
4986                 invalidate_bdev(rdev->bdev);
4987
4988                 /* perform some consistency tests on the device.
4989                  * We don't want the data to overlap the metadata,
4990                  * Internal Bitmap issues have been handled elsewhere.
4991                  */
4992                 if (rdev->meta_bdev) {
4993                         /* Nothing to check */;
4994                 } else if (rdev->data_offset < rdev->sb_start) {
4995                         if (mddev->dev_sectors &&
4996                             rdev->data_offset + mddev->dev_sectors
4997                             > rdev->sb_start) {
4998                                 printk("md: %s: data overlaps metadata\n",
4999                                        mdname(mddev));
5000                                 return -EINVAL;
5001                         }
5002                 } else {
5003                         if (rdev->sb_start + rdev->sb_size/512
5004                             > rdev->data_offset) {
5005                                 printk("md: %s: metadata overlaps data\n",
5006                                        mdname(mddev));
5007                                 return -EINVAL;
5008                         }
5009                 }
5010                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5011         }
5012
5013         if (mddev->bio_set == NULL)
5014                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5015
5016         spin_lock(&pers_lock);
5017         pers = find_pers(mddev->level, mddev->clevel);
5018         if (!pers || !try_module_get(pers->owner)) {
5019                 spin_unlock(&pers_lock);
5020                 if (mddev->level != LEVEL_NONE)
5021                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5022                                mddev->level);
5023                 else
5024                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5025                                mddev->clevel);
5026                 return -EINVAL;
5027         }
5028         mddev->pers = pers;
5029         spin_unlock(&pers_lock);
5030         if (mddev->level != pers->level) {
5031                 mddev->level = pers->level;
5032                 mddev->new_level = pers->level;
5033         }
5034         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5035
5036         if (mddev->reshape_position != MaxSector &&
5037             pers->start_reshape == NULL) {
5038                 /* This personality cannot handle reshaping... */
5039                 mddev->pers = NULL;
5040                 module_put(pers->owner);
5041                 return -EINVAL;
5042         }
5043
5044         if (pers->sync_request) {
5045                 /* Warn if this is a potentially silly
5046                  * configuration.
5047                  */
5048                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5049                 struct md_rdev *rdev2;
5050                 int warned = 0;
5051
5052                 rdev_for_each(rdev, mddev)
5053                         rdev_for_each(rdev2, mddev) {
5054                                 if (rdev < rdev2 &&
5055                                     rdev->bdev->bd_contains ==
5056                                     rdev2->bdev->bd_contains) {
5057                                         printk(KERN_WARNING
5058                                                "%s: WARNING: %s appears to be"
5059                                                " on the same physical disk as"
5060                                                " %s.\n",
5061                                                mdname(mddev),
5062                                                bdevname(rdev->bdev,b),
5063                                                bdevname(rdev2->bdev,b2));
5064                                         warned = 1;
5065                                 }
5066                         }
5067
5068                 if (warned)
5069                         printk(KERN_WARNING
5070                                "True protection against single-disk"
5071                                " failure might be compromised.\n");
5072         }
5073
5074         mddev->recovery = 0;
5075         /* may be over-ridden by personality */
5076         mddev->resync_max_sectors = mddev->dev_sectors;
5077
5078         mddev->ok_start_degraded = start_dirty_degraded;
5079
5080         if (start_readonly && mddev->ro == 0)
5081                 mddev->ro = 2; /* read-only, but switch on first write */
5082
5083         err = mddev->pers->run(mddev);
5084         if (err)
5085                 printk(KERN_ERR "md: pers->run() failed ...\n");
5086         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5087                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5088                           " but 'external_size' not in effect?\n", __func__);
5089                 printk(KERN_ERR
5090                        "md: invalid array_size %llu > default size %llu\n",
5091                        (unsigned long long)mddev->array_sectors / 2,
5092                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5093                 err = -EINVAL;
5094                 mddev->pers->stop(mddev);
5095         }
5096         if (err == 0 && mddev->pers->sync_request &&
5097             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5098                 err = bitmap_create(mddev);
5099                 if (err) {
5100                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5101                                mdname(mddev), err);
5102                         mddev->pers->stop(mddev);
5103                 }
5104         }
5105         if (err) {
5106                 module_put(mddev->pers->owner);
5107                 mddev->pers = NULL;
5108                 bitmap_destroy(mddev);
5109                 return err;
5110         }
5111         if (mddev->pers->sync_request) {
5112                 if (mddev->kobj.sd &&
5113                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5114                         printk(KERN_WARNING
5115                                "md: cannot register extra attributes for %s\n",
5116                                mdname(mddev));
5117                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5118         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5119                 mddev->ro = 0;
5120
5121         atomic_set(&mddev->writes_pending,0);
5122         atomic_set(&mddev->max_corr_read_errors,
5123                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5124         mddev->safemode = 0;
5125         mddev->safemode_timer.function = md_safemode_timeout;
5126         mddev->safemode_timer.data = (unsigned long) mddev;
5127         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5128         mddev->in_sync = 1;
5129         smp_wmb();
5130         mddev->ready = 1;
5131         rdev_for_each(rdev, mddev)
5132                 if (rdev->raid_disk >= 0)
5133                         if (sysfs_link_rdev(mddev, rdev))
5134                                 /* failure here is OK */;
5135         
5136         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5137         
5138         if (mddev->flags)
5139                 md_update_sb(mddev, 0);
5140
5141         md_new_event(mddev);
5142         sysfs_notify_dirent_safe(mddev->sysfs_state);
5143         sysfs_notify_dirent_safe(mddev->sysfs_action);
5144         sysfs_notify(&mddev->kobj, NULL, "degraded");
5145         return 0;
5146 }
5147 EXPORT_SYMBOL_GPL(md_run);
5148
5149 static int do_md_run(struct mddev *mddev)
5150 {
5151         int err;
5152
5153         err = md_run(mddev);
5154         if (err)
5155                 goto out;
5156         err = bitmap_load(mddev);
5157         if (err) {
5158                 bitmap_destroy(mddev);
5159                 goto out;
5160         }
5161
5162         md_wakeup_thread(mddev->thread);
5163         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5164
5165         set_capacity(mddev->gendisk, mddev->array_sectors);
5166         revalidate_disk(mddev->gendisk);
5167         mddev->changed = 1;
5168         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5169 out:
5170         return err;
5171 }
5172
5173 static int restart_array(struct mddev *mddev)
5174 {
5175         struct gendisk *disk = mddev->gendisk;
5176
5177         /* Complain if it has no devices */
5178         if (list_empty(&mddev->disks))
5179                 return -ENXIO;
5180         if (!mddev->pers)
5181                 return -EINVAL;
5182         if (!mddev->ro)
5183                 return -EBUSY;
5184         mddev->safemode = 0;
5185         mddev->ro = 0;
5186         set_disk_ro(disk, 0);
5187         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5188                 mdname(mddev));
5189         /* Kick recovery or resync if necessary */
5190         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5191         md_wakeup_thread(mddev->thread);
5192         md_wakeup_thread(mddev->sync_thread);
5193         sysfs_notify_dirent_safe(mddev->sysfs_state);
5194         return 0;
5195 }
5196
5197 /* similar to deny_write_access, but accounts for our holding a reference
5198  * to the file ourselves */
5199 static int deny_bitmap_write_access(struct file * file)
5200 {
5201         struct inode *inode = file->f_mapping->host;
5202
5203         spin_lock(&inode->i_lock);
5204         if (atomic_read(&inode->i_writecount) > 1) {
5205                 spin_unlock(&inode->i_lock);
5206                 return -ETXTBSY;
5207         }
5208         atomic_set(&inode->i_writecount, -1);
5209         spin_unlock(&inode->i_lock);
5210
5211         return 0;
5212 }
5213
5214 void restore_bitmap_write_access(struct file *file)
5215 {
5216         struct inode *inode = file->f_mapping->host;
5217
5218         spin_lock(&inode->i_lock);
5219         atomic_set(&inode->i_writecount, 1);
5220         spin_unlock(&inode->i_lock);
5221 }
5222
5223 static void md_clean(struct mddev *mddev)
5224 {
5225         mddev->array_sectors = 0;
5226         mddev->external_size = 0;
5227         mddev->dev_sectors = 0;
5228         mddev->raid_disks = 0;
5229         mddev->recovery_cp = 0;
5230         mddev->resync_min = 0;
5231         mddev->resync_max = MaxSector;
5232         mddev->reshape_position = MaxSector;
5233         mddev->external = 0;
5234         mddev->persistent = 0;
5235         mddev->level = LEVEL_NONE;
5236         mddev->clevel[0] = 0;
5237         mddev->flags = 0;
5238         mddev->ro = 0;
5239         mddev->metadata_type[0] = 0;
5240         mddev->chunk_sectors = 0;
5241         mddev->ctime = mddev->utime = 0;
5242         mddev->layout = 0;
5243         mddev->max_disks = 0;
5244         mddev->events = 0;
5245         mddev->can_decrease_events = 0;
5246         mddev->delta_disks = 0;
5247         mddev->reshape_backwards = 0;
5248         mddev->new_level = LEVEL_NONE;
5249         mddev->new_layout = 0;
5250         mddev->new_chunk_sectors = 0;
5251         mddev->curr_resync = 0;
5252         atomic64_set(&mddev->resync_mismatches, 0);
5253         mddev->suspend_lo = mddev->suspend_hi = 0;
5254         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5255         mddev->recovery = 0;
5256         mddev->in_sync = 0;
5257         mddev->changed = 0;
5258         mddev->degraded = 0;
5259         mddev->safemode = 0;
5260         mddev->merge_check_needed = 0;
5261         mddev->bitmap_info.offset = 0;
5262         mddev->bitmap_info.default_offset = 0;
5263         mddev->bitmap_info.default_space = 0;
5264         mddev->bitmap_info.chunksize = 0;
5265         mddev->bitmap_info.daemon_sleep = 0;
5266         mddev->bitmap_info.max_write_behind = 0;
5267 }
5268
5269 static void __md_stop_writes(struct mddev *mddev)
5270 {
5271         if (mddev->sync_thread) {
5272                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5273                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5274                 reap_sync_thread(mddev);
5275         }
5276
5277         del_timer_sync(&mddev->safemode_timer);
5278
5279         bitmap_flush(mddev);
5280         md_super_wait(mddev);
5281
5282         if (!mddev->in_sync || mddev->flags) {
5283                 /* mark array as shutdown cleanly */
5284                 mddev->in_sync = 1;
5285                 md_update_sb(mddev, 1);
5286         }
5287 }
5288
5289 void md_stop_writes(struct mddev *mddev)
5290 {
5291         mddev_lock(mddev);
5292         __md_stop_writes(mddev);
5293         mddev_unlock(mddev);
5294 }
5295 EXPORT_SYMBOL_GPL(md_stop_writes);
5296
5297 void md_stop(struct mddev *mddev)
5298 {
5299         mddev->ready = 0;
5300         mddev->pers->stop(mddev);
5301         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5302                 mddev->to_remove = &md_redundancy_group;
5303         module_put(mddev->pers->owner);
5304         mddev->pers = NULL;
5305         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5306 }
5307 EXPORT_SYMBOL_GPL(md_stop);
5308
5309 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5310 {
5311         int err = 0;
5312         mutex_lock(&mddev->open_mutex);
5313         if (atomic_read(&mddev->openers) > !!bdev) {
5314                 printk("md: %s still in use.\n",mdname(mddev));
5315                 err = -EBUSY;
5316                 goto out;
5317         }
5318         if (bdev)
5319                 sync_blockdev(bdev);
5320         if (mddev->pers) {
5321                 __md_stop_writes(mddev);
5322
5323                 err  = -ENXIO;
5324                 if (mddev->ro==1)
5325                         goto out;
5326                 mddev->ro = 1;
5327                 set_disk_ro(mddev->gendisk, 1);
5328                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5329                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5330                 err = 0;        
5331         }
5332 out:
5333         mutex_unlock(&mddev->open_mutex);
5334         return err;
5335 }
5336
5337 /* mode:
5338  *   0 - completely stop and dis-assemble array
5339  *   2 - stop but do not disassemble array
5340  */
5341 static int do_md_stop(struct mddev * mddev, int mode,
5342                       struct block_device *bdev)
5343 {
5344         struct gendisk *disk = mddev->gendisk;
5345         struct md_rdev *rdev;
5346
5347         mutex_lock(&mddev->open_mutex);
5348         if (atomic_read(&mddev->openers) > !!bdev ||
5349             mddev->sysfs_active) {
5350                 printk("md: %s still in use.\n",mdname(mddev));
5351                 mutex_unlock(&mddev->open_mutex);
5352                 return -EBUSY;
5353         }
5354         if (bdev)
5355                 /* It is possible IO was issued on some other
5356                  * open file which was closed before we took ->open_mutex.
5357                  * As that was not the last close __blkdev_put will not
5358                  * have called sync_blockdev, so we must.
5359                  */
5360                 sync_blockdev(bdev);
5361
5362         if (mddev->pers) {
5363                 if (mddev->ro)
5364                         set_disk_ro(disk, 0);
5365
5366                 __md_stop_writes(mddev);
5367                 md_stop(mddev);
5368                 mddev->queue->merge_bvec_fn = NULL;
5369                 mddev->queue->backing_dev_info.congested_fn = NULL;
5370
5371                 /* tell userspace to handle 'inactive' */
5372                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5373
5374                 rdev_for_each(rdev, mddev)
5375                         if (rdev->raid_disk >= 0)
5376                                 sysfs_unlink_rdev(mddev, rdev);
5377
5378                 set_capacity(disk, 0);
5379                 mutex_unlock(&mddev->open_mutex);
5380                 mddev->changed = 1;
5381                 revalidate_disk(disk);
5382
5383                 if (mddev->ro)
5384                         mddev->ro = 0;
5385         } else
5386                 mutex_unlock(&mddev->open_mutex);
5387         /*
5388          * Free resources if final stop
5389          */
5390         if (mode == 0) {
5391                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5392
5393                 bitmap_destroy(mddev);
5394                 if (mddev->bitmap_info.file) {
5395                         restore_bitmap_write_access(mddev->bitmap_info.file);
5396                         fput(mddev->bitmap_info.file);
5397                         mddev->bitmap_info.file = NULL;
5398                 }
5399                 mddev->bitmap_info.offset = 0;
5400
5401                 export_array(mddev);
5402
5403                 md_clean(mddev);
5404                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5405                 if (mddev->hold_active == UNTIL_STOP)
5406                         mddev->hold_active = 0;
5407         }
5408         blk_integrity_unregister(disk);
5409         md_new_event(mddev);
5410         sysfs_notify_dirent_safe(mddev->sysfs_state);
5411         return 0;
5412 }
5413
5414 #ifndef MODULE
5415 static void autorun_array(struct mddev *mddev)
5416 {
5417         struct md_rdev *rdev;
5418         int err;
5419
5420         if (list_empty(&mddev->disks))
5421                 return;
5422
5423         printk(KERN_INFO "md: running: ");
5424
5425         rdev_for_each(rdev, mddev) {
5426                 char b[BDEVNAME_SIZE];
5427                 printk("<%s>", bdevname(rdev->bdev,b));
5428         }
5429         printk("\n");
5430
5431         err = do_md_run(mddev);
5432         if (err) {
5433                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5434                 do_md_stop(mddev, 0, NULL);
5435         }
5436 }
5437
5438 /*
5439  * lets try to run arrays based on all disks that have arrived
5440  * until now. (those are in pending_raid_disks)
5441  *
5442  * the method: pick the first pending disk, collect all disks with
5443  * the same UUID, remove all from the pending list and put them into
5444  * the 'same_array' list. Then order this list based on superblock
5445  * update time (freshest comes first), kick out 'old' disks and
5446  * compare superblocks. If everything's fine then run it.
