Merge tag 'v3.10.30' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154         struct list_head list;
155         struct dm_target *ti;   /* Only set if a pool target is bound */
156
157         struct mapped_device *pool_md;
158         struct block_device *md_dev;
159         struct dm_pool_metadata *pmd;
160
161         dm_block_t low_water_blocks;
162         uint32_t sectors_per_block;
163         int sectors_per_block_shift;
164
165         struct pool_features pf;
166         unsigned low_water_triggered:1; /* A dm event has been sent */
167         unsigned no_free_space:1;       /* A -ENOSPC warning has been issued */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204  * Target context for a pool.
205  */
206 struct pool_c {
207         struct dm_target *ti;
208         struct pool *pool;
209         struct dm_dev *data_dev;
210         struct dm_dev *metadata_dev;
211         struct dm_target_callbacks callbacks;
212
213         dm_block_t low_water_blocks;
214         struct pool_features requested_pf; /* Features requested during table load */
215         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219  * Target context for a thin.
220  */
221 struct thin_c {
222         struct dm_dev *pool_dev;
223         struct dm_dev *origin_dev;
224         dm_thin_id dev_id;
225
226         struct pool *pool;
227         struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233  * wake_worker() is used when new work is queued and when pool_resume is
234  * ready to continue deferred IO processing.
235  */
236 static void wake_worker(struct pool *pool)
237 {
238         queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244                       struct dm_bio_prison_cell **cell_result)
245 {
246         int r;
247         struct dm_bio_prison_cell *cell_prealloc;
248
249         /*
250          * Allocate a cell from the prison's mempool.
251          * This might block but it can't fail.
252          */
253         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256         if (r)
257                 /*
258                  * We reused an old cell; we can get rid of
259                  * the new one.
260                  */
261                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263         return r;
264 }
265
266 static void cell_release(struct pool *pool,
267                          struct dm_bio_prison_cell *cell,
268                          struct bio_list *bios)
269 {
270         dm_cell_release(pool->prison, cell, bios);
271         dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
274 static void cell_release_no_holder(struct pool *pool,
275                                    struct dm_bio_prison_cell *cell,
276                                    struct bio_list *bios)
277 {
278         dm_cell_release_no_holder(pool->prison, cell, bios);
279         dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283                                          struct dm_bio_prison_cell *cell)
284 {
285         struct pool *pool = tc->pool;
286         unsigned long flags;
287
288         spin_lock_irqsave(&pool->lock, flags);
289         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290         spin_unlock_irqrestore(&pool->lock, flags);
291
292         wake_worker(pool);
293 }
294
295 static void cell_error(struct pool *pool,
296                        struct dm_bio_prison_cell *cell)
297 {
298         dm_cell_error(pool->prison, cell);
299         dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305  * A global list of pools that uses a struct mapped_device as a key.
306  */
307 static struct dm_thin_pool_table {
308         struct mutex mutex;
309         struct list_head pools;
310 } dm_thin_pool_table;
311
312 static void pool_table_init(void)
313 {
314         mutex_init(&dm_thin_pool_table.mutex);
315         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
318 static void __pool_table_insert(struct pool *pool)
319 {
320         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321         list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
324 static void __pool_table_remove(struct pool *pool)
325 {
326         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327         list_del(&pool->list);
328 }
329
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332         struct pool *pool = NULL, *tmp;
333
334         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337                 if (tmp->pool_md == md) {
338                         pool = tmp;
339                         break;
340                 }
341         }
342
343         return pool;
344 }
345
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348         struct pool *pool = NULL, *tmp;
349
350         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353                 if (tmp->md_dev == md_dev) {
354                         pool = tmp;
355                         break;
356                 }
357         }
358
359         return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365         struct thin_c *tc;
366         struct dm_deferred_entry *shared_read_entry;
367         struct dm_deferred_entry *all_io_entry;
368         struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373         struct bio *bio;
374         struct bio_list bios;
375
376         bio_list_init(&bios);
377         bio_list_merge(&bios, master);
378         bio_list_init(master);
379
380         while ((bio = bio_list_pop(&bios))) {
381                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383                 if (h->tc == tc)
384                         bio_endio(bio, DM_ENDIO_REQUEUE);
385                 else
386                         bio_list_add(master, bio);
387         }
388 }
389
390 static void requeue_io(struct thin_c *tc)
391 {
392         struct pool *pool = tc->pool;
393         unsigned long flags;
394
395         spin_lock_irqsave(&pool->lock, flags);
396         __requeue_bio_list(tc, &pool->deferred_bios);
397         __requeue_bio_list(tc, &pool->retry_on_resume_list);
398         spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402  * This section of code contains the logic for processing a thin device's IO.
403  * Much of the code depends on pool object resources (lists, workqueues, etc)
404  * but most is exclusively called from the thin target rather than the thin-pool
405  * target.
406  */
407
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410         return pool->sectors_per_block_shift >= 0;
411 }
412
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415         struct pool *pool = tc->pool;
416         sector_t block_nr = bio->bi_sector;
417
418         if (block_size_is_power_of_two(pool))
419                 block_nr >>= pool->sectors_per_block_shift;
420         else
421                 (void) sector_div(block_nr, pool->sectors_per_block);
422
423         return block_nr;
424 }
425
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428         struct pool *pool = tc->pool;
429         sector_t bi_sector = bio->bi_sector;
430
431         bio->bi_bdev = tc->pool_dev->bdev;
432         if (block_size_is_power_of_two(pool))
433                 bio->bi_sector = (block << pool->sectors_per_block_shift) |
434                                 (bi_sector & (pool->sectors_per_block - 1));
435         else
436                 bio->bi_sector = (block * pool->sectors_per_block) +
437                                  sector_div(bi_sector, pool->sectors_per_block);
438 }
439
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442         bio->bi_bdev = tc->origin_dev->bdev;
443 }
444
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448                 dm_thin_changed_this_transaction(tc->td);
449 }
450
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453         struct dm_thin_endio_hook *h;
454
455         if (bio->bi_rw & REQ_DISCARD)
456                 return;
457
458         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464         struct pool *pool = tc->pool;
465         unsigned long flags;
466
467         if (!bio_triggers_commit(tc, bio)) {
468                 generic_make_request(bio);
469                 return;
470         }
471
472         /*
473          * Complete bio with an error if earlier I/O caused changes to
474          * the metadata that can't be committed e.g, due to I/O errors
475          * on the metadata device.
476          */
477         if (dm_thin_aborted_changes(tc->td)) {
478                 bio_io_error(bio);
479                 return;
480         }
481
482         /*
483          * Batch together any bios that trigger commits and then issue a
484          * single commit for them in process_deferred_bios().
485          */
486         spin_lock_irqsave(&pool->lock, flags);
487         bio_list_add(&pool->deferred_flush_bios, bio);
488         spin_unlock_irqrestore(&pool->lock, flags);
489 }
490
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493         remap_to_origin(tc, bio);
494         issue(tc, bio);
495 }
496
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498                             dm_block_t block)
499 {
500         remap(tc, bio, block);
501         issue(tc, bio);
502 }
503
504 /*----------------------------------------------------------------*/
505
506 /*
507  * Bio endio functions.
508  */
509 struct dm_thin_new_mapping {
510         struct list_head list;
511
512         unsigned quiesced:1;
513         unsigned prepared:1;
514         unsigned pass_discard:1;
515         unsigned definitely_not_shared:1;
516
517         struct thin_c *tc;
518         dm_block_t virt_block;
519         dm_block_t data_block;
520         struct dm_bio_prison_cell *cell, *cell2;
521         int err;
522
523         /*
524          * If the bio covers the whole area of a block then we can avoid
525          * zeroing or copying.  Instead this bio is hooked.  The bio will
526          * still be in the cell, so care has to be taken to avoid issuing
527          * the bio twice.
528          */
529         struct bio *bio;
530         bio_end_io_t *saved_bi_end_io;
531 };
532
533 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
534 {
535         struct pool *pool = m->tc->pool;
536
537         if (m->quiesced && m->prepared) {
538                 list_add(&m->list, &pool->prepared_mappings);
539                 wake_worker(pool);
540         }
541 }
542
543 static void copy_complete(int read_err, unsigned long write_err, void *context)
544 {
545         unsigned long flags;
546         struct dm_thin_new_mapping *m = context;
547         struct pool *pool = m->tc->pool;
548
549         m->err = read_err || write_err ? -EIO : 0;
550
551         spin_lock_irqsave(&pool->lock, flags);
552         m->prepared = 1;
553         __maybe_add_mapping(m);
554         spin_unlock_irqrestore(&pool->lock, flags);
555 }
556
557 static void overwrite_endio(struct bio *bio, int err)
558 {
559         unsigned long flags;
560         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
561         struct dm_thin_new_mapping *m = h->overwrite_mapping;
562         struct pool *pool = m->tc->pool;
563
564         m->err = err;
565
566         spin_lock_irqsave(&pool->lock, flags);
567         m->prepared = 1;
568         __maybe_add_mapping(m);
569         spin_unlock_irqrestore(&pool->lock, flags);
570 }
571
572 /*----------------------------------------------------------------*/
573
574 /*
575  * Workqueue.
576  */
577
578 /*
579  * Prepared mapping jobs.
580  */
581
582 /*
583  * This sends the bios in the cell back to the deferred_bios list.
584  */
585 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
586 {
587         struct pool *pool = tc->pool;
588         unsigned long flags;
589
590         spin_lock_irqsave(&pool->lock, flags);
591         cell_release(pool, cell, &pool->deferred_bios);
592         spin_unlock_irqrestore(&tc->pool->lock, flags);
593
594         wake_worker(pool);
595 }
596
597 /*
598  * Same as cell_defer above, except it omits the original holder of the cell.
