Merge tag 'v3.10.33' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18
19 #define DM_MSG_PREFIX   "thin"
20
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30                 "A percentage of time allocated for copy on write");
31
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101
102 /*----------------------------------------------------------------*/
103
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108                            dm_block_t b, struct dm_cell_key *key)
109 {
110         key->virtual = 0;
111         key->dev = dm_thin_dev_id(td);
112         key->block = b;
113 }
114
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116                               struct dm_cell_key *key)
117 {
118         key->virtual = 1;
119         key->dev = dm_thin_dev_id(td);
120         key->block = b;
121 }
122
123 /*----------------------------------------------------------------*/
124
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136         PM_WRITE,               /* metadata may be changed */
137         PM_READ_ONLY,           /* metadata may not be changed */
138         PM_FAIL,                /* all I/O fails */
139 };
140
141 struct pool_features {
142         enum pool_mode mode;
143
144         bool zero_new_blocks:1;
145         bool discard_enabled:1;
146         bool discard_passdown:1;
147 };
148
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152
153 struct pool {
154         struct list_head list;
155         struct dm_target *ti;   /* Only set if a pool target is bound */
156
157         struct mapped_device *pool_md;
158         struct block_device *md_dev;
159         struct dm_pool_metadata *pmd;
160
161         dm_block_t low_water_blocks;
162         uint32_t sectors_per_block;
163         int sectors_per_block_shift;
164
165         struct pool_features pf;
166         unsigned low_water_triggered:1; /* A dm event has been sent */
167         unsigned no_free_space:1;       /* A -ENOSPC warning has been issued */
168
169         struct dm_bio_prison *prison;
170         struct dm_kcopyd_client *copier;
171
172         struct workqueue_struct *wq;
173         struct work_struct worker;
174         struct delayed_work waker;
175
176         unsigned long last_commit_jiffies;
177         unsigned ref_count;
178
179         spinlock_t lock;
180         struct bio_list deferred_bios;
181         struct bio_list deferred_flush_bios;
182         struct list_head prepared_mappings;
183         struct list_head prepared_discards;
184
185         struct bio_list retry_on_resume_list;
186
187         struct dm_deferred_set *shared_read_ds;
188         struct dm_deferred_set *all_io_ds;
189
190         struct dm_thin_new_mapping *next_mapping;
191         mempool_t *mapping_pool;
192
193         process_bio_fn process_bio;
194         process_bio_fn process_discard;
195
196         process_mapping_fn process_prepared_mapping;
197         process_mapping_fn process_prepared_discard;
198 };
199
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202
203 /*
204  * Target context for a pool.
205  */
206 struct pool_c {
207         struct dm_target *ti;
208         struct pool *pool;
209         struct dm_dev *data_dev;
210         struct dm_dev *metadata_dev;
211         struct dm_target_callbacks callbacks;
212
213         dm_block_t low_water_blocks;
214         struct pool_features requested_pf; /* Features requested during table load */
215         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216 };
217
218 /*
219  * Target context for a thin.
220  */
221 struct thin_c {
222         struct dm_dev *pool_dev;
223         struct dm_dev *origin_dev;
224         dm_thin_id dev_id;
225
226         struct pool *pool;
227         struct dm_thin_device *td;
228 };
229
230 /*----------------------------------------------------------------*/
231
232 /*
233  * wake_worker() is used when new work is queued and when pool_resume is
234  * ready to continue deferred IO processing.
235  */
236 static void wake_worker(struct pool *pool)
237 {
238         queue_work(pool->wq, &pool->worker);
239 }
240
241 /*----------------------------------------------------------------*/
242
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244                       struct dm_bio_prison_cell **cell_result)
245 {
246         int r;
247         struct dm_bio_prison_cell *cell_prealloc;
248
249         /*
250          * Allocate a cell from the prison's mempool.
251          * This might block but it can't fail.
252          */
253         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254
255         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256         if (r)
257                 /*
258                  * We reused an old cell; we can get rid of
259                  * the new one.
260                  */
261                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262
263         return r;
264 }
265
266 static void cell_release(struct pool *pool,
267                          struct dm_bio_prison_cell *cell,
268                          struct bio_list *bios)
269 {
270         dm_cell_release(pool->prison, cell, bios);
271         dm_bio_prison_free_cell(pool->prison, cell);
272 }
273
274 static void cell_release_no_holder(struct pool *pool,
275                                    struct dm_bio_prison_cell *cell,
276                                    struct bio_list *bios)
277 {
278         dm_cell_release_no_holder(pool->prison, cell, bios);
279         dm_bio_prison_free_cell(pool->prison, cell);
280 }
281
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283                                          struct dm_bio_prison_cell *cell)
284 {
285         struct pool *pool = tc->pool;
286         unsigned long flags;
287
288         spin_lock_irqsave(&pool->lock, flags);
289         dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290         spin_unlock_irqrestore(&pool->lock, flags);
291
292         wake_worker(pool);
293 }
294
295 static void cell_error(struct pool *pool,
296                        struct dm_bio_prison_cell *cell)
297 {
298         dm_cell_error(pool->prison, cell);
299         dm_bio_prison_free_cell(pool->prison, cell);
300 }
301
302 /*----------------------------------------------------------------*/
303
304 /*
305  * A global list of pools that uses a struct mapped_device as a key.
306  */
307 static struct dm_thin_pool_table {
308         struct mutex mutex;
309         struct list_head pools;
310 } dm_thin_pool_table;
311
312 static void pool_table_init(void)
313 {
314         mutex_init(&dm_thin_pool_table.mutex);
315         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317
318 static void __pool_table_insert(struct pool *pool)
319 {
320         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321         list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323
324 static void __pool_table_remove(struct pool *pool)
325 {
326         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327         list_del(&pool->list);
328 }
329
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332         struct pool *pool = NULL, *tmp;
333
334         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335
336         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337                 if (tmp->pool_md == md) {
338                         pool = tmp;
339                         break;
340                 }
341         }
342
343         return pool;
344 }
345
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348         struct pool *pool = NULL, *tmp;
349
350         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351
352         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353                 if (tmp->md_dev == md_dev) {
354                         pool = tmp;
355                         break;
356                 }
357         }
358
359         return pool;
360 }
361
362 /*----------------------------------------------------------------*/
363
364 struct dm_thin_endio_hook {
365         struct thin_c *tc;
366         struct dm_deferred_entry *shared_read_entry;
367         struct dm_deferred_entry *all_io_entry;
368         struct dm_thin_new_mapping *overwrite_mapping;
369 };
370
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373         struct bio *bio;
374         struct bio_list bios;
375
376         bio_list_init(&bios);
377         bio_list_merge(&bios, master);
378         bio_list_init(master);
379
380         while ((bio = bio_list_pop(&bios))) {
381                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382
383                 if (h->tc == tc)
384                         bio_endio(bio, DM_ENDIO_REQUEUE);
385                 else
386                         bio_list_add(master, bio);
387         }
388 }
389
390 static void requeue_io(struct thin_c *tc)
391 {
392         struct pool *pool = tc->pool;
393         unsigned long flags;
394
395         spin_lock_irqsave(&pool->lock, flags);
396         __requeue_bio_list(tc, &pool->deferred_bios);
397         __requeue_bio_list(tc, &pool->retry_on_resume_list);
398         spin_unlock_irqrestore(&pool->lock, flags);
399 }
400
401 /*
402  * This section of code contains the logic for processing a thin device's IO.
403  * Much of the code depends on pool object resources (lists, workqueues, etc)
404  * but most is exclusively called from the thin target rather than the thin-pool
405  * target.
406  */
407
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410         return pool->sectors_per_block_shift >= 0;
411 }
412
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415         struct pool *pool = tc->pool;
416         sector_t block_nr = bio->bi_sector;
417
418         if (block_size_is_power_of_two(pool))
419                 block_nr >>= pool->sectors_per_block_shift;
420         else
421                 (void) sector_div(block_nr, pool->sectors_per_block);
422
423         return block_nr;
424 }
425
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428         struct pool *pool = tc->pool;
429         sector_t bi_sector = bio->bi_sector;
430
431         bio->bi_bdev = tc->pool_dev->bdev;
432         if (block_size_is_power_of_two(pool))
433                 bio->bi_sector = (block << pool->sectors_per_block_shift) |
434                                 (bi_sector & (pool->sectors_per_block - 1));
435         else
436                 bio->bi_sector = (block * pool->sectors_per_block) +
437                                  sector_div(bi_sector, pool->sectors_per_block);
438 }
439
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442         bio->bi_bdev = tc->origin_dev->bdev;
443 }
444
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448                 dm_thin_changed_this_transaction(tc->td);
449 }
450
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453         struct dm_thin_endio_hook *h;
454
455         if (bio->bi_rw & REQ_DISCARD)
456                 return;
457
458         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464         struct pool *pool = tc->pool;
465         unsigned long flags;
466
467         if (!bio_triggers_commit(tc, bio)) {
468                 generic_make_request(bio);
469                 return;
470         }
471
472         /*
473          * Complete bio with an error if earlier I/O caused changes to
474          * the metadata that can't be committed e.g, due to I/O errors
475          * on the metadata device.
476          */
477         if (dm_thin_aborted_changes(tc->td)) {
478                 bio_io_error(bio);
479                 return;
480         }
481
482         /*
483          * Batch together any bios that trigger commits and then issue a
484          * single commit for them in process_deferred_bios().
485          */
486         spin_lock_irqsave(&pool->lock, flags);
487         bio_list_add(&pool->deferred_flush_bios, bio);
488         spin_unlock_irqrestore(&pool->lock, flags);
489 }
490
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493         remap_to_origin(tc, bio);
494         issue(tc, bio);
495 }
496
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498                             dm_block_t block)
499 {
500         remap(tc, bio, block);
501         issue(tc, bio);
502 }
503
504 /*----------------------------------------------------------------*/
505
506 /*
507  * Bio endio functions.
508  */
509 struct dm_thin_new_mapping {
510         struct list_head list;
511
512         unsigned quiesced:1;
513         unsigned prepared:1;
514         unsigned pass_discard:1;
515         unsigned definitely_not_shared:1;
516
517         struct thin_c *tc;
518         dm_block_t virt_block;
519         dm_block_t data_block;
520         struct dm_bio_prison_cell *cell, *cell2;
521         int err;
522
523         /*
524          * If the bio covers the whole area of a block then we can avoid
525          * zeroing or copying.  Instead this bio is hooked.  The bio will
526          * still be in the cell, so care has to be taken to avoid issuing
527          * the bio twice.
