Merge tag 'spi-for-linus' of git://git.secretlab.ca/git/linux-2.6
[firefly-linux-kernel-4.4.55.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100         return mddev->sync_speed_min ?
101                 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106         return mddev->sync_speed_max ?
107                 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113         {
114                 .procname       = "speed_limit_min",
115                 .data           = &sysctl_speed_limit_min,
116                 .maxlen         = sizeof(int),
117                 .mode           = S_IRUGO|S_IWUSR,
118                 .proc_handler   = proc_dointvec,
119         },
120         {
121                 .procname       = "speed_limit_max",
122                 .data           = &sysctl_speed_limit_max,
123                 .maxlen         = sizeof(int),
124                 .mode           = S_IRUGO|S_IWUSR,
125                 .proc_handler   = proc_dointvec,
126         },
127         { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131         {
132                 .procname       = "raid",
133                 .maxlen         = 0,
134                 .mode           = S_IRUGO|S_IXUGO,
135                 .child          = raid_table,
136         },
137         { }
138 };
139
140 static ctl_table raid_root_table[] = {
141         {
142                 .procname       = "dev",
143                 .maxlen         = 0,
144                 .mode           = 0555,
145                 .child          = raid_dir_table,
146         },
147         {  }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160         struct mddev *mddev, **mddevp;
161
162         mddevp = (void*)bio;
163         mddev = mddevp[-1];
164
165         bio_free(bio, mddev->bio_set);
166 }
167
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169                             struct mddev *mddev)
170 {
171         struct bio *b;
172         struct mddev **mddevp;
173
174         if (!mddev || !mddev->bio_set)
175                 return bio_alloc(gfp_mask, nr_iovecs);
176
177         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178                              mddev->bio_set);
179         if (!b)
180                 return NULL;
181         mddevp = (void*)b;
182         mddevp[-1] = mddev;
183         b->bi_destructor = mddev_bio_destructor;
184         return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189                             struct mddev *mddev)
190 {
191         struct bio *b;
192         struct mddev **mddevp;
193
194         if (!mddev || !mddev->bio_set)
195                 return bio_clone(bio, gfp_mask);
196
197         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198                              mddev->bio_set);
199         if (!b)
200                 return NULL;
201         mddevp = (void*)b;
202         mddevp[-1] = mddev;
203         b->bi_destructor = mddev_bio_destructor;
204         __bio_clone(b, bio);
205         if (bio_integrity(bio)) {
206                 int ret;
207
208                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210                 if (ret < 0) {
211                         bio_put(b);
212                         return NULL;
213                 }
214         }
215
216         return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222         /* 'bio' is a cloned bio which we need to trim to match
223          * the given offset and size.
224          * This requires adjusting bi_sector, bi_size, and bi_io_vec
225          */
226         int i;
227         struct bio_vec *bvec;
228         int sofar = 0;
229
230         size <<= 9;
231         if (offset == 0 && size == bio->bi_size)
232                 return;
233
234         bio->bi_sector += offset;
235         bio->bi_size = size;
236         offset <<= 9;
237         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239         while (bio->bi_idx < bio->bi_vcnt &&
240                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241                 /* remove this whole bio_vec */
242                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243                 bio->bi_idx++;
244         }
245         if (bio->bi_idx < bio->bi_vcnt) {
246                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248         }
249         /* avoid any complications with bi_idx being non-zero*/
250         if (bio->bi_idx) {
251                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253                 bio->bi_vcnt -= bio->bi_idx;
254                 bio->bi_idx = 0;
255         }
256         /* Make sure vcnt and last bv are not too big */
257         bio_for_each_segment(bvec, bio, i) {
258                 if (sofar + bvec->bv_len > size)
259                         bvec->bv_len = size - sofar;
260                 if (bvec->bv_len == 0) {
261                         bio->bi_vcnt = i;
262                         break;
263                 }
264                 sofar += bvec->bv_len;
265         }
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268
269 /*
270  * We have a system wide 'event count' that is incremented
271  * on any 'interesting' event, and readers of /proc/mdstat
272  * can use 'poll' or 'select' to find out when the event
273  * count increases.
274  *
275  * Events are:
276  *  start array, stop array, error, add device, remove device,
277  *  start build, activate spare
278  */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283         atomic_inc(&md_event_count);
284         wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287
288 /* Alternate version that can be called from interrupts
289  * when calling sysfs_notify isn't needed.
290  */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293         atomic_inc(&md_event_count);
294         wake_up(&md_event_waiters);
295 }
296
297 /*
298  * Enables to iterate over all existing md arrays
299  * all_mddevs_lock protects this list.
300  */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305 /*
306  * iterates through all used mddevs in the system.
307  * We take care to grab the all_mddevs_lock whenever navigating
308  * the list, and to always hold a refcount when unlocked.
309  * Any code which breaks out of this loop while own
310  * a reference to the current mddev and must mddev_put it.
311  */
312 #define for_each_mddev(_mddev,_tmp)                                     \
313                                                                         \
314         for (({ spin_lock(&all_mddevs_lock);                            \
315                 _tmp = all_mddevs.next;                                 \
316                 _mddev = NULL;});                                       \
317              ({ if (_tmp != &all_mddevs)                                \
318                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319                 spin_unlock(&all_mddevs_lock);                          \
320                 if (_mddev) mddev_put(_mddev);                          \
321                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
322                 _tmp != &all_mddevs;});                                 \
323              ({ spin_lock(&all_mddevs_lock);                            \
324                 _tmp = _tmp->next;})                                    \
325                 )
326
327
328 /* Rather than calling directly into the personality make_request function,
329  * IO requests come here first so that we can check if the device is
330  * being suspended pending a reconfiguration.
331  * We hold a refcount over the call to ->make_request.  By the time that
332  * call has finished, the bio has been linked into some internal structure
333  * and so is visible to ->quiesce(), so we don't need the refcount any more.
334  */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337         const int rw = bio_data_dir(bio);
338         struct mddev *mddev = q->queuedata;
339         int cpu;
340         unsigned int sectors;
341
342         if (mddev == NULL || mddev->pers == NULL
343             || !mddev->ready) {
344                 bio_io_error(bio);
345                 return;
346         }
347         smp_rmb(); /* Ensure implications of  'active' are visible */
348         rcu_read_lock();
349         if (mddev->suspended) {
350                 DEFINE_WAIT(__wait);
351                 for (;;) {
352                         prepare_to_wait(&mddev->sb_wait, &__wait,
353                                         TASK_UNINTERRUPTIBLE);
354                         if (!mddev->suspended)
355                                 break;
356                         rcu_read_unlock();
357                         schedule();
358                         rcu_read_lock();
359                 }
360                 finish_wait(&mddev->sb_wait, &__wait);
361         }
362         atomic_inc(&mddev->active_io);
363         rcu_read_unlock();
364
365         /*
366          * save the sectors now since our bio can
367          * go away inside make_request
368          */
369         sectors = bio_sectors(bio);
370         mddev->pers->make_request(mddev, bio);
371
372         cpu = part_stat_lock();
373         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375         part_stat_unlock();
376
377         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378                 wake_up(&mddev->sb_wait);
379 }
380
381 /* mddev_suspend makes sure no new requests are submitted
382  * to the device, and that any requests that have been submitted
383  * are completely handled.
384  * Once ->stop is called and completes, the module will be completely
385  * unused.
386  */
387 void mddev_suspend(struct mddev *mddev)
388 {
389         BUG_ON(mddev->suspended);
390         mddev->suspended = 1;
391         synchronize_rcu();
392         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393         mddev->pers->quiesce(mddev, 1);
394 }
395 EXPORT_SYMBOL_GPL(mddev_suspend);
396
397 void mddev_resume(struct mddev *mddev)
398 {
399         mddev->suspended = 0;
400         wake_up(&mddev->sb_wait);
401         mddev->pers->quiesce(mddev, 0);
402
403         md_wakeup_thread(mddev->thread);
404         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
405 }
406 EXPORT_SYMBOL_GPL(mddev_resume);
407
408 int mddev_congested(struct mddev *mddev, int bits)
409 {
410         return mddev->suspended;
411 }
412 EXPORT_SYMBOL(mddev_congested);
413
414 /*
415  * Generic flush handling for md
416  */
417
418 static void md_end_flush(struct bio *bio, int err)
419 {
420         struct md_rdev *rdev = bio->bi_private;
421         struct mddev *mddev = rdev->mddev;
422
423         rdev_dec_pending(rdev, mddev);
424
425         if (atomic_dec_and_test(&mddev->flush_pending)) {
426                 /* The pre-request flush has finished */
427                 queue_work(md_wq, &mddev->flush_work);
428         }
429         bio_put(bio);
430 }
431
432 static void md_submit_flush_data(struct work_struct *ws);
433
434 static void submit_flushes(struct work_struct *ws)
435 {
436         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
437         struct md_rdev *rdev;
438
439         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
440         atomic_set(&mddev->flush_pending, 1);
441         rcu_read_lock();
442         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
443                 if (rdev->raid_disk >= 0 &&
444                     !test_bit(Faulty, &rdev->flags)) {
445                         /* Take two references, one is dropped
446                          * when request finishes, one after
447                          * we reclaim rcu_read_lock
448                          */
449                         struct bio *bi;
450                         atomic_inc(&rdev->nr_pending);
451                         atomic_inc(&rdev->nr_pending);
452                         rcu_read_unlock();
453                         bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
454                         bi->bi_end_io = md_end_flush;
455                         bi->bi_private = rdev;
456                         bi->bi_bdev = rdev->bdev;
457                         atomic_inc(&mddev->flush_pending);
458                         submit_bio(WRITE_FLUSH, bi);
459                         rcu_read_lock();
460                         rdev_dec_pending(rdev, mddev);
461                 }
462         rcu_read_unlock();
463         if (atomic_dec_and_test(&mddev->flush_pending))
464                 queue_work(md_wq, &mddev->flush_work);
465 }
466
467 static void md_submit_flush_data(struct work_struct *ws)
468 {
469         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
470         struct bio *bio = mddev->flush_bio;
471
472         if (bio->bi_size == 0)
473                 /* an empty barrier - all done */
474                 bio_endio(bio, 0);
475         else {
476                 bio->bi_rw &= ~REQ_FLUSH;
477                 mddev->pers->make_request(mddev, bio);
478         }
479
480         mddev->flush_bio = NULL;
481         wake_up(&mddev->sb_wait);
482 }
483
484 void md_flush_request(struct mddev *mddev, struct bio *bio)
485 {
486         spin_lock_irq(&mddev->write_lock);
487         wait_event_lock_irq(mddev->sb_wait,
488                             !mddev->flush_bio,
489                             mddev->write_lock, /*nothing*/);
490         mddev->flush_bio = bio;
491         spin_unlock_irq(&mddev->write_lock);
492
493         INIT_WORK(&mddev->flush_work, submit_flushes);
494         queue_work(md_wq, &mddev->flush_work);
495 }
496 EXPORT_SYMBOL(md_flush_request);
497
498 /* Support for plugging.
499  * This mirrors the plugging support in request_queue, but does not
500  * require having a whole queue or request structures.
501  * We allocate an md_plug_cb for each md device and each thread it gets
502  * plugged on.  This links tot the private plug_handle structure in the
503  * personality data where we keep a count of the number of outstanding
504  * plugs so other code can see if a plug is active.
505  */
506 struct md_plug_cb {
507         struct blk_plug_cb cb;
508         struct mddev *mddev;
509 };
510
511 static void plugger_unplug(struct blk_plug_cb *cb)
512 {
513         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
514         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
515                 md_wakeup_thread(mdcb->mddev->thread);
516         kfree(mdcb);
517 }
518
519 /* Check that an unplug wakeup will come shortly.
520  * If not, wakeup the md thread immediately
521  */
522 int mddev_check_plugged(struct mddev *mddev)
523 {
524         struct blk_plug *plug = current->plug;
525         struct md_plug_cb *mdcb;
526
527         if (!plug)
528                 return 0;
529
530         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
531                 if (mdcb->cb.callback == plugger_unplug &&
532                     mdcb->mddev == mddev) {
533                         /* Already on the list, move to top */
534                         if (mdcb != list_first_entry(&plug->cb_list,
535                                                     struct md_plug_cb,
536                                                     cb.list))
537                                 list_move(&mdcb->cb.list, &plug->cb_list);
538                         return 1;
539                 }
540         }
541         /* Not currently on the callback list */
542         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
543         if (!mdcb)
544                 return 0;
545
546         mdcb->mddev = mddev;
547         mdcb->cb.callback = plugger_unplug;
548         atomic_inc(&mddev->plug_cnt);
549         list_add(&mdcb->cb.list, &plug->cb_list);
550         return 1;
551 }
552 EXPORT_SYMBOL_GPL(mddev_check_plugged);
553
554 static inline struct mddev *mddev_get(struct mddev *mddev)
555 {
556         atomic_inc(&mddev->active);
557         return mddev;
558 }
559
560 static void mddev_delayed_delete(struct work_struct *ws);
561
562 static void mddev_put(struct mddev *mddev)
563 {
564         struct bio_set *bs = NULL;
565
566         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
567                 return;
568         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
569             mddev->ctime == 0 && !mddev->hold_active) {
570                 /* Array is not configured at all, and not held active,
571                  * so destroy it */
572                 list_del_init(&mddev->all_mddevs);
573                 bs = mddev->bio_set;
574                 mddev->bio_set = NULL;
575                 if (mddev->gendisk) {
576                         /* We did a probe so need to clean up.  Call
577                          * queue_work inside the spinlock so that
578                          * flush_workqueue() after mddev_find will
579                          * succeed in waiting for the work to be done.
580                          */
581                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
582                         queue_work(md_misc_wq, &mddev->del_work);
583                 } else
584                         kfree(mddev);
585         }
586         spin_unlock(&all_mddevs_lock);
587         if (bs)
588                 bioset_free(bs);
589 }
590
591 void mddev_init(struct mddev *mddev)
592 {
593         mutex_init(&mddev->open_mutex);
594         mutex_init(&mddev->reconfig_mutex);
595         mutex_init(&mddev->bitmap_info.mutex);
596         INIT_LIST_HEAD(&mddev->disks);
597         INIT_LIST_HEAD(&mddev->all_mddevs);
598         init_timer(&mddev->safemode_timer);
599         atomic_set(&mddev->active, 1);
600         atomic_set(&mddev->openers, 0);
601         atomic_set(&mddev->active_io, 0);
602         atomic_set(&mddev->plug_cnt, 0);
603         spin_lock_init(&mddev->write_lock);
604         atomic_set(&mddev->flush_pending, 0);
605         init_waitqueue_head(&mddev->sb_wait);
606         init_waitqueue_head(&mddev->recovery_wait);
607         mddev->reshape_position = MaxSector;
608         mddev->resync_min = 0;
609         mddev->resync_max = MaxSector;
610         mddev->level = LEVEL_NONE;
611 }
612 EXPORT_SYMBOL_GPL(mddev_init);
613
614 static struct mddev * mddev_find(dev_t unit)
615 {
616         struct mddev *mddev, *new = NULL;
617
618         if (unit && MAJOR(unit) != MD_MAJOR)
619                 unit &= ~((1<<MdpMinorShift)-1);
620
621  retry:
622         spin_lock(&all_mddevs_lock);
623
624         if (unit) {
625                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
626                         if (mddev->unit == unit) {
627                                 mddev_get(mddev);
628                                 spin_unlock(&all_mddevs_lock);
629                                 kfree(new);
630                                 return mddev;
631                         }
632
633                 if (new) {
634                         list_add(&new->all_mddevs, &all_mddevs);
635                         spin_unlock(&all_mddevs_lock);
636                         new->hold_active = UNTIL_IOCTL;
637                         return new;
638                 }
639         } else if (new) {
640                 /* find an unused unit number */
641                 static int next_minor = 512;
642                 int start = next_minor;
643                 int is_free = 0;
644                 int dev = 0;
645                 while (!is_free) {
646                         dev = MKDEV(MD_MAJOR, next_minor);
647                         next_minor++;
648                         if (next_minor > MINORMASK)
649                                 next_minor = 0;
650                         if (next_minor == start) {
651                                 /* Oh dear, all in use. */
652                                 spin_unlock(&all_mddevs_lock);
653                                 kfree(new);
654                                 return NULL;
655                         }
656                                 
657                         is_free = 1;
658                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
659                                 if (mddev->unit == dev) {
660                                         is_free = 0;
661                                         break;
662                                 }
663                 }
664                 new->unit = dev;
665                 new->md_minor = MINOR(dev);
666                 new->hold_active = UNTIL_STOP;
667                 list_add(&new->all_mddevs, &all_mddevs);
668                 spin_unlock(&all_mddevs_lock);
669                 return new;
670         }
671         spin_unlock(&all_mddevs_lock);
672
673         new = kzalloc(sizeof(*new), GFP_KERNEL);
674         if (!new)
675                 return NULL;
676
677         new->unit = unit;
678         if (MAJOR(unit) == MD_MAJOR)
679                 new->md_minor = MINOR(unit);
680         else
681                 new->md_minor = MINOR(unit) >> MdpMinorShift;
682
683         mddev_init(new);
684
685         goto retry;
686 }
687
688 static inline int mddev_lock(struct mddev * mddev)
689 {
690         return mutex_lock_interruptible(&mddev->reconfig_mutex);
691 }
692
693 static inline int mddev_is_locked(struct mddev *mddev)
694 {
695         return mutex_is_locked(&mddev->reconfig_mutex);
696 }
697
698 static inline int mddev_trylock(struct mddev * mddev)
699 {
700         return mutex_trylock(&mddev->reconfig_mutex);
701 }
702
703 static struct attribute_group md_redundancy_group;
704
705 static void mddev_unlock(struct mddev * mddev)
706 {
707         if (mddev->to_remove) {
708                 /* These cannot be removed under reconfig_mutex as
709                  * an access to the files will try to take reconfig_mutex
710                  * while holding the file unremovable, which leads to
711                  * a deadlock.
712                  * So hold set sysfs_active while the remove in happeing,
713                  * and anything else which might set ->to_remove or my
714                  * otherwise change the sysfs namespace will fail with
715                  * -EBUSY if sysfs_active is still set.
716                  * We set sysfs_active under reconfig_mutex and elsewhere
717                  * test it under the same mutex to ensure its correct value
718                  * is seen.
719                  */
720                 struct attribute_group *to_remove = mddev->to_remove;
721                 mddev->to_remove = NULL;
722                 mddev->sysfs_active = 1;
723                 mutex_unlock(&mddev->reconfig_mutex);
724
725                 if (mddev->kobj.sd) {
726                         if (to_remove != &md_redundancy_group)
727                                 sysfs_remove_group(&mddev->kobj, to_remove);
728                         if (mddev->pers == NULL ||
729                             mddev->pers->sync_request == NULL) {
730                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
731                                 if (mddev->sysfs_action)
732                                         sysfs_put(mddev->sysfs_action);
733                                 mddev->sysfs_action = NULL;
734                         }
735                 }
736                 mddev->sysfs_active = 0;
737         } else
738                 mutex_unlock(&mddev->reconfig_mutex);
739
740         /* As we've dropped the mutex we need a spinlock to
741          * make sure the thread doesn't disappear
742          */
743         spin_lock(&pers_lock);
744         md_wakeup_thread(mddev->thread);
745         spin_unlock(&pers_lock);
746 }
747
748 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
749 {
750         struct md_rdev *rdev;
751
752         list_for_each_entry(rdev, &mddev->disks, same_set)
753                 if (rdev->desc_nr == nr)
754                         return rdev;
755
756         return NULL;
757 }
758
759 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
760 {
761         struct md_rdev *rdev;
762
763         list_for_each_entry(rdev, &mddev->disks, same_set)
764                 if (rdev->bdev->bd_dev == dev)
765                         return rdev;
766
767         return NULL;
768 }
769
770 static struct md_personality *find_pers(int level, char *clevel)
771 {
772         struct md_personality *pers;
773         list_for_each_entry(pers, &pers_list, list) {
774                 if (level != LEVEL_NONE && pers->level == level)
775                         return pers;
776                 if (strcmp(pers->name, clevel)==0)
777                         return pers;
778         }
779         return NULL;
780 }
781
782 /* return the offset of the super block in 512byte sectors */
783 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
784 {
785         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
786         return MD_NEW_SIZE_SECTORS(num_sectors);
787 }
788
789 static int alloc_disk_sb(struct md_rdev * rdev)
790 {
791         if (rdev->sb_page)
792                 MD_BUG();
793
794         rdev->sb_page = alloc_page(GFP_KERNEL);
795         if (!rdev->sb_page) {
796                 printk(KERN_ALERT "md: out of memory.\n");
797                 return -ENOMEM;
798         }
799
800         return 0;
801 }
802
803 static void free_disk_sb(struct md_rdev * rdev)
804 {
805         if (rdev->sb_page) {
806                 put_page(rdev->sb_page);
807                 rdev->sb_loaded = 0;
808                 rdev->sb_page = NULL;
809                 rdev->sb_start = 0;
810                 rdev->sectors = 0;
811         }
812         if (rdev->bb_page) {
813                 put_page(rdev->bb_page);
814                 rdev->bb_page = NULL;
815         }
816 }
817
818
819 static void super_written(struct bio *bio, int error)
820 {
821         struct md_rdev *rdev = bio->bi_private;
822         struct mddev *mddev = rdev->mddev;
823
824         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
825                 printk("md: super_written gets error=%d, uptodate=%d\n",
826                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
827                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
828                 md_error(mddev, rdev);
829         }
830
831         if (atomic_dec_and_test(&mddev->pending_writes))
832                 wake_up(&mddev->sb_wait);
833         bio_put(bio);
834 }
835
836 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
837                    sector_t sector, int size, struct page *page)
838 {
839         /* write first size bytes of page to sector of rdev
840          * Increment mddev->pending_writes before returning
841          * and decrement it on completion, waking up sb_wait
842          * if zero is reached.
843          * If an error occurred, call md_error
844          */
845         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
846
847         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
848         bio->bi_sector = sector;
849         bio_add_page(bio, page, size, 0);
850         bio->bi_private = rdev;
851         bio->bi_end_io = super_written;
852
853         atomic_inc(&mddev->pending_writes);
854         submit_bio(WRITE_FLUSH_FUA, bio);
855 }
856
857 void md_super_wait(struct mddev *mddev)
858 {
859         /* wait for all superblock writes that were scheduled to complete */
860         DEFINE_WAIT(wq);
861         for(;;) {
862                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
863                 if (atomic_read(&mddev->pending_writes)==0)
864                         break;
865                 schedule();
866         }
867         finish_wait(&mddev->sb_wait, &wq);
868 }
869
870 static void bi_complete(struct bio *bio, int error)
871 {
872         complete((struct completion*)bio->bi_private);
873 }
874
875 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
876                  struct page *page, int rw, bool metadata_op)
877 {
878         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
879         struct completion event;
880         int ret;
881
882         rw |= REQ_SYNC;
883
884         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
885                 rdev->meta_bdev : rdev->bdev;
886         if (metadata_op)
887                 bio->bi_sector = sector + rdev->sb_start;
888         else
889                 bio->bi_sector = sector + rdev->data_offset;
890         bio_add_page(bio, page, size, 0);
891         init_completion(&event);
892         bio->bi_private = &event;
893         bio->bi_end_io = bi_complete;
894         submit_bio(rw, bio);
895         wait_for_completion(&event);
896
897         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
898         bio_put(bio);
899         return ret;
900 }
901 EXPORT_SYMBOL_GPL(sync_page_io);
902
903 static int read_disk_sb(struct md_rdev * rdev, int size)
904 {
905         char b[BDEVNAME_SIZE];
906         if (!rdev->sb_page) {
907                 MD_BUG();
908                 return -EINVAL;
909         }
910         if (rdev->sb_loaded)
911                 return 0;
912
913
914         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
915                 goto fail;
916         rdev->sb_loaded = 1;
917         return 0;
918
919 fail:
920         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
921                 bdevname(rdev->bdev,b));
922         return -EINVAL;
923 }
924
925 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
926 {
927         return  sb1->set_uuid0 == sb2->set_uuid0 &&
928                 sb1->set_uuid1 == sb2->set_uuid1 &&
929                 sb1->set_uuid2 == sb2->set_uuid2 &&
930                 sb1->set_uuid3 == sb2->set_uuid3;
931 }
932
933 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
934 {
935         int ret;
936         mdp_super_t *tmp1, *tmp2;
937
938         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
939         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
940
941         if (!tmp1 || !tmp2) {
942                 ret = 0;
943                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
944                 goto abort;
945         }
946
947         *tmp1 = *sb1;
948         *tmp2 = *sb2;
949
950         /*
951          * nr_disks is not constant
952          */
953         tmp1->nr_disks = 0;
954         tmp2->nr_disks = 0;
955
956         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
957 abort:
958         kfree(tmp1);
959         kfree(tmp2);
960         return ret;
961 }
962
963
964 static u32 md_csum_fold(u32 csum)
965 {
966         csum = (csum & 0xffff) + (csum >> 16);
967         return (csum & 0xffff) + (csum >> 16);
968 }
969
970 static unsigned int calc_sb_csum(mdp_super_t * sb)
971 {
972         u64 newcsum = 0;
973         u32 *sb32 = (u32*)sb;
974         int i;
975         unsigned int disk_csum, csum;
976
977         disk_csum = sb->sb_csum;
978         sb->sb_csum = 0;
979
980         for (i = 0; i < MD_SB_BYTES/4 ; i++)
981                 newcsum += sb32[i];
982         csum = (newcsum & 0xffffffff) + (newcsum>>32);
983
984
985 #ifdef CONFIG_ALPHA
986         /* This used to use csum_partial, which was wrong for several
987          * reasons including that different results are returned on
988          * different architectures.  It isn't critical that we get exactly
989          * the same return value as before (we always csum_fold before
990          * testing, and that removes any differences).  However as we
991          * know that csum_partial always returned a 16bit value on
992          * alphas, do a fold to maximise conformity to previous behaviour.
993          */
994         sb->sb_csum = md_csum_fold(disk_csum);
995 #else
996         sb->sb_csum = disk_csum;
997 #endif
998         return csum;
999 }
1000
1001
1002 /*
1003  * Handle superblock details.
1004  * We want to be able to handle multiple superblock formats
1005  * so we have a common interface to them all, and an array of
1006  * different handlers.
1007  * We rely on user-space to write the initial superblock, and support
1008  * reading and updating of superblocks.
1009  * Interface methods are:
1010  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1011  *      loads and validates a superblock on dev.
1012  *      if refdev != NULL, compare superblocks on both devices
1013  *    Return:
1014  *      0 - dev has a superblock that is compatible with refdev
1015  *      1 - dev has a superblock that is compatible and newer than refdev
1016  *          so dev should be used as the refdev in future
1017  *     -EINVAL superblock incompatible or invalid
1018  *     -othererror e.g. -EIO
1019  *
1020  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1021  *      Verify that dev is acceptable into mddev.
1022  *       The first time, mddev->raid_disks will be 0, and data from
1023  *       dev should be merged in.  Subsequent calls check that dev
1024  *       is new enough.  Return 0 or -EINVAL
1025  *
1026  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1027  *     Update the superblock for rdev with data in mddev
1028  *     This does not write to disc.
1029  *
1030  */
1031
1032 struct super_type  {
1033         char                *name;
1034         struct module       *owner;
1035         int                 (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1036                                           int minor_version);
1037         int                 (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1038         void                (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1039         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1040                                                 sector_t num_sectors);
1041 };
1042
1043 /*
1044  * Check that the given mddev has no bitmap.
1045  *
1046  * This function is called from the run method of all personalities that do not
1047  * support bitmaps. It prints an error message and returns non-zero if mddev
1048  * has a bitmap. Otherwise, it returns 0.
1049  *
1050  */
1051 int md_check_no_bitmap(struct mddev *mddev)
1052 {
1053         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1054                 return 0;
1055         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1056                 mdname(mddev), mddev->pers->name);
1057         return 1;
1058 }
1059 EXPORT_SYMBOL(md_check_no_bitmap);
1060
1061 /*
1062  * load_super for 0.90.0 
1063  */
1064 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1065 {
1066         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1067         mdp_super_t *sb;
1068         int ret;
1069
1070         /*
1071          * Calculate the position of the superblock (512byte sectors),
1072          * it's at the end of the disk.
1073          *
1074          * It also happens to be a multiple of 4Kb.
1075          */
1076         rdev->sb_start = calc_dev_sboffset(rdev);
1077
1078         ret = read_disk_sb(rdev, MD_SB_BYTES);
1079         if (ret) return ret;
1080
1081         ret = -EINVAL;
1082
1083         bdevname(rdev->bdev, b);
1084         sb = page_address(rdev->sb_page);
1085
1086         if (sb->md_magic != MD_SB_MAGIC) {
1087                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1088                        b);
1089                 goto abort;
1090         }
1091
1092         if (sb->major_version != 0 ||
1093             sb->minor_version < 90 ||
1094             sb->minor_version > 91) {
1095                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1096                         sb->major_version, sb->minor_version,
1097                         b);
1098                 goto abort;
1099         }
1100
1101         if (sb->raid_disks <= 0)
1102                 goto abort;
1103
1104         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1105                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1106                         b);
1107                 goto abort;
1108         }
1109
1110         rdev->preferred_minor = sb->md_minor;
1111         rdev->data_offset = 0;
1112         rdev->sb_size = MD_SB_BYTES;
1113         rdev->badblocks.shift = -1;
1114
1115         if (sb->level == LEVEL_MULTIPATH)
1116                 rdev->desc_nr = -1;
1117         else
1118                 rdev->desc_nr = sb->this_disk.number;
1119
1120         if (!refdev) {
1121                 ret = 1;
1122         } else {
1123                 __u64 ev1, ev2;
1124                 mdp_super_t *refsb = page_address(refdev->sb_page);
1125                 if (!uuid_equal(refsb, sb)) {
1126                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1127                                 b, bdevname(refdev->bdev,b2));
1128                         goto abort;
1129                 }
1130                 if (!sb_equal(refsb, sb)) {
1131                         printk(KERN_WARNING "md: %s has same UUID"
1132                                " but different superblock to %s\n",
1133                                b, bdevname(refdev->bdev, b2));
1134                         goto abort;
1135                 }
1136                 ev1 = md_event(sb);
1137                 ev2 = md_event(refsb);
1138                 if (ev1 > ev2)
1139                         ret = 1;
1140                 else 
1141                         ret = 0;
1142         }
1143         rdev->sectors = rdev->sb_start;
1144         /* Limit to 4TB as metadata cannot record more than that */
1145         if (rdev->sectors >= (2ULL << 32))
1146                 rdev->sectors = (2ULL << 32) - 2;
1147
1148         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1149                 /* "this cannot possibly happen" ... */
1150                 ret = -EINVAL;
1151
1152  abort:
1153         return ret;
1154 }
1155
1156 /*
1157  * validate_super for 0.90.0
1158  */
1159 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1160 {
1161         mdp_disk_t *desc;
1162         mdp_super_t *sb = page_address(rdev->sb_page);
1163         __u64 ev1 = md_event(sb);
1164
1165         rdev->raid_disk = -1;
1166         clear_bit(Faulty, &rdev->flags);
1167         clear_bit(In_sync, &rdev->flags);
1168         clear_bit(WriteMostly, &rdev->flags);
1169
1170         if (mddev->raid_disks == 0) {
1171                 mddev->major_version = 0;
1172                 mddev->minor_version = sb->minor_version;
1173                 mddev->patch_version = sb->patch_version;
1174                 mddev->external = 0;
1175                 mddev->chunk_sectors = sb->chunk_size >> 9;
1176                 mddev->ctime = sb->ctime;
1177                 mddev->utime = sb->utime;
1178                 mddev->level = sb->level;
1179                 mddev->clevel[0] = 0;
1180                 mddev->layout = sb->layout;
1181                 mddev->raid_disks = sb->raid_disks;
1182                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1183                 mddev->events = ev1;
1184                 mddev->bitmap_info.offset = 0;
1185                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1186
1187                 if (mddev->minor_version >= 91) {
1188                         mddev->reshape_position = sb->reshape_position;
1189                         mddev->delta_disks = sb->delta_disks;
1190                         mddev->new_level = sb->new_level;
1191                         mddev->new_layout = sb->new_layout;
1192                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1193                 } else {
1194                         mddev->reshape_position = MaxSector;
1195                         mddev->delta_disks = 0;
1196                         mddev->new_level = mddev->level;
1197                         mddev->new_layout = mddev->layout;
1198                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1199                 }
1200
1201                 if (sb->state & (1<<MD_SB_CLEAN))
1202                         mddev->recovery_cp = MaxSector;
1203                 else {
1204                         if (sb->events_hi == sb->cp_events_hi && 
1205                                 sb->events_lo == sb->cp_events_lo) {
1206                                 mddev->recovery_cp = sb->recovery_cp;
1207                         } else
1208                                 mddev->recovery_cp = 0;
1209                 }
1210
1211                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1212                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1213                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1214                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1215
1216                 mddev->max_disks = MD_SB_DISKS;
1217
1218                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1219                     mddev->bitmap_info.file == NULL)
1220                         mddev->bitmap_info.offset =
1221                                 mddev->bitmap_info.default_offset;
1222
1223         } else if (mddev->pers == NULL) {
1224                 /* Insist on good event counter while assembling, except
1225                  * for spares (which don't need an event count) */
1226                 ++ev1;
1227                 if (sb->disks[rdev->desc_nr].state & (
1228                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1229                         if (ev1 < mddev->events) 
1230                                 return -EINVAL;
1231         } else if (mddev->bitmap) {
1232                 /* if adding to array with a bitmap, then we can accept an
1233                  * older device ... but not too old.