5447  *
5448  * If "unit" is allocated, then bump its reference count
5449  */
5450 static void autorun_devices(int part)
5451 {
5452         struct md_rdev *rdev0, *rdev, *tmp;
5453         struct mddev *mddev;
5454         char b[BDEVNAME_SIZE];
5455
5456         printk(KERN_INFO "md: autorun ...\n");
5457         while (!list_empty(&pending_raid_disks)) {
5458                 int unit;
5459                 dev_t dev;
5460                 LIST_HEAD(candidates);
5461                 rdev0 = list_entry(pending_raid_disks.next,
5462                                          struct md_rdev, same_set);
5463
5464                 printk(KERN_INFO "md: considering %s ...\n",
5465                         bdevname(rdev0->bdev,b));
5466                 INIT_LIST_HEAD(&candidates);
5467                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5468                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5469                                 printk(KERN_INFO "md:  adding %s ...\n",
5470                                         bdevname(rdev->bdev,b));
5471                                 list_move(&rdev->same_set, &candidates);
5472                         }
5473                 /*
5474                  * now we have a set of devices, with all of them having
5475                  * mostly sane superblocks. It's time to allocate the
5476                  * mddev.
5477                  */
5478                 if (part) {
5479                         dev = MKDEV(mdp_major,
5480                                     rdev0->preferred_minor << MdpMinorShift);
5481                         unit = MINOR(dev) >> MdpMinorShift;
5482                 } else {
5483                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5484                         unit = MINOR(dev);
5485                 }
5486                 if (rdev0->preferred_minor != unit) {
5487                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5488                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5489                         break;
5490                 }
5491
5492                 md_probe(dev, NULL, NULL);
5493                 mddev = mddev_find(dev);
5494                 if (!mddev || !mddev->gendisk) {
5495                         if (mddev)
5496                                 mddev_put(mddev);
5497                         printk(KERN_ERR
5498                                 "md: cannot allocate memory for md drive.\n");
5499                         break;
5500                 }
5501                 if (mddev_lock(mddev)) 
5502                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5503                                mdname(mddev));
5504                 else if (mddev->raid_disks || mddev->major_version
5505                          || !list_empty(&mddev->disks)) {
5506                         printk(KERN_WARNING 
5507                                 "md: %s already running, cannot run %s\n",
5508                                 mdname(mddev), bdevname(rdev0->bdev,b));
5509                         mddev_unlock(mddev);
5510                 } else {
5511                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5512                         mddev->persistent = 1;
5513                         rdev_for_each_list(rdev, tmp, &candidates) {
5514                                 list_del_init(&rdev->same_set);
5515                                 if (bind_rdev_to_array(rdev, mddev))
5516                                         export_rdev(rdev);
5517                         }
5518                         autorun_array(mddev);
5519                         mddev_unlock(mddev);
5520                 }
5521                 /* on success, candidates will be empty, on error
5522                  * it won't...
5523                  */
5524                 rdev_for_each_list(rdev, tmp, &candidates) {
5525                         list_del_init(&rdev->same_set);
5526                         export_rdev(rdev);
5527                 }
5528                 mddev_put(mddev);
5529         }
5530         printk(KERN_INFO "md: ... autorun DONE.\n");
5531 }
5532 #endif /* !MODULE */
5533
5534 static int get_version(void __user * arg)
5535 {
5536         mdu_version_t ver;
5537
5538         ver.major = MD_MAJOR_VERSION;
5539         ver.minor = MD_MINOR_VERSION;
5540         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5541
5542         if (copy_to_user(arg, &ver, sizeof(ver)))
5543                 return -EFAULT;
5544
5545         return 0;
5546 }
5547
5548 static int get_array_info(struct mddev * mddev, void __user * arg)
5549 {
5550         mdu_array_info_t info;
5551         int nr,working,insync,failed,spare;
5552         struct md_rdev *rdev;
5553
5554         nr = working = insync = failed = spare = 0;
5555         rcu_read_lock();
5556         rdev_for_each_rcu(rdev, mddev) {
5557                 nr++;
5558                 if (test_bit(Faulty, &rdev->flags))
5559                         failed++;
5560                 else {
5561                         working++;
5562                         if (test_bit(In_sync, &rdev->flags))
5563                                 insync++;       
5564                         else
5565                                 spare++;
5566                 }
5567         }
5568         rcu_read_unlock();
5569
5570         info.major_version = mddev->major_version;
5571         info.minor_version = mddev->minor_version;
5572         info.patch_version = MD_PATCHLEVEL_VERSION;
5573         info.ctime         = mddev->ctime;
5574         info.level         = mddev->level;
5575         info.size          = mddev->dev_sectors / 2;
5576         if (info.size != mddev->dev_sectors / 2) /* overflow */
5577                 info.size = -1;
5578         info.nr_disks      = nr;
5579         info.raid_disks    = mddev->raid_disks;
5580         info.md_minor      = mddev->md_minor;
5581         info.not_persistent= !mddev->persistent;
5582
5583         info.utime         = mddev->utime;
5584         info.state         = 0;
5585         if (mddev->in_sync)
5586                 info.state = (1<<MD_SB_CLEAN);
5587         if (mddev->bitmap && mddev->bitmap_info.offset)
5588                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5589         info.active_disks  = insync;
5590         info.working_disks = working;
5591         info.failed_disks  = failed;
5592         info.spare_disks   = spare;
5593
5594         info.layout        = mddev->layout;
5595         info.chunk_size    = mddev->chunk_sectors << 9;
5596
5597         if (copy_to_user(arg, &info, sizeof(info)))
5598                 return -EFAULT;
5599
5600         return 0;
5601 }
5602
5603 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5604 {
5605         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5606         char *ptr, *buf = NULL;
5607         int err = -ENOMEM;
5608
5609         if (md_allow_write(mddev))
5610                 file = kmalloc(sizeof(*file), GFP_NOIO);
5611         else
5612                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5613
5614         if (!file)
5615                 goto out;
5616
5617         /* bitmap disabled, zero the first byte and copy out */
5618         if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5619                 file->pathname[0] = '\0';
5620                 goto copy_out;
5621         }
5622
5623         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5624         if (!buf)
5625                 goto out;
5626
5627         ptr = d_path(&mddev->bitmap->storage.file->f_path,
5628                      buf, sizeof(file->pathname));
5629         if (IS_ERR(ptr))
5630                 goto out;
5631
5632         strcpy(file->pathname, ptr);
5633
5634 copy_out:
5635         err = 0;
5636         if (copy_to_user(arg, file, sizeof(*file)))
5637                 err = -EFAULT;
5638 out:
5639         kfree(buf);
5640         kfree(file);
5641         return err;
5642 }
5643
5644 static int get_disk_info(struct mddev * mddev, void __user * arg)
5645 {
5646         mdu_disk_info_t info;
5647         struct md_rdev *rdev;
5648
5649         if (copy_from_user(&info, arg, sizeof(info)))
5650                 return -EFAULT;
5651
5652         rcu_read_lock();
5653         rdev = find_rdev_nr_rcu(mddev, info.number);
5654         if (rdev) {
5655                 info.major = MAJOR(rdev->bdev->bd_dev);
5656                 info.minor = MINOR(rdev->bdev->bd_dev);
5657                 info.raid_disk = rdev->raid_disk;
5658                 info.state = 0;
5659                 if (test_bit(Faulty, &rdev->flags))
5660                         info.state |= (1<<MD_DISK_FAULTY);
5661                 else if (test_bit(In_sync, &rdev->flags)) {
5662                         info.state |= (1<<MD_DISK_ACTIVE);
5663                         info.state |= (1<<MD_DISK_SYNC);
5664                 }
5665                 if (test_bit(WriteMostly, &rdev->flags))
5666                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5667         } else {
5668                 info.major = info.minor = 0;
5669                 info.raid_disk = -1;
5670                 info.state = (1<<MD_DISK_REMOVED);
5671         }
5672         rcu_read_unlock();
5673
5674         if (copy_to_user(arg, &info, sizeof(info)))
5675                 return -EFAULT;
5676
5677         return 0;
5678 }
5679
5680 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5681 {
5682         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5683         struct md_rdev *rdev;
5684         dev_t dev = MKDEV(info->major,info->minor);
5685
5686         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5687                 return -EOVERFLOW;
5688
5689         if (!mddev->raid_disks) {
5690                 int err;
5691                 /* expecting a device which has a superblock */
5692                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5693                 if (IS_ERR(rdev)) {
5694                         printk(KERN_WARNING 
5695                                 "md: md_import_device returned %ld\n",
5696                                 PTR_ERR(rdev));
5697                         return PTR_ERR(rdev);
5698                 }
5699                 if (!list_empty(&mddev->disks)) {
5700                         struct md_rdev *rdev0
5701                                 = list_entry(mddev->disks.next,
5702                                              struct md_rdev, same_set);
5703                         err = super_types[mddev->major_version]
5704                                 .load_super(rdev, rdev0, mddev->minor_version);
5705                         if (err < 0) {
5706                                 printk(KERN_WARNING 
5707                                         "md: %s has different UUID to %s\n",
5708                                         bdevname(rdev->bdev,b), 
5709                                         bdevname(rdev0->bdev,b2));
5710                                 export_rdev(rdev);
5711                                 return -EINVAL;
5712                         }
5713                 }
5714                 err = bind_rdev_to_array(rdev, mddev);
5715                 if (err)
5716                         export_rdev(rdev);
5717                 return err;
5718         }
5719
5720         /*
5721          * add_new_disk can be used once the array is assembled
5722          * to add "hot spares".  They must already have a superblock
5723          * written
5724          */
5725         if (mddev->pers) {
5726                 int err;
5727                 if (!mddev->pers->hot_add_disk) {
5728                         printk(KERN_WARNING 
5729                                 "%s: personality does not support diskops!\n",
5730                                mdname(mddev));
5731                         return -EINVAL;
5732                 }
5733                 if (mddev->persistent)
5734                         rdev = md_import_device(dev, mddev->major_version,
5735                                                 mddev->minor_version);
5736                 else
5737                         rdev = md_import_device(dev, -1, -1);
5738                 if (IS_ERR(rdev)) {
5739                         printk(KERN_WARNING 
5740                                 "md: md_import_device returned %ld\n",
5741                                 PTR_ERR(rdev));
5742                         return PTR_ERR(rdev);
5743                 }
5744                 /* set saved_raid_disk if appropriate */
5745                 if (!mddev->persistent) {
5746                         if (info->state & (1<<MD_DISK_SYNC)  &&
5747                             info->raid_disk < mddev->raid_disks) {
5748                                 rdev->raid_disk = info->raid_disk;
5749                                 set_bit(In_sync, &rdev->flags);
5750                         } else
5751                                 rdev->raid_disk = -1;
5752                 } else
5753                         super_types[mddev->major_version].
5754                                 validate_super(mddev, rdev);
5755                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5756                      rdev->raid_disk != info->raid_disk) {
5757                         /* This was a hot-add request, but events doesn't
5758                          * match, so reject it.
5759                          */
5760                         export_rdev(rdev);
5761                         return -EINVAL;
5762                 }
5763
5764                 if (test_bit(In_sync, &rdev->flags))
5765                         rdev->saved_raid_disk = rdev->raid_disk;
5766                 else
5767                         rdev->saved_raid_disk = -1;
5768
5769                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5770                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5771                         set_bit(WriteMostly, &rdev->flags);
5772                 else
5773                         clear_bit(WriteMostly, &rdev->flags);
5774
5775                 rdev->raid_disk = -1;
5776                 err = bind_rdev_to_array(rdev, mddev);
5777                 if (!err && !mddev->pers->hot_remove_disk) {
5778                         /* If there is hot_add_disk but no hot_remove_disk
5779                          * then added disks for geometry changes,
5780                          * and should be added immediately.
5781                          */
5782                         super_types[mddev->major_version].
