Merge branch 'torvalds/master'
[firefly-linux-kernel-4.4.55.git] / drivers / md / bcache / super.c
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29
30 static const char bcache_magic[] = {
31         0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32         0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34
35 static const char invalid_uuid[] = {
36         0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37         0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42         "default",
43         "writethrough",
44         "writeback",
45         "writearound",
46         "none",
47         NULL
48 };
49
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59
60 #define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
61
62 /* Superblock */
63
64 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
65                               struct page **res)
66 {
67         const char *err;
68         struct cache_sb *s;
69         struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
70         unsigned i;
71
72         if (!bh)
73                 return "IO error";
74
75         s = (struct cache_sb *) bh->b_data;
76
77         sb->offset              = le64_to_cpu(s->offset);
78         sb->version             = le64_to_cpu(s->version);
79
80         memcpy(sb->magic,       s->magic, 16);
81         memcpy(sb->uuid,        s->uuid, 16);
82         memcpy(sb->set_uuid,    s->set_uuid, 16);
83         memcpy(sb->label,       s->label, SB_LABEL_SIZE);
84
85         sb->flags               = le64_to_cpu(s->flags);
86         sb->seq                 = le64_to_cpu(s->seq);
87         sb->last_mount          = le32_to_cpu(s->last_mount);
88         sb->first_bucket        = le16_to_cpu(s->first_bucket);
89         sb->keys                = le16_to_cpu(s->keys);
90
91         for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
92                 sb->d[i] = le64_to_cpu(s->d[i]);
93
94         pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
95                  sb->version, sb->flags, sb->seq, sb->keys);
96
97         err = "Not a bcache superblock";
98         if (sb->offset != SB_SECTOR)
99                 goto err;
100
101         if (memcmp(sb->magic, bcache_magic, 16))
102                 goto err;
103
104         err = "Too many journal buckets";
105         if (sb->keys > SB_JOURNAL_BUCKETS)
106                 goto err;
107
108         err = "Bad checksum";
109         if (s->csum != csum_set(s))
110                 goto err;
111
112         err = "Bad UUID";
113         if (bch_is_zero(sb->uuid, 16))
114                 goto err;
115
116         sb->block_size  = le16_to_cpu(s->block_size);
117
118         err = "Superblock block size smaller than device block size";
119         if (sb->block_size << 9 < bdev_logical_block_size(bdev))
120                 goto err;
121
122         switch (sb->version) {
123         case BCACHE_SB_VERSION_BDEV:
124                 sb->data_offset = BDEV_DATA_START_DEFAULT;
125                 break;
126         case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
127                 sb->data_offset = le64_to_cpu(s->data_offset);
128
129                 err = "Bad data offset";
130                 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
131                         goto err;
132
133                 break;
134         case BCACHE_SB_VERSION_CDEV:
135         case BCACHE_SB_VERSION_CDEV_WITH_UUID:
136                 sb->nbuckets    = le64_to_cpu(s->nbuckets);
137                 sb->block_size  = le16_to_cpu(s->block_size);
138                 sb->bucket_size = le16_to_cpu(s->bucket_size);
139
140                 sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
141                 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
142
143                 err = "Too many buckets";
144                 if (sb->nbuckets > LONG_MAX)
145                         goto err;
146
147                 err = "Not enough buckets";
148                 if (sb->nbuckets < 1 << 7)
149                         goto err;
150
151                 err = "Bad block/bucket size";
152                 if (!is_power_of_2(sb->block_size) ||
153                     sb->block_size > PAGE_SECTORS ||
154                     !is_power_of_2(sb->bucket_size) ||
155                     sb->bucket_size < PAGE_SECTORS)
156                         goto err;
157
158                 err = "Invalid superblock: device too small";
159                 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
160                         goto err;
161
162                 err = "Bad UUID";
163                 if (bch_is_zero(sb->set_uuid, 16))
164                         goto err;
165
166                 err = "Bad cache device number in set";
167                 if (!sb->nr_in_set ||
168                     sb->nr_in_set <= sb->nr_this_dev ||
169                     sb->nr_in_set > MAX_CACHES_PER_SET)
170                         goto err;
171
172                 err = "Journal buckets not sequential";
173                 for (i = 0; i < sb->keys; i++)
174                         if (sb->d[i] != sb->first_bucket + i)
175                                 goto err;
176
177                 err = "Too many journal buckets";
178                 if (sb->first_bucket + sb->keys > sb->nbuckets)
179                         goto err;
180
181                 err = "Invalid superblock: first bucket comes before end of super";
182                 if (sb->first_bucket * sb->bucket_size < 16)
183                         goto err;
184
185                 break;
186         default:
187                 err = "Unsupported superblock version";
188                 goto err;
189         }
190
191         sb->last_mount = get_seconds();
192         err = NULL;
193
194         get_page(bh->b_page);
195         *res = bh->b_page;
196 err:
197         put_bh(bh);
198         return err;
199 }
200
201 static void write_bdev_super_endio(struct bio *bio)
202 {
203         struct cached_dev *dc = bio->bi_private;
204         /* XXX: error checking */
205
206         closure_put(&dc->sb_write);
207 }
208
209 static void __write_super(struct cache_sb *sb, struct bio *bio)
210 {
211         struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
212         unsigned i;
213
214         bio->bi_iter.bi_sector  = SB_SECTOR;
215         bio->bi_rw              = REQ_SYNC|REQ_META;
216         bio->bi_iter.bi_size    = SB_SIZE;
217         bch_bio_map(bio, NULL);
218
219         out->offset             = cpu_to_le64(sb->offset);
220         out->version            = cpu_to_le64(sb->version);
221
222         memcpy(out->uuid,       sb->uuid, 16);
223         memcpy(out->set_uuid,   sb->set_uuid, 16);
224         memcpy(out->label,      sb->label, SB_LABEL_SIZE);
225
226         out->flags              = cpu_to_le64(sb->flags);
227         out->seq                = cpu_to_le64(sb->seq);
228
229         out->last_mount         = cpu_to_le32(sb->last_mount);
230         out->first_bucket       = cpu_to_le16(sb->first_bucket);
231         out->keys               = cpu_to_le16(sb->keys);
232
233         for (i = 0; i < sb->keys; i++)
234                 out->d[i] = cpu_to_le64(sb->d[i]);
235
236         out->csum = csum_set(out);
237
238         pr_debug("ver %llu, flags %llu, seq %llu",
239                  sb->version, sb->flags, sb->seq);
240
241         submit_bio(REQ_WRITE, bio);
242 }
243
244 static void bch_write_bdev_super_unlock(struct closure *cl)
245 {
246         struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
247
248         up(&dc->sb_write_mutex);
249 }
250
251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
252 {
253         struct closure *cl = &dc->sb_write;
254         struct bio *bio = &dc->sb_bio;