528          */
529         struct bio *bio;
530         bio_end_io_t *saved_bi_end_io;
531 };
532
533 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
534 {
535         struct pool *pool = m->tc->pool;
536
537         if (m->quiesced && m->prepared) {
538                 list_add(&m->list, &pool->prepared_mappings);
539                 wake_worker(pool);
540         }
541 }
542
543 static void copy_complete(int read_err, unsigned long write_err, void *context)
544 {
545         unsigned long flags;
546         struct dm_thin_new_mapping *m = context;
547         struct pool *pool = m->tc->pool;
548
549         m->err = read_err || write_err ? -EIO : 0;
550
551         spin_lock_irqsave(&pool->lock, flags);
552         m->prepared = 1;
553         __maybe_add_mapping(m);
554         spin_unlock_irqrestore(&pool->lock, flags);
555 }
556
557 static void overwrite_endio(struct bio *bio, int err)
558 {
559         unsigned long flags;
560         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
561         struct dm_thin_new_mapping *m = h->overwrite_mapping;
562         struct pool *pool = m->tc->pool;
563
564         m->err = err;
565
566         spin_lock_irqsave(&pool->lock, flags);
567         m->prepared = 1;
568         __maybe_add_mapping(m);
569         spin_unlock_irqrestore(&pool->lock, flags);
570 }
571
572 /*----------------------------------------------------------------*/
573
574 /*
575  * Workqueue.
576  */
577
578 /*
579  * Prepared mapping jobs.
580  */
581
582 /*
583  * This sends the bios in the cell back to the deferred_bios list.
584  */
585 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
586 {
587         struct pool *pool = tc->pool;
588         unsigned long flags;
589
590         spin_lock_irqsave(&pool->lock, flags);
591         cell_release(pool, cell, &pool->deferred_bios);
592         spin_unlock_irqrestore(&tc->pool->lock, flags);
593
594         wake_worker(pool);
595 }
596
597 /*
598  * Same as cell_defer above, except it omits the original holder of the cell.
599  */
600 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
601 {
602         struct pool *pool = tc->pool;
603         unsigned long flags;
604
605         spin_lock_irqsave(&pool->lock, flags);
606         cell_release_no_holder(pool, cell, &pool->deferred_bios);
607         spin_unlock_irqrestore(&pool->lock, flags);
608
609         wake_worker(pool);
610 }
611
612 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
613 {
614         if (m->bio)
615                 m->bio->bi_end_io = m->saved_bi_end_io;
616         cell_error(m->tc->pool, m->cell);
617         list_del(&m->list);
618         mempool_free(m, m->tc->pool->mapping_pool);
619 }
620
621 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
622 {
623         struct thin_c *tc = m->tc;
624         struct pool *pool = tc->pool;
625         struct bio *bio;
626         int r;
627
628         bio = m->bio;
629         if (bio)
630                 bio->bi_end_io = m->saved_bi_end_io;
631
632         if (m->err) {
633                 cell_error(pool, m->cell);
634                 goto out;
635         }
636
637         /*
638          * Commit the prepared block into the mapping btree.
639          * Any I/O for this block arriving after this point will get
640          * remapped to it directly.
641          */
642         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
643         if (r) {
644                 DMERR_LIMIT("%s: dm_thin_insert_block() failed: error = %d",
645                             dm_device_name(pool->pool_md), r);
646                 set_pool_mode(pool, PM_READ_ONLY);
647                 cell_error(pool, m->cell);
648                 goto out;
649         }
650
651         /*
652          * Release any bios held while the block was being provisioned.
653          * If we are processing a write bio that completely covers the block,
654          * we already processed it so can ignore it now when processing
655          * the bios in the cell.
656          */
657         if (bio) {
658                 cell_defer_no_holder(tc, m->cell);
659                 bio_endio(bio, 0);
660         } else
661                 cell_defer(tc, m->cell);
662
663 out:
664         list_del(&m->list);
665         mempool_free(m, pool->mapping_pool);
666 }
667
668 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
669 {
670         struct thin_c *tc = m->tc;
671
672         bio_io_error(m->bio);
673         cell_defer_no_holder(tc, m->cell);
674         cell_defer_no_holder(tc, m->cell2);
675         mempool_free(m, tc->pool->mapping_pool);
676 }
677
678 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
679 {
680         struct thin_c *tc = m->tc;
681
682         inc_all_io_entry(tc->pool, m->bio);
683         cell_defer_no_holder(tc, m->cell);
684         cell_defer_no_holder(tc, m->cell2);
685
686         if (m->pass_discard)
687                 if (m->definitely_not_shared)
688                         remap_and_issue(tc, m->bio, m->data_block);
689                 else {
690                         bool used = false;
691                         if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
692                                 bio_endio(m->bio, 0);
693                         else
694                                 remap_and_issue(tc, m->bio, m->data_block);
695                 }
696         else
697                 bio_endio(m->bio, 0);
698
699         mempool_free(m, tc->pool->mapping_pool);
700 }
701
702 static void process_prepared_discard(struct dm_thin_new_mapping *m)
703 {
704         int r;
705         struct thin_c *tc = m->tc;
706
707         r = dm_thin_remove_block(tc->td, m->virt_block);
708         if (r)
709                 DMERR_LIMIT("dm_thin_remove_block() failed");
710
711         process_prepared_discard_passdown(m);
712 }
713
714 static void process_prepared(struct pool *pool, struct list_head *head,
715                              process_mapping_fn *fn)
716 {
717         unsigned long flags;
718         struct list_head maps;
719         struct dm_thin_new_mapping *m, *tmp;
720
721         INIT_LIST_HEAD(&maps);
722         spin_lock_irqsave(&pool->lock, flags);
723         list_splice_init(head, &maps);
724         spin_unlock_irqrestore(&pool->lock, flags);
725
726         list_for_each_entry_safe(m, tmp, &maps, list)
727                 (*fn)(m);
728 }
729
730 /*
731  * Deferred bio jobs.
732  */
733 static int io_overlaps_block(struct pool *pool, struct bio *bio)
734 {
735         return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
736 }
737
738 static int io_overwrites_block(struct pool *pool, struct bio *bio)
739 {
740         return (bio_data_dir(bio) == WRITE) &&
741                 io_overlaps_block(pool, bio);
742 }
743
744 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
745                                bio_end_io_t *fn)
746 {
747         *save = bio->bi_end_io;
748         bio->bi_end_io = fn;
749 }
750
751 static int ensure_next_mapping(struct pool *pool)
752 {
753         if (pool->next_mapping)
754                 return 0;
755
756         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
757
758         return pool->next_mapping ? 0 : -ENOMEM;
759 }
760
761 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
762 {
763         struct dm_thin_new_mapping *m = pool->next_mapping;
764
765         BUG_ON(!pool->next_mapping);
766
767         memset(m, 0, sizeof(struct dm_thin_new_mapping));
768         INIT_LIST_HEAD(&m->list);
769         m->bio = NULL;
770
771         pool->next_mapping = NULL;
772
773         return m;
774 }
775
776 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
777                           struct dm_dev *origin, dm_block_t data_origin,
778                           dm_block_t data_dest,
779                           struct dm_bio_prison_cell *cell, struct bio *bio)
780 {
781         int r;
782         struct pool *pool = tc->pool;
783         struct dm_thin_new_mapping *m = get_next_mapping(pool);
784
785         m->tc = tc;
786         m->virt_block = virt_block;
787         m->data_block = data_dest;
788         m->cell = cell;
789
790         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
791                 m->quiesced = 1;
792
793         /*
794          * IO to pool_dev remaps to the pool target's data_dev.
795          *
796          * If the whole block of data is being overwritten, we can issue the
797          * bio immediately. Otherwise we use kcopyd to clone the data first.
798          */
799         if (io_overwrites_block(pool, bio)) {
800                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
801
802                 h->overwrite_mapping = m;
803                 m->bio = bio;
804                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
805                 inc_all_io_entry(pool, bio);
806                 remap_and_issue(tc, bio, data_dest);
807         } else {
808                 struct dm_io_region from, to;
809
810                 from.bdev = origin->bdev;
811                 from.sector = data_origin * pool->sectors_per_block;
812                 from.count = pool->sectors_per_block;
813
814                 to.bdev = tc->pool_dev->bdev;
815                 to.sector = data_dest * pool->sectors_per_block;
816                 to.count = pool->sectors_per_block;
817
818                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
819                                    0, copy_complete, m);
820                 if (r < 0) {
821                         mempool_free(m, pool->mapping_pool);
822                         DMERR_LIMIT("dm_kcopyd_copy() failed");
823                         cell_error(pool, cell);
824                 }
825         }
826 }
827
828 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
829                                    dm_block_t data_origin, dm_block_t data_dest,
830                                    struct dm_bio_prison_cell *cell, struct bio *bio)
831 {
832         schedule_copy(tc, virt_block, tc->pool_dev,
833                       data_origin, data_dest, cell, bio);
834 }
835
836 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
837                                    dm_block_t data_dest,
838                                    struct dm_bio_prison_cell *cell, struct bio *bio)
839 {
840         schedule_copy(tc, virt_block, tc->origin_dev,
841                       virt_block, data_dest, cell, bio);
842 }
843
844 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
845                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
846                           struct bio *bio)
847 {
848         struct pool *pool = tc->pool;
849         struct dm_thin_new_mapping *m = get_next_mapping(pool);
850
851         m->quiesced = 1;
852         m->prepared = 0;
853         m->tc = tc;
854         m->virt_block = virt_block;
855         m->data_block = data_block;
856         m->cell = cell;
857
858         /*
859          * If the whole block of data is being overwritten or we are not
860          * zeroing pre-existing data, we can issue the bio immediately.
861          * Otherwise we use kcopyd to zero the data first.
862          */
863         if (!pool->pf.zero_new_blocks)
864                 process_prepared_mapping(m);
865
866         else if (io_overwrites_block(pool, bio)) {
867                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
868
869                 h->overwrite_mapping = m;
870                 m->bio = bio;
871                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
872                 inc_all_io_entry(pool, bio);
873                 remap_and_issue(tc, bio, data_block);
874         } else {
875                 int r;
876                 struct dm_io_region to;
877
878                 to.bdev = tc->pool_dev->bdev;
879                 to.sector = data_block * pool->sectors_per_block;
880                 to.count = pool->sectors_per_block;
881
882                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
883                 if (r < 0) {
884                         mempool_free(m, pool->mapping_pool);
885                         DMERR_LIMIT("dm_kcopyd_zero() failed");
886                         cell_error(pool, cell);
887                 }
888         }
889 }
890
891 static int commit(struct pool *pool)
892 {
893         int r;
894
895         r = dm_pool_commit_metadata(pool->pmd);
896         if (r)
897                 DMERR_LIMIT("commit failed: error = %d", r);
898
899         return r;
900 }
901
902 /*
903  * A non-zero return indicates read_only or fail_io mode.
