x86/boot: Obsolete the MCA sys_desc_table
[firefly-linux-kernel-4.4.55.git] / drivers / md / bcache / request.c
1 /*
2  * Main bcache entry point - handle a read or a write request and decide what to
3  * do with it; the make_request functions are called by the block layer.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18 #include <linux/backing-dev.h>
19
20 #include <trace/events/bcache.h>
21
22 #define CUTOFF_CACHE_ADD        95
23 #define CUTOFF_CACHE_READA      90
24
25 struct kmem_cache *bch_search_cache;
26
27 static void bch_data_insert_start(struct closure *);
28
29 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
30 {
31         return BDEV_CACHE_MODE(&dc->sb);
32 }
33
34 static bool verify(struct cached_dev *dc, struct bio *bio)
35 {
36         return dc->verify;
37 }
38
39 static void bio_csum(struct bio *bio, struct bkey *k)
40 {
41         struct bio_vec bv;
42         struct bvec_iter iter;
43         uint64_t csum = 0;
44
45         bio_for_each_segment(bv, bio, iter) {
46                 void *d = kmap(bv.bv_page) + bv.bv_offset;
47                 csum = bch_crc64_update(csum, d, bv.bv_len);
48                 kunmap(bv.bv_page);
49         }
50
51         k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
52 }
53
54 /* Insert data into cache */
55
56 static void bch_data_insert_keys(struct closure *cl)
57 {
58         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
59         atomic_t *journal_ref = NULL;
60         struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
61         int ret;
62
63         /*
64          * If we're looping, might already be waiting on
65          * another journal write - can't wait on more than one journal write at
66          * a time
67          *
68          * XXX: this looks wrong
69          */
70 #if 0
71         while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
72                 closure_sync(&s->cl);
73 #endif
74
75         if (!op->replace)
76                 journal_ref = bch_journal(op->c, &op->insert_keys,
77                                           op->flush_journal ? cl : NULL);
78
79         ret = bch_btree_insert(op->c, &op->insert_keys,
80                                journal_ref, replace_key);
81         if (ret == -ESRCH) {
82                 op->replace_collision = true;
83         } else if (ret) {
84                 op->error               = -ENOMEM;
85                 op->insert_data_done    = true;
86         }
87
88         if (journal_ref)
89                 atomic_dec_bug(journal_ref);
90
91         if (!op->insert_data_done)
92                 continue_at(cl, bch_data_insert_start, op->wq);
93
94         bch_keylist_free(&op->insert_keys);
95         closure_return(cl);
96 }
97
98 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
99                                struct cache_set *c)
100 {
101         size_t oldsize = bch_keylist_nkeys(l);
102         size_t newsize = oldsize + u64s;
103
104         /*
105          * The journalling code doesn't handle the case where the keys to insert
106          * is bigger than an empty write: If we just return -ENOMEM here,
107          * bio_insert() and bio_invalidate() will insert the keys created so far
108          * and finish the rest when the keylist is empty.
109          */
110         if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
111                 return -ENOMEM;
112
113         return __bch_keylist_realloc(l, u64s);
114 }
115
116 static void bch_data_invalidate(struct closure *cl)
117 {
118         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
119         struct bio *bio = op->bio;
120
121         pr_debug("invalidating %i sectors from %llu",
122                  bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
123
124         while (bio_sectors(bio)) {
125                 unsigned sectors = min(bio_sectors(bio),
126                                        1U << (KEY_SIZE_BITS - 1));
127
128                 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
129                         goto out;
130
131                 bio->bi_iter.bi_sector  += sectors;
132                 bio->bi_iter.bi_size    -= sectors << 9;
133
134                 bch_keylist_add(&op->insert_keys,
135                                 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
136         }
137
138         op->insert_data_done = true;
139         bio_put(bio);
140 out:
141         continue_at(cl, bch_data_insert_keys, op->wq);
142 }
143
144 static void bch_data_insert_error(struct closure *cl)
145 {
146         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
147
148         /*
149          * Our data write just errored, which means we've got a bunch of keys to
150          * insert that point to data that wasn't succesfully written.
151          *
152          * We don't have to insert those keys but we still have to invalidate
153          * that region of the cache - so, if we just strip off all the pointers
154          * from the keys we'll accomplish just that.
