Merge tag 'v3.5-rc7' into late/soc
[firefly-linux-kernel-4.4.55.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16
17 #define DM_MSG_PREFIX   "thin"
18
19 /*
20  * Tunable constants
21  */
22 #define ENDIO_HOOK_POOL_SIZE 10240
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
26 #define COMMIT_PERIOD HZ
27
28 /*
29  * The block size of the device holding pool data must be
30  * between 64KB and 1GB.
31  */
32 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34
35 /*
36  * Device id is restricted to 24 bits.
37  */
38 #define MAX_DEV_ID ((1 << 24) - 1)
39
40 /*
41  * How do we handle breaking sharing of data blocks?
42  * =================================================
43  *
44  * We use a standard copy-on-write btree to store the mappings for the
45  * devices (note I'm talking about copy-on-write of the metadata here, not
46  * the data).  When you take an internal snapshot you clone the root node
47  * of the origin btree.  After this there is no concept of an origin or a
48  * snapshot.  They are just two device trees that happen to point to the
49  * same data blocks.
50  *
51  * When we get a write in we decide if it's to a shared data block using
52  * some timestamp magic.  If it is, we have to break sharing.
53  *
54  * Let's say we write to a shared block in what was the origin.  The
55  * steps are:
56  *
57  * i) plug io further to this physical block. (see bio_prison code).
58  *
59  * ii) quiesce any read io to that shared data block.  Obviously
60  * including all devices that share this block.  (see deferred_set code)
61  *
62  * iii) copy the data block to a newly allocate block.  This step can be
63  * missed out if the io covers the block. (schedule_copy).
64  *
65  * iv) insert the new mapping into the origin's btree
66  * (process_prepared_mapping).  This act of inserting breaks some
67  * sharing of btree nodes between the two devices.  Breaking sharing only
68  * effects the btree of that specific device.  Btrees for the other
69  * devices that share the block never change.  The btree for the origin
70  * device as it was after the last commit is untouched, ie. we're using
71  * persistent data structures in the functional programming sense.
72  *
73  * v) unplug io to this physical block, including the io that triggered
74  * the breaking of sharing.
75  *
76  * Steps (ii) and (iii) occur in parallel.
77  *
78  * The metadata _doesn't_ need to be committed before the io continues.  We
79  * get away with this because the io is always written to a _new_ block.
80  * If there's a crash, then:
81  *
82  * - The origin mapping will point to the old origin block (the shared
83  * one).  This will contain the data as it was before the io that triggered
84  * the breaking of sharing came in.
85  *
86  * - The snap mapping still points to the old block.  As it would after
87  * the commit.
88  *
89  * The downside of this scheme is the timestamp magic isn't perfect, and
90  * will continue to think that data block in the snapshot device is shared
91  * even after the write to the origin has broken sharing.  I suspect data
92  * blocks will typically be shared by many different devices, so we're
93  * breaking sharing n + 1 times, rather than n, where n is the number of
94  * devices that reference this data block.  At the moment I think the
95  * benefits far, far outweigh the disadvantages.
96  */
97
98 /*----------------------------------------------------------------*/
99
100 /*
101  * Sometimes we can't deal with a bio straight away.  We put them in prison
102  * where they can't cause any mischief.  Bios are put in a cell identified
103  * by a key, multiple bios can be in the same cell.  When the cell is
104  * subsequently unlocked the bios become available.
105  */
106 struct bio_prison;
107
108 struct cell_key {
109         int virtual;
110         dm_thin_id dev;
111         dm_block_t block;
112 };
113
114 struct dm_bio_prison_cell {
115         struct hlist_node list;
116         struct bio_prison *prison;
117         struct cell_key key;
118         struct bio *holder;
119         struct bio_list bios;
120 };
121
122 struct bio_prison {
123         spinlock_t lock;
124         mempool_t *cell_pool;
125
126         unsigned nr_buckets;
127         unsigned hash_mask;
128         struct hlist_head *cells;
129 };
130
131 static uint32_t calc_nr_buckets(unsigned nr_cells)
132 {
133         uint32_t n = 128;
134
135         nr_cells /= 4;
136         nr_cells = min(nr_cells, 8192u);
137
138         while (n < nr_cells)
139                 n <<= 1;
140
141         return n;
142 }
143
144 static struct kmem_cache *_cell_cache;
145
146 /*
147  * @nr_cells should be the number of cells you want in use _concurrently_.
148  * Don't confuse it with the number of distinct keys.
149  */
150 static struct bio_prison *prison_create(unsigned nr_cells)
151 {
152         unsigned i;
153         uint32_t nr_buckets = calc_nr_buckets(nr_cells);
154         size_t len = sizeof(struct bio_prison) +
155                 (sizeof(struct hlist_head) * nr_buckets);
156         struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
157
158         if (!prison)
159                 return NULL;
160
161         spin_lock_init(&prison->lock);
162         prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
163         if (!prison->cell_pool) {
164                 kfree(prison);
165                 return NULL;
166         }
167
168         prison->nr_buckets = nr_buckets;
169         prison->hash_mask = nr_buckets - 1;
170         prison->cells = (struct hlist_head *) (prison + 1);
171         for (i = 0; i < nr_buckets; i++)
172                 INIT_HLIST_HEAD(prison->cells + i);
173
174         return prison;
175 }
176
177 static void prison_destroy(struct bio_prison *prison)
178 {
179         mempool_destroy(prison->cell_pool);
180         kfree(prison);
181 }
182
183 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
184 {
185         const unsigned long BIG_PRIME = 4294967291UL;
186         uint64_t hash = key->block * BIG_PRIME;
187
188         return (uint32_t) (hash & prison->hash_mask);
189 }
190
191 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
192 {
193                return (lhs->virtual == rhs->virtual) &&
194                        (lhs->dev == rhs->dev) &&
195                        (lhs->block == rhs->block);
196 }
197
198 static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
199                                                   struct cell_key *key)
200 {
201         struct dm_bio_prison_cell *cell;
202         struct hlist_node *tmp;
203
204         hlist_for_each_entry(cell, tmp, bucket, list)
205                 if (keys_equal(&cell->key, key))
206                         return cell;
207
208         return NULL;
209 }
210
211 /*
212  * This may block if a new cell needs allocating.  You must ensure that
213  * cells will be unlocked even if the calling thread is blocked.
214  *
215  * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
216  */
217 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
218                       struct bio *inmate, struct dm_bio_prison_cell **ref)
219 {
220         int r = 1;
221         unsigned long flags;
222         uint32_t hash = hash_key(prison, key);
223         struct dm_bio_prison_cell *cell, *cell2;
224
225         BUG_ON(hash > prison->nr_buckets);
226
227         spin_lock_irqsave(&prison->lock, flags);
228
229         cell = __search_bucket(prison->cells + hash, key);
230         if (cell) {
231                 bio_list_add(&cell->bios, inmate);
232                 goto out;
233         }
234
235         /*
236          * Allocate a new cell
237          */
238         spin_unlock_irqrestore(&prison->lock, flags);
239         cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
240         spin_lock_irqsave(&prison->lock, flags);
241
242         /*
243          * We've been unlocked, so we have to double check that
244          * nobody else has inserted this cell in the meantime.
245          */
246         cell = __search_bucket(prison->cells + hash, key);
247         if (cell) {
248                 mempool_free(cell2, prison->cell_pool);
249                 bio_list_add(&cell->bios, inmate);
250                 goto out;
251         }
252
253         /*
254          * Use new cell.
255          */
256         cell = cell2;
257
258         cell->prison = prison;
259         memcpy(&cell->key, key, sizeof(cell->key));
260         cell->holder = inmate;
261         bio_list_init(&cell->bios);
262         hlist_add_head(&cell->list, prison->cells + hash);
263
264         r = 0;
265
266 out:
267         spin_unlock_irqrestore(&prison->lock, flags);
268
269         *ref = cell;
270
271         return r;
272 }
273
274 /*
275  * @inmates must have been initialised prior to this call
276  */
277 static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
278 {
279         struct bio_prison *prison = cell->prison;
280
281         hlist_del(&cell->list);
282
283         if (inmates) {
284                 bio_list_add(inmates, cell->holder);
285                 bio_list_merge(inmates, &cell->bios);
286         }
287
288         mempool_free(cell, prison->cell_pool);
289 }
290
291 static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
292 {
293         unsigned long flags;
294         struct bio_prison *prison = cell->prison;
295
296         spin_lock_irqsave(&prison->lock, flags);
297         __cell_release(cell, bios);
298         spin_unlock_irqrestore(&prison->lock, flags);
299 }
300
301 /*
302  * There are a couple of places where we put a bio into a cell briefly
303  * before taking it out again.  In these situations we know that no other
304  * bio may be in the cell.  This function releases the cell, and also does
305  * a sanity check.
306  */
307 static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
308 {
309         BUG_ON(cell->holder != bio);
310         BUG_ON(!bio_list_empty(&cell->bios));
311
312         __cell_release(cell, NULL);
313 }
314
315 static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
316 {
317         unsigned long flags;
318         struct bio_prison *prison = cell->prison;
319
320         spin_lock_irqsave(&prison->lock, flags);
321         __cell_release_singleton(cell, bio);
322         spin_unlock_irqrestore(&prison->lock, flags);
323 }
324
325 /*
326  * Sometimes we don't want the holder, just the additional bios.
327  */
328 static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
329                                      struct bio_list *inmates)
330 {
331         struct bio_prison *prison = cell->prison;
332
333         hlist_del(&cell->list);
334         bio_list_merge(inmates, &cell->bios);
335
336         mempool_free(cell, prison->cell_pool);
337 }
338
339 static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
340                                    struct bio_list *inmates)
341 {
342         unsigned long flags;
343         struct bio_prison *prison = cell->prison;
344
345         spin_lock_irqsave(&prison->lock, flags);
346         __cell_release_no_holder(cell, inmates);
347         spin_unlock_irqrestore(&prison->lock, flags);
348 }
349
350 static void cell_error(struct dm_bio_prison_cell *cell)
351 {
352         struct bio_prison *prison = cell->prison;
353         struct bio_list bios;
354         struct bio *bio;
355         unsigned long flags;
356
357         bio_list_init(&bios);
358
359         spin_lock_irqsave(&prison->lock, flags);
360         __cell_release(cell, &bios);
361         spin_unlock_irqrestore(&prison->lock, flags);
362
363         while ((bio = bio_list_pop(&bios)))
364                 bio_io_error(bio);
365 }
366
367 /*----------------------------------------------------------------*/
368
369 /*
370  * We use the deferred set to keep track of pending reads to shared blocks.