599  */
600 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
601 {
602         struct pool *pool = tc->pool;
603         unsigned long flags;
604
605         spin_lock_irqsave(&pool->lock, flags);
606         cell_release_no_holder(pool, cell, &pool->deferred_bios);
607         spin_unlock_irqrestore(&pool->lock, flags);
608
609         wake_worker(pool);
610 }
611
612 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
613 {
614         if (m->bio)
615                 m->bio->bi_end_io = m->saved_bi_end_io;
616         cell_error(m->tc->pool, m->cell);
617         list_del(&m->list);
618         mempool_free(m, m->tc->pool->mapping_pool);
619 }
620
621 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
622 {
623         struct thin_c *tc = m->tc;
624         struct pool *pool = tc->pool;
625         struct bio *bio;
626         int r;
627
628         bio = m->bio;
629         if (bio)
630                 bio->bi_end_io = m->saved_bi_end_io;
631
632         if (m->err) {
633                 cell_error(pool, m->cell);
634                 goto out;
635         }
636
637         /*
638          * Commit the prepared block into the mapping btree.
639          * Any I/O for this block arriving after this point will get
640          * remapped to it directly.
641          */
642         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
643         if (r) {
644                 DMERR_LIMIT("%s: dm_thin_insert_block() failed: error = %d",
645                             dm_device_name(pool->pool_md), r);
646                 set_pool_mode(pool, PM_READ_ONLY);
647                 cell_error(pool, m->cell);
648                 goto out;
649         }
650
651         /*
652          * Release any bios held while the block was being provisioned.
653          * If we are processing a write bio that completely covers the block,
654          * we already processed it so can ignore it now when processing
655          * the bios in the cell.
656          */
657         if (bio) {
658                 cell_defer_no_holder(tc, m->cell);
659                 bio_endio(bio, 0);
660         } else
661                 cell_defer(tc, m->cell);
662
663 out:
664         list_del(&m->list);
665         mempool_free(m, pool->mapping_pool);
666 }
667
668 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
669 {
670         struct thin_c *tc = m->tc;
671
672         bio_io_error(m->bio);
673         cell_defer_no_holder(tc, m->cell);
674         cell_defer_no_holder(tc, m->cell2);
675         mempool_free(m, tc->pool->mapping_pool);
676 }
677
678 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
679 {
680         struct thin_c *tc = m->tc;
681
682         inc_all_io_entry(tc->pool, m->bio);
683         cell_defer_no_holder(tc, m->cell);
684         cell_defer_no_holder(tc, m->cell2);
685
686         if (m->pass_discard)
687                 if (m->definitely_not_shared)
688                         remap_and_issue(tc, m->bio, m->data_block);
689                 else {
690                         bool used = false;
691                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
692                                 bio_endio(m->bio, 0);
693                         else
694                                 remap_and_issue(tc, m->bio, m->data_block);
695                 }
696         else
697                 bio_endio(m->bio, 0);
698
699         mempool_free(m, tc->pool->mapping_pool);
700 }
701
702 static void process_prepared_discard(struct dm_thin_new_mapping *m)
703 {
704         int r;
705         struct thin_c *tc = m->tc;
706
707         r = dm_thin_remove_block(tc->td, m->virt_block);
708         if (r)
709                 DMERR_LIMIT("dm_thin_remove_block() failed");
710
711         process_prepared_discard_passdown(m);
712 }
713
714 static void process_prepared(struct pool *pool, struct list_head *head,
715                              process_mapping_fn *fn)
716 {
717         unsigned long flags;
718         struct list_head maps;
719         struct dm_thin_new_mapping *m, *tmp;
720
721         INIT_LIST_HEAD(&maps);
722         spin_lock_irqsave(&pool->lock, flags);
723         list_splice_init(head, &maps);
724         spin_unlock_irqrestore(&pool->lock, flags);
725
726         list_for_each_entry_safe(m, tmp, &maps, list)
727                 (*fn)(m);
728 }
729
730 /*
731  * Deferred bio jobs.
732  */
733 static int io_overlaps_block(struct pool *pool, struct bio *bio)
734 {
735         return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
736 }
737
738 static int io_overwrites_block(struct pool *pool, struct bio *bio)
739 {
740         return (bio_data_dir(bio) == WRITE) &&
741                 io_overlaps_block(pool, bio);
742 }
743
744 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
745                                bio_end_io_t *fn)
746 {
747         *save = bio->bi_end_io;
748         bio->bi_end_io = fn;
749 }
750
751 static int ensure_next_mapping(struct pool *pool)
752 {
753         if (pool->next_mapping)
754                 return 0;
755
756         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
757
758         return pool->next_mapping ? 0 : -ENOMEM;
759 }
760
761 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
762 {
763         struct dm_thin_new_mapping *m = pool->next_mapping;
764
765         BUG_ON(!pool->next_mapping);
766
767         memset(m, 0, sizeof(struct dm_thin_new_mapping));
768         INIT_LIST_HEAD(&m->list);
769         m->bio = NULL;
770
771         pool->next_mapping = NULL;
772
773         return m;
774 }
775
776 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
777                           struct dm_dev *origin, dm_block_t data_origin,
778                           dm_block_t data_dest,
779                           struct dm_bio_prison_cell *cell, struct bio *bio)
780 {
781         int r;
782         struct pool *pool = tc->pool;
783         struct dm_thin_new_mapping *m = get_next_mapping(pool);
784
785         m->tc = tc;
786         m->virt_block = virt_block;
787         m->data_block = data_dest;
788         m->cell = cell;
789
790         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
791                 m->quiesced = 1;
792
793         /*
794          * IO to pool_dev remaps to the pool target's data_dev.
795          *
796          * If the whole block of data is being overwritten, we can issue the
797          * bio immediately. Otherwise we use kcopyd to clone the data first.
798          */
799         if (io_overwrites_block(pool, bio)) {
800                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
801
802                 h->overwrite_mapping = m;
803                 m->bio = bio;
804                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
805                 inc_all_io_entry(pool, bio);
806                 remap_and_issue(tc, bio, data_dest);
807         } else {
808                 struct dm_io_region from, to;
809
810                 from.bdev = origin->bdev;
811                 from.sector = data_origin * pool->sectors_per_block;
812                 from.count = pool->sectors_per_block;
813
814                 to.bdev = tc->pool_dev->bdev;
815                 to.sector = data_dest * pool->sectors_per_block;
816                 to.count = pool->sectors_per_block;
817
818                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
819                                    0, copy_complete, m);
820                 if (r < 0) {
821                         mempool_free(m, pool->mapping_pool);
822                         DMERR_LIMIT("dm_kcopyd_copy() failed");
823                         cell_error(pool, cell);
824                 }
825         }
826 }
827
828 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
829                                    dm_block_t data_origin, dm_block_t data_dest,
830                                    struct dm_bio_prison_cell *cell, struct bio *bio)
831 {
832         schedule_copy(tc, virt_block, tc->pool_dev,
833                       data_origin, data_dest, cell, bio);
834 }
835
836 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
837                                    dm_block_t data_dest,
838                                    struct dm_bio_prison_cell *cell, struct bio *bio)
839 {
840         schedule_copy(tc, virt_block, tc->origin_dev,
841                       virt_block, data_dest, cell, bio);
842 }
843
844 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
845                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
846                           struct bio *bio)
847 {
848         struct pool *pool = tc->pool;
849         struct dm_thin_new_mapping *m = get_next_mapping(pool);
850
851         m->quiesced = 1;
852         m->prepared = 0;
853         m->tc = tc;
854         m->virt_block = virt_block;
855         m->data_block = data_block;
856         m->cell = cell;
857
858         /*
859          * If the whole block of data is being overwritten or we are not
860          * zeroing pre-existing data, we can issue the bio immediately.
861          * Otherwise we use kcopyd to zero the data first.
862          */
863         if (!pool->pf.zero_new_blocks)
864                 process_prepared_mapping(m);
865
866         else if (io_overwrites_block(pool, bio)) {
867                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
868
869                 h->overwrite_mapping = m;
870                 m->bio = bio;
871                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
872                 inc_all_io_entry(pool, bio);
873                 remap_and_issue(tc, bio, data_block);
874         } else {
875                 int r;
876                 struct dm_io_region to;
877
878                 to.bdev = tc->pool_dev->bdev;
879                 to.sector = data_block * pool->sectors_per_block;
880                 to.count = pool->sectors_per_block;
881
882                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
883                 if (r < 0) {
884                         mempool_free(m, pool->mapping_pool);
885                         DMERR_LIMIT("dm_kcopyd_zero() failed");
886                         cell_error(pool, cell);
887                 }
888         }
889 }
890
891 static int commit(struct pool *pool)
892 {
893         int r;
894
895         r = dm_pool_commit_metadata(pool->pmd);
896         if (r)
897                 DMERR_LIMIT("commit failed: error = %d", r);
898
899         return r;
900 }
901
902 /*
903  * A non-zero return indicates read_only or fail_io mode.
904  * Many callers don't care about the return value.
905  */
906 static int commit_or_fallback(struct pool *pool)
907 {
908         int r;
909
910         if (get_pool_mode(pool) != PM_WRITE)
911                 return -EINVAL;
912
913         r = commit(pool);
914         if (r)
915                 set_pool_mode(pool, PM_READ_ONLY);
916
917         return r;
918 }
919
920 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
921 {
922         int r;
923         dm_block_t free_blocks;
924         unsigned long flags;
925         struct pool *pool = tc->pool;
926
927         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
928         if (r)
929                 return r;
930
931         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
932                 DMWARN("%s: reached low water mark for data device: sending event.",
933                        dm_device_name(pool->pool_md));
934                 spin_lock_irqsave(&pool->lock, flags);
935                 pool->low_water_triggered = 1;
936                 spin_unlock_irqrestore(&pool->lock, flags);
937                 dm_table_event(pool->ti->table);
938         }
939
940         if (!free_blocks) {
941                 if (pool->no_free_space)
942                         return -ENOSPC;
943                 else {
944                         /*
945                          * Try to commit to see if that will free up some
946                          * more space.
947                          */
948                         (void) commit_or_fallback(pool);
949
950                         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
951                         if (r)
952                                 return r;
953
954                         /*
955                          * If we still have no space we set a flag to avoid
956                          * doing all this checking and return -ENOSPC.