155          */
156
157         struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
158
159         while (src != op->insert_keys.top) {
160                 struct bkey *n = bkey_next(src);
161
162                 SET_KEY_PTRS(src, 0);
163                 memmove(dst, src, bkey_bytes(src));
164
165                 dst = bkey_next(dst);
166                 src = n;
167         }
168
169         op->insert_keys.top = dst;
170
171         bch_data_insert_keys(cl);
172 }
173
174 static void bch_data_insert_endio(struct bio *bio, int error)
175 {
176         struct closure *cl = bio->bi_private;
177         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
178
179         if (error) {
180                 /* TODO: We could try to recover from this. */
181                 if (op->writeback)
182                         op->error = error;
183                 else if (!op->replace)
184                         set_closure_fn(cl, bch_data_insert_error, op->wq);
185                 else
186                         set_closure_fn(cl, NULL, NULL);
187         }
188
189         bch_bbio_endio(op->c, bio, error, "writing data to cache");
190 }
191
192 static void bch_data_insert_start(struct closure *cl)
193 {
194         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
195         struct bio *bio = op->bio, *n;
196
197         if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
198                 set_gc_sectors(op->c);
199                 wake_up_gc(op->c);
200         }
201
202         if (op->bypass)
203                 return bch_data_invalidate(cl);
204
205         /*
206          * Journal writes are marked REQ_FLUSH; if the original write was a
207          * flush, it'll wait on the journal write.
208          */
209         bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
210
211         do {
212                 unsigned i;
213                 struct bkey *k;
214                 struct bio_set *split = op->c->bio_split;
215
216                 /* 1 for the device pointer and 1 for the chksum */
217                 if (bch_keylist_realloc(&op->insert_keys,
218                                         3 + (op->csum ? 1 : 0),
219                                         op->c))
220                         continue_at(cl, bch_data_insert_keys, op->wq);
221
222                 k = op->insert_keys.top;
223                 bkey_init(k);
224                 SET_KEY_INODE(k, op->inode);
225                 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
226
227                 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
228                                        op->write_point, op->write_prio,
229                                        op->writeback))
230                         goto err;
231
232                 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
233
234                 n->bi_end_io    = bch_data_insert_endio;
235                 n->bi_private   = cl;
236
237                 if (op->writeback) {
238                         SET_KEY_DIRTY(k, true);
239
240                         for (i = 0; i < KEY_PTRS(k); i++)
241                                 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
242                                             GC_MARK_DIRTY);
243                 }
244
245                 SET_KEY_CSUM(k, op->csum);
246                 if (KEY_CSUM(k))
247                         bio_csum(n, k);
248
249                 trace_bcache_cache_insert(k);
250                 bch_keylist_push(&op->insert_keys);
251
252                 n->bi_rw |= REQ_WRITE;
253                 bch_submit_bbio(n, op->c, k, 0);
254         } while (n != bio);
255
256         op->insert_data_done = true;
257         continue_at(cl, bch_data_insert_keys, op->wq);
258 err:
259         /* bch_alloc_sectors() blocks if s->writeback = true */
260         BUG_ON(op->writeback);
261
262         /*
263          * But if it's not a writeback write we'd rather just bail out if
264          * there aren't any buckets ready to write to - it might take awhile and
265          * we might be starving btree writes for gc or something.
266          */
267
268         if (!op->replace) {
269                 /*
270                  * Writethrough write: We can't complete the write until we've
271                  * updated the index. But we don't want to delay the write while
272                  * we wait for buckets to be freed up, so just invalidate the
273                  * rest of the write.
274                  */
275                 op->bypass = true;
276                 return bch_data_invalidate(cl);
277         } else {
278                 /*
279                  * From a cache miss, we can just insert the keys for the data
280                  * we have written or bail out if we didn't do anything.
281                  */
282                 op->insert_data_done = true;
283                 bio_put(bio);
284
285                 if (!bch_keylist_empty(&op->insert_keys))
286                         continue_at(cl, bch_data_insert_keys, op->wq);
287                 else
288                         closure_return(cl);
289         }
290 }
291
292 /**
293  * bch_data_insert - stick some data in the cache
294  *
295  * This is the starting point for any data to end up in a cache device; it could
296  * be from a normal write, or a writeback write, or a write to a flash only
297  * volume - it's also used by the moving garbage collector to compact data in
298  * mostly empty buckets.