371  * We do this to ensure the new mapping caused by a write isn't performed
372  * until these prior reads have completed.  Otherwise the insertion of the
373  * new mapping could free the old block that the read bios are mapped to.
374  */
375
376 struct deferred_set;
377 struct deferred_entry {
378         struct deferred_set *ds;
379         unsigned count;
380         struct list_head work_items;
381 };
382
383 struct deferred_set {
384         spinlock_t lock;
385         unsigned current_entry;
386         unsigned sweeper;
387         struct deferred_entry entries[DEFERRED_SET_SIZE];
388 };
389
390 static void ds_init(struct deferred_set *ds)
391 {
392         int i;
393
394         spin_lock_init(&ds->lock);
395         ds->current_entry = 0;
396         ds->sweeper = 0;
397         for (i = 0; i < DEFERRED_SET_SIZE; i++) {
398                 ds->entries[i].ds = ds;
399                 ds->entries[i].count = 0;
400                 INIT_LIST_HEAD(&ds->entries[i].work_items);
401         }
402 }
403
404 static struct deferred_entry *ds_inc(struct deferred_set *ds)
405 {
406         unsigned long flags;
407         struct deferred_entry *entry;
408
409         spin_lock_irqsave(&ds->lock, flags);
410         entry = ds->entries + ds->current_entry;
411         entry->count++;
412         spin_unlock_irqrestore(&ds->lock, flags);
413
414         return entry;
415 }
416
417 static unsigned ds_next(unsigned index)
418 {
419         return (index + 1) % DEFERRED_SET_SIZE;
420 }
421
422 static void __sweep(struct deferred_set *ds, struct list_head *head)
423 {
424         while ((ds->sweeper != ds->current_entry) &&
425                !ds->entries[ds->sweeper].count) {
426                 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
427                 ds->sweeper = ds_next(ds->sweeper);
428         }
429
430         if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
431                 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
432 }
433
434 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
435 {
436         unsigned long flags;
437
438         spin_lock_irqsave(&entry->ds->lock, flags);
439         BUG_ON(!entry->count);
440         --entry->count;
441         __sweep(entry->ds, head);
442         spin_unlock_irqrestore(&entry->ds->lock, flags);
443 }
444
445 /*
446  * Returns 1 if deferred or 0 if no pending items to delay job.
447  */
448 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
449 {
450         int r = 1;
451         unsigned long flags;
452         unsigned next_entry;
453
454         spin_lock_irqsave(&ds->lock, flags);
455         if ((ds->sweeper == ds->current_entry) &&
456             !ds->entries[ds->current_entry].count)
457                 r = 0;
458         else {
459                 list_add(work, &ds->entries[ds->current_entry].work_items);
460                 next_entry = ds_next(ds->current_entry);
461                 if (!ds->entries[next_entry].count)
462                         ds->current_entry = next_entry;
463         }
464         spin_unlock_irqrestore(&ds->lock, flags);
465
466         return r;
467 }
468
469 /*----------------------------------------------------------------*/
470
471 /*
472  * Key building.
473  */
474 static void build_data_key(struct dm_thin_device *td,
475                            dm_block_t b, struct cell_key *key)
476 {
477         key->virtual = 0;
478         key->dev = dm_thin_dev_id(td);
479         key->block = b;
480 }
481
482 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
483                               struct cell_key *key)
484 {
485         key->virtual = 1;
486         key->dev = dm_thin_dev_id(td);
487         key->block = b;
488 }
489
490 /*----------------------------------------------------------------*/
491
492 /*
493  * A pool device ties together a metadata device and a data device.  It
494  * also provides the interface for creating and destroying internal
495  * devices.
496  */
497 struct dm_thin_new_mapping;
498
499 struct pool_features {
500         unsigned zero_new_blocks:1;
501         unsigned discard_enabled:1;
502         unsigned discard_passdown:1;
503 };
504
505 struct pool {
506         struct list_head list;
507         struct dm_target *ti;   /* Only set if a pool target is bound */
508
509         struct mapped_device *pool_md;
510         struct block_device *md_dev;
511         struct dm_pool_metadata *pmd;
512
513         uint32_t sectors_per_block;
514         unsigned block_shift;
515         dm_block_t offset_mask;
516         dm_block_t low_water_blocks;
517
518         struct pool_features pf;
519         unsigned low_water_triggered:1; /* A dm event has been sent */
520         unsigned no_free_space:1;       /* A -ENOSPC warning has been issued */
521
522         struct bio_prison *prison;
523         struct dm_kcopyd_client *copier;
524
525         struct workqueue_struct *wq;
526         struct work_struct worker;
527         struct delayed_work waker;
528
529         unsigned ref_count;
530         unsigned long last_commit_jiffies;
531
532         spinlock_t lock;
533         struct bio_list deferred_bios;
534         struct bio_list deferred_flush_bios;
535         struct list_head prepared_mappings;
536         struct list_head prepared_discards;
537
538         struct bio_list retry_on_resume_list;
539
540         struct deferred_set shared_read_ds;
541         struct deferred_set all_io_ds;
542
543         struct dm_thin_new_mapping *next_mapping;
544         mempool_t *mapping_pool;
545         mempool_t *endio_hook_pool;
546 };
547
548 /*
549  * Target context for a pool.
550  */
551 struct pool_c {
552         struct dm_target *ti;
553         struct pool *pool;
554         struct dm_dev *data_dev;
555         struct dm_dev *metadata_dev;
556         struct dm_target_callbacks callbacks;
557
558         dm_block_t low_water_blocks;
559         struct pool_features pf;
560 };
561
562 /*
563  * Target context for a thin.
564  */
565 struct thin_c {
566         struct dm_dev *pool_dev;
567         struct dm_dev *origin_dev;
568         dm_thin_id dev_id;
569
570         struct pool *pool;
571         struct dm_thin_device *td;
572 };
573
574 /*----------------------------------------------------------------*/
575
576 /*
577  * A global list of pools that uses a struct mapped_device as a key.
578  */
579 static struct dm_thin_pool_table {
580         struct mutex mutex;
581         struct list_head pools;
582 } dm_thin_pool_table;
583
584 static void pool_table_init(void)
585 {
586         mutex_init(&dm_thin_pool_table.mutex);
587         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
588 }
589
590 static void __pool_table_insert(struct pool *pool)
591 {
592         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
593         list_add(&pool->list, &dm_thin_pool_table.pools);
594 }
595
596 static void __pool_table_remove(struct pool *pool)
597 {
598         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
599         list_del(&pool->list);
600 }
601
602 static struct pool *__pool_table_lookup(struct mapped_device *md)
603 {
604         struct pool *pool = NULL, *tmp;
605
606         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
607
608         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
609                 if (tmp->pool_md == md) {
610                         pool = tmp;
611                         break;
612                 }
613         }
614
615         return pool;
616 }
617
618 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
619 {
620         struct pool *pool = NULL, *tmp;
621
622         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
623
624         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
625                 if (tmp->md_dev == md_dev) {
626                         pool = tmp;
627                         break;
628                 }
629         }
630
631         return pool;
632 }
633
634 /*----------------------------------------------------------------*/
635
636 struct dm_thin_endio_hook {
637         struct thin_c *tc;
638         struct deferred_entry *shared_read_entry;
639         struct deferred_entry *all_io_entry;
640         struct dm_thin_new_mapping *overwrite_mapping;
641 };
642
643 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
644 {
645         struct bio *bio;
646         struct bio_list bios;
647
648         bio_list_init(&bios);
649         bio_list_merge(&bios, master);
650         bio_list_init(master);
651
652         while ((bio = bio_list_pop(&bios))) {
653                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
654
655                 if (h->tc == tc)
656                         bio_endio(bio, DM_ENDIO_REQUEUE);
657                 else
658                         bio_list_add(master, bio);
659         }
660 }
661
662 static void requeue_io(struct thin_c *tc)
663 {
664         struct pool *pool = tc->pool;
665         unsigned long flags;
666
667         spin_lock_irqsave(&pool->lock, flags);
668         __requeue_bio_list(tc, &pool->deferred_bios);
669         __requeue_bio_list(tc, &pool->retry_on_resume_list);
670         spin_unlock_irqrestore(&pool->lock, flags);
671 }
672
673 /*
674  * This section of code contains the logic for processing a thin device's IO.
675  * Much of the code depends on pool object resources (lists, workqueues, etc)
676  * but most is exclusively called from the thin target rather than the thin-pool
677  * target.
678  */
679
680 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
681 {
682         return bio->bi_sector >> tc->pool->block_shift;
683 }
684
685 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
686 {
687         struct pool *pool = tc->pool;
688
689         bio->bi_bdev = tc->pool_dev->bdev;
690         bio->bi_sector = (block << pool->block_shift) +
691                 (bio->bi_sector & pool->offset_mask);
692 }
693
694 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
695 {
696         bio->bi_bdev = tc->origin_dev->bdev;
697 }
698
699 static void issue(struct thin_c *tc, struct bio *bio)
700 {
701         struct pool *pool = tc->pool;
702         unsigned long flags;
703
704         /*
705          * Batch together any FUA/FLUSH bios we find and then issue
706          * a single commit for them in process_deferred_bios().
707          */
708         if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
709                 spin_lock_irqsave(&pool->lock, flags);
710                 bio_list_add(&pool->deferred_flush_bios, bio);
711                 spin_unlock_irqrestore(&pool->lock, flags);
712         } else
713                 generic_make_request(bio);
714 }
715
716 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
717 {
718         remap_to_origin(tc, bio);
719         issue(tc, bio);
720 }
721
722 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
723                             dm_block_t block)
724 {
725         remap(tc, bio, block);
726         issue(tc, bio);
727 }
728
729 /*
730  * wake_worker() is used when new work is queued and when pool_resume is
731  * ready to continue deferred IO processing.
732  */
733 static void wake_worker(struct pool *pool)
734 {
735         queue_work(pool->wq, &pool->worker);
736 }
737
738 /*----------------------------------------------------------------*/
739
740 /*
741  * Bio endio functions.