255
256         down(&dc->sb_write_mutex);
257         closure_init(cl, parent);
258
259         bio_reset(bio);
260         bio->bi_bdev    = dc->bdev;
261         bio->bi_end_io  = write_bdev_super_endio;
262         bio->bi_private = dc;
263
264         closure_get(cl);
265         __write_super(&dc->sb, bio);
266
267         closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
268 }
269
270 static void write_super_endio(struct bio *bio)
271 {
272         struct cache *ca = bio->bi_private;
273
274         bch_count_io_errors(ca, bio->bi_error, "writing superblock");
275         closure_put(&ca->set->sb_write);
276 }
277
278 static void bcache_write_super_unlock(struct closure *cl)
279 {
280         struct cache_set *c = container_of(cl, struct cache_set, sb_write);
281
282         up(&c->sb_write_mutex);
283 }
284
285 void bcache_write_super(struct cache_set *c)
286 {
287         struct closure *cl = &c->sb_write;
288         struct cache *ca;
289         unsigned i;
290
291         down(&c->sb_write_mutex);
292         closure_init(cl, &c->cl);
293
294         c->sb.seq++;
295
296         for_each_cache(ca, c, i) {
297                 struct bio *bio = &ca->sb_bio;
298
299                 ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
300                 ca->sb.seq              = c->sb.seq;
301                 ca->sb.last_mount       = c->sb.last_mount;
302
303                 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
304
305                 bio_reset(bio);
306                 bio->bi_bdev    = ca->bdev;
307                 bio->bi_end_io  = write_super_endio;
308                 bio->bi_private = ca;
309
310                 closure_get(cl);
311                 __write_super(&ca->sb, bio);
312         }
313
314         closure_return_with_destructor(cl, bcache_write_super_unlock);
315 }
316
317 /* UUID io */
318
319 static void uuid_endio(struct bio *bio)
320 {
321         struct closure *cl = bio->bi_private;
322         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
323
324         cache_set_err_on(bio->bi_error, c, "accessing uuids");
325         bch_bbio_free(bio, c);
326         closure_put(cl);
327 }
328
329 static void uuid_io_unlock(struct closure *cl)
330 {
331         struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
332
333         up(&c->uuid_write_mutex);
334 }
335
336 static void uuid_io(struct cache_set *c, unsigned long rw,
337                     struct bkey *k, struct closure *parent)
338 {
339         struct closure *cl = &c->uuid_write;
340         struct uuid_entry *u;
341         unsigned i;
342         char buf[80];
343
344         BUG_ON(!parent);
345         down(&c->uuid_write_mutex);
346         closure_init(cl, parent);
347
348         for (i = 0; i < KEY_PTRS(k); i++) {
349                 struct bio *bio = bch_bbio_alloc(c);
350
351                 bio->bi_rw      = REQ_SYNC|REQ_META|rw;
352                 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
353
354                 bio->bi_end_io  = uuid_endio;
355                 bio->bi_private = cl;
356                 bch_bio_map(bio, c->uuids);
357
358                 bch_submit_bbio(bio, c, k, i);
359
360                 if (!(rw & WRITE))
361                         break;
362         }
363
364         bch_extent_to_text(buf, sizeof(buf), k);
365         pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
366
367         for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
368                 if (!bch_is_zero(u->uuid, 16))
369                         pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
370                                  u - c->uuids, u->uuid, u->label,
371                                  u->first_reg, u->last_reg, u->invalidated);
372
373         closure_return_with_destructor(cl, uuid_io_unlock);
374 }
375
376 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
377 {
378         struct bkey *k = &j->uuid_bucket;
379
380         if (__bch_btree_ptr_invalid(c, k))
381                 return "bad uuid pointer";
382
383         bkey_copy(&c->uuid_bucket, k);
384         uuid_io(c, READ_SYNC, k, cl);
385
386         if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
387                 struct uuid_entry_v0    *u0 = (void *) c->uuids;
388                 struct uuid_entry       *u1 = (void *) c->uuids;
389                 int i;
390
391                 closure_sync(cl);
392
393                 /*
394                  * Since the new uuid entry is bigger than the old, we have to
395                  * convert starting at the highest memory address and work down
396                  * in order to do it in place
397                  */
398
399                 for (i = c->nr_uuids - 1;
400                      i >= 0;
401                      --i) {
402                         memcpy(u1[i].uuid,      u0[i].uuid, 16);
403                         memcpy(u1[i].label,     u0[i].label, 32);
404
405                         u1[i].first_reg         = u0[i].first_reg;
406                         u1[i].last_reg          = u0[i].last_reg;
407                         u1[i].invalidated       = u0[i].invalidated;
408
409                         u1[i].flags     = 0;
410                         u1[i].sectors   = 0;
411                 }
412         }
413
414         return NULL;
415 }
416
417 static int __uuid_write(struct cache_set *c)
418 {
419         BKEY_PADDED(key) k;
420         struct closure cl;
421         closure_init_stack(&cl);
422
423         lockdep_assert_held(&bch_register_lock);
424
425         if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
426                 return 1;
427
428         SET_KEY_SIZE(&k.key, c->sb.bucket_size);
429         uuid_io(c, REQ_WRITE, &k.key, &cl);
430         closure_sync(&cl);
431
432         bkey_copy(&c->uuid_bucket, &k.key);
433         bkey_put(c, &k.key);
434         return 0;
435 }
436
437 int bch_uuid_write(struct cache_set *c)
438 {
439         int ret = __uuid_write(c);
440
441         if (!ret)
442                 bch_journal_meta(c, NULL);
443
444         return ret;
445 }
446
447 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
448 {
449         struct uuid_entry *u;
450
451         for (u = c->uuids;
452              u < c->uuids + c->nr_uuids; u++)
453                 if (!memcmp(u->uuid, uuid, 16))
454                         return u;
455
456         return NULL;
457 }
458
459 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
460 {
461         static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
462         return uuid_find(c, zero_uuid);
463 }
464
465 /*
466  * Bucket priorities/gens:
467  *
468  * For each bucket, we store on disk its
469    * 8 bit gen
470    * 16 bit priority
471  *
472  * See alloc.c for an explanation of the gen. The priority is used to implement
473  * lru (and in the future other) cache replacement policies; for most purposes
474  * it's just an opaque integer.
475  *
476  * The gens and the priorities don't have a whole lot to do with each other, and
477  * it's actually the gens that must be written out at specific times - it's no
478  * big deal if the priorities don't get written, if we lose them we just reuse
479  * buckets in suboptimal order.
480  *
481  * On disk they're stored in a packed array, and in as many buckets are required
482  * to fit them all. The buckets we use to store them form a list; the journal
483  * header points to the first bucket, the first bucket points to the second
484  * bucket, et cetera.
485  *
486  * This code is used by the allocation code; periodically (whenever it runs out
487  * of buckets to allocate from) the allocation code will invalidate some
488  * buckets, but it can't use those buckets until their new gens are safely on
489  * disk.