299  *
300  * It first writes the data to the cache, creating a list of keys to be inserted
301  * (if the data had to be fragmented there will be multiple keys); after the
302  * data is written it calls bch_journal, and after the keys have been added to
303  * the next journal write they're inserted into the btree.
304  *
305  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
306  * and op->inode is used for the key inode.
307  *
308  * If s->bypass is true, instead of inserting the data it invalidates the
309  * region of the cache represented by s->cache_bio and op->inode.
310  */
311 void bch_data_insert(struct closure *cl)
312 {
313         struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
314
315         trace_bcache_write(op->c, op->inode, op->bio,
316                            op->writeback, op->bypass);
317
318         bch_keylist_init(&op->insert_keys);
319         bio_get(op->bio);
320         bch_data_insert_start(cl);
321 }
322
323 /* Congested? */
324
325 unsigned bch_get_congested(struct cache_set *c)
326 {
327         int i;
328         long rand;
329
330         if (!c->congested_read_threshold_us &&
331             !c->congested_write_threshold_us)
332                 return 0;
333
334         i = (local_clock_us() - c->congested_last_us) / 1024;
335         if (i < 0)
336                 return 0;
337
338         i += atomic_read(&c->congested);
339         if (i >= 0)
340                 return 0;
341
342         i += CONGESTED_MAX;
343
344         if (i > 0)
345                 i = fract_exp_two(i, 6);
346
347         rand = get_random_int();
348         i -= bitmap_weight(&rand, BITS_PER_LONG);
349
350         return i > 0 ? i : 1;
351 }
352
353 static void add_sequential(struct task_struct *t)
354 {
355         ewma_add(t->sequential_io_avg,
356                  t->sequential_io, 8, 0);
357
358         t->sequential_io = 0;
359 }
360
361 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
362 {
363         return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
364 }
365
366 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
367 {
368         struct cache_set *c = dc->disk.c;
369         unsigned mode = cache_mode(dc, bio);
370         unsigned sectors, congested = bch_get_congested(c);
371         struct task_struct *task = current;
372         struct io *i;
373
374         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
375             c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
376             (bio->bi_rw & REQ_DISCARD))
377                 goto skip;
378
379         if (mode == CACHE_MODE_NONE ||
380             (mode == CACHE_MODE_WRITEAROUND &&
381              (bio->bi_rw & REQ_WRITE)))
382                 goto skip;
383
384         if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
385             bio_sectors(bio) & (c->sb.block_size - 1)) {
386                 pr_debug("skipping unaligned io");
387                 goto skip;
388         }
389
390         if (bypass_torture_test(dc)) {
391                 if ((get_random_int() & 3) == 3)
392                         goto skip;
393                 else
394                         goto rescale;
395         }
396
397         if (!congested && !dc->sequential_cutoff)
398                 goto rescale;
399
400         if (!congested &&
401             mode == CACHE_MODE_WRITEBACK &&
402             (bio->bi_rw & REQ_WRITE) &&
403             (bio->bi_rw & REQ_SYNC))
404                 goto rescale;
405
406         spin_lock(&dc->io_lock);
407
408         hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
409                 if (i->last == bio->bi_iter.bi_sector &&
410                     time_before(jiffies, i->jiffies))
411                         goto found;
412
413         i = list_first_entry(&dc->io_lru, struct io, lru);
414
415         add_sequential(task);
416         i->sequential = 0;
417 found:
418         if (i->sequential + bio->bi_iter.bi_size > i->sequential)
419                 i->sequential   += bio->bi_iter.bi_size;
420
421         i->last                  = bio_end_sector(bio);
422         i->jiffies               = jiffies + msecs_to_jiffies(5000);
423         task->sequential_io      = i->sequential;
424
425         hlist_del(&i->hash);
426         hlist_add_head(&i->hash, iohash(dc, i->last));
427         list_move_tail(&i->lru, &dc->io_lru);
428
429         spin_unlock(&dc->io_lock);
430
431         sectors = max(task->sequential_io,
432                       task->sequential_io_avg) >> 9;
433
434         if (dc->sequential_cutoff &&
435             sectors >= dc->sequential_cutoff >> 9) {
436                 trace_bcache_bypass_sequential(bio);
437                 goto skip;
438         }
439
440         if (congested && sectors >= congested) {
441                 trace_bcache_bypass_congested(bio);
442                 goto skip;
443         }
444
445 rescale:
446         bch_rescale_priorities(c, bio_sectors(bio));
447         return false;
448 skip:
449         bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
450         return true;
451 }
452
453 /* Cache lookup */
454
455 struct search {
456         /* Stack frame for bio_complete */
457         struct closure          cl;
458
459         struct bbio             bio;
460         struct bio              *orig_bio;
461         struct bio              *cache_miss;
462         struct bcache_device    *d;
463
464         unsigned                insert_bio_sectors;
465         unsigned                recoverable:1;
466         unsigned                write:1;
467         unsigned                read_dirty_data:1;
468
469         unsigned long           start_time;
470
471         struct btree_op         op;
472         struct data_insert_op   iop;
473 };
474
475 static void bch_cache_read_endio(struct bio *bio, int error)
476 {
477         struct bbio *b = container_of(bio, struct bbio, bio);
478         struct closure *cl = bio->bi_private;
479         struct search *s = container_of(cl, struct search, cl);
480
481         /*
482          * If the bucket was reused while our bio was in flight, we might have
483          * read the wrong data. Set s->error but not error so it doesn't get
484          * counted against the cache device, but we'll still reread the data
485          * from the backing device.