742  */
743 struct dm_thin_new_mapping {
744         struct list_head list;
745
746         unsigned quiesced:1;
747         unsigned prepared:1;
748         unsigned pass_discard:1;
749
750         struct thin_c *tc;
751         dm_block_t virt_block;
752         dm_block_t data_block;
753         struct dm_bio_prison_cell *cell, *cell2;
754         int err;
755
756         /*
757          * If the bio covers the whole area of a block then we can avoid
758          * zeroing or copying.  Instead this bio is hooked.  The bio will
759          * still be in the cell, so care has to be taken to avoid issuing
760          * the bio twice.
761          */
762         struct bio *bio;
763         bio_end_io_t *saved_bi_end_io;
764 };
765
766 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
767 {
768         struct pool *pool = m->tc->pool;
769
770         if (m->quiesced && m->prepared) {
771                 list_add(&m->list, &pool->prepared_mappings);
772                 wake_worker(pool);
773         }
774 }
775
776 static void copy_complete(int read_err, unsigned long write_err, void *context)
777 {
778         unsigned long flags;
779         struct dm_thin_new_mapping *m = context;
780         struct pool *pool = m->tc->pool;
781
782         m->err = read_err || write_err ? -EIO : 0;
783
784         spin_lock_irqsave(&pool->lock, flags);
785         m->prepared = 1;
786         __maybe_add_mapping(m);
787         spin_unlock_irqrestore(&pool->lock, flags);
788 }
789
790 static void overwrite_endio(struct bio *bio, int err)
791 {
792         unsigned long flags;
793         struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
794         struct dm_thin_new_mapping *m = h->overwrite_mapping;
795         struct pool *pool = m->tc->pool;
796
797         m->err = err;
798
799         spin_lock_irqsave(&pool->lock, flags);
800         m->prepared = 1;
801         __maybe_add_mapping(m);
802         spin_unlock_irqrestore(&pool->lock, flags);
803 }
804
805 /*----------------------------------------------------------------*/
806
807 /*
808  * Workqueue.
809  */
810
811 /*
812  * Prepared mapping jobs.
813  */
814
815 /*
816  * This sends the bios in the cell back to the deferred_bios list.
817  */
818 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
819                        dm_block_t data_block)
820 {
821         struct pool *pool = tc->pool;
822         unsigned long flags;
823
824         spin_lock_irqsave(&pool->lock, flags);
825         cell_release(cell, &pool->deferred_bios);
826         spin_unlock_irqrestore(&tc->pool->lock, flags);
827
828         wake_worker(pool);
829 }
830
831 /*
832  * Same as cell_defer above, except it omits one particular detainee,
833  * a write bio that covers the block and has already been processed.
834  */
835 static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
836 {
837         struct bio_list bios;
838         struct pool *pool = tc->pool;
839         unsigned long flags;
840
841         bio_list_init(&bios);
842
843         spin_lock_irqsave(&pool->lock, flags);
844         cell_release_no_holder(cell, &pool->deferred_bios);
845         spin_unlock_irqrestore(&pool->lock, flags);
846
847         wake_worker(pool);
848 }
849
850 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
851 {
852         struct thin_c *tc = m->tc;
853         struct bio *bio;
854         int r;
855
856         bio = m->bio;
857         if (bio)
858                 bio->bi_end_io = m->saved_bi_end_io;
859
860         if (m->err) {
861                 cell_error(m->cell);
862                 return;
863         }
864
865         /*
866          * Commit the prepared block into the mapping btree.
867          * Any I/O for this block arriving after this point will get
868          * remapped to it directly.
869          */
870         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
871         if (r) {
872                 DMERR("dm_thin_insert_block() failed");
873                 cell_error(m->cell);
874                 return;
875         }
876
877         /*
878          * Release any bios held while the block was being provisioned.
879          * If we are processing a write bio that completely covers the block,
880          * we already processed it so can ignore it now when processing
881          * the bios in the cell.
882          */
883         if (bio) {
884                 cell_defer_except(tc, m->cell);
885                 bio_endio(bio, 0);
886         } else
887                 cell_defer(tc, m->cell, m->data_block);
888
889         list_del(&m->list);
890         mempool_free(m, tc->pool->mapping_pool);
891 }
892
893 static void process_prepared_discard(struct dm_thin_new_mapping *m)
894 {
895         int r;
896         struct thin_c *tc = m->tc;
897
898         r = dm_thin_remove_block(tc->td, m->virt_block);
899         if (r)
900                 DMERR("dm_thin_remove_block() failed");
901
902         /*
903          * Pass the discard down to the underlying device?
904          */
905         if (m->pass_discard)
906                 remap_and_issue(tc, m->bio, m->data_block);
907         else
908                 bio_endio(m->bio, 0);
909
910         cell_defer_except(tc, m->cell);
911         cell_defer_except(tc, m->cell2);
912         mempool_free(m, tc->pool->mapping_pool);
913 }
914
915 static void process_prepared(struct pool *pool, struct list_head *head,
916                              void (*fn)(struct dm_thin_new_mapping *))
917 {
918         unsigned long flags;
919         struct list_head maps;
920         struct dm_thin_new_mapping *m, *tmp;
921
922         INIT_LIST_HEAD(&maps);
923         spin_lock_irqsave(&pool->lock, flags);
924         list_splice_init(head, &maps);
925         spin_unlock_irqrestore(&pool->lock, flags);
926
927         list_for_each_entry_safe(m, tmp, &maps, list)
928                 fn(m);
929 }
930
931 /*
932  * Deferred bio jobs.
933  */
934 static int io_overlaps_block(struct pool *pool, struct bio *bio)
935 {
936         return !(bio->bi_sector & pool->offset_mask) &&
937                 (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
938
939 }
940
941 static int io_overwrites_block(struct pool *pool, struct bio *bio)
942 {
943         return (bio_data_dir(bio) == WRITE) &&
944                 io_overlaps_block(pool, bio);
945 }
946
947 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
948                                bio_end_io_t *fn)
949 {
950         *save = bio->bi_end_io;
951         bio->bi_end_io = fn;
952 }
953
954 static int ensure_next_mapping(struct pool *pool)
955 {
956         if (pool->next_mapping)
957                 return 0;
958
959         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
960
961         return pool->next_mapping ? 0 : -ENOMEM;
962 }
963
964 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
965 {
966         struct dm_thin_new_mapping *r = pool->next_mapping;
967
968         BUG_ON(!pool->next_mapping);
969
970         pool->next_mapping = NULL;
971
972         return r;
973 }
974
975 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
976                           struct dm_dev *origin, dm_block_t data_origin,
977                           dm_block_t data_dest,
978                           struct dm_bio_prison_cell *cell, struct bio *bio)
979 {
980         int r;
981         struct pool *pool = tc->pool;
982         struct dm_thin_new_mapping *m = get_next_mapping(pool);
983
984         INIT_LIST_HEAD(&m->list);
985         m->quiesced = 0;
986         m->prepared = 0;
987         m->tc = tc;
988         m->virt_block = virt_block;
989         m->data_block = data_dest;
990         m->cell = cell;
991         m->err = 0;
992         m->bio = NULL;
993
994         if (!ds_add_work(&pool->shared_read_ds, &m->list))
995                 m->quiesced = 1;
996
997         /*
998          * IO to pool_dev remaps to the pool target's data_dev.
999          *
1000          * If the whole block of data is being overwritten, we can issue the
1001          * bio immediately. Otherwise we use kcopyd to clone the data first.
1002          */
1003         if (io_overwrites_block(pool, bio)) {
1004                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1005
1006                 h->overwrite_mapping = m;
1007                 m->bio = bio;
1008                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1009                 remap_and_issue(tc, bio, data_dest);
1010         } else {
1011                 struct dm_io_region from, to;
1012
1013                 from.bdev = origin->bdev;
1014                 from.sector = data_origin * pool->sectors_per_block;
1015                 from.count = pool->sectors_per_block;
1016
1017                 to.bdev = tc->pool_dev->bdev;
1018                 to.sector = data_dest * pool->sectors_per_block;
1019                 to.count = pool->sectors_per_block;
1020
1021                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1022                                    0, copy_complete, m);
1023                 if (r < 0) {
1024                         mempool_free(m, pool->mapping_pool);
1025                         DMERR("dm_kcopyd_copy() failed");
1026                         cell_error(cell);
1027                 }
1028         }
1029 }
1030
1031 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1032                                    dm_block_t data_origin, dm_block_t data_dest,
1033                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1034 {
1035         schedule_copy(tc, virt_block, tc->pool_dev,
1036                       data_origin, data_dest, cell, bio);
1037 }
1038
1039 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1040                                    dm_block_t data_dest,
1041                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1042 {
1043         schedule_copy(tc, virt_block, tc->origin_dev,
1044                       virt_block, data_dest, cell, bio);
1045 }
1046
1047 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1048                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1049                           struct bio *bio)
1050 {
1051         struct pool *pool = tc->pool;
1052         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1053
1054         INIT_LIST_HEAD(&m->list);
1055         m->quiesced = 1;
1056         m->prepared = 0;
1057         m->tc = tc;
1058         m->virt_block = virt_block;
1059         m->data_block = data_block;
1060         m->cell = cell;
1061         m->err = 0;
1062         m->bio = NULL;
1063
1064         /*
1065          * If the whole block of data is being overwritten or we are not
1066          * zeroing pre-existing data, we can issue the bio immediately.
1067          * Otherwise we use kcopyd to zero the data first.
1068          */
1069         if (!pool->pf.zero_new_blocks)
1070                 process_prepared_mapping(m);
1071
1072         else if (io_overwrites_block(pool, bio)) {
1073                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1074
1075                 h->overwrite_mapping = m;
1076                 m->bio = bio;
1077                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1078                 remap_and_issue(tc, bio, data_block);
1079         } else {
1080                 int r;
1081                 struct dm_io_region to;
1082
1083                 to.bdev = tc->pool_dev->bdev;
1084                 to.sector = data_block * pool->sectors_per_block;
1085                 to.count = pool->sectors_per_block;
1086
1087                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1088                 if (r < 0) {
1089                         mempool_free(m, pool->mapping_pool);
1090                         DMERR("dm_kcopyd_zero() failed");
1091                         cell_error(cell);
1092                 }
1093         }
1094 }
1095
1096 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1097 {
1098         int r;
1099         dm_block_t free_blocks;
1100         unsigned long flags;
1101         struct pool *pool = tc->pool;
1102
1103         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1104         if (r)
1105                 return r;
1106
1107         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1108                 DMWARN("%s: reached low water mark, sending event.",
1109                        dm_device_name(pool->pool_md));
1110                 spin_lock_irqsave(&pool->lock, flags);
1111                 pool->low_water_triggered = 1;
1112                 spin_unlock_irqrestore(&pool->lock, flags);
1113                 dm_table_event(pool->ti->table);
1114         }
1115
1116         if (!free_blocks) {
1117                 if (pool->no_free_space)
1118                         return -ENOSPC;
1119                 else {
1120                         /*
1121                          * Try to commit to see if that will free up some
1122                          * more space.