957                          */
958                         if (!free_blocks) {
959                                 DMWARN("%s: no free space available.",
960                                        dm_device_name(pool->pool_md));
961                                 spin_lock_irqsave(&pool->lock, flags);
962                                 pool->no_free_space = 1;
963                                 spin_unlock_irqrestore(&pool->lock, flags);
964                                 return -ENOSPC;
965                         }
966                 }
967         }
968
969         r = dm_pool_alloc_data_block(pool->pmd, result);
970         if (r)
971                 return r;
972
973         return 0;
974 }
975
976 /*
977  * If we have run out of space, queue bios until the device is
978  * resumed, presumably after having been reloaded with more space.
979  */
980 static void retry_on_resume(struct bio *bio)
981 {
982         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
983         struct thin_c *tc = h->tc;
984         struct pool *pool = tc->pool;
985         unsigned long flags;
986
987         spin_lock_irqsave(&pool->lock, flags);
988         bio_list_add(&pool->retry_on_resume_list, bio);
989         spin_unlock_irqrestore(&pool->lock, flags);
990 }
991
992 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
993 {
994         struct bio *bio;
995         struct bio_list bios;
996
997         bio_list_init(&bios);
998         cell_release(pool, cell, &bios);
999
1000         while ((bio = bio_list_pop(&bios)))
1001                 retry_on_resume(bio);
1002 }
1003
1004 static void process_discard(struct thin_c *tc, struct bio *bio)
1005 {
1006         int r;
1007         unsigned long flags;
1008         struct pool *pool = tc->pool;
1009         struct dm_bio_prison_cell *cell, *cell2;
1010         struct dm_cell_key key, key2;
1011         dm_block_t block = get_bio_block(tc, bio);
1012         struct dm_thin_lookup_result lookup_result;
1013         struct dm_thin_new_mapping *m;
1014
1015         build_virtual_key(tc->td, block, &key);
1016         if (bio_detain(tc->pool, &key, bio, &cell))
1017                 return;
1018
1019         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1020         switch (r) {
1021         case 0:
1022                 /*
1023                  * Check nobody is fiddling with this pool block.  This can
1024                  * happen if someone's in the process of breaking sharing
1025                  * on this block.
1026                  */
1027                 build_data_key(tc->td, lookup_result.block, &key2);
1028                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1029                         cell_defer_no_holder(tc, cell);
1030                         break;
1031                 }
1032
1033                 if (io_overlaps_block(pool, bio)) {
1034                         /*
1035                          * IO may still be going to the destination block.  We must
1036                          * quiesce before we can do the removal.
1037                          */
1038                         m = get_next_mapping(pool);
1039                         m->tc = tc;
1040                         m->pass_discard = pool->pf.discard_passdown;
1041                         m->definitely_not_shared = !lookup_result.shared;
1042                         m->virt_block = block;
1043                         m->data_block = lookup_result.block;
1044                         m->cell = cell;
1045                         m->cell2 = cell2;
1046                         m->bio = bio;
1047
1048                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1049                                 spin_lock_irqsave(&pool->lock, flags);
1050                                 list_add(&m->list, &pool->prepared_discards);
1051                                 spin_unlock_irqrestore(&pool->lock, flags);
1052                                 wake_worker(pool);
1053                         }
1054                 } else {
1055                         inc_all_io_entry(pool, bio);
1056                         cell_defer_no_holder(tc, cell);
1057                         cell_defer_no_holder(tc, cell2);
1058
1059                         /*
1060                          * The DM core makes sure that the discard doesn't span
1061                          * a block boundary.  So we submit the discard of a
1062                          * partial block appropriately.
1063                          */
1064                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1065                                 remap_and_issue(tc, bio, lookup_result.block);
1066                         else
1067                                 bio_endio(bio, 0);
1068                 }
1069                 break;
1070
1071         case -ENODATA:
1072                 /*
1073                  * It isn't provisioned, just forget it.
1074                  */
1075                 cell_defer_no_holder(tc, cell);
1076                 bio_endio(bio, 0);
1077                 break;
1078
1079         default:
1080                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1081                             __func__, r);
1082                 cell_defer_no_holder(tc, cell);
1083                 bio_io_error(bio);
1084                 break;
1085         }
1086 }
1087
1088 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1089                           struct dm_cell_key *key,
1090                           struct dm_thin_lookup_result *lookup_result,
1091                           struct dm_bio_prison_cell *cell)
1092 {
1093         int r;
1094         dm_block_t data_block;
1095
1096         r = alloc_data_block(tc, &data_block);
1097         switch (r) {
1098         case 0:
1099                 schedule_internal_copy(tc, block, lookup_result->block,
1100                                        data_block, cell, bio);
1101                 break;
1102
1103         case -ENOSPC:
1104                 no_space(tc->pool, cell);
1105                 break;
1106
1107         default:
1108                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1109                             __func__, r);
1110                 cell_error(tc->pool, cell);
1111                 break;
1112         }
1113 }
1114
1115 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1116                                dm_block_t block,
1117                                struct dm_thin_lookup_result *lookup_result)
1118 {
1119         struct dm_bio_prison_cell *cell;
1120         struct pool *pool = tc->pool;
1121         struct dm_cell_key key;
1122
1123         /*
1124          * If cell is already occupied, then sharing is already in the process
1125          * of being broken so we have nothing further to do here.
1126          */
1127         build_data_key(tc->td, lookup_result->block, &key);
1128         if (bio_detain(pool, &key, bio, &cell))
1129                 return;
1130
1131         if (bio_data_dir(bio) == WRITE && bio->bi_size)
1132                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1133         else {
1134                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1135
1136                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1137                 inc_all_io_entry(pool, bio);
1138                 cell_defer_no_holder(tc, cell);
1139
1140                 remap_and_issue(tc, bio, lookup_result->block);
1141         }
1142 }
1143
1144 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1145                             struct dm_bio_prison_cell *cell)
1146 {
1147         int r;
1148         dm_block_t data_block;
1149         struct pool *pool = tc->pool;
1150
1151         /*
1152          * Remap empty bios (flushes) immediately, without provisioning.
1153          */
1154         if (!bio->bi_size) {
1155                 inc_all_io_entry(pool, bio);
1156                 cell_defer_no_holder(tc, cell);
1157
1158                 remap_and_issue(tc, bio, 0);
1159                 return;
1160         }
1161
1162         /*
1163          * Fill read bios with zeroes and complete them immediately.
1164          */
1165         if (bio_data_dir(bio) == READ) {
1166                 zero_fill_bio(bio);
1167                 cell_defer_no_holder(tc, cell);
1168                 bio_endio(bio, 0);
1169                 return;
1170         }
1171
1172         r = alloc_data_block(tc, &data_block);
1173         switch (r) {
1174         case 0:
1175                 if (tc->origin_dev)
1176                         schedule_external_copy(tc, block, data_block, cell, bio);
1177                 else
1178                         schedule_zero(tc, block, data_block, cell, bio);
1179                 break;
1180
1181         case -ENOSPC:
1182                 no_space(pool, cell);
1183                 break;
1184
1185         default:
1186                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1187                             __func__, r);
1188                 set_pool_mode(pool, PM_READ_ONLY);
1189                 cell_error(pool, cell);
1190                 break;
1191         }
1192 }
1193
1194 static void process_bio(struct thin_c *tc, struct bio *bio)
1195 {
1196         int r;
1197         struct pool *pool = tc->pool;
1198         dm_block_t block = get_bio_block(tc, bio);
1199         struct dm_bio_prison_cell *cell;
1200         struct dm_cell_key key;
1201         struct dm_thin_lookup_result lookup_result;
1202
1203         /*
1204          * If cell is already occupied, then the block is already
1205          * being provisioned so we have nothing further to do here.
1206          */
1207         build_virtual_key(tc->td, block, &key);
1208         if (bio_detain(pool, &key, bio, &cell))
1209                 return;
1210
1211         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1212         switch (r) {
1213         case 0:
1214                 if (lookup_result.shared) {
1215                         process_shared_bio(tc, bio, block, &lookup_result);
1216                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1217                 } else {
1218                         inc_all_io_entry(pool, bio);
1219                         cell_defer_no_holder(tc, cell);
1220
1221                         remap_and_issue(tc, bio, lookup_result.block);
1222                 }
1223                 break;
1224
1225         case -ENODATA:
1226                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1227                         inc_all_io_entry(pool, bio);
1228                         cell_defer_no_holder(tc, cell);
1229
1230                         remap_to_origin_and_issue(tc, bio);
1231                 } else
1232                         provision_block(tc, bio, block, cell);
1233                 break;
1234
1235         default:
1236                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1237                             __func__, r);
1238                 cell_defer_no_holder(tc, cell);
1239                 bio_io_error(bio);
1240                 break;
1241         }
1242 }
1243
1244 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1245 {
1246         int r;
1247         int rw = bio_data_dir(bio);
1248         dm_block_t block = get_bio_block(tc, bio);
1249         struct dm_thin_lookup_result lookup_result;
1250
1251         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1252         switch (r) {
1253         case 0:
1254                 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1255                         bio_io_error(bio);
1256                 else {
1257                         inc_all_io_entry(tc->pool, bio);
1258                         remap_and_issue(tc, bio, lookup_result.block);
1259                 }
1260                 break;
1261
1262         case -ENODATA:
1263                 if (rw != READ) {
1264                         bio_io_error(bio);
1265                         break;
1266                 }
1267
1268                 if (tc->origin_dev) {
1269                         inc_all_io_entry(tc->pool, bio);
1270                         remap_to_origin_and_issue(tc, bio);
1271                         break;
1272                 }
1273
1274                 zero_fill_bio(bio);
1275                 bio_endio(bio, 0);
1276                 break;
1277
1278         default:
1279                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1280                             __func__, r);
1281                 bio_io_error(bio);
1282                 break;
1283         }
1284 }
1285
1286 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1287 {
1288         bio_io_error(bio);
1289 }
1290
1291 /*
1292  * FIXME: should we also commit due to size of transaction, measured in
1293  * metadata blocks?
