iommu/amd: Init unity mappings only for dma_ops domains
[firefly-linux-kernel-4.4.55.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/iommu.h>
27 #include <linux/iopoll.h>
28 #include <linux/module.h>
29 #include <linux/msi.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_platform.h>
33 #include <linux/pci.h>
34 #include <linux/platform_device.h>
35
36 #include "io-pgtable.h"
37
38 /* MMIO registers */
39 #define ARM_SMMU_IDR0                   0x0
40 #define IDR0_ST_LVL_SHIFT               27
41 #define IDR0_ST_LVL_MASK                0x3
42 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
43 #define IDR0_STALL_MODEL                (3 << 24)
44 #define IDR0_TTENDIAN_SHIFT             21
45 #define IDR0_TTENDIAN_MASK              0x3
46 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
47 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
48 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
49 #define IDR0_CD2L                       (1 << 19)
50 #define IDR0_VMID16                     (1 << 18)
51 #define IDR0_PRI                        (1 << 16)
52 #define IDR0_SEV                        (1 << 14)
53 #define IDR0_MSI                        (1 << 13)
54 #define IDR0_ASID16                     (1 << 12)
55 #define IDR0_ATS                        (1 << 10)
56 #define IDR0_HYP                        (1 << 9)
57 #define IDR0_COHACC                     (1 << 4)
58 #define IDR0_TTF_SHIFT                  2
59 #define IDR0_TTF_MASK                   0x3
60 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
61 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
62 #define IDR0_S1P                        (1 << 1)
63 #define IDR0_S2P                        (1 << 0)
64
65 #define ARM_SMMU_IDR1                   0x4
66 #define IDR1_TABLES_PRESET              (1 << 30)
67 #define IDR1_QUEUES_PRESET              (1 << 29)
68 #define IDR1_REL                        (1 << 28)
69 #define IDR1_CMDQ_SHIFT                 21
70 #define IDR1_CMDQ_MASK                  0x1f
71 #define IDR1_EVTQ_SHIFT                 16
72 #define IDR1_EVTQ_MASK                  0x1f
73 #define IDR1_PRIQ_SHIFT                 11
74 #define IDR1_PRIQ_MASK                  0x1f
75 #define IDR1_SSID_SHIFT                 6
76 #define IDR1_SSID_MASK                  0x1f
77 #define IDR1_SID_SHIFT                  0
78 #define IDR1_SID_MASK                   0x3f
79
80 #define ARM_SMMU_IDR5                   0x14
81 #define IDR5_STALL_MAX_SHIFT            16
82 #define IDR5_STALL_MAX_MASK             0xffff
83 #define IDR5_GRAN64K                    (1 << 6)
84 #define IDR5_GRAN16K                    (1 << 5)
85 #define IDR5_GRAN4K                     (1 << 4)
86 #define IDR5_OAS_SHIFT                  0
87 #define IDR5_OAS_MASK                   0x7
88 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
89 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
90 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
91 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
92 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
93 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
94
95 #define ARM_SMMU_CR0                    0x20
96 #define CR0_CMDQEN                      (1 << 3)
97 #define CR0_EVTQEN                      (1 << 2)
98 #define CR0_PRIQEN                      (1 << 1)
99 #define CR0_SMMUEN                      (1 << 0)
100
101 #define ARM_SMMU_CR0ACK                 0x24
102
103 #define ARM_SMMU_CR1                    0x28
104 #define CR1_SH_NSH                      0
105 #define CR1_SH_OSH                      2
106 #define CR1_SH_ISH                      3
107 #define CR1_CACHE_NC                    0
108 #define CR1_CACHE_WB                    1
109 #define CR1_CACHE_WT                    2
110 #define CR1_TABLE_SH_SHIFT              10
111 #define CR1_TABLE_OC_SHIFT              8
112 #define CR1_TABLE_IC_SHIFT              6
113 #define CR1_QUEUE_SH_SHIFT              4
114 #define CR1_QUEUE_OC_SHIFT              2
115 #define CR1_QUEUE_IC_SHIFT              0
116
117 #define ARM_SMMU_CR2                    0x2c
118 #define CR2_PTM                         (1 << 2)
119 #define CR2_RECINVSID                   (1 << 1)
120 #define CR2_E2H                         (1 << 0)
121
122 #define ARM_SMMU_IRQ_CTRL               0x50
123 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
124 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
125 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
126
127 #define ARM_SMMU_IRQ_CTRLACK            0x54
128
129 #define ARM_SMMU_GERROR                 0x60
130 #define GERROR_SFM_ERR                  (1 << 8)
131 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
132 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
133 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
134 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
135 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
136 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
137 #define GERROR_CMDQ_ERR                 (1 << 0)
138 #define GERROR_ERR_MASK                 0xfd
139
140 #define ARM_SMMU_GERRORN                0x64
141
142 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