1123                          */
1124                         r = dm_pool_commit_metadata(pool->pmd);
1125                         if (r) {
1126                                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1127                                       __func__, r);
1128                                 return r;
1129                         }
1130
1131                         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1132                         if (r)
1133                                 return r;
1134
1135                         /*
1136                          * If we still have no space we set a flag to avoid
1137                          * doing all this checking and return -ENOSPC.
1138                          */
1139                         if (!free_blocks) {
1140                                 DMWARN("%s: no free space available.",
1141                                        dm_device_name(pool->pool_md));
1142                                 spin_lock_irqsave(&pool->lock, flags);
1143                                 pool->no_free_space = 1;
1144                                 spin_unlock_irqrestore(&pool->lock, flags);
1145                                 return -ENOSPC;
1146                         }
1147                 }
1148         }
1149
1150         r = dm_pool_alloc_data_block(pool->pmd, result);
1151         if (r)
1152                 return r;
1153
1154         return 0;
1155 }
1156
1157 /*
1158  * If we have run out of space, queue bios until the device is
1159  * resumed, presumably after having been reloaded with more space.
1160  */
1161 static void retry_on_resume(struct bio *bio)
1162 {
1163         struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1164         struct thin_c *tc = h->tc;
1165         struct pool *pool = tc->pool;
1166         unsigned long flags;
1167
1168         spin_lock_irqsave(&pool->lock, flags);
1169         bio_list_add(&pool->retry_on_resume_list, bio);
1170         spin_unlock_irqrestore(&pool->lock, flags);
1171 }
1172
1173 static void no_space(struct dm_bio_prison_cell *cell)
1174 {
1175         struct bio *bio;
1176         struct bio_list bios;
1177
1178         bio_list_init(&bios);
1179         cell_release(cell, &bios);
1180
1181         while ((bio = bio_list_pop(&bios)))
1182                 retry_on_resume(bio);
1183 }
1184
1185 static void process_discard(struct thin_c *tc, struct bio *bio)
1186 {
1187         int r;
1188         unsigned long flags;
1189         struct pool *pool = tc->pool;
1190         struct dm_bio_prison_cell *cell, *cell2;
1191         struct cell_key key, key2;
1192         dm_block_t block = get_bio_block(tc, bio);
1193         struct dm_thin_lookup_result lookup_result;
1194         struct dm_thin_new_mapping *m;
1195
1196         build_virtual_key(tc->td, block, &key);
1197         if (bio_detain(tc->pool->prison, &key, bio, &cell))
1198                 return;
1199
1200         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1201         switch (r) {
1202         case 0:
1203                 /*
1204                  * Check nobody is fiddling with this pool block.  This can
1205                  * happen if someone's in the process of breaking sharing
1206                  * on this block.
1207                  */
1208                 build_data_key(tc->td, lookup_result.block, &key2);
1209                 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1210                         cell_release_singleton(cell, bio);
1211                         break;
1212                 }
1213
1214                 if (io_overlaps_block(pool, bio)) {
1215                         /*
1216                          * IO may still be going to the destination block.  We must
1217                          * quiesce before we can do the removal.
1218                          */
1219                         m = get_next_mapping(pool);
1220                         m->tc = tc;
1221                         m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
1222                         m->virt_block = block;
1223                         m->data_block = lookup_result.block;
1224                         m->cell = cell;
1225                         m->cell2 = cell2;
1226                         m->err = 0;
1227                         m->bio = bio;
1228
1229                         if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1230                                 spin_lock_irqsave(&pool->lock, flags);
1231                                 list_add(&m->list, &pool->prepared_discards);
1232                                 spin_unlock_irqrestore(&pool->lock, flags);
1233                                 wake_worker(pool);
1234                         }
1235                 } else {
1236                         /*
1237                          * This path is hit if people are ignoring
1238                          * limits->discard_granularity.  It ignores any
1239                          * part of the discard that is in a subsequent
1240                          * block.
1241                          */
1242                         sector_t offset = bio->bi_sector - (block << pool->block_shift);
1243                         unsigned remaining = (pool->sectors_per_block - offset) << 9;
1244                         bio->bi_size = min(bio->bi_size, remaining);
1245
1246                         cell_release_singleton(cell, bio);
1247                         cell_release_singleton(cell2, bio);
1248                         remap_and_issue(tc, bio, lookup_result.block);
1249                 }
1250                 break;
1251
1252         case -ENODATA:
1253                 /*
1254                  * It isn't provisioned, just forget it.
1255                  */
1256                 cell_release_singleton(cell, bio);
1257                 bio_endio(bio, 0);
1258                 break;
1259
1260         default:
1261                 DMERR("discard: find block unexpectedly returned %d", r);
1262                 cell_release_singleton(cell, bio);
1263                 bio_io_error(bio);
1264                 break;
1265         }
1266 }
1267
1268 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1269                           struct cell_key *key,
1270                           struct dm_thin_lookup_result *lookup_result,
1271                           struct dm_bio_prison_cell *cell)
1272 {
1273         int r;
1274         dm_block_t data_block;
1275
1276         r = alloc_data_block(tc, &data_block);
1277         switch (r) {
1278         case 0:
1279                 schedule_internal_copy(tc, block, lookup_result->block,
1280                                        data_block, cell, bio);
1281                 break;
1282
1283         case -ENOSPC:
1284                 no_space(cell);
1285                 break;
1286
1287         default:
1288                 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1289                 cell_error(cell);
1290                 break;
1291         }
1292 }
1293
1294 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1295                                dm_block_t block,
1296                                struct dm_thin_lookup_result *lookup_result)
1297 {
1298         struct dm_bio_prison_cell *cell;
1299         struct pool *pool = tc->pool;
1300         struct cell_key key;
1301
1302         /*
1303          * If cell is already occupied, then sharing is already in the process
1304          * of being broken so we have nothing further to do here.
1305          */
1306         build_data_key(tc->td, lookup_result->block, &key);
1307         if (bio_detain(pool->prison, &key, bio, &cell))
1308                 return;
1309
1310         if (bio_data_dir(bio) == WRITE)
1311                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1312         else {
1313                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1314
1315                 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1316
1317                 cell_release_singleton(cell, bio);
1318                 remap_and_issue(tc, bio, lookup_result->block);
1319         }
1320 }
1321
1322 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1323                             struct dm_bio_prison_cell *cell)
1324 {
1325         int r;
1326         dm_block_t data_block;
1327
1328         /*
1329          * Remap empty bios (flushes) immediately, without provisioning.
1330          */
1331         if (!bio->bi_size) {
1332                 cell_release_singleton(cell, bio);
1333                 remap_and_issue(tc, bio, 0);
1334                 return;
1335         }
1336
1337         /*
1338          * Fill read bios with zeroes and complete them immediately.
1339          */
1340         if (bio_data_dir(bio) == READ) {
1341                 zero_fill_bio(bio);
1342                 cell_release_singleton(cell, bio);
1343                 bio_endio(bio, 0);
1344                 return;
1345         }
1346
1347         r = alloc_data_block(tc, &data_block);
1348         switch (r) {
1349         case 0:
1350                 if (tc->origin_dev)
1351                         schedule_external_copy(tc, block, data_block, cell, bio);
1352                 else
1353                         schedule_zero(tc, block, data_block, cell, bio);
1354                 break;
1355
1356         case -ENOSPC:
1357                 no_space(cell);
1358                 break;
1359
1360         default:
1361                 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1362                 cell_error(cell);
1363                 break;
1364         }
1365 }
1366
1367 static void process_bio(struct thin_c *tc, struct bio *bio)
1368 {
1369         int r;
1370         dm_block_t block = get_bio_block(tc, bio);
1371         struct dm_bio_prison_cell *cell;
1372         struct cell_key key;
1373         struct dm_thin_lookup_result lookup_result;
1374
1375         /*
1376          * If cell is already occupied, then the block is already
1377          * being provisioned so we have nothing further to do here.
1378          */
1379         build_virtual_key(tc->td, block, &key);
1380         if (bio_detain(tc->pool->prison, &key, bio, &cell))
1381                 return;
1382
1383         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1384         switch (r) {
1385         case 0:
1386                 /*
1387                  * We can release this cell now.  This thread is the only
1388                  * one that puts bios into a cell, and we know there were
1389                  * no preceding bios.
1390                  */
1391                 /*
1392                  * TODO: this will probably have to change when discard goes
1393                  * back in.
1394                  */
1395                 cell_release_singleton(cell, bio);
1396
1397                 if (lookup_result.shared)
1398                         process_shared_bio(tc, bio, block, &lookup_result);
1399                 else
1400                         remap_and_issue(tc, bio, lookup_result.block);
1401                 break;
1402
1403         case -ENODATA:
1404                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1405                         cell_release_singleton(cell, bio);
1406                         remap_to_origin_and_issue(tc, bio);
1407                 } else
1408                         provision_block(tc, bio, block, cell);
1409                 break;
1410
1411         default:
1412                 DMERR("dm_thin_find_block() failed, error = %d", r);
1413                 cell_release_singleton(cell, bio);
1414                 bio_io_error(bio);
1415                 break;
1416         }
1417 }
1418
1419 static int need_commit_due_to_time(struct pool *pool)
1420 {
1421         return jiffies < pool->last_commit_jiffies ||
1422                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1423 }
1424
1425 static void process_deferred_bios(struct pool *pool)
1426 {
1427         unsigned long flags;
1428         struct bio *bio;
1429         struct bio_list bios;
1430         int r;
1431
1432         bio_list_init(&bios);
1433
1434         spin_lock_irqsave(&pool->lock, flags);
1435         bio_list_merge(&bios, &pool->deferred_bios);
1436         bio_list_init(&pool->deferred_bios);
1437         spin_unlock_irqrestore(&pool->lock, flags);
1438
1439         while ((bio = bio_list_pop(&bios))) {
1440                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1441                 struct thin_c *tc = h->tc;
1442
1443                 /*
1444                  * If we've got no free new_mapping structs, and processing
1445                  * this bio might require one, we pause until there are some
1446                  * prepared mappings to process.