5783                                 validate_super(mddev, rdev);
5784                         err = mddev->pers->hot_add_disk(mddev, rdev);
5785                         if (err)
5786                                 unbind_rdev_from_array(rdev);
5787                 }
5788                 if (err)
5789                         export_rdev(rdev);
5790                 else
5791                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5792
5793                 md_update_sb(mddev, 1);
5794                 if (mddev->degraded)
5795                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5796                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5797                 if (!err)
5798                         md_new_event(mddev);
5799                 md_wakeup_thread(mddev->thread);
5800                 return err;
5801         }
5802
5803         /* otherwise, add_new_disk is only allowed
5804          * for major_version==0 superblocks
5805          */
5806         if (mddev->major_version != 0) {
5807                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5808                        mdname(mddev));
5809                 return -EINVAL;
5810         }
5811
5812         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5813                 int err;
5814                 rdev = md_import_device(dev, -1, 0);
5815                 if (IS_ERR(rdev)) {
5816                         printk(KERN_WARNING 
5817                                 "md: error, md_import_device() returned %ld\n",
5818                                 PTR_ERR(rdev));
5819                         return PTR_ERR(rdev);
5820                 }
5821                 rdev->desc_nr = info->number;
5822                 if (info->raid_disk < mddev->raid_disks)
5823                         rdev->raid_disk = info->raid_disk;
5824                 else
5825                         rdev->raid_disk = -1;
5826
5827                 if (rdev->raid_disk < mddev->raid_disks)
5828                         if (info->state & (1<<MD_DISK_SYNC))
5829                                 set_bit(In_sync, &rdev->flags);
5830
5831                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5832                         set_bit(WriteMostly, &rdev->flags);
5833
5834                 if (!mddev->persistent) {
5835                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5836                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5837                 } else
5838                         rdev->sb_start = calc_dev_sboffset(rdev);
5839                 rdev->sectors = rdev->sb_start;
5840
5841                 err = bind_rdev_to_array(rdev, mddev);
5842                 if (err) {
5843                         export_rdev(rdev);
5844                         return err;
5845                 }
5846         }
5847
5848         return 0;
5849 }
5850
5851 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5852 {
5853         char b[BDEVNAME_SIZE];
5854         struct md_rdev *rdev;
5855
5856         rdev = find_rdev(mddev, dev);
5857         if (!rdev)
5858                 return -ENXIO;
5859
5860         if (rdev->raid_disk >= 0)
5861                 goto busy;
5862
5863         kick_rdev_from_array(rdev);
5864         md_update_sb(mddev, 1);
5865         md_new_event(mddev);
5866
5867         return 0;
5868 busy:
5869         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5870                 bdevname(rdev->bdev,b), mdname(mddev));
5871         return -EBUSY;
5872 }
5873
5874 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5875 {
5876         char b[BDEVNAME_SIZE];
5877         int err;
5878         struct md_rdev *rdev;
5879
5880         if (!mddev->pers)
5881                 return -ENODEV;
5882
5883         if (mddev->major_version != 0) {
5884                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5885                         " version-0 superblocks.\n",
5886                         mdname(mddev));
5887                 return -EINVAL;
5888         }
5889         if (!mddev->pers->hot_add_disk) {
5890                 printk(KERN_WARNING 
5891                         "%s: personality does not support diskops!\n",
5892                         mdname(mddev));
5893                 return -EINVAL;
5894         }
5895
5896         rdev = md_import_device(dev, -1, 0);
5897         if (IS_ERR(rdev)) {
5898                 printk(KERN_WARNING 
5899                         "md: error, md_import_device() returned %ld\n",
5900                         PTR_ERR(rdev));
5901                 return -EINVAL;
5902         }
5903
5904         if (mddev->persistent)
5905                 rdev->sb_start = calc_dev_sboffset(rdev);
5906         else
5907                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5908
5909         rdev->sectors = rdev->sb_start;
5910
5911         if (test_bit(Faulty, &rdev->flags)) {
5912                 printk(KERN_WARNING 
5913                         "md: can not hot-add faulty %s disk to %s!\n",
5914                         bdevname(rdev->bdev,b), mdname(mddev));
5915                 err = -EINVAL;
5916                 goto abort_export;
5917         }
5918         clear_bit(In_sync, &rdev->flags);
5919         rdev->desc_nr = -1;
5920         rdev->saved_raid_disk = -1;
5921         err = bind_rdev_to_array(rdev, mddev);
5922         if (err)
5923                 goto abort_export;
5924
5925         /*
5926          * The rest should better be atomic, we can have disk failures
5927          * noticed in interrupt contexts ...
5928          */
5929
5930         rdev->raid_disk = -1;
5931
5932         md_update_sb(mddev, 1);
5933
5934         /*
5935          * Kick recovery, maybe this spare has to be added to the
5936          * array immediately.
5937          */
5938         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5939         md_wakeup_thread(mddev->thread);
5940         md_new_event(mddev);
5941         return 0;
5942
5943 abort_export:
5944         export_rdev(rdev);
5945         return err;
5946 }
5947
5948 static int set_bitmap_file(struct mddev *mddev, int fd)
5949 {
5950         int err;
5951
5952         if (mddev->pers) {
5953                 if (!mddev->pers->quiesce)
5954                         return -EBUSY;
5955                 if (mddev->recovery || mddev->sync_thread)
5956                         return -EBUSY;
5957                 /* we should be able to change the bitmap.. */
5958         }
5959
5960
5961         if (fd >= 0) {
5962                 if (mddev->bitmap)
5963                         return -EEXIST; /* cannot add when bitmap is present */
5964                 mddev->bitmap_info.file = fget(fd);
5965
5966                 if (mddev->bitmap_info.file == NULL) {
5967                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5968                                mdname(mddev));
5969                         return -EBADF;
5970                 }
5971
5972                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5973                 if (err) {
5974                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5975                                mdname(mddev));
5976                         fput(mddev->bitmap_info.file);
5977                         mddev->bitmap_info.file = NULL;
5978                         return err;
5979                 }
5980                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5981         } else if (mddev->bitmap == NULL)
5982                 return -ENOENT; /* cannot remove what isn't there */
5983         err = 0;
5984         if (mddev->pers) {
5985                 mddev->pers->quiesce(mddev, 1);
5986                 if (fd >= 0) {
5987                         err = bitmap_create(mddev);
5988                         if (!err)
5989                                 err = bitmap_load(mddev);
5990                 }
5991                 if (fd < 0 || err) {
5992                         bitmap_destroy(mddev);
5993                         fd = -1; /* make sure to put the file */
5994                 }
5995                 mddev->pers->quiesce(mddev, 0);
5996         }
5997         if (fd < 0) {
5998                 if (mddev->bitmap_info.file) {
5999                         restore_bitmap_write_access(mddev->bitmap_info.file);
6000                         fput(mddev->bitmap_info.file);
6001                 }
6002                 mddev->bitmap_info.file = NULL;
6003         }
6004
6005         return err;
6006 }
6007
6008 /*
6009  * set_array_info is used two different ways
6010  * The original usage is when creating a new array.
6011  * In this usage, raid_disks is > 0 and it together with
6012  *  level, size, not_persistent,layout,chunksize determine the
6013  *  shape of the array.
6014  *  This will always create an array with a type-0.90.0 superblock.
6015  * The newer usage is when assembling an array.
6016  *  In this case raid_disks will be 0, and the major_version field is
6017  *  use to determine which style super-blocks are to be found on the devices.
6018  *  The minor and patch _version numbers are also kept incase the
6019  *  super_block handler wishes to interpret them.
6020  */
6021 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6022 {
6023
6024         if (info->raid_disks == 0) {
6025                 /* just setting version number for superblock loading */
6026                 if (info->major_version < 0 ||
6027                     info->major_version >= ARRAY_SIZE(super_types) ||
6028                     super_types[info->major_version].name == NULL) {
6029                         /* maybe try to auto-load a module? */
6030                         printk(KERN_INFO 
6031                                 "md: superblock version %d not known\n",
6032                                 info->major_version);
6033                         return -EINVAL;
6034                 }
6035                 mddev->major_version = info->major_version;
6036                 mddev->minor_version = info->minor_version;
6037                 mddev->patch_version = info->patch_version;
6038                 mddev->persistent = !info->not_persistent;
6039                 /* ensure mddev_put doesn't delete this now that there
6040                  * is some minimal configuration.
6041                  */
6042                 mddev->ctime         = get_seconds();
6043                 return 0;
6044         }
6045         mddev->major_version = MD_MAJOR_VERSION;
6046         mddev->minor_version = MD_MINOR_VERSION;
6047         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6048         mddev->ctime         = get_seconds();
6049
6050         mddev->level         = info->level;
6051         mddev->clevel[0]     = 0;
6052         mddev->dev_sectors   = 2 * (sector_t)info->size;
6053         mddev->raid_disks    = info->raid_disks;
6054         /* don't set md_minor, it is determined by which /dev/md* was
6055          * openned
6056          */
6057         if (info->state & (1<<MD_SB_CLEAN))
6058                 mddev->recovery_cp = MaxSector;
6059         else
6060                 mddev->recovery_cp = 0;
6061         mddev->persistent    = ! info->not_persistent;
6062         mddev->external      = 0;
6063
6064         mddev->layout        = info->layout;
6065         mddev->chunk_sectors = info->chunk_size >> 9;
6066
6067         mddev->max_disks     = MD_SB_DISKS;
6068
6069         if (mddev->persistent)
6070                 mddev->flags         = 0;
6071         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6072
6073         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6074         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6075         mddev->bitmap_info.offset = 0;
6076
6077         mddev->reshape_position = MaxSector;
6078
6079         /*
6080          * Generate a 128 bit UUID
6081          */
6082         get_random_bytes(mddev->uuid, 16);
6083
6084         mddev->new_level = mddev->level;
6085         mddev->new_chunk_sectors = mddev->chunk_sectors;
6086         mddev->new_layout = mddev->layout;
6087         mddev->delta_disks = 0;
6088         mddev->reshape_backwards = 0;
6089
6090         return 0;
6091 }
6092
6093 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6094 {
6095         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6096
6097         if (mddev->external_size)
6098                 return;
6099
6100         mddev->array_sectors = array_sectors;
6101 }
6102 EXPORT_SYMBOL(md_set_array_sectors);
6103
6104 static int update_size(struct mddev *mddev, sector_t num_sectors)
6105 {
6106         struct md_rdev *rdev;
6107         int rv;
6108         int fit = (num_sectors == 0);
6109
6110         if (mddev->pers->resize == NULL)
6111                 return -EINVAL;
6112         /* The "num_sectors" is the number of sectors of each device that
6113          * is used.  This can only make sense for arrays with redundancy.
6114          * linear and raid0 always use whatever space is available. We can only
6115          * consider changing this number if no resync or reconstruction is
6116          * happening, and if the new size is acceptable. It must fit before the
6117          * sb_start or, if that is <data_offset, it must fit before the size
6118          * of each device.  If num_sectors is zero, we find the largest size
6119          * that fits.
6120          */
6121         if (mddev->sync_thread)
6122                 return -EBUSY;
6123
6124         rdev_for_each(rdev, mddev) {
6125                 sector_t avail = rdev->sectors;
6126
6127                 if (fit && (num_sectors == 0 || num_sectors > avail))
6128                         num_sectors = avail;
6129                 if (avail < num_sectors)
6130                         return -ENOSPC;
6131         }
6132         rv = mddev->pers->resize(mddev, num_sectors);
6133         if (!rv)
6134                 revalidate_disk(mddev->gendisk);
6135         return rv;
6136 }
6137
6138 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6139 {
6140         int rv;
6141         struct md_rdev *rdev;
6142         /* change the number of raid disks */
6143         if (mddev->pers->check_reshape == NULL)
6144                 return -EINVAL;
6145         if (raid_disks <= 0 ||
6146             (mddev->max_disks && raid_disks >= mddev->max_disks))
6147                 return -EINVAL;
6148         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6149                 return -EBUSY;
6150
6151         rdev_for_each(rdev, mddev) {
6152                 if (mddev->raid_disks < raid_disks &&
6153                     rdev->data_offset < rdev->new_data_offset)
6154                         return -EINVAL;
6155                 if (mddev->raid_disks > raid_disks &&
6156                     rdev->data_offset > rdev->new_data_offset)
6157                         return -EINVAL;
6158         }
6159
6160         mddev->delta_disks = raid_disks - mddev->raid_disks;
6161         if (mddev->delta_disks < 0)
6162                 mddev->reshape_backwards = 1;
6163         else if (mddev->delta_disks > 0)
6164                 mddev->reshape_backwards = 0;
6165
6166         rv = mddev->pers->check_reshape(mddev);
6167         if (rv < 0) {
6168                 mddev->delta_disks = 0;
6169                 mddev->reshape_backwards = 0;
6170         }
6171         return rv;
6172 }
6173
6174
6175 /*
6176  * update_array_info is used to change the configuration of an
6177  * on-line array.
6178  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6179  * fields in the info are checked against the array.
6180  * Any differences that cannot be handled will cause an error.
6181  * Normally, only one change can be managed at a time.
6182  */
6183 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6184 {
6185         int rv = 0;
6186         int cnt = 0;
6187         int state = 0;
6188
6189         /* calculate expected state,ignoring low bits */
6190         if (mddev->bitmap && mddev->bitmap_info.offset)
6191                 state |= (1 << MD_SB_BITMAP_PRESENT);
6192
6193         if (mddev->major_version != info->major_version ||
6194             mddev->minor_version != info->minor_version ||
6195 /*          mddev->patch_version != info->patch_version || */
6196             mddev->ctime         != info->ctime         ||
6197             mddev->level         != info->level         ||
6198 /*          mddev->layout        != info->layout        || */
6199             !mddev->persistent   != info->not_persistent||
6200             mddev->chunk_sectors != info->chunk_size >> 9 ||
6201             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6202             ((state^info->state) & 0xfffffe00)
6203                 )
6204                 return -EINVAL;
6205         /* Check there is only one change */
6206         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6207                 cnt++;
6208         if (mddev->raid_disks != info->raid_disks)
6209                 cnt++;
6210         if (mddev->layout != info->layout)
6211                 cnt++;
6212         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6213                 cnt++;
6214         if (cnt == 0)
6215                 return 0;
6216         if (cnt > 1)
6217                 return -EINVAL;
6218
6219         if (mddev->layout != info->layout) {
6220                 /* Change layout
6221                  * we don't need to do anything at the md level, the
6222                  * personality will take care of it all.