1234                  */
1235                 if (ev1 < mddev->bitmap->events_cleared)
1236                         return 0;
1237         } else {
1238                 if (ev1 < mddev->events)
1239                         /* just a hot-add of a new device, leave raid_disk at -1 */
1240                         return 0;
1241         }
1242
1243         if (mddev->level != LEVEL_MULTIPATH) {
1244                 desc = sb->disks + rdev->desc_nr;
1245
1246                 if (desc->state & (1<<MD_DISK_FAULTY))
1247                         set_bit(Faulty, &rdev->flags);
1248                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1249                             desc->raid_disk < mddev->raid_disks */) {
1250                         set_bit(In_sync, &rdev->flags);
1251                         rdev->raid_disk = desc->raid_disk;
1252                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1253                         /* active but not in sync implies recovery up to
1254                          * reshape position.  We don't know exactly where
1255                          * that is, so set to zero for now */
1256                         if (mddev->minor_version >= 91) {
1257                                 rdev->recovery_offset = 0;
1258                                 rdev->raid_disk = desc->raid_disk;
1259                         }
1260                 }
1261                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1262                         set_bit(WriteMostly, &rdev->flags);
1263         } else /* MULTIPATH are always insync */
1264                 set_bit(In_sync, &rdev->flags);
1265         return 0;
1266 }
1267
1268 /*
1269  * sync_super for 0.90.0
1270  */
1271 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1272 {
1273         mdp_super_t *sb;
1274         struct md_rdev *rdev2;
1275         int next_spare = mddev->raid_disks;
1276
1277
1278         /* make rdev->sb match mddev data..
1279          *
1280          * 1/ zero out disks
1281          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1282          * 3/ any empty disks < next_spare become removed
1283          *
1284          * disks[0] gets initialised to REMOVED because
1285          * we cannot be sure from other fields if it has
1286          * been initialised or not.
1287          */
1288         int i;
1289         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1290
1291         rdev->sb_size = MD_SB_BYTES;
1292
1293         sb = page_address(rdev->sb_page);
1294
1295         memset(sb, 0, sizeof(*sb));
1296
1297         sb->md_magic = MD_SB_MAGIC;
1298         sb->major_version = mddev->major_version;
1299         sb->patch_version = mddev->patch_version;
1300         sb->gvalid_words  = 0; /* ignored */
1301         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1302         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1303         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1304         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1305
1306         sb->ctime = mddev->ctime;
1307         sb->level = mddev->level;
1308         sb->size = mddev->dev_sectors / 2;
1309         sb->raid_disks = mddev->raid_disks;
1310         sb->md_minor = mddev->md_minor;
1311         sb->not_persistent = 0;
1312         sb->utime = mddev->utime;
1313         sb->state = 0;
1314         sb->events_hi = (mddev->events>>32);
1315         sb->events_lo = (u32)mddev->events;
1316
1317         if (mddev->reshape_position == MaxSector)
1318                 sb->minor_version = 90;
1319         else {
1320                 sb->minor_version = 91;
1321                 sb->reshape_position = mddev->reshape_position;
1322                 sb->new_level = mddev->new_level;
1323                 sb->delta_disks = mddev->delta_disks;
1324                 sb->new_layout = mddev->new_layout;
1325                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1326         }
1327         mddev->minor_version = sb->minor_version;
1328         if (mddev->in_sync)
1329         {
1330                 sb->recovery_cp = mddev->recovery_cp;
1331                 sb->cp_events_hi = (mddev->events>>32);
1332                 sb->cp_events_lo = (u32)mddev->events;
1333                 if (mddev->recovery_cp == MaxSector)
1334                         sb->state = (1<< MD_SB_CLEAN);
1335         } else
1336                 sb->recovery_cp = 0;
1337
1338         sb->layout = mddev->layout;
1339         sb->chunk_size = mddev->chunk_sectors << 9;
1340
1341         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1342                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1343
1344         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1345         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1346                 mdp_disk_t *d;
1347                 int desc_nr;
1348                 int is_active = test_bit(In_sync, &rdev2->flags);
1349
1350                 if (rdev2->raid_disk >= 0 &&
1351                     sb->minor_version >= 91)
1352                         /* we have nowhere to store the recovery_offset,
1353                          * but if it is not below the reshape_position,
1354                          * we can piggy-back on that.
1355                          */
1356                         is_active = 1;
1357                 if (rdev2->raid_disk < 0 ||
1358                     test_bit(Faulty, &rdev2->flags))
1359                         is_active = 0;
1360                 if (is_active)
1361                         desc_nr = rdev2->raid_disk;
1362                 else
1363                         desc_nr = next_spare++;
1364                 rdev2->desc_nr = desc_nr;
1365                 d = &sb->disks[rdev2->desc_nr];
1366                 nr_disks++;
1367                 d->number = rdev2->desc_nr;
1368                 d->major = MAJOR(rdev2->bdev->bd_dev);
1369                 d->minor = MINOR(rdev2->bdev->bd_dev);
1370                 if (is_active)
1371                         d->raid_disk = rdev2->raid_disk;
1372                 else
1373                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1374                 if (test_bit(Faulty, &rdev2->flags))
1375                         d->state = (1<<MD_DISK_FAULTY);
1376                 else if (is_active) {
1377                         d->state = (1<<MD_DISK_ACTIVE);
1378                         if (test_bit(In_sync, &rdev2->flags))
1379                                 d->state |= (1<<MD_DISK_SYNC);
1380                         active++;
1381                         working++;
1382                 } else {
1383                         d->state = 0;
1384                         spare++;
1385                         working++;
1386                 }
1387                 if (test_bit(WriteMostly, &rdev2->flags))
1388                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1389         }
1390         /* now set the "removed" and "faulty" bits on any missing devices */
1391         for (i=0 ; i < mddev->raid_disks ; i++) {
1392                 mdp_disk_t *d = &sb->disks[i];
1393                 if (d->state == 0 && d->number == 0) {
1394                         d->number = i;
1395                         d->raid_disk = i;
1396                         d->state = (1<<MD_DISK_REMOVED);
1397                         d->state |= (1<<MD_DISK_FAULTY);
1398                         failed++;
1399                 }
1400         }
1401         sb->nr_disks = nr_disks;
1402         sb->active_disks = active;
1403         sb->working_disks = working;
1404         sb->failed_disks = failed;
1405         sb->spare_disks = spare;
1406
1407         sb->this_disk = sb->disks[rdev->desc_nr];
1408         sb->sb_csum = calc_sb_csum(sb);
1409 }
1410
1411 /*
1412  * rdev_size_change for 0.90.0
1413  */
1414 static unsigned long long
1415 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1416 {
1417         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1418                 return 0; /* component must fit device */
1419         if (rdev->mddev->bitmap_info.offset)
1420                 return 0; /* can't move bitmap */
1421         rdev->sb_start = calc_dev_sboffset(rdev);
1422         if (!num_sectors || num_sectors > rdev->sb_start)
1423                 num_sectors = rdev->sb_start;
1424         /* Limit to 4TB as metadata cannot record more than that.
1425          * 4TB == 2^32 KB, or 2*2^32 sectors.
1426          */
1427         if (num_sectors >= (2ULL << 32))
1428                 num_sectors = (2ULL << 32) - 2;
1429         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1430                        rdev->sb_page);
1431         md_super_wait(rdev->mddev);
1432         return num_sectors;
1433 }
1434
1435
1436 /*
1437  * version 1 superblock
1438  */
1439
1440 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1441 {
1442         __le32 disk_csum;
1443         u32 csum;
1444         unsigned long long newcsum;
1445         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1446         __le32 *isuper = (__le32*)sb;
1447         int i;
1448
1449         disk_csum = sb->sb_csum;
1450         sb->sb_csum = 0;
1451         newcsum = 0;
1452         for (i=0; size>=4; size -= 4 )
1453                 newcsum += le32_to_cpu(*isuper++);
1454
1455         if (size == 2)
1456                 newcsum += le16_to_cpu(*(__le16*) isuper);
1457
1458         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1459         sb->sb_csum = disk_csum;
1460         return cpu_to_le32(csum);
1461 }
1462
1463 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1464                             int acknowledged);
1465 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1466 {
1467         struct mdp_superblock_1 *sb;
1468         int ret;
1469         sector_t sb_start;
1470         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1471         int bmask;
1472
1473         /*
1474          * Calculate the position of the superblock in 512byte sectors.
1475          * It is always aligned to a 4K boundary and
1476          * depeding on minor_version, it can be:
1477          * 0: At least 8K, but less than 12K, from end of device
1478          * 1: At start of device
1479          * 2: 4K from start of device.
1480          */
1481         switch(minor_version) {
1482         case 0:
1483                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1484                 sb_start -= 8*2;
1485                 sb_start &= ~(sector_t)(4*2-1);
1486                 break;
1487         case 1:
1488                 sb_start = 0;
1489                 break;
1490         case 2:
1491                 sb_start = 8;
1492                 break;
1493         default:
1494                 return -EINVAL;
1495         }
1496         rdev->sb_start = sb_start;
1497
1498         /* superblock is rarely larger than 1K, but it can be larger,
1499          * and it is safe to read 4k, so we do that
1500          */
1501         ret = read_disk_sb(rdev, 4096);
1502         if (ret) return ret;
1503
1504
1505         sb = page_address(rdev->sb_page);
1506
1507         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1508             sb->major_version != cpu_to_le32(1) ||
1509             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1510             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1511             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1512                 return -EINVAL;
1513
1514         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1515                 printk("md: invalid superblock checksum on %s\n",
1516                         bdevname(rdev->bdev,b));
1517                 return -EINVAL;
1518         }
1519         if (le64_to_cpu(sb->data_size) < 10) {
1520                 printk("md: data_size too small on %s\n",
1521                        bdevname(rdev->bdev,b));
1522                 return -EINVAL;
1523         }
1524
1525         rdev->preferred_minor = 0xffff;
1526         rdev->data_offset = le64_to_cpu(sb->data_offset);
1527         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1528
1529         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1530         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1531         if (rdev->sb_size & bmask)
1532                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1533
1534         if (minor_version
1535             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1536                 return -EINVAL;
1537
1538         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1539                 rdev->desc_nr = -1;
1540         else
1541                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1542
1543         if (!rdev->bb_page) {
1544                 rdev->bb_page = alloc_page(GFP_KERNEL);
1545                 if (!rdev->bb_page)
1546                         return -ENOMEM;
1547         }
1548         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1549             rdev->badblocks.count == 0) {
1550                 /* need to load the bad block list.
1551                  * Currently we limit it to one page.
1552                  */
1553                 s32 offset;
1554                 sector_t bb_sector;
1555                 u64 *bbp;
1556                 int i;
1557                 int sectors = le16_to_cpu(sb->bblog_size);
1558                 if (sectors > (PAGE_SIZE / 512))
1559                         return -EINVAL;
1560                 offset = le32_to_cpu(sb->bblog_offset);
1561                 if (offset == 0)
1562                         return -EINVAL;
1563                 bb_sector = (long long)offset;
1564                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1565                                   rdev->bb_page, READ, true))
1566                         return -EIO;
1567                 bbp = (u64 *)page_address(rdev->bb_page);
1568                 rdev->badblocks.shift = sb->bblog_shift;
1569                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1570                         u64 bb = le64_to_cpu(*bbp);
1571                         int count = bb & (0x3ff);
1572                         u64 sector = bb >> 10;
1573                         sector <<= sb->bblog_shift;
1574                         count <<= sb->bblog_shift;
1575                         if (bb + 1 == 0)
1576                                 break;
1577                         if (md_set_badblocks(&rdev->badblocks,
1578                                              sector, count, 1) == 0)
1579                                 return -EINVAL;
1580                 }
1581         } else if (sb->bblog_offset == 0)
1582                 rdev->badblocks.shift = -1;
1583
1584         if (!refdev) {
1585                 ret = 1;
1586         } else {
1587                 __u64 ev1, ev2;
1588                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1589
1590                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1591                     sb->level != refsb->level ||
1592                     sb->layout != refsb->layout ||
1593                     sb->chunksize != refsb->chunksize) {
1594                         printk(KERN_WARNING "md: %s has strangely different"
1595                                 " superblock to %s\n",
1596                                 bdevname(rdev->bdev,b),
1597                                 bdevname(refdev->bdev,b2));
1598                         return -EINVAL;
1599                 }
1600                 ev1 = le64_to_cpu(sb->events);
1601                 ev2 = le64_to_cpu(refsb->events);
1602
1603                 if (ev1 > ev2)
1604                         ret = 1;
1605                 else
1606                         ret = 0;
1607         }
1608         if (minor_version)
1609                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1610                         le64_to_cpu(sb->data_offset);
1611         else
1612                 rdev->sectors = rdev->sb_start;
1613         if (rdev->sectors < le64_to_cpu(sb->data_size))
1614                 return -EINVAL;
1615         rdev->sectors = le64_to_cpu(sb->data_size);
1616         if (le64_to_cpu(sb->size) > rdev->sectors)
1617                 return -EINVAL;
1618         return ret;
1619 }
1620
1621 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1622 {
1623         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1624         __u64 ev1 = le64_to_cpu(sb->events);
1625
1626         rdev->raid_disk = -1;
1627         clear_bit(Faulty, &rdev->flags);
1628         clear_bit(In_sync, &rdev->flags);
1629         clear_bit(WriteMostly, &rdev->flags);
1630
1631         if (mddev->raid_disks == 0) {
1632                 mddev->major_version = 1;
1633                 mddev->patch_version = 0;
1634                 mddev->external = 0;
1635                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1636                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1637                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1638                 mddev->level = le32_to_cpu(sb->level);
1639                 mddev->clevel[0] = 0;
1640                 mddev->layout = le32_to_cpu(sb->layout);
1641                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1642                 mddev->dev_sectors = le64_to_cpu(sb->size);
1643                 mddev->events = ev1;
1644                 mddev->bitmap_info.offset = 0;
1645                 mddev->bitmap_info.default_offset = 1024 >> 9;
1646                 
1647                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1648                 memcpy(mddev->uuid, sb->set_uuid, 16);
1649
1650                 mddev->max_disks =  (4096-256)/2;
1651
1652                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1653                     mddev->bitmap_info.file == NULL )
1654                         mddev->bitmap_info.offset =
1655                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1656
1657                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1658                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1659                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1660                         mddev->new_level = le32_to_cpu(sb->new_level);
1661                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1662                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1663                 } else {
1664                         mddev->reshape_position = MaxSector;
1665                         mddev->delta_disks = 0;
1666                         mddev->new_level = mddev->level;
1667                         mddev->new_layout = mddev->layout;
1668                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1669                 }
1670
1671         } else if (mddev->pers == NULL) {
1672                 /* Insist of good event counter while assembling, except for
1673                  * spares (which don't need an event count) */
1674                 ++ev1;
1675                 if (rdev->desc_nr >= 0 &&
1676                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1677                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1678                         if (ev1 < mddev->events)
1679                                 return -EINVAL;
1680         } else if (mddev->bitmap) {
1681                 /* If adding to array with a bitmap, then we can accept an
1682                  * older device, but not too old.
1683                  */
1684                 if (ev1 < mddev->bitmap->events_cleared)
1685                         return 0;
1686         } else {
1687                 if (ev1 < mddev->events)
1688                         /* just a hot-add of a new device, leave raid_disk at -1 */
1689                         return 0;
1690         }
1691         if (mddev->level != LEVEL_MULTIPATH) {
1692                 int role;
1693                 if (rdev->desc_nr < 0 ||
1694                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1695                         role = 0xffff;
1696                         rdev->desc_nr = -1;
1697                 } else
1698                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1699                 switch(role) {
1700                 case 0xffff: /* spare */
1701                         break;
1702                 case 0xfffe: /* faulty */
1703                         set_bit(Faulty, &rdev->flags);
1704                         break;
1705                 default:
1706                         if ((le32_to_cpu(sb->feature_map) &
1707                              MD_FEATURE_RECOVERY_OFFSET))
1708                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1709                         else
1710                                 set_bit(In_sync, &rdev->flags);
1711                         rdev->raid_disk = role;
1712                         break;
1713                 }
1714                 if (sb->devflags & WriteMostly1)
1715                         set_bit(WriteMostly, &rdev->flags);
1716                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1717                         set_bit(Replacement, &rdev->flags);
1718         } else /* MULTIPATH are always insync */
1719                 set_bit(In_sync, &rdev->flags);
1720
1721         return 0;
1722 }
1723
1724 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1725 {
1726         struct mdp_superblock_1 *sb;
1727         struct md_rdev *rdev2;
1728         int max_dev, i;
1729         /* make rdev->sb match mddev and rdev data. */
1730
1731         sb = page_address(rdev->sb_page);
1732
1733         sb->feature_map = 0;
1734         sb->pad0 = 0;
1735         sb->recovery_offset = cpu_to_le64(0);
1736         memset(sb->pad1, 0, sizeof(sb->pad1));
1737         memset(sb->pad3, 0, sizeof(sb->pad3));
1738
1739         sb->utime = cpu_to_le64((__u64)mddev->utime);
1740         sb->events = cpu_to_le64(mddev->events);
1741         if (mddev->in_sync)
1742                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1743         else
1744                 sb->resync_offset = cpu_to_le64(0);
1745
1746         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1747
1748         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1749         sb->size = cpu_to_le64(mddev->dev_sectors);
1750         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1751         sb->level = cpu_to_le32(mddev->level);
1752         sb->layout = cpu_to_le32(mddev->layout);
1753
1754         if (test_bit(WriteMostly, &rdev->flags))
1755                 sb->devflags |= WriteMostly1;
1756         else
1757                 sb->devflags &= ~WriteMostly1;
1758
1759         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1760                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1761                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1762         }
1763
1764         if (rdev->raid_disk >= 0 &&
1765             !test_bit(In_sync, &rdev->flags)) {
1766                 sb->feature_map |=
1767                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1768                 sb->recovery_offset =
1769                         cpu_to_le64(rdev->recovery_offset);
1770         }
1771         if (test_bit(Replacement, &rdev->flags))
1772                 sb->feature_map |=
1773                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1774
1775         if (mddev->reshape_position != MaxSector) {
1776                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1777                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1778                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1779                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1780                 sb->new_level = cpu_to_le32(mddev->new_level);
1781                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1782         }
1783
1784         if (rdev->badblocks.count == 0)
1785                 /* Nothing to do for bad blocks*/ ;
1786         else if (sb->bblog_offset == 0)
1787                 /* Cannot record bad blocks on this device */
1788                 md_error(mddev, rdev);
1789         else {
1790                 struct badblocks *bb = &rdev->badblocks;
1791                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1792                 u64 *p = bb->page;
1793                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1794                 if (bb->changed) {
1795                         unsigned seq;
1796
1797 retry:
1798                         seq = read_seqbegin(&bb->lock);
1799
1800                         memset(bbp, 0xff, PAGE_SIZE);
1801
1802                         for (i = 0 ; i < bb->count ; i++) {
1803                                 u64 internal_bb = *p++;
1804                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1805                                                 | BB_LEN(internal_bb));
1806                                 *bbp++ = cpu_to_le64(store_bb);
1807                         }
1808                         if (read_seqretry(&bb->lock, seq))
1809                                 goto retry;
1810
1811                         bb->sector = (rdev->sb_start +
1812                                       (int)le32_to_cpu(sb->bblog_offset));
1813                         bb->size = le16_to_cpu(sb->bblog_size);
1814                         bb->changed = 0;
1815                 }
1816         }
1817
1818         max_dev = 0;
1819         list_for_each_entry(rdev2, &mddev->disks, same_set)
1820                 if (rdev2->desc_nr+1 > max_dev)
1821                         max_dev = rdev2->desc_nr+1;
1822
1823         if (max_dev > le32_to_cpu(sb->max_dev)) {
1824                 int bmask;
1825                 sb->max_dev = cpu_to_le32(max_dev);
1826                 rdev->sb_size = max_dev * 2 + 256;
1827                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1828                 if (rdev->sb_size & bmask)
1829                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1830         } else
1831                 max_dev = le32_to_cpu(sb->max_dev);
1832
1833         for (i=0; i<max_dev;i++)
1834                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1835         
1836         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1837                 i = rdev2->desc_nr;
1838                 if (test_bit(Faulty, &rdev2->flags))
1839                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1840                 else if (test_bit(In_sync, &rdev2->flags))
1841                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1842                 else if (rdev2->raid_disk >= 0)
1843                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1844                 else
1845                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1846         }
1847
1848         sb->sb_csum = calc_sb_1_csum(sb);
1849 }
1850
1851 static unsigned long long
1852 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1853 {
1854         struct mdp_superblock_1 *sb;
1855         sector_t max_sectors;
1856         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1857                 return 0; /* component must fit device */
1858         if (rdev->sb_start < rdev->data_offset) {
1859                 /* minor versions 1 and 2; superblock before data */
1860                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1861                 max_sectors -= rdev->data_offset;
1862                 if (!num_sectors || num_sectors > max_sectors)
1863                         num_sectors = max_sectors;
1864         } else if (rdev->mddev->bitmap_info.offset) {
1865                 /* minor version 0 with bitmap we can't move */
1866                 return 0;
1867         } else {
1868                 /* minor version 0; superblock after data */
1869                 sector_t sb_start;
1870                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1871                 sb_start &= ~(sector_t)(4*2 - 1);
1872                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1873                 if (!num_sectors || num_sectors > max_sectors)
1874                         num_sectors = max_sectors;
1875                 rdev->sb_start = sb_start;
1876         }
1877         sb = page_address(rdev->sb_page);
1878         sb->data_size = cpu_to_le64(num_sectors);
1879         sb->super_offset = rdev->sb_start;
1880         sb->sb_csum = calc_sb_1_csum(sb);
1881         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1882                        rdev->sb_page);
1883         md_super_wait(rdev->mddev);
1884         return num_sectors;
1885 }
1886
1887 static struct super_type super_types[] = {
1888         [0] = {
1889                 .name   = "0.90.0",
1890                 .owner  = THIS_MODULE,
1891                 .load_super         = super_90_load,
1892                 .validate_super     = super_90_validate,
1893                 .sync_super         = super_90_sync,
1894                 .rdev_size_change   = super_90_rdev_size_change,
1895         },
1896         [1] = {
1897                 .name   = "md-1",
1898                 .owner  = THIS_MODULE,
1899                 .load_super         = super_1_load,
1900                 .validate_super     = super_1_validate,
1901                 .sync_super         = super_1_sync,
1902                 .rdev_size_change   = super_1_rdev_size_change,
1903         },
1904 };
1905
1906 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1907 {
1908         if (mddev->sync_super) {
1909                 mddev->sync_super(mddev, rdev);
1910                 return;
1911         }
1912
1913         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1914
1915         super_types[mddev->major_version].sync_super(mddev, rdev);
1916 }
1917
1918 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1919 {
1920         struct md_rdev *rdev, *rdev2;
1921
1922         rcu_read_lock();
1923         rdev_for_each_rcu(rdev, mddev1)
1924                 rdev_for_each_rcu(rdev2, mddev2)
1925                         if (rdev->bdev->bd_contains ==
1926                             rdev2->bdev->bd_contains) {
1927                                 rcu_read_unlock();
1928                                 return 1;
1929                         }
1930         rcu_read_unlock();
1931         return 0;
1932 }
1933
1934 static LIST_HEAD(pending_raid_disks);
1935
1936 /*
1937  * Try to register data integrity profile for an mddev
1938  *
1939  * This is called when an array is started and after a disk has been kicked
1940  * from the array. It only succeeds if all working and active component devices
1941  * are integrity capable with matching profiles.
1942  */
1943 int md_integrity_register(struct mddev *mddev)
1944 {
1945         struct md_rdev *rdev, *reference = NULL;
1946
1947         if (list_empty(&mddev->disks))
1948                 return 0; /* nothing to do */
1949         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1950                 return 0; /* shouldn't register, or already is */
1951         list_for_each_entry(rdev, &mddev->disks, same_set) {
1952                 /* skip spares and non-functional disks */
1953                 if (test_bit(Faulty, &rdev->flags))
1954                         continue;
1955                 if (rdev->raid_disk < 0)
1956                         continue;
1957                 if (!reference) {
1958                         /* Use the first rdev as the reference */
1959                         reference = rdev;
1960                         continue;
1961                 }
1962                 /* does this rdev's profile match the reference profile? */
1963                 if (blk_integrity_compare(reference->bdev->bd_disk,
1964                                 rdev->bdev->bd_disk) < 0)
1965                         return -EINVAL;
1966         }
1967         if (!reference || !bdev_get_integrity(reference->bdev))
1968                 return 0;
1969         /*
1970          * All component devices are integrity capable and have matching
1971          * profiles, register the common profile for the md device.
1972          */
1973         if (blk_integrity_register(mddev->gendisk,
1974                         bdev_get_integrity(reference->bdev)) != 0) {
1975                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1976                         mdname(mddev));
1977                 return -EINVAL;
1978         }
1979         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1980         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1981                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1982                        mdname(mddev));
1983                 return -EINVAL;
1984         }
1985         return 0;
1986 }
1987 EXPORT_SYMBOL(md_integrity_register);
1988
1989 /* Disable data integrity if non-capable/non-matching disk is being added */
1990 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1991 {
1992         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1993         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1994
1995         if (!bi_mddev) /* nothing to do */
1996                 return;
1997         if (rdev->raid_disk < 0) /* skip spares */
1998                 return;
1999         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2000                                              rdev->bdev->bd_disk) >= 0)
2001                 return;
2002         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2003         blk_integrity_unregister(mddev->gendisk);
2004 }
2005 EXPORT_SYMBOL(md_integrity_add_rdev);
2006
2007 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2008 {
2009         char b[BDEVNAME_SIZE];
2010         struct kobject *ko;
2011         char *s;
2012         int err;
2013
2014         if (rdev->mddev) {
2015                 MD_BUG();
2016                 return -EINVAL;
2017         }
2018
2019         /* prevent duplicates */
2020         if (find_rdev(mddev, rdev->bdev->bd_dev))
2021                 return -EEXIST;
2022
2023         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2024         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2025                         rdev->sectors < mddev->dev_sectors)) {
2026                 if (mddev->pers) {
2027                         /* Cannot change size, so fail
2028                          * If mddev->level <= 0, then we don't care
2029                          * about aligning sizes (e.g. linear)
2030                          */
2031                         if (mddev->level > 0)
2032                                 return -ENOSPC;
2033                 } else
2034                         mddev->dev_sectors = rdev->sectors;
2035         }
2036
2037         /* Verify rdev->desc_nr is unique.
2038          * If it is -1, assign a free number, else
2039          * check number is not in use
2040          */
2041         if (rdev->desc_nr < 0) {
2042                 int choice = 0;
2043                 if (mddev->pers) choice = mddev->raid_disks;
2044                 while (find_rdev_nr(mddev, choice))
2045                         choice++;
2046                 rdev->desc_nr = choice;
2047         } else {
2048                 if (find_rdev_nr(mddev, rdev->desc_nr))
2049                         return -EBUSY;
2050         }
2051         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2052                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2053                        mdname(mddev), mddev->max_disks);
2054                 return -EBUSY;
2055         }
2056         bdevname(rdev->bdev,b);
2057         while ( (s=strchr(b, '/')) != NULL)
2058                 *s = '!';
2059
2060         rdev->mddev = mddev;
2061         printk(KERN_INFO "md: bind<%s>\n", b);
2062
2063         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2064                 goto fail;
2065
2066         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2067         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2068                 /* failure here is OK */;
2069         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2070
2071         list_add_rcu(&rdev->same_set, &mddev->disks);
2072         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2073
2074         /* May as well allow recovery to be retried once */
2075         mddev->recovery_disabled++;
2076
2077         return 0;
2078
2079  fail:
2080         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2081                b, mdname(mddev));
2082         return err;
2083 }
2084
2085 static void md_delayed_delete(struct work_struct *ws)
2086 {
2087         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2088         kobject_del(&rdev->kobj);
2089         kobject_put(&rdev->kobj);
2090 }
2091
2092 static void unbind_rdev_from_array(struct md_rdev * rdev)
2093 {
2094         char b[BDEVNAME_SIZE];
2095         if (!rdev->mddev) {
2096                 MD_BUG();
2097                 return;
2098         }
2099         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2100         list_del_rcu(&rdev->same_set);
2101         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2102         rdev->mddev = NULL;
2103         sysfs_remove_link(&rdev->kobj, "block");
2104         sysfs_put(rdev->sysfs_state);
2105         rdev->sysfs_state = NULL;
2106         kfree(rdev->badblocks.page);
2107         rdev->badblocks.count = 0;
2108         rdev->badblocks.page = NULL;
2109         /* We need to delay this, otherwise we can deadlock when
2110          * writing to 'remove' to "dev/state".  We also need
2111          * to delay it due to rcu usage.
2112          */
2113         synchronize_rcu();
2114         INIT_WORK(&rdev->del_work, md_delayed_delete);
2115         kobject_get(&rdev->kobj);
2116         queue_work(md_misc_wq, &rdev->del_work);
2117 }
2118
2119 /*
2120  * prevent the device from being mounted, repartitioned or
2121  * otherwise reused by a RAID array (or any other kernel
2122  * subsystem), by bd_claiming the device.