143 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
144 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
145
146 #define ARM_SMMU_STRTAB_BASE            0x80
147 #define STRTAB_BASE_RA                  (1UL << 62)
148 #define STRTAB_BASE_ADDR_SHIFT          6
149 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
150
151 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
152 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
153 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
154 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
155 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
156 #define STRTAB_BASE_CFG_FMT_SHIFT       16
157 #define STRTAB_BASE_CFG_FMT_MASK        0x3
158 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
159 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
160
161 #define ARM_SMMU_CMDQ_BASE              0x90
162 #define ARM_SMMU_CMDQ_PROD              0x98
163 #define ARM_SMMU_CMDQ_CONS              0x9c
164
165 #define ARM_SMMU_EVTQ_BASE              0xa0
166 #define ARM_SMMU_EVTQ_PROD              0x100a8
167 #define ARM_SMMU_EVTQ_CONS              0x100ac
168 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
169 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
170 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
171
172 #define ARM_SMMU_PRIQ_BASE              0xc0
173 #define ARM_SMMU_PRIQ_PROD              0x100c8
174 #define ARM_SMMU_PRIQ_CONS              0x100cc
175 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
176 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
177 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
178
179 /* Common MSI config fields */
180 #define MSI_CFG0_ADDR_SHIFT             2
181 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
182 #define MSI_CFG2_SH_SHIFT               4
183 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
184 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
185 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
186 #define MSI_CFG2_MEMATTR_SHIFT          0
187 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
188
189 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
190 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
191 #define Q_OVERFLOW_FLAG                 (1 << 31)
192 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
193 #define Q_ENT(q, p)                     ((q)->base +                    \
194                                          Q_IDX(q, p) * (q)->ent_dwords)
195
196 #define Q_BASE_RWA                      (1UL << 62)
197 #define Q_BASE_ADDR_SHIFT               5
198 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
199 #define Q_BASE_LOG2SIZE_SHIFT           0
200 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
201
202 /*
203  * Stream table.
204  *
205  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
206  * 2lvl: 128k L1 entries,
207  *       256 lazy entries per table (each table covers a PCI bus)
208  */
209 #define STRTAB_L1_SZ_SHIFT              20
210 #define STRTAB_SPLIT                    8
211
212 #define STRTAB_L1_DESC_DWORDS           1
213 #define STRTAB_L1_DESC_SPAN_SHIFT       0
214 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
215 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
216 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
217
218 #define STRTAB_STE_DWORDS               8
219 #define STRTAB_STE_0_V                  (1UL << 0)
220 #define STRTAB_STE_0_CFG_SHIFT          1
221 #define STRTAB_STE_0_CFG_MASK           0x7UL
222 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
223 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
224 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
225 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
226
227 #define STRTAB_STE_0_S1FMT_SHIFT        4
228 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
229 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
230 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
231 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
232 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
233
234 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
235 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
236 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
237 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
238 #define STRTAB_STE_1_S1C_SH_NSH         0UL
239 #define STRTAB_STE_1_S1C_SH_OSH         2UL
240 #define STRTAB_STE_1_S1C_SH_ISH         3UL
241 #define STRTAB_STE_1_S1CIR_SHIFT        2
242 #define STRTAB_STE_1_S1COR_SHIFT        4
243 #define STRTAB_STE_1_S1CSH_SHIFT        6
244
245 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
246
247 #define STRTAB_STE_1_EATS_ABT           0UL
248 #define STRTAB_STE_1_EATS_TRANS         1UL
249 #define STRTAB_STE_1_EATS_S1CHK         2UL
250 #define STRTAB_STE_1_EATS_SHIFT         28
251
252 #define STRTAB_STE_1_STRW_NSEL1         0UL
253 #define STRTAB_STE_1_STRW_EL2           2UL
254 #define STRTAB_STE_1_STRW_SHIFT         30
255
256 #define STRTAB_STE_2_S2VMID_SHIFT       0
257 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