904  * Many callers don't care about the return value.
905  */
906 static int commit_or_fallback(struct pool *pool)
907 {
908         int r;
909
910         if (get_pool_mode(pool) != PM_WRITE)
911                 return -EINVAL;
912
913         r = commit(pool);
914         if (r)
915                 set_pool_mode(pool, PM_READ_ONLY);
916
917         return r;
918 }
919
920 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
921 {
922         int r;
923         dm_block_t free_blocks;
924         unsigned long flags;
925         struct pool *pool = tc->pool;
926
927         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
928         if (r)
929                 return r;
930
931         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
932                 DMWARN("%s: reached low water mark for data device: sending event.",
933                        dm_device_name(pool->pool_md));
934                 spin_lock_irqsave(&pool->lock, flags);
935                 pool->low_water_triggered = 1;
936                 spin_unlock_irqrestore(&pool->lock, flags);
937                 dm_table_event(pool->ti->table);
938         }
939
940         if (!free_blocks) {
941                 if (pool->no_free_space)
942                         return -ENOSPC;
943                 else {
944                         /*
945                          * Try to commit to see if that will free up some
946                          * more space.
947                          */
948                         (void) commit_or_fallback(pool);
949
950                         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
951                         if (r)
952                                 return r;
953
954                         /*
955                          * If we still have no space we set a flag to avoid
956                          * doing all this checking and return -ENOSPC.
957                          */
958                         if (!free_blocks) {
959                                 DMWARN("%s: no free space available.",
960                                        dm_device_name(pool->pool_md));
961                                 spin_lock_irqsave(&pool->lock, flags);
962                                 pool->no_free_space = 1;
963                                 spin_unlock_irqrestore(&pool->lock, flags);
964                                 return -ENOSPC;
965                         }
966                 }
967         }
968
969         r = dm_pool_alloc_data_block(pool->pmd, result);
970         if (r)
971                 return r;
972
973         return 0;
974 }
975
976 /*
977  * If we have run out of space, queue bios until the device is
978  * resumed, presumably after having been reloaded with more space.
979  */
980 static void retry_on_resume(struct bio *bio)
981 {
982         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
983         struct thin_c *tc = h->tc;
984         struct pool *pool = tc->pool;
985         unsigned long flags;
986
987         spin_lock_irqsave(&pool->lock, flags);
988         bio_list_add(&pool->retry_on_resume_list, bio);
989         spin_unlock_irqrestore(&pool->lock, flags);
990 }
991
992 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
993 {
994         struct bio *bio;
995         struct bio_list bios;
996
997         bio_list_init(&bios);
998         cell_release(pool, cell, &bios);
999
1000         while ((bio = bio_list_pop(&bios)))
1001                 retry_on_resume(bio);
1002 }
1003
1004 static void process_discard(struct thin_c *tc, struct bio *bio)
1005 {
1006         int r;
1007         unsigned long flags;
1008         struct pool *pool = tc->pool;
1009         struct dm_bio_prison_cell *cell, *cell2;
1010         struct dm_cell_key key, key2;
1011         dm_block_t block = get_bio_block(tc, bio);
1012         struct dm_thin_lookup_result lookup_result;
1013         struct dm_thin_new_mapping *m;
1014
1015         build_virtual_key(tc->td, block, &key);
1016         if (bio_detain(tc->pool, &key, bio, &cell))
1017                 return;
1018
1019         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1020         switch (r) {
1021         case 0:
1022                 /*
1023                  * Check nobody is fiddling with this pool block.  This can
1024                  * happen if someone's in the process of breaking sharing
1025                  * on this block.
1026                  */
1027                 build_data_key(tc->td, lookup_result.block, &key2);
1028                 if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1029                         cell_defer_no_holder(tc, cell);
1030                         break;
1031                 }
1032
1033                 if (io_overlaps_block(pool, bio)) {
1034                         /*
1035                          * IO may still be going to the destination block.  We must
1036                          * quiesce before we can do the removal.
1037                          */
1038                         m = get_next_mapping(pool);
1039                         m->tc = tc;
1040                         m->pass_discard = pool->pf.discard_passdown;
1041                         m->definitely_not_shared = !lookup_result.shared;
1042                         m->virt_block = block;
1043                         m->data_block = lookup_result.block;
1044                         m->cell = cell;
1045                         m->cell2 = cell2;
1046                         m->bio = bio;
1047
1048                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1049                                 spin_lock_irqsave(&pool->lock, flags);
1050                                 list_add(&m->list, &pool->prepared_discards);
1051                                 spin_unlock_irqrestore(&pool->lock, flags);
1052                                 wake_worker(pool);
1053                         }
1054                 } else {
1055                         inc_all_io_entry(pool, bio);
1056                         cell_defer_no_holder(tc, cell);
1057                         cell_defer_no_holder(tc, cell2);
1058
1059                         /*
1060                          * The DM core makes sure that the discard doesn't span
1061                          * a block boundary.  So we submit the discard of a
1062                          * partial block appropriately.
1063                          */
1064                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1065                                 remap_and_issue(tc, bio, lookup_result.block);
1066                         else
1067                                 bio_endio(bio, 0);
1068                 }
1069                 break;
1070
1071         case -ENODATA:
1072                 /*
1073                  * It isn't provisioned, just forget it.
1074                  */
1075                 cell_defer_no_holder(tc, cell);
1076                 bio_endio(bio, 0);
1077                 break;
1078
1079         default:
1080                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1081                             __func__, r);
1082                 cell_defer_no_holder(tc, cell);
1083                 bio_io_error(bio);
1084                 break;
1085         }
1086 }
1087
1088 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1089                           struct dm_cell_key *key,
1090                           struct dm_thin_lookup_result *lookup_result,
1091                           struct dm_bio_prison_cell *cell)
1092 {
1093         int r;
1094         dm_block_t data_block;
1095
1096         r = alloc_data_block(tc, &data_block);
1097         switch (r) {
1098         case 0:
1099                 schedule_internal_copy(tc, block, lookup_result->block,
1100                                        data_block, cell, bio);
1101                 break;
1102
1103         case -ENOSPC:
1104                 no_space(tc->pool, cell);
1105                 break;
1106
1107         default:
1108                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1109                             __func__, r);
1110                 cell_error(tc->pool, cell);
1111                 break;
1112         }
1113 }
1114
1115 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1116                                dm_block_t block,
1117                                struct dm_thin_lookup_result *lookup_result)
1118 {
1119         struct dm_bio_prison_cell *cell;
1120         struct pool *pool = tc->pool;
1121         struct dm_cell_key key;
1122
1123         /*
1124          * If cell is already occupied, then sharing is already in the process
1125          * of being broken so we have nothing further to do here.
1126          */
1127         build_data_key(tc->td, lookup_result->block, &key);
1128         if (bio_detain(pool, &key, bio, &cell))
1129                 return;
1130
1131         if (bio_data_dir(bio) == WRITE && bio->bi_size)
1132                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1133         else {
1134                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1135
1136                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1137                 inc_all_io_entry(pool, bio);
1138                 cell_defer_no_holder(tc, cell);
1139
1140                 remap_and_issue(tc, bio, lookup_result->block);
1141         }
1142 }
1143
1144 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1145                             struct dm_bio_prison_cell *cell)
1146 {
1147         int r;
1148         dm_block_t data_block;
1149         struct pool *pool = tc->pool;
1150
1151         /*
1152          * Remap empty bios (flushes) immediately, without provisioning.
1153          */
1154         if (!bio->bi_size) {
1155                 inc_all_io_entry(pool, bio);
1156                 cell_defer_no_holder(tc, cell);
1157
1158                 remap_and_issue(tc, bio, 0);
1159                 return;
1160         }
1161
1162         /*
1163          * Fill read bios with zeroes and complete them immediately.
1164          */
1165         if (bio_data_dir(bio) == READ) {
1166                 zero_fill_bio(bio);
1167                 cell_defer_no_holder(tc, cell);
1168                 bio_endio(bio, 0);
1169                 return;
1170         }
1171
1172         r = alloc_data_block(tc, &data_block);
1173         switch (r) {
1174         case 0:
1175                 if (tc->origin_dev)
1176                         schedule_external_copy(tc, block, data_block, cell, bio);
1177                 else
1178                         schedule_zero(tc, block, data_block, cell, bio);
1179                 break;
1180
1181         case -ENOSPC:
1182                 no_space(pool, cell);
1183                 break;
1184
1185         default:
1186                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1187                             __func__, r);
1188                 set_pool_mode(pool, PM_READ_ONLY);
1189                 cell_error(pool, cell);
1190                 break;
1191         }
1192 }
1193
1194 static void process_bio(struct thin_c *tc, struct bio *bio)
1195 {
1196         int r;
1197         struct pool *pool = tc->pool;
1198         dm_block_t block = get_bio_block(tc, bio);
1199         struct dm_bio_prison_cell *cell;
1200         struct dm_cell_key key;
1201         struct dm_thin_lookup_result lookup_result;
1202
1203         /*
1204          * If cell is already occupied, then the block is already
1205          * being provisioned so we have nothing further to do here.