2123  */
2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2125 {
2126         int err = 0;
2127         struct block_device *bdev;
2128         char b[BDEVNAME_SIZE];
2129
2130         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2131                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2132         if (IS_ERR(bdev)) {
2133                 printk(KERN_ERR "md: could not open %s.\n",
2134                         __bdevname(dev, b));
2135                 return PTR_ERR(bdev);
2136         }
2137         rdev->bdev = bdev;
2138         return err;
2139 }
2140
2141 static void unlock_rdev(struct md_rdev *rdev)
2142 {
2143         struct block_device *bdev = rdev->bdev;
2144         rdev->bdev = NULL;
2145         if (!bdev)
2146                 MD_BUG();
2147         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2148 }
2149
2150 void md_autodetect_dev(dev_t dev);
2151
2152 static void export_rdev(struct md_rdev * rdev)
2153 {
2154         char b[BDEVNAME_SIZE];
2155         printk(KERN_INFO "md: export_rdev(%s)\n",
2156                 bdevname(rdev->bdev,b));
2157         if (rdev->mddev)
2158                 MD_BUG();
2159         free_disk_sb(rdev);
2160 #ifndef MODULE
2161         if (test_bit(AutoDetected, &rdev->flags))
2162                 md_autodetect_dev(rdev->bdev->bd_dev);
2163 #endif
2164         unlock_rdev(rdev);
2165         kobject_put(&rdev->kobj);
2166 }
2167
2168 static void kick_rdev_from_array(struct md_rdev * rdev)
2169 {
2170         unbind_rdev_from_array(rdev);
2171         export_rdev(rdev);
2172 }
2173
2174 static void export_array(struct mddev *mddev)
2175 {
2176         struct md_rdev *rdev, *tmp;
2177
2178         rdev_for_each(rdev, tmp, mddev) {
2179                 if (!rdev->mddev) {
2180                         MD_BUG();
2181                         continue;
2182                 }
2183                 kick_rdev_from_array(rdev);
2184         }
2185         if (!list_empty(&mddev->disks))
2186                 MD_BUG();
2187         mddev->raid_disks = 0;
2188         mddev->major_version = 0;
2189 }
2190
2191 static void print_desc(mdp_disk_t *desc)
2192 {
2193         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2194                 desc->major,desc->minor,desc->raid_disk,desc->state);
2195 }
2196
2197 static void print_sb_90(mdp_super_t *sb)
2198 {
2199         int i;
2200
2201         printk(KERN_INFO 
2202                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2203                 sb->major_version, sb->minor_version, sb->patch_version,
2204                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2205                 sb->ctime);
2206         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2207                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2208                 sb->md_minor, sb->layout, sb->chunk_size);
2209         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2210                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2211                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2212                 sb->failed_disks, sb->spare_disks,
2213                 sb->sb_csum, (unsigned long)sb->events_lo);
2214
2215         printk(KERN_INFO);
2216         for (i = 0; i < MD_SB_DISKS; i++) {
2217                 mdp_disk_t *desc;
2218
2219                 desc = sb->disks + i;
2220                 if (desc->number || desc->major || desc->minor ||
2221                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2222                         printk("     D %2d: ", i);
2223                         print_desc(desc);
2224                 }
2225         }
2226         printk(KERN_INFO "md:     THIS: ");
2227         print_desc(&sb->this_disk);
2228 }
2229
2230 static void print_sb_1(struct mdp_superblock_1 *sb)
2231 {
2232         __u8 *uuid;
2233
2234         uuid = sb->set_uuid;
2235         printk(KERN_INFO
2236                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2237                "md:    Name: \"%s\" CT:%llu\n",
2238                 le32_to_cpu(sb->major_version),
2239                 le32_to_cpu(sb->feature_map),
2240                 uuid,
2241                 sb->set_name,
2242                 (unsigned long long)le64_to_cpu(sb->ctime)
2243                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2244
2245         uuid = sb->device_uuid;
2246         printk(KERN_INFO
2247                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2248                         " RO:%llu\n"
2249                "md:     Dev:%08x UUID: %pU\n"
2250                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2251                "md:         (MaxDev:%u) \n",
2252                 le32_to_cpu(sb->level),
2253                 (unsigned long long)le64_to_cpu(sb->size),
2254                 le32_to_cpu(sb->raid_disks),
2255                 le32_to_cpu(sb->layout),
2256                 le32_to_cpu(sb->chunksize),
2257                 (unsigned long long)le64_to_cpu(sb->data_offset),
2258                 (unsigned long long)le64_to_cpu(sb->data_size),
2259                 (unsigned long long)le64_to_cpu(sb->super_offset),
2260                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2261                 le32_to_cpu(sb->dev_number),
2262                 uuid,
2263                 sb->devflags,
2264                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2265                 (unsigned long long)le64_to_cpu(sb->events),
2266                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2267                 le32_to_cpu(sb->sb_csum),
2268                 le32_to_cpu(sb->max_dev)
2269                 );
2270 }
2271
2272 static void print_rdev(struct md_rdev *rdev, int major_version)
2273 {
2274         char b[BDEVNAME_SIZE];
2275         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2276                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2277                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2278                 rdev->desc_nr);
2279         if (rdev->sb_loaded) {
2280                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2281                 switch (major_version) {
2282                 case 0:
2283                         print_sb_90(page_address(rdev->sb_page));
2284                         break;
2285                 case 1:
2286                         print_sb_1(page_address(rdev->sb_page));
2287                         break;
2288                 }
2289         } else
2290                 printk(KERN_INFO "md: no rdev superblock!\n");
2291 }
2292
2293 static void md_print_devices(void)
2294 {
2295         struct list_head *tmp;
2296         struct md_rdev *rdev;
2297         struct mddev *mddev;
2298         char b[BDEVNAME_SIZE];
2299
2300         printk("\n");
2301         printk("md:     **********************************\n");
2302         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2303         printk("md:     **********************************\n");
2304         for_each_mddev(mddev, tmp) {
2305
2306                 if (mddev->bitmap)
2307                         bitmap_print_sb(mddev->bitmap);
2308                 else
2309                         printk("%s: ", mdname(mddev));
2310                 list_for_each_entry(rdev, &mddev->disks, same_set)
2311                         printk("<%s>", bdevname(rdev->bdev,b));
2312                 printk("\n");
2313
2314                 list_for_each_entry(rdev, &mddev->disks, same_set)
2315                         print_rdev(rdev, mddev->major_version);
2316         }
2317         printk("md:     **********************************\n");
2318         printk("\n");
2319 }
2320
2321
2322 static void sync_sbs(struct mddev * mddev, int nospares)
2323 {
2324         /* Update each superblock (in-memory image), but
2325          * if we are allowed to, skip spares which already
2326          * have the right event counter, or have one earlier
2327          * (which would mean they aren't being marked as dirty
2328          * with the rest of the array)
2329          */
2330         struct md_rdev *rdev;
2331         list_for_each_entry(rdev, &mddev->disks, same_set) {
2332                 if (rdev->sb_events == mddev->events ||
2333                     (nospares &&
2334                      rdev->raid_disk < 0 &&
2335                      rdev->sb_events+1 == mddev->events)) {
2336                         /* Don't update this superblock */
2337                         rdev->sb_loaded = 2;
2338                 } else {
2339                         sync_super(mddev, rdev);
2340                         rdev->sb_loaded = 1;
2341                 }
2342         }
2343 }
2344
2345 static void md_update_sb(struct mddev * mddev, int force_change)
2346 {
2347         struct md_rdev *rdev;
2348         int sync_req;
2349         int nospares = 0;
2350         int any_badblocks_changed = 0;
2351
2352 repeat:
2353         /* First make sure individual recovery_offsets are correct */
2354         list_for_each_entry(rdev, &mddev->disks, same_set) {
2355                 if (rdev->raid_disk >= 0 &&
2356                     mddev->delta_disks >= 0 &&
2357                     !test_bit(In_sync, &rdev->flags) &&
2358                     mddev->curr_resync_completed > rdev->recovery_offset)
2359                                 rdev->recovery_offset = mddev->curr_resync_completed;
2360
2361         }       
2362         if (!mddev->persistent) {
2363                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2364                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2365                 if (!mddev->external) {
2366                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2367                         list_for_each_entry(rdev, &mddev->disks, same_set) {
2368                                 if (rdev->badblocks.changed) {
2369                                         md_ack_all_badblocks(&rdev->badblocks);
2370                                         md_error(mddev, rdev);
2371                                 }
2372                                 clear_bit(Blocked, &rdev->flags);
2373                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2374                                 wake_up(&rdev->blocked_wait);
2375                         }
2376                 }
2377                 wake_up(&mddev->sb_wait);
2378                 return;
2379         }
2380
2381         spin_lock_irq(&mddev->write_lock);
2382
2383         mddev->utime = get_seconds();
2384
2385         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2386                 force_change = 1;
2387         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2388                 /* just a clean<-> dirty transition, possibly leave spares alone,
2389                  * though if events isn't the right even/odd, we will have to do
2390                  * spares after all
2391                  */
2392                 nospares = 1;
2393         if (force_change)
2394                 nospares = 0;
2395         if (mddev->degraded)
2396                 /* If the array is degraded, then skipping spares is both
2397                  * dangerous and fairly pointless.
2398                  * Dangerous because a device that was removed from the array
2399                  * might have a event_count that still looks up-to-date,
2400                  * so it can be re-added without a resync.
2401                  * Pointless because if there are any spares to skip,
2402                  * then a recovery will happen and soon that array won't
2403                  * be degraded any more and the spare can go back to sleep then.
2404                  */
2405                 nospares = 0;
2406
2407         sync_req = mddev->in_sync;
2408
2409         /* If this is just a dirty<->clean transition, and the array is clean
2410          * and 'events' is odd, we can roll back to the previous clean state */
2411         if (nospares
2412             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2413             && mddev->can_decrease_events
2414             && mddev->events != 1) {
2415                 mddev->events--;
2416                 mddev->can_decrease_events = 0;
2417         } else {
2418                 /* otherwise we have to go forward and ... */
2419                 mddev->events ++;
2420                 mddev->can_decrease_events = nospares;
2421         }
2422
2423         if (!mddev->events) {
2424                 /*
2425                  * oops, this 64-bit counter should never wrap.
2426                  * Either we are in around ~1 trillion A.C., assuming
2427                  * 1 reboot per second, or we have a bug:
2428                  */
2429                 MD_BUG();
2430                 mddev->events --;
2431         }
2432
2433         list_for_each_entry(rdev, &mddev->disks, same_set) {
2434                 if (rdev->badblocks.changed)
2435                         any_badblocks_changed++;
2436                 if (test_bit(Faulty, &rdev->flags))
2437                         set_bit(FaultRecorded, &rdev->flags);
2438         }
2439
2440         sync_sbs(mddev, nospares);
2441         spin_unlock_irq(&mddev->write_lock);
2442
2443         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2444                  mdname(mddev), mddev->in_sync);
2445
2446         bitmap_update_sb(mddev->bitmap);
2447         list_for_each_entry(rdev, &mddev->disks, same_set) {
2448                 char b[BDEVNAME_SIZE];
2449
2450                 if (rdev->sb_loaded != 1)
2451                         continue; /* no noise on spare devices */
2452
2453                 if (!test_bit(Faulty, &rdev->flags) &&
2454                     rdev->saved_raid_disk == -1) {
2455                         md_super_write(mddev,rdev,
2456                                        rdev->sb_start, rdev->sb_size,
2457                                        rdev->sb_page);
2458                         pr_debug("md: (write) %s's sb offset: %llu\n",
2459                                  bdevname(rdev->bdev, b),
2460                                  (unsigned long long)rdev->sb_start);
2461                         rdev->sb_events = mddev->events;
2462                         if (rdev->badblocks.size) {
2463                                 md_super_write(mddev, rdev,
2464                                                rdev->badblocks.sector,
2465                                                rdev->badblocks.size << 9,
2466                                                rdev->bb_page);
2467                                 rdev->badblocks.size = 0;
2468                         }
2469
2470                 } else if (test_bit(Faulty, &rdev->flags))
2471                         pr_debug("md: %s (skipping faulty)\n",
2472                                  bdevname(rdev->bdev, b));
2473                 else
2474                         pr_debug("(skipping incremental s/r ");
2475
2476                 if (mddev->level == LEVEL_MULTIPATH)
2477                         /* only need to write one superblock... */
2478                         break;
2479         }
2480         md_super_wait(mddev);
2481         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2482
2483         spin_lock_irq(&mddev->write_lock);
2484         if (mddev->in_sync != sync_req ||
2485             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2486                 /* have to write it out again */
2487                 spin_unlock_irq(&mddev->write_lock);
2488                 goto repeat;
2489         }
2490         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2491         spin_unlock_irq(&mddev->write_lock);
2492         wake_up(&mddev->sb_wait);
2493         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2494                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2495
2496         list_for_each_entry(rdev, &mddev->disks, same_set) {
2497                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2498                         clear_bit(Blocked, &rdev->flags);
2499
2500                 if (any_badblocks_changed)
2501                         md_ack_all_badblocks(&rdev->badblocks);
2502                 clear_bit(BlockedBadBlocks, &rdev->flags);
2503                 wake_up(&rdev->blocked_wait);
2504         }
2505 }
2506
2507 /* words written to sysfs files may, or may not, be \n terminated.
2508  * We want to accept with case. For this we use cmd_match.
2509  */
2510 static int cmd_match(const char *cmd, const char *str)
2511 {
2512         /* See if cmd, written into a sysfs file, matches
2513          * str.  They must either be the same, or cmd can
2514          * have a trailing newline
2515          */
2516         while (*cmd && *str && *cmd == *str) {
2517                 cmd++;
2518                 str++;
2519         }
2520         if (*cmd == '\n')
2521                 cmd++;
2522         if (*str || *cmd)
2523                 return 0;
2524         return 1;
2525 }
2526
2527 struct rdev_sysfs_entry {
2528         struct attribute attr;
2529         ssize_t (*show)(struct md_rdev *, char *);
2530         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2531 };
2532
2533 static ssize_t
2534 state_show(struct md_rdev *rdev, char *page)
2535 {
2536         char *sep = "";
2537         size_t len = 0;
2538
2539         if (test_bit(Faulty, &rdev->flags) ||
2540             rdev->badblocks.unacked_exist) {
2541                 len+= sprintf(page+len, "%sfaulty",sep);
2542                 sep = ",";
2543         }
2544         if (test_bit(In_sync, &rdev->flags)) {
2545                 len += sprintf(page+len, "%sin_sync",sep);
2546                 sep = ",";
2547         }
2548         if (test_bit(WriteMostly, &rdev->flags)) {
2549                 len += sprintf(page+len, "%swrite_mostly",sep);
2550                 sep = ",";
2551         }
2552         if (test_bit(Blocked, &rdev->flags) ||
2553             (rdev->badblocks.unacked_exist
2554              && !test_bit(Faulty, &rdev->flags))) {
2555                 len += sprintf(page+len, "%sblocked", sep);
2556                 sep = ",";
2557         }
2558         if (!test_bit(Faulty, &rdev->flags) &&
2559             !test_bit(In_sync, &rdev->flags)) {
2560                 len += sprintf(page+len, "%sspare", sep);
2561                 sep = ",";
2562         }
2563         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2564                 len += sprintf(page+len, "%swrite_error", sep);
2565                 sep = ",";
2566         }
2567         if (test_bit(WantReplacement, &rdev->flags)) {
2568                 len += sprintf(page+len, "%swant_replacement", sep);
2569                 sep = ",";
2570         }
2571         if (test_bit(Replacement, &rdev->flags)) {
2572                 len += sprintf(page+len, "%sreplacement", sep);
2573                 sep = ",";
2574         }
2575
2576         return len+sprintf(page+len, "\n");
2577 }
2578
2579 static ssize_t
2580 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2581 {
2582         /* can write
2583          *  faulty  - simulates an error
2584          *  remove  - disconnects the device
2585          *  writemostly - sets write_mostly
2586          *  -writemostly - clears write_mostly
2587          *  blocked - sets the Blocked flags
2588          *  -blocked - clears the Blocked and possibly simulates an error
2589          *  insync - sets Insync providing device isn't active
2590          *  write_error - sets WriteErrorSeen
2591          *  -write_error - clears WriteErrorSeen
2592          */
2593         int err = -EINVAL;
2594         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2595                 md_error(rdev->mddev, rdev);
2596                 if (test_bit(Faulty, &rdev->flags))
2597                         err = 0;
2598                 else
2599                         err = -EBUSY;
2600         } else if (cmd_match(buf, "remove")) {
2601                 if (rdev->raid_disk >= 0)
2602                         err = -EBUSY;
2603                 else {
2604                         struct mddev *mddev = rdev->mddev;
2605                         kick_rdev_from_array(rdev);
2606                         if (mddev->pers)
2607                                 md_update_sb(mddev, 1);
2608                         md_new_event(mddev);
2609                         err = 0;
2610                 }
2611         } else if (cmd_match(buf, "writemostly")) {
2612                 set_bit(WriteMostly, &rdev->flags);
2613                 err = 0;
2614         } else if (cmd_match(buf, "-writemostly")) {
2615                 clear_bit(WriteMostly, &rdev->flags);
2616                 err = 0;
2617         } else if (cmd_match(buf, "blocked")) {
2618                 set_bit(Blocked, &rdev->flags);
2619                 err = 0;
2620         } else if (cmd_match(buf, "-blocked")) {
2621                 if (!test_bit(Faulty, &rdev->flags) &&
2622                     rdev->badblocks.unacked_exist) {
2623                         /* metadata handler doesn't understand badblocks,
2624                          * so we need to fail the device
2625                          */
2626                         md_error(rdev->mddev, rdev);
2627                 }
2628                 clear_bit(Blocked, &rdev->flags);
2629                 clear_bit(BlockedBadBlocks, &rdev->flags);
2630                 wake_up(&rdev->blocked_wait);
2631                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2632                 md_wakeup_thread(rdev->mddev->thread);
2633
2634                 err = 0;
2635         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2636                 set_bit(In_sync, &rdev->flags);
2637                 err = 0;
2638         } else if (cmd_match(buf, "write_error")) {
2639                 set_bit(WriteErrorSeen, &rdev->flags);
2640                 err = 0;
2641         } else if (cmd_match(buf, "-write_error")) {
2642                 clear_bit(WriteErrorSeen, &rdev->flags);
2643                 err = 0;
2644         } else if (cmd_match(buf, "want_replacement")) {
2645                 /* Any non-spare device that is not a replacement can
2646                  * become want_replacement at any time, but we then need to
2647                  * check if recovery is needed.
2648                  */
2649                 if (rdev->raid_disk >= 0 &&
2650                     !test_bit(Replacement, &rdev->flags))
2651                         set_bit(WantReplacement, &rdev->flags);
2652                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2653                 md_wakeup_thread(rdev->mddev->thread);
2654                 err = 0;
2655         } else if (cmd_match(buf, "-want_replacement")) {
2656                 /* Clearing 'want_replacement' is always allowed.
2657                  * Once replacements starts it is too late though.
2658                  */
2659                 err = 0;
2660                 clear_bit(WantReplacement, &rdev->flags);
2661         } else if (cmd_match(buf, "replacement")) {
2662                 /* Can only set a device as a replacement when array has not
2663                  * yet been started.  Once running, replacement is automatic
2664                  * from spares, or by assigning 'slot'.
2665                  */
2666                 if (rdev->mddev->pers)
2667                         err = -EBUSY;
2668                 else {
2669                         set_bit(Replacement, &rdev->flags);
2670                         err = 0;
2671                 }
2672         } else if (cmd_match(buf, "-replacement")) {
2673                 /* Similarly, can only clear Replacement before start */
2674                 if (rdev->mddev->pers)
2675                         err = -EBUSY;
2676                 else {
2677                         clear_bit(Replacement, &rdev->flags);
2678                         err = 0;
2679                 }
2680         }
2681         if (!err)
2682                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2683         return err ? err : len;
2684 }
2685 static struct rdev_sysfs_entry rdev_state =
2686 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2687
2688 static ssize_t
2689 errors_show(struct md_rdev *rdev, char *page)
2690 {
2691         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2692 }
2693
2694 static ssize_t
2695 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2696 {
2697         char *e;
2698         unsigned long n = simple_strtoul(buf, &e, 10);
2699         if (*buf && (*e == 0 || *e == '\n')) {
2700                 atomic_set(&rdev->corrected_errors, n);
2701                 return len;
2702         }
2703         return -EINVAL;
2704 }
2705 static struct rdev_sysfs_entry rdev_errors =
2706 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2707
2708 static ssize_t
2709 slot_show(struct md_rdev *rdev, char *page)
2710 {
2711         if (rdev->raid_disk < 0)
2712                 return sprintf(page, "none\n");
2713         else
2714                 return sprintf(page, "%d\n", rdev->raid_disk);
2715 }
2716
2717 static ssize_t
2718 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2719 {
2720         char *e;
2721         int err;
2722         int slot = simple_strtoul(buf, &e, 10);
2723         if (strncmp(buf, "none", 4)==0)
2724                 slot = -1;
2725         else if (e==buf || (*e && *e!= '\n'))
2726                 return -EINVAL;
2727         if (rdev->mddev->pers && slot == -1) {
2728                 /* Setting 'slot' on an active array requires also
2729                  * updating the 'rd%d' link, and communicating
2730                  * with the personality with ->hot_*_disk.
2731                  * For now we only support removing
2732                  * failed/spare devices.  This normally happens automatically,
2733                  * but not when the metadata is externally managed.
2734                  */
2735                 if (rdev->raid_disk == -1)
2736                         return -EEXIST;
2737                 /* personality does all needed checks */
2738                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2739                         return -EINVAL;
2740                 err = rdev->mddev->pers->
2741                         hot_remove_disk(rdev->mddev, rdev);
2742                 if (err)
2743                         return err;
2744                 sysfs_unlink_rdev(rdev->mddev, rdev);
2745                 rdev->raid_disk = -1;
2746                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2747                 md_wakeup_thread(rdev->mddev->thread);
2748         } else if (rdev->mddev->pers) {
2749                 /* Activating a spare .. or possibly reactivating
2750                  * if we ever get bitmaps working here.
2751                  */
2752
2753                 if (rdev->raid_disk != -1)
2754                         return -EBUSY;
2755
2756                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2757                         return -EBUSY;
2758
2759                 if (rdev->mddev->pers->hot_add_disk == NULL)
2760                         return -EINVAL;
2761
2762                 if (slot >= rdev->mddev->raid_disks &&
2763                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2764                         return -ENOSPC;
2765
2766                 rdev->raid_disk = slot;
2767                 if (test_bit(In_sync, &rdev->flags))
2768                         rdev->saved_raid_disk = slot;
2769                 else
2770                         rdev->saved_raid_disk = -1;
2771                 clear_bit(In_sync, &rdev->flags);
2772                 err = rdev->mddev->pers->
2773                         hot_add_disk(rdev->mddev, rdev);
2774                 if (err) {
2775                         rdev->raid_disk = -1;
2776                         return err;
2777                 } else
2778                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2779                 if (sysfs_link_rdev(rdev->mddev, rdev))
2780                         /* failure here is OK */;
2781                 /* don't wakeup anyone, leave that to userspace. */
2782         } else {
2783                 if (slot >= rdev->mddev->raid_disks &&
2784                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2785                         return -ENOSPC;
2786                 rdev->raid_disk = slot;
2787                 /* assume it is working */
2788                 clear_bit(Faulty, &rdev->flags);
2789                 clear_bit(WriteMostly, &rdev->flags);
2790                 set_bit(In_sync, &rdev->flags);
2791                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2792         }
2793         return len;
2794 }
2795
2796
2797 static struct rdev_sysfs_entry rdev_slot =
2798 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2799
2800 static ssize_t
2801 offset_show(struct md_rdev *rdev, char *page)
2802 {
2803         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2804 }
2805
2806 static ssize_t
2807 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2808 {
2809         char *e;
2810         unsigned long long offset = simple_strtoull(buf, &e, 10);
2811         if (e==buf || (*e && *e != '\n'))
2812                 return -EINVAL;
2813         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2814                 return -EBUSY;
2815         if (rdev->sectors && rdev->mddev->external)
2816                 /* Must set offset before size, so overlap checks
2817                  * can be sane */
2818                 return -EBUSY;
2819         rdev->data_offset = offset;
2820         return len;
2821 }
2822
2823 static struct rdev_sysfs_entry rdev_offset =
2824 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2825
2826 static ssize_t
2827 rdev_size_show(struct md_rdev *rdev, char *page)
2828 {
2829         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2830 }
2831
2832 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2833 {
2834         /* check if two start/length pairs overlap */
2835         if (s1+l1 <= s2)
2836                 return 0;
2837         if (s2+l2 <= s1)
2838                 return 0;
2839         return 1;
2840 }
2841
2842 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2843 {
2844         unsigned long long blocks;
2845         sector_t new;
2846
2847         if (strict_strtoull(buf, 10, &blocks) < 0)
2848                 return -EINVAL;
2849
2850         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2851                 return -EINVAL; /* sector conversion overflow */
2852
2853         new = blocks * 2;
2854         if (new != blocks * 2)
2855                 return -EINVAL; /* unsigned long long to sector_t overflow */
2856
2857         *sectors = new;
2858         return 0;
2859 }
2860
2861 static ssize_t
2862 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2863 {
2864         struct mddev *my_mddev = rdev->mddev;
2865         sector_t oldsectors = rdev->sectors;
2866         sector_t sectors;
2867
2868         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2869                 return -EINVAL;
2870         if (my_mddev->pers && rdev->raid_disk >= 0) {
2871                 if (my_mddev->persistent) {
2872                         sectors = super_types[my_mddev->major_version].
2873                                 rdev_size_change(rdev, sectors);
2874                         if (!sectors)
2875                                 return -EBUSY;
2876                 } else if (!sectors)
2877                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2878                                 rdev->data_offset;
2879         }
2880         if (sectors < my_mddev->dev_sectors)
2881                 return -EINVAL; /* component must fit device */
2882
2883         rdev->sectors = sectors;
2884         if (sectors > oldsectors && my_mddev->external) {
2885                 /* need to check that all other rdevs with the same ->bdev
2886                  * do not overlap.  We need to unlock the mddev to avoid
2887                  * a deadlock.  We have already changed rdev->sectors, and if
2888                  * we have to change it back, we will have the lock again.
2889                  */
2890                 struct mddev *mddev;
2891                 int overlap = 0;
2892                 struct list_head *tmp;
2893
2894                 mddev_unlock(my_mddev);
2895                 for_each_mddev(mddev, tmp) {
2896                         struct md_rdev *rdev2;
2897
2898                         mddev_lock(mddev);
2899                         list_for_each_entry(rdev2, &mddev->disks, same_set)
2900                                 if (rdev->bdev == rdev2->bdev &&
2901                                     rdev != rdev2 &&
2902                                     overlaps(rdev->data_offset, rdev->sectors,
2903                                              rdev2->data_offset,
2904                                              rdev2->sectors)) {
2905                                         overlap = 1;
2906                                         break;
2907                                 }
2908                         mddev_unlock(mddev);
2909                         if (overlap) {
2910                                 mddev_put(mddev);
2911                                 break;
2912                         }
2913                 }
2914                 mddev_lock(my_mddev);
2915                 if (overlap) {
2916                         /* Someone else could have slipped in a size
2917                          * change here, but doing so is just silly.
2918                          * We put oldsectors back because we *know* it is
2919                          * safe, and trust userspace not to race with
2920                          * itself
2921                          */
2922                         rdev->sectors = oldsectors;
2923                         return -EBUSY;
2924                 }
2925         }
2926         return len;
2927 }
2928
2929 static struct rdev_sysfs_entry rdev_size =
2930 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2931
2932
2933 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2934 {
2935         unsigned long long recovery_start = rdev->recovery_offset;
2936
2937         if (test_bit(In_sync, &rdev->flags) ||
2938             recovery_start == MaxSector)
2939                 return sprintf(page, "none\n");
2940
2941         return sprintf(page, "%llu\n", recovery_start);
2942 }
2943
2944 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2945 {
2946         unsigned long long recovery_start;
2947
2948         if (cmd_match(buf, "none"))
2949                 recovery_start = MaxSector;
2950         else if (strict_strtoull(buf, 10, &recovery_start))
2951                 return -EINVAL;
2952
2953         if (rdev->mddev->pers &&
2954             rdev->raid_disk >= 0)
2955                 return -EBUSY;
2956
2957         rdev->recovery_offset = recovery_start;
2958         if (recovery_start == MaxSector)
2959                 set_bit(In_sync, &rdev->flags);
2960         else
2961                 clear_bit(In_sync, &rdev->flags);
2962         return len;
2963 }
2964
2965 static struct rdev_sysfs_entry rdev_recovery_start =
2966 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2967
2968
2969 static ssize_t
2970 badblocks_show(struct badblocks *bb, char *page, int unack);
2971 static ssize_t
2972 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2973
2974 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2975 {
2976         return badblocks_show(&rdev->badblocks, page, 0);
2977 }
2978 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2979 {
2980         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2981         /* Maybe that ack was all we needed */
2982         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2983                 wake_up(&rdev->blocked_wait);
2984         return rv;
2985 }
2986 static struct rdev_sysfs_entry rdev_bad_blocks =
2987 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2988
2989
2990 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2991 {
2992         return badblocks_show(&rdev->badblocks, page, 1);
2993 }
2994 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2995 {
2996         return badblocks_store(&rdev->badblocks, page, len, 1);
2997 }
2998 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2999 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3000
3001 static struct attribute *rdev_default_attrs[] = {
3002         &rdev_state.attr,
3003         &rdev_errors.attr,
3004         &rdev_slot.attr,
3005         &rdev_offset.attr,
3006         &rdev_size.attr,
3007         &rdev_recovery_start.attr,
3008         &rdev_bad_blocks.attr,
3009         &rdev_unack_bad_blocks.attr,
3010         NULL,
3011 };
3012 static ssize_t
3013 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3014 {
3015         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3016         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3017         struct mddev *mddev = rdev->mddev;
3018         ssize_t rv;
3019
3020         if (!entry->show)
3021                 return -EIO;
3022
3023         rv = mddev ? mddev_lock(mddev) : -EBUSY;
3024         if (!rv) {
3025                 if (rdev->mddev == NULL)
3026                         rv = -EBUSY;
3027                 else
3028                         rv = entry->show(rdev, page);
3029                 mddev_unlock(mddev);
3030         }
3031         return rv;
3032 }
3033
3034 static ssize_t
3035 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3036               const char *page, size_t length)
3037 {
3038         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3039         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3040         ssize_t rv;
3041         struct mddev *mddev = rdev->mddev;
3042
3043         if (!entry->store)
3044                 return -EIO;
3045         if (!capable(CAP_SYS_ADMIN))
3046                 return -EACCES;
3047         rv = mddev ? mddev_lock(mddev): -EBUSY;
3048         if (!rv) {
3049                 if (rdev->mddev == NULL)
3050                         rv = -EBUSY;
3051                 else
3052                         rv = entry->store(rdev, page, length);
3053                 mddev_unlock(mddev);
3054         }
3055         return rv;
3056 }
3057
3058 static void rdev_free(struct kobject *ko)
3059 {
3060         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3061         kfree(rdev);
3062 }
3063 static const struct sysfs_ops rdev_sysfs_ops = {
3064         .show           = rdev_attr_show,
3065         .store          = rdev_attr_store,
3066 };
3067 static struct kobj_type rdev_ktype = {
3068         .release        = rdev_free,
3069         .sysfs_ops      = &rdev_sysfs_ops,
3070         .default_attrs  = rdev_default_attrs,
3071 };
3072
3073 int md_rdev_init(struct md_rdev *rdev)
3074 {
3075         rdev->desc_nr = -1;
3076         rdev->saved_raid_disk = -1;
3077         rdev->raid_disk = -1;
3078         rdev->flags = 0;
3079         rdev->data_offset = 0;
3080         rdev->sb_events = 0;
3081         rdev->last_read_error.tv_sec  = 0;
3082         rdev->last_read_error.tv_nsec = 0;
3083         rdev->sb_loaded = 0;
3084         rdev->bb_page = NULL;
3085         atomic_set(&rdev->nr_pending, 0);
3086         atomic_set(&rdev->read_errors, 0);
3087         atomic_set(&rdev->corrected_errors, 0);
3088
3089         INIT_LIST_HEAD(&rdev->same_set);
3090         init_waitqueue_head(&rdev->blocked_wait);
3091
3092         /* Add space to store bad block list.
3093          * This reserves the space even on arrays where it cannot
3094          * be used - I wonder if that matters
3095          */
3096         rdev->badblocks.count = 0;
3097         rdev->badblocks.shift = 0;
3098         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3099         seqlock_init(&rdev->badblocks.lock);
3100         if (rdev->badblocks.page == NULL)
3101                 return -ENOMEM;
3102
3103         return 0;
3104 }
3105 EXPORT_SYMBOL_GPL(md_rdev_init);
3106 /*
3107  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3108  *
3109  * mark the device faulty if:
3110  *
3111  *   - the device is nonexistent (zero size)
3112  *   - the device has no valid superblock
3113  *
3114  * a faulty rdev _never_ has rdev->sb set.
3115  */
3116 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3117 {
3118         char b[BDEVNAME_SIZE];
3119         int err;
3120         struct md_rdev *rdev;
3121         sector_t size;
3122
3123         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3124         if (!rdev) {
3125                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3126                 return ERR_PTR(-ENOMEM);
3127         }
3128
3129         err = md_rdev_init(rdev);
3130         if (err)
3131                 goto abort_free;
3132         err = alloc_disk_sb(rdev);
3133         if (err)
3134                 goto abort_free;
3135
3136         err = lock_rdev(rdev, newdev, super_format == -2);
3137         if (err)
3138                 goto abort_free;
3139
3140         kobject_init(&rdev->kobj, &rdev_ktype);
3141
3142         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3143         if (!size) {
3144                 printk(KERN_WARNING 
3145                         "md: %s has zero or unknown size, marking faulty!\n",
3146                         bdevname(rdev->bdev,b));
3147                 err = -EINVAL;
3148                 goto abort_free;
3149         }
3150
3151         if (super_format >= 0) {
3152                 err = super_types[super_format].
3153                         load_super(rdev, NULL, super_minor);
3154                 if (err == -EINVAL) {
3155                         printk(KERN_WARNING
3156                                 "md: %s does not have a valid v%d.%d "
3157                                "superblock, not importing!\n",
3158                                 bdevname(rdev->bdev,b),
3159                                super_format, super_minor);
3160                         goto abort_free;
3161                 }
3162                 if (err < 0) {
3163                         printk(KERN_WARNING 
3164                                 "md: could not read %s's sb, not importing!\n",
3165                                 bdevname(rdev->bdev,b));
3166                         goto abort_free;
3167                 }
3168         }
3169         if (super_format == -1)
3170                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3171                 rdev->badblocks.shift = -1;
3172
3173         return rdev;
3174
3175 abort_free:
3176         if (rdev->bdev)
3177                 unlock_rdev(rdev);
3178         free_disk_sb(rdev);
3179         kfree(rdev->badblocks.page);
3180         kfree(rdev);
3181         return ERR_PTR(err);
3182 }
3183
3184 /*
3185  * Check a full RAID array for plausibility
3186  */
3187
3188
3189 static void analyze_sbs(struct mddev * mddev)
3190 {
3191         int i;
3192         struct md_rdev *rdev, *freshest, *tmp;
3193         char b[BDEVNAME_SIZE];
3194
3195         freshest = NULL;
3196         rdev_for_each(rdev, tmp, mddev)
3197                 switch (super_types[mddev->major_version].