258 #define STRTAB_STE_2_VTCR_SHIFT         32
259 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
260 #define STRTAB_STE_2_S2AA64             (1UL << 51)
261 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
262 #define STRTAB_STE_2_S2PTW              (1UL << 54)
263 #define STRTAB_STE_2_S2R                (1UL << 58)
264
265 #define STRTAB_STE_3_S2TTB_SHIFT        4
266 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
267
268 /* Context descriptor (stage-1 only) */
269 #define CTXDESC_CD_DWORDS               8
270 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
271 #define ARM64_TCR_T0SZ_SHIFT            0
272 #define ARM64_TCR_T0SZ_MASK             0x1fUL
273 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
274 #define ARM64_TCR_TG0_SHIFT             14
275 #define ARM64_TCR_TG0_MASK              0x3UL
276 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
277 #define ARM64_TCR_IRGN0_SHIFT           8
278 #define ARM64_TCR_IRGN0_MASK            0x3UL
279 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
280 #define ARM64_TCR_ORGN0_SHIFT           10
281 #define ARM64_TCR_ORGN0_MASK            0x3UL
282 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
283 #define ARM64_TCR_SH0_SHIFT             12
284 #define ARM64_TCR_SH0_MASK              0x3UL
285 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
286 #define ARM64_TCR_EPD0_SHIFT            7
287 #define ARM64_TCR_EPD0_MASK             0x1UL
288 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
289 #define ARM64_TCR_EPD1_SHIFT            23
290 #define ARM64_TCR_EPD1_MASK             0x1UL
291
292 #define CTXDESC_CD_0_ENDI               (1UL << 15)
293 #define CTXDESC_CD_0_V                  (1UL << 31)
294
295 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
296 #define ARM64_TCR_IPS_SHIFT             32
297 #define ARM64_TCR_IPS_MASK              0x7UL
298 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
299 #define ARM64_TCR_TBI0_SHIFT            37
300 #define ARM64_TCR_TBI0_MASK             0x1UL
301
302 #define CTXDESC_CD_0_AA64               (1UL << 41)
303 #define CTXDESC_CD_0_R                  (1UL << 45)
304 #define CTXDESC_CD_0_A                  (1UL << 46)
305 #define CTXDESC_CD_0_ASET_SHIFT         47
306 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
307 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
308 #define CTXDESC_CD_0_ASID_SHIFT         48
309 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
310
311 #define CTXDESC_CD_1_TTB0_SHIFT         4
312 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
313
314 #define CTXDESC_CD_3_MAIR_SHIFT         0
315
316 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
317 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
318         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
319          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
320
321 /* Command queue */
322 #define CMDQ_ENT_DWORDS                 2
323 #define CMDQ_MAX_SZ_SHIFT               8
324
325 #define CMDQ_ERR_SHIFT                  24
326 #define CMDQ_ERR_MASK                   0x7f
327 #define CMDQ_ERR_CERROR_NONE_IDX        0
328 #define CMDQ_ERR_CERROR_ILL_IDX         1
329 #define CMDQ_ERR_CERROR_ABT_IDX         2
330
331 #define CMDQ_0_OP_SHIFT                 0
332 #define CMDQ_0_OP_MASK                  0xffUL
333 #define CMDQ_0_SSV                      (1UL << 11)
334
335 #define CMDQ_PREFETCH_0_SID_SHIFT       32
336 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
337 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
338
339 #define CMDQ_CFGI_0_SID_SHIFT           32
340 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
341 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
342 #define CMDQ_CFGI_1_RANGE_SHIFT         0
343 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
344
345 #define CMDQ_TLBI_0_VMID_SHIFT          32
346 #define CMDQ_TLBI_0_ASID_SHIFT          48
347 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
348 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
349 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
350
351 #define CMDQ_PRI_0_SSID_SHIFT           12
352 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
353 #define CMDQ_PRI_0_SID_SHIFT            32
354 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
355 #define CMDQ_PRI_1_GRPID_SHIFT          0
356 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
357 #define CMDQ_PRI_1_RESP_SHIFT           12
358 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
359 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
360 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
361
362 #define CMDQ_SYNC_0_CS_SHIFT            12
363 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
364 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
365
366 /* Event queue */
367 #define EVTQ_ENT_DWORDS                 4
368 #define EVTQ_MAX_SZ_SHIFT               7
369
370 #define EVTQ_0_ID_SHIFT                 0
371 #define EVTQ_0_ID_MASK                  0xffUL
372
373 /* PRI queue */
374 #define PRIQ_ENT_DWORDS                 2
375 #define PRIQ_MAX_SZ_SHIFT               8
376
377 #define PRIQ_0_SID_SHIFT                0