490  */
491
492 static void prio_endio(struct bio *bio)
493 {
494         struct cache *ca = bio->bi_private;
495
496         cache_set_err_on(bio->bi_error, ca->set, "accessing priorities");
497         bch_bbio_free(bio, ca->set);
498         closure_put(&ca->prio);
499 }
500
501 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
502 {
503         struct closure *cl = &ca->prio;
504         struct bio *bio = bch_bbio_alloc(ca->set);
505
506         closure_init_stack(cl);
507
508         bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
509         bio->bi_bdev            = ca->bdev;
510         bio->bi_rw              = REQ_SYNC|REQ_META|rw;
511         bio->bi_iter.bi_size    = bucket_bytes(ca);
512
513         bio->bi_end_io  = prio_endio;
514         bio->bi_private = ca;
515         bch_bio_map(bio, ca->disk_buckets);
516
517         closure_bio_submit(bio, &ca->prio);
518         closure_sync(cl);
519 }
520
521 void bch_prio_write(struct cache *ca)
522 {
523         int i;
524         struct bucket *b;
525         struct closure cl;
526
527         closure_init_stack(&cl);
528
529         lockdep_assert_held(&ca->set->bucket_lock);
530
531         ca->disk_buckets->seq++;
532
533         atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
534                         &ca->meta_sectors_written);
535
536         //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
537         //       fifo_used(&ca->free_inc), fifo_used(&ca->unused));
538
539         for (i = prio_buckets(ca) - 1; i >= 0; --i) {
540                 long bucket;
541                 struct prio_set *p = ca->disk_buckets;
542                 struct bucket_disk *d = p->data;
543                 struct bucket_disk *end = d + prios_per_bucket(ca);
544
545                 for (b = ca->buckets + i * prios_per_bucket(ca);
546                      b < ca->buckets + ca->sb.nbuckets && d < end;
547                      b++, d++) {
548                         d->prio = cpu_to_le16(b->prio);
549                         d->gen = b->gen;
550                 }
551
552                 p->next_bucket  = ca->prio_buckets[i + 1];
553                 p->magic        = pset_magic(&ca->sb);
554                 p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
555
556                 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
557                 BUG_ON(bucket == -1);
558
559                 mutex_unlock(&ca->set->bucket_lock);
560                 prio_io(ca, bucket, REQ_WRITE);
561                 mutex_lock(&ca->set->bucket_lock);
562
563                 ca->prio_buckets[i] = bucket;
564                 atomic_dec_bug(&ca->buckets[bucket].pin);
565         }
566
567         mutex_unlock(&ca->set->bucket_lock);
568
569         bch_journal_meta(ca->set, &cl);
570         closure_sync(&cl);
571
572         mutex_lock(&ca->set->bucket_lock);
573
574         /*
575          * Don't want the old priorities to get garbage collected until after we
576          * finish writing the new ones, and they're journalled
577          */
578         for (i = 0; i < prio_buckets(ca); i++) {
579                 if (ca->prio_last_buckets[i])
580                         __bch_bucket_free(ca,
581                                 &ca->buckets[ca->prio_last_buckets[i]]);
582
583                 ca->prio_last_buckets[i] = ca->prio_buckets[i];
584         }
585 }
586
587 static void prio_read(struct cache *ca, uint64_t bucket)
588 {
589         struct prio_set *p = ca->disk_buckets;
590         struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
591         struct bucket *b;
592         unsigned bucket_nr = 0;
593
594         for (b = ca->buckets;
595              b < ca->buckets + ca->sb.nbuckets;
596              b++, d++) {
597                 if (d == end) {
598                         ca->prio_buckets[bucket_nr] = bucket;
599                         ca->prio_last_buckets[bucket_nr] = bucket;
600                         bucket_nr++;
601
602                         prio_io(ca, bucket, READ_SYNC);
603
604                         if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
605                                 pr_warn("bad csum reading priorities");
606
607                         if (p->magic != pset_magic(&ca->sb))
608                                 pr_warn("bad magic reading priorities");
609
610                         bucket = p->next_bucket;
611                         d = p->data;
612                 }
613
614                 b->prio = le16_to_cpu(d->prio);
615                 b->gen = b->last_gc = d->gen;
616         }
617 }
618
619 /* Bcache device */
620
621 static int open_dev(struct block_device *b, fmode_t mode)
622 {
623         struct bcache_device *d = b->bd_disk->private_data;
624         if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
625                 return -ENXIO;
626
627         closure_get(&d->cl);
628         return 0;
629 }
630
631 static void release_dev(struct gendisk *b, fmode_t mode)
632 {
633         struct bcache_device *d = b->private_data;
634         closure_put(&d->cl);
635 }
636
637 static int ioctl_dev(struct block_device *b, fmode_t mode,
638                      unsigned int cmd, unsigned long arg)
639 {
640         struct bcache_device *d = b->bd_disk->private_data;
641         return d->ioctl(d, mode, cmd, arg);
642 }
643
644 static const struct block_device_operations bcache_ops = {
645         .open           = open_dev,
646         .release        = release_dev,
647         .ioctl          = ioctl_dev,
648         .owner          = THIS_MODULE,
649 };
650
651 void bcache_device_stop(struct bcache_device *d)
652 {
653         if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
654                 closure_queue(&d->cl);
655 }
656
657 static void bcache_device_unlink(struct bcache_device *d)
658 {
659         lockdep_assert_held(&bch_register_lock);
660
661         if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
662                 unsigned i;
663                 struct cache *ca;
664
665                 sysfs_remove_link(&d->c->kobj, d->name);
666                 sysfs_remove_link(&d->kobj, "cache");
667
668                 for_each_cache(ca, d->c, i)
669                         bd_unlink_disk_holder(ca->bdev, d->disk);
670         }
671 }
672
673 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
674                                const char *name)
675 {
676         unsigned i;
677         struct cache *ca;
678
679         for_each_cache(ca, d->c, i)
680                 bd_link_disk_holder(ca->bdev, d->disk);
681
682         snprintf(d->name, BCACHEDEVNAME_SIZE,
683                  "%s%u", name, d->id);
684
685         WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
686              sysfs_create_link(&c->kobj, &d->kobj, d->name),
687              "Couldn't create device <-> cache set symlinks");
688 }
689
690 static void bcache_device_detach(struct bcache_device *d)
691 {
692         lockdep_assert_held(&bch_register_lock);
693
694         if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
695                 struct uuid_entry *u = d->c->uuids + d->id;
696
697                 SET_UUID_FLASH_ONLY(u, 0);
698                 memcpy(u->uuid, invalid_uuid, 16);
699                 u->invalidated = cpu_to_le32(get_seconds());
700                 bch_uuid_write(d->c);
701         }
702
703         bcache_device_unlink(d);
704
705         d->c->devices[d->id] = NULL;
706         closure_put(&d->c->caching);
707         d->c = NULL;
708 }
709
710 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
711                                  unsigned id)
712 {
713         d->id = id;
714         d->c = c;
715         c->devices[id] = d;
716
717         closure_get(&c->caching);
718 }
719
720 static void bcache_device_free(struct bcache_device *d)
721 {
722         lockdep_assert_held(&bch_register_lock);
723
724         pr_info("%s stopped", d->disk->disk_name);
725
726         if (d->c)
727                 bcache_device_detach(d);
728         if (d->disk && d->disk->flags & GENHD_FL_UP)
729                 del_gendisk(d->disk);
730         if (d->disk && d->disk->queue)
731                 blk_cleanup_queue(d->disk->queue);
732         if (d->disk) {
733                 ida_simple_remove(&bcache_minor, d->disk->first_minor);
734                 put_disk(d->disk);
735         }
736
737         if (d->bio_split)
738                 bioset_free(d->bio_split);
739         kvfree(d->full_dirty_stripes);
740         kvfree(d->stripe_sectors_dirty);
741
742         closure_debug_destroy(&d->cl);
743 }
744
745 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
746                               sector_t sectors)
747 {
748         struct request_queue *q;
749         size_t n;
750         int minor;
751
752         if (!d->stripe_size)
753                 d->stripe_size = 1 << 31;
754
755         d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
756
757         if (!d->nr_stripes ||
758             d->nr_stripes > INT_MAX ||
759             d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
760                 pr_err("nr_stripes too large");
761                 return -ENOMEM;
762         }
763
764         n = d->nr_stripes * sizeof(atomic_t);
765         d->stripe_sectors_dirty = n < PAGE_SIZE << 6
766                 ? kzalloc(n, GFP_KERNEL)
767                 : vzalloc(n);
768         if (!d->stripe_sectors_dirty)