1206          */
1207         build_virtual_key(tc->td, block, &key);
1208         if (bio_detain(pool, &key, bio, &cell))
1209                 return;
1210
1211         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1212         switch (r) {
1213         case 0:
1214                 if (lookup_result.shared) {
1215                         process_shared_bio(tc, bio, block, &lookup_result);
1216                         cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1217                 } else {
1218                         inc_all_io_entry(pool, bio);
1219                         cell_defer_no_holder(tc, cell);
1220
1221                         remap_and_issue(tc, bio, lookup_result.block);
1222                 }
1223                 break;
1224
1225         case -ENODATA:
1226                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1227                         inc_all_io_entry(pool, bio);
1228                         cell_defer_no_holder(tc, cell);
1229
1230                         remap_to_origin_and_issue(tc, bio);
1231                 } else
1232                         provision_block(tc, bio, block, cell);
1233                 break;
1234
1235         default:
1236                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1237                             __func__, r);
1238                 cell_defer_no_holder(tc, cell);
1239                 bio_io_error(bio);
1240                 break;
1241         }
1242 }
1243
1244 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1245 {
1246         int r;
1247         int rw = bio_data_dir(bio);
1248         dm_block_t block = get_bio_block(tc, bio);
1249         struct dm_thin_lookup_result lookup_result;
1250
1251         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1252         switch (r) {
1253         case 0:
1254                 if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1255                         bio_io_error(bio);
1256                 else {
1257                         inc_all_io_entry(tc->pool, bio);
1258                         remap_and_issue(tc, bio, lookup_result.block);
1259                 }
1260                 break;
1261
1262         case -ENODATA:
1263                 if (rw != READ) {
1264                         bio_io_error(bio);
1265                         break;
1266                 }
1267
1268                 if (tc->origin_dev) {
1269                         inc_all_io_entry(tc->pool, bio);
1270                         remap_to_origin_and_issue(tc, bio);
1271                         break;
1272                 }
1273
1274                 zero_fill_bio(bio);
1275                 bio_endio(bio, 0);
1276                 break;
1277
1278         default:
1279                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1280                             __func__, r);
1281                 bio_io_error(bio);
1282                 break;
1283         }
1284 }
1285
1286 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1287 {
1288         bio_io_error(bio);
1289 }
1290
1291 /*
1292  * FIXME: should we also commit due to size of transaction, measured in
1293  * metadata blocks?
1294  */
1295 static int need_commit_due_to_time(struct pool *pool)
1296 {
1297         return jiffies < pool->last_commit_jiffies ||
1298                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1299 }
1300
1301 static void process_deferred_bios(struct pool *pool)
1302 {
1303         unsigned long flags;
1304         struct bio *bio;
1305         struct bio_list bios;
1306
1307         bio_list_init(&bios);
1308
1309         spin_lock_irqsave(&pool->lock, flags);
1310         bio_list_merge(&bios, &pool->deferred_bios);
1311         bio_list_init(&pool->deferred_bios);
1312         spin_unlock_irqrestore(&pool->lock, flags);
1313
1314         while ((bio = bio_list_pop(&bios))) {
1315                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1316                 struct thin_c *tc = h->tc;
1317
1318                 /*
1319                  * If we've got no free new_mapping structs, and processing
1320                  * this bio might require one, we pause until there are some
1321                  * prepared mappings to process.
1322                  */
1323                 if (ensure_next_mapping(pool)) {
1324                         spin_lock_irqsave(&pool->lock, flags);
1325                         bio_list_merge(&pool->deferred_bios, &bios);
1326                         spin_unlock_irqrestore(&pool->lock, flags);
1327
1328                         break;
1329                 }
1330
1331                 if (bio->bi_rw & REQ_DISCARD)
1332                         pool->process_discard(tc, bio);
1333                 else
1334                         pool->process_bio(tc, bio);
1335         }
1336
1337         /*
1338          * If there are any deferred flush bios, we must commit
1339          * the metadata before issuing them.
1340          */
1341         bio_list_init(&bios);
1342         spin_lock_irqsave(&pool->lock, flags);
1343         bio_list_merge(&bios, &pool->deferred_flush_bios);
1344         bio_list_init(&pool->deferred_flush_bios);
1345         spin_unlock_irqrestore(&pool->lock, flags);
1346
1347         if (bio_list_empty(&bios) &&
1348             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1349                 return;
1350
1351         if (commit_or_fallback(pool)) {
1352                 while ((bio = bio_list_pop(&bios)))
1353                         bio_io_error(bio);
1354                 return;
1355         }
1356         pool->last_commit_jiffies = jiffies;
1357
1358         while ((bio = bio_list_pop(&bios)))
1359                 generic_make_request(bio);
1360 }
1361
1362 static void do_worker(struct work_struct *ws)
1363 {
1364         struct pool *pool = container_of(ws, struct pool, worker);
1365
1366         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1367         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1368         process_deferred_bios(pool);
1369 }
1370
1371 /*
1372  * We want to commit periodically so that not too much
1373  * unwritten data builds up.
1374  */
1375 static void do_waker(struct work_struct *ws)
1376 {
1377         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1378         wake_worker(pool);
1379         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1380 }
1381
1382 /*----------------------------------------------------------------*/
1383
1384 static enum pool_mode get_pool_mode(struct pool *pool)
1385 {
1386         return pool->pf.mode;
1387 }
1388
1389 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1390 {
1391         int r;
1392
1393         pool->pf.mode = mode;
1394
1395         switch (mode) {
1396         case PM_FAIL:
1397                 DMERR("switching pool to failure mode");
1398                 pool->process_bio = process_bio_fail;
1399                 pool->process_discard = process_bio_fail;
1400                 pool->process_prepared_mapping = process_prepared_mapping_fail;
1401                 pool->process_prepared_discard = process_prepared_discard_fail;
1402                 break;
1403
1404         case PM_READ_ONLY:
1405                 DMERR("switching pool to read-only mode");
1406                 r = dm_pool_abort_metadata(pool->pmd);
1407                 if (r) {
1408                         DMERR("aborting transaction failed");
1409                         set_pool_mode(pool, PM_FAIL);
1410                 } else {
1411                         dm_pool_metadata_read_only(pool->pmd);
1412                         pool->process_bio = process_bio_read_only;
1413                         pool->process_discard = process_discard;
1414                         pool->process_prepared_mapping = process_prepared_mapping_fail;
1415                         pool->process_prepared_discard = process_prepared_discard_passdown;
1416                 }
1417                 break;
1418
1419         case PM_WRITE:
1420                 pool->process_bio = process_bio;
1421                 pool->process_discard = process_discard;
1422                 pool->process_prepared_mapping = process_prepared_mapping;
1423                 pool->process_prepared_discard = process_prepared_discard;
1424                 break;
1425         }
1426 }
1427
1428 /*----------------------------------------------------------------*/
1429
1430 /*
1431  * Mapping functions.
1432  */
1433
1434 /*
1435  * Called only while mapping a thin bio to hand it over to the workqueue.
1436  */
1437 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1438 {
1439         unsigned long flags;
1440         struct pool *pool = tc->pool;
1441
1442         spin_lock_irqsave(&pool->lock, flags);
1443         bio_list_add(&pool->deferred_bios, bio);
1444         spin_unlock_irqrestore(&pool->lock, flags);
1445
1446         wake_worker(pool);
1447 }
1448
1449 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1450 {
1451         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1452
1453         h->tc = tc;
1454         h->shared_read_entry = NULL;
1455         h->all_io_entry = NULL;
1456         h->overwrite_mapping = NULL;
1457 }
1458
1459 /*
1460  * Non-blocking function called from the thin target's map function.
1461  */
1462 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1463 {
1464         int r;
1465         struct thin_c *tc = ti->private;
1466         dm_block_t block = get_bio_block(tc, bio);
1467         struct dm_thin_device *td = tc->td;
1468         struct dm_thin_lookup_result result;
1469         struct dm_bio_prison_cell cell1, cell2;
1470         struct dm_bio_prison_cell *cell_result;
1471         struct dm_cell_key key;
1472
1473         thin_hook_bio(tc, bio);
1474
1475         if (get_pool_mode(tc->pool) == PM_FAIL) {
1476                 bio_io_error(bio);
1477                 return DM_MAPIO_SUBMITTED;
1478         }
1479
1480         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1481                 thin_defer_bio(tc, bio);
1482                 return DM_MAPIO_SUBMITTED;
1483         }
1484
1485         r = dm_thin_find_block(td, block, 0, &result);
1486
1487         /*
1488          * Note that we defer readahead too.
1489          */
1490         switch (r) {
1491         case 0:
1492                 if (unlikely(result.shared)) {
1493                         /*
1494                          * We have a race condition here between the
1495                          * result.shared value returned by the lookup and
1496                          * snapshot creation, which may cause new
1497                          * sharing.
1498                          *
1499                          * To avoid this always quiesce the origin before
1500                          * taking the snap.  You want to do this anyway to
1501                          * ensure a consistent application view
1502                          * (i.e. lockfs).
1503                          *
1504                          * More distant ancestors are irrelevant. The
1505                          * shared flag will be set in their case.
1506                          */
1507                         thin_defer_bio(tc, bio);
1508                         return DM_MAPIO_SUBMITTED;
1509                 }
1510
1511                 build_virtual_key(tc->td, block, &key);
1512                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1513                         return DM_MAPIO_SUBMITTED;
1514
1515                 build_data_key(tc->td, result.block, &key);
1516                 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1517                         cell_defer_no_holder_no_free(tc, &cell1);
1518                         return DM_MAPIO_SUBMITTED;
1519                 }
1520
1521                 inc_all_io_entry(tc->pool, bio);
1522                 cell_defer_no_holder_no_free(tc, &cell2);
1523                 cell_defer_no_holder_no_free(tc, &cell1);
1524
1525                 remap(tc, bio, result.block);
1526                 return DM_MAPIO_REMAPPED;
1527
1528         case -ENODATA:
1529                 if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1530                         /*
1531                          * This block isn't provisioned, and we have no way
1532                          * of doing so.  Just error it.
1533                          */
1534                         bio_io_error(bio);
1535                         return DM_MAPIO_SUBMITTED;
1536                 }
1537                 /* fall through */
1538
1539         case -EWOULDBLOCK:
1540                 /*
1541                  * In future, the failed dm_thin_find_block above could
1542                  * provide the hint to load the metadata into cache.
1543                  */
1544                 thin_defer_bio(tc, bio);
1545                 return DM_MAPIO_SUBMITTED;
1546
1547         default:
1548                 /*
1549                  * Must always call bio_io_error on failure.
1550                  * dm_thin_find_block can fail with -EINVAL if the
1551                  * pool is switched to fail-io mode.
1552                  */
1553                 bio_io_error(bio);
1554                 return DM_MAPIO_SUBMITTED;
1555         }
1556 }
1557
1558 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1559 {
1560         int r;
1561         unsigned long flags;
1562         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1563
1564         spin_lock_irqsave(&pt->pool->lock, flags);
1565         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1566         spin_unlock_irqrestore(&pt->pool->lock, flags);
1567
1568         if (!r) {
1569                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1570                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1571         }
1572
1573         return r;
1574 }
1575
1576 static void __requeue_bios(struct pool *pool)
1577 {
1578         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1579         bio_list_init(&pool->retry_on_resume_list);
1580 }
1581
1582 /*----------------------------------------------------------------
1583  * Binding of control targets to a pool object
1584  *--------------------------------------------------------------*/
1585 static bool data_dev_supports_discard(struct pool_c *pt)
1586 {
1587         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1588
1589         return q && blk_queue_discard(q);
1590 }
1591
1592 static bool is_factor(sector_t block_size, uint32_t n)
1593 {
1594         return !sector_div(block_size, n);
1595 }
1596
1597 /*
1598  * If discard_passdown was enabled verify that the data device
1599  * supports discards.  Disable discard_passdown if not.