1294  */
1295 static int need_commit_due_to_time(struct pool *pool)
1296 {
1297         return jiffies < pool->last_commit_jiffies ||
1298                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1299 }
1300
1301 static void process_deferred_bios(struct pool *pool)
1302 {
1303         unsigned long flags;
1304         struct bio *bio;
1305         struct bio_list bios;
1306
1307         bio_list_init(&bios);
1308
1309         spin_lock_irqsave(&pool->lock, flags);
1310         bio_list_merge(&bios, &pool->deferred_bios);
1311         bio_list_init(&pool->deferred_bios);
1312         spin_unlock_irqrestore(&pool->lock, flags);
1313
1314         while ((bio = bio_list_pop(&bios))) {
1315                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1316                 struct thin_c *tc = h->tc;
1317
1318                 /*
1319                  * If we've got no free new_mapping structs, and processing
1320                  * this bio might require one, we pause until there are some
1321                  * prepared mappings to process.
1322                  */
1323                 if (ensure_next_mapping(pool)) {
1324                         spin_lock_irqsave(&pool->lock, flags);
1325                         bio_list_merge(&pool->deferred_bios, &bios);
1326                         spin_unlock_irqrestore(&pool->lock, flags);
1327
1328                         break;
1329                 }
1330
1331                 if (bio->bi_rw & REQ_DISCARD)
1332                         pool->process_discard(tc, bio);
1333                 else
1334                         pool->process_bio(tc, bio);
1335         }
1336
1337         /*
1338          * If there are any deferred flush bios, we must commit
1339          * the metadata before issuing them.
1340          */
1341         bio_list_init(&bios);
1342         spin_lock_irqsave(&pool->lock, flags);
1343         bio_list_merge(&bios, &pool->deferred_flush_bios);
1344         bio_list_init(&pool->deferred_flush_bios);
1345         spin_unlock_irqrestore(&pool->lock, flags);
1346
1347         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1348                 return;
1349
1350         if (commit_or_fallback(pool)) {
1351                 while ((bio = bio_list_pop(&bios)))
1352                         bio_io_error(bio);
1353                 return;
1354         }
1355         pool->last_commit_jiffies = jiffies;
1356
1357         while ((bio = bio_list_pop(&bios)))
1358                 generic_make_request(bio);
1359 }
1360
1361 static void do_worker(struct work_struct *ws)
1362 {
1363         struct pool *pool = container_of(ws, struct pool, worker);
1364
1365         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1366         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1367         process_deferred_bios(pool);
1368 }
1369
1370 /*
1371  * We want to commit periodically so that not too much
1372  * unwritten data builds up.
1373  */
1374 static void do_waker(struct work_struct *ws)
1375 {
1376         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1377         wake_worker(pool);
1378         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1379 }
1380
1381 /*----------------------------------------------------------------*/
1382
1383 static enum pool_mode get_pool_mode(struct pool *pool)
1384 {
1385         return pool->pf.mode;
1386 }
1387
1388 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1389 {
1390         int r;
1391
1392         pool->pf.mode = mode;
1393
1394         switch (mode) {
1395         case PM_FAIL:
1396                 DMERR("switching pool to failure mode");
1397                 pool->process_bio = process_bio_fail;
1398                 pool->process_discard = process_bio_fail;
1399                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1400                 pool->process_prepared_discard = process_prepared_discard_fail;
1401                 break;
1402
1403         case PM_READ_ONLY:
1404                 DMERR("switching pool to read-only mode");
1405                 r = dm_pool_abort_metadata(pool->pmd);
1406                 if (r) {
1407                         DMERR("aborting transaction failed");
1408                         set_pool_mode(pool, PM_FAIL);
1409                 } else {
1410                         dm_pool_metadata_read_only(pool->pmd);
1411                         pool->process_bio = process_bio_read_only;
1412                         pool->process_discard = process_discard;
1413                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1414                         pool->process_prepared_discard = process_prepared_discard_passdown;
1415                 }
1416                 break;
1417
1418         case PM_WRITE:
1419                 pool->process_bio = process_bio;
1420                 pool->process_discard = process_discard;
1421                 pool->process_prepared_mapping = process_prepared_mapping;
1422                 pool->process_prepared_discard = process_prepared_discard;
1423                 break;
1424         }
1425 }
1426
1427 /*----------------------------------------------------------------*/
1428
1429 /*
1430  * Mapping functions.
1431  */
1432
1433 /*
1434  * Called only while mapping a thin bio to hand it over to the workqueue.
1435  */
1436 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1437 {
1438         unsigned long flags;
1439         struct pool *pool = tc->pool;
1440
1441         spin_lock_irqsave(&pool->lock, flags);
1442         bio_list_add(&pool->deferred_bios, bio);
1443         spin_unlock_irqrestore(&pool->lock, flags);
1444
1445         wake_worker(pool);
1446 }
1447
1448 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1449 {
1450         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1451
1452         h->tc = tc;
1453         h->shared_read_entry = NULL;
1454         h->all_io_entry = NULL;
1455         h->overwrite_mapping = NULL;
1456 }
1457
1458 /*
1459  * Non-blocking function called from the thin target's map function.
1460  */
1461 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1462 {
1463         int r;
1464         struct thin_c *tc = ti->private;
1465         dm_block_t block = get_bio_block(tc, bio);
1466         struct dm_thin_device *td = tc->td;
1467         struct dm_thin_lookup_result result;
1468         struct dm_bio_prison_cell cell1, cell2;
1469         struct dm_bio_prison_cell *cell_result;
1470         struct dm_cell_key key;
1471
1472         thin_hook_bio(tc, bio);
1473
1474         if (get_pool_mode(tc->pool) == PM_FAIL) {
1475                 bio_io_error(bio);
1476                 return DM_MAPIO_SUBMITTED;
1477         }
1478
1479         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1480                 thin_defer_bio(tc, bio);
1481                 return DM_MAPIO_SUBMITTED;
1482         }
1483
1484         r = dm_thin_find_block(td, block, 0, &result);
1485
1486         /*
1487          * Note that we defer readahead too.
1488          */
1489         switch (r) {
1490         case 0:
1491                 if (unlikely(result.shared)) {
1492                         /*
1493                          * We have a race condition here between the
1494                          * result.shared value returned by the lookup and
1495                          * snapshot creation, which may cause new
1496                          * sharing.
1497                          *
1498                          * To avoid this always quiesce the origin before
1499                          * taking the snap.  You want to do this anyway to
1500                          * ensure a consistent application view
1501                          * (i.e. lockfs).
1502                          *
1503                          * More distant ancestors are irrelevant. The
1504                          * shared flag will be set in their case.
1505                          */
1506                         thin_defer_bio(tc, bio);
1507                         return DM_MAPIO_SUBMITTED;
1508                 }
1509
1510                 build_virtual_key(tc->td, block, &key);
1511                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1512                         return DM_MAPIO_SUBMITTED;
1513
1514                 build_data_key(tc->td, result.block, &key);
1515                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1516                         cell_defer_no_holder_no_free(tc, &cell1);
1517                         return DM_MAPIO_SUBMITTED;
1518                 }
1519
1520                 inc_all_io_entry(tc->pool, bio);
1521                 cell_defer_no_holder_no_free(tc, &cell2);
1522                 cell_defer_no_holder_no_free(tc, &cell1);
1523
1524                 remap(tc, bio, result.block);
1525                 return DM_MAPIO_REMAPPED;
1526
1527         case -ENODATA:
1528                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1529                         /*
1530                          * This block isn't provisioned, and we have no way
1531                          * of doing so.  Just error it.
1532                          */
1533                         bio_io_error(bio);
1534                         return DM_MAPIO_SUBMITTED;
1535                 }
1536                 /* fall through */
1537
1538         case -EWOULDBLOCK:
1539                 /*
1540                  * In future, the failed dm_thin_find_block above could
1541                  * provide the hint to load the metadata into cache.
1542                  */
1543                 thin_defer_bio(tc, bio);
1544                 return DM_MAPIO_SUBMITTED;
1545
1546         default:
1547                 /*
1548                  * Must always call bio_io_error on failure.
1549                  * dm_thin_find_block can fail with -EINVAL if the
1550                  * pool is switched to fail-io mode.
1551                  */
1552                 bio_io_error(bio);
1553                 return DM_MAPIO_SUBMITTED;
1554         }
1555 }
1556
1557 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1558 {
1559         int r;
1560         unsigned long flags;
1561         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1562
1563         spin_lock_irqsave(&pt->pool->lock, flags);
1564         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1565         spin_unlock_irqrestore(&pt->pool->lock, flags);
1566
1567         if (!r) {
1568                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1569                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1570         }
1571
1572         return r;
1573 }
1574
1575 static void __requeue_bios(struct pool *pool)
1576 {
1577         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1578         bio_list_init(&pool->retry_on_resume_list);
1579 }
1580
1581 /*----------------------------------------------------------------
1582  * Binding of control targets to a pool object
1583  *--------------------------------------------------------------*/
1584 static bool data_dev_supports_discard(struct pool_c *pt)
1585 {
1586         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1587
1588         return q && blk_queue_discard(q);
1589 }
1590
1591 static bool is_factor(sector_t block_size, uint32_t n)
1592 {
1593         return !sector_div(block_size, n);
1594 }
1595
1596 /*
1597  * If discard_passdown was enabled verify that the data device
1598  * supports discards.  Disable discard_passdown if not.
1599  */
1600 static void disable_passdown_if_not_supported(struct pool_c *pt)
1601 {
1602         struct pool *pool = pt->pool;
1603         struct block_device *data_bdev = pt->data_dev->bdev;
1604         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1605         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1606         const char *reason = NULL;
1607         char buf[BDEVNAME_SIZE];
1608
1609         if (!pt->adjusted_pf.discard_passdown)
1610                 return;
1611
1612         if (!data_dev_supports_discard(pt))
1613                 reason = "discard unsupported";
1614
1615         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1616                 reason = "max discard sectors smaller than a block";
1617
1618         else if (data_limits->discard_granularity > block_size)
1619                 reason = "discard granularity larger than a block";
1620
1621         else if (!is_factor(block_size, data_limits->discard_granularity))
1622                 reason = "discard granularity not a factor of block size";
1623
1624         if (reason) {
1625                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1626                 pt->adjusted_pf.discard_passdown = false;
1627         }
1628 }
1629
1630 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1631 {
1632         struct pool_c *pt = ti->private;
1633
1634         /*
1635          * We want to make sure that degraded pools are never upgraded.