6223                  */
6224                 if (mddev->pers->check_reshape == NULL)
6225                         return -EINVAL;
6226                 else {
6227                         mddev->new_layout = info->layout;
6228                         rv = mddev->pers->check_reshape(mddev);
6229                         if (rv)
6230                                 mddev->new_layout = mddev->layout;
6231                         return rv;
6232                 }
6233         }
6234         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6235                 rv = update_size(mddev, (sector_t)info->size * 2);
6236
6237         if (mddev->raid_disks    != info->raid_disks)
6238                 rv = update_raid_disks(mddev, info->raid_disks);
6239
6240         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6241                 if (mddev->pers->quiesce == NULL)
6242                         return -EINVAL;
6243                 if (mddev->recovery || mddev->sync_thread)
6244                         return -EBUSY;
6245                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6246                         /* add the bitmap */
6247                         if (mddev->bitmap)
6248                                 return -EEXIST;
6249                         if (mddev->bitmap_info.default_offset == 0)
6250                                 return -EINVAL;
6251                         mddev->bitmap_info.offset =
6252                                 mddev->bitmap_info.default_offset;
6253                         mddev->bitmap_info.space =
6254                                 mddev->bitmap_info.default_space;
6255                         mddev->pers->quiesce(mddev, 1);
6256                         rv = bitmap_create(mddev);
6257                         if (!rv)
6258                                 rv = bitmap_load(mddev);
6259                         if (rv)
6260                                 bitmap_destroy(mddev);
6261                         mddev->pers->quiesce(mddev, 0);
6262                 } else {
6263                         /* remove the bitmap */
6264                         if (!mddev->bitmap)
6265                                 return -ENOENT;
6266                         if (mddev->bitmap->storage.file)
6267                                 return -EINVAL;
6268                         mddev->pers->quiesce(mddev, 1);
6269                         bitmap_destroy(mddev);
6270                         mddev->pers->quiesce(mddev, 0);
6271                         mddev->bitmap_info.offset = 0;
6272                 }
6273         }
6274         md_update_sb(mddev, 1);
6275         return rv;
6276 }
6277
6278 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6279 {
6280         struct md_rdev *rdev;
6281         int err = 0;
6282
6283         if (mddev->pers == NULL)
6284                 return -ENODEV;
6285
6286         rcu_read_lock();
6287         rdev = find_rdev_rcu(mddev, dev);
6288         if (!rdev)
6289                 err =  -ENODEV;
6290         else {
6291                 md_error(mddev, rdev);
6292                 if (!test_bit(Faulty, &rdev->flags))
6293                         err = -EBUSY;
6294         }
6295         rcu_read_unlock();
6296         return err;
6297 }
6298
6299 /*
6300  * We have a problem here : there is no easy way to give a CHS
6301  * virtual geometry. We currently pretend that we have a 2 heads
6302  * 4 sectors (with a BIG number of cylinders...). This drives
6303  * dosfs just mad... ;-)
6304  */
6305 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6306 {
6307         struct mddev *mddev = bdev->bd_disk->private_data;
6308
6309         geo->heads = 2;
6310         geo->sectors = 4;
6311         geo->cylinders = mddev->array_sectors / 8;
6312         return 0;
6313 }
6314
6315 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6316                         unsigned int cmd, unsigned long arg)
6317 {
6318         int err = 0;
6319         void __user *argp = (void __user *)arg;
6320         struct mddev *mddev = NULL;
6321         int ro;
6322
6323         switch (cmd) {
6324         case RAID_VERSION:
6325         case GET_ARRAY_INFO:
6326         case GET_DISK_INFO:
6327                 break;
6328         default:
6329                 if (!capable(CAP_SYS_ADMIN))
6330                         return -EACCES;
6331         }
6332
6333         /*
6334          * Commands dealing with the RAID driver but not any
6335          * particular array:
6336          */
6337         switch (cmd)
6338         {
6339                 case RAID_VERSION:
6340                         err = get_version(argp);
6341                         goto done;
6342
6343                 case PRINT_RAID_DEBUG:
6344                         err = 0;
6345                         md_print_devices();
6346                         goto done;
6347
6348 #ifndef MODULE
6349                 case RAID_AUTORUN:
6350                         err = 0;
6351                         autostart_arrays(arg);
6352                         goto done;
6353 #endif
6354                 default:;
6355         }
6356
6357         /*
6358          * Commands creating/starting a new array:
6359          */
6360
6361         mddev = bdev->bd_disk->private_data;
6362
6363         if (!mddev) {
6364                 BUG();
6365                 goto abort;
6366         }
6367
6368         /* Some actions do not requires the mutex */
6369         switch (cmd) {
6370         case GET_ARRAY_INFO:
6371                 if (!mddev->raid_disks && !mddev->external)
6372                         err = -ENODEV;
6373                 else
6374                         err = get_array_info(mddev, argp);
6375                 goto abort;
6376
6377         case GET_DISK_INFO:
6378                 if (!mddev->raid_disks && !mddev->external)
6379                         err = -ENODEV;
6380                 else
6381                         err = get_disk_info(mddev, argp);
6382                 goto abort;
6383
6384         case SET_DISK_FAULTY:
6385                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6386                 goto abort;
6387         }
6388
6389         err = mddev_lock(mddev);
6390         if (err) {
6391                 printk(KERN_INFO 
6392                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6393                         err, cmd);
6394                 goto abort;
6395         }
6396
6397         switch (cmd)
6398         {
6399                 case SET_ARRAY_INFO:
6400                         {
6401                                 mdu_array_info_t info;
6402                                 if (!arg)
6403                                         memset(&info, 0, sizeof(info));
6404                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6405                                         err = -EFAULT;
6406                                         goto abort_unlock;
6407                                 }
6408                                 if (mddev->pers) {
6409                                         err = update_array_info(mddev, &info);
6410                                         if (err) {
6411                                                 printk(KERN_WARNING "md: couldn't update"
6412                                                        " array info. %d\n", err);
6413                                                 goto abort_unlock;
6414                                         }
6415                                         goto done_unlock;
6416                                 }
6417                                 if (!list_empty(&mddev->disks)) {
6418                                         printk(KERN_WARNING
6419                                                "md: array %s already has disks!\n",
6420                                                mdname(mddev));
6421                                         err = -EBUSY;
6422                                         goto abort_unlock;
6423                                 }
6424                                 if (mddev->raid_disks) {
6425                                         printk(KERN_WARNING
6426                                                "md: array %s already initialised!\n",
6427                                                mdname(mddev));
6428                                         err = -EBUSY;
6429                                         goto abort_unlock;
6430                                 }
6431                                 err = set_array_info(mddev, &info);
6432                                 if (err) {
6433                                         printk(KERN_WARNING "md: couldn't set"
6434                                                " array info. %d\n", err);
6435                                         goto abort_unlock;
6436                                 }
6437                         }
6438                         goto done_unlock;
6439
6440                 default:;
6441         }
6442
6443         /*
6444          * Commands querying/configuring an existing array:
6445          */
6446         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6447          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6448         if ((!mddev->raid_disks && !mddev->external)
6449             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6450             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6451             && cmd != GET_BITMAP_FILE) {
6452                 err = -ENODEV;
6453                 goto abort_unlock;
6454         }
6455
6456         /*
6457          * Commands even a read-only array can execute:
6458          */
6459         switch (cmd)
6460         {
6461                 case GET_BITMAP_FILE:
6462                         err = get_bitmap_file(mddev, argp);
6463                         goto done_unlock;
6464
6465                 case RESTART_ARRAY_RW:
6466                         err = restart_array(mddev);
6467                         goto done_unlock;
6468
6469                 case STOP_ARRAY:
6470                         err = do_md_stop(mddev, 0, bdev);
6471                         goto done_unlock;
6472
6473                 case STOP_ARRAY_RO:
6474                         err = md_set_readonly(mddev, bdev);
6475                         goto done_unlock;
6476
6477                 case BLKROSET:
6478                         if (get_user(ro, (int __user *)(arg))) {
6479                                 err = -EFAULT;
6480                                 goto done_unlock;
6481                         }
6482                         err = -EINVAL;
6483
6484                         /* if the bdev is going readonly the value of mddev->ro
6485                          * does not matter, no writes are coming
6486                          */
6487                         if (ro)
6488                                 goto done_unlock;
6489
6490                         /* are we are already prepared for writes? */
6491                         if (mddev->ro != 1)
6492                                 goto done_unlock;
6493
6494                         /* transitioning to readauto need only happen for
6495                          * arrays that call md_write_start
6496                          */
6497                         if (mddev->pers) {
6498                                 err = restart_array(mddev);
6499                                 if (err == 0) {
6500                                         mddev->ro = 2;
6501                                         set_disk_ro(mddev->gendisk, 0);
6502                                 }
6503                         }
6504                         goto done_unlock;
6505         }
6506
6507         /*
6508          * The remaining ioctls are changing the state of the
6509          * superblock, so we do not allow them on read-only arrays.
6510          * However non-MD ioctls (e.g. get-size) will still come through
6511          * here and hit the 'default' below, so only disallow
6512          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6513          */
6514         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6515                 if (mddev->ro == 2) {
6516                         mddev->ro = 0;
6517                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6518                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6519                         md_wakeup_thread(mddev->thread);
6520                 } else {
6521                         err = -EROFS;
6522                         goto abort_unlock;
6523                 }
6524         }
6525
6526         switch (cmd)
6527         {
6528                 case ADD_NEW_DISK:
6529                 {
6530                         mdu_disk_info_t info;
6531                         if (copy_from_user(&info, argp, sizeof(info)))
6532                                 err = -EFAULT;
6533                         else
6534                                 err = add_new_disk(mddev, &info);
6535                         goto done_unlock;
6536                 }
6537
6538                 case HOT_REMOVE_DISK:
6539                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6540                         goto done_unlock;
6541
6542                 case HOT_ADD_DISK:
6543                         err = hot_add_disk(mddev, new_decode_dev(arg));
6544                         goto done_unlock;
6545
6546                 case RUN_ARRAY:
6547                         err = do_md_run(mddev);
6548                         goto done_unlock;
6549
6550                 case SET_BITMAP_FILE:
6551                         err = set_bitmap_file(mddev, (int)arg);
6552                         goto done_unlock;
6553
6554                 default:
6555                         err = -EINVAL;
6556                         goto abort_unlock;
6557         }
6558
6559 done_unlock:
6560 abort_unlock:
6561         if (mddev->hold_active == UNTIL_IOCTL &&
6562             err != -EINVAL)
6563                 mddev->hold_active = 0;
6564         mddev_unlock(mddev);
6565
6566         return err;
6567 done:
6568         if (err)
6569                 MD_BUG();
6570 abort:
6571         return err;
6572 }
6573 #ifdef CONFIG_COMPAT
6574 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6575                     unsigned int cmd, unsigned long arg)
6576 {
6577         switch (cmd) {
6578         case HOT_REMOVE_DISK:
6579         case HOT_ADD_DISK:
6580         case SET_DISK_FAULTY:
6581         case SET_BITMAP_FILE:
6582                 /* These take in integer arg, do not convert */
6583                 break;
6584         default:
6585                 arg = (unsigned long)compat_ptr(arg);
6586                 break;
6587         }
6588
6589         return md_ioctl(bdev, mode, cmd, arg);
6590 }
6591 #endif /* CONFIG_COMPAT */
6592
6593 static int md_open(struct block_device *bdev, fmode_t mode)
6594 {
6595         /*
6596          * Succeed if we can lock the mddev, which confirms that
6597          * it isn't being stopped right now.
6598          */
6599         struct mddev *mddev = mddev_find(bdev->bd_dev);
6600         int err;
6601
6602         if (!mddev)
6603                 return -ENODEV;
6604
6605         if (mddev->gendisk != bdev->bd_disk) {
6606                 /* we are racing with mddev_put which is discarding this
6607                  * bd_disk.
6608                  */
6609                 mddev_put(mddev);
6610                 /* Wait until bdev->bd_disk is definitely gone */
6611                 flush_workqueue(md_misc_wq);
6612                 /* Then retry the open from the top */
6613                 return -ERESTARTSYS;
6614         }
6615         BUG_ON(mddev != bdev->bd_disk->private_data);
6616
6617         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6618                 goto out;
6619
6620         err = 0;
6621         atomic_inc(&mddev->openers);
6622         mutex_unlock(&mddev->open_mutex);
6623
6624         check_disk_change(bdev);
6625  out:
6626         return err;
6627 }
6628
6629 static int md_release(struct gendisk *disk, fmode_t mode)
6630 {
6631         struct mddev *mddev = disk->private_data;
6632
6633         BUG_ON(!mddev);
6634         atomic_dec(&mddev->openers);
6635         mddev_put(mddev);
6636
6637         return 0;
6638 }
6639
6640 static int md_media_changed(struct gendisk *disk)
6641 {
6642         struct mddev *mddev = disk->private_data;
6643
6644         return mddev->changed;
6645 }
6646
6647 static int md_revalidate(struct gendisk *disk)
6648 {
6649         struct mddev *mddev = disk->private_data;
6650
6651         mddev->changed = 0;
6652         return 0;
6653 }
6654 static const struct block_device_operations md_fops =
6655 {
6656         .owner          = THIS_MODULE,
6657         .open           = md_open,
6658         .release        = md_release,
6659         .ioctl          = md_ioctl,
6660 #ifdef CONFIG_COMPAT
6661         .compat_ioctl   = md_compat_ioctl,
6662 #endif
6663         .getgeo         = md_getgeo,
6664         .media_changed  = md_media_changed,
6665         .revalidate_disk= md_revalidate,
6666 };
6667
6668 static int md_thread(void * arg)
6669 {
6670         struct md_thread *thread = arg;
6671
6672         /*
6673          * md_thread is a 'system-thread', it's priority should be very
6674          * high. We avoid resource deadlocks individually in each
6675          * raid personality. (RAID5 does preallocation) We also use RR and
6676          * the very same RT priority as kswapd, thus we will never get
6677          * into a priority inversion deadlock.
6678          *
6679          * we definitely have to have equal or higher priority than
6680          * bdflush, otherwise bdflush will deadlock if there are too
6681          * many dirty RAID5 blocks.
6682          */
6683
6684         allow_signal(SIGKILL);
6685         while (!kthread_should_stop()) {
6686
6687                 /* We need to wait INTERRUPTIBLE so that
6688                  * we don't add to the load-average.
6689                  * That means we need to be sure no signals are
6690                  * pending
6691                  */
6692                 if (signal_pending(current))
6693                         flush_signals(current);
6694
6695                 wait_event_interruptible_timeout
6696                         (thread->wqueue,
6697                          test_bit(THREAD_WAKEUP, &thread->flags)
6698                          || kthread_should_stop(),
6699                          thread->timeout);
6700
6701                 clear_bit(THREAD_WAKEUP, &thread->flags);
6702                 if (!kthread_should_stop())
6703                         thread->run(thread);
6704         }
6705
6706         return 0;
6707 }
6708
6709 void md_wakeup_thread(struct md_thread *thread)
6710 {
6711         if (thread) {
6712                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6713                 set_bit(THREAD_WAKEUP, &thread->flags);
6714                 wake_up(&thread->wqueue);
6715         }
6716 }
6717
6718 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6719                 struct mddev *mddev, const char *name)
6720 {
6721         struct md_thread *thread;
6722
6723         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6724         if (!thread)
6725                 return NULL;
6726
6727         init_waitqueue_head(&thread->wqueue);
6728
6729         thread->run = run;
6730         thread->mddev = mddev;
6731         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6732         thread->tsk = kthread_run(md_thread, thread,
6733                                   "%s_%s",
6734                                   mdname(thread->mddev),
6735                                   name);
6736         if (IS_ERR(thread->tsk)) {
6737                 kfree(thread);
6738                 return NULL;
6739         }
6740         return thread;
6741 }
6742
6743 void md_unregister_thread(struct md_thread **threadp)
6744 {
6745         struct md_thread *thread = *threadp;
6746         if (!thread)
6747                 return;
6748         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6749         /* Locking ensures that mddev_unlock does not wake_up a
6750          * non-existent thread
6751          */
6752         spin_lock(&pers_lock);
6753         *threadp = NULL;
6754         spin_unlock(&pers_lock);
6755
6756         kthread_stop(thread->tsk);
6757         kfree(thread);
6758 }
6759
6760 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6761 {
6762         if (!mddev) {
6763                 MD_BUG();
6764                 return;
6765         }
6766
6767         if (!rdev || test_bit(Faulty, &rdev->flags))
6768                 return;
6769
6770         if (!mddev->pers || !mddev->pers->error_handler)
6771                 return;
6772         mddev->pers->error_handler(mddev,rdev);
6773         if (mddev->degraded)
6774                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6775         sysfs_notify_dirent_safe(rdev->sysfs_state);
6776         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6777         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6778         md_wakeup_thread(mddev->thread);
6779         if (mddev->event_work.func)
6780                 queue_work(md_misc_wq, &mddev->event_work);
6781         md_new_event_inintr(mddev);
6782 }
6783
6784 /* seq_file implementation /proc/mdstat */
6785
6786 static void status_unused(struct seq_file *seq)
6787 {
6788         int i = 0;
6789         struct md_rdev *rdev;
6790
6791         seq_printf(seq, "unused devices: ");
6792
6793         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6794                 char b[BDEVNAME_SIZE];
6795                 i++;
6796                 seq_printf(seq, "%s ",
6797                               bdevname(rdev->bdev,b));
6798         }
6799         if (!i)
6800                 seq_printf(seq, "<none>");
6801
6802         seq_printf(seq, "\n");
6803 }
6804
6805
6806 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6807 {
6808         sector_t max_sectors, resync, res;
6809         unsigned long dt, db;
6810         sector_t rt;
6811         int scale;
6812         unsigned int per_milli;
6813
6814         if (mddev->curr_resync <= 3)
6815                 resync = 0;
6816         else
6817                 resync = mddev->curr_resync
6818                         - atomic_read(&mddev->recovery_active);
6819
6820         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6821             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6822                 max_sectors = mddev->resync_max_sectors;
6823         else
6824                 max_sectors = mddev->dev_sectors;
6825
6826         /*
6827          * Should not happen.