486          */
487
488         if (error)
489                 s->iop.error = error;
490         else if (!KEY_DIRTY(&b->key) &&
491                  ptr_stale(s->iop.c, &b->key, 0)) {
492                 atomic_long_inc(&s->iop.c->cache_read_races);
493                 s->iop.error = -EINTR;
494         }
495
496         bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
497 }
498
499 /*
500  * Read from a single key, handling the initial cache miss if the key starts in
501  * the middle of the bio
502  */
503 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
504 {
505         struct search *s = container_of(op, struct search, op);
506         struct bio *n, *bio = &s->bio.bio;
507         struct bkey *bio_key;
508         unsigned ptr;
509
510         if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
511                 return MAP_CONTINUE;
512
513         if (KEY_INODE(k) != s->iop.inode ||
514             KEY_START(k) > bio->bi_iter.bi_sector) {
515                 unsigned bio_sectors = bio_sectors(bio);
516                 unsigned sectors = KEY_INODE(k) == s->iop.inode
517                         ? min_t(uint64_t, INT_MAX,
518                                 KEY_START(k) - bio->bi_iter.bi_sector)
519                         : INT_MAX;
520
521                 int ret = s->d->cache_miss(b, s, bio, sectors);
522                 if (ret != MAP_CONTINUE)
523                         return ret;
524
525                 /* if this was a complete miss we shouldn't get here */
526                 BUG_ON(bio_sectors <= sectors);
527         }
528
529         if (!KEY_SIZE(k))
530                 return MAP_CONTINUE;
531
532         /* XXX: figure out best pointer - for multiple cache devices */
533         ptr = 0;
534
535         PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
536
537         if (KEY_DIRTY(k))
538                 s->read_dirty_data = true;
539
540         n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
541                                       KEY_OFFSET(k) - bio->bi_iter.bi_sector),
542                            GFP_NOIO, s->d->bio_split);
543
544         bio_key = &container_of(n, struct bbio, bio)->key;
545         bch_bkey_copy_single_ptr(bio_key, k, ptr);
546
547         bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
548         bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
549
550         n->bi_end_io    = bch_cache_read_endio;
551         n->bi_private   = &s->cl;
552
553         /*
554          * The bucket we're reading from might be reused while our bio
555          * is in flight, and we could then end up reading the wrong
556          * data.
557          *
558          * We guard against this by checking (in cache_read_endio()) if
559          * the pointer is stale again; if so, we treat it as an error
560          * and reread from the backing device (but we don't pass that
561          * error up anywhere).