1636          */
1637         enum pool_mode old_mode = pool->pf.mode;
1638         enum pool_mode new_mode = pt->adjusted_pf.mode;
1639
1640         if (old_mode > new_mode)
1641                 new_mode = old_mode;
1642
1643         pool->ti = ti;
1644         pool->low_water_blocks = pt->low_water_blocks;
1645         pool->pf = pt->adjusted_pf;
1646
1647         set_pool_mode(pool, new_mode);
1648
1649         return 0;
1650 }
1651
1652 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1653 {
1654         if (pool->ti == ti)
1655                 pool->ti = NULL;
1656 }
1657
1658 /*----------------------------------------------------------------
1659  * Pool creation
1660  *--------------------------------------------------------------*/
1661 /* Initialize pool features. */
1662 static void pool_features_init(struct pool_features *pf)
1663 {
1664         pf->mode = PM_WRITE;
1665         pf->zero_new_blocks = true;
1666         pf->discard_enabled = true;
1667         pf->discard_passdown = true;
1668 }
1669
1670 static void __pool_destroy(struct pool *pool)
1671 {
1672         __pool_table_remove(pool);
1673
1674         if (dm_pool_metadata_close(pool->pmd) < 0)
1675                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1676
1677         dm_bio_prison_destroy(pool->prison);
1678         dm_kcopyd_client_destroy(pool->copier);
1679
1680         if (pool->wq)
1681                 destroy_workqueue(pool->wq);
1682
1683         if (pool->next_mapping)
1684                 mempool_free(pool->next_mapping, pool->mapping_pool);
1685         mempool_destroy(pool->mapping_pool);
1686         dm_deferred_set_destroy(pool->shared_read_ds);
1687         dm_deferred_set_destroy(pool->all_io_ds);
1688         kfree(pool);
1689 }
1690
1691 static struct kmem_cache *_new_mapping_cache;
1692
1693 static struct pool *pool_create(struct mapped_device *pool_md,
1694                                 struct block_device *metadata_dev,
1695                                 unsigned long block_size,
1696                                 int read_only, char **error)
1697 {
1698         int r;
1699         void *err_p;
1700         struct pool *pool;
1701         struct dm_pool_metadata *pmd;
1702         bool format_device = read_only ? false : true;
1703
1704         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1705         if (IS_ERR(pmd)) {
1706                 *error = "Error creating metadata object";
1707                 return (struct pool *)pmd;
1708         }
1709
1710         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1711         if (!pool) {
1712                 *error = "Error allocating memory for pool";
1713                 err_p = ERR_PTR(-ENOMEM);
1714                 goto bad_pool;
1715         }
1716
1717         pool->pmd = pmd;
1718         pool->sectors_per_block = block_size;
1719         if (block_size & (block_size - 1))
1720                 pool->sectors_per_block_shift = -1;
1721         else
1722                 pool->sectors_per_block_shift = __ffs(block_size);
1723         pool->low_water_blocks = 0;
1724         pool_features_init(&pool->pf);
1725         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1726         if (!pool->prison) {
1727                 *error = "Error creating pool's bio prison";
1728                 err_p = ERR_PTR(-ENOMEM);
1729                 goto bad_prison;
1730         }
1731
1732         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1733         if (IS_ERR(pool->copier)) {
1734                 r = PTR_ERR(pool->copier);
1735                 *error = "Error creating pool's kcopyd client";
1736                 err_p = ERR_PTR(r);
1737                 goto bad_kcopyd_client;
1738         }
1739
1740         /*
1741          * Create singlethreaded workqueue that will service all devices
1742          * that use this metadata.
1743          */
1744         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1745         if (!pool->wq) {
1746                 *error = "Error creating pool's workqueue";
1747                 err_p = ERR_PTR(-ENOMEM);
1748                 goto bad_wq;
1749         }
1750
1751         INIT_WORK(&pool->worker, do_worker);
1752         INIT_DELAYED_WORK(&pool->waker, do_waker);
1753         spin_lock_init(&pool->lock);
1754         bio_list_init(&pool->deferred_bios);
1755         bio_list_init(&pool->deferred_flush_bios);
1756         INIT_LIST_HEAD(&pool->prepared_mappings);
1757         INIT_LIST_HEAD(&pool->prepared_discards);
1758         pool->low_water_triggered = 0;
1759         pool->no_free_space = 0;
1760         bio_list_init(&pool->retry_on_resume_list);
1761
1762         pool->shared_read_ds = dm_deferred_set_create();
1763         if (!pool->shared_read_ds) {
1764                 *error = "Error creating pool's shared read deferred set";
1765                 err_p = ERR_PTR(-ENOMEM);
1766                 goto bad_shared_read_ds;
1767         }
1768
1769         pool->all_io_ds = dm_deferred_set_create();
1770         if (!pool->all_io_ds) {
1771                 *error = "Error creating pool's all io deferred set";
1772                 err_p = ERR_PTR(-ENOMEM);
1773                 goto bad_all_io_ds;
1774         }
1775
1776         pool->next_mapping = NULL;
1777         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1778                                                       _new_mapping_cache);
1779         if (!pool->mapping_pool) {
1780                 *error = "Error creating pool's mapping mempool";
1781                 err_p = ERR_PTR(-ENOMEM);
1782                 goto bad_mapping_pool;
1783         }
1784
1785         pool->ref_count = 1;
1786         pool->last_commit_jiffies = jiffies;
1787         pool->pool_md = pool_md;
1788         pool->md_dev = metadata_dev;
1789         __pool_table_insert(pool);
1790
1791         return pool;
1792
1793 bad_mapping_pool:
1794         dm_deferred_set_destroy(pool->all_io_ds);
1795 bad_all_io_ds:
1796         dm_deferred_set_destroy(pool->shared_read_ds);
1797 bad_shared_read_ds:
1798         destroy_workqueue(pool->wq);
1799 bad_wq:
1800         dm_kcopyd_client_destroy(pool->copier);
1801 bad_kcopyd_client:
1802         dm_bio_prison_destroy(pool->prison);
1803 bad_prison:
1804         kfree(pool);
1805 bad_pool:
1806         if (dm_pool_metadata_close(pmd))
1807                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1808
1809         return err_p;
1810 }
1811
1812 static void __pool_inc(struct pool *pool)
1813 {
1814         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1815         pool->ref_count++;
1816 }
1817
1818 static void __pool_dec(struct pool *pool)
1819 {
1820         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1821         BUG_ON(!pool->ref_count);
1822         if (!--pool->ref_count)
1823                 __pool_destroy(pool);
1824 }
1825
1826 static struct pool *__pool_find(struct mapped_device *pool_md,
1827                                 struct block_device *metadata_dev,
1828                                 unsigned long block_size, int read_only,
1829                                 char **error, int *created)
1830 {
1831         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1832
1833         if (pool) {
1834                 if (pool->pool_md != pool_md) {
1835                         *error = "metadata device already in use by a pool";
1836                         return ERR_PTR(-EBUSY);
1837                 }
1838                 __pool_inc(pool);
1839
1840         } else {
1841                 pool = __pool_table_lookup(pool_md);
1842                 if (pool) {
1843                         if (pool->md_dev != metadata_dev) {
1844                                 *error = "different pool cannot replace a pool";
1845                                 return ERR_PTR(-EINVAL);
1846                         }
1847                         __pool_inc(pool);
1848
1849                 } else {
1850                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1851                         *created = 1;
1852                 }
1853         }
1854
1855         return pool;
1856 }
1857
1858 /*----------------------------------------------------------------
1859  * Pool target methods
1860  *--------------------------------------------------------------*/
1861 static void pool_dtr(struct dm_target *ti)
1862 {
1863         struct pool_c *pt = ti->private;
1864
1865         mutex_lock(&dm_thin_pool_table.mutex);
1866
1867         unbind_control_target(pt->pool, ti);
1868         __pool_dec(pt->pool);
1869         dm_put_device(ti, pt->metadata_dev);
1870         dm_put_device(ti, pt->data_dev);
1871         kfree(pt);
1872
1873         mutex_unlock(&dm_thin_pool_table.mutex);
1874 }
1875
1876 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1877                                struct dm_target *ti)
1878 {
1879         int r;
1880         unsigned argc;
1881         const char *arg_name;
1882
1883         static struct dm_arg _args[] = {
1884                 {0, 3, "Invalid number of pool feature arguments"},
1885         };
1886
1887         /*
1888          * No feature arguments supplied.
1889          */
1890         if (!as->argc)
1891                 return 0;
1892
1893         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1894         if (r)
1895                 return -EINVAL;
1896
1897         while (argc && !r) {
1898                 arg_name = dm_shift_arg(as);
1899                 argc--;
1900
1901                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1902                         pf->zero_new_blocks = false;
1903
1904                 else if (!strcasecmp(arg_name, "ignore_discard"))
1905                         pf->discard_enabled = false;
1906
1907                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1908                         pf->discard_passdown = false;
1909
1910                 else if (!strcasecmp(arg_name, "read_only"))
1911                         pf->mode = PM_READ_ONLY;
1912
1913                 else {
1914                         ti->error = "Unrecognised pool feature requested";
1915                         r = -EINVAL;
1916                         break;
1917                 }
1918         }
1919
1920         return r;
1921 }
1922
1923 static void metadata_low_callback(void *context)
1924 {
1925         struct pool *pool = context;
1926
1927         DMWARN("%s: reached low water mark for metadata device: sending event.",
1928                dm_device_name(pool->pool_md));
1929
1930         dm_table_event(pool->ti->table);
1931 }
1932
1933 static sector_t get_metadata_dev_size(struct block_device *bdev)
1934 {
1935         sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1936         char buffer[BDEVNAME_SIZE];
1937
1938         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1939                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1940                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1941                 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1942         }
1943
1944         return metadata_dev_size;
1945 }
1946
1947 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1948 {
1949         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1950
1951         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1952
1953         return metadata_dev_size;
1954 }
1955
1956 /*
1957  * When a metadata threshold is crossed a dm event is triggered, and
1958  * userland should respond by growing the metadata device.  We could let
1959  * userland set the threshold, like we do with the data threshold, but I'm
1960  * not sure they know enough to do this well.