769                 return -ENOMEM;
770
771         n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
772         d->full_dirty_stripes = n < PAGE_SIZE << 6
773                 ? kzalloc(n, GFP_KERNEL)
774                 : vzalloc(n);
775         if (!d->full_dirty_stripes)
776                 return -ENOMEM;
777
778         minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
779         if (minor < 0)
780                 return minor;
781
782         if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
783             !(d->disk = alloc_disk(1))) {
784                 ida_simple_remove(&bcache_minor, minor);
785                 return -ENOMEM;
786         }
787
788         set_capacity(d->disk, sectors);
789         snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
790
791         d->disk->major          = bcache_major;
792         d->disk->first_minor    = minor;
793         d->disk->fops           = &bcache_ops;
794         d->disk->private_data   = d;
795
796         q = blk_alloc_queue(GFP_KERNEL);
797         if (!q)
798                 return -ENOMEM;
799
800         blk_queue_make_request(q, NULL);
801         d->disk->queue                  = q;
802         q->queuedata                    = d;
803         q->backing_dev_info.congested_data = d;
804         q->limits.max_hw_sectors        = UINT_MAX;
805         q->limits.max_sectors           = UINT_MAX;
806         q->limits.max_segment_size      = UINT_MAX;
807         q->limits.max_segments          = BIO_MAX_PAGES;
808         blk_queue_max_discard_sectors(q, UINT_MAX);
809         q->limits.discard_granularity   = 512;
810         q->limits.io_min                = block_size;
811         q->limits.logical_block_size    = block_size;
812         q->limits.physical_block_size   = block_size;
813         set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
814         clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
815         set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
816
817         blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
818
819         return 0;
820 }
821
822 /* Cached device */
823
824 static void calc_cached_dev_sectors(struct cache_set *c)
825 {
826         uint64_t sectors = 0;
827         struct cached_dev *dc;
828
829         list_for_each_entry(dc, &c->cached_devs, list)
830                 sectors += bdev_sectors(dc->bdev);
831
832         c->cached_dev_sectors = sectors;
833 }
834
835 void bch_cached_dev_run(struct cached_dev *dc)
836 {
837         struct bcache_device *d = &dc->disk;
838         char buf[SB_LABEL_SIZE + 1];
839         char *env[] = {
840                 "DRIVER=bcache",
841                 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
842                 NULL,
843                 NULL,
844         };
845
846         memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
847         buf[SB_LABEL_SIZE] = '\0';
848         env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
849
850         if (atomic_xchg(&dc->running, 1))
851                 return;
852
853         if (!d->c &&
854             BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
855                 struct closure cl;
856                 closure_init_stack(&cl);
857
858                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
859                 bch_write_bdev_super(dc, &cl);
860                 closure_sync(&cl);
861         }
862
863         add_disk(d->disk);
864         bd_link_disk_holder(dc->bdev, dc->disk.disk);
865         /* won't show up in the uevent file, use udevadm monitor -e instead
866          * only class / kset properties are persistent */
867         kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
868         kfree(env[1]);
869         kfree(env[2]);
870
871         if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
872             sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
873                 pr_debug("error creating sysfs link");
874 }
875
876 static void cached_dev_detach_finish(struct work_struct *w)
877 {
878         struct cached_dev *dc = container_of(w, struct cached_dev, detach);
879         char buf[BDEVNAME_SIZE];
880         struct closure cl;
881         closure_init_stack(&cl);
882
883         BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
884         BUG_ON(atomic_read(&dc->count));
885
886         mutex_lock(&bch_register_lock);
887
888         memset(&dc->sb.set_uuid, 0, 16);
889         SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
890
891         bch_write_bdev_super(dc, &cl);
892         closure_sync(&cl);
893
894         bcache_device_detach(&dc->disk);
895         list_move(&dc->list, &uncached_devices);
896
897         clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
898         clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
899
900         mutex_unlock(&bch_register_lock);
901
902         pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
903
904         /* Drop ref we took in cached_dev_detach() */
905         closure_put(&dc->disk.cl);
906 }
907
908 void bch_cached_dev_detach(struct cached_dev *dc)
909 {
910         lockdep_assert_held(&bch_register_lock);
911
912         if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
913                 return;
914
915         if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
916                 return;
917
918         /*
919          * Block the device from being closed and freed until we're finished
920          * detaching
921          */
922         closure_get(&dc->disk.cl);
923
924         bch_writeback_queue(dc);
925         cached_dev_put(dc);
926 }
927
928 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
929 {
930         uint32_t rtime = cpu_to_le32(get_seconds());
931         struct uuid_entry *u;
932         char buf[BDEVNAME_SIZE];
933
934         bdevname(dc->bdev, buf);
935
936         if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
937                 return -ENOENT;
938
939         if (dc->disk.c) {
940                 pr_err("Can't attach %s: already attached", buf);
941                 return -EINVAL;
942         }
943
944         if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
945                 pr_err("Can't attach %s: shutting down", buf);
946                 return -EINVAL;
947         }
948
949         if (dc->sb.block_size < c->sb.block_size) {
950                 /* Will die */
951                 pr_err("Couldn't attach %s: block size less than set's block size",
952                        buf);
953                 return -EINVAL;
954         }
955
956         u = uuid_find(c, dc->sb.uuid);
957
958         if (u &&
959             (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
960              BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
961                 memcpy(u->uuid, invalid_uuid, 16);
962                 u->invalidated = cpu_to_le32(get_seconds());
963                 u = NULL;
964         }
965
966         if (!u) {
967                 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
968                         pr_err("Couldn't find uuid for %s in set", buf);
969                         return -ENOENT;
970                 }
971
972                 u = uuid_find_empty(c);
973                 if (!u) {
974                         pr_err("Not caching %s, no room for UUID", buf);
975                         return -EINVAL;
976                 }
977         }
978
979         /* Deadlocks since we're called via sysfs...
980         sysfs_remove_file(&dc->kobj, &sysfs_attach);
981          */
982
983         if (bch_is_zero(u->uuid, 16)) {
984                 struct closure cl;
985                 closure_init_stack(&cl);
986
987                 memcpy(u->uuid, dc->sb.uuid, 16);
988                 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
989                 u->first_reg = u->last_reg = rtime;
990                 bch_uuid_write(c);
991
992                 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
993                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
994
995                 bch_write_bdev_super(dc, &cl);
996                 closure_sync(&cl);
997         } else {
998                 u->last_reg = rtime;
999                 bch_uuid_write(c);
1000         }
1001
1002         bcache_device_attach(&dc->disk, c, u - c->uuids);
1003         list_move(&dc->list, &c->cached_devs);
1004         calc_cached_dev_sectors(c);
1005
1006         smp_wmb();
1007         /*
1008          * dc->c must be set before dc->count != 0 - paired with the mb in
1009          * cached_dev_get()
1010          */
1011         atomic_set(&dc->count, 1);
1012
1013         if (bch_cached_dev_writeback_start(dc))
1014                 return -ENOMEM;
1015
1016         if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1017                 bch_sectors_dirty_init(dc);
1018                 atomic_set(&dc->has_dirty, 1);
1019                 atomic_inc(&dc->count);
1020                 bch_writeback_queue(dc);
1021         }
1022
1023         bch_cached_dev_run(dc);
1024         bcache_device_link(&dc->disk, c, "bdev");
1025
1026         pr_info("Caching %s as %s on set %pU",
1027                 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1028                 dc->disk.c->sb.set_uuid);
1029         return 0;
1030 }
1031
1032 void bch_cached_dev_release(struct kobject *kobj)
1033 {