3198                         load_super(rdev, freshest, mddev->minor_version)) {
3199                 case 1:
3200                         freshest = rdev;
3201                         break;
3202                 case 0:
3203                         break;
3204                 default:
3205                         printk( KERN_ERR \
3206                                 "md: fatal superblock inconsistency in %s"
3207                                 " -- removing from array\n", 
3208                                 bdevname(rdev->bdev,b));
3209                         kick_rdev_from_array(rdev);
3210                 }
3211
3212
3213         super_types[mddev->major_version].
3214                 validate_super(mddev, freshest);
3215
3216         i = 0;
3217         rdev_for_each(rdev, tmp, mddev) {
3218                 if (mddev->max_disks &&
3219                     (rdev->desc_nr >= mddev->max_disks ||
3220                      i > mddev->max_disks)) {
3221                         printk(KERN_WARNING
3222                                "md: %s: %s: only %d devices permitted\n",
3223                                mdname(mddev), bdevname(rdev->bdev, b),
3224                                mddev->max_disks);
3225                         kick_rdev_from_array(rdev);
3226                         continue;
3227                 }
3228                 if (rdev != freshest)
3229                         if (super_types[mddev->major_version].
3230                             validate_super(mddev, rdev)) {
3231                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3232                                         " from array!\n",
3233                                         bdevname(rdev->bdev,b));
3234                                 kick_rdev_from_array(rdev);
3235                                 continue;
3236                         }
3237                 if (mddev->level == LEVEL_MULTIPATH) {
3238                         rdev->desc_nr = i++;
3239                         rdev->raid_disk = rdev->desc_nr;
3240                         set_bit(In_sync, &rdev->flags);
3241                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3242                         rdev->raid_disk = -1;
3243                         clear_bit(In_sync, &rdev->flags);
3244                 }
3245         }
3246 }
3247
3248 /* Read a fixed-point number.
3249  * Numbers in sysfs attributes should be in "standard" units where
3250  * possible, so time should be in seconds.
3251  * However we internally use a a much smaller unit such as 
3252  * milliseconds or jiffies.
3253  * This function takes a decimal number with a possible fractional
3254  * component, and produces an integer which is the result of
3255  * multiplying that number by 10^'scale'.
3256  * all without any floating-point arithmetic.
3257  */
3258 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3259 {
3260         unsigned long result = 0;
3261         long decimals = -1;
3262         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3263                 if (*cp == '.')
3264                         decimals = 0;
3265                 else if (decimals < scale) {
3266                         unsigned int value;
3267                         value = *cp - '0';
3268                         result = result * 10 + value;
3269                         if (decimals >= 0)
3270                                 decimals++;
3271                 }
3272                 cp++;
3273         }
3274         if (*cp == '\n')
3275                 cp++;
3276         if (*cp)
3277                 return -EINVAL;
3278         if (decimals < 0)
3279                 decimals = 0;
3280         while (decimals < scale) {
3281                 result *= 10;
3282                 decimals ++;
3283         }
3284         *res = result;
3285         return 0;
3286 }
3287
3288
3289 static void md_safemode_timeout(unsigned long data);
3290
3291 static ssize_t
3292 safe_delay_show(struct mddev *mddev, char *page)
3293 {
3294         int msec = (mddev->safemode_delay*1000)/HZ;
3295         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3296 }
3297 static ssize_t
3298 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3299 {
3300         unsigned long msec;
3301
3302         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3303                 return -EINVAL;
3304         if (msec == 0)
3305                 mddev->safemode_delay = 0;
3306         else {
3307                 unsigned long old_delay = mddev->safemode_delay;
3308                 mddev->safemode_delay = (msec*HZ)/1000;
3309                 if (mddev->safemode_delay == 0)
3310                         mddev->safemode_delay = 1;
3311                 if (mddev->safemode_delay < old_delay)
3312                         md_safemode_timeout((unsigned long)mddev);
3313         }
3314         return len;
3315 }
3316 static struct md_sysfs_entry md_safe_delay =
3317 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3318
3319 static ssize_t
3320 level_show(struct mddev *mddev, char *page)
3321 {
3322         struct md_personality *p = mddev->pers;
3323         if (p)
3324                 return sprintf(page, "%s\n", p->name);
3325         else if (mddev->clevel[0])
3326                 return sprintf(page, "%s\n", mddev->clevel);
3327         else if (mddev->level != LEVEL_NONE)
3328                 return sprintf(page, "%d\n", mddev->level);
3329         else
3330                 return 0;
3331 }
3332
3333 static ssize_t
3334 level_store(struct mddev *mddev, const char *buf, size_t len)
3335 {
3336         char clevel[16];
3337         ssize_t rv = len;
3338         struct md_personality *pers;
3339         long level;
3340         void *priv;
3341         struct md_rdev *rdev;
3342
3343         if (mddev->pers == NULL) {
3344                 if (len == 0)
3345                         return 0;
3346                 if (len >= sizeof(mddev->clevel))
3347                         return -ENOSPC;
3348                 strncpy(mddev->clevel, buf, len);
3349                 if (mddev->clevel[len-1] == '\n')
3350                         len--;
3351                 mddev->clevel[len] = 0;
3352                 mddev->level = LEVEL_NONE;
3353                 return rv;
3354         }
3355
3356         /* request to change the personality.  Need to ensure:
3357          *  - array is not engaged in resync/recovery/reshape
3358          *  - old personality can be suspended
3359          *  - new personality will access other array.
3360          */
3361
3362         if (mddev->sync_thread ||
3363             mddev->reshape_position != MaxSector ||
3364             mddev->sysfs_active)
3365                 return -EBUSY;
3366
3367         if (!mddev->pers->quiesce) {
3368                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3369                        mdname(mddev), mddev->pers->name);
3370                 return -EINVAL;
3371         }
3372
3373         /* Now find the new personality */
3374         if (len == 0 || len >= sizeof(clevel))
3375                 return -EINVAL;
3376         strncpy(clevel, buf, len);
3377         if (clevel[len-1] == '\n')
3378                 len--;
3379         clevel[len] = 0;
3380         if (strict_strtol(clevel, 10, &level))
3381                 level = LEVEL_NONE;
3382
3383         if (request_module("md-%s", clevel) != 0)
3384                 request_module("md-level-%s", clevel);
3385         spin_lock(&pers_lock);
3386         pers = find_pers(level, clevel);
3387         if (!pers || !try_module_get(pers->owner)) {
3388                 spin_unlock(&pers_lock);
3389                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3390                 return -EINVAL;
3391         }
3392         spin_unlock(&pers_lock);
3393
3394         if (pers == mddev->pers) {
3395                 /* Nothing to do! */
3396                 module_put(pers->owner);
3397                 return rv;
3398         }
3399         if (!pers->takeover) {
3400                 module_put(pers->owner);
3401                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3402                        mdname(mddev), clevel);
3403                 return -EINVAL;
3404         }
3405
3406         list_for_each_entry(rdev, &mddev->disks, same_set)
3407                 rdev->new_raid_disk = rdev->raid_disk;
3408
3409         /* ->takeover must set new_* and/or delta_disks
3410          * if it succeeds, and may set them when it fails.
3411          */
3412         priv = pers->takeover(mddev);
3413         if (IS_ERR(priv)) {
3414                 mddev->new_level = mddev->level;
3415                 mddev->new_layout = mddev->layout;
3416                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3417                 mddev->raid_disks -= mddev->delta_disks;
3418                 mddev->delta_disks = 0;
3419                 module_put(pers->owner);
3420                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3421                        mdname(mddev), clevel);
3422                 return PTR_ERR(priv);
3423         }
3424
3425         /* Looks like we have a winner */
3426         mddev_suspend(mddev);
3427         mddev->pers->stop(mddev);
3428         
3429         if (mddev->pers->sync_request == NULL &&
3430             pers->sync_request != NULL) {
3431                 /* need to add the md_redundancy_group */
3432                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3433                         printk(KERN_WARNING
3434                                "md: cannot register extra attributes for %s\n",
3435                                mdname(mddev));
3436                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3437         }               
3438         if (mddev->pers->sync_request != NULL &&
3439             pers->sync_request == NULL) {
3440                 /* need to remove the md_redundancy_group */
3441                 if (mddev->to_remove == NULL)
3442                         mddev->to_remove = &md_redundancy_group;
3443         }
3444
3445         if (mddev->pers->sync_request == NULL &&
3446             mddev->external) {
3447                 /* We are converting from a no-redundancy array
3448                  * to a redundancy array and metadata is managed
3449                  * externally so we need to be sure that writes
3450                  * won't block due to a need to transition
3451                  *      clean->dirty
3452                  * until external management is started.
3453                  */
3454                 mddev->in_sync = 0;
3455                 mddev->safemode_delay = 0;
3456                 mddev->safemode = 0;
3457         }
3458
3459         list_for_each_entry(rdev, &mddev->disks, same_set) {
3460                 if (rdev->raid_disk < 0)
3461                         continue;
3462                 if (rdev->new_raid_disk >= mddev->raid_disks)
3463                         rdev->new_raid_disk = -1;
3464                 if (rdev->new_raid_disk == rdev->raid_disk)
3465                         continue;
3466                 sysfs_unlink_rdev(mddev, rdev);
3467         }
3468         list_for_each_entry(rdev, &mddev->disks, same_set) {
3469                 if (rdev->raid_disk < 0)
3470                         continue;
3471                 if (rdev->new_raid_disk == rdev->raid_disk)
3472                         continue;
3473                 rdev->raid_disk = rdev->new_raid_disk;
3474                 if (rdev->raid_disk < 0)
3475                         clear_bit(In_sync, &rdev->flags);
3476                 else {
3477                         if (sysfs_link_rdev(mddev, rdev))
3478                                 printk(KERN_WARNING "md: cannot register rd%d"
3479                                        " for %s after level change\n",
3480                                        rdev->raid_disk, mdname(mddev));
3481                 }
3482         }
3483
3484         module_put(mddev->pers->owner);
3485         mddev->pers = pers;
3486         mddev->private = priv;
3487         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3488         mddev->level = mddev->new_level;
3489         mddev->layout = mddev->new_layout;
3490         mddev->chunk_sectors = mddev->new_chunk_sectors;
3491         mddev->delta_disks = 0;
3492         mddev->degraded = 0;
3493         if (mddev->pers->sync_request == NULL) {
3494                 /* this is now an array without redundancy, so
3495                  * it must always be in_sync
3496                  */
3497                 mddev->in_sync = 1;
3498                 del_timer_sync(&mddev->safemode_timer);
3499         }
3500         pers->run(mddev);
3501         mddev_resume(mddev);
3502         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3503         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3504         md_wakeup_thread(mddev->thread);
3505         sysfs_notify(&mddev->kobj, NULL, "level");
3506         md_new_event(mddev);
3507         return rv;
3508 }
3509
3510 static struct md_sysfs_entry md_level =
3511 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3512
3513
3514 static ssize_t
3515 layout_show(struct mddev *mddev, char *page)
3516 {
3517         /* just a number, not meaningful for all levels */
3518         if (mddev->reshape_position != MaxSector &&
3519             mddev->layout != mddev->new_layout)
3520                 return sprintf(page, "%d (%d)\n",
3521                                mddev->new_layout, mddev->layout);
3522         return sprintf(page, "%d\n", mddev->layout);
3523 }
3524
3525 static ssize_t
3526 layout_store(struct mddev *mddev, const char *buf, size_t len)
3527 {
3528         char *e;
3529         unsigned long n = simple_strtoul(buf, &e, 10);
3530
3531         if (!*buf || (*e && *e != '\n'))
3532                 return -EINVAL;
3533
3534         if (mddev->pers) {
3535                 int err;
3536                 if (mddev->pers->check_reshape == NULL)
3537                         return -EBUSY;
3538                 mddev->new_layout = n;
3539                 err = mddev->pers->check_reshape(mddev);
3540                 if (err) {
3541                         mddev->new_layout = mddev->layout;
3542                         return err;
3543                 }
3544         } else {
3545                 mddev->new_layout = n;
3546                 if (mddev->reshape_position == MaxSector)
3547                         mddev->layout = n;
3548         }
3549         return len;
3550 }
3551 static struct md_sysfs_entry md_layout =
3552 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3553
3554
3555 static ssize_t
3556 raid_disks_show(struct mddev *mddev, char *page)
3557 {
3558         if (mddev->raid_disks == 0)
3559                 return 0;
3560         if (mddev->reshape_position != MaxSector &&
3561             mddev->delta_disks != 0)
3562                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3563                                mddev->raid_disks - mddev->delta_disks);
3564         return sprintf(page, "%d\n", mddev->raid_disks);
3565 }
3566
3567 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3568
3569 static ssize_t
3570 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3571 {
3572         char *e;
3573         int rv = 0;
3574         unsigned long n = simple_strtoul(buf, &e, 10);
3575
3576         if (!*buf || (*e && *e != '\n'))
3577                 return -EINVAL;
3578
3579         if (mddev->pers)
3580                 rv = update_raid_disks(mddev, n);
3581         else if (mddev->reshape_position != MaxSector) {
3582                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3583                 mddev->delta_disks = n - olddisks;
3584                 mddev->raid_disks = n;
3585         } else
3586                 mddev->raid_disks = n;
3587         return rv ? rv : len;
3588 }
3589 static struct md_sysfs_entry md_raid_disks =
3590 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3591
3592 static ssize_t
3593 chunk_size_show(struct mddev *mddev, char *page)
3594 {
3595         if (mddev->reshape_position != MaxSector &&
3596             mddev->chunk_sectors != mddev->new_chunk_sectors)
3597                 return sprintf(page, "%d (%d)\n",
3598                                mddev->new_chunk_sectors << 9,
3599                                mddev->chunk_sectors << 9);
3600         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3601 }
3602
3603 static ssize_t
3604 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3605 {
3606         char *e;
3607         unsigned long n = simple_strtoul(buf, &e, 10);
3608
3609         if (!*buf || (*e && *e != '\n'))
3610                 return -EINVAL;
3611
3612         if (mddev->pers) {
3613                 int err;
3614                 if (mddev->pers->check_reshape == NULL)
3615                         return -EBUSY;
3616                 mddev->new_chunk_sectors = n >> 9;
3617                 err = mddev->pers->check_reshape(mddev);
3618                 if (err) {
3619                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3620                         return err;
3621                 }
3622         } else {
3623                 mddev->new_chunk_sectors = n >> 9;
3624                 if (mddev->reshape_position == MaxSector)
3625                         mddev->chunk_sectors = n >> 9;
3626         }
3627         return len;
3628 }
3629 static struct md_sysfs_entry md_chunk_size =
3630 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3631
3632 static ssize_t
3633 resync_start_show(struct mddev *mddev, char *page)
3634 {
3635         if (mddev->recovery_cp == MaxSector)
3636                 return sprintf(page, "none\n");
3637         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3638 }
3639
3640 static ssize_t
3641 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3642 {
3643         char *e;
3644         unsigned long long n = simple_strtoull(buf, &e, 10);
3645
3646         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3647                 return -EBUSY;
3648         if (cmd_match(buf, "none"))
3649                 n = MaxSector;
3650         else if (!*buf || (*e && *e != '\n'))
3651                 return -EINVAL;
3652
3653         mddev->recovery_cp = n;
3654         return len;
3655 }
3656 static struct md_sysfs_entry md_resync_start =
3657 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3658
3659 /*
3660  * The array state can be:
3661  *
3662  * clear
3663  *     No devices, no size, no level
3664  *     Equivalent to STOP_ARRAY ioctl
3665  * inactive
3666  *     May have some settings, but array is not active
3667  *        all IO results in error
3668  *     When written, doesn't tear down array, but just stops it
3669  * suspended (not supported yet)
3670  *     All IO requests will block. The array can be reconfigured.
3671  *     Writing this, if accepted, will block until array is quiescent
3672  * readonly
3673  *     no resync can happen.  no superblocks get written.
3674  *     write requests fail
3675  * read-auto
3676  *     like readonly, but behaves like 'clean' on a write request.
3677  *
3678  * clean - no pending writes, but otherwise active.
3679  *     When written to inactive array, starts without resync
3680  *     If a write request arrives then
3681  *       if metadata is known, mark 'dirty' and switch to 'active'.
3682  *       if not known, block and switch to write-pending
3683  *     If written to an active array that has pending writes, then fails.
3684  * active
3685  *     fully active: IO and resync can be happening.
3686  *     When written to inactive array, starts with resync
3687  *
3688  * write-pending
3689  *     clean, but writes are blocked waiting for 'active' to be written.
3690  *
3691  * active-idle
3692  *     like active, but no writes have been seen for a while (100msec).
3693  *
3694  */
3695 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3696                    write_pending, active_idle, bad_word};
3697 static char *array_states[] = {
3698         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3699         "write-pending", "active-idle", NULL };
3700
3701 static int match_word(const char *word, char **list)
3702 {
3703         int n;
3704         for (n=0; list[n]; n++)
3705                 if (cmd_match(word, list[n]))
3706                         break;
3707         return n;
3708 }
3709
3710 static ssize_t
3711 array_state_show(struct mddev *mddev, char *page)
3712 {
3713         enum array_state st = inactive;
3714
3715         if (mddev->pers)
3716                 switch(mddev->ro) {
3717                 case 1:
3718                         st = readonly;
3719                         break;
3720                 case 2:
3721                         st = read_auto;
3722                         break;
3723                 case 0:
3724                         if (mddev->in_sync)
3725                                 st = clean;
3726                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3727                                 st = write_pending;
3728                         else if (mddev->safemode)
3729                                 st = active_idle;
3730                         else
3731                                 st = active;
3732                 }
3733         else {
3734                 if (list_empty(&mddev->disks) &&
3735                     mddev->raid_disks == 0 &&
3736                     mddev->dev_sectors == 0)
3737                         st = clear;
3738                 else
3739                         st = inactive;
3740         }
3741         return sprintf(page, "%s\n", array_states[st]);
3742 }
3743
3744 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3745 static int md_set_readonly(struct mddev * mddev, int is_open);
3746 static int do_md_run(struct mddev * mddev);
3747 static int restart_array(struct mddev *mddev);
3748
3749 static ssize_t
3750 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3751 {
3752         int err = -EINVAL;
3753         enum array_state st = match_word(buf, array_states);
3754         switch(st) {
3755         case bad_word:
3756                 break;
3757         case clear:
3758                 /* stopping an active array */
3759                 if (atomic_read(&mddev->openers) > 0)
3760                         return -EBUSY;
3761                 err = do_md_stop(mddev, 0, 0);
3762                 break;
3763         case inactive:
3764                 /* stopping an active array */
3765                 if (mddev->pers) {
3766                         if (atomic_read(&mddev->openers) > 0)
3767                                 return -EBUSY;
3768                         err = do_md_stop(mddev, 2, 0);
3769                 } else
3770                         err = 0; /* already inactive */
3771                 break;
3772         case suspended:
3773                 break; /* not supported yet */
3774         case readonly:
3775                 if (mddev->pers)
3776                         err = md_set_readonly(mddev, 0);
3777                 else {
3778                         mddev->ro = 1;
3779                         set_disk_ro(mddev->gendisk, 1);
3780                         err = do_md_run(mddev);
3781                 }
3782                 break;
3783         case read_auto:
3784                 if (mddev->pers) {
3785                         if (mddev->ro == 0)
3786                                 err = md_set_readonly(mddev, 0);
3787                         else if (mddev->ro == 1)
3788                                 err = restart_array(mddev);
3789                         if (err == 0) {
3790                                 mddev->ro = 2;
3791                                 set_disk_ro(mddev->gendisk, 0);
3792                         }
3793                 } else {
3794                         mddev->ro = 2;
3795                         err = do_md_run(mddev);
3796                 }
3797                 break;
3798         case clean:
3799                 if (mddev->pers) {
3800                         restart_array(mddev);
3801                         spin_lock_irq(&mddev->write_lock);
3802                         if (atomic_read(&mddev->writes_pending) == 0) {
3803                                 if (mddev->in_sync == 0) {
3804                                         mddev->in_sync = 1;
3805                                         if (mddev->safemode == 1)
3806                                                 mddev->safemode = 0;
3807                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3808                                 }
3809                                 err = 0;
3810                         } else
3811                                 err = -EBUSY;
3812                         spin_unlock_irq(&mddev->write_lock);
3813                 } else
3814                         err = -EINVAL;
3815                 break;
3816         case active:
3817                 if (mddev->pers) {
3818                         restart_array(mddev);
3819                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3820                         wake_up(&mddev->sb_wait);
3821                         err = 0;
3822                 } else {
3823                         mddev->ro = 0;
3824                         set_disk_ro(mddev->gendisk, 0);
3825                         err = do_md_run(mddev);
3826                 }
3827                 break;
3828         case write_pending:
3829         case active_idle:
3830                 /* these cannot be set */
3831                 break;
3832         }
3833         if (err)
3834                 return err;
3835         else {
3836                 if (mddev->hold_active == UNTIL_IOCTL)
3837                         mddev->hold_active = 0;
3838                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3839                 return len;
3840         }
3841 }
3842 static struct md_sysfs_entry md_array_state =
3843 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3844
3845 static ssize_t
3846 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3847         return sprintf(page, "%d\n",
3848                        atomic_read(&mddev->max_corr_read_errors));
3849 }
3850
3851 static ssize_t
3852 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3853 {
3854         char *e;
3855         unsigned long n = simple_strtoul(buf, &e, 10);
3856
3857         if (*buf && (*e == 0 || *e == '\n')) {
3858                 atomic_set(&mddev->max_corr_read_errors, n);
3859                 return len;
3860         }
3861         return -EINVAL;
3862 }
3863
3864 static struct md_sysfs_entry max_corr_read_errors =
3865 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3866         max_corrected_read_errors_store);
3867
3868 static ssize_t
3869 null_show(struct mddev *mddev, char *page)
3870 {
3871         return -EINVAL;
3872 }
3873
3874 static ssize_t
3875 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3876 {
3877         /* buf must be %d:%d\n? giving major and minor numbers */
3878         /* The new device is added to the array.
3879          * If the array has a persistent superblock, we read the
3880          * superblock to initialise info and check validity.
3881          * Otherwise, only checking done is that in bind_rdev_to_array,
3882          * which mainly checks size.
3883          */
3884         char *e;
3885         int major = simple_strtoul(buf, &e, 10);
3886         int minor;
3887         dev_t dev;
3888         struct md_rdev *rdev;
3889         int err;
3890
3891         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3892                 return -EINVAL;
3893         minor = simple_strtoul(e+1, &e, 10);
3894         if (*e && *e != '\n')
3895                 return -EINVAL;
3896         dev = MKDEV(major, minor);
3897         if (major != MAJOR(dev) ||
3898             minor != MINOR(dev))
3899                 return -EOVERFLOW;
3900
3901
3902         if (mddev->persistent) {
3903                 rdev = md_import_device(dev, mddev->major_version,
3904                                         mddev->minor_version);
3905                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3906                         struct md_rdev *rdev0
3907                                 = list_entry(mddev->disks.next,
3908                                              struct md_rdev, same_set);
3909                         err = super_types[mddev->major_version]
3910                                 .load_super(rdev, rdev0, mddev->minor_version);
3911                         if (err < 0)
3912                                 goto out;
3913                 }
3914         } else if (mddev->external)
3915                 rdev = md_import_device(dev, -2, -1);
3916         else
3917                 rdev = md_import_device(dev, -1, -1);
3918
3919         if (IS_ERR(rdev))
3920                 return PTR_ERR(rdev);
3921         err = bind_rdev_to_array(rdev, mddev);
3922  out:
3923         if (err)
3924                 export_rdev(rdev);
3925         return err ? err : len;
3926 }
3927
3928 static struct md_sysfs_entry md_new_device =
3929 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3930
3931 static ssize_t
3932 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3933 {
3934         char *end;
3935         unsigned long chunk, end_chunk;
3936
3937         if (!mddev->bitmap)
3938                 goto out;
3939         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3940         while (*buf) {
3941                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3942                 if (buf == end) break;
3943                 if (*end == '-') { /* range */
3944                         buf = end + 1;
3945                         end_chunk = simple_strtoul(buf, &end, 0);
3946                         if (buf == end) break;
3947                 }
3948                 if (*end && !isspace(*end)) break;
3949                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3950                 buf = skip_spaces(end);
3951         }
3952         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3953 out:
3954         return len;
3955 }
3956
3957 static struct md_sysfs_entry md_bitmap =
3958 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3959
3960 static ssize_t
3961 size_show(struct mddev *mddev, char *page)
3962 {
3963         return sprintf(page, "%llu\n",
3964                 (unsigned long long)mddev->dev_sectors / 2);
3965 }
3966
3967 static int update_size(struct mddev *mddev, sector_t num_sectors);
3968
3969 static ssize_t
3970 size_store(struct mddev *mddev, const char *buf, size_t len)
3971 {
3972         /* If array is inactive, we can reduce the component size, but
3973          * not increase it (except from 0).
3974          * If array is active, we can try an on-line resize
3975          */
3976         sector_t sectors;
3977         int err = strict_blocks_to_sectors(buf, &sectors);
3978
3979         if (err < 0)
3980                 return err;
3981         if (mddev->pers) {
3982                 err = update_size(mddev, sectors);
3983                 md_update_sb(mddev, 1);
3984         } else {
3985                 if (mddev->dev_sectors == 0 ||
3986                     mddev->dev_sectors > sectors)
3987                         mddev->dev_sectors = sectors;
3988                 else
3989                         err = -ENOSPC;
3990         }
3991         return err ? err : len;
3992 }
3993
3994 static struct md_sysfs_entry md_size =
3995 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3996
3997
3998 /* Metdata version.
3999  * This is one of
4000  *   'none' for arrays with no metadata (good luck...)
4001  *   'external' for arrays with externally managed metadata,
4002  * or N.M for internally known formats
4003  */
4004 static ssize_t
4005 metadata_show(struct mddev *mddev, char *page)
4006 {
4007         if (mddev->persistent)
4008                 return sprintf(page, "%d.%d\n",
4009                                mddev->major_version, mddev->minor_version);
4010         else if (mddev->external)
4011                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4012         else
4013                 return sprintf(page, "none\n");
4014 }
4015
4016 static ssize_t
4017 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4018 {
4019         int major, minor;
4020         char *e;
4021         /* Changing the details of 'external' metadata is
4022          * always permitted.  Otherwise there must be
4023          * no devices attached to the array.
4024          */
4025         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4026                 ;
4027         else if (!list_empty(&mddev->disks))
4028                 return -EBUSY;
4029
4030         if (cmd_match(buf, "none")) {
4031                 mddev->persistent = 0;
4032                 mddev->external = 0;
4033                 mddev->major_version = 0;
4034                 mddev->minor_version = 90;
4035                 return len;
4036         }
4037         if (strncmp(buf, "external:", 9) == 0) {
4038                 size_t namelen = len-9;
4039                 if (namelen >= sizeof(mddev->metadata_type))
4040                         namelen = sizeof(mddev->metadata_type)-1;
4041                 strncpy(mddev->metadata_type, buf+9, namelen);
4042                 mddev->metadata_type[namelen] = 0;
4043                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4044                         mddev->metadata_type[--namelen] = 0;
4045                 mddev->persistent = 0;
4046                 mddev->external = 1;
4047                 mddev->major_version = 0;
4048                 mddev->minor_version = 90;
4049                 return len;
4050         }
4051         major = simple_strtoul(buf, &e, 10);
4052         if (e==buf || *e != '.')