1961  */
1962 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1963 {
1964         /*
1965          * 4M is ample for all ops with the possible exception of thin
1966          * device deletion which is harmless if it fails (just retry the
1967          * delete after you've grown the device).
1968          */
1969         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1970         return min((dm_block_t)1024ULL /* 4M */, quarter);
1971 }
1972
1973 /*
1974  * thin-pool <metadata dev> <data dev>
1975  *           <data block size (sectors)>
1976  *           <low water mark (blocks)>
1977  *           [<#feature args> [<arg>]*]
1978  *
1979  * Optional feature arguments are:
1980  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1981  *           ignore_discard: disable discard
1982  *           no_discard_passdown: don't pass discards down to the data device
1983  */
1984 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1985 {
1986         int r, pool_created = 0;
1987         struct pool_c *pt;
1988         struct pool *pool;
1989         struct pool_features pf;
1990         struct dm_arg_set as;
1991         struct dm_dev *data_dev;
1992         unsigned long block_size;
1993         dm_block_t low_water_blocks;
1994         struct dm_dev *metadata_dev;
1995         fmode_t metadata_mode;
1996
1997         /*
1998          * FIXME Remove validation from scope of lock.
1999          */
2000         mutex_lock(&dm_thin_pool_table.mutex);
2001
2002         if (argc < 4) {
2003                 ti->error = "Invalid argument count";
2004                 r = -EINVAL;
2005                 goto out_unlock;
2006         }
2007
2008         as.argc = argc;
2009         as.argv = argv;
2010
2011         /*
2012          * Set default pool features.
2013          */
2014         pool_features_init(&pf);
2015
2016         dm_consume_args(&as, 4);
2017         r = parse_pool_features(&as, &pf, ti);
2018         if (r)
2019                 goto out_unlock;
2020
2021         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2022         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2023         if (r) {
2024                 ti->error = "Error opening metadata block device";
2025                 goto out_unlock;
2026         }
2027
2028         /*
2029          * Run for the side-effect of possibly issuing a warning if the
2030          * device is too big.
2031          */
2032         (void) get_metadata_dev_size(metadata_dev->bdev);
2033
2034         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2035         if (r) {
2036                 ti->error = "Error getting data device";
2037                 goto out_metadata;
2038         }
2039
2040         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2041             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2042             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2043             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2044                 ti->error = "Invalid block size";
2045                 r = -EINVAL;
2046                 goto out;
2047         }
2048
2049         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2050                 ti->error = "Invalid low water mark";
2051                 r = -EINVAL;
2052                 goto out;
2053         }
2054
2055         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2056         if (!pt) {
2057                 r = -ENOMEM;
2058                 goto out;
2059         }
2060
2061         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2062                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2063         if (IS_ERR(pool)) {
2064                 r = PTR_ERR(pool);
2065                 goto out_free_pt;
2066         }
2067
2068         /*
2069          * 'pool_created' reflects whether this is the first table load.
2070          * Top level discard support is not allowed to be changed after
2071          * initial load.  This would require a pool reload to trigger thin
2072          * device changes.
2073          */
2074         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2075                 ti->error = "Discard support cannot be disabled once enabled";
2076                 r = -EINVAL;
2077                 goto out_flags_changed;
2078         }
2079
2080         pt->pool = pool;
2081         pt->ti = ti;
2082         pt->metadata_dev = metadata_dev;
2083         pt->data_dev = data_dev;
2084         pt->low_water_blocks = low_water_blocks;
2085         pt->adjusted_pf = pt->requested_pf = pf;
2086         ti->num_flush_bios = 1;
2087
2088         /*
2089          * Only need to enable discards if the pool should pass
2090          * them down to the data device.  The thin device's discard
2091          * processing will cause mappings to be removed from the btree.
2092          */
2093         if (pf.discard_enabled && pf.discard_passdown) {
2094                 ti->num_discard_bios = 1;
2095
2096                 /*
2097                  * Setting 'discards_supported' circumvents the normal
2098                  * stacking of discard limits (this keeps the pool and
2099                  * thin devices' discard limits consistent).
2100                  */
2101                 ti->discards_supported = true;
2102                 ti->discard_zeroes_data_unsupported = true;
2103         }
2104         ti->private = pt;
2105
2106         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2107                                                 calc_metadata_threshold(pt),
2108                                                 metadata_low_callback,
2109                                                 pool);
2110         if (r)
2111                 goto out_free_pt;
2112
2113         pt->callbacks.congested_fn = pool_is_congested;
2114         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2115
2116         mutex_unlock(&dm_thin_pool_table.mutex);
2117
2118         return 0;
2119
2120 out_flags_changed:
2121         __pool_dec(pool);
2122 out_free_pt:
2123         kfree(pt);
2124 out:
2125         dm_put_device(ti, data_dev);
2126 out_metadata:
2127         dm_put_device(ti, metadata_dev);
2128 out_unlock:
2129         mutex_unlock(&dm_thin_pool_table.mutex);
2130
2131         return r;
2132 }
2133
2134 static int pool_map(struct dm_target *ti, struct bio *bio)
2135 {
2136         int r;
2137         struct pool_c *pt = ti->private;
2138         struct pool *pool = pt->pool;
2139         unsigned long flags;
2140
2141         /*
2142          * As this is a singleton target, ti->begin is always zero.
2143          */
2144         spin_lock_irqsave(&pool->lock, flags);
2145         bio->bi_bdev = pt->data_dev->bdev;
2146         r = DM_MAPIO_REMAPPED;
2147         spin_unlock_irqrestore(&pool->lock, flags);
2148
2149         return r;
2150 }
2151
2152 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2153 {
2154         int r;
2155         struct pool_c *pt = ti->private;
2156         struct pool *pool = pt->pool;
2157         sector_t data_size = ti->len;
2158         dm_block_t sb_data_size;
2159
2160         *need_commit = false;
2161
2162         (void) sector_div(data_size, pool->sectors_per_block);
2163
2164         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2165         if (r) {
2166                 DMERR("failed to retrieve data device size");
2167                 return r;
2168         }
2169
2170         if (data_size < sb_data_size) {
2171                 DMERR("pool target (%llu blocks) too small: expected %llu",
2172                       (unsigned long long)data_size, sb_data_size);
2173                 return -EINVAL;
2174
2175         } else if (data_size > sb_data_size) {
2176                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2177                 if (r) {
2178                         DMERR("failed to resize data device");
2179                         set_pool_mode(pool, PM_READ_ONLY);
2180                         return r;
2181                 }
2182
2183                 *need_commit = true;
2184         }
2185
2186         return 0;
2187 }
2188
2189 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2190 {
2191         int r;
2192         struct pool_c *pt = ti->private;
2193         struct pool *pool = pt->pool;
2194         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2195
2196         *need_commit = false;
2197
2198         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2199
2200         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2201         if (r) {
2202                 DMERR("failed to retrieve data device size");
2203                 return r;
2204         }
2205
2206         if (metadata_dev_size < sb_metadata_dev_size) {
2207                 DMERR("metadata device (%llu blocks) too small: expected %llu",
2208                       metadata_dev_size, sb_metadata_dev_size);
2209                 return -EINVAL;
2210
2211         } else if (metadata_dev_size > sb_metadata_dev_size) {
2212                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2213                 if (r) {
2214                         DMERR("failed to resize metadata device");
2215                         return r;
2216                 }
2217
2218                 *need_commit = true;
2219         }
2220
2221         return 0;
2222 }
2223
2224 /*
2225  * Retrieves the number of blocks of the data device from
2226  * the superblock and compares it to the actual device size,
2227  * thus resizing the data device in case it has grown.
2228  *
2229  * This both copes with opening preallocated data devices in the ctr
2230  * being followed by a resume
2231  * -and-
2232  * calling the resume method individually after userspace has
2233  * grown the data device in reaction to a table event.
2234  */
2235 static int pool_preresume(struct dm_target *ti)
2236 {
2237         int r;
2238         bool need_commit1, need_commit2;
2239         struct pool_c *pt = ti->private;
2240         struct pool *pool = pt->pool;
2241
2242         /*
2243          * Take control of the pool object.