562          */
563
564         __bch_submit_bbio(n, b->c);
565         return n == bio ? MAP_DONE : MAP_CONTINUE;
566 }
567
568 static void cache_lookup(struct closure *cl)
569 {
570         struct search *s = container_of(cl, struct search, iop.cl);
571         struct bio *bio = &s->bio.bio;
572         int ret;
573
574         bch_btree_op_init(&s->op, -1);
575
576         ret = bch_btree_map_keys(&s->op, s->iop.c,
577                                  &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
578                                  cache_lookup_fn, MAP_END_KEY);
579         if (ret == -EAGAIN)
580                 continue_at(cl, cache_lookup, bcache_wq);
581
582         closure_return(cl);
583 }
584
585 /* Common code for the make_request functions */
586
587 static void request_endio(struct bio *bio, int error)
588 {
589         struct closure *cl = bio->bi_private;
590
591         if (error) {
592                 struct search *s = container_of(cl, struct search, cl);
593                 s->iop.error = error;
594                 /* Only cache read errors are recoverable */
595                 s->recoverable = false;
596         }
597
598         bio_put(bio);
599         closure_put(cl);
600 }
601
602 static void bio_complete(struct search *s)
603 {
604         if (s->orig_bio) {
605                 generic_end_io_acct(bio_data_dir(s->orig_bio),
606                                     &s->d->disk->part0, s->start_time);
607
608                 trace_bcache_request_end(s->d, s->orig_bio);
609                 bio_endio(s->orig_bio, s->iop.error);
610                 s->orig_bio = NULL;
611         }
612 }
613
614 static void do_bio_hook(struct search *s, struct bio *orig_bio)
615 {
616         struct bio *bio = &s->bio.bio;
617
618         bio_init(bio);
619         __bio_clone_fast(bio, orig_bio);
620         bio->bi_end_io          = request_endio;
621         bio->bi_private         = &s->cl;
622
623         bio_cnt_set(bio, 3);
624 }
625
626 static void search_free(struct closure *cl)
627 {
628         struct search *s = container_of(cl, struct search, cl);
629         bio_complete(s);
630
631         if (s->iop.bio)
632                 bio_put(s->iop.bio);
633
634         closure_debug_destroy(cl);
635         mempool_free(s, s->d->c->search);
636 }
637
638 static inline struct search *search_alloc(struct bio *bio,
639                                           struct bcache_device *d)
640 {
641         struct search *s;
642
643         s = mempool_alloc(d->c->search, GFP_NOIO);
644
645         closure_init(&s->cl, NULL);
646         do_bio_hook(s, bio);
647
648         s->orig_bio             = bio;
649         s->cache_miss           = NULL;
650         s->d                    = d;
651         s->recoverable          = 1;
652         s->write                = (bio->bi_rw & REQ_WRITE) != 0;
653         s->read_dirty_data      = 0;
654         s->start_time           = jiffies;
655
656         s->iop.c                = d->c;
657         s->iop.bio              = NULL;
658         s->iop.inode            = d->id;
659         s->iop.write_point      = hash_long((unsigned long) current, 16);
660         s->iop.write_prio       = 0;
661         s->iop.error            = 0;
662         s->iop.flags            = 0;
663         s->iop.flush_journal    = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
664         s->iop.wq               = bcache_wq;
665
666         return s;
667 }
668
669 /* Cached devices */
670
671 static void cached_dev_bio_complete(struct closure *cl)
672 {
673         struct search *s = container_of(cl, struct search, cl);
674         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
675
676         search_free(cl);
677         cached_dev_put(dc);
678 }
679
680 /* Process reads */
681
682 static void cached_dev_cache_miss_done(struct closure *cl)
683 {
684         struct search *s = container_of(cl, struct search, cl);
685
686         if (s->iop.replace_collision)
687                 bch_mark_cache_miss_collision(s->iop.c, s->d);
688
689         if (s->iop.bio) {
690                 int i;
691                 struct bio_vec *bv;
692
693                 bio_for_each_segment_all(bv, s->iop.bio, i)
694                         __free_page(bv->bv_page);
695         }
696
697         cached_dev_bio_complete(cl);
698 }
699
700 static void cached_dev_read_error(struct closure *cl)
701 {
702         struct search *s = container_of(cl, struct search, cl);
703         struct bio *bio = &s->bio.bio;
704
705         if (s->recoverable) {
706                 /* Retry from the backing device: */
707                 trace_bcache_read_retry(s->orig_bio);
708
709                 s->iop.error = 0;
710                 do_bio_hook(s, s->orig_bio);
711
712                 /* XXX: invalidate cache */
713
714                 closure_bio_submit(bio, cl, s->d);
715         }
716
717         continue_at(cl, cached_dev_cache_miss_done, NULL);
718 }
719
720 static void cached_dev_read_done(struct closure *cl)
721 {
722         struct search *s = container_of(cl, struct search, cl);
723         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
724
725         /*
726          * We had a cache miss; cache_bio now contains data ready to be inserted
727          * into the cache.