6828          */
6829         if (!max_sectors) {
6830                 MD_BUG();
6831                 return;
6832         }
6833         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6834          * in a sector_t, and (max_sectors>>scale) will fit in a
6835          * u32, as those are the requirements for sector_div.
6836          * Thus 'scale' must be at least 10
6837          */
6838         scale = 10;
6839         if (sizeof(sector_t) > sizeof(unsigned long)) {
6840                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6841                         scale++;
6842         }
6843         res = (resync>>scale)*1000;
6844         sector_div(res, (u32)((max_sectors>>scale)+1));
6845
6846         per_milli = res;
6847         {
6848                 int i, x = per_milli/50, y = 20-x;
6849                 seq_printf(seq, "[");
6850                 for (i = 0; i < x; i++)
6851                         seq_printf(seq, "=");
6852                 seq_printf(seq, ">");
6853                 for (i = 0; i < y; i++)
6854                         seq_printf(seq, ".");
6855                 seq_printf(seq, "] ");
6856         }
6857         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6858                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6859                     "reshape" :
6860                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6861                      "check" :
6862                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6863                       "resync" : "recovery"))),
6864                    per_milli/10, per_milli % 10,
6865                    (unsigned long long) resync/2,
6866                    (unsigned long long) max_sectors/2);
6867
6868         /*
6869          * dt: time from mark until now
6870          * db: blocks written from mark until now
6871          * rt: remaining time
6872          *
6873          * rt is a sector_t, so could be 32bit or 64bit.
6874          * So we divide before multiply in case it is 32bit and close
6875          * to the limit.
6876          * We scale the divisor (db) by 32 to avoid losing precision
6877          * near the end of resync when the number of remaining sectors
6878          * is close to 'db'.
6879          * We then divide rt by 32 after multiplying by db to compensate.
6880          * The '+1' avoids division by zero if db is very small.
6881          */
6882         dt = ((jiffies - mddev->resync_mark) / HZ);
6883         if (!dt) dt++;
6884         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6885                 - mddev->resync_mark_cnt;
6886
6887         rt = max_sectors - resync;    /* number of remaining sectors */
6888         sector_div(rt, db/32+1);
6889         rt *= dt;
6890         rt >>= 5;
6891
6892         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6893                    ((unsigned long)rt % 60)/6);
6894
6895         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6896 }
6897
6898 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6899 {
6900         struct list_head *tmp;
6901         loff_t l = *pos;
6902         struct mddev *mddev;
6903
6904         if (l >= 0x10000)
6905                 return NULL;
6906         if (!l--)
6907                 /* header */
6908                 return (void*)1;
6909
6910         spin_lock(&all_mddevs_lock);
6911         list_for_each(tmp,&all_mddevs)
6912                 if (!l--) {
6913                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6914                         mddev_get(mddev);
6915                         spin_unlock(&all_mddevs_lock);
6916                         return mddev;
6917                 }
6918         spin_unlock(&all_mddevs_lock);
6919         if (!l--)
6920                 return (void*)2;/* tail */
6921         return NULL;
6922 }
6923
6924 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6925 {
6926         struct list_head *tmp;
6927         struct mddev *next_mddev, *mddev = v;
6928         
6929         ++*pos;
6930         if (v == (void*)2)
6931                 return NULL;
6932
6933         spin_lock(&all_mddevs_lock);
6934         if (v == (void*)1)
6935                 tmp = all_mddevs.next;
6936         else
6937                 tmp = mddev->all_mddevs.next;
6938         if (tmp != &all_mddevs)
6939                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6940         else {
6941                 next_mddev = (void*)2;
6942                 *pos = 0x10000;
6943         }               
6944         spin_unlock(&all_mddevs_lock);
6945
6946         if (v != (void*)1)
6947                 mddev_put(mddev);
6948         return next_mddev;
6949
6950 }
6951
6952 static void md_seq_stop(struct seq_file *seq, void *v)
6953 {
6954         struct mddev *mddev = v;
6955
6956         if (mddev && v != (void*)1 && v != (void*)2)
6957                 mddev_put(mddev);
6958 }
6959
6960 static int md_seq_show(struct seq_file *seq, void *v)
6961 {
6962         struct mddev *mddev = v;
6963         sector_t sectors;
6964         struct md_rdev *rdev;
6965
6966         if (v == (void*)1) {
6967                 struct md_personality *pers;
6968                 seq_printf(seq, "Personalities : ");
6969                 spin_lock(&pers_lock);
6970                 list_for_each_entry(pers, &pers_list, list)
6971                         seq_printf(seq, "[%s] ", pers->name);
6972
6973                 spin_unlock(&pers_lock);
6974                 seq_printf(seq, "\n");
6975                 seq->poll_event = atomic_read(&md_event_count);
6976                 return 0;
6977         }
6978         if (v == (void*)2) {
6979                 status_unused(seq);
6980                 return 0;
6981         }
6982
6983         if (mddev_lock(mddev) < 0)
6984                 return -EINTR;
6985
6986         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6987                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6988                                                 mddev->pers ? "" : "in");
6989                 if (mddev->pers) {
6990                         if (mddev->ro==1)
6991                                 seq_printf(seq, " (read-only)");
6992                         if (mddev->ro==2)
6993                                 seq_printf(seq, " (auto-read-only)");
6994                         seq_printf(seq, " %s", mddev->pers->name);
6995                 }
6996
6997                 sectors = 0;
6998                 rdev_for_each(rdev, mddev) {
6999                         char b[BDEVNAME_SIZE];
7000                         seq_printf(seq, " %s[%d]",
7001                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7002                         if (test_bit(WriteMostly, &rdev->flags))
7003                                 seq_printf(seq, "(W)");
7004                         if (test_bit(Faulty, &rdev->flags)) {
7005                                 seq_printf(seq, "(F)");
7006                                 continue;
7007                         }
7008                         if (rdev->raid_disk < 0)
7009                                 seq_printf(seq, "(S)"); /* spare */
7010                         if (test_bit(Replacement, &rdev->flags))
7011                                 seq_printf(seq, "(R)");
7012                         sectors += rdev->sectors;
7013                 }
7014
7015                 if (!list_empty(&mddev->disks)) {
7016                         if (mddev->pers)
7017                                 seq_printf(seq, "\n      %llu blocks",
7018                                            (unsigned long long)
7019                                            mddev->array_sectors / 2);
7020                         else
7021                                 seq_printf(seq, "\n      %llu blocks",
7022                                            (unsigned long long)sectors / 2);
7023                 }
7024                 if (mddev->persistent) {
7025                         if (mddev->major_version != 0 ||
7026                             mddev->minor_version != 90) {
7027                                 seq_printf(seq," super %d.%d",
7028                                            mddev->major_version,
7029                                            mddev->minor_version);
7030                         }
7031                 } else if (mddev->external)
7032                         seq_printf(seq, " super external:%s",
7033                                    mddev->metadata_type);
7034                 else
7035                         seq_printf(seq, " super non-persistent");
7036
7037                 if (mddev->pers) {
7038                         mddev->pers->status(seq, mddev);
7039                         seq_printf(seq, "\n      ");
7040                         if (mddev->pers->sync_request) {
7041                                 if (mddev->curr_resync > 2) {
7042                                         status_resync(seq, mddev);
7043                                         seq_printf(seq, "\n      ");
7044                                 } else if (mddev->curr_resync >= 1)
7045                                         seq_printf(seq, "\tresync=DELAYED\n      ");
7046                                 else if (mddev->recovery_cp < MaxSector)
7047                                         seq_printf(seq, "\tresync=PENDING\n      ");
7048                         }
7049                 } else
7050                         seq_printf(seq, "\n       ");
7051
7052                 bitmap_status(seq, mddev->bitmap);
7053
7054                 seq_printf(seq, "\n");
7055         }
7056         mddev_unlock(mddev);
7057         
7058         return 0;
7059 }
7060
7061 static const struct seq_operations md_seq_ops = {
7062         .start  = md_seq_start,
7063         .next   = md_seq_next,
7064         .stop   = md_seq_stop,
7065         .show   = md_seq_show,
7066 };
7067
7068 static int md_seq_open(struct inode *inode, struct file *file)
7069 {
7070         struct seq_file *seq;
7071         int error;
7072
7073         error = seq_open(file, &md_seq_ops);
7074         if (error)
7075                 return error;
7076
7077         seq = file->private_data;
7078         seq->poll_event = atomic_read(&md_event_count);
7079         return error;
7080 }
7081
7082 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7083 {
7084         struct seq_file *seq = filp->private_data;
7085         int mask;
7086
7087         poll_wait(filp, &md_event_waiters, wait);
7088
7089         /* always allow read */
7090         mask = POLLIN | POLLRDNORM;
7091
7092         if (seq->poll_event != atomic_read(&md_event_count))
7093                 mask |= POLLERR | POLLPRI;
7094         return mask;
7095 }
7096
7097 static const struct file_operations md_seq_fops = {
7098         .owner          = THIS_MODULE,
7099         .open           = md_seq_open,
7100         .read           = seq_read,
7101         .llseek         = seq_lseek,
7102         .release        = seq_release_private,
7103         .poll           = mdstat_poll,
7104 };
7105
7106 int register_md_personality(struct md_personality *p)
7107 {
7108         spin_lock(&pers_lock);
7109         list_add_tail(&p->list, &pers_list);
7110         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7111         spin_unlock(&pers_lock);
7112         return 0;
7113 }
7114
7115 int unregister_md_personality(struct md_personality *p)
7116 {
7117         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7118         spin_lock(&pers_lock);
7119         list_del_init(&p->list);
7120         spin_unlock(&pers_lock);
7121         return 0;
7122 }
7123
7124 static int is_mddev_idle(struct mddev *mddev, int init)
7125 {
7126         struct md_rdev * rdev;
7127         int idle;
7128         int curr_events;
7129
7130         idle = 1;
7131         rcu_read_lock();
7132         rdev_for_each_rcu(rdev, mddev) {
7133                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7134                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7135                               (int)part_stat_read(&disk->part0, sectors[1]) -
7136                               atomic_read(&disk->sync_io);
7137                 /* sync IO will cause sync_io to increase before the disk_stats
7138                  * as sync_io is counted when a request starts, and
7139                  * disk_stats is counted when it completes.
7140                  * So resync activity will cause curr_events to be smaller than
7141                  * when there was no such activity.
7142                  * non-sync IO will cause disk_stat to increase without
7143                  * increasing sync_io so curr_events will (eventually)
7144                  * be larger than it was before.  Once it becomes
7145                  * substantially larger, the test below will cause
7146                  * the array to appear non-idle, and resync will slow
7147                  * down.
7148                  * If there is a lot of outstanding resync activity when
7149                  * we set last_event to curr_events, then all that activity
7150                  * completing might cause the array to appear non-idle
7151                  * and resync will be slowed down even though there might
7152                  * not have been non-resync activity.  This will only
7153                  * happen once though.  'last_events' will soon reflect
7154                  * the state where there is little or no outstanding
7155                  * resync requests, and further resync activity will
7156                  * always make curr_events less than last_events.
7157                  *
7158                  */
7159                 if (init || curr_events - rdev->last_events > 64) {
7160                         rdev->last_events = curr_events;
7161                         idle = 0;
7162                 }
7163         }
7164         rcu_read_unlock();
7165         return idle;
7166 }
7167
7168 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7169 {
7170         /* another "blocks" (512byte) blocks have been synced */
7171         atomic_sub(blocks, &mddev->recovery_active);
7172         wake_up(&mddev->recovery_wait);
7173         if (!ok) {
7174                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7175                 md_wakeup_thread(mddev->thread);
7176                 // stop recovery, signal do_sync ....
7177         }
7178 }
7179
7180
7181 /* md_write_start(mddev, bi)
7182  * If we need to update some array metadata (e.g. 'active' flag
7183  * in superblock) before writing, schedule a superblock update
7184  * and wait for it to complete.
7185  */
7186 void md_write_start(struct mddev *mddev, struct bio *bi)
7187 {
7188         int did_change = 0;
7189         if (bio_data_dir(bi) != WRITE)
7190                 return;
7191
7192         BUG_ON(mddev->ro == 1);
7193         if (mddev->ro == 2) {
7194                 /* need to switch to read/write */
7195                 mddev->ro = 0;
7196                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7197                 md_wakeup_thread(mddev->thread);
7198                 md_wakeup_thread(mddev->sync_thread);
7199                 did_change = 1;
7200         }
7201         atomic_inc(&mddev->writes_pending);
7202         if (mddev->safemode == 1)
7203                 mddev->safemode = 0;
7204         if (mddev->in_sync) {
7205                 spin_lock_irq(&mddev->write_lock);
7206                 if (mddev->in_sync) {
7207                         mddev->in_sync = 0;
7208                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7209                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7210                         md_wakeup_thread(mddev->thread);
7211                         did_change = 1;
7212                 }
7213                 spin_unlock_irq(&mddev->write_lock);
7214         }
7215         if (did_change)
7216                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7217         wait_event(mddev->sb_wait,
7218                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7219 }
7220
7221 void md_write_end(struct mddev *mddev)
7222 {
7223         if (atomic_dec_and_test(&mddev->writes_pending)) {
7224                 if (mddev->safemode == 2)
7225                         md_wakeup_thread(mddev->thread);
7226                 else if (mddev->safemode_delay)
7227                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7228         }
7229 }
7230
7231 /* md_allow_write(mddev)
7232  * Calling this ensures that the array is marked 'active' so that writes
7233  * may proceed without blocking.  It is important to call this before
7234  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7235  * Must be called with mddev_lock held.