2244          */
2245         r = bind_control_target(pool, ti);
2246         if (r)
2247                 return r;
2248
2249         r = maybe_resize_data_dev(ti, &need_commit1);
2250         if (r)
2251                 return r;
2252
2253         r = maybe_resize_metadata_dev(ti, &need_commit2);
2254         if (r)
2255                 return r;
2256
2257         if (need_commit1 || need_commit2)
2258                 (void) commit_or_fallback(pool);
2259
2260         return 0;
2261 }
2262
2263 static void pool_resume(struct dm_target *ti)
2264 {
2265         struct pool_c *pt = ti->private;
2266         struct pool *pool = pt->pool;
2267         unsigned long flags;
2268
2269         spin_lock_irqsave(&pool->lock, flags);
2270         pool->low_water_triggered = 0;
2271         pool->no_free_space = 0;
2272         __requeue_bios(pool);
2273         spin_unlock_irqrestore(&pool->lock, flags);
2274
2275         do_waker(&pool->waker.work);
2276 }
2277
2278 static void pool_postsuspend(struct dm_target *ti)
2279 {
2280         struct pool_c *pt = ti->private;
2281         struct pool *pool = pt->pool;
2282
2283         cancel_delayed_work(&pool->waker);
2284         flush_workqueue(pool->wq);
2285         (void) commit_or_fallback(pool);
2286 }
2287
2288 static int check_arg_count(unsigned argc, unsigned args_required)
2289 {
2290         if (argc != args_required) {
2291                 DMWARN("Message received with %u arguments instead of %u.",
2292                        argc, args_required);
2293                 return -EINVAL;
2294         }
2295
2296         return 0;
2297 }
2298
2299 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2300 {
2301         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2302             *dev_id <= MAX_DEV_ID)
2303                 return 0;
2304
2305         if (warning)
2306                 DMWARN("Message received with invalid device id: %s", arg);
2307
2308         return -EINVAL;
2309 }
2310
2311 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2312 {
2313         dm_thin_id dev_id;
2314         int r;
2315
2316         r = check_arg_count(argc, 2);
2317         if (r)
2318                 return r;
2319
2320         r = read_dev_id(argv[1], &dev_id, 1);
2321         if (r)
2322                 return r;
2323
2324         r = dm_pool_create_thin(pool->pmd, dev_id);
2325         if (r) {
2326                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2327                        argv[1]);
2328                 return r;
2329         }
2330
2331         return 0;
2332 }
2333
2334 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2335 {
2336         dm_thin_id dev_id;
2337         dm_thin_id origin_dev_id;
2338         int r;
2339
2340         r = check_arg_count(argc, 3);
2341         if (r)
2342                 return r;
2343
2344         r = read_dev_id(argv[1], &dev_id, 1);
2345         if (r)
2346                 return r;
2347
2348         r = read_dev_id(argv[2], &origin_dev_id, 1);
2349         if (r)
2350                 return r;
2351
2352         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2353         if (r) {
2354                 DMWARN("Creation of new snapshot %s of device %s failed.",
2355                        argv[1], argv[2]);
2356                 return r;
2357         }
2358
2359         return 0;
2360 }
2361
2362 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2363 {
2364         dm_thin_id dev_id;
2365         int r;
2366
2367         r = check_arg_count(argc, 2);
2368         if (r)
2369                 return r;
2370
2371         r = read_dev_id(argv[1], &dev_id, 1);
2372         if (r)
2373                 return r;
2374
2375         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2376         if (r)
2377                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2378
2379         return r;
2380 }
2381
2382 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2383 {
2384         dm_thin_id old_id, new_id;
2385         int r;
2386
2387         r = check_arg_count(argc, 3);
2388         if (r)
2389                 return r;
2390
2391         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2392                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2393                 return -EINVAL;
2394         }
2395
2396         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2397                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2398                 return -EINVAL;
2399         }
2400
2401         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2402         if (r) {
2403                 DMWARN("Failed to change transaction id from %s to %s.",
2404                        argv[1], argv[2]);
2405                 return r;
2406         }
2407
2408         return 0;
2409 }
2410
2411 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2412 {
2413         int r;
2414
2415         r = check_arg_count(argc, 1);
2416         if (r)
2417                 return r;
2418
2419         (void) commit_or_fallback(pool);
2420
2421         r = dm_pool_reserve_metadata_snap(pool->pmd);
2422         if (r)
2423                 DMWARN("reserve_metadata_snap message failed.");
2424
2425         return r;
2426 }
2427
2428 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2429 {
2430         int r;
2431
2432         r = check_arg_count(argc, 1);
2433         if (r)
2434                 return r;
2435
2436         r = dm_pool_release_metadata_snap(pool->pmd);
2437         if (r)
2438                 DMWARN("release_metadata_snap message failed.");
2439
2440         return r;
2441 }
2442
2443 /*
2444  * Messages supported:
2445  *   create_thin        <dev_id>
2446  *   create_snap        <dev_id> <origin_id>
2447  *   delete             <dev_id>
2448  *   trim               <dev_id> <new_size_in_sectors>
2449  *   set_transaction_id <current_trans_id> <new_trans_id>
2450  *   reserve_metadata_snap
2451  *   release_metadata_snap
2452  */
2453 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2454 {
2455         int r = -EINVAL;
2456         struct pool_c *pt = ti->private;
2457         struct pool *pool = pt->pool;
2458
2459         if (!strcasecmp(argv[0], "create_thin"))
2460                 r = process_create_thin_mesg(argc, argv, pool);
2461
2462         else if (!strcasecmp(argv[0], "create_snap"))
2463                 r = process_create_snap_mesg(argc, argv, pool);
2464
2465         else if (!strcasecmp(argv[0], "delete"))
2466                 r = process_delete_mesg(argc, argv, pool);
2467
2468         else if (!strcasecmp(argv[0], "set_transaction_id"))
2469                 r = process_set_transaction_id_mesg(argc, argv, pool);
2470
2471         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2472                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2473
2474         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2475                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2476
2477         else
2478                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2479
2480         if (!r)
2481                 (void) commit_or_fallback(pool);
2482
2483         return r;
2484 }
2485
2486 static void emit_flags(struct pool_features *pf, char *result,
2487                        unsigned sz, unsigned maxlen)
2488 {
2489         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2490                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2491         DMEMIT("%u ", count);
2492
2493         if (!pf->zero_new_blocks)
2494                 DMEMIT("skip_block_zeroing ");
2495
2496         if (!pf->discard_enabled)
2497                 DMEMIT("ignore_discard ");
2498
2499         if (!pf->discard_passdown)
2500                 DMEMIT("no_discard_passdown ");
2501
2502         if (pf->mode == PM_READ_ONLY)
2503                 DMEMIT("read_only ");
2504 }
2505
2506 /*
2507  * Status line is:
2508  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2509  *    <used data sectors>/<total data sectors> <held metadata root>
2510  */
2511 static void pool_status(struct dm_target *ti, status_type_t type,
2512                         unsigned status_flags, char *result, unsigned maxlen)
2513 {
2514         int r;
2515         unsigned sz = 0;
2516         uint64_t transaction_id;
2517         dm_block_t nr_free_blocks_data;
2518         dm_block_t nr_free_blocks_metadata;
2519         dm_block_t nr_blocks_data;
2520         dm_block_t nr_blocks_metadata;
2521         dm_block_t held_root;
2522         char buf[BDEVNAME_SIZE];
2523         char buf2[BDEVNAME_SIZE];
2524         struct pool_c *pt = ti->private;
2525         struct pool *pool = pt->pool;
2526
2527         switch (type) {
2528         case STATUSTYPE_INFO:
2529                 if (get_pool_mode(pool) == PM_FAIL) {
2530                         DMEMIT("Fail");
2531                         break;
2532                 }
2533
2534                 /* Commit to ensure statistics aren't out-of-date */
2535                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2536                         (void) commit_or_fallback(pool);
2537
2538                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2539                 if (r) {
2540                         DMERR("dm_pool_get_metadata_transaction_id returned %d", r);
2541                         goto err;
2542                 }
2543
2544                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2545                 if (r) {
2546                         DMERR("dm_pool_get_free_metadata_block_count returned %d", r);
2547                         goto err;
2548                 }
2549
2550                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2551                 if (r) {
2552                         DMERR("dm_pool_get_metadata_dev_size returned %d", r);
2553                         goto err;
2554                 }
2555
2556                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2557                 if (r) {
2558                         DMERR("dm_pool_get_free_block_count returned %d", r);
2559                         goto err;
2560                 }
2561
2562                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2563                 if (r) {
2564                         DMERR("dm_pool_get_data_dev_size returned %d", r);
2565                         goto err;
2566                 }
2567
2568                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2569                 if (r) {
2570                         DMERR("dm_pool_get_metadata_snap returned %d", r);
2571                         goto err;
2572                 }
2573
2574                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2575                        (unsigned long long)transaction_id,
2576                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2577                        (unsigned long long)nr_blocks_metadata,
2578                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2579                        (unsigned long long)nr_blocks_data);
2580
2581                 if (held_root)
2582                         DMEMIT("%llu ", held_root);
2583                 else
2584                         DMEMIT("- ");
2585
2586                 if (pool->pf.mode == PM_READ_ONLY)
2587                         DMEMIT("ro ");
2588                 else
2589                         DMEMIT("rw ");
2590
2591                 if (!pool->pf.discard_enabled)
2592                         DMEMIT("ignore_discard");
2593                 else if (pool->pf.discard_passdown)
2594                         DMEMIT("discard_passdown");
2595                 else
2596                         DMEMIT("no_discard_passdown");
2597
2598                 break;
2599
2600         case STATUSTYPE_TABLE:
2601                 DMEMIT("%s %s %lu %llu ",
2602                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2603                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2604                        (unsigned long)pool->sectors_per_block,
2605                        (unsigned long long)pt->low_water_blocks);
2606                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2607                 break;
2608         }
2609         return;
2610
2611 err:
2612         DMEMIT("Error");
2613 }
2614
2615 static int pool_iterate_devices(struct dm_target *ti,
2616                                 iterate_devices_callout_fn fn, void *data)
2617 {
2618         struct pool_c *pt = ti->private;
2619
2620         return fn(ti, pt->data_dev, 0, ti->len, data);
2621 }
2622
2623 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2624                       struct bio_vec *biovec, int max_size)
2625 {
2626         struct pool_c *pt = ti->private;
2627         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2628
2629         if (!q->merge_bvec_fn)
2630                 return max_size;
2631
2632         bvm->bi_bdev = pt->data_dev->bdev;
2633
2634         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2635 }
2636
2637 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2638 {
2639         struct pool *pool = pt->pool;
2640         struct queue_limits *data_limits;
2641
2642         limits->max_discard_sectors = pool->sectors_per_block;
2643
2644         /*
2645          * discard_granularity is just a hint, and not enforced.
2646          */
2647         if (pt->adjusted_pf.discard_passdown) {
2648                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2649                 limits->discard_granularity = data_limits->discard_granularity;
2650         } else
2651                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2652 }
2653
2654 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2655 {
2656         struct pool_c *pt = ti->private;
2657         struct pool *pool = pt->pool;
2658
2659         blk_limits_io_min(limits, 0);
2660         blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2661
2662         /*
2663          * pt->adjusted_pf is a staging area for the actual features to use.
2664          * They get transferred to the live pool in bind_control_target()
2665          * called from pool_preresume().