1034         struct cached_dev *dc = container_of(kobj, struct cached_dev,
1035                                              disk.kobj);
1036         kfree(dc);
1037         module_put(THIS_MODULE);
1038 }
1039
1040 static void cached_dev_free(struct closure *cl)
1041 {
1042         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1043
1044         cancel_delayed_work_sync(&dc->writeback_rate_update);
1045         if (!IS_ERR_OR_NULL(dc->writeback_thread))
1046                 kthread_stop(dc->writeback_thread);
1047
1048         mutex_lock(&bch_register_lock);
1049
1050         if (atomic_read(&dc->running))
1051                 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1052         bcache_device_free(&dc->disk);
1053         list_del(&dc->list);
1054
1055         mutex_unlock(&bch_register_lock);
1056
1057         if (!IS_ERR_OR_NULL(dc->bdev))
1058                 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1059
1060         wake_up(&unregister_wait);
1061
1062         kobject_put(&dc->disk.kobj);
1063 }
1064
1065 static void cached_dev_flush(struct closure *cl)
1066 {
1067         struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1068         struct bcache_device *d = &dc->disk;
1069
1070         mutex_lock(&bch_register_lock);
1071         bcache_device_unlink(d);
1072         mutex_unlock(&bch_register_lock);
1073
1074         bch_cache_accounting_destroy(&dc->accounting);
1075         kobject_del(&d->kobj);
1076
1077         continue_at(cl, cached_dev_free, system_wq);
1078 }
1079
1080 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1081 {
1082         int ret;
1083         struct io *io;
1084         struct request_queue *q = bdev_get_queue(dc->bdev);
1085
1086         __module_get(THIS_MODULE);
1087         INIT_LIST_HEAD(&dc->list);
1088         closure_init(&dc->disk.cl, NULL);
1089         set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1090         kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1091         INIT_WORK(&dc->detach, cached_dev_detach_finish);
1092         sema_init(&dc->sb_write_mutex, 1);
1093         INIT_LIST_HEAD(&dc->io_lru);
1094         spin_lock_init(&dc->io_lock);
1095         bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1096
1097         dc->sequential_cutoff           = 4 << 20;
1098
1099         for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1100                 list_add(&io->lru, &dc->io_lru);
1101                 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1102         }
1103
1104         dc->disk.stripe_size = q->limits.io_opt >> 9;
1105
1106         if (dc->disk.stripe_size)
1107                 dc->partial_stripes_expensive =
1108                         q->limits.raid_partial_stripes_expensive;
1109
1110         ret = bcache_device_init(&dc->disk, block_size,
1111                          dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1112         if (ret)
1113                 return ret;
1114
1115         set_capacity(dc->disk.disk,
1116                      dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1117
1118         dc->disk.disk->queue->backing_dev_info.ra_pages =
1119                 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1120                     q->backing_dev_info.ra_pages);
1121
1122         bch_cached_dev_request_init(dc);
1123         bch_cached_dev_writeback_init(dc);
1124         return 0;
1125 }
1126
1127 /* Cached device - bcache superblock */
1128
1129 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1130                                  struct block_device *bdev,
1131                                  struct cached_dev *dc)
1132 {
1133         char name[BDEVNAME_SIZE];
1134         const char *err = "cannot allocate memory";
1135         struct cache_set *c;
1136
1137         memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1138         dc->bdev = bdev;
1139         dc->bdev->bd_holder = dc;
1140
1141         bio_init(&dc->sb_bio);
1142         dc->sb_bio.bi_max_vecs  = 1;
1143         dc->sb_bio.bi_io_vec    = dc->sb_bio.bi_inline_vecs;
1144         dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1145         get_page(sb_page);
1146
1147         if (cached_dev_init(dc, sb->block_size << 9))
1148                 goto err;
1149
1150         err = "error creating kobject";
1151         if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1152                         "bcache"))
1153                 goto err;
1154         if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1155                 goto err;
1156
1157         pr_info("registered backing device %s", bdevname(bdev, name));
1158
1159         list_add(&dc->list, &uncached_devices);
1160         list_for_each_entry(c, &bch_cache_sets, list)
1161                 bch_cached_dev_attach(dc, c);
1162
1163         if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1164             BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1165                 bch_cached_dev_run(dc);
1166
1167         return;
1168 err:
1169         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1170         bcache_device_stop(&dc->disk);
1171 }
1172
1173 /* Flash only volumes */
1174
1175 void bch_flash_dev_release(struct kobject *kobj)
1176 {
1177         struct bcache_device *d = container_of(kobj, struct bcache_device,
1178                                                kobj);
1179         kfree(d);
1180 }
1181
1182 static void flash_dev_free(struct closure *cl)
1183 {
1184         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1185         mutex_lock(&bch_register_lock);
1186         bcache_device_free(d);
1187         mutex_unlock(&bch_register_lock);
1188         kobject_put(&d->kobj);
1189 }
1190
1191 static void flash_dev_flush(struct closure *cl)
1192 {
1193         struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1194
1195         mutex_lock(&bch_register_lock);
1196         bcache_device_unlink(d);
1197         mutex_unlock(&bch_register_lock);
1198         kobject_del(&d->kobj);
1199         continue_at(cl, flash_dev_free, system_wq);
1200 }
1201
1202 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1203 {
1204         struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1205                                           GFP_KERNEL);
1206         if (!d)
1207                 return -ENOMEM;
1208
1209         closure_init(&d->cl, NULL);
1210         set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1211
1212         kobject_init(&d->kobj, &bch_flash_dev_ktype);
1213
1214         if (bcache_device_init(d, block_bytes(c), u->sectors))
1215                 goto err;
1216
1217         bcache_device_attach(d, c, u - c->uuids);
1218         bch_flash_dev_request_init(d);
1219         add_disk(d->disk);
1220
1221         if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1222                 goto err;
1223
1224         bcache_device_link(d, c, "volume");
1225
1226         return 0;
1227 err:
1228         kobject_put(&d->kobj);
1229         return -ENOMEM;
1230 }
1231
1232 static int flash_devs_run(struct cache_set *c)
1233 {
1234         int ret = 0;
1235         struct uuid_entry *u;
1236
1237         for (u = c->uuids;
1238              u < c->uuids + c->nr_uuids && !ret;
1239              u++)
1240                 if (UUID_FLASH_ONLY(u))
1241                         ret = flash_dev_run(c, u);
1242
1243         return ret;
1244 }
1245
1246 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1247 {
1248         struct uuid_entry *u;
1249
1250         if (test_bit(CACHE_SET_STOPPING, &c->flags))
1251                 return -EINTR;
1252
1253         if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1254                 return -EPERM;
1255
1256         u = uuid_find_empty(c);
1257         if (!u) {
1258                 pr_err("Can't create volume, no room for UUID");
1259                 return -EINVAL;
1260         }
1261
1262         get_random_bytes(u->uuid, 16);
1263         memset(u->label, 0, 32);
1264         u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1265
1266         SET_UUID_FLASH_ONLY(u, 1);
1267         u->sectors = size >> 9;
1268
1269         bch_uuid_write(c);
1270
1271         return flash_dev_run(c, u);
1272 }
1273
1274 /* Cache set */
1275
1276 __printf(2, 3)
1277 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1278 {
1279         va_list args;
1280
1281         if (c->on_error != ON_ERROR_PANIC &&
1282             test_bit(CACHE_SET_STOPPING, &c->flags))
1283                 return false;
1284
1285         /* XXX: we can be called from atomic context
1286         acquire_console_sem();
1287         */
1288
1289         printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1290
1291         va_start(args, fmt);
1292         vprintk(fmt, args);
1293         va_end(args);
1294
1295         printk(", disabling caching\n");
1296
1297         if (c->on_error == ON_ERROR_PANIC)
1298                 panic("panic forced after error\n");
1299
1300         bch_cache_set_unregister(c);
1301         return true;
1302 }
1303
1304 void bch_cache_set_release(struct kobject *kobj)
1305 {
1306         struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1307         kfree(c);
1308         module_put(THIS_MODULE);
1309 }
1310
1311 static void cache_set_free(struct closure *cl)
1312 {
1313         struct cache_set *c = container_of(cl, struct cache_set, cl);
1314         struct cache *ca;