728          *
729          * First, we copy the data we just read from cache_bio's bounce buffers
730          * to the buffers the original bio pointed to:
731          */
732
733         if (s->iop.bio) {
734                 bio_reset(s->iop.bio);
735                 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
736                 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
737                 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
738                 bch_bio_map(s->iop.bio, NULL);
739
740                 bio_copy_data(s->cache_miss, s->iop.bio);
741
742                 bio_put(s->cache_miss);
743                 s->cache_miss = NULL;
744         }
745
746         if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
747                 bch_data_verify(dc, s->orig_bio);
748
749         bio_complete(s);
750
751         if (s->iop.bio &&
752             !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
753                 BUG_ON(!s->iop.replace);
754                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
755         }
756
757         continue_at(cl, cached_dev_cache_miss_done, NULL);
758 }
759
760 static void cached_dev_read_done_bh(struct closure *cl)
761 {
762         struct search *s = container_of(cl, struct search, cl);
763         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
764
765         bch_mark_cache_accounting(s->iop.c, s->d,
766                                   !s->cache_miss, s->iop.bypass);
767         trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
768
769         if (s->iop.error)
770                 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
771         else if (s->iop.bio || verify(dc, &s->bio.bio))
772                 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
773         else
774                 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
775 }
776
777 static int cached_dev_cache_miss(struct btree *b, struct search *s,
778                                  struct bio *bio, unsigned sectors)
779 {
780         int ret = MAP_CONTINUE;
781         unsigned reada = 0;
782         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
783         struct bio *miss, *cache_bio;
784
785         if (s->cache_miss || s->iop.bypass) {
786                 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
787                 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
788                 goto out_submit;
789         }
790
791         if (!(bio->bi_rw & REQ_RAHEAD) &&
792             !(bio->bi_rw & REQ_META) &&
793             s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
794                 reada = min_t(sector_t, dc->readahead >> 9,
795                               bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
796
797         s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
798
799         s->iop.replace_key = KEY(s->iop.inode,
800                                  bio->bi_iter.bi_sector + s->insert_bio_sectors,
801                                  s->insert_bio_sectors);
802
803         ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
804         if (ret)
805                 return ret;
806
807         s->iop.replace = true;
808
809         miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
810
811         /* btree_search_recurse()'s btree iterator is no good anymore */
812         ret = miss == bio ? MAP_DONE : -EINTR;
813
814         cache_bio = bio_alloc_bioset(GFP_NOWAIT,
815                         DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
816                         dc->disk.bio_split);
817         if (!cache_bio)
818                 goto out_submit;
819
820         cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
821         cache_bio->bi_bdev              = miss->bi_bdev;
822         cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
823
824         cache_bio->bi_end_io    = request_endio;
825         cache_bio->bi_private   = &s->cl;
826
827         bch_bio_map(cache_bio, NULL);
828         if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
829                 goto out_put;
830
831         if (reada)
832                 bch_mark_cache_readahead(s->iop.c, s->d);
833
834         s->cache_miss   = miss;
835         s->iop.bio      = cache_bio;
836         bio_get(cache_bio);
837         closure_bio_submit(cache_bio, &s->cl, s->d);
838
839         return ret;
840 out_put:
841         bio_put(cache_bio);
842 out_submit:
843         miss->bi_end_io         = request_endio;
844         miss->bi_private        = &s->cl;
845         closure_bio_submit(miss, &s->cl, s->d);
846         return ret;
847 }
848
849 static void cached_dev_read(struct cached_dev *dc, struct search *s)
850 {
851         struct closure *cl = &s->cl;
852
853         closure_call(&s->iop.cl, cache_lookup, NULL, cl);
854         continue_at(cl, cached_dev_read_done_bh, NULL);
855 }
856
857 /* Process writes */
858
859 static void cached_dev_write_complete(struct closure *cl)
860 {
861         struct search *s = container_of(cl, struct search, cl);
862         struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
863
864         up_read_non_owner(&dc->writeback_lock);
865         cached_dev_bio_complete(cl);
866 }
867
868 static void cached_dev_write(struct cached_dev *dc, struct search *s)
869 {
870         struct closure *cl = &s->cl;
871         struct bio *bio = &s->bio.bio;
872         struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
873         struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
874
875         bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
876
877         down_read_non_owner(&dc->writeback_lock);
878         if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
879                 /*
880                  * We overlap with some dirty data undergoing background
881                  * writeback, force this write to writeback
882                  */
883                 s->iop.bypass = false;
884                 s->iop.writeback = true;
885         }
886
887         /*
888          * Discards aren't _required_ to do anything, so skipping if
889          * check_overlapping returned true is ok
890          *
891          * But check_overlapping drops dirty keys for which io hasn't started,
892          * so we still want to call it.