7236  *
7237  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7238  * is dropped, so return -EAGAIN after notifying userspace.
7239  */
7240 int md_allow_write(struct mddev *mddev)
7241 {
7242         if (!mddev->pers)
7243                 return 0;
7244         if (mddev->ro)
7245                 return 0;
7246         if (!mddev->pers->sync_request)
7247                 return 0;
7248
7249         spin_lock_irq(&mddev->write_lock);
7250         if (mddev->in_sync) {
7251                 mddev->in_sync = 0;
7252                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7253                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7254                 if (mddev->safemode_delay &&
7255                     mddev->safemode == 0)
7256                         mddev->safemode = 1;
7257                 spin_unlock_irq(&mddev->write_lock);
7258                 md_update_sb(mddev, 0);
7259                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7260         } else
7261                 spin_unlock_irq(&mddev->write_lock);
7262
7263         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7264                 return -EAGAIN;
7265         else
7266                 return 0;
7267 }
7268 EXPORT_SYMBOL_GPL(md_allow_write);
7269
7270 #define SYNC_MARKS      10
7271 #define SYNC_MARK_STEP  (3*HZ)
7272 void md_do_sync(struct md_thread *thread)
7273 {
7274         struct mddev *mddev = thread->mddev;
7275         struct mddev *mddev2;
7276         unsigned int currspeed = 0,
7277                  window;
7278         sector_t max_sectors,j, io_sectors;
7279         unsigned long mark[SYNC_MARKS];
7280         sector_t mark_cnt[SYNC_MARKS];
7281         int last_mark,m;
7282         struct list_head *tmp;
7283         sector_t last_check;
7284         int skipped = 0;
7285         struct md_rdev *rdev;
7286         char *desc;
7287         struct blk_plug plug;
7288
7289         /* just incase thread restarts... */
7290         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7291                 return;
7292         if (mddev->ro) /* never try to sync a read-only array */
7293                 return;
7294
7295         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7296                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7297                         desc = "data-check";
7298                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7299                         desc = "requested-resync";
7300                 else
7301                         desc = "resync";
7302         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7303                 desc = "reshape";
7304         else
7305                 desc = "recovery";
7306
7307         /* we overload curr_resync somewhat here.
7308          * 0 == not engaged in resync at all
7309          * 2 == checking that there is no conflict with another sync
7310          * 1 == like 2, but have yielded to allow conflicting resync to
7311          *              commense
7312          * other == active in resync - this many blocks
7313          *
7314          * Before starting a resync we must have set curr_resync to
7315          * 2, and then checked that every "conflicting" array has curr_resync
7316          * less than ours.  When we find one that is the same or higher
7317          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7318          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7319          * This will mean we have to start checking from the beginning again.
7320          *
7321          */
7322
7323         do {
7324                 mddev->curr_resync = 2;
7325
7326         try_again:
7327                 if (kthread_should_stop())
7328                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7329
7330                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7331                         goto skip;
7332                 for_each_mddev(mddev2, tmp) {
7333                         if (mddev2 == mddev)
7334                                 continue;
7335                         if (!mddev->parallel_resync
7336                         &&  mddev2->curr_resync
7337                         &&  match_mddev_units(mddev, mddev2)) {
7338                                 DEFINE_WAIT(wq);
7339                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7340                                         /* arbitrarily yield */
7341                                         mddev->curr_resync = 1;
7342                                         wake_up(&resync_wait);
7343                                 }
7344                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7345                                         /* no need to wait here, we can wait the next
7346                                          * time 'round when curr_resync == 2
7347                                          */
7348                                         continue;
7349                                 /* We need to wait 'interruptible' so as not to
7350                                  * contribute to the load average, and not to
7351                                  * be caught by 'softlockup'
7352                                  */
7353                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7354                                 if (!kthread_should_stop() &&
7355                                     mddev2->curr_resync >= mddev->curr_resync) {
7356                                         printk(KERN_INFO "md: delaying %s of %s"
7357                                                " until %s has finished (they"
7358                                                " share one or more physical units)\n",
7359                                                desc, mdname(mddev), mdname(mddev2));
7360                                         mddev_put(mddev2);
7361                                         if (signal_pending(current))
7362                                                 flush_signals(current);
7363                                         schedule();
7364                                         finish_wait(&resync_wait, &wq);
7365                                         goto try_again;
7366                                 }
7367                                 finish_wait(&resync_wait, &wq);
7368                         }
7369                 }
7370         } while (mddev->curr_resync < 2);
7371
7372         j = 0;
7373         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7374                 /* resync follows the size requested by the personality,
7375                  * which defaults to physical size, but can be virtual size
7376                  */
7377                 max_sectors = mddev->resync_max_sectors;
7378                 atomic64_set(&mddev->resync_mismatches, 0);
7379                 /* we don't use the checkpoint if there's a bitmap */
7380                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7381                         j = mddev->resync_min;
7382                 else if (!mddev->bitmap)
7383                         j = mddev->recovery_cp;
7384
7385         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7386                 max_sectors = mddev->resync_max_sectors;
7387         else {
7388                 /* recovery follows the physical size of devices */
7389                 max_sectors = mddev->dev_sectors;
7390                 j = MaxSector;
7391                 rcu_read_lock();
7392                 rdev_for_each_rcu(rdev, mddev)
7393                         if (rdev->raid_disk >= 0 &&
7394                             !test_bit(Faulty, &rdev->flags) &&
7395                             !test_bit(In_sync, &rdev->flags) &&
7396                             rdev->recovery_offset < j)
7397                                 j = rdev->recovery_offset;
7398                 rcu_read_unlock();
7399         }
7400
7401         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7402         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7403                 " %d KB/sec/disk.\n", speed_min(mddev));
7404         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7405                "(but not more than %d KB/sec) for %s.\n",
7406                speed_max(mddev), desc);
7407
7408         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7409
7410         io_sectors = 0;
7411         for (m = 0; m < SYNC_MARKS; m++) {
7412                 mark[m] = jiffies;
7413                 mark_cnt[m] = io_sectors;
7414         }
7415         last_mark = 0;
7416         mddev->resync_mark = mark[last_mark];
7417         mddev->resync_mark_cnt = mark_cnt[last_mark];
7418
7419         /*
7420          * Tune reconstruction:
7421          */
7422         window = 32*(PAGE_SIZE/512);
7423         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7424                 window/2, (unsigned long long)max_sectors/2);
7425
7426         atomic_set(&mddev->recovery_active, 0);
7427         last_check = 0;
7428
7429         if (j>2) {
7430                 printk(KERN_INFO 
7431                        "md: resuming %s of %s from checkpoint.\n",
7432                        desc, mdname(mddev));
7433                 mddev->curr_resync = j;
7434         } else
7435                 mddev->curr_resync = 3; /* no longer delayed */
7436         mddev->curr_resync_completed = j;
7437         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7438         md_new_event(mddev);
7439
7440         blk_start_plug(&plug);
7441         while (j < max_sectors) {
7442                 sector_t sectors;
7443
7444                 skipped = 0;
7445
7446                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7447                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7448                       (mddev->curr_resync - mddev->curr_resync_completed)
7449                       > (max_sectors >> 4)) ||
7450                      (j - mddev->curr_resync_completed)*2
7451                      >= mddev->resync_max - mddev->curr_resync_completed
7452                             )) {
7453                         /* time to update curr_resync_completed */
7454                         wait_event(mddev->recovery_wait,
7455                                    atomic_read(&mddev->recovery_active) == 0);
7456                         mddev->curr_resync_completed = j;
7457                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7458                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7459                 }
7460
7461                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7462                         /* As this condition is controlled by user-space,
7463                          * we can block indefinitely, so use '_interruptible'
7464                          * to avoid triggering warnings.
7465                          */
7466                         flush_signals(current); /* just in case */
7467                         wait_event_interruptible(mddev->recovery_wait,
7468                                                  mddev->resync_max > j
7469                                                  || kthread_should_stop());
7470                 }
7471
7472                 if (kthread_should_stop())
7473                         goto interrupted;
7474
7475                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7476                                                   currspeed < speed_min(mddev));
7477                 if (sectors == 0) {
7478                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7479                         goto out;
7480                 }
7481
7482                 if (!skipped) { /* actual IO requested */
7483                         io_sectors += sectors;
7484                         atomic_add(sectors, &mddev->recovery_active);
7485                 }
7486
7487                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7488                         break;
7489
7490                 j += sectors;
7491                 if (j > 2)
7492                         mddev->curr_resync = j;
7493                 mddev->curr_mark_cnt = io_sectors;
7494                 if (last_check == 0)
7495                         /* this is the earliest that rebuild will be
7496                          * visible in /proc/mdstat
7497                          */
7498                         md_new_event(mddev);
7499
7500                 if (last_check + window > io_sectors || j == max_sectors)
7501                         continue;
7502
7503                 last_check = io_sectors;
7504         repeat:
7505                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7506                         /* step marks */
7507                         int next = (last_mark+1) % SYNC_MARKS;
7508
7509                         mddev->resync_mark = mark[next];
7510                         mddev->resync_mark_cnt = mark_cnt[next];
7511                         mark[next] = jiffies;
7512                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7513                         last_mark = next;
7514                 }
7515
7516
7517                 if (kthread_should_stop())
7518                         goto interrupted;
7519
7520
7521                 /*
7522                  * this loop exits only if either when we are slower than
7523                  * the 'hard' speed limit, or the system was IO-idle for
7524                  * a jiffy.
7525                  * the system might be non-idle CPU-wise, but we only care
7526                  * about not overloading the IO subsystem. (things like an
7527                  * e2fsck being done on the RAID array should execute fast)
7528                  */
7529                 cond_resched();
7530
7531                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7532                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7533
7534                 if (currspeed > speed_min(mddev)) {
7535                         if ((currspeed > speed_max(mddev)) ||
7536                                         !is_mddev_idle(mddev, 0)) {
7537                                 msleep(500);
7538                                 goto repeat;
7539                         }
7540                 }
7541         }
7542         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7543         /*
7544          * this also signals 'finished resyncing' to md_stop
7545          */
7546  out:
7547         blk_finish_plug(&plug);
7548         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7549
7550         /* tell personality that we are finished */
7551         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7552
7553         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7554             mddev->curr_resync > 2) {
7555                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7556                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7557                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7558                                         printk(KERN_INFO
7559                                                "md: checkpointing %s of %s.\n",
7560                                                desc, mdname(mddev));
7561                                         mddev->recovery_cp =
7562                                                 mddev->curr_resync_completed;
7563                                 }
7564                         } else
7565                                 mddev->recovery_cp = MaxSector;
7566                 } else {
7567                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7568                                 mddev->curr_resync = MaxSector;
7569                         rcu_read_lock();
7570                         rdev_for_each_rcu(rdev, mddev)
7571                                 if (rdev->raid_disk >= 0 &&
7572                                     mddev->delta_disks >= 0 &&
7573                                     !test_bit(Faulty, &rdev->flags) &&
7574                                     !test_bit(In_sync, &rdev->flags) &&
7575                                     rdev->recovery_offset < mddev->curr_resync)
7576                                         rdev->recovery_offset = mddev->curr_resync;
7577                         rcu_read_unlock();
7578                 }
7579         }
7580  skip:
7581         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7582
7583         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7584                 /* We completed so min/max setting can be forgotten if used. */
7585                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7586                         mddev->resync_min = 0;
7587                 mddev->resync_max = MaxSector;
7588         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7589                 mddev->resync_min = mddev->curr_resync_completed;
7590         mddev->curr_resync = 0;
7591         wake_up(&resync_wait);
7592         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7593         md_wakeup_thread(mddev->thread);
7594         return;
7595
7596  interrupted:
7597         /*
7598          * got a signal, exit.
7599          */
7600         printk(KERN_INFO
7601                "md: md_do_sync() got signal ... exiting\n");
7602         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7603         goto out;
7604
7605 }
7606 EXPORT_SYMBOL_GPL(md_do_sync);
7607
7608 static int remove_and_add_spares(struct mddev *mddev)
7609 {
7610         struct md_rdev *rdev;
7611         int spares = 0;
7612         int removed = 0;
7613
7614         rdev_for_each(rdev, mddev)
7615                 if (rdev->raid_disk >= 0 &&
7616                     !test_bit(Blocked, &rdev->flags) &&
7617                     (test_bit(Faulty, &rdev->flags) ||
7618                      ! test_bit(In_sync, &rdev->flags)) &&
7619                     atomic_read(&rdev->nr_pending)==0) {
7620                         if (mddev->pers->hot_remove_disk(
7621                                     mddev, rdev) == 0) {
7622                                 sysfs_unlink_rdev(mddev, rdev);
7623                                 rdev->raid_disk = -1;
7624                                 removed++;
7625                         }
7626                 }
7627         if (removed)
7628                 sysfs_notify(&mddev->kobj, NULL,
7629                              "degraded");
7630
7631
7632         rdev_for_each(rdev, mddev) {
7633                 if (rdev->raid_disk >= 0 &&
7634                     !test_bit(In_sync, &rdev->flags) &&
7635                     !test_bit(Faulty, &rdev->flags))
7636                         spares++;
7637                 if (rdev->raid_disk < 0
7638                     && !test_bit(Faulty, &rdev->flags)) {
7639                         rdev->recovery_offset = 0;
7640                         if (mddev->pers->
7641                             hot_add_disk(mddev, rdev) == 0) {
7642                                 if (sysfs_link_rdev(mddev, rdev))
7643                                         /* failure here is OK */;
7644                                 spares++;
7645                                 md_new_event(mddev);
7646                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7647                         }
7648                 }
7649         }
7650         if (removed)
7651                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7652         return spares;
7653 }
7654
7655 static void reap_sync_thread(struct mddev *mddev)
7656 {
7657         struct md_rdev *rdev;
7658
7659         /* resync has finished, collect result */
7660         md_unregister_thread(&mddev->sync_thread);
7661         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7662             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7663                 /* success...*/
7664                 /* activate any spares */
7665                 if (mddev->pers->spare_active(mddev)) {
7666                         sysfs_notify(&mddev->kobj, NULL,
7667                                      "degraded");
7668                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7669                 }
7670         }
7671         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7672             mddev->pers->finish_reshape)
7673                 mddev->pers->finish_reshape(mddev);
7674
7675         /* If array is no-longer degraded, then any saved_raid_disk
7676          * information must be scrapped.  Also if any device is now
7677          * In_sync we must scrape the saved_raid_disk for that device
7678          * do the superblock for an incrementally recovered device
7679          * written out.