378 #define PRIQ_0_SID_MASK                 0xffffffffUL
379 #define PRIQ_0_SSID_SHIFT               32
380 #define PRIQ_0_SSID_MASK                0xfffffUL
381 #define PRIQ_0_OF                       (1UL << 57)
382 #define PRIQ_0_PERM_PRIV                (1UL << 58)
383 #define PRIQ_0_PERM_EXEC                (1UL << 59)
384 #define PRIQ_0_PERM_READ                (1UL << 60)
385 #define PRIQ_0_PERM_WRITE               (1UL << 61)
386 #define PRIQ_0_PRG_LAST                 (1UL << 62)
387 #define PRIQ_0_SSID_V                   (1UL << 63)
388
389 #define PRIQ_1_PRG_IDX_SHIFT            0
390 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
391 #define PRIQ_1_ADDR_SHIFT               12
392 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
393
394 /* High-level queue structures */
395 #define ARM_SMMU_POLL_TIMEOUT_US        100
396
397 static bool disable_bypass;
398 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
399 MODULE_PARM_DESC(disable_bypass,
400         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
401
402 enum pri_resp {
403         PRI_RESP_DENY,
404         PRI_RESP_FAIL,
405         PRI_RESP_SUCC,
406 };
407
408 enum arm_smmu_msi_index {
409         EVTQ_MSI_INDEX,
410         GERROR_MSI_INDEX,
411         PRIQ_MSI_INDEX,
412         ARM_SMMU_MAX_MSIS,
413 };
414
415 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
416         [EVTQ_MSI_INDEX] = {
417                 ARM_SMMU_EVTQ_IRQ_CFG0,
418                 ARM_SMMU_EVTQ_IRQ_CFG1,
419                 ARM_SMMU_EVTQ_IRQ_CFG2,
420         },
421         [GERROR_MSI_INDEX] = {
422                 ARM_SMMU_GERROR_IRQ_CFG0,
423                 ARM_SMMU_GERROR_IRQ_CFG1,
424                 ARM_SMMU_GERROR_IRQ_CFG2,
425         },
426         [PRIQ_MSI_INDEX] = {
427                 ARM_SMMU_PRIQ_IRQ_CFG0,
428                 ARM_SMMU_PRIQ_IRQ_CFG1,
429                 ARM_SMMU_PRIQ_IRQ_CFG2,
430         },
431 };
432
433 struct arm_smmu_cmdq_ent {
434         /* Common fields */
435         u8                              opcode;
436         bool                            substream_valid;
437
438         /* Command-specific fields */
439         union {
440                 #define CMDQ_OP_PREFETCH_CFG    0x1
441                 struct {
442                         u32                     sid;
443                         u8                      size;
444                         u64                     addr;
445                 } prefetch;
446
447                 #define CMDQ_OP_CFGI_STE        0x3
448                 #define CMDQ_OP_CFGI_ALL        0x4
449                 struct {
450                         u32                     sid;
451                         union {
452                                 bool            leaf;
453                                 u8              span;
454                         };
455                 } cfgi;
456
457                 #define CMDQ_OP_TLBI_NH_ASID    0x11
458                 #define CMDQ_OP_TLBI_NH_VA      0x12
459                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
460                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
461                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
462                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
463                 struct {
464                         u16                     asid;
465                         u16                     vmid;
466                         bool                    leaf;
467                         u64                     addr;
468                 } tlbi;
469
470                 #define CMDQ_OP_PRI_RESP        0x41
471                 struct {
472                         u32                     sid;
473                         u32                     ssid;
474                         u16                     grpid;
475                         enum pri_resp           resp;
476                 } pri;
477
478                 #define CMDQ_OP_CMD_SYNC        0x46
479         };
480 };
481
482 struct arm_smmu_queue {
483         int                             irq; /* Wired interrupt */
484
485         __le64                          *base;
486         dma_addr_t                      base_dma;
487         u64                             q_base;
488
489         size_t                          ent_dwords;
490         u32                             max_n_shift;
491         u32                             prod;
492         u32                             cons;
493
494         u32 __iomem                     *prod_reg;
495         u32 __iomem                     *cons_reg;
496 };
497
498 struct arm_smmu_cmdq {
499         struct arm_smmu_queue           q;
500         spinlock_t                      lock;
501 };
502
503 struct arm_smmu_evtq {
504         struct arm_smmu_queue           q;
505         u32                             max_stalls;
506 };
507
508 struct arm_smmu_priq {
509         struct arm_smmu_queue           q;
510 };
511
512 /* High-level stream table and context descriptor structures */
513 struct arm_smmu_strtab_l1_desc {
514         u8                              span;
515
516         __le64                          *l2ptr;