893          */
894         if (bio->bi_rw & REQ_DISCARD)
895                 s->iop.bypass = true;
896
897         if (should_writeback(dc, s->orig_bio,
898                              cache_mode(dc, bio),
899                              s->iop.bypass)) {
900                 s->iop.bypass = false;
901                 s->iop.writeback = true;
902         }
903
904         if (s->iop.bypass) {
905                 s->iop.bio = s->orig_bio;
906                 bio_get(s->iop.bio);
907
908                 if (!(bio->bi_rw & REQ_DISCARD) ||
909                     blk_queue_discard(bdev_get_queue(dc->bdev)))
910                         closure_bio_submit(bio, cl, s->d);
911         } else if (s->iop.writeback) {
912                 bch_writeback_add(dc);
913                 s->iop.bio = bio;
914
915                 if (bio->bi_rw & REQ_FLUSH) {
916                         /* Also need to send a flush to the backing device */
917                         struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
918                                                              dc->disk.bio_split);
919
920                         flush->bi_rw    = WRITE_FLUSH;
921                         flush->bi_bdev  = bio->bi_bdev;
922                         flush->bi_end_io = request_endio;
923                         flush->bi_private = cl;
924
925                         closure_bio_submit(flush, cl, s->d);
926                 }
927         } else {
928                 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
929
930                 closure_bio_submit(bio, cl, s->d);
931         }
932
933         closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
934         continue_at(cl, cached_dev_write_complete, NULL);
935 }
936
937 static void cached_dev_nodata(struct closure *cl)
938 {
939         struct search *s = container_of(cl, struct search, cl);
940         struct bio *bio = &s->bio.bio;
941
942         if (s->iop.flush_journal)
943                 bch_journal_meta(s->iop.c, cl);
944
945         /* If it's a flush, we send the flush to the backing device too */
946         closure_bio_submit(bio, cl, s->d);
947
948         continue_at(cl, cached_dev_bio_complete, NULL);
949 }
950
951 /* Cached devices - read & write stuff */
952
953 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
954 {
955         struct search *s;
956         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
957         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
958         int rw = bio_data_dir(bio);
959
960         generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
961
962         bio->bi_bdev = dc->bdev;
963         bio->bi_iter.bi_sector += dc->sb.data_offset;
964
965         if (cached_dev_get(dc)) {
966                 s = search_alloc(bio, d);
967                 trace_bcache_request_start(s->d, bio);
968
969                 if (!bio->bi_iter.bi_size) {
970                         /*
971                          * can't call bch_journal_meta from under
972                          * generic_make_request
973                          */
974                         continue_at_nobarrier(&s->cl,
975                                               cached_dev_nodata,
976                                               bcache_wq);
977                 } else {
978                         s->iop.bypass = check_should_bypass(dc, bio);
979
980                         if (rw)
981                                 cached_dev_write(dc, s);
982                         else
983                                 cached_dev_read(dc, s);
984                 }
985         } else {
986                 if ((bio->bi_rw & REQ_DISCARD) &&
987                     !blk_queue_discard(bdev_get_queue(dc->bdev)))
988                         bio_endio(bio, 0);
989                 else
990                         bch_generic_make_request(bio, &d->bio_split_hook);
991         }
992 }
993
994 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
995                             unsigned int cmd, unsigned long arg)
996 {
997         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
998         return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
999 }
1000
1001 static int cached_dev_congested(void *data, int bits)
1002 {
1003         struct bcache_device *d = data;
1004         struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1005         struct request_queue *q = bdev_get_queue(dc->bdev);
1006         int ret = 0;
1007
1008         if (bdi_congested(&q->backing_dev_info, bits))
1009                 return 1;
1010
1011         if (cached_dev_get(dc)) {