1315         unsigned i;
1316
1317         if (!IS_ERR_OR_NULL(c->debug))
1318                 debugfs_remove(c->debug);
1319
1320         bch_open_buckets_free(c);
1321         bch_btree_cache_free(c);
1322         bch_journal_free(c);
1323
1324         for_each_cache(ca, c, i)
1325                 if (ca) {
1326                         ca->set = NULL;
1327                         c->cache[ca->sb.nr_this_dev] = NULL;
1328                         kobject_put(&ca->kobj);
1329                 }
1330
1331         bch_bset_sort_state_free(&c->sort);
1332         free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1333
1334         if (c->moving_gc_wq)
1335                 destroy_workqueue(c->moving_gc_wq);
1336         if (c->bio_split)
1337                 bioset_free(c->bio_split);
1338         if (c->fill_iter)
1339                 mempool_destroy(c->fill_iter);
1340         if (c->bio_meta)
1341                 mempool_destroy(c->bio_meta);
1342         if (c->search)
1343                 mempool_destroy(c->search);
1344         kfree(c->devices);
1345
1346         mutex_lock(&bch_register_lock);
1347         list_del(&c->list);
1348         mutex_unlock(&bch_register_lock);
1349
1350         pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1351         wake_up(&unregister_wait);
1352
1353         closure_debug_destroy(&c->cl);
1354         kobject_put(&c->kobj);
1355 }
1356
1357 static void cache_set_flush(struct closure *cl)
1358 {
1359         struct cache_set *c = container_of(cl, struct cache_set, caching);
1360         struct cache *ca;
1361         struct btree *b;
1362         unsigned i;
1363
1364         bch_cache_accounting_destroy(&c->accounting);
1365
1366         kobject_put(&c->internal);
1367         kobject_del(&c->kobj);
1368
1369         if (c->gc_thread)
1370                 kthread_stop(c->gc_thread);
1371
1372         if (!IS_ERR_OR_NULL(c->root))
1373                 list_add(&c->root->list, &c->btree_cache);
1374
1375         /* Should skip this if we're unregistering because of an error */
1376         list_for_each_entry(b, &c->btree_cache, list) {
1377                 mutex_lock(&b->write_lock);
1378                 if (btree_node_dirty(b))
1379                         __bch_btree_node_write(b, NULL);
1380                 mutex_unlock(&b->write_lock);
1381         }
1382
1383         for_each_cache(ca, c, i)
1384                 if (ca->alloc_thread)
1385                         kthread_stop(ca->alloc_thread);
1386
1387         if (c->journal.cur) {
1388                 cancel_delayed_work_sync(&c->journal.work);
1389                 /* flush last journal entry if needed */
1390                 c->journal.work.work.func(&c->journal.work.work);
1391         }
1392
1393         closure_return(cl);
1394 }
1395
1396 static void __cache_set_unregister(struct closure *cl)
1397 {
1398         struct cache_set *c = container_of(cl, struct cache_set, caching);
1399         struct cached_dev *dc;
1400         size_t i;
1401
1402         mutex_lock(&bch_register_lock);
1403
1404         for (i = 0; i < c->nr_uuids; i++)
1405                 if (c->devices[i]) {
1406                         if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1407                             test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1408                                 dc = container_of(c->devices[i],
1409                                                   struct cached_dev, disk);
1410                                 bch_cached_dev_detach(dc);
1411                         } else {
1412                                 bcache_device_stop(c->devices[i]);
1413                         }
1414                 }
1415
1416         mutex_unlock(&bch_register_lock);
1417
1418         continue_at(cl, cache_set_flush, system_wq);
1419 }
1420
1421 void bch_cache_set_stop(struct cache_set *c)
1422 {
1423         if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1424                 closure_queue(&c->caching);
1425 }
1426
1427 void bch_cache_set_unregister(struct cache_set *c)
1428 {
1429         set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1430         bch_cache_set_stop(c);
1431 }
1432
1433 #define alloc_bucket_pages(gfp, c)                      \
1434         ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1435
1436 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1437 {
1438         int iter_size;
1439         struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1440         if (!c)
1441                 return NULL;
1442
1443         __module_get(THIS_MODULE);
1444         closure_init(&c->cl, NULL);
1445         set_closure_fn(&c->cl, cache_set_free, system_wq);
1446
1447         closure_init(&c->caching, &c->cl);
1448         set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1449
1450         /* Maybe create continue_at_noreturn() and use it here? */
1451         closure_set_stopped(&c->cl);
1452         closure_put(&c->cl);
1453
1454         kobject_init(&c->kobj, &bch_cache_set_ktype);
1455         kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1456
1457         bch_cache_accounting_init(&c->accounting, &c->cl);
1458
1459         memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1460         c->sb.block_size        = sb->block_size;
1461         c->sb.bucket_size       = sb->bucket_size;
1462         c->sb.nr_in_set         = sb->nr_in_set;
1463         c->sb.last_mount        = sb->last_mount;
1464         c->bucket_bits          = ilog2(sb->bucket_size);
1465         c->block_bits           = ilog2(sb->block_size);
1466         c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1467
1468         c->btree_pages          = bucket_pages(c);
1469         if (c->btree_pages > BTREE_MAX_PAGES)
1470                 c->btree_pages = max_t(int, c->btree_pages / 4,
1471                                        BTREE_MAX_PAGES);
1472
1473         sema_init(&c->sb_write_mutex, 1);
1474         mutex_init(&c->bucket_lock);
1475         init_waitqueue_head(&c->btree_cache_wait);
1476         init_waitqueue_head(&c->bucket_wait);
1477         sema_init(&c->uuid_write_mutex, 1);
1478
1479         spin_lock_init(&c->btree_gc_time.lock);
1480         spin_lock_init(&c->btree_split_time.lock);
1481         spin_lock_init(&c->btree_read_time.lock);
1482
1483         bch_moving_init_cache_set(c);
1484
1485         INIT_LIST_HEAD(&c->list);
1486         INIT_LIST_HEAD(&c->cached_devs);
1487         INIT_LIST_HEAD(&c->btree_cache);
1488         INIT_LIST_HEAD(&c->btree_cache_freeable);
1489         INIT_LIST_HEAD(&c->btree_cache_freed);
1490         INIT_LIST_HEAD(&c->data_buckets);
1491
1492         c->search = mempool_create_slab_pool(32, bch_search_cache);
1493         if (!c->search)
1494                 goto err;
1495
1496         iter_size = (sb->bucket_size / sb->block_size + 1) *
1497                 sizeof(struct btree_iter_set);
1498
1499         if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1500             !(c->bio_meta = mempool_create_kmalloc_pool(2,
1501                                 sizeof(struct bbio) + sizeof(struct bio_vec) *
1502                                 bucket_pages(c))) ||
1503             !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1504             !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1505             !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1506             !(c->moving_gc_wq = create_workqueue("bcache_gc")) ||
1507             bch_journal_alloc(c) ||
1508             bch_btree_cache_alloc(c) ||
1509             bch_open_buckets_alloc(c) ||
1510             bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1511                 goto err;
1512
1513         c->congested_read_threshold_us  = 2000;
1514         c->congested_write_threshold_us = 20000;
1515         c->error_limit  = 8 << IO_ERROR_SHIFT;
1516
1517         return c;
1518 err:
1519         bch_cache_set_unregister(c);
1520         return NULL;
1521 }
1522
1523 static void run_cache_set(struct cache_set *c)
1524 {
1525         const char *err = "cannot allocate memory";
1526         struct cached_dev *dc, *t;
1527         struct cache *ca;
1528         struct closure cl;
1529         unsigned i;
1530
1531         closure_init_stack(&cl);
1532
1533         for_each_cache(ca, c, i)
1534                 c->nbuckets += ca->sb.nbuckets;
1535
1536         if (CACHE_SYNC(&c->sb)) {
1537                 LIST_HEAD(journal);
1538                 struct bkey *k;
1539                 struct jset *j;
1540
1541                 err = "cannot allocate memory for journal";
1542                 if (bch_journal_read(c, &journal))
1543                         goto err;
1544
1545                 pr_debug("btree_journal_read() done");
1546
1547                 err = "no journal entries found";
1548                 if (list_empty(&journal))
1549                         goto err;
1550
1551                 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1552
1553                 err = "IO error reading priorities";
1554                 for_each_cache(ca, c, i)
1555                         prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1556
1557                 /*
1558                  * If prio_read() fails it'll call cache_set_error and we'll
1559                  * tear everything down right away, but if we perhaps checked
1560                  * sooner we could avoid journal replay.
