2 * A fairly generic DMA-API to IOMMU-API glue layer.
4 * Copyright (C) 2014-2015 ARM Ltd.
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 #include <linux/device.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/huge_mm.h>
25 #include <linux/iommu.h>
26 #include <linux/iova.h>
29 int iommu_dma_init(void)
31 return iova_cache_get();
35 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
36 * @domain: IOMMU domain to prepare for DMA-API usage
38 * IOMMU drivers should normally call this from their domain_alloc
39 * callback when domain->type == IOMMU_DOMAIN_DMA.
41 int iommu_get_dma_cookie(struct iommu_domain *domain)
43 struct iova_domain *iovad;
45 if (domain->iova_cookie)
48 iovad = kzalloc(sizeof(*iovad), GFP_KERNEL);
49 domain->iova_cookie = iovad;
51 return iovad ? 0 : -ENOMEM;
53 EXPORT_SYMBOL(iommu_get_dma_cookie);
56 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
57 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
59 * IOMMU drivers should normally call this from their domain_free callback.
61 void iommu_put_dma_cookie(struct iommu_domain *domain)
63 struct iova_domain *iovad = domain->iova_cookie;
68 put_iova_domain(iovad);
70 domain->iova_cookie = NULL;
72 EXPORT_SYMBOL(iommu_put_dma_cookie);
75 * iommu_dma_init_domain - Initialise a DMA mapping domain
76 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
77 * @base: IOVA at which the mappable address space starts
78 * @size: Size of IOVA space
80 * @base and @size should be exact multiples of IOMMU page granularity to
81 * avoid rounding surprises. If necessary, we reserve the page at address 0
82 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
83 * any change which could make prior IOVAs invalid will fail.
85 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, u64 size)
87 struct iova_domain *iovad = domain->iova_cookie;
88 unsigned long order, base_pfn, end_pfn;
93 /* Use the smallest supported page size for IOVA granularity */
94 order = __ffs(domain->ops->pgsize_bitmap);
95 base_pfn = max_t(unsigned long, 1, base >> order);
96 end_pfn = (base + size - 1) >> order;
98 /* Check the domain allows at least some access to the device... */
99 if (domain->geometry.force_aperture) {
100 if (base > domain->geometry.aperture_end ||
101 base + size <= domain->geometry.aperture_start) {
102 pr_warn("specified DMA range outside IOMMU capability\n");
105 /* ...then finally give it a kicking to make sure it fits */
106 base_pfn = max_t(unsigned long, base_pfn,
107 domain->geometry.aperture_start >> order);
108 end_pfn = min_t(unsigned long, end_pfn,
109 domain->geometry.aperture_end >> order);
112 /* All we can safely do with an existing domain is enlarge it */
113 if (iovad->start_pfn) {
114 if (1UL << order != iovad->granule ||
115 base_pfn != iovad->start_pfn ||
116 end_pfn < iovad->dma_32bit_pfn) {
117 pr_warn("Incompatible range for DMA domain\n");
120 iovad->dma_32bit_pfn = end_pfn;
122 init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
126 EXPORT_SYMBOL(iommu_dma_init_domain);
129 * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags
130 * @dir: Direction of DMA transfer
131 * @coherent: Is the DMA master cache-coherent?
133 * Return: corresponding IOMMU API page protection flags
135 int dma_direction_to_prot(enum dma_data_direction dir, bool coherent)
137 int prot = coherent ? IOMMU_CACHE : 0;
140 case DMA_BIDIRECTIONAL:
141 return prot | IOMMU_READ | IOMMU_WRITE;
143 return prot | IOMMU_READ;
144 case DMA_FROM_DEVICE:
145 return prot | IOMMU_WRITE;
151 static struct iova *__alloc_iova(struct iova_domain *iovad, size_t size,
152 dma_addr_t dma_limit)
154 unsigned long shift = iova_shift(iovad);
155 unsigned long length = iova_align(iovad, size) >> shift;
158 * Enforce size-alignment to be safe - there could perhaps be an
159 * attribute to control this per-device, or at least per-domain...