1012                 unsigned i;
1013                 struct cache *ca;
1014
1015                 for_each_cache(ca, d->c, i) {
1016                         q = bdev_get_queue(ca->bdev);
1017                         ret |= bdi_congested(&q->backing_dev_info, bits);
1018                 }
1019
1020                 cached_dev_put(dc);
1021         }
1022
1023         return ret;
1024 }
1025
1026 void bch_cached_dev_request_init(struct cached_dev *dc)
1027 {
1028         struct gendisk *g = dc->disk.disk;
1029
1030         g->queue->make_request_fn               = cached_dev_make_request;
1031         g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1032         dc->disk.cache_miss                     = cached_dev_cache_miss;
1033         dc->disk.ioctl                          = cached_dev_ioctl;
1034 }
1035
1036 /* Flash backed devices */
1037
1038 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1039                                 struct bio *bio, unsigned sectors)
1040 {
1041         unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1042
1043         swap(bio->bi_iter.bi_size, bytes);
1044         zero_fill_bio(bio);
1045         swap(bio->bi_iter.bi_size, bytes);
1046
1047         bio_advance(bio, bytes);
1048
1049         if (!bio->bi_iter.bi_size)
1050                 return MAP_DONE;
1051
1052         return MAP_CONTINUE;
1053 }
1054
1055 static void flash_dev_nodata(struct closure *cl)
1056 {
1057         struct search *s = container_of(cl, struct search, cl);
1058
1059         if (s->iop.flush_journal)
1060                 bch_journal_meta(s->iop.c, cl);
1061
1062         continue_at(cl, search_free, NULL);
1063 }
1064
1065 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1066 {
1067         struct search *s;
1068         struct closure *cl;
1069         struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1070         int rw = bio_data_dir(bio);
1071
1072         generic_start_io_acct(rw, bio_sectors(bio), &d->disk->part0);
1073
1074         s = search_alloc(bio, d);
1075         cl = &s->cl;
1076         bio = &s->bio.bio;
1077
1078         trace_bcache_request_start(s->d, bio);
1079
1080         if (!bio->bi_iter.bi_size) {
1081                 /*
1082                  * can't call bch_journal_meta from under
1083                  * generic_make_request
1084                  */
1085                 continue_at_nobarrier(&s->cl,
1086                                       flash_dev_nodata,
1087                                       bcache_wq);
1088         } else if (rw) {
1089                 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1090                                         &KEY(d->id, bio->bi_iter.bi_sector, 0),
1091                                         &KEY(d->id, bio_end_sector(bio), 0));
1092
1093                 s->iop.bypass           = (bio->bi_rw & REQ_DISCARD) != 0;
1094                 s->iop.writeback        = true;
1095                 s->iop.bio              = bio;
1096
1097                 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1098         } else {
1099                 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1100         }
1101
1102         continue_at(cl, search_free, NULL);
1103 }
1104
1105 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1106                            unsigned int cmd, unsigned long arg)
1107 {
1108         return -ENOTTY;
1109 }
1110
1111 static int flash_dev_congested(void *data, int bits)
1112 {
1113         struct bcache_device *d = data;
1114         struct request_queue *q;
1115         struct cache *ca;
1116         unsigned i;
1117         int ret = 0;
1118
1119         for_each_cache(ca, d->c, i) {
1120                 q = bdev_get_queue(ca->bdev);
1121                 ret |= bdi_congested(&q->backing_dev_info, bits);
1122         }
1123
1124         return ret;
1125 }
1126
1127 void bch_flash_dev_request_init(struct bcache_device *d)
1128 {
1129         struct gendisk *g = d->disk;
1130
1131         g->queue->make_request_fn               = flash_dev_make_request;
1132         g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1133         d->cache_miss                           = flash_dev_cache_miss;
1134         d->ioctl                                = flash_dev_ioctl;
1135 }
1136
1137 void bch_request_exit(void)
1138 {
1139         if (bch_search_cache)
1140                 kmem_cache_destroy(bch_search_cache);
1141 }
1142
1143 int __init bch_request_init(void)
1144 {
1145         bch_search_cache = KMEM_CACHE(search, 0);
1146         if (!bch_search_cache)
1147                 return -ENOMEM;
1148
1149         return 0;
1150 }