1600  */
1601 static void disable_passdown_if_not_supported(struct pool_c *pt)
1602 {
1603         struct pool *pool = pt->pool;
1604         struct block_device *data_bdev = pt->data_dev->bdev;
1605         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1606         sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1607         const char *reason = NULL;
1608         char buf[BDEVNAME_SIZE];
1609
1610         if (!pt->adjusted_pf.discard_passdown)
1611                 return;
1612
1613         if (!data_dev_supports_discard(pt))
1614                 reason = "discard unsupported";
1615
1616         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1617                 reason = "max discard sectors smaller than a block";
1618
1619         else if (data_limits->discard_granularity > block_size)
1620                 reason = "discard granularity larger than a block";
1621
1622         else if (!is_factor(block_size, data_limits->discard_granularity))
1623                 reason = "discard granularity not a factor of block size";
1624
1625         if (reason) {
1626                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1627                 pt->adjusted_pf.discard_passdown = false;
1628         }
1629 }
1630
1631 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1632 {
1633         struct pool_c *pt = ti->private;
1634
1635         /*
1636          * We want to make sure that degraded pools are never upgraded.
1637          */
1638         enum pool_mode old_mode = pool->pf.mode;
1639         enum pool_mode new_mode = pt->adjusted_pf.mode;
1640
1641         if (old_mode > new_mode)
1642                 new_mode = old_mode;
1643
1644         pool->ti = ti;
1645         pool->low_water_blocks = pt->low_water_blocks;
1646         pool->pf = pt->adjusted_pf;
1647
1648         set_pool_mode(pool, new_mode);
1649
1650         return 0;
1651 }
1652
1653 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1654 {
1655         if (pool->ti == ti)
1656                 pool->ti = NULL;
1657 }
1658
1659 /*----------------------------------------------------------------
1660  * Pool creation
1661  *--------------------------------------------------------------*/
1662 /* Initialize pool features. */
1663 static void pool_features_init(struct pool_features *pf)
1664 {
1665         pf->mode = PM_WRITE;
1666         pf->zero_new_blocks = true;
1667         pf->discard_enabled = true;
1668         pf->discard_passdown = true;
1669 }
1670
1671 static void __pool_destroy(struct pool *pool)
1672 {
1673         __pool_table_remove(pool);
1674
1675         if (dm_pool_metadata_close(pool->pmd) < 0)
1676                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1677
1678         dm_bio_prison_destroy(pool->prison);
1679         dm_kcopyd_client_destroy(pool->copier);
1680
1681         if (pool->wq)
1682                 destroy_workqueue(pool->wq);
1683
1684         if (pool->next_mapping)
1685                 mempool_free(pool->next_mapping, pool->mapping_pool);
1686         mempool_destroy(pool->mapping_pool);
1687         dm_deferred_set_destroy(pool->shared_read_ds);
1688         dm_deferred_set_destroy(pool->all_io_ds);
1689         kfree(pool);
1690 }
1691
1692 static struct kmem_cache *_new_mapping_cache;
1693
1694 static struct pool *pool_create(struct mapped_device *pool_md,
1695                                 struct block_device *metadata_dev,
1696                                 unsigned long block_size,
1697                                 int read_only, char **error)
1698 {
1699         int r;
1700         void *err_p;
1701         struct pool *pool;
1702         struct dm_pool_metadata *pmd;
1703         bool format_device = read_only ? false : true;
1704
1705         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1706         if (IS_ERR(pmd)) {
1707                 *error = "Error creating metadata object";
1708                 return (struct pool *)pmd;
1709         }
1710
1711         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1712         if (!pool) {
1713                 *error = "Error allocating memory for pool";
1714                 err_p = ERR_PTR(-ENOMEM);
1715                 goto bad_pool;
1716         }
1717
1718         pool->pmd = pmd;
1719         pool->sectors_per_block = block_size;
1720         if (block_size & (block_size - 1))
1721                 pool->sectors_per_block_shift = -1;
1722         else
1723                 pool->sectors_per_block_shift = __ffs(block_size);
1724         pool->low_water_blocks = 0;
1725         pool_features_init(&pool->pf);
1726         pool->prison = dm_bio_prison_create(PRISON_CELLS);
1727         if (!pool->prison) {
1728                 *error = "Error creating pool's bio prison";
1729                 err_p = ERR_PTR(-ENOMEM);
1730                 goto bad_prison;
1731         }
1732
1733         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1734         if (IS_ERR(pool->copier)) {
1735                 r = PTR_ERR(pool->copier);
1736                 *error = "Error creating pool's kcopyd client";
1737                 err_p = ERR_PTR(r);
1738                 goto bad_kcopyd_client;
1739         }
1740
1741         /*
1742          * Create singlethreaded workqueue that will service all devices
1743          * that use this metadata.
1744          */
1745         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1746         if (!pool->wq) {
1747                 *error = "Error creating pool's workqueue";
1748                 err_p = ERR_PTR(-ENOMEM);
1749                 goto bad_wq;
1750         }
1751
1752         INIT_WORK(&pool->worker, do_worker);
1753         INIT_DELAYED_WORK(&pool->waker, do_waker);
1754         spin_lock_init(&pool->lock);
1755         bio_list_init(&pool->deferred_bios);
1756         bio_list_init(&pool->deferred_flush_bios);
1757         INIT_LIST_HEAD(&pool->prepared_mappings);
1758         INIT_LIST_HEAD(&pool->prepared_discards);
1759         pool->low_water_triggered = 0;
1760         pool->no_free_space = 0;
1761         bio_list_init(&pool->retry_on_resume_list);
1762
1763         pool->shared_read_ds = dm_deferred_set_create();
1764         if (!pool->shared_read_ds) {
1765                 *error = "Error creating pool's shared read deferred set";
1766                 err_p = ERR_PTR(-ENOMEM);
1767                 goto bad_shared_read_ds;
1768         }
1769
1770         pool->all_io_ds = dm_deferred_set_create();
1771         if (!pool->all_io_ds) {
1772                 *error = "Error creating pool's all io deferred set";
1773                 err_p = ERR_PTR(-ENOMEM);
1774                 goto bad_all_io_ds;
1775         }
1776
1777         pool->next_mapping = NULL;
1778         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1779                                                       _new_mapping_cache);
1780         if (!pool->mapping_pool) {
1781                 *error = "Error creating pool's mapping mempool";
1782                 err_p = ERR_PTR(-ENOMEM);
1783                 goto bad_mapping_pool;
1784         }
1785
1786         pool->ref_count = 1;
1787         pool->last_commit_jiffies = jiffies;
1788         pool->pool_md = pool_md;
1789         pool->md_dev = metadata_dev;
1790         __pool_table_insert(pool);
1791
1792         return pool;
1793
1794 bad_mapping_pool:
1795         dm_deferred_set_destroy(pool->all_io_ds);
1796 bad_all_io_ds:
1797         dm_deferred_set_destroy(pool->shared_read_ds);
1798 bad_shared_read_ds:
1799         destroy_workqueue(pool->wq);
1800 bad_wq:
1801         dm_kcopyd_client_destroy(pool->copier);
1802 bad_kcopyd_client:
1803         dm_bio_prison_destroy(pool->prison);
1804 bad_prison:
1805         kfree(pool);
1806 bad_pool:
1807         if (dm_pool_metadata_close(pmd))
1808                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1809
1810         return err_p;
1811 }
1812
1813 static void __pool_inc(struct pool *pool)
1814 {
1815         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1816         pool->ref_count++;
1817 }
1818
1819 static void __pool_dec(struct pool *pool)
1820 {
1821         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1822         BUG_ON(!pool->ref_count);
1823         if (!--pool->ref_count)
1824                 __pool_destroy(pool);
1825 }
1826
1827 static struct pool *__pool_find(struct mapped_device *pool_md,
1828                                 struct block_device *metadata_dev,
1829                                 unsigned long block_size, int read_only,
1830                                 char **error, int *created)
1831 {
1832         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1833
1834         if (pool) {
1835                 if (pool->pool_md != pool_md) {
1836                         *error = "metadata device already in use by a pool";
1837                         return ERR_PTR(-EBUSY);
1838                 }
1839                 __pool_inc(pool);
1840
1841         } else {
1842                 pool = __pool_table_lookup(pool_md);
1843                 if (pool) {
1844                         if (pool->md_dev != metadata_dev) {
1845                                 *error = "different pool cannot replace a pool";
1846                                 return ERR_PTR(-EINVAL);
1847                         }
1848                         __pool_inc(pool);
1849
1850                 } else {
1851                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1852                         *created = 1;
1853                 }
1854         }
1855
1856         return pool;
1857 }
1858
1859 /*----------------------------------------------------------------
1860  * Pool target methods
1861  *--------------------------------------------------------------*/
1862 static void pool_dtr(struct dm_target *ti)
1863 {
1864         struct pool_c *pt = ti->private;
1865
1866         mutex_lock(&dm_thin_pool_table.mutex);
1867
1868         unbind_control_target(pt->pool, ti);
1869         __pool_dec(pt->pool);
1870         dm_put_device(ti, pt->metadata_dev);
1871         dm_put_device(ti, pt->data_dev);
1872         kfree(pt);
1873
1874         mutex_unlock(&dm_thin_pool_table.mutex);
1875 }
1876
1877 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1878                                struct dm_target *ti)
1879 {
1880         int r;
1881         unsigned argc;
1882         const char *arg_name;
1883
1884         static struct dm_arg _args[] = {
1885                 {0, 3, "Invalid number of pool feature arguments"},
1886         };
1887
1888         /*
1889          * No feature arguments supplied.