1447                  */
1448                 if (ensure_next_mapping(pool)) {
1449                         spin_lock_irqsave(&pool->lock, flags);
1450                         bio_list_merge(&pool->deferred_bios, &bios);
1451                         spin_unlock_irqrestore(&pool->lock, flags);
1452
1453                         break;
1454                 }
1455
1456                 if (bio->bi_rw & REQ_DISCARD)
1457                         process_discard(tc, bio);
1458                 else
1459                         process_bio(tc, bio);
1460         }
1461
1462         /*
1463          * If there are any deferred flush bios, we must commit
1464          * the metadata before issuing them.
1465          */
1466         bio_list_init(&bios);
1467         spin_lock_irqsave(&pool->lock, flags);
1468         bio_list_merge(&bios, &pool->deferred_flush_bios);
1469         bio_list_init(&pool->deferred_flush_bios);
1470         spin_unlock_irqrestore(&pool->lock, flags);
1471
1472         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1473                 return;
1474
1475         r = dm_pool_commit_metadata(pool->pmd);
1476         if (r) {
1477                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1478                       __func__, r);
1479                 while ((bio = bio_list_pop(&bios)))
1480                         bio_io_error(bio);
1481                 return;
1482         }
1483         pool->last_commit_jiffies = jiffies;
1484
1485         while ((bio = bio_list_pop(&bios)))
1486                 generic_make_request(bio);
1487 }
1488
1489 static void do_worker(struct work_struct *ws)
1490 {
1491         struct pool *pool = container_of(ws, struct pool, worker);
1492
1493         process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1494         process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
1495         process_deferred_bios(pool);
1496 }
1497
1498 /*
1499  * We want to commit periodically so that not too much
1500  * unwritten data builds up.
1501  */
1502 static void do_waker(struct work_struct *ws)
1503 {
1504         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1505         wake_worker(pool);
1506         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1507 }
1508
1509 /*----------------------------------------------------------------*/
1510
1511 /*
1512  * Mapping functions.
1513  */
1514
1515 /*
1516  * Called only while mapping a thin bio to hand it over to the workqueue.
1517  */
1518 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1519 {
1520         unsigned long flags;
1521         struct pool *pool = tc->pool;
1522
1523         spin_lock_irqsave(&pool->lock, flags);
1524         bio_list_add(&pool->deferred_bios, bio);
1525         spin_unlock_irqrestore(&pool->lock, flags);
1526
1527         wake_worker(pool);
1528 }
1529
1530 static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1531 {
1532         struct pool *pool = tc->pool;
1533         struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1534
1535         h->tc = tc;
1536         h->shared_read_entry = NULL;
1537         h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1538         h->overwrite_mapping = NULL;
1539
1540         return h;
1541 }
1542
1543 /*
1544  * Non-blocking function called from the thin target's map function.
1545  */
1546 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1547                         union map_info *map_context)
1548 {
1549         int r;
1550         struct thin_c *tc = ti->private;
1551         dm_block_t block = get_bio_block(tc, bio);
1552         struct dm_thin_device *td = tc->td;
1553         struct dm_thin_lookup_result result;
1554
1555         map_context->ptr = thin_hook_bio(tc, bio);
1556         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1557                 thin_defer_bio(tc, bio);
1558                 return DM_MAPIO_SUBMITTED;
1559         }
1560
1561         r = dm_thin_find_block(td, block, 0, &result);
1562
1563         /*
1564          * Note that we defer readahead too.
1565          */
1566         switch (r) {
1567         case 0:
1568                 if (unlikely(result.shared)) {
1569                         /*
1570                          * We have a race condition here between the
1571                          * result.shared value returned by the lookup and
1572                          * snapshot creation, which may cause new
1573                          * sharing.
1574                          *
1575                          * To avoid this always quiesce the origin before
1576                          * taking the snap.  You want to do this anyway to
1577                          * ensure a consistent application view
1578                          * (i.e. lockfs).
1579                          *
1580                          * More distant ancestors are irrelevant. The
1581                          * shared flag will be set in their case.
1582                          */
1583                         thin_defer_bio(tc, bio);
1584                         r = DM_MAPIO_SUBMITTED;
1585                 } else {
1586                         remap(tc, bio, result.block);
1587                         r = DM_MAPIO_REMAPPED;
1588                 }
1589                 break;
1590
1591         case -ENODATA:
1592                 /*
1593                  * In future, the failed dm_thin_find_block above could
1594                  * provide the hint to load the metadata into cache.
1595                  */
1596         case -EWOULDBLOCK:
1597                 thin_defer_bio(tc, bio);
1598                 r = DM_MAPIO_SUBMITTED;
1599                 break;
1600         }
1601
1602         return r;
1603 }
1604
1605 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1606 {
1607         int r;
1608         unsigned long flags;
1609         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1610
1611         spin_lock_irqsave(&pt->pool->lock, flags);
1612         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1613         spin_unlock_irqrestore(&pt->pool->lock, flags);
1614
1615         if (!r) {
1616                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1617                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1618         }
1619
1620         return r;
1621 }
1622
1623 static void __requeue_bios(struct pool *pool)
1624 {
1625         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1626         bio_list_init(&pool->retry_on_resume_list);
1627 }
1628
1629 /*----------------------------------------------------------------
1630  * Binding of control targets to a pool object
1631  *--------------------------------------------------------------*/
1632 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1633 {
1634         struct pool_c *pt = ti->private;
1635
1636         pool->ti = ti;
1637         pool->low_water_blocks = pt->low_water_blocks;
1638         pool->pf = pt->pf;
1639
1640         /*
1641          * If discard_passdown was enabled verify that the data device
1642          * supports discards.  Disable discard_passdown if not; otherwise
1643          * -EOPNOTSUPP will be returned.
1644          */
1645         if (pt->pf.discard_passdown) {
1646                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1647                 if (!q || !blk_queue_discard(q)) {
1648                         char buf[BDEVNAME_SIZE];
1649                         DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1650                                bdevname(pt->data_dev->bdev, buf));
1651                         pool->pf.discard_passdown = 0;
1652                 }
1653         }
1654
1655         return 0;
1656 }
1657
1658 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1659 {
1660         if (pool->ti == ti)
1661                 pool->ti = NULL;
1662 }
1663
1664 /*----------------------------------------------------------------
1665  * Pool creation
1666  *--------------------------------------------------------------*/
1667 /* Initialize pool features. */
1668 static void pool_features_init(struct pool_features *pf)
1669 {
1670         pf->zero_new_blocks = 1;
1671         pf->discard_enabled = 1;
1672         pf->discard_passdown = 1;
1673 }
1674
1675 static void __pool_destroy(struct pool *pool)
1676 {
1677         __pool_table_remove(pool);
1678
1679         if (dm_pool_metadata_close(pool->pmd) < 0)
1680                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1681
1682         prison_destroy(pool->prison);
1683         dm_kcopyd_client_destroy(pool->copier);
1684
1685         if (pool->wq)
1686                 destroy_workqueue(pool->wq);
1687
1688         if (pool->next_mapping)
1689                 mempool_free(pool->next_mapping, pool->mapping_pool);
1690         mempool_destroy(pool->mapping_pool);
1691         mempool_destroy(pool->endio_hook_pool);
1692         kfree(pool);
1693 }
1694
1695 static struct kmem_cache *_new_mapping_cache;
1696 static struct kmem_cache *_endio_hook_cache;
1697
1698 static struct pool *pool_create(struct mapped_device *pool_md,
1699                                 struct block_device *metadata_dev,
1700                                 unsigned long block_size, char **error)
1701 {
1702         int r;
1703         void *err_p;
1704         struct pool *pool;
1705         struct dm_pool_metadata *pmd;
1706
1707         pmd = dm_pool_metadata_open(metadata_dev, block_size);
1708         if (IS_ERR(pmd)) {
1709                 *error = "Error creating metadata object";
1710                 return (struct pool *)pmd;
1711         }
1712
1713         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1714         if (!pool) {
1715                 *error = "Error allocating memory for pool";
1716                 err_p = ERR_PTR(-ENOMEM);
1717                 goto bad_pool;
1718         }
1719
1720         pool->pmd = pmd;
1721         pool->sectors_per_block = block_size;
1722         pool->block_shift = ffs(block_size) - 1;
1723         pool->offset_mask = block_size - 1;
1724         pool->low_water_blocks = 0;
1725         pool_features_init(&pool->pf);
1726         pool->prison = prison_create(PRISON_CELLS);
1727         if (!pool->prison) {
1728                 *error = "Error creating pool's bio prison";
1729                 err_p = ERR_PTR(-ENOMEM);
1730                 goto bad_prison;
1731         }
1732
1733         pool->copier = dm_kcopyd_client_create();
1734         if (IS_ERR(pool->copier)) {
1735                 r = PTR_ERR(pool->copier);
1736                 *error = "Error creating pool's kcopyd client";
1737                 err_p = ERR_PTR(r);
1738                 goto bad_kcopyd_client;
1739         }
1740
1741         /*
1742          * Create singlethreaded workqueue that will service all devices
1743          * that use this metadata.