1561                  */
1562
1563                 k = &j->btree_root;
1564
1565                 err = "bad btree root";
1566                 if (__bch_btree_ptr_invalid(c, k))
1567                         goto err;
1568
1569                 err = "error reading btree root";
1570                 c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1571                 if (IS_ERR_OR_NULL(c->root))
1572                         goto err;
1573
1574                 list_del_init(&c->root->list);
1575                 rw_unlock(true, c->root);
1576
1577                 err = uuid_read(c, j, &cl);
1578                 if (err)
1579                         goto err;
1580
1581                 err = "error in recovery";
1582                 if (bch_btree_check(c))
1583                         goto err;
1584
1585                 bch_journal_mark(c, &journal);
1586                 bch_initial_gc_finish(c);
1587                 pr_debug("btree_check() done");
1588
1589                 /*
1590                  * bcache_journal_next() can't happen sooner, or
1591                  * btree_gc_finish() will give spurious errors about last_gc >
1592                  * gc_gen - this is a hack but oh well.
1593                  */
1594                 bch_journal_next(&c->journal);
1595
1596                 err = "error starting allocator thread";
1597                 for_each_cache(ca, c, i)
1598                         if (bch_cache_allocator_start(ca))
1599                                 goto err;
1600
1601                 /*
1602                  * First place it's safe to allocate: btree_check() and
1603                  * btree_gc_finish() have to run before we have buckets to
1604                  * allocate, and bch_bucket_alloc_set() might cause a journal
1605                  * entry to be written so bcache_journal_next() has to be called
1606                  * first.
1607                  *
1608                  * If the uuids were in the old format we have to rewrite them
1609                  * before the next journal entry is written:
1610                  */
1611                 if (j->version < BCACHE_JSET_VERSION_UUID)
1612                         __uuid_write(c);
1613
1614                 bch_journal_replay(c, &journal);
1615         } else {
1616                 pr_notice("invalidating existing data");
1617
1618                 for_each_cache(ca, c, i) {
1619                         unsigned j;
1620
1621                         ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1622                                               2, SB_JOURNAL_BUCKETS);
1623
1624                         for (j = 0; j < ca->sb.keys; j++)
1625                                 ca->sb.d[j] = ca->sb.first_bucket + j;
1626                 }
1627
1628                 bch_initial_gc_finish(c);
1629
1630                 err = "error starting allocator thread";
1631                 for_each_cache(ca, c, i)
1632                         if (bch_cache_allocator_start(ca))
1633                                 goto err;
1634
1635                 mutex_lock(&c->bucket_lock);
1636                 for_each_cache(ca, c, i)
1637                         bch_prio_write(ca);
1638                 mutex_unlock(&c->bucket_lock);
1639
1640                 err = "cannot allocate new UUID bucket";
1641                 if (__uuid_write(c))
1642                         goto err;
1643
1644                 err = "cannot allocate new btree root";
1645                 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1646                 if (IS_ERR_OR_NULL(c->root))
1647                         goto err;
1648
1649                 mutex_lock(&c->root->write_lock);
1650                 bkey_copy_key(&c->root->key, &MAX_KEY);
1651                 bch_btree_node_write(c->root, &cl);
1652                 mutex_unlock(&c->root->write_lock);
1653
1654                 bch_btree_set_root(c->root);
1655                 rw_unlock(true, c->root);
1656
1657                 /*
1658                  * We don't want to write the first journal entry until
1659                  * everything is set up - fortunately journal entries won't be
1660                  * written until the SET_CACHE_SYNC() here:
1661                  */
1662                 SET_CACHE_SYNC(&c->sb, true);
1663
1664                 bch_journal_next(&c->journal);
1665                 bch_journal_meta(c, &cl);
1666         }
1667
1668         err = "error starting gc thread";
1669         if (bch_gc_thread_start(c))
1670                 goto err;
1671
1672         closure_sync(&cl);
1673         c->sb.last_mount = get_seconds();
1674         bcache_write_super(c);
1675
1676         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1677                 bch_cached_dev_attach(dc, c);
1678
1679         flash_devs_run(c);
1680
1681         set_bit(CACHE_SET_RUNNING, &c->flags);
1682         return;
1683 err:
1684         closure_sync(&cl);
1685         /* XXX: test this, it's broken */
1686         bch_cache_set_error(c, "%s", err);
1687 }
1688
1689 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1690 {
1691         return ca->sb.block_size        == c->sb.block_size &&
1692                 ca->sb.bucket_size      == c->sb.bucket_size &&
1693                 ca->sb.nr_in_set        == c->sb.nr_in_set;
1694 }
1695
1696 static const char *register_cache_set(struct cache *ca)
1697 {
1698         char buf[12];
1699         const char *err = "cannot allocate memory";
1700         struct cache_set *c;
1701
1702         list_for_each_entry(c, &bch_cache_sets, list)
1703                 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1704                         if (c->cache[ca->sb.nr_this_dev])
1705                                 return "duplicate cache set member";
1706
1707                         if (!can_attach_cache(ca, c))
1708                                 return "cache sb does not match set";
1709
1710                         if (!CACHE_SYNC(&ca->sb))
1711                                 SET_CACHE_SYNC(&c->sb, false);
1712
1713                         goto found;
1714                 }
1715
1716         c = bch_cache_set_alloc(&ca->sb);
1717         if (!c)
1718                 return err;
1719
1720         err = "error creating kobject";
1721         if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1722             kobject_add(&c->internal, &c->kobj, "internal"))
1723                 goto err;
1724
1725         if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1726                 goto err;
1727
1728         bch_debug_init_cache_set(c);
1729
1730         list_add(&c->list, &bch_cache_sets);
1731 found:
1732         sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1733         if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1734             sysfs_create_link(&c->kobj, &ca->kobj, buf))
1735                 goto err;
1736
1737         if (ca->sb.seq > c->sb.seq) {
1738                 c->sb.version           = ca->sb.version;
1739                 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1740                 c->sb.flags             = ca->sb.flags;
1741                 c->sb.seq               = ca->sb.seq;
1742                 pr_debug("set version = %llu", c->sb.version);
1743         }
1744
1745         kobject_get(&ca->kobj);
1746         ca->set = c;
1747         ca->set->cache[ca->sb.nr_this_dev] = ca;
1748         c->cache_by_alloc[c->caches_loaded++] = ca;
1749
1750         if (c->caches_loaded == c->sb.nr_in_set)
1751                 run_cache_set(c);
1752
1753         return NULL;
1754 err:
1755         bch_cache_set_unregister(c);
1756         return err;
1757 }
1758
1759 /* Cache device */
1760
1761 void bch_cache_release(struct kobject *kobj)
1762 {
1763         struct cache *ca = container_of(kobj, struct cache, kobj);
1764         unsigned i;
1765
1766         if (ca->set) {
1767                 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1768                 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1769         }
1770
1771         free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1772         kfree(ca->prio_buckets);
1773         vfree(ca->buckets);
1774
1775         free_heap(&ca->heap);
1776         free_fifo(&ca->free_inc);
1777
1778         for (i = 0; i < RESERVE_NR; i++)
1779                 free_fifo(&ca->free[i]);
1780
1781         if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1782                 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1783
1784         if (!IS_ERR_OR_NULL(ca->bdev))
1785                 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1786
1787         kfree(ca);
1788         module_put(THIS_MODULE);
1789 }
1790
1791 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1792 {
1793         size_t free;
1794         struct bucket *b;
1795
1796         __module_get(THIS_MODULE);
1797         kobject_init(&ca->kobj, &bch_cache_ktype);
1798
1799         bio_init(&ca->journal.bio);
1800         ca->journal.bio.bi_max_vecs = 8;
1801         ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1802
1803         free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1804
1805         if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1806             !init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1807             !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1808             !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1809             !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1810             !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1811             !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1812                                           ca->sb.nbuckets)) ||
1813             !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1814                                           2, GFP_KERNEL)) ||