1890          */
1891         if (!as->argc)
1892                 return 0;
1893
1894         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1895         if (r)
1896                 return -EINVAL;
1897
1898         while (argc && !r) {
1899                 arg_name = dm_shift_arg(as);
1900                 argc--;
1901
1902                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
1903                         pf->zero_new_blocks = false;
1904
1905                 else if (!strcasecmp(arg_name, "ignore_discard"))
1906                         pf->discard_enabled = false;
1907
1908                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
1909                         pf->discard_passdown = false;
1910
1911                 else if (!strcasecmp(arg_name, "read_only"))
1912                         pf->mode = PM_READ_ONLY;
1913
1914                 else {
1915                         ti->error = "Unrecognised pool feature requested";
1916                         r = -EINVAL;
1917                         break;
1918                 }
1919         }
1920
1921         return r;
1922 }
1923
1924 static void metadata_low_callback(void *context)
1925 {
1926         struct pool *pool = context;
1927
1928         DMWARN("%s: reached low water mark for metadata device: sending event.",
1929                dm_device_name(pool->pool_md));
1930
1931         dm_table_event(pool->ti->table);
1932 }
1933
1934 static sector_t get_metadata_dev_size(struct block_device *bdev)
1935 {
1936         sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
1937         char buffer[BDEVNAME_SIZE];
1938
1939         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
1940                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1941                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
1942                 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
1943         }
1944
1945         return metadata_dev_size;
1946 }
1947
1948 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
1949 {
1950         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
1951
1952         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
1953
1954         return metadata_dev_size;
1955 }
1956
1957 /*
1958  * When a metadata threshold is crossed a dm event is triggered, and
1959  * userland should respond by growing the metadata device.  We could let
1960  * userland set the threshold, like we do with the data threshold, but I'm
1961  * not sure they know enough to do this well.
1962  */
1963 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
1964 {
1965         /*
1966          * 4M is ample for all ops with the possible exception of thin
1967          * device deletion which is harmless if it fails (just retry the
1968          * delete after you've grown the device).
1969          */
1970         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
1971         return min((dm_block_t)1024ULL /* 4M */, quarter);
1972 }
1973
1974 /*
1975  * thin-pool <metadata dev> <data dev>
1976  *           <data block size (sectors)>
1977  *           <low water mark (blocks)>
1978  *           [<#feature args> [<arg>]*]
1979  *
1980  * Optional feature arguments are:
1981  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1982  *           ignore_discard: disable discard
1983  *           no_discard_passdown: don't pass discards down to the data device
1984  */
1985 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1986 {
1987         int r, pool_created = 0;
1988         struct pool_c *pt;
1989         struct pool *pool;
1990         struct pool_features pf;
1991         struct dm_arg_set as;
1992         struct dm_dev *data_dev;
1993         unsigned long block_size;
1994         dm_block_t low_water_blocks;
1995         struct dm_dev *metadata_dev;
1996         fmode_t metadata_mode;
1997
1998         /*
1999          * FIXME Remove validation from scope of lock.
2000          */
2001         mutex_lock(&dm_thin_pool_table.mutex);
2002
2003         if (argc < 4) {
2004                 ti->error = "Invalid argument count";
2005                 r = -EINVAL;
2006                 goto out_unlock;
2007         }
2008
2009         as.argc = argc;
2010         as.argv = argv;
2011
2012         /*
2013          * Set default pool features.
2014          */
2015         pool_features_init(&pf);
2016
2017         dm_consume_args(&as, 4);
2018         r = parse_pool_features(&as, &pf, ti);
2019         if (r)
2020                 goto out_unlock;
2021
2022         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2023         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2024         if (r) {
2025                 ti->error = "Error opening metadata block device";
2026                 goto out_unlock;
2027         }
2028
2029         /*
2030          * Run for the side-effect of possibly issuing a warning if the
2031          * device is too big.
2032          */
2033         (void) get_metadata_dev_size(metadata_dev->bdev);
2034
2035         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2036         if (r) {
2037                 ti->error = "Error getting data device";
2038                 goto out_metadata;
2039         }
2040
2041         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2042             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2043             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2044             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2045                 ti->error = "Invalid block size";
2046                 r = -EINVAL;
2047                 goto out;
2048         }
2049
2050         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2051                 ti->error = "Invalid low water mark";
2052                 r = -EINVAL;
2053                 goto out;
2054         }
2055
2056         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2057         if (!pt) {
2058                 r = -ENOMEM;
2059                 goto out;
2060         }
2061
2062         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2063                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2064         if (IS_ERR(pool)) {
2065                 r = PTR_ERR(pool);
2066                 goto out_free_pt;
2067         }
2068
2069         /*
2070          * 'pool_created' reflects whether this is the first table load.
2071          * Top level discard support is not allowed to be changed after
2072          * initial load.  This would require a pool reload to trigger thin
2073          * device changes.
2074          */
2075         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2076                 ti->error = "Discard support cannot be disabled once enabled";
2077                 r = -EINVAL;
2078                 goto out_flags_changed;
2079         }
2080
2081         pt->pool = pool;
2082         pt->ti = ti;
2083         pt->metadata_dev = metadata_dev;
2084         pt->data_dev = data_dev;
2085         pt->low_water_blocks = low_water_blocks;
2086         pt->adjusted_pf = pt->requested_pf = pf;
2087         ti->num_flush_bios = 1;
2088
2089         /*
2090          * Only need to enable discards if the pool should pass
2091          * them down to the data device.  The thin device's discard
2092          * processing will cause mappings to be removed from the btree.
2093          */
2094         if (pf.discard_enabled && pf.discard_passdown) {
2095                 ti->num_discard_bios = 1;
2096
2097                 /*
2098                  * Setting 'discards_supported' circumvents the normal
2099                  * stacking of discard limits (this keeps the pool and
2100                  * thin devices' discard limits consistent).
2101                  */
2102                 ti->discards_supported = true;
2103                 ti->discard_zeroes_data_unsupported = true;
2104         }
2105         ti->private = pt;
2106
2107         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2108                                                 calc_metadata_threshold(pt),
2109                                                 metadata_low_callback,
2110                                                 pool);
2111         if (r)
2112                 goto out_free_pt;
2113
2114         pt->callbacks.congested_fn = pool_is_congested;
2115         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2116
2117         mutex_unlock(&dm_thin_pool_table.mutex);
2118
2119         return 0;
2120
2121 out_flags_changed:
2122         __pool_dec(pool);
2123 out_free_pt:
2124         kfree(pt);
2125 out:
2126         dm_put_device(ti, data_dev);
2127 out_metadata:
2128         dm_put_device(ti, metadata_dev);
2129 out_unlock:
2130         mutex_unlock(&dm_thin_pool_table.mutex);
2131
2132         return r;
2133 }
2134
2135 static int pool_map(struct dm_target *ti, struct bio *bio)
2136 {
2137         int r;
2138         struct pool_c *pt = ti->private;
2139         struct pool *pool = pt->pool;
2140         unsigned long flags;
2141
2142         /*
2143          * As this is a singleton target, ti->begin is always zero.
2144          */
2145         spin_lock_irqsave(&pool->lock, flags);
2146         bio->bi_bdev = pt->data_dev->bdev;
2147         r = DM_MAPIO_REMAPPED;
2148         spin_unlock_irqrestore(&pool->lock, flags);
2149
2150         return r;
2151 }
2152
2153 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2154 {
2155         int r;
2156         struct pool_c *pt = ti->private;
2157         struct pool *pool = pt->pool;
2158         sector_t data_size = ti->len;
2159         dm_block_t sb_data_size;
2160
2161         *need_commit = false;
2162
2163         (void) sector_div(data_size, pool->sectors_per_block);
2164
2165         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2166         if (r) {
2167                 DMERR("failed to retrieve data device size");
2168                 return r;
2169         }
2170
2171         if (data_size < sb_data_size) {
2172                 DMERR("pool target (%llu blocks) too small: expected %llu",
2173                       (unsigned long long)data_size, sb_data_size);
2174                 return -EINVAL;
2175
2176         } else if (data_size > sb_data_size) {
2177                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2178                 if (r) {
2179                         DMERR("failed to resize data device");
2180                         set_pool_mode(pool, PM_READ_ONLY);
2181                         return r;
2182                 }
2183
2184                 *need_commit = true;
2185         }
2186
2187         return 0;
2188 }
2189
2190 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2191 {
2192         int r;
2193         struct pool_c *pt = ti->private;
2194         struct pool *pool = pt->pool;
2195         dm_block_t metadata_dev_size, sb_metadata_dev_size;
2196
2197         *need_commit = false;
2198
2199         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2200
2201         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2202         if (r) {
2203                 DMERR("failed to retrieve data device size");
2204                 return r;
2205         }
2206
2207         if (metadata_dev_size < sb_metadata_dev_size) {
2208                 DMERR("metadata device (%llu blocks) too small: expected %llu",
2209                       metadata_dev_size, sb_metadata_dev_size);
2210                 return -EINVAL;
2211
2212         } else if (metadata_dev_size > sb_metadata_dev_size) {
2213                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2214                 if (r) {
2215                         DMERR("failed to resize metadata device");
2216                         return r;
2217                 }
2218
2219                 *need_commit = true;
2220         }
2221
2222         return 0;
2223 }
2224
2225 /*
2226  * Retrieves the number of blocks of the data device from
2227  * the superblock and compares it to the actual device size,
2228  * thus resizing the data device in case it has grown.
2229  *
2230  * This both copes with opening preallocated data devices in the ctr
2231  * being followed by a resume
2232  * -and-
2233  * calling the resume method individually after userspace has
2234  * grown the data device in reaction to a table event.
2235  */
2236 static int pool_preresume(struct dm_target *ti)
2237 {
2238         int r;
2239         bool need_commit1, need_commit2;
2240         struct pool_c *pt = ti->private;
2241         struct pool *pool = pt->pool;
2242
2243         /*
2244          * Take control of the pool object.