1744          */
1745         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1746         if (!pool->wq) {
1747                 *error = "Error creating pool's workqueue";
1748                 err_p = ERR_PTR(-ENOMEM);
1749                 goto bad_wq;
1750         }
1751
1752         INIT_WORK(&pool->worker, do_worker);
1753         INIT_DELAYED_WORK(&pool->waker, do_waker);
1754         spin_lock_init(&pool->lock);
1755         bio_list_init(&pool->deferred_bios);
1756         bio_list_init(&pool->deferred_flush_bios);
1757         INIT_LIST_HEAD(&pool->prepared_mappings);
1758         INIT_LIST_HEAD(&pool->prepared_discards);
1759         pool->low_water_triggered = 0;
1760         pool->no_free_space = 0;
1761         bio_list_init(&pool->retry_on_resume_list);
1762         ds_init(&pool->shared_read_ds);
1763         ds_init(&pool->all_io_ds);
1764
1765         pool->next_mapping = NULL;
1766         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1767                                                       _new_mapping_cache);
1768         if (!pool->mapping_pool) {
1769                 *error = "Error creating pool's mapping mempool";
1770                 err_p = ERR_PTR(-ENOMEM);
1771                 goto bad_mapping_pool;
1772         }
1773
1774         pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
1775                                                          _endio_hook_cache);
1776         if (!pool->endio_hook_pool) {
1777                 *error = "Error creating pool's endio_hook mempool";
1778                 err_p = ERR_PTR(-ENOMEM);
1779                 goto bad_endio_hook_pool;
1780         }
1781         pool->ref_count = 1;
1782         pool->last_commit_jiffies = jiffies;
1783         pool->pool_md = pool_md;
1784         pool->md_dev = metadata_dev;
1785         __pool_table_insert(pool);
1786
1787         return pool;
1788
1789 bad_endio_hook_pool:
1790         mempool_destroy(pool->mapping_pool);
1791 bad_mapping_pool:
1792         destroy_workqueue(pool->wq);
1793 bad_wq:
1794         dm_kcopyd_client_destroy(pool->copier);
1795 bad_kcopyd_client:
1796         prison_destroy(pool->prison);
1797 bad_prison:
1798         kfree(pool);
1799 bad_pool:
1800         if (dm_pool_metadata_close(pmd))
1801                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1802
1803         return err_p;
1804 }
1805
1806 static void __pool_inc(struct pool *pool)
1807 {
1808         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1809         pool->ref_count++;
1810 }
1811
1812 static void __pool_dec(struct pool *pool)
1813 {
1814         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1815         BUG_ON(!pool->ref_count);
1816         if (!--pool->ref_count)
1817                 __pool_destroy(pool);
1818 }
1819
1820 static struct pool *__pool_find(struct mapped_device *pool_md,
1821                                 struct block_device *metadata_dev,
1822                                 unsigned long block_size, char **error,
1823                                 int *created)
1824 {
1825         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1826
1827         if (pool) {
1828                 if (pool->pool_md != pool_md)
1829                         return ERR_PTR(-EBUSY);
1830                 __pool_inc(pool);
1831
1832         } else {
1833                 pool = __pool_table_lookup(pool_md);
1834                 if (pool) {
1835                         if (pool->md_dev != metadata_dev)
1836                                 return ERR_PTR(-EINVAL);
1837                         __pool_inc(pool);
1838
1839                 } else {
1840                         pool = pool_create(pool_md, metadata_dev, block_size, error);
1841                         *created = 1;
1842                 }
1843         }
1844
1845         return pool;
1846 }
1847
1848 /*----------------------------------------------------------------
1849  * Pool target methods
1850  *--------------------------------------------------------------*/
1851 static void pool_dtr(struct dm_target *ti)
1852 {
1853         struct pool_c *pt = ti->private;
1854
1855         mutex_lock(&dm_thin_pool_table.mutex);
1856
1857         unbind_control_target(pt->pool, ti);
1858         __pool_dec(pt->pool);
1859         dm_put_device(ti, pt->metadata_dev);
1860         dm_put_device(ti, pt->data_dev);
1861         kfree(pt);
1862
1863         mutex_unlock(&dm_thin_pool_table.mutex);
1864 }
1865
1866 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1867                                struct dm_target *ti)
1868 {
1869         int r;
1870         unsigned argc;
1871         const char *arg_name;
1872
1873         static struct dm_arg _args[] = {
1874                 {0, 3, "Invalid number of pool feature arguments"},
1875         };
1876
1877         /*
1878          * No feature arguments supplied.
1879          */
1880         if (!as->argc)
1881                 return 0;
1882
1883         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1884         if (r)
1885                 return -EINVAL;
1886
1887         while (argc && !r) {
1888                 arg_name = dm_shift_arg(as);
1889                 argc--;
1890
1891                 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1892                         pf->zero_new_blocks = 0;
1893                         continue;
1894                 } else if (!strcasecmp(arg_name, "ignore_discard")) {
1895                         pf->discard_enabled = 0;
1896                         continue;
1897                 } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1898                         pf->discard_passdown = 0;
1899                         continue;
1900                 }
1901
1902                 ti->error = "Unrecognised pool feature requested";
1903                 r = -EINVAL;
1904         }
1905
1906         return r;
1907 }
1908
1909 /*
1910  * thin-pool <metadata dev> <data dev>
1911  *           <data block size (sectors)>
1912  *           <low water mark (blocks)>
1913  *           [<#feature args> [<arg>]*]
1914  *
1915  * Optional feature arguments are:
1916  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1917  *           ignore_discard: disable discard
1918  *           no_discard_passdown: don't pass discards down to the data device
1919  */
1920 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1921 {
1922         int r, pool_created = 0;
1923         struct pool_c *pt;
1924         struct pool *pool;
1925         struct pool_features pf;
1926         struct dm_arg_set as;
1927         struct dm_dev *data_dev;
1928         unsigned long block_size;
1929         dm_block_t low_water_blocks;
1930         struct dm_dev *metadata_dev;
1931         sector_t metadata_dev_size;
1932         char b[BDEVNAME_SIZE];
1933
1934         /*
1935          * FIXME Remove validation from scope of lock.
1936          */
1937         mutex_lock(&dm_thin_pool_table.mutex);
1938
1939         if (argc < 4) {
1940                 ti->error = "Invalid argument count";
1941                 r = -EINVAL;
1942                 goto out_unlock;
1943         }
1944         as.argc = argc;
1945         as.argv = argv;
1946
1947         r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1948         if (r) {
1949                 ti->error = "Error opening metadata block device";
1950                 goto out_unlock;
1951         }
1952
1953         metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1954         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1955                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1956                        bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1957
1958         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1959         if (r) {
1960                 ti->error = "Error getting data device";
1961                 goto out_metadata;
1962         }
1963
1964         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1965             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1966             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1967             !is_power_of_2(block_size)) {
1968                 ti->error = "Invalid block size";
1969                 r = -EINVAL;
1970                 goto out;
1971         }
1972
1973         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1974                 ti->error = "Invalid low water mark";
1975                 r = -EINVAL;
1976                 goto out;
1977         }
1978
1979         /*
1980          * Set default pool features.
1981          */
1982         pool_features_init(&pf);
1983
1984         dm_consume_args(&as, 4);
1985         r = parse_pool_features(&as, &pf, ti);
1986         if (r)
1987                 goto out;
1988
1989         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1990         if (!pt) {
1991                 r = -ENOMEM;
1992                 goto out;
1993         }
1994
1995         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1996                            block_size, &ti->error, &pool_created);
1997         if (IS_ERR(pool)) {
1998                 r = PTR_ERR(pool);
1999                 goto out_free_pt;
2000         }
2001
2002         /*
2003          * 'pool_created' reflects whether this is the first table load.
2004          * Top level discard support is not allowed to be changed after
2005          * initial load.  This would require a pool reload to trigger thin
2006          * device changes.
2007          */
2008         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2009                 ti->error = "Discard support cannot be disabled once enabled";
2010                 r = -EINVAL;
2011                 goto out_flags_changed;
2012         }
2013
2014         pt->pool = pool;
2015         pt->ti = ti;
2016         pt->metadata_dev = metadata_dev;
2017         pt->data_dev = data_dev;
2018         pt->low_water_blocks = low_water_blocks;
2019         pt->pf = pf;
2020         ti->num_flush_requests = 1;
2021         /*
2022          * Only need to enable discards if the pool should pass
2023          * them down to the data device.  The thin device's discard
2024          * processing will cause mappings to be removed from the btree.
2025          */
2026         if (pf.discard_enabled && pf.discard_passdown) {
2027                 ti->num_discard_requests = 1;
2028                 /*
2029                  * Setting 'discards_supported' circumvents the normal
2030                  * stacking of discard limits (this keeps the pool and
2031                  * thin devices' discard limits consistent).
2032                  */
2033                 ti->discards_supported = 1;
2034         }
2035         ti->private = pt;
2036
2037         pt->callbacks.congested_fn = pool_is_congested;
2038         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2039
2040         mutex_unlock(&dm_thin_pool_table.mutex);
2041
2042         return 0;
2043
2044 out_flags_changed:
2045         __pool_dec(pool);
2046 out_free_pt:
2047         kfree(pt);
2048 out:
2049         dm_put_device(ti, data_dev);
2050 out_metadata:
2051         dm_put_device(ti, metadata_dev);
2052 out_unlock:
2053         mutex_unlock(&dm_thin_pool_table.mutex);
2054
2055         return r;
2056 }
2057
2058 static int pool_map(struct dm_target *ti, struct bio *bio,
2059                     union map_info *map_context)
2060 {
2061         int r;
2062         struct pool_c *pt = ti->private;
2063         struct pool *pool = pt->pool;
2064         unsigned long flags;
2065
2066         /*
2067          * As this is a singleton target, ti->begin is always zero.
2068          */
2069         spin_lock_irqsave(&pool->lock, flags);
2070         bio->bi_bdev = pt->data_dev->bdev;
2071         r = DM_MAPIO_REMAPPED;
2072         spin_unlock_irqrestore(&pool->lock, flags);
2073
2074         return r;
2075 }
2076
2077 /*
2078  * Retrieves the number of blocks of the data device from
2079  * the superblock and compares it to the actual device size,
2080  * thus resizing the data device in case it has grown.
2081  *
2082  * This both copes with opening preallocated data devices in the ctr
2083  * being followed by a resume
2084  * -and-
2085  * calling the resume method individually after userspace has
2086  * grown the data device in reaction to a table event.
2087  */
2088 static int pool_preresume(struct dm_target *ti)
2089 {
2090         int r;
2091         struct pool_c *pt = ti->private;
2092         struct pool *pool = pt->pool;
2093         dm_block_t data_size, sb_data_size;
2094
2095         /*
2096          * Take control of the pool object.