4053                 return -EINVAL;
4054         buf = e+1;
4055         minor = simple_strtoul(buf, &e, 10);
4056         if (e==buf || (*e && *e != '\n') )
4057                 return -EINVAL;
4058         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4059                 return -ENOENT;
4060         mddev->major_version = major;
4061         mddev->minor_version = minor;
4062         mddev->persistent = 1;
4063         mddev->external = 0;
4064         return len;
4065 }
4066
4067 static struct md_sysfs_entry md_metadata =
4068 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4069
4070 static ssize_t
4071 action_show(struct mddev *mddev, char *page)
4072 {
4073         char *type = "idle";
4074         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4075                 type = "frozen";
4076         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4077             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4078                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4079                         type = "reshape";
4080                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4081                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4082                                 type = "resync";
4083                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4084                                 type = "check";
4085                         else
4086                                 type = "repair";
4087                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4088                         type = "recover";
4089         }
4090         return sprintf(page, "%s\n", type);
4091 }
4092
4093 static void reap_sync_thread(struct mddev *mddev);
4094
4095 static ssize_t
4096 action_store(struct mddev *mddev, const char *page, size_t len)
4097 {
4098         if (!mddev->pers || !mddev->pers->sync_request)
4099                 return -EINVAL;
4100
4101         if (cmd_match(page, "frozen"))
4102                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4103         else
4104                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4105
4106         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4107                 if (mddev->sync_thread) {
4108                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4109                         reap_sync_thread(mddev);
4110                 }
4111         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4112                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4113                 return -EBUSY;
4114         else if (cmd_match(page, "resync"))
4115                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4116         else if (cmd_match(page, "recover")) {
4117                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4118                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4119         } else if (cmd_match(page, "reshape")) {
4120                 int err;
4121                 if (mddev->pers->start_reshape == NULL)
4122                         return -EINVAL;
4123                 err = mddev->pers->start_reshape(mddev);
4124                 if (err)
4125                         return err;
4126                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4127         } else {
4128                 if (cmd_match(page, "check"))
4129                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4130                 else if (!cmd_match(page, "repair"))
4131                         return -EINVAL;
4132                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4133                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4134         }
4135         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4136         md_wakeup_thread(mddev->thread);
4137         sysfs_notify_dirent_safe(mddev->sysfs_action);
4138         return len;
4139 }
4140
4141 static ssize_t
4142 mismatch_cnt_show(struct mddev *mddev, char *page)
4143 {
4144         return sprintf(page, "%llu\n",
4145                        (unsigned long long) mddev->resync_mismatches);
4146 }
4147
4148 static struct md_sysfs_entry md_scan_mode =
4149 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4150
4151
4152 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4153
4154 static ssize_t
4155 sync_min_show(struct mddev *mddev, char *page)
4156 {
4157         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4158                        mddev->sync_speed_min ? "local": "system");
4159 }
4160
4161 static ssize_t
4162 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4163 {
4164         int min;
4165         char *e;
4166         if (strncmp(buf, "system", 6)==0) {
4167                 mddev->sync_speed_min = 0;
4168                 return len;
4169         }
4170         min = simple_strtoul(buf, &e, 10);
4171         if (buf == e || (*e && *e != '\n') || min <= 0)
4172                 return -EINVAL;
4173         mddev->sync_speed_min = min;
4174         return len;
4175 }
4176
4177 static struct md_sysfs_entry md_sync_min =
4178 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4179
4180 static ssize_t
4181 sync_max_show(struct mddev *mddev, char *page)
4182 {
4183         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4184                        mddev->sync_speed_max ? "local": "system");
4185 }
4186
4187 static ssize_t
4188 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4189 {
4190         int max;
4191         char *e;
4192         if (strncmp(buf, "system", 6)==0) {
4193                 mddev->sync_speed_max = 0;
4194                 return len;
4195         }
4196         max = simple_strtoul(buf, &e, 10);
4197         if (buf == e || (*e && *e != '\n') || max <= 0)
4198                 return -EINVAL;
4199         mddev->sync_speed_max = max;
4200         return len;
4201 }
4202
4203 static struct md_sysfs_entry md_sync_max =
4204 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4205
4206 static ssize_t
4207 degraded_show(struct mddev *mddev, char *page)
4208 {
4209         return sprintf(page, "%d\n", mddev->degraded);
4210 }
4211 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4212
4213 static ssize_t
4214 sync_force_parallel_show(struct mddev *mddev, char *page)
4215 {
4216         return sprintf(page, "%d\n", mddev->parallel_resync);
4217 }
4218
4219 static ssize_t
4220 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4221 {
4222         long n;
4223
4224         if (strict_strtol(buf, 10, &n))
4225                 return -EINVAL;
4226
4227         if (n != 0 && n != 1)
4228                 return -EINVAL;
4229
4230         mddev->parallel_resync = n;
4231
4232         if (mddev->sync_thread)
4233                 wake_up(&resync_wait);
4234
4235         return len;
4236 }
4237
4238 /* force parallel resync, even with shared block devices */
4239 static struct md_sysfs_entry md_sync_force_parallel =
4240 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4241        sync_force_parallel_show, sync_force_parallel_store);
4242
4243 static ssize_t
4244 sync_speed_show(struct mddev *mddev, char *page)
4245 {
4246         unsigned long resync, dt, db;
4247         if (mddev->curr_resync == 0)
4248                 return sprintf(page, "none\n");
4249         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4250         dt = (jiffies - mddev->resync_mark) / HZ;
4251         if (!dt) dt++;
4252         db = resync - mddev->resync_mark_cnt;
4253         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4254 }
4255
4256 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4257
4258 static ssize_t
4259 sync_completed_show(struct mddev *mddev, char *page)
4260 {
4261         unsigned long long max_sectors, resync;
4262
4263         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4264                 return sprintf(page, "none\n");
4265
4266         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4267                 max_sectors = mddev->resync_max_sectors;
4268         else
4269                 max_sectors = mddev->dev_sectors;
4270
4271         resync = mddev->curr_resync_completed;
4272         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4273 }
4274
4275 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4276
4277 static ssize_t
4278 min_sync_show(struct mddev *mddev, char *page)
4279 {
4280         return sprintf(page, "%llu\n",
4281                        (unsigned long long)mddev->resync_min);
4282 }
4283 static ssize_t
4284 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4285 {
4286         unsigned long long min;
4287         if (strict_strtoull(buf, 10, &min))
4288                 return -EINVAL;
4289         if (min > mddev->resync_max)
4290                 return -EINVAL;
4291         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4292                 return -EBUSY;
4293
4294         /* Must be a multiple of chunk_size */
4295         if (mddev->chunk_sectors) {
4296                 sector_t temp = min;
4297                 if (sector_div(temp, mddev->chunk_sectors))
4298                         return -EINVAL;
4299         }
4300         mddev->resync_min = min;
4301
4302         return len;
4303 }
4304
4305 static struct md_sysfs_entry md_min_sync =
4306 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4307
4308 static ssize_t
4309 max_sync_show(struct mddev *mddev, char *page)
4310 {
4311         if (mddev->resync_max == MaxSector)
4312                 return sprintf(page, "max\n");
4313         else
4314                 return sprintf(page, "%llu\n",
4315                                (unsigned long long)mddev->resync_max);
4316 }
4317 static ssize_t
4318 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4319 {
4320         if (strncmp(buf, "max", 3) == 0)
4321                 mddev->resync_max = MaxSector;
4322         else {
4323                 unsigned long long max;
4324                 if (strict_strtoull(buf, 10, &max))
4325                         return -EINVAL;
4326                 if (max < mddev->resync_min)
4327                         return -EINVAL;
4328                 if (max < mddev->resync_max &&
4329                     mddev->ro == 0 &&
4330                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4331                         return -EBUSY;
4332
4333                 /* Must be a multiple of chunk_size */
4334                 if (mddev->chunk_sectors) {
4335                         sector_t temp = max;
4336                         if (sector_div(temp, mddev->chunk_sectors))
4337                                 return -EINVAL;
4338                 }
4339                 mddev->resync_max = max;
4340         }
4341         wake_up(&mddev->recovery_wait);
4342         return len;
4343 }
4344
4345 static struct md_sysfs_entry md_max_sync =
4346 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4347
4348 static ssize_t
4349 suspend_lo_show(struct mddev *mddev, char *page)
4350 {
4351         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4352 }
4353
4354 static ssize_t
4355 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4356 {
4357         char *e;
4358         unsigned long long new = simple_strtoull(buf, &e, 10);
4359         unsigned long long old = mddev->suspend_lo;
4360
4361         if (mddev->pers == NULL || 
4362             mddev->pers->quiesce == NULL)
4363                 return -EINVAL;
4364         if (buf == e || (*e && *e != '\n'))
4365                 return -EINVAL;
4366
4367         mddev->suspend_lo = new;
4368         if (new >= old)
4369                 /* Shrinking suspended region */
4370                 mddev->pers->quiesce(mddev, 2);
4371         else {
4372                 /* Expanding suspended region - need to wait */
4373                 mddev->pers->quiesce(mddev, 1);
4374                 mddev->pers->quiesce(mddev, 0);
4375         }
4376         return len;
4377 }
4378 static struct md_sysfs_entry md_suspend_lo =
4379 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4380
4381
4382 static ssize_t
4383 suspend_hi_show(struct mddev *mddev, char *page)
4384 {
4385         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4386 }
4387
4388 static ssize_t
4389 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4390 {
4391         char *e;
4392         unsigned long long new = simple_strtoull(buf, &e, 10);
4393         unsigned long long old = mddev->suspend_hi;
4394
4395         if (mddev->pers == NULL ||
4396             mddev->pers->quiesce == NULL)
4397                 return -EINVAL;
4398         if (buf == e || (*e && *e != '\n'))
4399                 return -EINVAL;
4400
4401         mddev->suspend_hi = new;
4402         if (new <= old)
4403                 /* Shrinking suspended region */
4404                 mddev->pers->quiesce(mddev, 2);
4405         else {
4406                 /* Expanding suspended region - need to wait */
4407                 mddev->pers->quiesce(mddev, 1);
4408                 mddev->pers->quiesce(mddev, 0);
4409         }
4410         return len;
4411 }
4412 static struct md_sysfs_entry md_suspend_hi =
4413 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4414
4415 static ssize_t
4416 reshape_position_show(struct mddev *mddev, char *page)
4417 {
4418         if (mddev->reshape_position != MaxSector)
4419                 return sprintf(page, "%llu\n",
4420                                (unsigned long long)mddev->reshape_position);
4421         strcpy(page, "none\n");
4422         return 5;
4423 }
4424
4425 static ssize_t
4426 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4427 {
4428         char *e;
4429         unsigned long long new = simple_strtoull(buf, &e, 10);
4430         if (mddev->pers)
4431                 return -EBUSY;
4432         if (buf == e || (*e && *e != '\n'))
4433                 return -EINVAL;
4434         mddev->reshape_position = new;
4435         mddev->delta_disks = 0;
4436         mddev->new_level = mddev->level;
4437         mddev->new_layout = mddev->layout;
4438         mddev->new_chunk_sectors = mddev->chunk_sectors;
4439         return len;
4440 }
4441
4442 static struct md_sysfs_entry md_reshape_position =
4443 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4444        reshape_position_store);
4445
4446 static ssize_t
4447 array_size_show(struct mddev *mddev, char *page)
4448 {
4449         if (mddev->external_size)
4450                 return sprintf(page, "%llu\n",
4451                                (unsigned long long)mddev->array_sectors/2);
4452         else
4453                 return sprintf(page, "default\n");
4454 }
4455
4456 static ssize_t
4457 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4458 {
4459         sector_t sectors;
4460
4461         if (strncmp(buf, "default", 7) == 0) {
4462                 if (mddev->pers)
4463                         sectors = mddev->pers->size(mddev, 0, 0);
4464                 else
4465                         sectors = mddev->array_sectors;
4466
4467                 mddev->external_size = 0;
4468         } else {
4469                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4470                         return -EINVAL;
4471                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4472                         return -E2BIG;
4473
4474                 mddev->external_size = 1;
4475         }
4476
4477         mddev->array_sectors = sectors;
4478         if (mddev->pers) {
4479                 set_capacity(mddev->gendisk, mddev->array_sectors);
4480                 revalidate_disk(mddev->gendisk);
4481         }
4482         return len;
4483 }
4484
4485 static struct md_sysfs_entry md_array_size =
4486 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4487        array_size_store);
4488
4489 static struct attribute *md_default_attrs[] = {
4490         &md_level.attr,
4491         &md_layout.attr,
4492         &md_raid_disks.attr,
4493         &md_chunk_size.attr,
4494         &md_size.attr,
4495         &md_resync_start.attr,
4496         &md_metadata.attr,
4497         &md_new_device.attr,
4498         &md_safe_delay.attr,
4499         &md_array_state.attr,
4500         &md_reshape_position.attr,
4501         &md_array_size.attr,
4502         &max_corr_read_errors.attr,
4503         NULL,
4504 };
4505
4506 static struct attribute *md_redundancy_attrs[] = {
4507         &md_scan_mode.attr,
4508         &md_mismatches.attr,
4509         &md_sync_min.attr,
4510         &md_sync_max.attr,
4511         &md_sync_speed.attr,
4512         &md_sync_force_parallel.attr,
4513         &md_sync_completed.attr,
4514         &md_min_sync.attr,
4515         &md_max_sync.attr,
4516         &md_suspend_lo.attr,
4517         &md_suspend_hi.attr,
4518         &md_bitmap.attr,
4519         &md_degraded.attr,
4520         NULL,
4521 };
4522 static struct attribute_group md_redundancy_group = {
4523         .name = NULL,
4524         .attrs = md_redundancy_attrs,
4525 };
4526
4527
4528 static ssize_t
4529 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4530 {
4531         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4532         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4533         ssize_t rv;
4534
4535         if (!entry->show)
4536                 return -EIO;
4537         spin_lock(&all_mddevs_lock);
4538         if (list_empty(&mddev->all_mddevs)) {
4539                 spin_unlock(&all_mddevs_lock);
4540                 return -EBUSY;
4541         }
4542         mddev_get(mddev);
4543         spin_unlock(&all_mddevs_lock);
4544
4545         rv = mddev_lock(mddev);
4546         if (!rv) {
4547                 rv = entry->show(mddev, page);
4548                 mddev_unlock(mddev);
4549         }
4550         mddev_put(mddev);
4551         return rv;
4552 }
4553
4554 static ssize_t
4555 md_attr_store(struct kobject *kobj, struct attribute *attr,
4556               const char *page, size_t length)
4557 {
4558         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4559         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4560         ssize_t rv;
4561
4562         if (!entry->store)
4563                 return -EIO;
4564         if (!capable(CAP_SYS_ADMIN))
4565                 return -EACCES;
4566         spin_lock(&all_mddevs_lock);
4567         if (list_empty(&mddev->all_mddevs)) {
4568                 spin_unlock(&all_mddevs_lock);
4569                 return -EBUSY;
4570         }
4571         mddev_get(mddev);
4572         spin_unlock(&all_mddevs_lock);
4573         rv = mddev_lock(mddev);
4574         if (!rv) {
4575                 rv = entry->store(mddev, page, length);
4576                 mddev_unlock(mddev);
4577         }
4578         mddev_put(mddev);
4579         return rv;
4580 }
4581
4582 static void md_free(struct kobject *ko)
4583 {
4584         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4585
4586         if (mddev->sysfs_state)
4587                 sysfs_put(mddev->sysfs_state);
4588
4589         if (mddev->gendisk) {
4590                 del_gendisk(mddev->gendisk);
4591                 put_disk(mddev->gendisk);
4592         }
4593         if (mddev->queue)
4594                 blk_cleanup_queue(mddev->queue);
4595
4596         kfree(mddev);
4597 }
4598
4599 static const struct sysfs_ops md_sysfs_ops = {
4600         .show   = md_attr_show,
4601         .store  = md_attr_store,
4602 };
4603 static struct kobj_type md_ktype = {
4604         .release        = md_free,
4605         .sysfs_ops      = &md_sysfs_ops,
4606         .default_attrs  = md_default_attrs,
4607 };
4608
4609 int mdp_major = 0;
4610
4611 static void mddev_delayed_delete(struct work_struct *ws)
4612 {
4613         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4614
4615         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4616         kobject_del(&mddev->kobj);
4617         kobject_put(&mddev->kobj);
4618 }
4619
4620 static int md_alloc(dev_t dev, char *name)
4621 {
4622         static DEFINE_MUTEX(disks_mutex);
4623         struct mddev *mddev = mddev_find(dev);
4624         struct gendisk *disk;
4625         int partitioned;
4626         int shift;
4627         int unit;
4628         int error;
4629
4630         if (!mddev)
4631                 return -ENODEV;
4632
4633         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4634         shift = partitioned ? MdpMinorShift : 0;
4635         unit = MINOR(mddev->unit) >> shift;
4636
4637         /* wait for any previous instance of this device to be
4638          * completely removed (mddev_delayed_delete).
4639          */
4640         flush_workqueue(md_misc_wq);
4641
4642         mutex_lock(&disks_mutex);
4643         error = -EEXIST;
4644         if (mddev->gendisk)
4645                 goto abort;
4646
4647         if (name) {
4648                 /* Need to ensure that 'name' is not a duplicate.
4649                  */
4650                 struct mddev *mddev2;
4651                 spin_lock(&all_mddevs_lock);
4652
4653                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4654                         if (mddev2->gendisk &&
4655                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4656                                 spin_unlock(&all_mddevs_lock);
4657                                 goto abort;
4658                         }
4659                 spin_unlock(&all_mddevs_lock);
4660         }
4661
4662         error = -ENOMEM;
4663         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4664         if (!mddev->queue)
4665                 goto abort;
4666         mddev->queue->queuedata = mddev;
4667
4668         blk_queue_make_request(mddev->queue, md_make_request);
4669         blk_set_stacking_limits(&mddev->queue->limits);
4670
4671         disk = alloc_disk(1 << shift);
4672         if (!disk) {
4673                 blk_cleanup_queue(mddev->queue);
4674                 mddev->queue = NULL;
4675                 goto abort;
4676         }
4677         disk->major = MAJOR(mddev->unit);
4678         disk->first_minor = unit << shift;
4679         if (name)
4680                 strcpy(disk->disk_name, name);
4681         else if (partitioned)
4682                 sprintf(disk->disk_name, "md_d%d", unit);
4683         else
4684                 sprintf(disk->disk_name, "md%d", unit);
4685         disk->fops = &md_fops;
4686         disk->private_data = mddev;
4687         disk->queue = mddev->queue;
4688         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4689         /* Allow extended partitions.  This makes the
4690          * 'mdp' device redundant, but we can't really
4691          * remove it now.
4692          */
4693         disk->flags |= GENHD_FL_EXT_DEVT;
4694         mddev->gendisk = disk;
4695         /* As soon as we call add_disk(), another thread could get
4696          * through to md_open, so make sure it doesn't get too far
4697          */
4698         mutex_lock(&mddev->open_mutex);
4699         add_disk(disk);
4700
4701         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4702                                      &disk_to_dev(disk)->kobj, "%s", "md");
4703         if (error) {
4704                 /* This isn't possible, but as kobject_init_and_add is marked
4705                  * __must_check, we must do something with the result
4706                  */
4707                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4708                        disk->disk_name);
4709                 error = 0;
4710         }
4711         if (mddev->kobj.sd &&
4712             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4713                 printk(KERN_DEBUG "pointless warning\n");
4714         mutex_unlock(&mddev->open_mutex);
4715  abort:
4716         mutex_unlock(&disks_mutex);
4717         if (!error && mddev->kobj.sd) {
4718                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4719                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4720         }
4721         mddev_put(mddev);
4722         return error;
4723 }
4724
4725 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4726 {
4727         md_alloc(dev, NULL);
4728         return NULL;
4729 }
4730
4731 static int add_named_array(const char *val, struct kernel_param *kp)
4732 {
4733         /* val must be "md_*" where * is not all digits.
4734          * We allocate an array with a large free minor number, and
4735          * set the name to val.  val must not already be an active name.
4736          */
4737         int len = strlen(val);
4738         char buf[DISK_NAME_LEN];
4739
4740         while (len && val[len-1] == '\n')
4741                 len--;
4742         if (len >= DISK_NAME_LEN)
4743                 return -E2BIG;
4744         strlcpy(buf, val, len+1);
4745         if (strncmp(buf, "md_", 3) != 0)
4746                 return -EINVAL;
4747         return md_alloc(0, buf);
4748 }
4749
4750 static void md_safemode_timeout(unsigned long data)
4751 {
4752         struct mddev *mddev = (struct mddev *) data;
4753
4754         if (!atomic_read(&mddev->writes_pending)) {
4755                 mddev->safemode = 1;
4756                 if (mddev->external)
4757                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4758         }
4759         md_wakeup_thread(mddev->thread);
4760 }
4761
4762 static int start_dirty_degraded;
4763
4764 int md_run(struct mddev *mddev)
4765 {
4766         int err;
4767         struct md_rdev *rdev;
4768         struct md_personality *pers;
4769
4770         if (list_empty(&mddev->disks))
4771                 /* cannot run an array with no devices.. */
4772                 return -EINVAL;
4773
4774         if (mddev->pers)
4775                 return -EBUSY;
4776         /* Cannot run until previous stop completes properly */
4777         if (mddev->sysfs_active)
4778                 return -EBUSY;
4779
4780         /*
4781          * Analyze all RAID superblock(s)
4782          */
4783         if (!mddev->raid_disks) {
4784                 if (!mddev->persistent)
4785                         return -EINVAL;
4786                 analyze_sbs(mddev);
4787         }
4788
4789         if (mddev->level != LEVEL_NONE)
4790                 request_module("md-level-%d", mddev->level);
4791         else if (mddev->clevel[0])
4792                 request_module("md-%s", mddev->clevel);
4793
4794         /*
4795          * Drop all container device buffers, from now on
4796          * the only valid external interface is through the md
4797          * device.
4798          */
4799         list_for_each_entry(rdev, &mddev->disks, same_set) {
4800                 if (test_bit(Faulty, &rdev->flags))
4801                         continue;
4802                 sync_blockdev(rdev->bdev);
4803                 invalidate_bdev(rdev->bdev);
4804
4805                 /* perform some consistency tests on the device.
4806                  * We don't want the data to overlap the metadata,
4807                  * Internal Bitmap issues have been handled elsewhere.
4808                  */
4809                 if (rdev->meta_bdev) {
4810                         /* Nothing to check */;
4811                 } else if (rdev->data_offset < rdev->sb_start) {
4812                         if (mddev->dev_sectors &&
4813                             rdev->data_offset + mddev->dev_sectors
4814                             > rdev->sb_start) {
4815                                 printk("md: %s: data overlaps metadata\n",
4816                                        mdname(mddev));
4817                                 return -EINVAL;
4818                         }
4819                 } else {
4820                         if (rdev->sb_start + rdev->sb_size/512
4821                             > rdev->data_offset) {
4822                                 printk("md: %s: metadata overlaps data\n",
4823                                        mdname(mddev));
4824                                 return -EINVAL;
4825                         }
4826                 }
4827                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4828         }
4829
4830         if (mddev->bio_set == NULL)
4831                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4832                                                sizeof(struct mddev *));
4833
4834         spin_lock(&pers_lock);
4835         pers = find_pers(mddev->level, mddev->clevel);
4836         if (!pers || !try_module_get(pers->owner)) {
4837                 spin_unlock(&pers_lock);
4838                 if (mddev->level != LEVEL_NONE)
4839                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4840                                mddev->level);
4841                 else
4842                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4843                                mddev->clevel);
4844                 return -EINVAL;
4845         }
4846         mddev->pers = pers;
4847         spin_unlock(&pers_lock);
4848         if (mddev->level != pers->level) {
4849                 mddev->level = pers->level;
4850                 mddev->new_level = pers->level;
4851         }
4852         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4853
4854         if (mddev->reshape_position != MaxSector &&
4855             pers->start_reshape == NULL) {
4856                 /* This personality cannot handle reshaping... */
4857                 mddev->pers = NULL;
4858                 module_put(pers->owner);
4859                 return -EINVAL;
4860         }
4861
4862         if (pers->sync_request) {
4863                 /* Warn if this is a potentially silly
4864                  * configuration.
4865                  */
4866                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4867                 struct md_rdev *rdev2;
4868                 int warned = 0;
4869
4870                 list_for_each_entry(rdev, &mddev->disks, same_set)
4871                         list_for_each_entry(rdev2, &mddev->disks, same_set) {
4872                                 if (rdev < rdev2 &&
4873                                     rdev->bdev->bd_contains ==
4874                                     rdev2->bdev->bd_contains) {
4875                                         printk(KERN_WARNING
4876                                                "%s: WARNING: %s appears to be"
4877                                                " on the same physical disk as"
4878                                                " %s.\n",
4879                                                mdname(mddev),
4880                                                bdevname(rdev->bdev,b),
4881                                                bdevname(rdev2->bdev,b2));
4882                                         warned = 1;
4883                                 }
4884                         }
4885
4886                 if (warned)
4887                         printk(KERN_WARNING
4888                                "True protection against single-disk"
4889                                " failure might be compromised.\n");
4890         }
4891
4892         mddev->recovery = 0;
4893         /* may be over-ridden by personality */
4894         mddev->resync_max_sectors = mddev->dev_sectors;
4895
4896         mddev->ok_start_degraded = start_dirty_degraded;
4897
4898         if (start_readonly && mddev->ro == 0)
4899                 mddev->ro = 2; /* read-only, but switch on first write */
4900
4901         err = mddev->pers->run(mddev);
4902         if (err)
4903                 printk(KERN_ERR "md: pers->run() failed ...\n");
4904         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4905                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4906                           " but 'external_size' not in effect?\n", __func__);
4907                 printk(KERN_ERR
4908                        "md: invalid array_size %llu > default size %llu\n",
4909                        (unsigned long long)mddev->array_sectors / 2,
4910                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4911                 err = -EINVAL;
4912                 mddev->pers->stop(mddev);
4913         }
4914         if (err == 0 && mddev->pers->sync_request) {
4915                 err = bitmap_create(mddev);
4916                 if (err) {
4917                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4918                                mdname(mddev), err);
4919                         mddev->pers->stop(mddev);
4920                 }
4921         }
4922         if (err) {
4923                 module_put(mddev->pers->owner);
4924                 mddev->pers = NULL;
4925                 bitmap_destroy(mddev);
4926                 return err;
4927         }
4928         if (mddev->pers->sync_request) {
4929                 if (mddev->kobj.sd &&
4930                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4931                         printk(KERN_WARNING
4932                                "md: cannot register extra attributes for %s\n",
4933                                mdname(mddev));
4934                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4935         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4936                 mddev->ro = 0;
4937
4938         atomic_set(&mddev->writes_pending,0);
4939         atomic_set(&mddev->max_corr_read_errors,
4940                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4941         mddev->safemode = 0;
4942         mddev->safemode_timer.function = md_safemode_timeout;
4943         mddev->safemode_timer.data = (unsigned long) mddev;
4944         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4945         mddev->in_sync = 1;
4946         smp_wmb();
4947         mddev->ready = 1;
4948         list_for_each_entry(rdev, &mddev->disks, same_set)
4949                 if (rdev->raid_disk >= 0)
4950                         if (sysfs_link_rdev(mddev, rdev))
4951                                 /* failure here is OK */;
4952         
4953         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4954         
4955         if (mddev->flags)
4956                 md_update_sb(mddev, 0);
4957
4958         md_new_event(mddev);
4959         sysfs_notify_dirent_safe(mddev->sysfs_state);
4960         sysfs_notify_dirent_safe(mddev->sysfs_action);
4961         sysfs_notify(&mddev->kobj, NULL, "degraded");
4962         return 0;
4963 }
4964 EXPORT_SYMBOL_GPL(md_run);
4965
4966 static int do_md_run(struct mddev *mddev)
4967 {
4968         int err;
4969
4970         err = md_run(mddev);
4971         if (err)
4972                 goto out;
4973         err = bitmap_load(mddev);
4974         if (err) {
4975                 bitmap_destroy(mddev);
4976                 goto out;
4977         }
4978
4979         md_wakeup_thread(mddev->thread);
4980         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4981
4982         set_capacity(mddev->gendisk, mddev->array_sectors);
4983         revalidate_disk(mddev->gendisk);
4984         mddev->changed = 1;
4985         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4986 out:
4987         return err;
4988 }
4989
4990 static int restart_array(struct mddev *mddev)
4991 {
4992         struct gendisk *disk = mddev->gendisk;
4993
4994         /* Complain if it has no devices */
4995         if (list_empty(&mddev->disks))
4996                 return -ENXIO;
4997         if (!mddev->pers)
4998                 return -EINVAL;
4999         if (!mddev->ro)
5000                 return -EBUSY;
5001         mddev->safemode = 0;
5002         mddev->ro = 0;
5003         set_disk_ro(disk, 0);
5004         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5005                 mdname(mddev));
5006         /* Kick recovery or resync if necessary */
5007         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5008         md_wakeup_thread(mddev->thread);
5009         md_wakeup_thread(mddev->sync_thread);
5010         sysfs_notify_dirent_safe(mddev->sysfs_state);
5011         return 0;
5012 }
5013
5014 /* similar to deny_write_access, but accounts for our holding a reference
5015  * to the file ourselves */
5016 static int deny_bitmap_write_access(struct file * file)
5017 {
5018         struct inode *inode = file->f_mapping->host;
5019
5020         spin_lock(&inode->i_lock);
5021         if (atomic_read(&inode->i_writecount) > 1) {
5022                 spin_unlock(&inode->i_lock);
5023                 return -ETXTBSY;
5024         }
5025         atomic_set(&inode->i_writecount, -1);
5026         spin_unlock(&inode->i_lock);
5027
5028         return 0;
5029 }
5030
5031 void restore_bitmap_write_access(struct file *file)
5032 {
5033         struct inode *inode = file->f_mapping->host;
5034
5035         spin_lock(&inode->i_lock);
5036         atomic_set(&inode->i_writecount, 1);
5037         spin_unlock(&inode->i_lock);
5038 }
5039
5040 static void md_clean(struct mddev *mddev)
5041 {
5042         mddev->array_sectors = 0;
5043         mddev->external_size = 0;
5044         mddev->dev_sectors = 0;
5045         mddev->raid_disks = 0;
5046         mddev->recovery_cp = 0;
5047         mddev->resync_min = 0;
5048         mddev->resync_max = MaxSector;
5049         mddev->reshape_position = MaxSector;
5050         mddev->external = 0;
5051         mddev->persistent = 0;
5052         mddev->level = LEVEL_NONE;
5053         mddev->clevel[0] = 0;
5054         mddev->flags = 0;
5055         mddev->ro = 0;
5056         mddev->metadata_type[0] = 0;
5057         mddev->chunk_sectors = 0;
5058         mddev->ctime = mddev->utime = 0;
5059         mddev->layout = 0;
5060         mddev->max_disks = 0;
5061         mddev->events = 0;
5062         mddev->can_decrease_events = 0;
5063         mddev->delta_disks = 0;
5064         mddev->new_level = LEVEL_NONE;
5065         mddev->new_layout = 0;
5066         mddev->new_chunk_sectors = 0;
5067         mddev->curr_resync = 0;
5068         mddev->resync_mismatches = 0;
5069         mddev->suspend_lo = mddev->suspend_hi = 0;
5070         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5071         mddev->recovery = 0;
5072         mddev->in_sync = 0;
5073         mddev->changed = 0;
5074         mddev->degraded = 0;
5075         mddev->safemode = 0;
5076         mddev->bitmap_info.offset = 0;
5077         mddev->bitmap_info.default_offset = 0;
5078         mddev->bitmap_info.chunksize = 0;
5079         mddev->bitmap_info.daemon_sleep = 0;
5080         mddev->bitmap_info.max_write_behind = 0;
5081 }
5082
5083 static void __md_stop_writes(struct mddev *mddev)
5084 {
5085         if (mddev->sync_thread) {
5086                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5087                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5088                 reap_sync_thread(mddev);
5089         }
5090
5091         del_timer_sync(&mddev->safemode_timer);
5092
5093         bitmap_flush(mddev);
5094         md_super_wait(mddev);
5095
5096         if (!mddev->in_sync || mddev->flags) {
5097                 /* mark array as shutdown cleanly */
5098                 mddev->in_sync = 1;
5099                 md_update_sb(mddev, 1);
5100         }
5101 }
5102
5103 void md_stop_writes(struct mddev *mddev)
5104 {
5105         mddev_lock(mddev);
5106         __md_stop_writes(mddev);
5107         mddev_unlock(mddev);
5108 }
5109 EXPORT_SYMBOL_GPL(md_stop_writes);
5110
5111 void md_stop(struct mddev *mddev)
5112 {
5113         mddev->ready = 0;
5114         mddev->pers->stop(mddev);
5115         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5116                 mddev->to_remove = &md_redundancy_group;
5117         module_put(mddev->pers->owner);
5118         mddev->pers = NULL;
5119         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5120 }
5121 EXPORT_SYMBOL_GPL(md_stop);
5122
5123 static int md_set_readonly(struct mddev *mddev, int is_open)
5124 {
5125         int err = 0;
5126         mutex_lock(&mddev->open_mutex);
5127         if (atomic_read(&mddev->openers) > is_open) {
5128                 printk("md: %s still in use.\n",mdname(mddev));
5129                 err = -EBUSY;
5130                 goto out;
5131         }
5132         if (mddev->pers) {
5133                 __md_stop_writes(mddev);
5134
5135                 err  = -ENXIO;
5136                 if (mddev->ro==1)
5137                         goto out;
5138                 mddev->ro = 1;
5139                 set_disk_ro(mddev->gendisk, 1);
5140                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5141                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5142                 err = 0;        
5143         }
5144 out:
5145         mutex_unlock(&mddev->open_mutex);
5146         return err;
5147 }
5148
5149 /* mode:
5150  *   0 - completely stop and dis-assemble array
5151  *   2 - stop but do not disassemble array
5152  */
5153 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5154 {
5155         struct gendisk *disk = mddev->gendisk;
5156         struct md_rdev *rdev;
5157
5158         mutex_lock(&mddev->open_mutex);
5159         if (atomic_read(&mddev->openers) > is_open ||
5160             mddev->sysfs_active) {
5161                 printk("md: %s still in use.\n",mdname(mddev));
5162                 mutex_unlock(&mddev->open_mutex);
5163                 return -EBUSY;
5164         }
5165
5166         if (mddev->pers) {
5167                 if (mddev->ro)
5168                         set_disk_ro(disk, 0);
5169
5170                 __md_stop_writes(mddev);
5171                 md_stop(mddev);
5172                 mddev->queue->merge_bvec_fn = NULL;
5173                 mddev->queue->backing_dev_info.congested_fn = NULL;
5174
5175                 /* tell userspace to handle 'inactive' */
5176                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5177
5178                 list_for_each_entry(rdev, &mddev->disks, same_set)
5179                         if (rdev->raid_disk >= 0)
5180                                 sysfs_unlink_rdev(mddev, rdev);
5181
5182                 set_capacity(disk, 0);
5183                 mutex_unlock(&mddev->open_mutex);
5184                 mddev->changed = 1;
5185                 revalidate_disk(disk);
5186
5187                 if (mddev->ro)
5188                         mddev->ro = 0;
5189         } else
5190                 mutex_unlock(&mddev->open_mutex);
5191         /*
5192          * Free resources if final stop
5193          */
5194         if (mode == 0) {
5195                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5196
5197                 bitmap_destroy(mddev);
5198                 if (mddev->bitmap_info.file) {
5199                         restore_bitmap_write_access(mddev->bitmap_info.file);
5200                         fput(mddev->bitmap_info.file);
5201                         mddev->bitmap_info.file = NULL;
5202                 }
5203                 mddev->bitmap_info.offset = 0;
5204
5205                 export_array(mddev);
5206
5207                 md_clean(mddev);
5208                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5209                 if (mddev->hold_active == UNTIL_STOP)
5210                         mddev->hold_active = 0;
5211         }
5212         blk_integrity_unregister(disk);
5213         md_new_event(mddev);
5214         sysfs_notify_dirent_safe(mddev->sysfs_state);
5215         return 0;
5216 }
5217
5218 #ifndef MODULE
5219 static void autorun_array(struct mddev *mddev)
5220 {
5221         struct md_rdev *rdev;
5222         int err;
5223
5224         if (list_empty(&mddev->disks))
5225                 return;
5226
5227         printk(KERN_INFO "md: running: ");
5228
5229         list_for_each_entry(rdev, &mddev->disks, same_set) {
5230                 char b[BDEVNAME_SIZE];
5231                 printk("<%s>", bdevname(rdev->bdev,b));
5232         }
5233         printk("\n");
5234
5235         err = do_md_run(mddev);
5236         if (err) {
5237                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5238                 do_md_stop(mddev, 0, 0);
5239         }
5240 }
5241
5242 /*
5243  * lets try to run arrays based on all disks that have arrived
5244  * until now. (those are in pending_raid_disks)
5245  *
5246  * the method: pick the first pending disk, collect all disks with
5247  * the same UUID, remove all from the pending list and put them into
5248  * the 'same_array' list. Then order this list based on superblock
5249  * update time (freshest comes first), kick out 'old' disks and
5250  * compare superblocks. If everything's fine then run it.
5251  *
5252  * If "unit" is allocated, then bump its reference count
5253  */
5254 static void autorun_devices(int part)
5255 {
5256         struct md_rdev *rdev0, *rdev, *tmp;
5257         struct mddev *mddev;
5258         char b[BDEVNAME_SIZE];
5259
5260         printk(KERN_INFO "md: autorun ...\n");
5261         while (!list_empty(&pending_raid_disks)) {
5262                 int unit;
5263                 dev_t dev;
5264                 LIST_HEAD(candidates);
5265                 rdev0 = list_entry(pending_raid_disks.next,
5266                                          struct md_rdev, same_set);
5267
5268                 printk(KERN_INFO "md: considering %s ...\n",
5269                         bdevname(rdev0->bdev,b));
5270                 INIT_LIST_HEAD(&candidates);
5271                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5272                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5273                                 printk(KERN_INFO "md:  adding %s ...\n",
5274                                         bdevname(rdev->bdev,b));
5275                                 list_move(&rdev->same_set, &candidates);
5276                         }
5277                 /*
5278                  * now we have a set of devices, with all of them having
5279                  * mostly sane superblocks. It's time to allocate the
5280                  * mddev.