7680          */
7681         rdev_for_each(rdev, mddev)
7682                 if (!mddev->degraded ||
7683                     test_bit(In_sync, &rdev->flags))
7684                         rdev->saved_raid_disk = -1;
7685
7686         md_update_sb(mddev, 1);
7687         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7688         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7689         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7690         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7691         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7692         /* flag recovery needed just to double check */
7693         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7694         sysfs_notify_dirent_safe(mddev->sysfs_action);
7695         md_new_event(mddev);
7696         if (mddev->event_work.func)
7697                 queue_work(md_misc_wq, &mddev->event_work);
7698 }
7699
7700 /*
7701  * This routine is regularly called by all per-raid-array threads to
7702  * deal with generic issues like resync and super-block update.
7703  * Raid personalities that don't have a thread (linear/raid0) do not
7704  * need this as they never do any recovery or update the superblock.
7705  *
7706  * It does not do any resync itself, but rather "forks" off other threads
7707  * to do that as needed.
7708  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7709  * "->recovery" and create a thread at ->sync_thread.
7710  * When the thread finishes it sets MD_RECOVERY_DONE
7711  * and wakeups up this thread which will reap the thread and finish up.
7712  * This thread also removes any faulty devices (with nr_pending == 0).
7713  *
7714  * The overall approach is:
7715  *  1/ if the superblock needs updating, update it.
7716  *  2/ If a recovery thread is running, don't do anything else.
7717  *  3/ If recovery has finished, clean up, possibly marking spares active.
7718  *  4/ If there are any faulty devices, remove them.
7719  *  5/ If array is degraded, try to add spares devices
7720  *  6/ If array has spares or is not in-sync, start a resync thread.
7721  */
7722 void md_check_recovery(struct mddev *mddev)
7723 {
7724         if (mddev->suspended)
7725                 return;
7726
7727         if (mddev->bitmap)
7728                 bitmap_daemon_work(mddev);
7729
7730         if (signal_pending(current)) {
7731                 if (mddev->pers->sync_request && !mddev->external) {
7732                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7733                                mdname(mddev));
7734                         mddev->safemode = 2;
7735                 }
7736                 flush_signals(current);
7737         }
7738
7739         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7740                 return;
7741         if ( ! (
7742                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7743                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7744                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7745                 (mddev->external == 0 && mddev->safemode == 1) ||
7746                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7747                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7748                 ))
7749                 return;
7750
7751         if (mddev_trylock(mddev)) {
7752                 int spares = 0;
7753
7754                 if (mddev->ro) {
7755                         /* Only thing we do on a ro array is remove
7756                          * failed devices.
7757                          */
7758                         struct md_rdev *rdev;
7759                         rdev_for_each(rdev, mddev)
7760                                 if (rdev->raid_disk >= 0 &&
7761                                     !test_bit(Blocked, &rdev->flags) &&
7762                                     test_bit(Faulty, &rdev->flags) &&
7763                                     atomic_read(&rdev->nr_pending)==0) {
7764                                         if (mddev->pers->hot_remove_disk(
7765                                                     mddev, rdev) == 0) {
7766                                                 sysfs_unlink_rdev(mddev, rdev);
7767                                                 rdev->raid_disk = -1;
7768                                         }
7769                                 }
7770                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7771                         goto unlock;
7772                 }
7773
7774                 if (!mddev->external) {
7775                         int did_change = 0;
7776                         spin_lock_irq(&mddev->write_lock);
7777                         if (mddev->safemode &&
7778                             !atomic_read(&mddev->writes_pending) &&
7779                             !mddev->in_sync &&
7780                             mddev->recovery_cp == MaxSector) {
7781                                 mddev->in_sync = 1;
7782                                 did_change = 1;
7783                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7784                         }
7785                         if (mddev->safemode == 1)
7786                                 mddev->safemode = 0;
7787                         spin_unlock_irq(&mddev->write_lock);
7788                         if (did_change)
7789                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7790                 }
7791
7792                 if (mddev->flags)
7793                         md_update_sb(mddev, 0);
7794
7795                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7796                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7797                         /* resync/recovery still happening */
7798                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7799                         goto unlock;
7800                 }
7801                 if (mddev->sync_thread) {
7802                         reap_sync_thread(mddev);
7803                         goto unlock;
7804                 }
7805                 /* Set RUNNING before clearing NEEDED to avoid
7806                  * any transients in the value of "sync_action".
7807                  */
7808                 mddev->curr_resync_completed = 0;
7809                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7810                 /* Clear some bits that don't mean anything, but
7811                  * might be left set
7812                  */
7813                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7814                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7815
7816                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7817                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7818                         goto unlock;
7819                 /* no recovery is running.
7820                  * remove any failed drives, then
7821                  * add spares if possible.
7822                  * Spares are also removed and re-added, to allow
7823                  * the personality to fail the re-add.
7824                  */
7825
7826                 if (mddev->reshape_position != MaxSector) {
7827                         if (mddev->pers->check_reshape == NULL ||
7828                             mddev->pers->check_reshape(mddev) != 0)
7829                                 /* Cannot proceed */
7830                                 goto unlock;
7831                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7832                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7833                 } else if ((spares = remove_and_add_spares(mddev))) {
7834                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7835                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7836                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7837                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7838                 } else if (mddev->recovery_cp < MaxSector) {
7839                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7840                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7841                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7842                         /* nothing to be done ... */
7843                         goto unlock;
7844
7845                 if (mddev->pers->sync_request) {
7846                         if (spares) {
7847                                 /* We are adding a device or devices to an array
7848                                  * which has the bitmap stored on all devices.
7849                                  * So make sure all bitmap pages get written
7850                                  */
7851                                 bitmap_write_all(mddev->bitmap);
7852                         }
7853                         mddev->sync_thread = md_register_thread(md_do_sync,
7854                                                                 mddev,
7855                                                                 "resync");
7856                         if (!mddev->sync_thread) {
7857                                 printk(KERN_ERR "%s: could not start resync"
7858                                         " thread...\n", 
7859                                         mdname(mddev));
7860                                 /* leave the spares where they are, it shouldn't hurt */
7861                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7862                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7863                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7864                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7865                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7866                         } else
7867                                 md_wakeup_thread(mddev->sync_thread);
7868                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7869                         md_new_event(mddev);
7870                 }
7871         unlock:
7872                 if (!mddev->sync_thread) {
7873                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7874                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7875                                                &mddev->recovery))
7876                                 if (mddev->sysfs_action)
7877                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7878                 }
7879                 mddev_unlock(mddev);
7880         }
7881 }
7882
7883 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7884 {
7885         sysfs_notify_dirent_safe(rdev->sysfs_state);
7886         wait_event_timeout(rdev->blocked_wait,
7887                            !test_bit(Blocked, &rdev->flags) &&
7888                            !test_bit(BlockedBadBlocks, &rdev->flags),
7889                            msecs_to_jiffies(5000));
7890         rdev_dec_pending(rdev, mddev);
7891 }
7892 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7893
7894 void md_finish_reshape(struct mddev *mddev)
7895 {
7896         /* called be personality module when reshape completes. */
7897         struct md_rdev *rdev;
7898
7899         rdev_for_each(rdev, mddev) {
7900                 if (rdev->data_offset > rdev->new_data_offset)
7901                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7902                 else
7903                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7904                 rdev->data_offset = rdev->new_data_offset;
7905         }
7906 }
7907 EXPORT_SYMBOL(md_finish_reshape);
7908
7909 /* Bad block management.
7910  * We can record which blocks on each device are 'bad' and so just
7911  * fail those blocks, or that stripe, rather than the whole device.
7912  * Entries in the bad-block table are 64bits wide.  This comprises:
7913  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7914  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7915  *  A 'shift' can be set so that larger blocks are tracked and
7916  *  consequently larger devices can be covered.
7917  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7918  *
7919  * Locking of the bad-block table uses a seqlock so md_is_badblock
7920  * might need to retry if it is very unlucky.
7921  * We will sometimes want to check for bad blocks in a bi_end_io function,
7922  * so we use the write_seqlock_irq variant.
7923  *
7924  * When looking for a bad block we specify a range and want to
7925  * know if any block in the range is bad.  So we binary-search
7926  * to the last range that starts at-or-before the given endpoint,
7927  * (or "before the sector after the target range")
7928  * then see if it ends after the given start.
7929  * We return
7930  *  0 if there are no known bad blocks in the range
7931  *  1 if there are known bad block which are all acknowledged
7932  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7933  * plus the start/length of the first bad section we overlap.
7934  */
7935 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7936                    sector_t *first_bad, int *bad_sectors)
7937 {
7938         int hi;
7939         int lo = 0;
7940         u64 *p = bb->page;
7941         int rv = 0;
7942         sector_t target = s + sectors;
7943         unsigned seq;
7944
7945         if (bb->shift > 0) {
7946                 /* round the start down, and the end up */
7947                 s >>= bb->shift;
7948                 target += (1<<bb->shift) - 1;
7949                 target >>= bb->shift;
7950                 sectors = target - s;
7951         }
7952         /* 'target' is now the first block after the bad range */
7953
7954 retry:
7955         seq = read_seqbegin(&bb->lock);
7956
7957         hi = bb->count;
7958
7959         /* Binary search between lo and hi for 'target'
7960          * i.e. for the last range that starts before 'target'
7961          */
7962         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7963          * are known not to be the last range before target.
7964          * VARIANT: hi-lo is the number of possible
7965          * ranges, and decreases until it reaches 1
7966          */
7967         while (hi - lo > 1) {
7968                 int mid = (lo + hi) / 2;
7969                 sector_t a = BB_OFFSET(p[mid]);
7970                 if (a < target)
7971                         /* This could still be the one, earlier ranges
7972                          * could not. */
7973                         lo = mid;
7974                 else
7975                         /* This and later ranges are definitely out. */
7976                         hi = mid;
7977         }
7978         /* 'lo' might be the last that started before target, but 'hi' isn't */
7979         if (hi > lo) {
7980                 /* need to check all range that end after 's' to see if
7981                  * any are unacknowledged.
7982                  */
7983                 while (lo >= 0 &&
7984                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7985                         if (BB_OFFSET(p[lo]) < target) {
7986                                 /* starts before the end, and finishes after
7987                                  * the start, so they must overlap
7988                                  */
7989                                 if (rv != -1 && BB_ACK(p[lo]))
7990                                         rv = 1;
7991                                 else
7992                                         rv = -1;
7993                                 *first_bad = BB_OFFSET(p[lo]);
7994                                 *bad_sectors = BB_LEN(p[lo]);
7995                         }
7996                         lo--;
7997                 }
7998         }
7999
8000         if (read_seqretry(&bb->lock, seq))
8001                 goto retry;
8002
8003         return rv;
8004 }
8005 EXPORT_SYMBOL_GPL(md_is_badblock);
8006
8007 /*
8008  * Add a range of bad blocks to the table.
8009  * This might extend the table, or might contract it
8010  * if two adjacent ranges can be merged.
8011  * We binary-search to find the 'insertion' point, then
8012  * decide how best to handle it.
8013  */
8014 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8015                             int acknowledged)
8016 {
8017         u64 *p;
8018         int lo, hi;
8019         int rv = 1;
8020
8021         if (bb->shift < 0)
8022                 /* badblocks are disabled */
8023                 return 0;
8024
8025         if (bb->shift) {
8026                 /* round the start down, and the end up */
8027                 sector_t next = s + sectors;
8028                 s >>= bb->shift;
8029                 next += (1<<bb->shift) - 1;
8030                 next >>= bb->shift;
8031                 sectors = next - s;
8032         }
8033
8034         write_seqlock_irq(&bb->lock);
8035
8036         p = bb->page;
8037         lo = 0;
8038         hi = bb->count;
8039         /* Find the last range that starts at-or-before 's' */
8040         while (hi - lo > 1) {
8041                 int mid = (lo + hi) / 2;
8042                 sector_t a = BB_OFFSET(p[mid]);
8043                 if (a <= s)
8044                         lo = mid;
8045                 else
8046                         hi = mid;
8047         }
8048         if (hi > lo && BB_OFFSET(p[lo]) > s)
8049                 hi = lo;
8050
8051         if (hi > lo) {
8052                 /* we found a range that might merge with the start
8053                  * of our new range
8054                  */
8055                 sector_t a = BB_OFFSET(p[lo]);
8056                 sector_t e = a + BB_LEN(p[lo]);
8057                 int ack = BB_ACK(p[lo]);
8058                 if (e >= s) {
8059                         /* Yes, we can merge with a previous range */
8060                         if (s == a && s + sectors >= e)
8061                                 /* new range covers old */
8062                                 ack = acknowledged;
8063                         else
8064                                 ack = ack && acknowledged;
8065
8066                         if (e < s + sectors)
8067                                 e = s + sectors;
8068                         if (e - a <= BB_MAX_LEN) {
8069                                 p[lo] = BB_MAKE(a, e-a, ack);
8070                                 s = e;
8071                         } else {
8072                                 /* does not all fit in one range,
8073                                  * make p[lo] maximal
8074                                  */
8075                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8076                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8077                                 s = a + BB_MAX_LEN;
8078                         }
8079                         sectors = e - s;
8080                 }
8081         }
8082         if (sectors && hi < bb->count) {
8083                 /* 'hi' points to the first range that starts after 's'.
8084                  * Maybe we can merge with the start of that range */
8085                 sector_t a = BB_OFFSET(p[hi]);
8086                 sector_t e = a + BB_LEN(p[hi]);
8087                 int ack = BB_ACK(p[hi]);
8088                 if (a <= s + sectors) {
8089                         /* merging is possible */
8090                         if (e <= s + sectors) {
8091                                 /* full overlap */
8092                                 e = s + sectors;
8093                                 ack = acknowledged;
8094                         } else
8095                                 ack = ack && acknowledged;
8096
8097                         a = s;
8098                         if (e - a <= BB_MAX_LEN) {
8099                                 p[hi] = BB_MAKE(a, e-a, ack);
8100                                 s = e;
8101                         } else {
8102                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8103                                 s = a + BB_MAX_LEN;
8104                         }
8105                         sectors = e - s;
8106                         lo = hi;
8107                         hi++;
8108                 }
8109         }
8110         if (sectors == 0 && hi < bb->count) {
8111                 /* we might be able to combine lo and hi */
8112                 /* Note: 's' is at the end of 'lo' */
8113                 sector_t a = BB_OFFSET(p[hi]);
8114                 int lolen = BB_LEN(p[lo]);
8115                 int hilen = BB_LEN(p[hi]);
8116                 int newlen = lolen + hilen - (s - a);
8117                 if (s >= a && newlen < BB_MAX_LEN) {
8118                         /* yes, we can combine them */
8119                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8120                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8121                         memmove(p + hi, p + hi + 1,
8122                                 (bb->count - hi - 1) * 8);
8123                         bb->count--;
8124                 }
8125         }
8126         while (sectors) {
8127                 /* didn't merge (it all).