2097          */
2098         r = bind_control_target(pool, ti);
2099         if (r)
2100                 return r;
2101
2102         data_size = ti->len >> pool->block_shift;
2103         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2104         if (r) {
2105                 DMERR("failed to retrieve data device size");
2106                 return r;
2107         }
2108
2109         if (data_size < sb_data_size) {
2110                 DMERR("pool target too small, is %llu blocks (expected %llu)",
2111                       data_size, sb_data_size);
2112                 return -EINVAL;
2113
2114         } else if (data_size > sb_data_size) {
2115                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2116                 if (r) {
2117                         DMERR("failed to resize data device");
2118                         return r;
2119                 }
2120
2121                 r = dm_pool_commit_metadata(pool->pmd);
2122                 if (r) {
2123                         DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2124                               __func__, r);
2125                         return r;
2126                 }
2127         }
2128
2129         return 0;
2130 }
2131
2132 static void pool_resume(struct dm_target *ti)
2133 {
2134         struct pool_c *pt = ti->private;
2135         struct pool *pool = pt->pool;
2136         unsigned long flags;
2137
2138         spin_lock_irqsave(&pool->lock, flags);
2139         pool->low_water_triggered = 0;
2140         pool->no_free_space = 0;
2141         __requeue_bios(pool);
2142         spin_unlock_irqrestore(&pool->lock, flags);
2143
2144         do_waker(&pool->waker.work);
2145 }
2146
2147 static void pool_postsuspend(struct dm_target *ti)
2148 {
2149         int r;
2150         struct pool_c *pt = ti->private;
2151         struct pool *pool = pt->pool;
2152
2153         cancel_delayed_work(&pool->waker);
2154         flush_workqueue(pool->wq);
2155
2156         r = dm_pool_commit_metadata(pool->pmd);
2157         if (r < 0) {
2158                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2159                       __func__, r);
2160                 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2161         }
2162 }
2163
2164 static int check_arg_count(unsigned argc, unsigned args_required)
2165 {
2166         if (argc != args_required) {
2167                 DMWARN("Message received with %u arguments instead of %u.",
2168                        argc, args_required);
2169                 return -EINVAL;
2170         }
2171
2172         return 0;
2173 }
2174
2175 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2176 {
2177         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2178             *dev_id <= MAX_DEV_ID)
2179                 return 0;
2180
2181         if (warning)
2182                 DMWARN("Message received with invalid device id: %s", arg);
2183
2184         return -EINVAL;
2185 }
2186
2187 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2188 {
2189         dm_thin_id dev_id;
2190         int r;
2191
2192         r = check_arg_count(argc, 2);
2193         if (r)
2194                 return r;
2195
2196         r = read_dev_id(argv[1], &dev_id, 1);
2197         if (r)
2198                 return r;
2199
2200         r = dm_pool_create_thin(pool->pmd, dev_id);
2201         if (r) {
2202                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2203                        argv[1]);
2204                 return r;
2205         }
2206
2207         return 0;
2208 }
2209
2210 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2211 {
2212         dm_thin_id dev_id;
2213         dm_thin_id origin_dev_id;
2214         int r;
2215
2216         r = check_arg_count(argc, 3);
2217         if (r)
2218                 return r;
2219
2220         r = read_dev_id(argv[1], &dev_id, 1);
2221         if (r)
2222                 return r;
2223
2224         r = read_dev_id(argv[2], &origin_dev_id, 1);
2225         if (r)
2226                 return r;
2227
2228         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2229         if (r) {
2230                 DMWARN("Creation of new snapshot %s of device %s failed.",
2231                        argv[1], argv[2]);
2232                 return r;
2233         }
2234
2235         return 0;
2236 }
2237
2238 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2239 {
2240         dm_thin_id dev_id;
2241         int r;
2242
2243         r = check_arg_count(argc, 2);
2244         if (r)
2245                 return r;
2246
2247         r = read_dev_id(argv[1], &dev_id, 1);
2248         if (r)
2249                 return r;
2250
2251         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2252         if (r)
2253                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2254
2255         return r;
2256 }
2257
2258 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2259 {
2260         dm_thin_id old_id, new_id;
2261         int r;
2262
2263         r = check_arg_count(argc, 3);
2264         if (r)
2265                 return r;
2266
2267         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2268                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2269                 return -EINVAL;
2270         }
2271
2272         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2273                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2274                 return -EINVAL;
2275         }
2276
2277         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2278         if (r) {
2279                 DMWARN("Failed to change transaction id from %s to %s.",
2280                        argv[1], argv[2]);
2281                 return r;
2282         }
2283
2284         return 0;
2285 }
2286
2287 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2288 {
2289         int r;
2290
2291         r = check_arg_count(argc, 1);
2292         if (r)
2293                 return r;
2294
2295         r = dm_pool_commit_metadata(pool->pmd);
2296         if (r) {
2297                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2298                       __func__, r);
2299                 return r;
2300         }
2301
2302         r = dm_pool_reserve_metadata_snap(pool->pmd);
2303         if (r)
2304                 DMWARN("reserve_metadata_snap message failed.");
2305
2306         return r;
2307 }
2308
2309 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2310 {
2311         int r;
2312
2313         r = check_arg_count(argc, 1);
2314         if (r)
2315                 return r;
2316
2317         r = dm_pool_release_metadata_snap(pool->pmd);
2318         if (r)
2319                 DMWARN("release_metadata_snap message failed.");
2320
2321         return r;
2322 }
2323
2324 /*
2325  * Messages supported:
2326  *   create_thin        <dev_id>
2327  *   create_snap        <dev_id> <origin_id>
2328  *   delete             <dev_id>
2329  *   trim               <dev_id> <new_size_in_sectors>
2330  *   set_transaction_id <current_trans_id> <new_trans_id>
2331  *   reserve_metadata_snap
2332  *   release_metadata_snap
2333  */
2334 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2335 {
2336         int r = -EINVAL;
2337         struct pool_c *pt = ti->private;
2338         struct pool *pool = pt->pool;
2339
2340         if (!strcasecmp(argv[0], "create_thin"))
2341                 r = process_create_thin_mesg(argc, argv, pool);
2342
2343         else if (!strcasecmp(argv[0], "create_snap"))
2344                 r = process_create_snap_mesg(argc, argv, pool);
2345
2346         else if (!strcasecmp(argv[0], "delete"))
2347                 r = process_delete_mesg(argc, argv, pool);
2348
2349         else if (!strcasecmp(argv[0], "set_transaction_id"))
2350                 r = process_set_transaction_id_mesg(argc, argv, pool);
2351
2352         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2353                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2354
2355         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2356                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2357
2358         else
2359                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2360
2361         if (!r) {
2362                 r = dm_pool_commit_metadata(pool->pmd);
2363                 if (r)
2364                         DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2365                               argv[0], r);
2366         }
2367
2368         return r;
2369 }
2370
2371 /*
2372  * Status line is:
2373  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2374  *    <used data sectors>/<total data sectors> <held metadata root>
2375  */
2376 static int pool_status(struct dm_target *ti, status_type_t type,
2377                        char *result, unsigned maxlen)
2378 {
2379         int r, count;
2380         unsigned sz = 0;
2381         uint64_t transaction_id;
2382         dm_block_t nr_free_blocks_data;
2383         dm_block_t nr_free_blocks_metadata;
2384         dm_block_t nr_blocks_data;
2385         dm_block_t nr_blocks_metadata;
2386         dm_block_t held_root;
2387         char buf[BDEVNAME_SIZE];
2388         char buf2[BDEVNAME_SIZE];
2389         struct pool_c *pt = ti->private;
2390         struct pool *pool = pt->pool;
2391
2392         switch (type) {
2393         case STATUSTYPE_INFO:
2394                 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2395                                                         &transaction_id);
2396                 if (r)
2397                         return r;
2398
2399                 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2400                                                           &nr_free_blocks_metadata);
2401                 if (r)
2402                         return r;
2403
2404                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2405                 if (r)
2406                         return r;
2407
2408                 r = dm_pool_get_free_block_count(pool->pmd,
2409                                                  &nr_free_blocks_data);
2410                 if (r)
2411                         return r;
2412
2413                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2414                 if (r)
2415                         return r;
2416
2417                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2418                 if (r)
2419                         return r;
2420
2421                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2422                        (unsigned long long)transaction_id,
2423                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2424                        (unsigned long long)nr_blocks_metadata,
2425                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2426                        (unsigned long long)nr_blocks_data);
2427
2428                 if (held_root)
2429                         DMEMIT("%llu", held_root);
2430                 else
2431                         DMEMIT("-");
2432
2433                 break;
2434
2435         case STATUSTYPE_TABLE:
2436                 DMEMIT("%s %s %lu %llu ",
2437                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2438                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2439                        (unsigned long)pool->sectors_per_block,
2440                        (unsigned long long)pt->low_water_blocks);
2441
2442                 count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2443                         !pt->pf.discard_passdown;
2444                 DMEMIT("%u ", count);
2445
2446                 if (!pool->pf.zero_new_blocks)
2447                         DMEMIT("skip_block_zeroing ");
2448
2449                 if (!pool->pf.discard_enabled)
2450                         DMEMIT("ignore_discard ");
2451
2452                 if (!pt->pf.discard_passdown)
2453                         DMEMIT("no_discard_passdown ");
2454
2455                 break;
2456         }
2457
2458         return 0;
2459 }
2460
2461 static int pool_iterate_devices(struct dm_target *ti,
2462                                 iterate_devices_callout_fn fn, void *data)
2463 {
2464         struct pool_c *pt = ti->private;
2465
2466         return fn(ti, pt->data_dev, 0, ti->len, data);
2467 }
2468
2469 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2470                       struct bio_vec *biovec, int max_size)
2471 {
2472         struct pool_c *pt = ti->private;
2473         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2474
2475         if (!q->merge_bvec_fn)
2476                 return max_size;
2477
2478         bvm->bi_bdev = pt->data_dev->bdev;
2479
2480         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2481 }
2482
2483 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2484 {
2485         /*
2486          * FIXME: these limits may be incompatible with the pool's data device
2487          */
2488         limits->max_discard_sectors = pool->sectors_per_block;
2489
2490         /*
2491          * This is just a hint, and not enforced.  We have to cope with
2492          * bios that overlap 2 blocks.