2245          */
2246         r = bind_control_target(pool, ti);
2247         if (r)
2248                 return r;
2249
2250         r = maybe_resize_data_dev(ti, &need_commit1);
2251         if (r)
2252                 return r;
2253
2254         r = maybe_resize_metadata_dev(ti, &need_commit2);
2255         if (r)
2256                 return r;
2257
2258         if (need_commit1 || need_commit2)
2259                 (void) commit_or_fallback(pool);
2260
2261         return 0;
2262 }
2263
2264 static void pool_resume(struct dm_target *ti)
2265 {
2266         struct pool_c *pt = ti->private;
2267         struct pool *pool = pt->pool;
2268         unsigned long flags;
2269
2270         spin_lock_irqsave(&pool->lock, flags);
2271         pool->low_water_triggered = 0;
2272         pool->no_free_space = 0;
2273         __requeue_bios(pool);
2274         spin_unlock_irqrestore(&pool->lock, flags);
2275
2276         do_waker(&pool->waker.work);
2277 }
2278
2279 static void pool_postsuspend(struct dm_target *ti)
2280 {
2281         struct pool_c *pt = ti->private;
2282         struct pool *pool = pt->pool;
2283
2284         cancel_delayed_work(&pool->waker);
2285         flush_workqueue(pool->wq);
2286         (void) commit_or_fallback(pool);
2287 }
2288
2289 static int check_arg_count(unsigned argc, unsigned args_required)
2290 {
2291         if (argc != args_required) {
2292                 DMWARN("Message received with %u arguments instead of %u.",
2293                        argc, args_required);
2294                 return -EINVAL;
2295         }
2296
2297         return 0;
2298 }
2299
2300 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2301 {
2302         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2303             *dev_id <= MAX_DEV_ID)
2304                 return 0;
2305
2306         if (warning)
2307                 DMWARN("Message received with invalid device id: %s", arg);
2308
2309         return -EINVAL;
2310 }
2311
2312 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2313 {
2314         dm_thin_id dev_id;
2315         int r;
2316
2317         r = check_arg_count(argc, 2);
2318         if (r)
2319                 return r;
2320
2321         r = read_dev_id(argv[1], &dev_id, 1);
2322         if (r)
2323                 return r;
2324
2325         r = dm_pool_create_thin(pool->pmd, dev_id);
2326         if (r) {
2327                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2328                        argv[1]);
2329                 return r;
2330         }
2331
2332         return 0;
2333 }
2334
2335 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2336 {
2337         dm_thin_id dev_id;
2338         dm_thin_id origin_dev_id;
2339         int r;
2340
2341         r = check_arg_count(argc, 3);
2342         if (r)
2343                 return r;
2344
2345         r = read_dev_id(argv[1], &dev_id, 1);
2346         if (r)
2347                 return r;
2348
2349         r = read_dev_id(argv[2], &origin_dev_id, 1);
2350         if (r)
2351                 return r;
2352
2353         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2354         if (r) {
2355                 DMWARN("Creation of new snapshot %s of device %s failed.",
2356                        argv[1], argv[2]);
2357                 return r;
2358         }
2359
2360         return 0;
2361 }
2362
2363 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2364 {
2365         dm_thin_id dev_id;
2366         int r;
2367
2368         r = check_arg_count(argc, 2);
2369         if (r)
2370                 return r;
2371
2372         r = read_dev_id(argv[1], &dev_id, 1);
2373         if (r)
2374                 return r;
2375
2376         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2377         if (r)
2378                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2379
2380         return r;
2381 }
2382
2383 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2384 {
2385         dm_thin_id old_id, new_id;
2386         int r;
2387
2388         r = check_arg_count(argc, 3);
2389         if (r)
2390                 return r;
2391
2392         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2393                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2394                 return -EINVAL;
2395         }
2396
2397         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2398                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2399                 return -EINVAL;
2400         }
2401
2402         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2403         if (r) {
2404                 DMWARN("Failed to change transaction id from %s to %s.",
2405                        argv[1], argv[2]);
2406                 return r;
2407         }
2408
2409         return 0;
2410 }
2411
2412 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2413 {
2414         int r;
2415
2416         r = check_arg_count(argc, 1);
2417         if (r)
2418                 return r;
2419
2420         (void) commit_or_fallback(pool);
2421
2422         r = dm_pool_reserve_metadata_snap(pool->pmd);
2423         if (r)
2424                 DMWARN("reserve_metadata_snap message failed.");
2425
2426         return r;
2427 }
2428
2429 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2430 {
2431         int r;
2432
2433         r = check_arg_count(argc, 1);
2434         if (r)
2435                 return r;
2436
2437         r = dm_pool_release_metadata_snap(pool->pmd);
2438         if (r)
2439                 DMWARN("release_metadata_snap message failed.");
2440
2441         return r;
2442 }
2443
2444 /*
2445  * Messages supported:
2446  *   create_thin        <dev_id>
2447  *   create_snap        <dev_id> <origin_id>
2448  *   delete             <dev_id>
2449  *   trim               <dev_id> <new_size_in_sectors>
2450  *   set_transaction_id <current_trans_id> <new_trans_id>
2451  *   reserve_metadata_snap
2452  *   release_metadata_snap
2453  */
2454 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2455 {
2456         int r = -EINVAL;
2457         struct pool_c *pt = ti->private;
2458         struct pool *pool = pt->pool;
2459
2460         if (!strcasecmp(argv[0], "create_thin"))
2461                 r = process_create_thin_mesg(argc, argv, pool);
2462
2463         else if (!strcasecmp(argv[0], "create_snap"))
2464                 r = process_create_snap_mesg(argc, argv, pool);
2465
2466         else if (!strcasecmp(argv[0], "delete"))
2467                 r = process_delete_mesg(argc, argv, pool);
2468
2469         else if (!strcasecmp(argv[0], "set_transaction_id"))
2470                 r = process_set_transaction_id_mesg(argc, argv, pool);
2471
2472         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2473                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2474
2475         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2476                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2477
2478         else
2479                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2480
2481         if (!r)
2482                 (void) commit_or_fallback(pool);
2483
2484         return r;
2485 }
2486
2487 static void emit_flags(struct pool_features *pf, char *result,
2488                        unsigned sz, unsigned maxlen)
2489 {
2490         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2491                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2492         DMEMIT("%u ", count);
2493
2494         if (!pf->zero_new_blocks)
2495                 DMEMIT("skip_block_zeroing ");
2496
2497         if (!pf->discard_enabled)
2498                 DMEMIT("ignore_discard ");
2499
2500         if (!pf->discard_passdown)
2501                 DMEMIT("no_discard_passdown ");
2502
2503         if (pf->mode == PM_READ_ONLY)
2504                 DMEMIT("read_only ");
2505 }
2506
2507 /*
2508  * Status line is:
2509  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2510  *    <used data sectors>/<total data sectors> <held metadata root>
2511  */
2512 static void pool_status(struct dm_target *ti, status_type_t type,
2513                         unsigned status_flags, char *result, unsigned maxlen)
2514 {
2515         int r;
2516         unsigned sz = 0;
2517         uint64_t transaction_id;
2518         dm_block_t nr_free_blocks_data;
2519         dm_block_t nr_free_blocks_metadata;
2520         dm_block_t nr_blocks_data;
2521         dm_block_t nr_blocks_metadata;
2522         dm_block_t held_root;
2523         char buf[BDEVNAME_SIZE];
2524         char buf2[BDEVNAME_SIZE];
2525         struct pool_c *pt = ti->private;
2526         struct pool *pool = pt->pool;
2527
2528         switch (type) {
2529         case STATUSTYPE_INFO:
2530                 if (get_pool_mode(pool) == PM_FAIL) {
2531                         DMEMIT("Fail");
2532                         break;
2533                 }
2534
2535                 /* Commit to ensure statistics aren't out-of-date */
2536                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2537                         (void) commit_or_fallback(pool);
2538
2539                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2540                 if (r) {
2541                         DMERR("dm_pool_get_metadata_transaction_id returned %d", r);
2542                         goto err;
2543                 }
2544
2545                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2546                 if (r) {
2547                         DMERR("dm_pool_get_free_metadata_block_count returned %d", r);
2548                         goto err;
2549                 }
2550
2551                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2552                 if (r) {
2553                         DMERR("dm_pool_get_metadata_dev_size returned %d", r);
2554                         goto err;
2555                 }
2556
2557                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2558                 if (r) {
2559                         DMERR("dm_pool_get_free_block_count returned %d", r);
2560                         goto err;
2561                 }
2562
2563                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2564                 if (r) {
2565                         DMERR("dm_pool_get_data_dev_size returned %d", r);
2566                         goto err;
2567                 }
2568
2569                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2570                 if (r) {
2571                         DMERR("dm_pool_get_metadata_snap returned %d", r);
2572                         goto err;
2573                 }
2574
2575                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2576                        (unsigned long long)transaction_id,
2577                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2578                        (unsigned long long)nr_blocks_metadata,
2579                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2580                        (unsigned long long)nr_blocks_data);
2581
2582                 if (held_root)
2583                         DMEMIT("%llu ", held_root);
2584                 else
2585                         DMEMIT("- ");
2586
2587                 if (pool->pf.mode == PM_READ_ONLY)
2588                         DMEMIT("ro ");
2589                 else
2590                         DMEMIT("rw ");
2591
2592                 if (!pool->pf.discard_enabled)
2593                         DMEMIT("ignore_discard");
2594                 else if (pool->pf.discard_passdown)
2595                         DMEMIT("discard_passdown");
2596                 else
2597                         DMEMIT("no_discard_passdown");
2598
2599                 break;
2600
2601         case STATUSTYPE_TABLE:
2602                 DMEMIT("%s %s %lu %llu ",
2603                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2604                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2605                        (unsigned long)pool->sectors_per_block,
2606                        (unsigned long long)pt->low_water_blocks);
2607                 emit_flags(&pt->requested_pf, result, sz, maxlen);
2608                 break;
2609         }
2610         return;
2611
2612 err:
2613         DMEMIT("Error");
2614 }
2615
2616 static int pool_iterate_devices(struct dm_target *ti,
2617                                 iterate_devices_callout_fn fn, void *data)
2618 {
2619         struct pool_c *pt = ti->private;
2620
2621         return fn(ti, pt->data_dev, 0, ti->len, data);
2622 }
2623
2624 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2625                       struct bio_vec *biovec, int max_size)
2626 {
2627         struct pool_c *pt = ti->private;
2628         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2629
2630         if (!q->merge_bvec_fn)
2631                 return max_size;
2632
2633         bvm->bi_bdev = pt->data_dev->bdev;
2634
2635         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2636 }
2637
2638 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2639 {
2640         struct pool *pool = pt->pool;
2641         struct queue_limits *data_limits;
2642
2643         limits->max_discard_sectors = pool->sectors_per_block;
2644
2645         /*
2646          * discard_granularity is just a hint, and not enforced.
2647          */
2648         if (pt->adjusted_pf.discard_passdown) {
2649                 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2650                 limits->discard_granularity = data_limits->discard_granularity;
2651         } else
2652                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2653 }
2654
2655 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2656 {
2657         struct pool_c *pt = ti->private;
2658         struct pool *pool = pt->pool;
2659
2660         blk_limits_io_min(limits, 0);
2661         blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2662
2663         /*
2664          * pt->adjusted_pf is a staging area for the actual features to use.
2665          * They get transferred to the live pool in bind_control_target()
2666          * called from pool_preresume().