2666          */
2667         if (!pt->adjusted_pf.discard_enabled)
2668                 return;
2669
2670         disable_passdown_if_not_supported(pt);
2671
2672         set_discard_limits(pt, limits);
2673 }
2674
2675 static struct target_type pool_target = {
2676         .name = "thin-pool",
2677         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2678                     DM_TARGET_IMMUTABLE,
2679         .version = {1, 8, 0},
2680         .module = THIS_MODULE,
2681         .ctr = pool_ctr,
2682         .dtr = pool_dtr,
2683         .map = pool_map,
2684         .postsuspend = pool_postsuspend,
2685         .preresume = pool_preresume,
2686         .resume = pool_resume,
2687         .message = pool_message,
2688         .status = pool_status,
2689         .merge = pool_merge,
2690         .iterate_devices = pool_iterate_devices,
2691         .io_hints = pool_io_hints,
2692 };
2693
2694 /*----------------------------------------------------------------
2695  * Thin target methods
2696  *--------------------------------------------------------------*/
2697 static void thin_dtr(struct dm_target *ti)
2698 {
2699         struct thin_c *tc = ti->private;
2700
2701         mutex_lock(&dm_thin_pool_table.mutex);
2702
2703         __pool_dec(tc->pool);
2704         dm_pool_close_thin_device(tc->td);
2705         dm_put_device(ti, tc->pool_dev);
2706         if (tc->origin_dev)
2707                 dm_put_device(ti, tc->origin_dev);
2708         kfree(tc);
2709
2710         mutex_unlock(&dm_thin_pool_table.mutex);
2711 }
2712
2713 /*
2714  * Thin target parameters:
2715  *
2716  * <pool_dev> <dev_id> [origin_dev]
2717  *
2718  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2719  * dev_id: the internal device identifier
2720  * origin_dev: a device external to the pool that should act as the origin
2721  *
2722  * If the pool device has discards disabled, they get disabled for the thin
2723  * device as well.
2724  */
2725 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2726 {
2727         int r;
2728         struct thin_c *tc;
2729         struct dm_dev *pool_dev, *origin_dev;
2730         struct mapped_device *pool_md;
2731
2732         mutex_lock(&dm_thin_pool_table.mutex);
2733
2734         if (argc != 2 && argc != 3) {
2735                 ti->error = "Invalid argument count";
2736                 r = -EINVAL;
2737                 goto out_unlock;
2738         }
2739
2740         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2741         if (!tc) {
2742                 ti->error = "Out of memory";
2743                 r = -ENOMEM;
2744                 goto out_unlock;
2745         }
2746
2747         if (argc == 3) {
2748                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2749                 if (r) {
2750                         ti->error = "Error opening origin device";
2751                         goto bad_origin_dev;
2752                 }
2753                 tc->origin_dev = origin_dev;
2754         }
2755
2756         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2757         if (r) {
2758                 ti->error = "Error opening pool device";
2759                 goto bad_pool_dev;
2760         }
2761         tc->pool_dev = pool_dev;
2762
2763         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2764                 ti->error = "Invalid device id";
2765                 r = -EINVAL;
2766                 goto bad_common;
2767         }
2768
2769         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2770         if (!pool_md) {
2771                 ti->error = "Couldn't get pool mapped device";
2772                 r = -EINVAL;
2773                 goto bad_common;
2774         }
2775
2776         tc->pool = __pool_table_lookup(pool_md);
2777         if (!tc->pool) {
2778                 ti->error = "Couldn't find pool object";
2779                 r = -EINVAL;
2780                 goto bad_pool_lookup;
2781         }
2782         __pool_inc(tc->pool);
2783
2784         if (get_pool_mode(tc->pool) == PM_FAIL) {
2785                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2786                 goto bad_thin_open;
2787         }
2788
2789         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2790         if (r) {
2791                 ti->error = "Couldn't open thin internal device";
2792                 goto bad_thin_open;
2793         }
2794
2795         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2796         if (r)
2797                 goto bad_thin_open;
2798
2799         ti->num_flush_bios = 1;
2800         ti->flush_supported = true;
2801         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2802
2803         /* In case the pool supports discards, pass them on. */
2804         if (tc->pool->pf.discard_enabled) {
2805                 ti->discards_supported = true;
2806                 ti->num_discard_bios = 1;
2807                 ti->discard_zeroes_data_unsupported = true;
2808                 /* Discard bios must be split on a block boundary */
2809                 ti->split_discard_bios = true;
2810         }
2811
2812         dm_put(pool_md);
2813
2814         mutex_unlock(&dm_thin_pool_table.mutex);
2815
2816         return 0;
2817
2818 bad_thin_open:
2819         __pool_dec(tc->pool);
2820 bad_pool_lookup:
2821         dm_put(pool_md);
2822 bad_common:
2823         dm_put_device(ti, tc->pool_dev);
2824 bad_pool_dev:
2825         if (tc->origin_dev)
2826                 dm_put_device(ti, tc->origin_dev);
2827 bad_origin_dev:
2828         kfree(tc);
2829 out_unlock:
2830         mutex_unlock(&dm_thin_pool_table.mutex);
2831
2832         return r;
2833 }
2834
2835 static int thin_map(struct dm_target *ti, struct bio *bio)
2836 {
2837         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2838
2839         return thin_bio_map(ti, bio);
2840 }
2841
2842 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2843 {
2844         unsigned long flags;
2845         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2846         struct list_head work;
2847         struct dm_thin_new_mapping *m, *tmp;
2848         struct pool *pool = h->tc->pool;
2849
2850         if (h->shared_read_entry) {
2851                 INIT_LIST_HEAD(&work);
2852                 dm_deferred_entry_dec(h->shared_read_entry, &work);
2853
2854                 spin_lock_irqsave(&pool->lock, flags);
2855                 list_for_each_entry_safe(m, tmp, &work, list) {
2856                         list_del(&m->list);
2857                         m->quiesced = 1;
2858                         __maybe_add_mapping(m);
2859                 }
2860                 spin_unlock_irqrestore(&pool->lock, flags);
2861         }
2862
2863         if (h->all_io_entry) {
2864                 INIT_LIST_HEAD(&work);
2865                 dm_deferred_entry_dec(h->all_io_entry, &work);
2866                 if (!list_empty(&work)) {
2867                         spin_lock_irqsave(&pool->lock, flags);
2868                         list_for_each_entry_safe(m, tmp, &work, list)
2869                                 list_add(&m->list, &pool->prepared_discards);
2870                         spin_unlock_irqrestore(&pool->lock, flags);
2871                         wake_worker(pool);
2872                 }
2873         }
2874
2875         return 0;
2876 }
2877
2878 static void thin_postsuspend(struct dm_target *ti)
2879 {
2880         if (dm_noflush_suspending(ti))
2881                 requeue_io((struct thin_c *)ti->private);
2882 }
2883
2884 /*
2885  * <nr mapped sectors> <highest mapped sector>
2886  */
2887 static void thin_status(struct dm_target *ti, status_type_t type,
2888                         unsigned status_flags, char *result, unsigned maxlen)
2889 {
2890         int r;
2891         ssize_t sz = 0;
2892         dm_block_t mapped, highest;
2893         char buf[BDEVNAME_SIZE];
2894         struct thin_c *tc = ti->private;
2895
2896         if (get_pool_mode(tc->pool) == PM_FAIL) {
2897                 DMEMIT("Fail");
2898                 return;
2899         }
2900
2901         if (!tc->td)
2902                 DMEMIT("-");
2903         else {
2904                 switch (type) {
2905                 case STATUSTYPE_INFO:
2906                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2907                         if (r) {
2908                                 DMERR("dm_thin_get_mapped_count returned %d", r);
2909                                 goto err;
2910                         }
2911
2912                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2913                         if (r < 0) {
2914                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2915                                 goto err;
2916                         }
2917
2918                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2919                         if (r)
2920                                 DMEMIT("%llu", ((highest + 1) *
2921                                                 tc->pool->sectors_per_block) - 1);
2922                         else
2923                                 DMEMIT("-");
2924                         break;
2925
2926                 case STATUSTYPE_TABLE:
2927                         DMEMIT("%s %lu",
2928                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2929                                (unsigned long) tc->dev_id);
2930                         if (tc->origin_dev)
2931                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2932                         break;
2933                 }
2934         }
2935
2936         return;
2937
2938 err:
2939         DMEMIT("Error");
2940 }
2941
2942 static int thin_iterate_devices(struct dm_target *ti,
2943                                 iterate_devices_callout_fn fn, void *data)
2944 {
2945         sector_t blocks;
2946         struct thin_c *tc = ti->private;
2947         struct pool *pool = tc->pool;
2948
2949         /*
2950          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2951          * we follow a more convoluted path through to the pool's target.
2952          */
2953         if (!pool->ti)
2954                 return 0;       /* nothing is bound */
2955
2956         blocks = pool->ti->len;
2957         (void) sector_div(blocks, pool->sectors_per_block);
2958         if (blocks)
2959                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2960
2961         return 0;
2962 }
2963
2964 static struct target_type thin_target = {
2965         .name = "thin",
2966         .version = {1, 8, 0},
2967         .module = THIS_MODULE,
2968         .ctr = thin_ctr,
2969         .dtr = thin_dtr,
2970         .map = thin_map,
2971         .end_io = thin_endio,
2972         .postsuspend = thin_postsuspend,
2973         .status = thin_status,
2974         .iterate_devices = thin_iterate_devices,
2975 };
2976
2977 /*----------------------------------------------------------------*/
2978
2979 static int __init dm_thin_init(void)
2980 {
2981         int r;
2982
2983         pool_table_init();
2984
2985         r = dm_register_target(&thin_target);
2986         if (r)
2987                 return r;
2988
2989         r = dm_register_target(&pool_target);
2990         if (r)
2991                 goto bad_pool_target;
2992
2993         r = -ENOMEM;
2994
2995         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2996         if (!_new_mapping_cache)
2997                 goto bad_new_mapping_cache;
2998
2999         return 0;
3000
3001 bad_new_mapping_cache:
3002         dm_unregister_target(&pool_target);
3003 bad_pool_target:
3004         dm_unregister_target(&thin_target);
3005
3006         return r;
3007 }
3008
3009 static void dm_thin_exit(void)
3010 {
3011         dm_unregister_target(&thin_target);
3012         dm_unregister_target(&pool_target);
3013
3014         kmem_cache_destroy(_new_mapping_cache);
3015 }
3016
3017 module_init(dm_thin_init);
3018 module_exit(dm_thin_exit);
3019
3020 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3021 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3022 MODULE_LICENSE("GPL");