5281                  */
5282                 if (part) {
5283                         dev = MKDEV(mdp_major,
5284                                     rdev0->preferred_minor << MdpMinorShift);
5285                         unit = MINOR(dev) >> MdpMinorShift;
5286                 } else {
5287                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5288                         unit = MINOR(dev);
5289                 }
5290                 if (rdev0->preferred_minor != unit) {
5291                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5292                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5293                         break;
5294                 }
5295
5296                 md_probe(dev, NULL, NULL);
5297                 mddev = mddev_find(dev);
5298                 if (!mddev || !mddev->gendisk) {
5299                         if (mddev)
5300                                 mddev_put(mddev);
5301                         printk(KERN_ERR
5302                                 "md: cannot allocate memory for md drive.\n");
5303                         break;
5304                 }
5305                 if (mddev_lock(mddev)) 
5306                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5307                                mdname(mddev));
5308                 else if (mddev->raid_disks || mddev->major_version
5309                          || !list_empty(&mddev->disks)) {
5310                         printk(KERN_WARNING 
5311                                 "md: %s already running, cannot run %s\n",
5312                                 mdname(mddev), bdevname(rdev0->bdev,b));
5313                         mddev_unlock(mddev);
5314                 } else {
5315                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5316                         mddev->persistent = 1;
5317                         rdev_for_each_list(rdev, tmp, &candidates) {
5318                                 list_del_init(&rdev->same_set);
5319                                 if (bind_rdev_to_array(rdev, mddev))
5320                                         export_rdev(rdev);
5321                         }
5322                         autorun_array(mddev);
5323                         mddev_unlock(mddev);
5324                 }
5325                 /* on success, candidates will be empty, on error
5326                  * it won't...
5327                  */
5328                 rdev_for_each_list(rdev, tmp, &candidates) {
5329                         list_del_init(&rdev->same_set);
5330                         export_rdev(rdev);
5331                 }
5332                 mddev_put(mddev);
5333         }
5334         printk(KERN_INFO "md: ... autorun DONE.\n");
5335 }
5336 #endif /* !MODULE */
5337
5338 static int get_version(void __user * arg)
5339 {
5340         mdu_version_t ver;
5341
5342         ver.major = MD_MAJOR_VERSION;
5343         ver.minor = MD_MINOR_VERSION;
5344         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5345
5346         if (copy_to_user(arg, &ver, sizeof(ver)))
5347                 return -EFAULT;
5348
5349         return 0;
5350 }
5351
5352 static int get_array_info(struct mddev * mddev, void __user * arg)
5353 {
5354         mdu_array_info_t info;
5355         int nr,working,insync,failed,spare;
5356         struct md_rdev *rdev;
5357
5358         nr=working=insync=failed=spare=0;
5359         list_for_each_entry(rdev, &mddev->disks, same_set) {
5360                 nr++;
5361                 if (test_bit(Faulty, &rdev->flags))
5362                         failed++;
5363                 else {
5364                         working++;
5365                         if (test_bit(In_sync, &rdev->flags))
5366                                 insync++;       
5367                         else
5368                                 spare++;
5369                 }
5370         }
5371
5372         info.major_version = mddev->major_version;
5373         info.minor_version = mddev->minor_version;
5374         info.patch_version = MD_PATCHLEVEL_VERSION;
5375         info.ctime         = mddev->ctime;
5376         info.level         = mddev->level;
5377         info.size          = mddev->dev_sectors / 2;
5378         if (info.size != mddev->dev_sectors / 2) /* overflow */
5379                 info.size = -1;
5380         info.nr_disks      = nr;
5381         info.raid_disks    = mddev->raid_disks;
5382         info.md_minor      = mddev->md_minor;
5383         info.not_persistent= !mddev->persistent;
5384
5385         info.utime         = mddev->utime;
5386         info.state         = 0;
5387         if (mddev->in_sync)
5388                 info.state = (1<<MD_SB_CLEAN);
5389         if (mddev->bitmap && mddev->bitmap_info.offset)
5390                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5391         info.active_disks  = insync;
5392         info.working_disks = working;
5393         info.failed_disks  = failed;
5394         info.spare_disks   = spare;
5395
5396         info.layout        = mddev->layout;
5397         info.chunk_size    = mddev->chunk_sectors << 9;
5398
5399         if (copy_to_user(arg, &info, sizeof(info)))
5400                 return -EFAULT;
5401
5402         return 0;
5403 }
5404
5405 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5406 {
5407         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5408         char *ptr, *buf = NULL;
5409         int err = -ENOMEM;
5410
5411         if (md_allow_write(mddev))
5412                 file = kmalloc(sizeof(*file), GFP_NOIO);
5413         else
5414                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5415
5416         if (!file)
5417                 goto out;
5418
5419         /* bitmap disabled, zero the first byte and copy out */
5420         if (!mddev->bitmap || !mddev->bitmap->file) {
5421                 file->pathname[0] = '\0';
5422                 goto copy_out;
5423         }
5424
5425         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5426         if (!buf)
5427                 goto out;
5428
5429         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5430         if (IS_ERR(ptr))
5431                 goto out;
5432
5433         strcpy(file->pathname, ptr);
5434
5435 copy_out:
5436         err = 0;
5437         if (copy_to_user(arg, file, sizeof(*file)))
5438                 err = -EFAULT;
5439 out:
5440         kfree(buf);
5441         kfree(file);
5442         return err;
5443 }
5444
5445 static int get_disk_info(struct mddev * mddev, void __user * arg)
5446 {
5447         mdu_disk_info_t info;
5448         struct md_rdev *rdev;
5449
5450         if (copy_from_user(&info, arg, sizeof(info)))
5451                 return -EFAULT;
5452
5453         rdev = find_rdev_nr(mddev, info.number);
5454         if (rdev) {
5455                 info.major = MAJOR(rdev->bdev->bd_dev);
5456                 info.minor = MINOR(rdev->bdev->bd_dev);
5457                 info.raid_disk = rdev->raid_disk;
5458                 info.state = 0;
5459                 if (test_bit(Faulty, &rdev->flags))
5460                         info.state |= (1<<MD_DISK_FAULTY);
5461                 else if (test_bit(In_sync, &rdev->flags)) {
5462                         info.state |= (1<<MD_DISK_ACTIVE);
5463                         info.state |= (1<<MD_DISK_SYNC);
5464                 }
5465                 if (test_bit(WriteMostly, &rdev->flags))
5466                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5467         } else {
5468                 info.major = info.minor = 0;
5469                 info.raid_disk = -1;
5470                 info.state = (1<<MD_DISK_REMOVED);
5471         }
5472
5473         if (copy_to_user(arg, &info, sizeof(info)))
5474                 return -EFAULT;
5475
5476         return 0;
5477 }
5478
5479 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5480 {
5481         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5482         struct md_rdev *rdev;
5483         dev_t dev = MKDEV(info->major,info->minor);
5484
5485         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5486                 return -EOVERFLOW;
5487
5488         if (!mddev->raid_disks) {
5489                 int err;
5490                 /* expecting a device which has a superblock */
5491                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5492                 if (IS_ERR(rdev)) {
5493                         printk(KERN_WARNING 
5494                                 "md: md_import_device returned %ld\n",
5495                                 PTR_ERR(rdev));
5496                         return PTR_ERR(rdev);
5497                 }
5498                 if (!list_empty(&mddev->disks)) {
5499                         struct md_rdev *rdev0
5500                                 = list_entry(mddev->disks.next,
5501                                              struct md_rdev, same_set);
5502                         err = super_types[mddev->major_version]
5503                                 .load_super(rdev, rdev0, mddev->minor_version);
5504                         if (err < 0) {
5505                                 printk(KERN_WARNING 
5506                                         "md: %s has different UUID to %s\n",
5507                                         bdevname(rdev->bdev,b), 
5508                                         bdevname(rdev0->bdev,b2));
5509                                 export_rdev(rdev);
5510                                 return -EINVAL;
5511                         }
5512                 }
5513                 err = bind_rdev_to_array(rdev, mddev);
5514                 if (err)
5515                         export_rdev(rdev);
5516                 return err;
5517         }
5518
5519         /*
5520          * add_new_disk can be used once the array is assembled
5521          * to add "hot spares".  They must already have a superblock
5522          * written
5523          */
5524         if (mddev->pers) {
5525                 int err;
5526                 if (!mddev->pers->hot_add_disk) {
5527                         printk(KERN_WARNING 
5528                                 "%s: personality does not support diskops!\n",
5529                                mdname(mddev));
5530                         return -EINVAL;
5531                 }
5532                 if (mddev->persistent)
5533                         rdev = md_import_device(dev, mddev->major_version,
5534                                                 mddev->minor_version);
5535                 else
5536                         rdev = md_import_device(dev, -1, -1);
5537                 if (IS_ERR(rdev)) {
5538                         printk(KERN_WARNING 
5539                                 "md: md_import_device returned %ld\n",
5540                                 PTR_ERR(rdev));
5541                         return PTR_ERR(rdev);
5542                 }
5543                 /* set saved_raid_disk if appropriate */
5544                 if (!mddev->persistent) {
5545                         if (info->state & (1<<MD_DISK_SYNC)  &&
5546                             info->raid_disk < mddev->raid_disks) {
5547                                 rdev->raid_disk = info->raid_disk;
5548                                 set_bit(In_sync, &rdev->flags);
5549                         } else
5550                                 rdev->raid_disk = -1;
5551                 } else
5552                         super_types[mddev->major_version].
5553                                 validate_super(mddev, rdev);
5554                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5555                     (!test_bit(In_sync, &rdev->flags) ||
5556                      rdev->raid_disk != info->raid_disk)) {
5557                         /* This was a hot-add request, but events doesn't
5558                          * match, so reject it.
5559                          */
5560                         export_rdev(rdev);
5561                         return -EINVAL;
5562                 }
5563
5564                 if (test_bit(In_sync, &rdev->flags))
5565                         rdev->saved_raid_disk = rdev->raid_disk;
5566                 else
5567                         rdev->saved_raid_disk = -1;
5568
5569                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5570                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5571                         set_bit(WriteMostly, &rdev->flags);
5572                 else
5573                         clear_bit(WriteMostly, &rdev->flags);
5574
5575                 rdev->raid_disk = -1;
5576                 err = bind_rdev_to_array(rdev, mddev);
5577                 if (!err && !mddev->pers->hot_remove_disk) {
5578                         /* If there is hot_add_disk but no hot_remove_disk
5579                          * then added disks for geometry changes,
5580                          * and should be added immediately.
5581                          */
5582                         super_types[mddev->major_version].
5583                                 validate_super(mddev, rdev);
5584                         err = mddev->pers->hot_add_disk(mddev, rdev);
5585                         if (err)
5586                                 unbind_rdev_from_array(rdev);
5587                 }
5588                 if (err)
5589                         export_rdev(rdev);
5590                 else
5591                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5592
5593                 md_update_sb(mddev, 1);
5594                 if (mddev->degraded)
5595                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5596                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5597                 if (!err)
5598                         md_new_event(mddev);
5599                 md_wakeup_thread(mddev->thread);
5600                 return err;
5601         }
5602
5603         /* otherwise, add_new_disk is only allowed
5604          * for major_version==0 superblocks
5605          */
5606         if (mddev->major_version != 0) {
5607                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5608                        mdname(mddev));
5609                 return -EINVAL;
5610         }
5611
5612         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5613                 int err;
5614                 rdev = md_import_device(dev, -1, 0);
5615                 if (IS_ERR(rdev)) {
5616                         printk(KERN_WARNING 
5617                                 "md: error, md_import_device() returned %ld\n",
5618                                 PTR_ERR(rdev));
5619                         return PTR_ERR(rdev);
5620                 }
5621                 rdev->desc_nr = info->number;
5622                 if (info->raid_disk < mddev->raid_disks)
5623                         rdev->raid_disk = info->raid_disk;
5624                 else
5625                         rdev->raid_disk = -1;
5626
5627                 if (rdev->raid_disk < mddev->raid_disks)
5628                         if (info->state & (1<<MD_DISK_SYNC))
5629                                 set_bit(In_sync, &rdev->flags);
5630
5631                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5632                         set_bit(WriteMostly, &rdev->flags);
5633
5634                 if (!mddev->persistent) {
5635                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5636                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5637                 } else
5638                         rdev->sb_start = calc_dev_sboffset(rdev);
5639                 rdev->sectors = rdev->sb_start;
5640
5641                 err = bind_rdev_to_array(rdev, mddev);
5642                 if (err) {
5643                         export_rdev(rdev);
5644                         return err;
5645                 }
5646         }
5647
5648         return 0;
5649 }
5650
5651 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5652 {
5653         char b[BDEVNAME_SIZE];
5654         struct md_rdev *rdev;
5655
5656         rdev = find_rdev(mddev, dev);
5657         if (!rdev)
5658                 return -ENXIO;
5659
5660         if (rdev->raid_disk >= 0)
5661                 goto busy;
5662
5663         kick_rdev_from_array(rdev);
5664         md_update_sb(mddev, 1);
5665         md_new_event(mddev);
5666
5667         return 0;
5668 busy:
5669         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5670                 bdevname(rdev->bdev,b), mdname(mddev));
5671         return -EBUSY;
5672 }
5673
5674 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5675 {
5676         char b[BDEVNAME_SIZE];
5677         int err;
5678         struct md_rdev *rdev;
5679
5680         if (!mddev->pers)
5681                 return -ENODEV;
5682
5683         if (mddev->major_version != 0) {
5684                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5685                         " version-0 superblocks.\n",
5686                         mdname(mddev));
5687                 return -EINVAL;
5688         }
5689         if (!mddev->pers->hot_add_disk) {
5690                 printk(KERN_WARNING 
5691                         "%s: personality does not support diskops!\n",
5692                         mdname(mddev));
5693                 return -EINVAL;
5694         }
5695
5696         rdev = md_import_device(dev, -1, 0);
5697         if (IS_ERR(rdev)) {
5698                 printk(KERN_WARNING 
5699                         "md: error, md_import_device() returned %ld\n",
5700                         PTR_ERR(rdev));
5701                 return -EINVAL;
5702         }
5703
5704         if (mddev->persistent)
5705                 rdev->sb_start = calc_dev_sboffset(rdev);
5706         else
5707                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5708
5709         rdev->sectors = rdev->sb_start;
5710
5711         if (test_bit(Faulty, &rdev->flags)) {
5712                 printk(KERN_WARNING 
5713                         "md: can not hot-add faulty %s disk to %s!\n",
5714                         bdevname(rdev->bdev,b), mdname(mddev));
5715                 err = -EINVAL;
5716                 goto abort_export;
5717         }
5718         clear_bit(In_sync, &rdev->flags);
5719         rdev->desc_nr = -1;
5720         rdev->saved_raid_disk = -1;
5721         err = bind_rdev_to_array(rdev, mddev);
5722         if (err)
5723                 goto abort_export;
5724
5725         /*
5726          * The rest should better be atomic, we can have disk failures
5727          * noticed in interrupt contexts ...
5728          */
5729
5730         rdev->raid_disk = -1;
5731
5732         md_update_sb(mddev, 1);
5733
5734         /*
5735          * Kick recovery, maybe this spare has to be added to the
5736          * array immediately.
5737          */
5738         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5739         md_wakeup_thread(mddev->thread);
5740         md_new_event(mddev);
5741         return 0;
5742
5743 abort_export:
5744         export_rdev(rdev);
5745         return err;
5746 }
5747
5748 static int set_bitmap_file(struct mddev *mddev, int fd)
5749 {
5750         int err;
5751
5752         if (mddev->pers) {
5753                 if (!mddev->pers->quiesce)
5754                         return -EBUSY;
5755                 if (mddev->recovery || mddev->sync_thread)
5756                         return -EBUSY;
5757                 /* we should be able to change the bitmap.. */
5758         }
5759
5760
5761         if (fd >= 0) {
5762                 if (mddev->bitmap)
5763                         return -EEXIST; /* cannot add when bitmap is present */
5764                 mddev->bitmap_info.file = fget(fd);
5765
5766                 if (mddev->bitmap_info.file == NULL) {
5767                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5768                                mdname(mddev));
5769                         return -EBADF;
5770                 }
5771
5772                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5773                 if (err) {
5774                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5775                                mdname(mddev));
5776                         fput(mddev->bitmap_info.file);
5777                         mddev->bitmap_info.file = NULL;
5778                         return err;
5779                 }
5780                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5781         } else if (mddev->bitmap == NULL)
5782                 return -ENOENT; /* cannot remove what isn't there */
5783         err = 0;
5784         if (mddev->pers) {
5785                 mddev->pers->quiesce(mddev, 1);
5786                 if (fd >= 0) {
5787                         err = bitmap_create(mddev);
5788                         if (!err)
5789                                 err = bitmap_load(mddev);
5790                 }
5791                 if (fd < 0 || err) {
5792                         bitmap_destroy(mddev);
5793                         fd = -1; /* make sure to put the file */
5794                 }
5795                 mddev->pers->quiesce(mddev, 0);
5796         }
5797         if (fd < 0) {
5798                 if (mddev->bitmap_info.file) {
5799                         restore_bitmap_write_access(mddev->bitmap_info.file);
5800                         fput(mddev->bitmap_info.file);
5801                 }
5802                 mddev->bitmap_info.file = NULL;
5803         }
5804
5805         return err;
5806 }
5807
5808 /*
5809  * set_array_info is used two different ways
5810  * The original usage is when creating a new array.
5811  * In this usage, raid_disks is > 0 and it together with
5812  *  level, size, not_persistent,layout,chunksize determine the
5813  *  shape of the array.
5814  *  This will always create an array with a type-0.90.0 superblock.
5815  * The newer usage is when assembling an array.
5816  *  In this case raid_disks will be 0, and the major_version field is
5817  *  use to determine which style super-blocks are to be found on the devices.
5818  *  The minor and patch _version numbers are also kept incase the
5819  *  super_block handler wishes to interpret them.
5820  */
5821 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5822 {
5823
5824         if (info->raid_disks == 0) {
5825                 /* just setting version number for superblock loading */
5826                 if (info->major_version < 0 ||
5827                     info->major_version >= ARRAY_SIZE(super_types) ||
5828                     super_types[info->major_version].name == NULL) {
5829                         /* maybe try to auto-load a module? */
5830                         printk(KERN_INFO 
5831                                 "md: superblock version %d not known\n",
5832                                 info->major_version);
5833                         return -EINVAL;
5834                 }
5835                 mddev->major_version = info->major_version;
5836                 mddev->minor_version = info->minor_version;
5837                 mddev->patch_version = info->patch_version;
5838                 mddev->persistent = !info->not_persistent;
5839                 /* ensure mddev_put doesn't delete this now that there
5840                  * is some minimal configuration.
5841                  */
5842                 mddev->ctime         = get_seconds();
5843                 return 0;
5844         }
5845         mddev->major_version = MD_MAJOR_VERSION;
5846         mddev->minor_version = MD_MINOR_VERSION;
5847         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5848         mddev->ctime         = get_seconds();
5849
5850         mddev->level         = info->level;
5851         mddev->clevel[0]     = 0;
5852         mddev->dev_sectors   = 2 * (sector_t)info->size;
5853         mddev->raid_disks    = info->raid_disks;
5854         /* don't set md_minor, it is determined by which /dev/md* was
5855          * openned
5856          */
5857         if (info->state & (1<<MD_SB_CLEAN))
5858                 mddev->recovery_cp = MaxSector;
5859         else
5860                 mddev->recovery_cp = 0;
5861         mddev->persistent    = ! info->not_persistent;
5862         mddev->external      = 0;
5863
5864         mddev->layout        = info->layout;
5865         mddev->chunk_sectors = info->chunk_size >> 9;
5866
5867         mddev->max_disks     = MD_SB_DISKS;
5868
5869         if (mddev->persistent)
5870                 mddev->flags         = 0;
5871         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5872
5873         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5874         mddev->bitmap_info.offset = 0;
5875
5876         mddev->reshape_position = MaxSector;
5877
5878         /*
5879          * Generate a 128 bit UUID
5880          */
5881         get_random_bytes(mddev->uuid, 16);
5882
5883         mddev->new_level = mddev->level;
5884         mddev->new_chunk_sectors = mddev->chunk_sectors;
5885         mddev->new_layout = mddev->layout;
5886         mddev->delta_disks = 0;
5887
5888         return 0;
5889 }
5890
5891 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5892 {
5893         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5894
5895         if (mddev->external_size)
5896                 return;
5897
5898         mddev->array_sectors = array_sectors;
5899 }
5900 EXPORT_SYMBOL(md_set_array_sectors);
5901
5902 static int update_size(struct mddev *mddev, sector_t num_sectors)
5903 {
5904         struct md_rdev *rdev;
5905         int rv;
5906         int fit = (num_sectors == 0);
5907
5908         if (mddev->pers->resize == NULL)
5909                 return -EINVAL;
5910         /* The "num_sectors" is the number of sectors of each device that
5911          * is used.  This can only make sense for arrays with redundancy.
5912          * linear and raid0 always use whatever space is available. We can only
5913          * consider changing this number if no resync or reconstruction is
5914          * happening, and if the new size is acceptable. It must fit before the
5915          * sb_start or, if that is <data_offset, it must fit before the size
5916          * of each device.  If num_sectors is zero, we find the largest size
5917          * that fits.
5918          */
5919         if (mddev->sync_thread)
5920                 return -EBUSY;
5921         if (mddev->bitmap)
5922                 /* Sorry, cannot grow a bitmap yet, just remove it,
5923                  * grow, and re-add.
5924                  */
5925                 return -EBUSY;
5926         list_for_each_entry(rdev, &mddev->disks, same_set) {
5927                 sector_t avail = rdev->sectors;
5928
5929                 if (fit && (num_sectors == 0 || num_sectors > avail))
5930                         num_sectors = avail;
5931                 if (avail < num_sectors)
5932                         return -ENOSPC;
5933         }
5934         rv = mddev->pers->resize(mddev, num_sectors);
5935         if (!rv)
5936                 revalidate_disk(mddev->gendisk);
5937         return rv;
5938 }
5939
5940 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5941 {
5942         int rv;
5943         /* change the number of raid disks */
5944         if (mddev->pers->check_reshape == NULL)
5945                 return -EINVAL;
5946         if (raid_disks <= 0 ||
5947             (mddev->max_disks && raid_disks >= mddev->max_disks))
5948                 return -EINVAL;
5949         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5950                 return -EBUSY;
5951         mddev->delta_disks = raid_disks - mddev->raid_disks;
5952
5953         rv = mddev->pers->check_reshape(mddev);
5954         if (rv < 0)
5955                 mddev->delta_disks = 0;
5956         return rv;
5957 }
5958
5959
5960 /*
5961  * update_array_info is used to change the configuration of an
5962  * on-line array.
5963  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5964  * fields in the info are checked against the array.
5965  * Any differences that cannot be handled will cause an error.
5966  * Normally, only one change can be managed at a time.
5967  */
5968 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5969 {
5970         int rv = 0;
5971         int cnt = 0;
5972         int state = 0;
5973
5974         /* calculate expected state,ignoring low bits */
5975         if (mddev->bitmap && mddev->bitmap_info.offset)
5976                 state |= (1 << MD_SB_BITMAP_PRESENT);
5977
5978         if (mddev->major_version != info->major_version ||
5979             mddev->minor_version != info->minor_version ||
5980 /*          mddev->patch_version != info->patch_version || */
5981             mddev->ctime         != info->ctime         ||
5982             mddev->level         != info->level         ||
5983 /*          mddev->layout        != info->layout        || */
5984             !mddev->persistent   != info->not_persistent||
5985             mddev->chunk_sectors != info->chunk_size >> 9 ||
5986             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5987             ((state^info->state) & 0xfffffe00)
5988                 )
5989                 return -EINVAL;
5990         /* Check there is only one change */
5991         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5992                 cnt++;
5993         if (mddev->raid_disks != info->raid_disks)
5994                 cnt++;
5995         if (mddev->layout != info->layout)
5996                 cnt++;
5997         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5998                 cnt++;
5999         if (cnt == 0)
6000                 return 0;
6001         if (cnt > 1)
6002                 return -EINVAL;
6003
6004         if (mddev->layout != info->layout) {
6005                 /* Change layout
6006                  * we don't need to do anything at the md level, the
6007                  * personality will take care of it all.
6008                  */
6009                 if (mddev->pers->check_reshape == NULL)
6010                         return -EINVAL;
6011                 else {
6012                         mddev->new_layout = info->layout;
6013                         rv = mddev->pers->check_reshape(mddev);
6014                         if (rv)
6015                                 mddev->new_layout = mddev->layout;
6016                         return rv;
6017                 }
6018         }
6019         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6020                 rv = update_size(mddev, (sector_t)info->size * 2);
6021
6022         if (mddev->raid_disks    != info->raid_disks)
6023                 rv = update_raid_disks(mddev, info->raid_disks);
6024
6025         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6026                 if (mddev->pers->quiesce == NULL)
6027                         return -EINVAL;
6028                 if (mddev->recovery || mddev->sync_thread)
6029                         return -EBUSY;
6030                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6031                         /* add the bitmap */
6032                         if (mddev->bitmap)
6033                                 return -EEXIST;
6034                         if (mddev->bitmap_info.default_offset == 0)
6035                                 return -EINVAL;
6036                         mddev->bitmap_info.offset =
6037                                 mddev->bitmap_info.default_offset;
6038                         mddev->pers->quiesce(mddev, 1);
6039                         rv = bitmap_create(mddev);
6040                         if (!rv)
6041                                 rv = bitmap_load(mddev);
6042                         if (rv)
6043                                 bitmap_destroy(mddev);
6044                         mddev->pers->quiesce(mddev, 0);
6045                 } else {
6046                         /* remove the bitmap */
6047                         if (!mddev->bitmap)
6048                                 return -ENOENT;
6049                         if (mddev->bitmap->file)
6050                                 return -EINVAL;
6051                         mddev->pers->quiesce(mddev, 1);
6052                         bitmap_destroy(mddev);
6053                         mddev->pers->quiesce(mddev, 0);
6054                         mddev->bitmap_info.offset = 0;
6055                 }
6056         }
6057         md_update_sb(mddev, 1);
6058         return rv;
6059 }
6060
6061 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6062 {
6063         struct md_rdev *rdev;
6064
6065         if (mddev->pers == NULL)
6066                 return -ENODEV;
6067
6068         rdev = find_rdev(mddev, dev);
6069         if (!rdev)
6070                 return -ENODEV;
6071
6072         md_error(mddev, rdev);
6073         if (!test_bit(Faulty, &rdev->flags))
6074                 return -EBUSY;
6075         return 0;
6076 }
6077
6078 /*
6079  * We have a problem here : there is no easy way to give a CHS
6080  * virtual geometry. We currently pretend that we have a 2 heads
6081  * 4 sectors (with a BIG number of cylinders...). This drives
6082  * dosfs just mad... ;-)
6083  */
6084 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6085 {
6086         struct mddev *mddev = bdev->bd_disk->private_data;
6087
6088         geo->heads = 2;
6089         geo->sectors = 4;
6090         geo->cylinders = mddev->array_sectors / 8;
6091         return 0;
6092 }
6093
6094 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6095                         unsigned int cmd, unsigned long arg)
6096 {
6097         int err = 0;
6098         void __user *argp = (void __user *)arg;
6099         struct mddev *mddev = NULL;
6100         int ro;
6101
6102         switch (cmd) {
6103         case RAID_VERSION:
6104         case GET_ARRAY_INFO:
6105         case GET_DISK_INFO:
6106                 break;
6107         default:
6108                 if (!capable(CAP_SYS_ADMIN))
6109                         return -EACCES;
6110         }
6111
6112         /*
6113          * Commands dealing with the RAID driver but not any
6114          * particular array:
6115          */
6116         switch (cmd)
6117         {
6118                 case RAID_VERSION:
6119                         err = get_version(argp);
6120                         goto done;
6121
6122                 case PRINT_RAID_DEBUG:
6123                         err = 0;
6124                         md_print_devices();
6125                         goto done;
6126
6127 #ifndef MODULE
6128                 case RAID_AUTORUN:
6129                         err = 0;
6130                         autostart_arrays(arg);
6131                         goto done;
6132 #endif
6133                 default:;
6134         }
6135
6136         /*
6137          * Commands creating/starting a new array:
6138          */
6139
6140         mddev = bdev->bd_disk->private_data;
6141
6142         if (!mddev) {
6143                 BUG();
6144                 goto abort;
6145         }
6146
6147         err = mddev_lock(mddev);
6148         if (err) {
6149                 printk(KERN_INFO 
6150                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6151                         err, cmd);
6152                 goto abort;
6153         }
6154
6155         switch (cmd)
6156         {
6157                 case SET_ARRAY_INFO:
6158                         {
6159                                 mdu_array_info_t info;
6160                                 if (!arg)
6161                                         memset(&info, 0, sizeof(info));
6162                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6163                                         err = -EFAULT;
6164                                         goto abort_unlock;
6165                                 }
6166                                 if (mddev->pers) {
6167                                         err = update_array_info(mddev, &info);
6168                                         if (err) {
6169                                                 printk(KERN_WARNING "md: couldn't update"
6170                                                        " array info. %d\n", err);
6171                                                 goto abort_unlock;
6172                                         }
6173                                         goto done_unlock;
6174                                 }
6175                                 if (!list_empty(&mddev->disks)) {
6176                                         printk(KERN_WARNING
6177                                                "md: array %s already has disks!\n",
6178                                                mdname(mddev));
6179                                         err = -EBUSY;
6180                                         goto abort_unlock;
6181                                 }
6182                                 if (mddev->raid_disks) {
6183                                         printk(KERN_WARNING
6184                                                "md: array %s already initialised!\n",
6185                                                mdname(mddev));
6186                                         err = -EBUSY;
6187                                         goto abort_unlock;
6188                                 }
6189                                 err = set_array_info(mddev, &info);
6190                                 if (err) {
6191                                         printk(KERN_WARNING "md: couldn't set"
6192                                                " array info. %d\n", err);
6193                                         goto abort_unlock;
6194                                 }
6195                         }
6196                         goto done_unlock;
6197
6198                 default:;
6199         }
6200
6201         /*
6202          * Commands querying/configuring an existing array:
6203          */
6204         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6205          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6206         if ((!mddev->raid_disks && !mddev->external)
6207             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6208             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6209             && cmd != GET_BITMAP_FILE) {
6210                 err = -ENODEV;
6211                 goto abort_unlock;
6212         }
6213
6214         /*
6215          * Commands even a read-only array can execute:
6216          */
6217         switch (cmd)
6218         {
6219                 case GET_ARRAY_INFO:
6220                         err = get_array_info(mddev, argp);
6221                         goto done_unlock;
6222
6223                 case GET_BITMAP_FILE:
6224                         err = get_bitmap_file(mddev, argp);
6225                         goto done_unlock;
6226
6227                 case GET_DISK_INFO:
6228                         err = get_disk_info(mddev, argp);
6229                         goto done_unlock;
6230
6231                 case RESTART_ARRAY_RW:
6232                         err = restart_array(mddev);
6233                         goto done_unlock;
6234
6235                 case STOP_ARRAY:
6236                         err = do_md_stop(mddev, 0, 1);
6237                         goto done_unlock;
6238
6239                 case STOP_ARRAY_RO:
6240                         err = md_set_readonly(mddev, 1);
6241                         goto done_unlock;
6242
6243                 case BLKROSET:
6244                         if (get_user(ro, (int __user *)(arg))) {
6245                                 err = -EFAULT;
6246                                 goto done_unlock;
6247                         }
6248                         err = -EINVAL;
6249
6250                         /* if the bdev is going readonly the value of mddev->ro
6251                          * does not matter, no writes are coming
6252                          */
6253                         if (ro)
6254                                 goto done_unlock;
6255
6256                         /* are we are already prepared for writes? */
6257                         if (mddev->ro != 1)
6258                                 goto done_unlock;
6259
6260                         /* transitioning to readauto need only happen for
6261                          * arrays that call md_write_start
6262                          */
6263                         if (mddev->pers) {
6264                                 err = restart_array(mddev);
6265                                 if (err == 0) {
6266                                         mddev->ro = 2;
6267                                         set_disk_ro(mddev->gendisk, 0);
6268                                 }
6269                         }
6270                         goto done_unlock;
6271         }
6272
6273         /*
6274          * The remaining ioctls are changing the state of the
6275          * superblock, so we do not allow them on read-only arrays.