2493          */
2494         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2495         limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2496 }
2497
2498 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2499 {
2500         struct pool_c *pt = ti->private;
2501         struct pool *pool = pt->pool;
2502
2503         blk_limits_io_min(limits, 0);
2504         blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2505         if (pool->pf.discard_enabled)
2506                 set_discard_limits(pool, limits);
2507 }
2508
2509 static struct target_type pool_target = {
2510         .name = "thin-pool",
2511         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2512                     DM_TARGET_IMMUTABLE,
2513         .version = {1, 2, 0},
2514         .module = THIS_MODULE,
2515         .ctr = pool_ctr,
2516         .dtr = pool_dtr,
2517         .map = pool_map,
2518         .postsuspend = pool_postsuspend,
2519         .preresume = pool_preresume,
2520         .resume = pool_resume,
2521         .message = pool_message,
2522         .status = pool_status,
2523         .merge = pool_merge,
2524         .iterate_devices = pool_iterate_devices,
2525         .io_hints = pool_io_hints,
2526 };
2527
2528 /*----------------------------------------------------------------
2529  * Thin target methods
2530  *--------------------------------------------------------------*/
2531 static void thin_dtr(struct dm_target *ti)
2532 {
2533         struct thin_c *tc = ti->private;
2534
2535         mutex_lock(&dm_thin_pool_table.mutex);
2536
2537         __pool_dec(tc->pool);
2538         dm_pool_close_thin_device(tc->td);
2539         dm_put_device(ti, tc->pool_dev);
2540         if (tc->origin_dev)
2541                 dm_put_device(ti, tc->origin_dev);
2542         kfree(tc);
2543
2544         mutex_unlock(&dm_thin_pool_table.mutex);
2545 }
2546
2547 /*
2548  * Thin target parameters:
2549  *
2550  * <pool_dev> <dev_id> [origin_dev]
2551  *
2552  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2553  * dev_id: the internal device identifier
2554  * origin_dev: a device external to the pool that should act as the origin
2555  *
2556  * If the pool device has discards disabled, they get disabled for the thin
2557  * device as well.
2558  */
2559 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2560 {
2561         int r;
2562         struct thin_c *tc;
2563         struct dm_dev *pool_dev, *origin_dev;
2564         struct mapped_device *pool_md;
2565
2566         mutex_lock(&dm_thin_pool_table.mutex);
2567
2568         if (argc != 2 && argc != 3) {
2569                 ti->error = "Invalid argument count";
2570                 r = -EINVAL;
2571                 goto out_unlock;
2572         }
2573
2574         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2575         if (!tc) {
2576                 ti->error = "Out of memory";
2577                 r = -ENOMEM;
2578                 goto out_unlock;
2579         }
2580
2581         if (argc == 3) {
2582                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2583                 if (r) {
2584                         ti->error = "Error opening origin device";
2585                         goto bad_origin_dev;
2586                 }
2587                 tc->origin_dev = origin_dev;
2588         }
2589
2590         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2591         if (r) {
2592                 ti->error = "Error opening pool device";
2593                 goto bad_pool_dev;
2594         }
2595         tc->pool_dev = pool_dev;
2596
2597         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2598                 ti->error = "Invalid device id";
2599                 r = -EINVAL;
2600                 goto bad_common;
2601         }
2602
2603         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2604         if (!pool_md) {
2605                 ti->error = "Couldn't get pool mapped device";
2606                 r = -EINVAL;
2607                 goto bad_common;
2608         }
2609
2610         tc->pool = __pool_table_lookup(pool_md);
2611         if (!tc->pool) {
2612                 ti->error = "Couldn't find pool object";
2613                 r = -EINVAL;
2614                 goto bad_pool_lookup;
2615         }
2616         __pool_inc(tc->pool);
2617
2618         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2619         if (r) {
2620                 ti->error = "Couldn't open thin internal device";
2621                 goto bad_thin_open;
2622         }
2623
2624         ti->split_io = tc->pool->sectors_per_block;
2625         ti->num_flush_requests = 1;
2626
2627         /* In case the pool supports discards, pass them on. */
2628         if (tc->pool->pf.discard_enabled) {
2629                 ti->discards_supported = 1;
2630                 ti->num_discard_requests = 1;
2631         }
2632
2633         dm_put(pool_md);
2634
2635         mutex_unlock(&dm_thin_pool_table.mutex);
2636
2637         return 0;
2638
2639 bad_thin_open:
2640         __pool_dec(tc->pool);
2641 bad_pool_lookup:
2642         dm_put(pool_md);
2643 bad_common:
2644         dm_put_device(ti, tc->pool_dev);
2645 bad_pool_dev:
2646         if (tc->origin_dev)
2647                 dm_put_device(ti, tc->origin_dev);
2648 bad_origin_dev:
2649         kfree(tc);
2650 out_unlock:
2651         mutex_unlock(&dm_thin_pool_table.mutex);
2652
2653         return r;
2654 }
2655
2656 static int thin_map(struct dm_target *ti, struct bio *bio,
2657                     union map_info *map_context)
2658 {
2659         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2660
2661         return thin_bio_map(ti, bio, map_context);
2662 }
2663
2664 static int thin_endio(struct dm_target *ti,
2665                       struct bio *bio, int err,
2666                       union map_info *map_context)
2667 {
2668         unsigned long flags;
2669         struct dm_thin_endio_hook *h = map_context->ptr;
2670         struct list_head work;
2671         struct dm_thin_new_mapping *m, *tmp;
2672         struct pool *pool = h->tc->pool;
2673
2674         if (h->shared_read_entry) {
2675                 INIT_LIST_HEAD(&work);
2676                 ds_dec(h->shared_read_entry, &work);
2677
2678                 spin_lock_irqsave(&pool->lock, flags);
2679                 list_for_each_entry_safe(m, tmp, &work, list) {
2680                         list_del(&m->list);
2681                         m->quiesced = 1;
2682                         __maybe_add_mapping(m);
2683                 }
2684                 spin_unlock_irqrestore(&pool->lock, flags);
2685         }
2686
2687         if (h->all_io_entry) {
2688                 INIT_LIST_HEAD(&work);
2689                 ds_dec(h->all_io_entry, &work);
2690                 spin_lock_irqsave(&pool->lock, flags);
2691                 list_for_each_entry_safe(m, tmp, &work, list)
2692                         list_add(&m->list, &pool->prepared_discards);
2693                 spin_unlock_irqrestore(&pool->lock, flags);
2694         }
2695
2696         mempool_free(h, pool->endio_hook_pool);
2697
2698         return 0;
2699 }
2700
2701 static void thin_postsuspend(struct dm_target *ti)
2702 {
2703         if (dm_noflush_suspending(ti))
2704                 requeue_io((struct thin_c *)ti->private);
2705 }
2706
2707 /*
2708  * <nr mapped sectors> <highest mapped sector>
2709  */
2710 static int thin_status(struct dm_target *ti, status_type_t type,
2711                        char *result, unsigned maxlen)
2712 {
2713         int r;
2714         ssize_t sz = 0;
2715         dm_block_t mapped, highest;
2716         char buf[BDEVNAME_SIZE];
2717         struct thin_c *tc = ti->private;
2718
2719         if (!tc->td)
2720                 DMEMIT("-");
2721         else {
2722                 switch (type) {
2723                 case STATUSTYPE_INFO:
2724                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2725                         if (r)
2726                                 return r;
2727
2728                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2729                         if (r < 0)
2730                                 return r;
2731
2732                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2733                         if (r)
2734                                 DMEMIT("%llu", ((highest + 1) *
2735                                                 tc->pool->sectors_per_block) - 1);
2736                         else
2737                                 DMEMIT("-");
2738                         break;
2739
2740                 case STATUSTYPE_TABLE:
2741                         DMEMIT("%s %lu",
2742                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2743                                (unsigned long) tc->dev_id);
2744                         if (tc->origin_dev)
2745                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2746                         break;
2747                 }
2748         }
2749
2750         return 0;
2751 }
2752
2753 static int thin_iterate_devices(struct dm_target *ti,
2754                                 iterate_devices_callout_fn fn, void *data)
2755 {
2756         dm_block_t blocks;
2757         struct thin_c *tc = ti->private;
2758
2759         /*
2760          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2761          * we follow a more convoluted path through to the pool's target.
2762          */
2763         if (!tc->pool->ti)
2764                 return 0;       /* nothing is bound */
2765
2766         blocks = tc->pool->ti->len >> tc->pool->block_shift;
2767         if (blocks)
2768                 return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2769
2770         return 0;
2771 }
2772
2773 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2774 {
2775         struct thin_c *tc = ti->private;
2776         struct pool *pool = tc->pool;
2777
2778         blk_limits_io_min(limits, 0);
2779         blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2780         set_discard_limits(pool, limits);
2781 }
2782
2783 static struct target_type thin_target = {
2784         .name = "thin",
2785         .version = {1, 1, 0},
2786         .module = THIS_MODULE,
2787         .ctr = thin_ctr,
2788         .dtr = thin_dtr,
2789         .map = thin_map,
2790         .end_io = thin_endio,
2791         .postsuspend = thin_postsuspend,
2792         .status = thin_status,
2793         .iterate_devices = thin_iterate_devices,
2794         .io_hints = thin_io_hints,
2795 };
2796
2797 /*----------------------------------------------------------------*/
2798
2799 static int __init dm_thin_init(void)
2800 {
2801         int r;
2802
2803         pool_table_init();
2804
2805         r = dm_register_target(&thin_target);
2806         if (r)
2807                 return r;
2808
2809         r = dm_register_target(&pool_target);
2810         if (r)
2811                 goto bad_pool_target;
2812
2813         r = -ENOMEM;
2814
2815         _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
2816         if (!_cell_cache)
2817                 goto bad_cell_cache;
2818
2819         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2820         if (!_new_mapping_cache)
2821                 goto bad_new_mapping_cache;
2822
2823         _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
2824         if (!_endio_hook_cache)
2825                 goto bad_endio_hook_cache;
2826
2827         return 0;
2828
2829 bad_endio_hook_cache:
2830         kmem_cache_destroy(_new_mapping_cache);
2831 bad_new_mapping_cache:
2832         kmem_cache_destroy(_cell_cache);
2833 bad_cell_cache:
2834         dm_unregister_target(&pool_target);
2835 bad_pool_target:
2836         dm_unregister_target(&thin_target);
2837
2838         return r;
2839 }
2840
2841 static void dm_thin_exit(void)
2842 {
2843         dm_unregister_target(&thin_target);
2844         dm_unregister_target(&pool_target);
2845
2846         kmem_cache_destroy(_cell_cache);
2847         kmem_cache_destroy(_new_mapping_cache);
2848         kmem_cache_destroy(_endio_hook_cache);
2849 }
2850
2851 module_init(dm_thin_init);
2852 module_exit(dm_thin_exit);
2853
2854 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2855 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2856 MODULE_LICENSE("GPL");