161 return alloc_iova(iovad, length, dma_limit >> shift, true);
164 /* The IOVA allocator knows what we mapped, so just unmap whatever that was */
165 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr)
167 struct iova_domain *iovad = domain->iova_cookie;
168 unsigned long shift = iova_shift(iovad);
169 unsigned long pfn = dma_addr >> shift;
170 struct iova *iova = find_iova(iovad, pfn);
176 size = iova_size(iova) << shift;
177 size -= iommu_unmap(domain, pfn << shift, size);
178 /* ...and if we can't, then something is horribly, horribly wrong */
180 __free_iova(iovad, iova);
183 static void __iommu_dma_free_pages(struct page **pages, int count)
186 __free_page(pages[count]);
190 static struct page **__iommu_dma_alloc_pages(unsigned int count, gfp_t gfp)
193 unsigned int i = 0, array_size = count * sizeof(*pages);
195 if (array_size <= PAGE_SIZE)
196 pages = kzalloc(array_size, GFP_KERNEL);
198 pages = vzalloc(array_size);
202 /* IOMMU can map any pages, so himem can also be used here */
203 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
206 struct page *page = NULL;
207 int j, order = __fls(count);
210 * Higher-order allocations are a convenience rather
211 * than a necessity, hence using __GFP_NORETRY until
212 * falling back to single-page allocations.
214 for (order = min(order, MAX_ORDER); order > 0; order--) {
215 page = alloc_pages(gfp | __GFP_NORETRY, order);
218 if (PageCompound(page)) {
219 if (!split_huge_page(page))
221 __free_pages(page, order);
223 split_page(page, order);
228 page = alloc_page(gfp);
230 __iommu_dma_free_pages(pages, i);
242 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
243 * @dev: Device which owns this buffer
244 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
245 * @size: Size of buffer in bytes
246 * @handle: DMA address of buffer
248 * Frees both the pages associated with the buffer, and the array
251 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
254 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle);
255 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
256 *handle = DMA_ERROR_CODE;
260 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
261 * @dev: Device to allocate memory for. Must be a real device
262 * attached to an iommu_dma_domain
263 * @size: Size of buffer in bytes
264 * @gfp: Allocation flags
265 * @prot: IOMMU mapping flags
266 * @handle: Out argument for allocated DMA handle
267 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
268 * given VA/PA are visible to the given non-coherent device.
270 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
271 * but an IOMMU which supports smaller pages might not map the whole thing.
273 * Return: Array of struct page pointers describing the buffer,
274 * or NULL on failure.
276 struct page **iommu_dma_alloc(struct device *dev, size_t size,
277 gfp_t gfp, int prot, dma_addr_t *handle,
278 void (*flush_page)(struct device *, const void *, phys_addr_t))
280 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
281 struct iova_domain *iovad = domain->iova_cookie;
286 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
288 *handle = DMA_ERROR_CODE;
290 pages = __iommu_dma_alloc_pages(count, gfp);
294 iova = __alloc_iova(iovad, size, dev->coherent_dma_mask);
298 size = iova_align(iovad, size);
299 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
302 if (!(prot & IOMMU_CACHE)) {
303 struct sg_mapping_iter miter;
305 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
306 * sufficient here, so skip it by using the "wrong" direction.
308 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
309 while (sg_miter_next(&miter))
310 flush_page(dev, miter.addr, page_to_phys(miter.page));
311 sg_miter_stop(&miter);
314 dma_addr = iova_dma_addr(iovad, iova);
315 if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot)
326 __free_iova(iovad, iova);
328 __iommu_dma_free_pages(pages, count);
333 * iommu_dma_mmap - Map a buffer into provided user VMA
334 * @pages: Array representing buffer from iommu_dma_alloc()
335 * @size: Size of buffer in bytes
336 * @vma: VMA describing requested userspace mapping
338 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
339 * for verifying the correct size and protection of @vma beforehand.