6276          * However non-MD ioctls (e.g. get-size) will still come through
6277          * here and hit the 'default' below, so only disallow
6278          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6279          */
6280         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6281                 if (mddev->ro == 2) {
6282                         mddev->ro = 0;
6283                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6284                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6285                         md_wakeup_thread(mddev->thread);
6286                 } else {
6287                         err = -EROFS;
6288                         goto abort_unlock;
6289                 }
6290         }
6291
6292         switch (cmd)
6293         {
6294                 case ADD_NEW_DISK:
6295                 {
6296                         mdu_disk_info_t info;
6297                         if (copy_from_user(&info, argp, sizeof(info)))
6298                                 err = -EFAULT;
6299                         else
6300                                 err = add_new_disk(mddev, &info);
6301                         goto done_unlock;
6302                 }
6303
6304                 case HOT_REMOVE_DISK:
6305                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6306                         goto done_unlock;
6307
6308                 case HOT_ADD_DISK:
6309                         err = hot_add_disk(mddev, new_decode_dev(arg));
6310                         goto done_unlock;
6311
6312                 case SET_DISK_FAULTY:
6313                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6314                         goto done_unlock;
6315
6316                 case RUN_ARRAY:
6317                         err = do_md_run(mddev);
6318                         goto done_unlock;
6319
6320                 case SET_BITMAP_FILE:
6321                         err = set_bitmap_file(mddev, (int)arg);
6322                         goto done_unlock;
6323
6324                 default:
6325                         err = -EINVAL;
6326                         goto abort_unlock;
6327         }
6328
6329 done_unlock:
6330 abort_unlock:
6331         if (mddev->hold_active == UNTIL_IOCTL &&
6332             err != -EINVAL)
6333                 mddev->hold_active = 0;
6334         mddev_unlock(mddev);
6335
6336         return err;
6337 done:
6338         if (err)
6339                 MD_BUG();
6340 abort:
6341         return err;
6342 }
6343 #ifdef CONFIG_COMPAT
6344 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6345                     unsigned int cmd, unsigned long arg)
6346 {
6347         switch (cmd) {
6348         case HOT_REMOVE_DISK:
6349         case HOT_ADD_DISK:
6350         case SET_DISK_FAULTY:
6351         case SET_BITMAP_FILE:
6352                 /* These take in integer arg, do not convert */
6353                 break;
6354         default:
6355                 arg = (unsigned long)compat_ptr(arg);
6356                 break;
6357         }
6358
6359         return md_ioctl(bdev, mode, cmd, arg);
6360 }
6361 #endif /* CONFIG_COMPAT */
6362
6363 static int md_open(struct block_device *bdev, fmode_t mode)
6364 {
6365         /*
6366          * Succeed if we can lock the mddev, which confirms that
6367          * it isn't being stopped right now.
6368          */
6369         struct mddev *mddev = mddev_find(bdev->bd_dev);
6370         int err;
6371
6372         if (mddev->gendisk != bdev->bd_disk) {
6373                 /* we are racing with mddev_put which is discarding this
6374                  * bd_disk.
6375                  */
6376                 mddev_put(mddev);
6377                 /* Wait until bdev->bd_disk is definitely gone */
6378                 flush_workqueue(md_misc_wq);
6379                 /* Then retry the open from the top */
6380                 return -ERESTARTSYS;
6381         }
6382         BUG_ON(mddev != bdev->bd_disk->private_data);
6383
6384         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6385                 goto out;
6386
6387         err = 0;
6388         atomic_inc(&mddev->openers);
6389         mutex_unlock(&mddev->open_mutex);
6390
6391         check_disk_change(bdev);
6392  out:
6393         return err;
6394 }
6395
6396 static int md_release(struct gendisk *disk, fmode_t mode)
6397 {
6398         struct mddev *mddev = disk->private_data;
6399
6400         BUG_ON(!mddev);
6401         atomic_dec(&mddev->openers);
6402         mddev_put(mddev);
6403
6404         return 0;
6405 }
6406
6407 static int md_media_changed(struct gendisk *disk)
6408 {
6409         struct mddev *mddev = disk->private_data;
6410
6411         return mddev->changed;
6412 }
6413
6414 static int md_revalidate(struct gendisk *disk)
6415 {
6416         struct mddev *mddev = disk->private_data;
6417
6418         mddev->changed = 0;
6419         return 0;
6420 }
6421 static const struct block_device_operations md_fops =
6422 {
6423         .owner          = THIS_MODULE,
6424         .open           = md_open,
6425         .release        = md_release,
6426         .ioctl          = md_ioctl,
6427 #ifdef CONFIG_COMPAT
6428         .compat_ioctl   = md_compat_ioctl,
6429 #endif
6430         .getgeo         = md_getgeo,
6431         .media_changed  = md_media_changed,
6432         .revalidate_disk= md_revalidate,
6433 };
6434
6435 static int md_thread(void * arg)
6436 {
6437         struct md_thread *thread = arg;
6438
6439         /*
6440          * md_thread is a 'system-thread', it's priority should be very
6441          * high. We avoid resource deadlocks individually in each
6442          * raid personality. (RAID5 does preallocation) We also use RR and
6443          * the very same RT priority as kswapd, thus we will never get
6444          * into a priority inversion deadlock.
6445          *
6446          * we definitely have to have equal or higher priority than
6447          * bdflush, otherwise bdflush will deadlock if there are too
6448          * many dirty RAID5 blocks.
6449          */
6450
6451         allow_signal(SIGKILL);
6452         while (!kthread_should_stop()) {
6453
6454                 /* We need to wait INTERRUPTIBLE so that
6455                  * we don't add to the load-average.
6456                  * That means we need to be sure no signals are
6457                  * pending
6458                  */
6459                 if (signal_pending(current))
6460                         flush_signals(current);
6461
6462                 wait_event_interruptible_timeout
6463                         (thread->wqueue,
6464                          test_bit(THREAD_WAKEUP, &thread->flags)
6465                          || kthread_should_stop(),
6466                          thread->timeout);
6467
6468                 clear_bit(THREAD_WAKEUP, &thread->flags);
6469                 if (!kthread_should_stop())
6470                         thread->run(thread->mddev);
6471         }
6472
6473         return 0;
6474 }
6475
6476 void md_wakeup_thread(struct md_thread *thread)
6477 {
6478         if (thread) {
6479                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6480                 set_bit(THREAD_WAKEUP, &thread->flags);
6481                 wake_up(&thread->wqueue);
6482         }
6483 }
6484
6485 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6486                                  const char *name)
6487 {
6488         struct md_thread *thread;
6489
6490         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6491         if (!thread)
6492                 return NULL;
6493
6494         init_waitqueue_head(&thread->wqueue);
6495
6496         thread->run = run;
6497         thread->mddev = mddev;
6498         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6499         thread->tsk = kthread_run(md_thread, thread,
6500                                   "%s_%s",
6501                                   mdname(thread->mddev),
6502                                   name ?: mddev->pers->name);
6503         if (IS_ERR(thread->tsk)) {
6504                 kfree(thread);
6505                 return NULL;
6506         }
6507         return thread;
6508 }
6509
6510 void md_unregister_thread(struct md_thread **threadp)
6511 {
6512         struct md_thread *thread = *threadp;
6513         if (!thread)
6514                 return;
6515         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6516         /* Locking ensures that mddev_unlock does not wake_up a
6517          * non-existent thread
6518          */
6519         spin_lock(&pers_lock);
6520         *threadp = NULL;
6521         spin_unlock(&pers_lock);
6522
6523         kthread_stop(thread->tsk);
6524         kfree(thread);
6525 }
6526
6527 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6528 {
6529         if (!mddev) {
6530                 MD_BUG();
6531                 return;
6532         }
6533
6534         if (!rdev || test_bit(Faulty, &rdev->flags))
6535                 return;
6536
6537         if (!mddev->pers || !mddev->pers->error_handler)
6538                 return;
6539         mddev->pers->error_handler(mddev,rdev);
6540         if (mddev->degraded)
6541                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6542         sysfs_notify_dirent_safe(rdev->sysfs_state);
6543         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6544         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6545         md_wakeup_thread(mddev->thread);
6546         if (mddev->event_work.func)
6547                 queue_work(md_misc_wq, &mddev->event_work);
6548         md_new_event_inintr(mddev);
6549 }
6550
6551 /* seq_file implementation /proc/mdstat */
6552
6553 static void status_unused(struct seq_file *seq)
6554 {
6555         int i = 0;
6556         struct md_rdev *rdev;
6557
6558         seq_printf(seq, "unused devices: ");
6559
6560         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6561                 char b[BDEVNAME_SIZE];
6562                 i++;
6563                 seq_printf(seq, "%s ",
6564                               bdevname(rdev->bdev,b));
6565         }
6566         if (!i)
6567                 seq_printf(seq, "<none>");
6568
6569         seq_printf(seq, "\n");
6570 }
6571
6572
6573 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6574 {
6575         sector_t max_sectors, resync, res;
6576         unsigned long dt, db;
6577         sector_t rt;
6578         int scale;
6579         unsigned int per_milli;
6580
6581         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6582
6583         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6584                 max_sectors = mddev->resync_max_sectors;
6585         else
6586                 max_sectors = mddev->dev_sectors;
6587
6588         /*
6589          * Should not happen.
6590          */
6591         if (!max_sectors) {
6592                 MD_BUG();
6593                 return;
6594         }
6595         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6596          * in a sector_t, and (max_sectors>>scale) will fit in a
6597          * u32, as those are the requirements for sector_div.
6598          * Thus 'scale' must be at least 10
6599          */
6600         scale = 10;
6601         if (sizeof(sector_t) > sizeof(unsigned long)) {
6602                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6603                         scale++;
6604         }
6605         res = (resync>>scale)*1000;
6606         sector_div(res, (u32)((max_sectors>>scale)+1));
6607
6608         per_milli = res;
6609         {
6610                 int i, x = per_milli/50, y = 20-x;
6611                 seq_printf(seq, "[");
6612                 for (i = 0; i < x; i++)
6613                         seq_printf(seq, "=");
6614                 seq_printf(seq, ">");
6615                 for (i = 0; i < y; i++)
6616                         seq_printf(seq, ".");
6617                 seq_printf(seq, "] ");
6618         }
6619         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6620                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6621                     "reshape" :
6622                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6623                      "check" :
6624                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6625                       "resync" : "recovery"))),
6626                    per_milli/10, per_milli % 10,
6627                    (unsigned long long) resync/2,
6628                    (unsigned long long) max_sectors/2);
6629
6630         /*
6631          * dt: time from mark until now
6632          * db: blocks written from mark until now
6633          * rt: remaining time
6634          *
6635          * rt is a sector_t, so could be 32bit or 64bit.
6636          * So we divide before multiply in case it is 32bit and close
6637          * to the limit.
6638          * We scale the divisor (db) by 32 to avoid losing precision
6639          * near the end of resync when the number of remaining sectors
6640          * is close to 'db'.
6641          * We then divide rt by 32 after multiplying by db to compensate.
6642          * The '+1' avoids division by zero if db is very small.
6643          */
6644         dt = ((jiffies - mddev->resync_mark) / HZ);
6645         if (!dt) dt++;
6646         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6647                 - mddev->resync_mark_cnt;
6648
6649         rt = max_sectors - resync;    /* number of remaining sectors */
6650         sector_div(rt, db/32+1);
6651         rt *= dt;
6652         rt >>= 5;
6653
6654         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6655                    ((unsigned long)rt % 60)/6);
6656
6657         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6658 }
6659
6660 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6661 {
6662         struct list_head *tmp;
6663         loff_t l = *pos;
6664         struct mddev *mddev;
6665
6666         if (l >= 0x10000)
6667                 return NULL;
6668         if (!l--)
6669                 /* header */
6670                 return (void*)1;
6671
6672         spin_lock(&all_mddevs_lock);
6673         list_for_each(tmp,&all_mddevs)
6674                 if (!l--) {
6675                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6676                         mddev_get(mddev);
6677                         spin_unlock(&all_mddevs_lock);
6678                         return mddev;
6679                 }
6680         spin_unlock(&all_mddevs_lock);
6681         if (!l--)
6682                 return (void*)2;/* tail */
6683         return NULL;
6684 }
6685
6686 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6687 {
6688         struct list_head *tmp;
6689         struct mddev *next_mddev, *mddev = v;
6690         
6691         ++*pos;
6692         if (v == (void*)2)
6693                 return NULL;
6694
6695         spin_lock(&all_mddevs_lock);
6696         if (v == (void*)1)
6697                 tmp = all_mddevs.next;
6698         else
6699                 tmp = mddev->all_mddevs.next;
6700         if (tmp != &all_mddevs)
6701                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6702         else {
6703                 next_mddev = (void*)2;
6704                 *pos = 0x10000;
6705         }               
6706         spin_unlock(&all_mddevs_lock);
6707
6708         if (v != (void*)1)
6709                 mddev_put(mddev);
6710         return next_mddev;
6711
6712 }
6713
6714 static void md_seq_stop(struct seq_file *seq, void *v)
6715 {
6716         struct mddev *mddev = v;
6717
6718         if (mddev && v != (void*)1 && v != (void*)2)
6719                 mddev_put(mddev);
6720 }
6721
6722 static int md_seq_show(struct seq_file *seq, void *v)
6723 {
6724         struct mddev *mddev = v;
6725         sector_t sectors;
6726         struct md_rdev *rdev;
6727         struct bitmap *bitmap;
6728
6729         if (v == (void*)1) {
6730                 struct md_personality *pers;
6731                 seq_printf(seq, "Personalities : ");
6732                 spin_lock(&pers_lock);
6733                 list_for_each_entry(pers, &pers_list, list)
6734                         seq_printf(seq, "[%s] ", pers->name);
6735
6736                 spin_unlock(&pers_lock);
6737                 seq_printf(seq, "\n");
6738                 seq->poll_event = atomic_read(&md_event_count);
6739                 return 0;
6740         }
6741         if (v == (void*)2) {
6742                 status_unused(seq);
6743                 return 0;
6744         }
6745
6746         if (mddev_lock(mddev) < 0)
6747                 return -EINTR;
6748
6749         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6750                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6751                                                 mddev->pers ? "" : "in");
6752                 if (mddev->pers) {
6753                         if (mddev->ro==1)
6754                                 seq_printf(seq, " (read-only)");
6755                         if (mddev->ro==2)
6756                                 seq_printf(seq, " (auto-read-only)");
6757                         seq_printf(seq, " %s", mddev->pers->name);
6758                 }
6759
6760                 sectors = 0;
6761                 list_for_each_entry(rdev, &mddev->disks, same_set) {
6762                         char b[BDEVNAME_SIZE];
6763                         seq_printf(seq, " %s[%d]",
6764                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6765                         if (test_bit(WriteMostly, &rdev->flags))
6766                                 seq_printf(seq, "(W)");
6767                         if (test_bit(Faulty, &rdev->flags)) {
6768                                 seq_printf(seq, "(F)");
6769                                 continue;
6770                         }
6771                         if (rdev->raid_disk < 0)
6772                                 seq_printf(seq, "(S)"); /* spare */
6773                         if (test_bit(Replacement, &rdev->flags))
6774                                 seq_printf(seq, "(R)");
6775                         sectors += rdev->sectors;
6776                 }
6777
6778                 if (!list_empty(&mddev->disks)) {
6779                         if (mddev->pers)
6780                                 seq_printf(seq, "\n      %llu blocks",
6781                                            (unsigned long long)
6782                                            mddev->array_sectors / 2);
6783                         else
6784                                 seq_printf(seq, "\n      %llu blocks",
6785                                            (unsigned long long)sectors / 2);
6786                 }
6787                 if (mddev->persistent) {
6788                         if (mddev->major_version != 0 ||
6789                             mddev->minor_version != 90) {
6790                                 seq_printf(seq," super %d.%d",
6791                                            mddev->major_version,
6792                                            mddev->minor_version);
6793                         }
6794                 } else if (mddev->external)
6795                         seq_printf(seq, " super external:%s",
6796                                    mddev->metadata_type);
6797                 else
6798                         seq_printf(seq, " super non-persistent");
6799
6800                 if (mddev->pers) {
6801                         mddev->pers->status(seq, mddev);
6802                         seq_printf(seq, "\n      ");
6803                         if (mddev->pers->sync_request) {
6804                                 if (mddev->curr_resync > 2) {
6805                                         status_resync(seq, mddev);
6806                                         seq_printf(seq, "\n      ");
6807                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6808                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6809                                 else if (mddev->recovery_cp < MaxSector)
6810                                         seq_printf(seq, "\tresync=PENDING\n      ");
6811                         }
6812                 } else
6813                         seq_printf(seq, "\n       ");
6814
6815                 if ((bitmap = mddev->bitmap)) {
6816                         unsigned long chunk_kb;
6817                         unsigned long flags;
6818                         spin_lock_irqsave(&bitmap->lock, flags);
6819                         chunk_kb = mddev->bitmap_info.chunksize >> 10;
6820                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6821                                 "%lu%s chunk",
6822                                 bitmap->pages - bitmap->missing_pages,
6823                                 bitmap->pages,
6824                                 (bitmap->pages - bitmap->missing_pages)
6825                                         << (PAGE_SHIFT - 10),
6826                                 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6827                                 chunk_kb ? "KB" : "B");
6828                         if (bitmap->file) {
6829                                 seq_printf(seq, ", file: ");
6830                                 seq_path(seq, &bitmap->file->f_path, " \t\n");
6831                         }
6832
6833                         seq_printf(seq, "\n");
6834                         spin_unlock_irqrestore(&bitmap->lock, flags);
6835                 }
6836
6837                 seq_printf(seq, "\n");
6838         }
6839         mddev_unlock(mddev);
6840         
6841         return 0;
6842 }
6843
6844 static const struct seq_operations md_seq_ops = {
6845         .start  = md_seq_start,
6846         .next   = md_seq_next,
6847         .stop   = md_seq_stop,
6848         .show   = md_seq_show,
6849 };
6850
6851 static int md_seq_open(struct inode *inode, struct file *file)
6852 {
6853         struct seq_file *seq;
6854         int error;
6855
6856         error = seq_open(file, &md_seq_ops);
6857         if (error)
6858                 return error;
6859
6860         seq = file->private_data;
6861         seq->poll_event = atomic_read(&md_event_count);
6862         return error;
6863 }
6864
6865 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6866 {
6867         struct seq_file *seq = filp->private_data;
6868         int mask;
6869
6870         poll_wait(filp, &md_event_waiters, wait);
6871
6872         /* always allow read */
6873         mask = POLLIN | POLLRDNORM;
6874
6875         if (seq->poll_event != atomic_read(&md_event_count))
6876                 mask |= POLLERR | POLLPRI;
6877         return mask;
6878 }
6879
6880 static const struct file_operations md_seq_fops = {
6881         .owner          = THIS_MODULE,
6882         .open           = md_seq_open,
6883         .read           = seq_read,
6884         .llseek         = seq_lseek,
6885         .release        = seq_release_private,
6886         .poll           = mdstat_poll,
6887 };
6888
6889 int register_md_personality(struct md_personality *p)
6890 {
6891         spin_lock(&pers_lock);
6892         list_add_tail(&p->list, &pers_list);
6893         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6894         spin_unlock(&pers_lock);
6895         return 0;
6896 }
6897
6898 int unregister_md_personality(struct md_personality *p)
6899 {
6900         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6901         spin_lock(&pers_lock);
6902         list_del_init(&p->list);
6903         spin_unlock(&pers_lock);
6904         return 0;
6905 }
6906
6907 static int is_mddev_idle(struct mddev *mddev, int init)
6908 {
6909         struct md_rdev * rdev;
6910         int idle;
6911         int curr_events;
6912
6913         idle = 1;
6914         rcu_read_lock();
6915         rdev_for_each_rcu(rdev, mddev) {
6916                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6917                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6918                               (int)part_stat_read(&disk->part0, sectors[1]) -
6919                               atomic_read(&disk->sync_io);
6920                 /* sync IO will cause sync_io to increase before the disk_stats
6921                  * as sync_io is counted when a request starts, and
6922                  * disk_stats is counted when it completes.
6923                  * So resync activity will cause curr_events to be smaller than
6924                  * when there was no such activity.
6925                  * non-sync IO will cause disk_stat to increase without
6926                  * increasing sync_io so curr_events will (eventually)
6927                  * be larger than it was before.  Once it becomes
6928                  * substantially larger, the test below will cause
6929                  * the array to appear non-idle, and resync will slow
6930                  * down.
6931                  * If there is a lot of outstanding resync activity when
6932                  * we set last_event to curr_events, then all that activity
6933                  * completing might cause the array to appear non-idle
6934                  * and resync will be slowed down even though there might
6935                  * not have been non-resync activity.  This will only
6936                  * happen once though.  'last_events' will soon reflect
6937                  * the state where there is little or no outstanding
6938                  * resync requests, and further resync activity will
6939                  * always make curr_events less than last_events.
6940                  *
6941                  */
6942                 if (init || curr_events - rdev->last_events > 64) {
6943                         rdev->last_events = curr_events;
6944                         idle = 0;
6945                 }
6946         }
6947         rcu_read_unlock();
6948         return idle;
6949 }
6950
6951 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6952 {
6953         /* another "blocks" (512byte) blocks have been synced */
6954         atomic_sub(blocks, &mddev->recovery_active);
6955         wake_up(&mddev->recovery_wait);
6956         if (!ok) {
6957                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6958                 md_wakeup_thread(mddev->thread);
6959                 // stop recovery, signal do_sync ....
6960         }
6961 }
6962
6963
6964 /* md_write_start(mddev, bi)
6965  * If we need to update some array metadata (e.g. 'active' flag
6966  * in superblock) before writing, schedule a superblock update
6967  * and wait for it to complete.
6968  */
6969 void md_write_start(struct mddev *mddev, struct bio *bi)
6970 {
6971         int did_change = 0;
6972         if (bio_data_dir(bi) != WRITE)
6973                 return;
6974
6975         BUG_ON(mddev->ro == 1);
6976         if (mddev->ro == 2) {
6977                 /* need to switch to read/write */
6978                 mddev->ro = 0;
6979                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6980                 md_wakeup_thread(mddev->thread);
6981                 md_wakeup_thread(mddev->sync_thread);
6982                 did_change = 1;
6983         }
6984         atomic_inc(&mddev->writes_pending);
6985         if (mddev->safemode == 1)
6986                 mddev->safemode = 0;
6987         if (mddev->in_sync) {
6988                 spin_lock_irq(&mddev->write_lock);
6989                 if (mddev->in_sync) {
6990                         mddev->in_sync = 0;
6991                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6992                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6993                         md_wakeup_thread(mddev->thread);
6994                         did_change = 1;
6995                 }
6996                 spin_unlock_irq(&mddev->write_lock);
6997         }
6998         if (did_change)
6999                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7000         wait_event(mddev->sb_wait,
7001                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7002 }
7003
7004 void md_write_end(struct mddev *mddev)
7005 {
7006         if (atomic_dec_and_test(&mddev->writes_pending)) {
7007                 if (mddev->safemode == 2)
7008                         md_wakeup_thread(mddev->thread);
7009                 else if (mddev->safemode_delay)
7010                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7011         }
7012 }
7013
7014 /* md_allow_write(mddev)
7015  * Calling this ensures that the array is marked 'active' so that writes
7016  * may proceed without blocking.  It is important to call this before
7017  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7018  * Must be called with mddev_lock held.
7019  *
7020  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7021  * is dropped, so return -EAGAIN after notifying userspace.
7022  */
7023 int md_allow_write(struct mddev *mddev)
7024 {
7025         if (!mddev->pers)
7026                 return 0;
7027         if (mddev->ro)
7028                 return 0;
7029         if (!mddev->pers->sync_request)
7030                 return 0;
7031
7032         spin_lock_irq(&mddev->write_lock);
7033         if (mddev->in_sync) {
7034                 mddev->in_sync = 0;
7035                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7036                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7037                 if (mddev->safemode_delay &&
7038                     mddev->safemode == 0)
7039                         mddev->safemode = 1;
7040                 spin_unlock_irq(&mddev->write_lock);
7041                 md_update_sb(mddev, 0);
7042                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7043         } else
7044                 spin_unlock_irq(&mddev->write_lock);
7045
7046         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7047                 return -EAGAIN;
7048         else
7049                 return 0;
7050 }
7051 EXPORT_SYMBOL_GPL(md_allow_write);
7052
7053 #define SYNC_MARKS      10
7054 #define SYNC_MARK_STEP  (3*HZ)
7055 void md_do_sync(struct mddev *mddev)
7056 {
7057         struct mddev *mddev2;
7058         unsigned int currspeed = 0,
7059                  window;
7060         sector_t max_sectors,j, io_sectors;
7061         unsigned long mark[SYNC_MARKS];
7062         sector_t mark_cnt[SYNC_MARKS];
7063         int last_mark,m;
7064         struct list_head *tmp;
7065         sector_t last_check;
7066         int skipped = 0;
7067         struct md_rdev *rdev;
7068         char *desc;
7069
7070         /* just incase thread restarts... */
7071         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7072                 return;
7073         if (mddev->ro) /* never try to sync a read-only array */
7074                 return;
7075
7076         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7077                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7078                         desc = "data-check";
7079                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7080                         desc = "requested-resync";
7081                 else
7082                         desc = "resync";
7083         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7084                 desc = "reshape";
7085         else
7086                 desc = "recovery";
7087
7088         /* we overload curr_resync somewhat here.
7089          * 0 == not engaged in resync at all
7090          * 2 == checking that there is no conflict with another sync
7091          * 1 == like 2, but have yielded to allow conflicting resync to
7092          *              commense
7093          * other == active in resync - this many blocks
7094          *
7095          * Before starting a resync we must have set curr_resync to
7096          * 2, and then checked that every "conflicting" array has curr_resync
7097          * less than ours.  When we find one that is the same or higher
7098          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7099          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7100          * This will mean we have to start checking from the beginning again.
7101          *
7102          */
7103
7104         do {
7105                 mddev->curr_resync = 2;
7106
7107         try_again:
7108                 if (kthread_should_stop())
7109                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7110
7111                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7112                         goto skip;
7113                 for_each_mddev(mddev2, tmp) {
7114                         if (mddev2 == mddev)
7115                                 continue;
7116                         if (!mddev->parallel_resync
7117                         &&  mddev2->curr_resync
7118                         &&  match_mddev_units(mddev, mddev2)) {
7119                                 DEFINE_WAIT(wq);
7120                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7121                                         /* arbitrarily yield */
7122                                         mddev->curr_resync = 1;
7123                                         wake_up(&resync_wait);
7124                                 }
7125                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7126                                         /* no need to wait here, we can wait the next
7127                                          * time 'round when curr_resync == 2
7128                                          */
7129                                         continue;
7130                                 /* We need to wait 'interruptible' so as not to
7131                                  * contribute to the load average, and not to
7132                                  * be caught by 'softlockup'
7133                                  */
7134                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7135                                 if (!kthread_should_stop() &&
7136                                     mddev2->curr_resync >= mddev->curr_resync) {
7137                                         printk(KERN_INFO "md: delaying %s of %s"
7138                                                " until %s has finished (they"
7139                                                " share one or more physical units)\n",
7140                                                desc, mdname(mddev), mdname(mddev2));
7141                                         mddev_put(mddev2);
7142                                         if (signal_pending(current))
7143                                                 flush_signals(current);
7144                                         schedule();
7145                                         finish_wait(&resync_wait, &wq);
7146                                         goto try_again;
7147                                 }
7148                                 finish_wait(&resync_wait, &wq);
7149                         }
7150                 }
7151         } while (mddev->curr_resync < 2);
7152
7153         j = 0;
7154         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7155                 /* resync follows the size requested by the personality,
7156                  * which defaults to physical size, but can be virtual size
7157                  */
7158                 max_sectors = mddev->resync_max_sectors;
7159                 mddev->resync_mismatches = 0;
7160                 /* we don't use the checkpoint if there's a bitmap */
7161                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7162                         j = mddev->resync_min;
7163                 else if (!mddev->bitmap)
7164                         j = mddev->recovery_cp;
7165
7166         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7167                 max_sectors = mddev->dev_sectors;
7168         else {
7169                 /* recovery follows the physical size of devices */
7170                 max_sectors = mddev->dev_sectors;
7171                 j = MaxSector;
7172                 rcu_read_lock();
7173                 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7174                         if (rdev->raid_disk >= 0 &&
7175                             !test_bit(Faulty, &rdev->flags) &&
7176                             !test_bit(In_sync, &rdev->flags) &&
7177                             rdev->recovery_offset < j)
7178                                 j = rdev->recovery_offset;
7179                 rcu_read_unlock();
7180         }
7181
7182         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7183         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7184                 " %d KB/sec/disk.\n", speed_min(mddev));
7185         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7186                "(but not more than %d KB/sec) for %s.\n",
7187                speed_max(mddev), desc);
7188
7189         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7190
7191         io_sectors = 0;
7192         for (m = 0; m < SYNC_MARKS; m++) {
7193                 mark[m] = jiffies;
7194                 mark_cnt[m] = io_sectors;
7195         }
7196         last_mark = 0;
7197         mddev->resync_mark = mark[last_mark];
7198         mddev->resync_mark_cnt = mark_cnt[last_mark];
7199
7200         /*
7201          * Tune reconstruction:
7202          */
7203         window = 32*(PAGE_SIZE/512);
7204         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7205                 window/2, (unsigned long long)max_sectors/2);
7206
7207         atomic_set(&mddev->recovery_active, 0);
7208         last_check = 0;
7209
7210         if (j>2) {
7211                 printk(KERN_INFO 
7212                        "md: resuming %s of %s from checkpoint.\n",
7213                        desc, mdname(mddev));
7214                 mddev->curr_resync = j;
7215         }
7216         mddev->curr_resync_completed = j;
7217
7218         while (j < max_sectors) {
7219                 sector_t sectors;
7220
7221                 skipped = 0;
7222
7223                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7224                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7225                       (mddev->curr_resync - mddev->curr_resync_completed)
7226                       > (max_sectors >> 4)) ||
7227                      (j - mddev->curr_resync_completed)*2
7228                      >= mddev->resync_max - mddev->curr_resync_completed
7229                             )) {
7230                         /* time to update curr_resync_completed */
7231                         wait_event(mddev->recovery_wait,
7232                                    atomic_read(&mddev->recovery_active) == 0);
7233                         mddev->curr_resync_completed = j;
7234                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7235                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7236                 }
7237
7238                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7239                         /* As this condition is controlled by user-space,
7240                          * we can block indefinitely, so use '_interruptible'
7241                          * to avoid triggering warnings.
7242                          */
7243                         flush_signals(current); /* just in case */
7244                         wait_event_interruptible(mddev->recovery_wait,
7245                                                  mddev->resync_max > j
7246                                                  || kthread_should_stop());
7247                 }
7248
7249                 if (kthread_should_stop())
7250                         goto interrupted;
7251
7252                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7253                                                   currspeed < speed_min(mddev));
7254                 if (sectors == 0) {
7255                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7256                         goto out;
7257                 }
7258
7259                 if (!skipped) { /* actual IO requested */
7260                         io_sectors += sectors;
7261                         atomic_add(sectors, &mddev->recovery_active);
7262                 }
7263
7264                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7265                         break;
7266
7267                 j += sectors;
7268                 if (j>1) mddev->curr_resync = j;
7269                 mddev->curr_mark_cnt = io_sectors;
7270                 if (last_check == 0)
7271                         /* this is the earliest that rebuild will be
7272                          * visible in /proc/mdstat
7273                          */
7274                         md_new_event(mddev);
7275
7276                 if (last_check + window > io_sectors || j == max_sectors)
7277                         continue;
7278
7279                 last_check = io_sectors;
7280         repeat:
7281                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7282                         /* step marks */
7283                         int next = (last_mark+1) % SYNC_MARKS;
7284
7285                         mddev->resync_mark = mark[next];
7286                         mddev->resync_mark_cnt = mark_cnt[next];
7287                         mark[next] = jiffies;
7288                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7289                         last_mark = next;
7290                 }
7291
7292
7293                 if (kthread_should_stop())
7294                         goto interrupted;
7295
7296
7297                 /*
7298                  * this loop exits only if either when we are slower than
7299                  * the 'hard' speed limit, or the system was IO-idle for
7300                  * a jiffy.