2667          */
2668         if (!pt->adjusted_pf.discard_enabled)
2669                 return;
2670
2671         disable_passdown_if_not_supported(pt);
2672
2673         set_discard_limits(pt, limits);
2674 }
2675
2676 static struct target_type pool_target = {
2677         .name = "thin-pool",
2678         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2679                     DM_TARGET_IMMUTABLE,
2680         .version = {1, 8, 0},
2681         .module = THIS_MODULE,
2682         .ctr = pool_ctr,
2683         .dtr = pool_dtr,
2684         .map = pool_map,
2685         .postsuspend = pool_postsuspend,
2686         .preresume = pool_preresume,
2687         .resume = pool_resume,
2688         .message = pool_message,
2689         .status = pool_status,
2690         .merge = pool_merge,
2691         .iterate_devices = pool_iterate_devices,
2692         .io_hints = pool_io_hints,
2693 };
2694
2695 /*----------------------------------------------------------------
2696  * Thin target methods
2697  *--------------------------------------------------------------*/
2698 static void thin_dtr(struct dm_target *ti)
2699 {
2700         struct thin_c *tc = ti->private;
2701
2702         mutex_lock(&dm_thin_pool_table.mutex);
2703
2704         __pool_dec(tc->pool);
2705         dm_pool_close_thin_device(tc->td);
2706         dm_put_device(ti, tc->pool_dev);
2707         if (tc->origin_dev)
2708                 dm_put_device(ti, tc->origin_dev);
2709         kfree(tc);
2710
2711         mutex_unlock(&dm_thin_pool_table.mutex);
2712 }
2713
2714 /*
2715  * Thin target parameters:
2716  *
2717  * <pool_dev> <dev_id> [origin_dev]
2718  *
2719  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2720  * dev_id: the internal device identifier
2721  * origin_dev: a device external to the pool that should act as the origin
2722  *
2723  * If the pool device has discards disabled, they get disabled for the thin
2724  * device as well.
2725  */
2726 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2727 {
2728         int r;
2729         struct thin_c *tc;
2730         struct dm_dev *pool_dev, *origin_dev;
2731         struct mapped_device *pool_md;
2732
2733         mutex_lock(&dm_thin_pool_table.mutex);
2734
2735         if (argc != 2 && argc != 3) {
2736                 ti->error = "Invalid argument count";
2737                 r = -EINVAL;
2738                 goto out_unlock;
2739         }
2740
2741         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2742         if (!tc) {
2743                 ti->error = "Out of memory";
2744                 r = -ENOMEM;
2745                 goto out_unlock;
2746         }
2747
2748         if (argc == 3) {
2749                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2750                 if (r) {
2751                         ti->error = "Error opening origin device";
2752                         goto bad_origin_dev;
2753                 }
2754                 tc->origin_dev = origin_dev;
2755         }
2756
2757         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2758         if (r) {
2759                 ti->error = "Error opening pool device";
2760                 goto bad_pool_dev;
2761         }
2762         tc->pool_dev = pool_dev;
2763
2764         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2765                 ti->error = "Invalid device id";
2766                 r = -EINVAL;
2767                 goto bad_common;
2768         }
2769
2770         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2771         if (!pool_md) {
2772                 ti->error = "Couldn't get pool mapped device";
2773                 r = -EINVAL;
2774                 goto bad_common;
2775         }
2776
2777         tc->pool = __pool_table_lookup(pool_md);
2778         if (!tc->pool) {
2779                 ti->error = "Couldn't find pool object";
2780                 r = -EINVAL;
2781                 goto bad_pool_lookup;
2782         }
2783         __pool_inc(tc->pool);
2784
2785         if (get_pool_mode(tc->pool) == PM_FAIL) {
2786                 ti->error = "Couldn't open thin device, Pool is in fail mode";
2787                 r = -EINVAL;
2788                 goto bad_thin_open;
2789         }
2790
2791         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2792         if (r) {
2793                 ti->error = "Couldn't open thin internal device";
2794                 goto bad_thin_open;
2795         }
2796
2797         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2798         if (r)
2799                 goto bad_target_max_io_len;
2800
2801         ti->num_flush_bios = 1;
2802         ti->flush_supported = true;
2803         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2804
2805         /* In case the pool supports discards, pass them on. */
2806         if (tc->pool->pf.discard_enabled) {
2807                 ti->discards_supported = true;
2808                 ti->num_discard_bios = 1;
2809                 ti->discard_zeroes_data_unsupported = true;
2810                 /* Discard bios must be split on a block boundary */
2811                 ti->split_discard_bios = true;
2812         }
2813
2814         dm_put(pool_md);
2815
2816         mutex_unlock(&dm_thin_pool_table.mutex);
2817
2818         return 0;
2819
2820 bad_target_max_io_len:
2821         dm_pool_close_thin_device(tc->td);
2822 bad_thin_open:
2823         __pool_dec(tc->pool);
2824 bad_pool_lookup:
2825         dm_put(pool_md);
2826 bad_common:
2827         dm_put_device(ti, tc->pool_dev);
2828 bad_pool_dev:
2829         if (tc->origin_dev)
2830                 dm_put_device(ti, tc->origin_dev);
2831 bad_origin_dev:
2832         kfree(tc);
2833 out_unlock:
2834         mutex_unlock(&dm_thin_pool_table.mutex);
2835
2836         return r;
2837 }
2838
2839 static int thin_map(struct dm_target *ti, struct bio *bio)
2840 {
2841         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2842
2843         return thin_bio_map(ti, bio);
2844 }
2845
2846 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2847 {
2848         unsigned long flags;
2849         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2850         struct list_head work;
2851         struct dm_thin_new_mapping *m, *tmp;
2852         struct pool *pool = h->tc->pool;
2853
2854         if (h->shared_read_entry) {
2855                 INIT_LIST_HEAD(&work);
2856                 dm_deferred_entry_dec(h->shared_read_entry, &work);
2857
2858                 spin_lock_irqsave(&pool->lock, flags);
2859                 list_for_each_entry_safe(m, tmp, &work, list) {
2860                         list_del(&m->list);
2861                         m->quiesced = 1;
2862                         __maybe_add_mapping(m);
2863                 }
2864                 spin_unlock_irqrestore(&pool->lock, flags);
2865         }
2866
2867         if (h->all_io_entry) {
2868                 INIT_LIST_HEAD(&work);
2869                 dm_deferred_entry_dec(h->all_io_entry, &work);
2870                 if (!list_empty(&work)) {
2871                         spin_lock_irqsave(&pool->lock, flags);
2872                         list_for_each_entry_safe(m, tmp, &work, list)
2873                                 list_add(&m->list, &pool->prepared_discards);
2874                         spin_unlock_irqrestore(&pool->lock, flags);
2875                         wake_worker(pool);
2876                 }
2877         }
2878
2879         return 0;
2880 }
2881
2882 static void thin_postsuspend(struct dm_target *ti)
2883 {
2884         if (dm_noflush_suspending(ti))
2885                 requeue_io((struct thin_c *)ti->private);
2886 }
2887
2888 /*
2889  * <nr mapped sectors> <highest mapped sector>
2890  */
2891 static void thin_status(struct dm_target *ti, status_type_t type,
2892                         unsigned status_flags, char *result, unsigned maxlen)
2893 {
2894         int r;
2895         ssize_t sz = 0;
2896         dm_block_t mapped, highest;
2897         char buf[BDEVNAME_SIZE];
2898         struct thin_c *tc = ti->private;
2899
2900         if (get_pool_mode(tc->pool) == PM_FAIL) {
2901                 DMEMIT("Fail");
2902                 return;
2903         }
2904
2905         if (!tc->td)
2906                 DMEMIT("-");
2907         else {
2908                 switch (type) {
2909                 case STATUSTYPE_INFO:
2910                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2911                         if (r) {
2912                                 DMERR("dm_thin_get_mapped_count returned %d", r);
2913                                 goto err;
2914                         }
2915
2916                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2917                         if (r < 0) {
2918                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2919                                 goto err;
2920                         }
2921
2922                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2923                         if (r)
2924                                 DMEMIT("%llu", ((highest + 1) *
2925                                                 tc->pool->sectors_per_block) - 1);
2926                         else
2927                                 DMEMIT("-");
2928                         break;
2929
2930                 case STATUSTYPE_TABLE:
2931                         DMEMIT("%s %lu",
2932                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2933                                (unsigned long) tc->dev_id);
2934                         if (tc->origin_dev)
2935                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2936                         break;
2937                 }
2938         }
2939
2940         return;
2941
2942 err:
2943         DMEMIT("Error");
2944 }
2945
2946 static int thin_iterate_devices(struct dm_target *ti,
2947                                 iterate_devices_callout_fn fn, void *data)
2948 {
2949         sector_t blocks;
2950         struct thin_c *tc = ti->private;
2951         struct pool *pool = tc->pool;
2952
2953         /*
2954          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2955          * we follow a more convoluted path through to the pool's target.
2956          */
2957         if (!pool->ti)
2958                 return 0;       /* nothing is bound */
2959
2960         blocks = pool->ti->len;
2961         (void) sector_div(blocks, pool->sectors_per_block);
2962         if (blocks)
2963                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2964
2965         return 0;
2966 }
2967
2968 static struct target_type thin_target = {
2969         .name = "thin",
2970         .version = {1, 8, 0},
2971         .module = THIS_MODULE,
2972         .ctr = thin_ctr,
2973         .dtr = thin_dtr,
2974         .map = thin_map,
2975         .end_io = thin_endio,
2976         .postsuspend = thin_postsuspend,
2977         .status = thin_status,
2978         .iterate_devices = thin_iterate_devices,
2979 };
2980
2981 /*----------------------------------------------------------------*/
2982
2983 static int __init dm_thin_init(void)
2984 {
2985         int r;
2986
2987         pool_table_init();
2988
2989         r = dm_register_target(&thin_target);
2990         if (r)
2991                 return r;
2992
2993         r = dm_register_target(&pool_target);
2994         if (r)
2995                 goto bad_pool_target;
2996
2997         r = -ENOMEM;
2998
2999         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3000         if (!_new_mapping_cache)
3001                 goto bad_new_mapping_cache;
3002
3003         return 0;
3004
3005 bad_new_mapping_cache:
3006         dm_unregister_target(&pool_target);
3007 bad_pool_target:
3008         dm_unregister_target(&thin_target);
3009
3010         return r;
3011 }
3012
3013 static void dm_thin_exit(void)
3014 {
3015         dm_unregister_target(&thin_target);
3016         dm_unregister_target(&pool_target);
3017
3018         kmem_cache_destroy(_new_mapping_cache);
3019 }
3020
3021 module_init(dm_thin_init);
3022 module_exit(dm_thin_exit);
3023
3024 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3025 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3026 MODULE_LICENSE("GPL");