342 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
344 unsigned long uaddr = vma->vm_start;
345 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
348 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
349 ret = vm_insert_page(vma, uaddr, pages[i]);
357 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
358 unsigned long offset, size_t size, int prot)
361 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
362 struct iova_domain *iovad = domain->iova_cookie;
363 phys_addr_t phys = page_to_phys(page) + offset;
364 size_t iova_off = iova_offset(iovad, phys);
365 size_t len = iova_align(iovad, size + iova_off);
366 struct iova *iova = __alloc_iova(iovad, len, dma_get_mask(dev));
369 return DMA_ERROR_CODE;
371 dma_addr = iova_dma_addr(iovad, iova);
372 if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
373 __free_iova(iovad, iova);
374 return DMA_ERROR_CODE;
376 return dma_addr + iova_off;
379 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
380 enum dma_data_direction dir, struct dma_attrs *attrs)
382 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
386 * Prepare a successfully-mapped scatterlist to give back to the caller.
387 * Handling IOVA concatenation can come later, if needed
389 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
392 struct scatterlist *s;
395 for_each_sg(sg, s, nents, i) {
396 /* Un-swizzling the fields here, hence the naming mismatch */
397 unsigned int s_offset = sg_dma_address(s);
398 unsigned int s_length = sg_dma_len(s);
399 unsigned int s_dma_len = s->length;
401 s->offset = s_offset;
402 s->length = s_length;
403 sg_dma_address(s) = dma_addr + s_offset;
404 dma_addr += s_dma_len;
410 * If mapping failed, then just restore the original list,
411 * but making sure the DMA fields are invalidated.
413 static void __invalidate_sg(struct scatterlist *sg, int nents)
415 struct scatterlist *s;
418 for_each_sg(sg, s, nents, i) {
419 if (sg_dma_address(s) != DMA_ERROR_CODE)
420 s->offset = sg_dma_address(s);
422 s->length = sg_dma_len(s);
423 sg_dma_address(s) = DMA_ERROR_CODE;
429 * The DMA API client is passing in a scatterlist which could describe
430 * any old buffer layout, but the IOMMU API requires everything to be
431 * aligned to IOMMU pages. Hence the need for this complicated bit of
432 * impedance-matching, to be able to hand off a suitably-aligned list,
433 * but still preserve the original offsets and sizes for the caller.
435 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
438 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
439 struct iova_domain *iovad = domain->iova_cookie;
441 struct scatterlist *s, *prev = NULL;
447 * Work out how much IOVA space we need, and align the segments to
448 * IOVA granules for the IOMMU driver to handle. With some clever
449 * trickery we can modify the list in-place, but reversibly, by
450 * hiding the original data in the as-yet-unused DMA fields.
452 for_each_sg(sg, s, nents, i) {
453 size_t s_offset = iova_offset(iovad, s->offset);
454 size_t s_length = s->length;
456 sg_dma_address(s) = s->offset;
457 sg_dma_len(s) = s_length;
458 s->offset -= s_offset;
459 s_length = iova_align(iovad, s_length + s_offset);
460 s->length = s_length;
463 * The simple way to avoid the rare case of a segment
464 * crossing the boundary mask is to pad the previous one
465 * to end at a naturally-aligned IOVA for this one's size,
466 * at the cost of potentially over-allocating a little.
469 size_t pad_len = roundup_pow_of_two(s_length);
471 pad_len = (pad_len - iova_len) & (pad_len - 1);
472 prev->length += pad_len;
476 iova_len += s_length;
480 iova = __alloc_iova(iovad, iova_len, dma_get_mask(dev));
485 * We'll leave any physical concatenation to the IOMMU driver's
486 * implementation - it knows better than we do.
488 dma_addr = iova_dma_addr(iovad, iova);
489 if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
492 return __finalise_sg(dev, sg, nents, dma_addr);
495 __free_iova(iovad, iova);
497 __invalidate_sg(sg, nents);
501 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
502 enum dma_data_direction dir, struct dma_attrs *attrs)
505 * The scatterlist segments are mapped into a single
506 * contiguous IOVA allocation, so this is incredibly easy.
508 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg));
511 int iommu_dma_supported(struct device *dev, u64 mask)
514 * 'Special' IOMMUs which don't have the same addressing capability
515 * as the CPU will have to wait until we have some way to query that
516 * before they'll be able to use this framework.
521 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
523 return dma_addr == DMA_ERROR_CODE;