8128                  * Need to add a range just before 'hi' */
8129                 if (bb->count >= MD_MAX_BADBLOCKS) {
8130                         /* No room for more */
8131                         rv = 0;
8132                         break;
8133                 } else {
8134                         int this_sectors = sectors;
8135                         memmove(p + hi + 1, p + hi,
8136                                 (bb->count - hi) * 8);
8137                         bb->count++;
8138
8139                         if (this_sectors > BB_MAX_LEN)
8140                                 this_sectors = BB_MAX_LEN;
8141                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8142                         sectors -= this_sectors;
8143                         s += this_sectors;
8144                 }
8145         }
8146
8147         bb->changed = 1;
8148         if (!acknowledged)
8149                 bb->unacked_exist = 1;
8150         write_sequnlock_irq(&bb->lock);
8151
8152         return rv;
8153 }
8154
8155 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8156                        int is_new)
8157 {
8158         int rv;
8159         if (is_new)
8160                 s += rdev->new_data_offset;
8161         else
8162                 s += rdev->data_offset;
8163         rv = md_set_badblocks(&rdev->badblocks,
8164                               s, sectors, 0);
8165         if (rv) {
8166                 /* Make sure they get written out promptly */
8167                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8168                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8169                 md_wakeup_thread(rdev->mddev->thread);
8170         }
8171         return rv;
8172 }
8173 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8174
8175 /*
8176  * Remove a range of bad blocks from the table.
8177  * This may involve extending the table if we spilt a region,
8178  * but it must not fail.  So if the table becomes full, we just
8179  * drop the remove request.
8180  */
8181 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8182 {
8183         u64 *p;
8184         int lo, hi;
8185         sector_t target = s + sectors;
8186         int rv = 0;
8187
8188         if (bb->shift > 0) {
8189                 /* When clearing we round the start up and the end down.
8190                  * This should not matter as the shift should align with
8191                  * the block size and no rounding should ever be needed.
8192                  * However it is better the think a block is bad when it
8193                  * isn't than to think a block is not bad when it is.
8194                  */
8195                 s += (1<<bb->shift) - 1;
8196                 s >>= bb->shift;
8197                 target >>= bb->shift;
8198                 sectors = target - s;
8199         }
8200
8201         write_seqlock_irq(&bb->lock);
8202
8203         p = bb->page;
8204         lo = 0;
8205         hi = bb->count;
8206         /* Find the last range that starts before 'target' */
8207         while (hi - lo > 1) {
8208                 int mid = (lo + hi) / 2;
8209                 sector_t a = BB_OFFSET(p[mid]);
8210                 if (a < target)
8211                         lo = mid;
8212                 else
8213                         hi = mid;
8214         }
8215         if (hi > lo) {
8216                 /* p[lo] is the last range that could overlap the
8217                  * current range.  Earlier ranges could also overlap,
8218                  * but only this one can overlap the end of the range.
8219                  */
8220                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8221                         /* Partial overlap, leave the tail of this range */
8222                         int ack = BB_ACK(p[lo]);
8223                         sector_t a = BB_OFFSET(p[lo]);
8224                         sector_t end = a + BB_LEN(p[lo]);
8225
8226                         if (a < s) {
8227                                 /* we need to split this range */
8228                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8229                                         rv = 0;
8230                                         goto out;
8231                                 }
8232                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8233                                 bb->count++;
8234                                 p[lo] = BB_MAKE(a, s-a, ack);
8235                                 lo++;
8236                         }
8237                         p[lo] = BB_MAKE(target, end - target, ack);
8238                         /* there is no longer an overlap */
8239                         hi = lo;
8240                         lo--;
8241                 }
8242                 while (lo >= 0 &&
8243                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8244                         /* This range does overlap */
8245                         if (BB_OFFSET(p[lo]) < s) {
8246                                 /* Keep the early parts of this range. */
8247                                 int ack = BB_ACK(p[lo]);
8248                                 sector_t start = BB_OFFSET(p[lo]);
8249                                 p[lo] = BB_MAKE(start, s - start, ack);
8250                                 /* now low doesn't overlap, so.. */
8251                                 break;
8252                         }
8253                         lo--;
8254                 }
8255                 /* 'lo' is strictly before, 'hi' is strictly after,
8256                  * anything between needs to be discarded
8257                  */
8258                 if (hi - lo > 1) {
8259                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8260                         bb->count -= (hi - lo - 1);
8261                 }
8262         }
8263
8264         bb->changed = 1;
8265 out:
8266         write_sequnlock_irq(&bb->lock);
8267         return rv;
8268 }
8269
8270 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8271                          int is_new)
8272 {
8273         if (is_new)
8274                 s += rdev->new_data_offset;
8275         else
8276                 s += rdev->data_offset;
8277         return md_clear_badblocks(&rdev->badblocks,
8278                                   s, sectors);
8279 }
8280 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8281
8282 /*
8283  * Acknowledge all bad blocks in a list.
8284  * This only succeeds if ->changed is clear.  It is used by
8285  * in-kernel metadata updates
8286  */
8287 void md_ack_all_badblocks(struct badblocks *bb)
8288 {
8289         if (bb->page == NULL || bb->changed)
8290                 /* no point even trying */
8291                 return;
8292         write_seqlock_irq(&bb->lock);
8293
8294         if (bb->changed == 0 && bb->unacked_exist) {
8295                 u64 *p = bb->page;
8296                 int i;
8297                 for (i = 0; i < bb->count ; i++) {
8298                         if (!BB_ACK(p[i])) {
8299                                 sector_t start = BB_OFFSET(p[i]);
8300                                 int len = BB_LEN(p[i]);
8301                                 p[i] = BB_MAKE(start, len, 1);
8302                         }
8303                 }
8304                 bb->unacked_exist = 0;
8305         }
8306         write_sequnlock_irq(&bb->lock);
8307 }
8308 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8309
8310 /* sysfs access to bad-blocks list.
8311  * We present two files.
8312  * 'bad-blocks' lists sector numbers and lengths of ranges that
8313  *    are recorded as bad.  The list is truncated to fit within
8314  *    the one-page limit of sysfs.
8315  *    Writing "sector length" to this file adds an acknowledged
8316  *    bad block list.
8317  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8318  *    been acknowledged.  Writing to this file adds bad blocks
8319  *    without acknowledging them.  This is largely for testing.
8320  */
8321
8322 static ssize_t
8323 badblocks_show(struct badblocks *bb, char *page, int unack)
8324 {
8325         size_t len;
8326         int i;
8327         u64 *p = bb->page;
8328         unsigned seq;
8329
8330         if (bb->shift < 0)
8331                 return 0;
8332
8333 retry:
8334         seq = read_seqbegin(&bb->lock);
8335
8336         len = 0;
8337         i = 0;
8338
8339         while (len < PAGE_SIZE && i < bb->count) {
8340                 sector_t s = BB_OFFSET(p[i]);
8341                 unsigned int length = BB_LEN(p[i]);
8342                 int ack = BB_ACK(p[i]);
8343                 i++;
8344
8345                 if (unack && ack)
8346                         continue;
8347
8348                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8349                                 (unsigned long long)s << bb->shift,
8350                                 length << bb->shift);
8351         }
8352         if (unack && len == 0)
8353                 bb->unacked_exist = 0;
8354
8355         if (read_seqretry(&bb->lock, seq))
8356                 goto retry;
8357
8358         return len;
8359 }
8360
8361 #define DO_DEBUG 1
8362
8363 static ssize_t
8364 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8365 {
8366         unsigned long long sector;
8367         int length;
8368         char newline;
8369 #ifdef DO_DEBUG
8370         /* Allow clearing via sysfs *only* for testing/debugging.
8371          * Normally only a successful write may clear a badblock
8372          */
8373         int clear = 0;
8374         if (page[0] == '-') {
8375                 clear = 1;
8376                 page++;
8377         }
8378 #endif /* DO_DEBUG */
8379
8380         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8381         case 3:
8382                 if (newline != '\n')
8383                         return -EINVAL;
8384         case 2:
8385                 if (length <= 0)
8386                         return -EINVAL;
8387                 break;
8388         default:
8389                 return -EINVAL;
8390         }
8391
8392 #ifdef DO_DEBUG
8393         if (clear) {
8394                 md_clear_badblocks(bb, sector, length);
8395                 return len;
8396         }
8397 #endif /* DO_DEBUG */
8398         if (md_set_badblocks(bb, sector, length, !unack))
8399                 return len;
8400         else
8401                 return -ENOSPC;
8402 }
8403
8404 static int md_notify_reboot(struct notifier_block *this,
8405                             unsigned long code, void *x)
8406 {
8407         struct list_head *tmp;
8408         struct mddev *mddev;
8409         int need_delay = 0;
8410
8411         for_each_mddev(mddev, tmp) {
8412                 if (mddev_trylock(mddev)) {
8413                         if (mddev->pers)
8414                                 __md_stop_writes(mddev);
8415                         mddev->safemode = 2;
8416                         mddev_unlock(mddev);
8417                 }
8418                 need_delay = 1;
8419         }
8420         /*
8421          * certain more exotic SCSI devices are known to be
8422          * volatile wrt too early system reboots. While the
8423          * right place to handle this issue is the given
8424          * driver, we do want to have a safe RAID driver ...
8425          */
8426         if (need_delay)
8427                 mdelay(1000*1);
8428
8429         return NOTIFY_DONE;
8430 }
8431
8432 static struct notifier_block md_notifier = {
8433         .notifier_call  = md_notify_reboot,
8434         .next           = NULL,
8435         .priority       = INT_MAX, /* before any real devices */
8436 };
8437
8438 static void md_geninit(void)
8439 {
8440         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8441
8442         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8443 }
8444
8445 static int __init md_init(void)
8446 {
8447         int ret = -ENOMEM;
8448
8449         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8450         if (!md_wq)
8451                 goto err_wq;
8452
8453         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8454         if (!md_misc_wq)
8455                 goto err_misc_wq;
8456
8457         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8458                 goto err_md;
8459
8460         if ((ret = register_blkdev(0, "mdp")) < 0)
8461                 goto err_mdp;
8462         mdp_major = ret;
8463
8464         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8465                             md_probe, NULL, NULL);
8466         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8467                             md_probe, NULL, NULL);
8468
8469         register_reboot_notifier(&md_notifier);
8470         raid_table_header = register_sysctl_table(raid_root_table);
8471
8472         md_geninit();
8473         return 0;
8474
8475 err_mdp:
8476         unregister_blkdev(MD_MAJOR, "md");
8477 err_md:
8478         destroy_workqueue(md_misc_wq);
8479 err_misc_wq:
8480         destroy_workqueue(md_wq);
8481 err_wq:
8482         return ret;
8483 }
8484
8485 #ifndef MODULE
8486
8487 /*
8488  * Searches all registered partitions for autorun RAID arrays
8489  * at boot time.
8490  */
8491
8492 static LIST_HEAD(all_detected_devices);
8493 struct detected_devices_node {
8494         struct list_head list;
8495         dev_t dev;
8496 };
8497
8498 void md_autodetect_dev(dev_t dev)
8499 {
8500         struct detected_devices_node *node_detected_dev;
8501
8502         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8503         if (node_detected_dev) {
8504                 node_detected_dev->dev = dev;
8505                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8506         } else {
8507                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8508                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8509         }
8510 }
8511
8512
8513 static void autostart_arrays(int part)
8514 {
8515         struct md_rdev *rdev;
8516         struct detected_devices_node *node_detected_dev;
8517         dev_t dev;
8518         int i_scanned, i_passed;
8519
8520         i_scanned = 0;
8521         i_passed = 0;
8522
8523         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8524
8525         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8526                 i_scanned++;
8527                 node_detected_dev = list_entry(all_detected_devices.next,
8528                                         struct detected_devices_node, list);
8529                 list_del(&node_detected_dev->list);
8530                 dev = node_detected_dev->dev;
8531                 kfree(node_detected_dev);
8532                 rdev = md_import_device(dev,0, 90);
8533                 if (IS_ERR(rdev))
8534                         continue;
8535
8536                 if (test_bit(Faulty, &rdev->flags)) {
8537                         MD_BUG();
8538                         continue;
8539                 }
8540                 set_bit(AutoDetected, &rdev->flags);
8541                 list_add(&rdev->same_set, &pending_raid_disks);
8542                 i_passed++;
8543         }
8544
8545         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8546                                                 i_scanned, i_passed);
8547
8548         autorun_devices(part);
8549 }
8550
8551 #endif /* !MODULE */
8552
8553 static __exit void md_exit(void)
8554 {
8555         struct mddev *mddev;
8556         struct list_head *tmp;
8557
8558         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8559         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8560
8561         unregister_blkdev(MD_MAJOR,"md");
8562         unregister_blkdev(mdp_major, "mdp");
8563         unregister_reboot_notifier(&md_notifier);
8564         unregister_sysctl_table(raid_table_header);
8565         remove_proc_entry("mdstat", NULL);
8566         for_each_mddev(mddev, tmp) {
8567                 export_array(mddev);
8568                 mddev->hold_active = 0;
8569         }
8570         destroy_workqueue(md_misc_wq);
8571         destroy_workqueue(md_wq);
8572 }
8573
8574 subsys_initcall(md_init);
8575 module_exit(md_exit)
8576
8577 static int get_ro(char *buffer, struct kernel_param *kp)
8578 {
8579         return sprintf(buffer, "%d", start_readonly);
8580 }
8581 static int set_ro(const char *val, struct kernel_param *kp)
8582 {
8583         char *e;
8584         int num = simple_strtoul(val, &e, 10);
8585         if (*val && (*e == '\0' || *e == '\n')) {
8586                 start_readonly = num;
8587                 return 0;
8588         }
8589         return -EINVAL;
8590 }
8591
8592 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8593 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8594
8595 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8596
8597 EXPORT_SYMBOL(register_md_personality);
8598 EXPORT_SYMBOL(unregister_md_personality);
8599 EXPORT_SYMBOL(md_error);
8600 EXPORT_SYMBOL(md_done_sync);
8601 EXPORT_SYMBOL(md_write_start);
8602 EXPORT_SYMBOL(md_write_end);
8603 EXPORT_SYMBOL(md_register_thread);
8604 EXPORT_SYMBOL(md_unregister_thread);
8605 EXPORT_SYMBOL(md_wakeup_thread);
8606 EXPORT_SYMBOL(md_check_recovery);
8607 MODULE_LICENSE("GPL");
8608 MODULE_DESCRIPTION("MD RAID framework");
8609 MODULE_ALIAS("md");
8610 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);