7301                  * the system might be non-idle CPU-wise, but we only care
7302                  * about not overloading the IO subsystem. (things like an
7303                  * e2fsck being done on the RAID array should execute fast)
7304                  */
7305                 cond_resched();
7306
7307                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7308                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7309
7310                 if (currspeed > speed_min(mddev)) {
7311                         if ((currspeed > speed_max(mddev)) ||
7312                                         !is_mddev_idle(mddev, 0)) {
7313                                 msleep(500);
7314                                 goto repeat;
7315                         }
7316                 }
7317         }
7318         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7319         /*
7320          * this also signals 'finished resyncing' to md_stop
7321          */
7322  out:
7323         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7324
7325         /* tell personality that we are finished */
7326         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7327
7328         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7329             mddev->curr_resync > 2) {
7330                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7331                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7332                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7333                                         printk(KERN_INFO
7334                                                "md: checkpointing %s of %s.\n",
7335                                                desc, mdname(mddev));
7336                                         mddev->recovery_cp = mddev->curr_resync;
7337                                 }
7338                         } else
7339                                 mddev->recovery_cp = MaxSector;
7340                 } else {
7341                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7342                                 mddev->curr_resync = MaxSector;
7343                         rcu_read_lock();
7344                         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7345                                 if (rdev->raid_disk >= 0 &&
7346                                     mddev->delta_disks >= 0 &&
7347                                     !test_bit(Faulty, &rdev->flags) &&
7348                                     !test_bit(In_sync, &rdev->flags) &&
7349                                     rdev->recovery_offset < mddev->curr_resync)
7350                                         rdev->recovery_offset = mddev->curr_resync;
7351                         rcu_read_unlock();
7352                 }
7353         }
7354         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7355
7356  skip:
7357         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7358                 /* We completed so min/max setting can be forgotten if used. */
7359                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7360                         mddev->resync_min = 0;
7361                 mddev->resync_max = MaxSector;
7362         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7363                 mddev->resync_min = mddev->curr_resync_completed;
7364         mddev->curr_resync = 0;
7365         wake_up(&resync_wait);
7366         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7367         md_wakeup_thread(mddev->thread);
7368         return;
7369
7370  interrupted:
7371         /*
7372          * got a signal, exit.
7373          */
7374         printk(KERN_INFO
7375                "md: md_do_sync() got signal ... exiting\n");
7376         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7377         goto out;
7378
7379 }
7380 EXPORT_SYMBOL_GPL(md_do_sync);
7381
7382 static int remove_and_add_spares(struct mddev *mddev)
7383 {
7384         struct md_rdev *rdev;
7385         int spares = 0;
7386         int removed = 0;
7387
7388         mddev->curr_resync_completed = 0;
7389
7390         list_for_each_entry(rdev, &mddev->disks, same_set)
7391                 if (rdev->raid_disk >= 0 &&
7392                     !test_bit(Blocked, &rdev->flags) &&
7393                     (test_bit(Faulty, &rdev->flags) ||
7394                      ! test_bit(In_sync, &rdev->flags)) &&
7395                     atomic_read(&rdev->nr_pending)==0) {
7396                         if (mddev->pers->hot_remove_disk(
7397                                     mddev, rdev) == 0) {
7398                                 sysfs_unlink_rdev(mddev, rdev);
7399                                 rdev->raid_disk = -1;
7400                                 removed++;
7401                         }
7402                 }
7403         if (removed)
7404                 sysfs_notify(&mddev->kobj, NULL,
7405                              "degraded");
7406
7407
7408         list_for_each_entry(rdev, &mddev->disks, same_set) {
7409                 if (rdev->raid_disk >= 0 &&
7410                     !test_bit(In_sync, &rdev->flags) &&
7411                     !test_bit(Faulty, &rdev->flags))
7412                         spares++;
7413                 if (rdev->raid_disk < 0
7414                     && !test_bit(Faulty, &rdev->flags)) {
7415                         rdev->recovery_offset = 0;
7416                         if (mddev->pers->
7417                             hot_add_disk(mddev, rdev) == 0) {
7418                                 if (sysfs_link_rdev(mddev, rdev))
7419                                         /* failure here is OK */;
7420                                 spares++;
7421                                 md_new_event(mddev);
7422                                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7423                         }
7424                 }
7425         }
7426         return spares;
7427 }
7428
7429 static void reap_sync_thread(struct mddev *mddev)
7430 {
7431         struct md_rdev *rdev;
7432
7433         /* resync has finished, collect result */
7434         md_unregister_thread(&mddev->sync_thread);
7435         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7436             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7437                 /* success...*/
7438                 /* activate any spares */
7439                 if (mddev->pers->spare_active(mddev))
7440                         sysfs_notify(&mddev->kobj, NULL,
7441                                      "degraded");
7442         }
7443         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7444             mddev->pers->finish_reshape)
7445                 mddev->pers->finish_reshape(mddev);
7446
7447         /* If array is no-longer degraded, then any saved_raid_disk
7448          * information must be scrapped.  Also if any device is now
7449          * In_sync we must scrape the saved_raid_disk for that device
7450          * do the superblock for an incrementally recovered device
7451          * written out.
7452          */
7453         list_for_each_entry(rdev, &mddev->disks, same_set)
7454                 if (!mddev->degraded ||
7455                     test_bit(In_sync, &rdev->flags))
7456                         rdev->saved_raid_disk = -1;
7457
7458         md_update_sb(mddev, 1);
7459         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7460         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7461         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7462         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7463         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7464         /* flag recovery needed just to double check */
7465         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7466         sysfs_notify_dirent_safe(mddev->sysfs_action);
7467         md_new_event(mddev);
7468         if (mddev->event_work.func)
7469                 queue_work(md_misc_wq, &mddev->event_work);
7470 }
7471
7472 /*
7473  * This routine is regularly called by all per-raid-array threads to
7474  * deal with generic issues like resync and super-block update.
7475  * Raid personalities that don't have a thread (linear/raid0) do not
7476  * need this as they never do any recovery or update the superblock.
7477  *
7478  * It does not do any resync itself, but rather "forks" off other threads
7479  * to do that as needed.
7480  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7481  * "->recovery" and create a thread at ->sync_thread.
7482  * When the thread finishes it sets MD_RECOVERY_DONE
7483  * and wakeups up this thread which will reap the thread and finish up.
7484  * This thread also removes any faulty devices (with nr_pending == 0).
7485  *
7486  * The overall approach is:
7487  *  1/ if the superblock needs updating, update it.
7488  *  2/ If a recovery thread is running, don't do anything else.
7489  *  3/ If recovery has finished, clean up, possibly marking spares active.
7490  *  4/ If there are any faulty devices, remove them.
7491  *  5/ If array is degraded, try to add spares devices
7492  *  6/ If array has spares or is not in-sync, start a resync thread.
7493  */
7494 void md_check_recovery(struct mddev *mddev)
7495 {
7496         if (mddev->suspended)
7497                 return;
7498
7499         if (mddev->bitmap)
7500                 bitmap_daemon_work(mddev);
7501
7502         if (signal_pending(current)) {
7503                 if (mddev->pers->sync_request && !mddev->external) {
7504                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7505                                mdname(mddev));
7506                         mddev->safemode = 2;
7507                 }
7508                 flush_signals(current);
7509         }
7510
7511         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7512                 return;
7513         if ( ! (
7514                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7515                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7516                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7517                 (mddev->external == 0 && mddev->safemode == 1) ||
7518                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7519                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7520                 ))
7521                 return;
7522
7523         if (mddev_trylock(mddev)) {
7524                 int spares = 0;
7525
7526                 if (mddev->ro) {
7527                         /* Only thing we do on a ro array is remove
7528                          * failed devices.
7529                          */
7530                         struct md_rdev *rdev;
7531                         list_for_each_entry(rdev, &mddev->disks, same_set)
7532                                 if (rdev->raid_disk >= 0 &&
7533                                     !test_bit(Blocked, &rdev->flags) &&
7534                                     test_bit(Faulty, &rdev->flags) &&
7535                                     atomic_read(&rdev->nr_pending)==0) {
7536                                         if (mddev->pers->hot_remove_disk(
7537                                                     mddev, rdev) == 0) {
7538                                                 sysfs_unlink_rdev(mddev, rdev);
7539                                                 rdev->raid_disk = -1;
7540                                         }
7541                                 }
7542                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7543                         goto unlock;
7544                 }
7545
7546                 if (!mddev->external) {
7547                         int did_change = 0;
7548                         spin_lock_irq(&mddev->write_lock);
7549                         if (mddev->safemode &&
7550                             !atomic_read(&mddev->writes_pending) &&
7551                             !mddev->in_sync &&
7552                             mddev->recovery_cp == MaxSector) {
7553                                 mddev->in_sync = 1;
7554                                 did_change = 1;
7555                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7556                         }
7557                         if (mddev->safemode == 1)
7558                                 mddev->safemode = 0;
7559                         spin_unlock_irq(&mddev->write_lock);
7560                         if (did_change)
7561                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7562                 }
7563
7564                 if (mddev->flags)
7565                         md_update_sb(mddev, 0);
7566
7567                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7568                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7569                         /* resync/recovery still happening */
7570                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7571                         goto unlock;
7572                 }
7573                 if (mddev->sync_thread) {
7574                         reap_sync_thread(mddev);
7575                         goto unlock;
7576                 }
7577                 /* Set RUNNING before clearing NEEDED to avoid
7578                  * any transients in the value of "sync_action".
7579                  */
7580                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7581                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7582                 /* Clear some bits that don't mean anything, but
7583                  * might be left set
7584                  */
7585                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7586                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7587
7588                 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7589                         goto unlock;
7590                 /* no recovery is running.
7591                  * remove any failed drives, then
7592                  * add spares if possible.
7593                  * Spare are also removed and re-added, to allow
7594                  * the personality to fail the re-add.
7595                  */
7596
7597                 if (mddev->reshape_position != MaxSector) {
7598                         if (mddev->pers->check_reshape == NULL ||
7599                             mddev->pers->check_reshape(mddev) != 0)
7600                                 /* Cannot proceed */
7601                                 goto unlock;
7602                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7603                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7604                 } else if ((spares = remove_and_add_spares(mddev))) {
7605                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7606                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7607                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7608                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7609                 } else if (mddev->recovery_cp < MaxSector) {
7610                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7611                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7612                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7613                         /* nothing to be done ... */
7614                         goto unlock;
7615
7616                 if (mddev->pers->sync_request) {
7617                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7618                                 /* We are adding a device or devices to an array
7619                                  * which has the bitmap stored on all devices.
7620                                  * So make sure all bitmap pages get written
7621                                  */
7622                                 bitmap_write_all(mddev->bitmap);
7623                         }
7624                         mddev->sync_thread = md_register_thread(md_do_sync,
7625                                                                 mddev,
7626                                                                 "resync");
7627                         if (!mddev->sync_thread) {
7628                                 printk(KERN_ERR "%s: could not start resync"
7629                                         " thread...\n", 
7630                                         mdname(mddev));
7631                                 /* leave the spares where they are, it shouldn't hurt */
7632                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7633                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7634                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7635                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7636                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7637                         } else
7638                                 md_wakeup_thread(mddev->sync_thread);
7639                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7640                         md_new_event(mddev);
7641                 }
7642         unlock:
7643                 if (!mddev->sync_thread) {
7644                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7645                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7646                                                &mddev->recovery))
7647                                 if (mddev->sysfs_action)
7648                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7649                 }
7650                 mddev_unlock(mddev);
7651         }
7652 }
7653
7654 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7655 {
7656         sysfs_notify_dirent_safe(rdev->sysfs_state);
7657         wait_event_timeout(rdev->blocked_wait,
7658                            !test_bit(Blocked, &rdev->flags) &&
7659                            !test_bit(BlockedBadBlocks, &rdev->flags),
7660                            msecs_to_jiffies(5000));
7661         rdev_dec_pending(rdev, mddev);
7662 }
7663 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7664
7665
7666 /* Bad block management.
7667  * We can record which blocks on each device are 'bad' and so just
7668  * fail those blocks, or that stripe, rather than the whole device.
7669  * Entries in the bad-block table are 64bits wide.  This comprises:
7670  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7671  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7672  *  A 'shift' can be set so that larger blocks are tracked and
7673  *  consequently larger devices can be covered.
7674  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7675  *
7676  * Locking of the bad-block table uses a seqlock so md_is_badblock
7677  * might need to retry if it is very unlucky.
7678  * We will sometimes want to check for bad blocks in a bi_end_io function,
7679  * so we use the write_seqlock_irq variant.
7680  *
7681  * When looking for a bad block we specify a range and want to
7682  * know if any block in the range is bad.  So we binary-search
7683  * to the last range that starts at-or-before the given endpoint,
7684  * (or "before the sector after the target range")
7685  * then see if it ends after the given start.
7686  * We return
7687  *  0 if there are no known bad blocks in the range
7688  *  1 if there are known bad block which are all acknowledged
7689  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7690  * plus the start/length of the first bad section we overlap.
7691  */
7692 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7693                    sector_t *first_bad, int *bad_sectors)
7694 {
7695         int hi;
7696         int lo = 0;
7697         u64 *p = bb->page;
7698         int rv = 0;
7699         sector_t target = s + sectors;
7700         unsigned seq;
7701
7702         if (bb->shift > 0) {
7703                 /* round the start down, and the end up */
7704                 s >>= bb->shift;
7705                 target += (1<<bb->shift) - 1;
7706                 target >>= bb->shift;
7707                 sectors = target - s;
7708         }
7709         /* 'target' is now the first block after the bad range */
7710
7711 retry:
7712         seq = read_seqbegin(&bb->lock);
7713
7714         hi = bb->count;
7715
7716         /* Binary search between lo and hi for 'target'
7717          * i.e. for the last range that starts before 'target'
7718          */
7719         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7720          * are known not to be the last range before target.
7721          * VARIANT: hi-lo is the number of possible
7722          * ranges, and decreases until it reaches 1
7723          */
7724         while (hi - lo > 1) {
7725                 int mid = (lo + hi) / 2;
7726                 sector_t a = BB_OFFSET(p[mid]);
7727                 if (a < target)
7728                         /* This could still be the one, earlier ranges
7729                          * could not. */
7730                         lo = mid;
7731                 else
7732                         /* This and later ranges are definitely out. */
7733                         hi = mid;
7734         }
7735         /* 'lo' might be the last that started before target, but 'hi' isn't */
7736         if (hi > lo) {
7737                 /* need to check all range that end after 's' to see if
7738                  * any are unacknowledged.
7739                  */
7740                 while (lo >= 0 &&
7741                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7742                         if (BB_OFFSET(p[lo]) < target) {
7743                                 /* starts before the end, and finishes after
7744                                  * the start, so they must overlap
7745                                  */
7746                                 if (rv != -1 && BB_ACK(p[lo]))
7747                                         rv = 1;
7748                                 else
7749                                         rv = -1;
7750                                 *first_bad = BB_OFFSET(p[lo]);
7751                                 *bad_sectors = BB_LEN(p[lo]);
7752                         }
7753                         lo--;
7754                 }
7755         }
7756
7757         if (read_seqretry(&bb->lock, seq))
7758                 goto retry;
7759
7760         return rv;
7761 }
7762 EXPORT_SYMBOL_GPL(md_is_badblock);
7763
7764 /*
7765  * Add a range of bad blocks to the table.
7766  * This might extend the table, or might contract it
7767  * if two adjacent ranges can be merged.
7768  * We binary-search to find the 'insertion' point, then
7769  * decide how best to handle it.
7770  */
7771 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7772                             int acknowledged)
7773 {
7774         u64 *p;
7775         int lo, hi;
7776         int rv = 1;
7777
7778         if (bb->shift < 0)
7779                 /* badblocks are disabled */
7780                 return 0;
7781
7782         if (bb->shift) {
7783                 /* round the start down, and the end up */
7784                 sector_t next = s + sectors;
7785                 s >>= bb->shift;
7786                 next += (1<<bb->shift) - 1;
7787                 next >>= bb->shift;
7788                 sectors = next - s;
7789         }
7790
7791         write_seqlock_irq(&bb->lock);
7792
7793         p = bb->page;
7794         lo = 0;
7795         hi = bb->count;
7796         /* Find the last range that starts at-or-before 's' */
7797         while (hi - lo > 1) {
7798                 int mid = (lo + hi) / 2;
7799                 sector_t a = BB_OFFSET(p[mid]);
7800                 if (a <= s)
7801                         lo = mid;
7802                 else
7803                         hi = mid;
7804         }
7805         if (hi > lo && BB_OFFSET(p[lo]) > s)
7806                 hi = lo;
7807
7808         if (hi > lo) {
7809                 /* we found a range that might merge with the start
7810                  * of our new range
7811                  */
7812                 sector_t a = BB_OFFSET(p[lo]);
7813                 sector_t e = a + BB_LEN(p[lo]);
7814                 int ack = BB_ACK(p[lo]);
7815                 if (e >= s) {
7816                         /* Yes, we can merge with a previous range */
7817                         if (s == a && s + sectors >= e)
7818                                 /* new range covers old */
7819                                 ack = acknowledged;
7820                         else
7821                                 ack = ack && acknowledged;
7822
7823                         if (e < s + sectors)
7824                                 e = s + sectors;
7825                         if (e - a <= BB_MAX_LEN) {
7826                                 p[lo] = BB_MAKE(a, e-a, ack);
7827                                 s = e;
7828                         } else {
7829                                 /* does not all fit in one range,
7830                                  * make p[lo] maximal
7831                                  */
7832                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7833                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7834                                 s = a + BB_MAX_LEN;
7835                         }
7836                         sectors = e - s;
7837                 }
7838         }
7839         if (sectors && hi < bb->count) {
7840                 /* 'hi' points to the first range that starts after 's'.
7841                  * Maybe we can merge with the start of that range */
7842                 sector_t a = BB_OFFSET(p[hi]);
7843                 sector_t e = a + BB_LEN(p[hi]);
7844                 int ack = BB_ACK(p[hi]);
7845                 if (a <= s + sectors) {
7846                         /* merging is possible */
7847                         if (e <= s + sectors) {
7848                                 /* full overlap */
7849                                 e = s + sectors;
7850                                 ack = acknowledged;
7851                         } else
7852                                 ack = ack && acknowledged;
7853
7854                         a = s;
7855                         if (e - a <= BB_MAX_LEN) {
7856                                 p[hi] = BB_MAKE(a, e-a, ack);
7857                                 s = e;
7858                         } else {
7859                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7860                                 s = a + BB_MAX_LEN;
7861                         }
7862                         sectors = e - s;
7863                         lo = hi;
7864                         hi++;
7865                 }
7866         }
7867         if (sectors == 0 && hi < bb->count) {
7868                 /* we might be able to combine lo and hi */
7869                 /* Note: 's' is at the end of 'lo' */
7870                 sector_t a = BB_OFFSET(p[hi]);
7871                 int lolen = BB_LEN(p[lo]);
7872                 int hilen = BB_LEN(p[hi]);
7873                 int newlen = lolen + hilen - (s - a);
7874                 if (s >= a && newlen < BB_MAX_LEN) {
7875                         /* yes, we can combine them */
7876                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7877                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7878                         memmove(p + hi, p + hi + 1,
7879                                 (bb->count - hi - 1) * 8);
7880                         bb->count--;
7881                 }
7882         }
7883         while (sectors) {
7884                 /* didn't merge (it all).
7885                  * Need to add a range just before 'hi' */
7886                 if (bb->count >= MD_MAX_BADBLOCKS) {
7887                         /* No room for more */
7888                         rv = 0;
7889                         break;
7890                 } else {
7891                         int this_sectors = sectors;
7892                         memmove(p + hi + 1, p + hi,
7893                                 (bb->count - hi) * 8);
7894                         bb->count++;
7895
7896                         if (this_sectors > BB_MAX_LEN)
7897                                 this_sectors = BB_MAX_LEN;
7898                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7899                         sectors -= this_sectors;
7900                         s += this_sectors;
7901                 }
7902         }
7903
7904         bb->changed = 1;
7905         if (!acknowledged)
7906                 bb->unacked_exist = 1;
7907         write_sequnlock_irq(&bb->lock);
7908
7909         return rv;
7910 }
7911
7912 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7913                        int acknowledged)
7914 {
7915         int rv = md_set_badblocks(&rdev->badblocks,
7916                                   s + rdev->data_offset, sectors, acknowledged);
7917         if (rv) {
7918                 /* Make sure they get written out promptly */
7919                 sysfs_notify_dirent_safe(rdev->sysfs_state);
7920                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7921                 md_wakeup_thread(rdev->mddev->thread);
7922         }
7923         return rv;
7924 }
7925 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7926
7927 /*
7928  * Remove a range of bad blocks from the table.
7929  * This may involve extending the table if we spilt a region,
7930  * but it must not fail.  So if the table becomes full, we just
7931  * drop the remove request.
7932  */
7933 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7934 {
7935         u64 *p;
7936         int lo, hi;
7937         sector_t target = s + sectors;
7938         int rv = 0;
7939
7940         if (bb->shift > 0) {
7941                 /* When clearing we round the start up and the end down.
7942                  * This should not matter as the shift should align with
7943                  * the block size and no rounding should ever be needed.
7944                  * However it is better the think a block is bad when it
7945                  * isn't than to think a block is not bad when it is.
7946                  */
7947                 s += (1<<bb->shift) - 1;
7948                 s >>= bb->shift;
7949                 target >>= bb->shift;
7950                 sectors = target - s;
7951         }
7952
7953         write_seqlock_irq(&bb->lock);
7954
7955         p = bb->page;
7956         lo = 0;
7957         hi = bb->count;
7958         /* Find the last range that starts before 'target' */
7959         while (hi - lo > 1) {
7960                 int mid = (lo + hi) / 2;
7961                 sector_t a = BB_OFFSET(p[mid]);
7962                 if (a < target)
7963                         lo = mid;
7964                 else
7965                         hi = mid;
7966         }
7967         if (hi > lo) {
7968                 /* p[lo] is the last range that could overlap the
7969                  * current range.  Earlier ranges could also overlap,
7970                  * but only this one can overlap the end of the range.
7971                  */
7972                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7973                         /* Partial overlap, leave the tail of this range */
7974                         int ack = BB_ACK(p[lo]);
7975                         sector_t a = BB_OFFSET(p[lo]);
7976                         sector_t end = a + BB_LEN(p[lo]);
7977
7978                         if (a < s) {
7979                                 /* we need to split this range */
7980                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7981                                         rv = 0;
7982                                         goto out;
7983                                 }
7984                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7985                                 bb->count++;
7986                                 p[lo] = BB_MAKE(a, s-a, ack);
7987                                 lo++;
7988                         }
7989                         p[lo] = BB_MAKE(target, end - target, ack);
7990                         /* there is no longer an overlap */
7991                         hi = lo;
7992                         lo--;
7993                 }
7994                 while (lo >= 0 &&
7995                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7996                         /* This range does overlap */
7997                         if (BB_OFFSET(p[lo]) < s) {
7998                                 /* Keep the early parts of this range. */
7999                                 int ack = BB_ACK(p[lo]);
8000                                 sector_t start = BB_OFFSET(p[lo]);
8001                                 p[lo] = BB_MAKE(start, s - start, ack);
8002                                 /* now low doesn't overlap, so.. */
8003                                 break;
8004                         }
8005                         lo--;
8006                 }
8007                 /* 'lo' is strictly before, 'hi' is strictly after,
8008                  * anything between needs to be discarded
8009                  */
8010                 if (hi - lo > 1) {
8011                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8012                         bb->count -= (hi - lo - 1);
8013                 }
8014         }
8015
8016         bb->changed = 1;
8017 out:
8018         write_sequnlock_irq(&bb->lock);
8019         return rv;
8020 }
8021
8022 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8023 {
8024         return md_clear_badblocks(&rdev->badblocks,
8025                                   s + rdev->data_offset,
8026                                   sectors);
8027 }
8028 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8029
8030 /*
8031  * Acknowledge all bad blocks in a list.
8032  * This only succeeds if ->changed is clear.  It is used by
8033  * in-kernel metadata updates
8034  */
8035 void md_ack_all_badblocks(struct badblocks *bb)
8036 {
8037         if (bb->page == NULL || bb->changed)
8038                 /* no point even trying */
8039                 return;
8040         write_seqlock_irq(&bb->lock);
8041
8042         if (bb->changed == 0) {
8043                 u64 *p = bb->page;
8044                 int i;
8045                 for (i = 0; i < bb->count ; i++) {
8046                         if (!BB_ACK(p[i])) {
8047                                 sector_t start = BB_OFFSET(p[i]);
8048                                 int len = BB_LEN(p[i]);
8049                                 p[i] = BB_MAKE(start, len, 1);
8050                         }
8051                 }
8052                 bb->unacked_exist = 0;
8053         }
8054         write_sequnlock_irq(&bb->lock);
8055 }
8056 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8057
8058 /* sysfs access to bad-blocks list.
8059  * We present two files.
8060  * 'bad-blocks' lists sector numbers and lengths of ranges that
8061  *    are recorded as bad.  The list is truncated to fit within
8062  *    the one-page limit of sysfs.
8063  *    Writing "sector length" to this file adds an acknowledged
8064  *    bad block list.
8065  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8066  *    been acknowledged.  Writing to this file adds bad blocks
8067  *    without acknowledging them.  This is largely for testing.
8068  */
8069
8070 static ssize_t
8071 badblocks_show(struct badblocks *bb, char *page, int unack)
8072 {
8073         size_t len;
8074         int i;
8075         u64 *p = bb->page;
8076         unsigned seq;
8077
8078         if (bb->shift < 0)
8079                 return 0;
8080
8081 retry:
8082         seq = read_seqbegin(&bb->lock);
8083
8084         len = 0;
8085         i = 0;
8086
8087         while (len < PAGE_SIZE && i < bb->count) {
8088                 sector_t s = BB_OFFSET(p[i]);
8089                 unsigned int length = BB_LEN(p[i]);
8090                 int ack = BB_ACK(p[i]);
8091                 i++;
8092
8093                 if (unack && ack)
8094                         continue;
8095
8096                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8097                                 (unsigned long long)s << bb->shift,
8098                                 length << bb->shift);
8099         }
8100         if (unack && len == 0)
8101                 bb->unacked_exist = 0;
8102
8103         if (read_seqretry(&bb->lock, seq))
8104                 goto retry;
8105
8106         return len;
8107 }
8108
8109 #define DO_DEBUG 1
8110
8111 static ssize_t
8112 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8113 {
8114         unsigned long long sector;
8115         int length;
8116         char newline;
8117 #ifdef DO_DEBUG
8118         /* Allow clearing via sysfs *only* for testing/debugging.
8119          * Normally only a successful write may clear a badblock
8120          */
8121         int clear = 0;
8122         if (page[0] == '-') {
8123                 clear = 1;
8124                 page++;
8125         }
8126 #endif /* DO_DEBUG */
8127
8128         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8129         case 3:
8130                 if (newline != '\n')
8131                         return -EINVAL;
8132         case 2:
8133                 if (length <= 0)
8134                         return -EINVAL;
8135                 break;
8136         default:
8137                 return -EINVAL;
8138         }
8139
8140 #ifdef DO_DEBUG
8141         if (clear) {
8142                 md_clear_badblocks(bb, sector, length);
8143                 return len;
8144         }
8145 #endif /* DO_DEBUG */
8146         if (md_set_badblocks(bb, sector, length, !unack))
8147                 return len;
8148         else
8149                 return -ENOSPC;
8150 }
8151
8152 static int md_notify_reboot(struct notifier_block *this,
8153                             unsigned long code, void *x)
8154 {
8155         struct list_head *tmp;
8156         struct mddev *mddev;
8157         int need_delay = 0;
8158
8159         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8160
8161                 printk(KERN_INFO "md: stopping all md devices.\n");
8162
8163                 for_each_mddev(mddev, tmp) {
8164                         if (mddev_trylock(mddev)) {
8165                                 /* Force a switch to readonly even array
8166                                  * appears to still be in use.  Hence
8167                                  * the '100'.
8168                                  */
8169                                 md_set_readonly(mddev, 100);
8170                                 mddev_unlock(mddev);
8171                         }
8172                         need_delay = 1;
8173                 }
8174                 /*
8175                  * certain more exotic SCSI devices are known to be
8176                  * volatile wrt too early system reboots. While the
8177                  * right place to handle this issue is the given
8178                  * driver, we do want to have a safe RAID driver ...
8179                  */
8180                 if (need_delay)
8181                         mdelay(1000*1);
8182         }
8183         return NOTIFY_DONE;
8184 }
8185
8186 static struct notifier_block md_notifier = {
8187         .notifier_call  = md_notify_reboot,
8188         .next           = NULL,
8189         .priority       = INT_MAX, /* before any real devices */
8190 };
8191
8192 static void md_geninit(void)
8193 {
8194         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8195
8196         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8197 }
8198
8199 static int __init md_init(void)
8200 {
8201         int ret = -ENOMEM;
8202
8203         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8204         if (!md_wq)
8205                 goto err_wq;
8206
8207         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8208         if (!md_misc_wq)
8209                 goto err_misc_wq;
8210
8211         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8212                 goto err_md;
8213
8214         if ((ret = register_blkdev(0, "mdp")) < 0)
8215                 goto err_mdp;
8216         mdp_major = ret;
8217
8218         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8219                             md_probe, NULL, NULL);
8220         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8221                             md_probe, NULL, NULL);
8222
8223         register_reboot_notifier(&md_notifier);
8224         raid_table_header = register_sysctl_table(raid_root_table);
8225
8226         md_geninit();
8227         return 0;
8228
8229 err_mdp:
8230         unregister_blkdev(MD_MAJOR, "md");
8231 err_md:
8232         destroy_workqueue(md_misc_wq);
8233 err_misc_wq:
8234         destroy_workqueue(md_wq);
8235 err_wq:
8236         return ret;
8237 }
8238
8239 #ifndef MODULE
8240
8241 /*
8242  * Searches all registered partitions for autorun RAID arrays
8243  * at boot time.
8244  */
8245
8246 static LIST_HEAD(all_detected_devices);
8247 struct detected_devices_node {
8248         struct list_head list;
8249         dev_t dev;
8250 };
8251
8252 void md_autodetect_dev(dev_t dev)
8253 {
8254         struct detected_devices_node *node_detected_dev;
8255
8256         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8257         if (node_detected_dev) {
8258                 node_detected_dev->dev = dev;
8259                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8260         } else {
8261                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8262                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8263         }
8264 }
8265
8266
8267 static void autostart_arrays(int part)
8268 {
8269         struct md_rdev *rdev;
8270         struct detected_devices_node *node_detected_dev;
8271         dev_t dev;
8272         int i_scanned, i_passed;
8273
8274         i_scanned = 0;
8275         i_passed = 0;
8276
8277         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8278
8279         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8280                 i_scanned++;
8281                 node_detected_dev = list_entry(all_detected_devices.next,
8282                                         struct detected_devices_node, list);
8283                 list_del(&node_detected_dev->list);
8284                 dev = node_detected_dev->dev;
8285                 kfree(node_detected_dev);
8286                 rdev = md_import_device(dev,0, 90);
8287                 if (IS_ERR(rdev))
8288                         continue;
8289
8290                 if (test_bit(Faulty, &rdev->flags)) {
8291                         MD_BUG();
8292                         continue;
8293                 }
8294                 set_bit(AutoDetected, &rdev->flags);
8295                 list_add(&rdev->same_set, &pending_raid_disks);
8296                 i_passed++;
8297         }
8298
8299         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8300                                                 i_scanned, i_passed);
8301
8302         autorun_devices(part);
8303 }
8304
8305 #endif /* !MODULE */
8306
8307 static __exit void md_exit(void)
8308 {
8309         struct mddev *mddev;
8310         struct list_head *tmp;
8311
8312         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8313         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8314
8315         unregister_blkdev(MD_MAJOR,"md");
8316         unregister_blkdev(mdp_major, "mdp");
8317         unregister_reboot_notifier(&md_notifier);
8318         unregister_sysctl_table(raid_table_header);
8319         remove_proc_entry("mdstat", NULL);
8320         for_each_mddev(mddev, tmp) {
8321                 export_array(mddev);
8322                 mddev->hold_active = 0;
8323         }
8324         destroy_workqueue(md_misc_wq);
8325         destroy_workqueue(md_wq);
8326 }
8327
8328 subsys_initcall(md_init);
8329 module_exit(md_exit)
8330
8331 static int get_ro(char *buffer, struct kernel_param *kp)
8332 {
8333         return sprintf(buffer, "%d", start_readonly);
8334 }
8335 static int set_ro(const char *val, struct kernel_param *kp)
8336 {
8337         char *e;
8338         int num = simple_strtoul(val, &e, 10);
8339         if (*val && (*e == '\0' || *e == '\n')) {
8340                 start_readonly = num;
8341                 return 0;
8342         }
8343         return -EINVAL;
8344 }
8345
8346 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8347 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8348
8349 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8350
8351 EXPORT_SYMBOL(register_md_personality);
8352 EXPORT_SYMBOL(unregister_md_personality);
8353 EXPORT_SYMBOL(md_error);
8354 EXPORT_SYMBOL(md_done_sync);
8355 EXPORT_SYMBOL(md_write_start);
8356 EXPORT_SYMBOL(md_write_end);
8357 EXPORT_SYMBOL(md_register_thread);
8358 EXPORT_SYMBOL(md_unregister_thread);
8359 EXPORT_SYMBOL(md_wakeup_thread);
8360 EXPORT_SYMBOL(md_check_recovery);
8361 MODULE_LICENSE("GPL");
8362 MODULE_DESCRIPTION("MD RAID framework");
8363 MODULE_ALIAS("md");
8364 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);