1815             !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)))
1816                 return -ENOMEM;
1817
1818         ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1819
1820         for_each_bucket(b, ca)
1821                 atomic_set(&b->pin, 0);
1822
1823         return 0;
1824 }
1825
1826 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1827                                 struct block_device *bdev, struct cache *ca)
1828 {
1829         char name[BDEVNAME_SIZE];
1830         const char *err = "cannot allocate memory";
1831
1832         memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1833         ca->bdev = bdev;
1834         ca->bdev->bd_holder = ca;
1835
1836         bio_init(&ca->sb_bio);
1837         ca->sb_bio.bi_max_vecs  = 1;
1838         ca->sb_bio.bi_io_vec    = ca->sb_bio.bi_inline_vecs;
1839         ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1840         get_page(sb_page);
1841
1842         if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1843                 ca->discard = CACHE_DISCARD(&ca->sb);
1844
1845         if (cache_alloc(sb, ca) != 0)
1846                 goto err;
1847
1848         err = "error creating kobject";
1849         if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1850                 goto err;
1851
1852         mutex_lock(&bch_register_lock);
1853         err = register_cache_set(ca);
1854         mutex_unlock(&bch_register_lock);
1855
1856         if (err)
1857                 goto err;
1858
1859         pr_info("registered cache device %s", bdevname(bdev, name));
1860 out:
1861         kobject_put(&ca->kobj);
1862         return;
1863 err:
1864         pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1865         goto out;
1866 }
1867
1868 /* Global interfaces/init */
1869
1870 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1871                                const char *, size_t);
1872
1873 kobj_attribute_write(register,          register_bcache);
1874 kobj_attribute_write(register_quiet,    register_bcache);
1875
1876 static bool bch_is_open_backing(struct block_device *bdev) {
1877         struct cache_set *c, *tc;
1878         struct cached_dev *dc, *t;
1879
1880         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1881                 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1882                         if (dc->bdev == bdev)
1883                                 return true;
1884         list_for_each_entry_safe(dc, t, &uncached_devices, list)
1885                 if (dc->bdev == bdev)
1886                         return true;
1887         return false;
1888 }
1889
1890 static bool bch_is_open_cache(struct block_device *bdev) {
1891         struct cache_set *c, *tc;
1892         struct cache *ca;
1893         unsigned i;
1894
1895         list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1896                 for_each_cache(ca, c, i)
1897                         if (ca->bdev == bdev)
1898                                 return true;
1899         return false;
1900 }
1901
1902 static bool bch_is_open(struct block_device *bdev) {
1903         return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1904 }
1905
1906 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1907                                const char *buffer, size_t size)
1908 {
1909         ssize_t ret = size;
1910         const char *err = "cannot allocate memory";
1911         char *path = NULL;
1912         struct cache_sb *sb = NULL;
1913         struct block_device *bdev = NULL;
1914         struct page *sb_page = NULL;
1915
1916         if (!try_module_get(THIS_MODULE))
1917                 return -EBUSY;
1918
1919         if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1920             !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1921                 goto err;
1922
1923         err = "failed to open device";
1924         bdev = blkdev_get_by_path(strim(path),
1925                                   FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1926                                   sb);
1927         if (IS_ERR(bdev)) {
1928                 if (bdev == ERR_PTR(-EBUSY)) {
1929                         bdev = lookup_bdev(strim(path));
1930                         mutex_lock(&bch_register_lock);
1931                         if (!IS_ERR(bdev) && bch_is_open(bdev))
1932                                 err = "device already registered";
1933                         else
1934                                 err = "device busy";
1935                         mutex_unlock(&bch_register_lock);
1936                 }
1937                 goto err;
1938         }
1939
1940         err = "failed to set blocksize";
1941         if (set_blocksize(bdev, 4096))
1942                 goto err_close;
1943
1944         err = read_super(sb, bdev, &sb_page);
1945         if (err)
1946                 goto err_close;
1947
1948         if (SB_IS_BDEV(sb)) {
1949                 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1950                 if (!dc)
1951                         goto err_close;
1952
1953                 mutex_lock(&bch_register_lock);
1954                 register_bdev(sb, sb_page, bdev, dc);
1955                 mutex_unlock(&bch_register_lock);
1956         } else {
1957                 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1958                 if (!ca)
1959                         goto err_close;
1960
1961                 register_cache(sb, sb_page, bdev, ca);
1962         }
1963 out:
1964         if (sb_page)
1965                 put_page(sb_page);
1966         kfree(sb);
1967         kfree(path);
1968         module_put(THIS_MODULE);
1969         return ret;
1970
1971 err_close:
1972         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1973 err:
1974         if (attr != &ksysfs_register_quiet)
1975                 pr_info("error opening %s: %s", path, err);
1976         ret = -EINVAL;
1977         goto out;
1978 }
1979
1980 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1981 {
1982         if (code == SYS_DOWN ||
1983             code == SYS_HALT ||
1984             code == SYS_POWER_OFF) {
1985                 DEFINE_WAIT(wait);
1986                 unsigned long start = jiffies;
1987                 bool stopped = false;
1988
1989                 struct cache_set *c, *tc;
1990                 struct cached_dev *dc, *tdc;
1991
1992                 mutex_lock(&bch_register_lock);
1993
1994                 if (list_empty(&bch_cache_sets) &&
1995                     list_empty(&uncached_devices))
1996                         goto out;
1997
1998                 pr_info("Stopping all devices:");
1999
2000                 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2001                         bch_cache_set_stop(c);
2002
2003                 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2004                         bcache_device_stop(&dc->disk);
2005
2006                 /* What's a condition variable? */
2007                 while (1) {
2008                         long timeout = start + 2 * HZ - jiffies;
2009
2010                         stopped = list_empty(&bch_cache_sets) &&
2011                                 list_empty(&uncached_devices);
2012
2013                         if (timeout < 0 || stopped)
2014                                 break;
2015
2016                         prepare_to_wait(&unregister_wait, &wait,
2017                                         TASK_UNINTERRUPTIBLE);
2018
2019                         mutex_unlock(&bch_register_lock);
2020                         schedule_timeout(timeout);
2021                         mutex_lock(&bch_register_lock);
2022                 }
2023
2024                 finish_wait(&unregister_wait, &wait);
2025
2026                 if (stopped)
2027                         pr_info("All devices stopped");
2028                 else
2029                         pr_notice("Timeout waiting for devices to be closed");
2030 out:
2031                 mutex_unlock(&bch_register_lock);
2032         }
2033
2034         return NOTIFY_DONE;
2035 }
2036
2037 static struct notifier_block reboot = {
2038         .notifier_call  = bcache_reboot,
2039         .priority       = INT_MAX, /* before any real devices */
2040 };
2041
2042 static void bcache_exit(void)
2043 {
2044         bch_debug_exit();
2045         bch_request_exit();
2046         if (bcache_kobj)
2047                 kobject_put(bcache_kobj);
2048         if (bcache_wq)
2049                 destroy_workqueue(bcache_wq);
2050         if (bcache_major)
2051                 unregister_blkdev(bcache_major, "bcache");
2052         unregister_reboot_notifier(&reboot);
2053 }
2054
2055 static int __init bcache_init(void)
2056 {
2057         static const struct attribute *files[] = {
2058                 &ksysfs_register.attr,
2059                 &ksysfs_register_quiet.attr,
2060                 NULL
2061         };
2062
2063         mutex_init(&bch_register_lock);
2064         init_waitqueue_head(&unregister_wait);
2065         register_reboot_notifier(&reboot);
2066         closure_debug_init();
2067
2068         bcache_major = register_blkdev(0, "bcache");
2069         if (bcache_major < 0)
2070                 return bcache_major;
2071
2072         if (!(bcache_wq = create_workqueue("bcache")) ||
2073             !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2074             sysfs_create_files(bcache_kobj, files) ||
2075             bch_request_init() ||
2076             bch_debug_init(bcache_kobj))
2077                 goto err;
2078
2079         return 0;
2080 err:
2081         bcache_exit();
2082         return -ENOMEM;
2083 }
2084
2085 module_exit(bcache_exit);
2086 module_init(bcache_init);