517         dma_addr_t                      l2ptr_dma;
518 };
519
520 struct arm_smmu_s1_cfg {
521         __le64                          *cdptr;
522         dma_addr_t                      cdptr_dma;
523
524         struct arm_smmu_ctx_desc {
525                 u16     asid;
526                 u64     ttbr;
527                 u64     tcr;
528                 u64     mair;
529         }                               cd;
530 };
531
532 struct arm_smmu_s2_cfg {
533         u16                             vmid;
534         u64                             vttbr;
535         u64                             vtcr;
536 };
537
538 struct arm_smmu_strtab_ent {
539         bool                            valid;
540
541         bool                            bypass; /* Overrides s1/s2 config */
542         struct arm_smmu_s1_cfg          *s1_cfg;
543         struct arm_smmu_s2_cfg          *s2_cfg;
544 };
545
546 struct arm_smmu_strtab_cfg {
547         __le64                          *strtab;
548         dma_addr_t                      strtab_dma;
549         struct arm_smmu_strtab_l1_desc  *l1_desc;
550         unsigned int                    num_l1_ents;
551
552         u64                             strtab_base;
553         u32                             strtab_base_cfg;
554 };
555
556 /* An SMMUv3 instance */
557 struct arm_smmu_device {
558         struct device                   *dev;
559         void __iomem                    *base;
560
561 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
562 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
563 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
564 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
565 #define ARM_SMMU_FEAT_PRI               (1 << 4)
566 #define ARM_SMMU_FEAT_ATS               (1 << 5)
567 #define ARM_SMMU_FEAT_SEV               (1 << 6)
568 #define ARM_SMMU_FEAT_MSI               (1 << 7)
569 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
570 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
571 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
572 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
573 #define ARM_SMMU_FEAT_HYP               (1 << 12)
574         u32                             features;
575
576 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
577         u32                             options;
578
579         struct arm_smmu_cmdq            cmdq;
580         struct arm_smmu_evtq            evtq;
581         struct arm_smmu_priq            priq;
582
583         int                             gerr_irq;
584
585         unsigned long                   ias; /* IPA */
586         unsigned long                   oas; /* PA */
587
588 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
589         unsigned int                    asid_bits;
590         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
591
592 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
593         unsigned int                    vmid_bits;
594         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
595
596         unsigned int                    ssid_bits;
597         unsigned int                    sid_bits;
598
599         struct arm_smmu_strtab_cfg      strtab_cfg;
600 };
601
602 /* SMMU private data for an IOMMU group */
603 struct arm_smmu_group {
604         struct arm_smmu_device          *smmu;
605         struct arm_smmu_domain          *domain;
606         int                             num_sids;
607         u32                             *sids;
608         struct arm_smmu_strtab_ent      ste;
609 };
610
611 /* SMMU private data for an IOMMU domain */
612 enum arm_smmu_domain_stage {
613         ARM_SMMU_DOMAIN_S1 = 0,
614         ARM_SMMU_DOMAIN_S2,
615         ARM_SMMU_DOMAIN_NESTED,
616 };
617
618 struct arm_smmu_domain {
619         struct arm_smmu_device          *smmu;
620         struct mutex                    init_mutex; /* Protects smmu pointer */
621
622         struct io_pgtable_ops           *pgtbl_ops;
623         spinlock_t                      pgtbl_lock;
624
625         enum arm_smmu_domain_stage      stage;
626         union {
627                 struct arm_smmu_s1_cfg  s1_cfg;
628                 struct arm_smmu_s2_cfg  s2_cfg;
629         };
630
631         struct iommu_domain             domain;
632 };
633
634 struct arm_smmu_option_prop {
635         u32 opt;
636         const char *prop;
637 };
638
639 static struct arm_smmu_option_prop arm_smmu_options[] = {
640         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
641         { 0, NULL},
642 };
643
644 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
645 {
646         return container_of(dom, struct arm_smmu_domain, domain);
647 }
648
649 static void parse_driver_options(struct arm_smmu_device *smmu)
650 {
651         int i = 0;
652
653         do {
654                 if (of_property_read_bool(smmu->dev->of_node,
655                                                 arm_smmu_options[i].prop)) {
656                         smmu->options |= arm_smmu_options[i].opt;
657                         dev_notice(smmu->dev, "option %s\n",
658                                 arm_smmu_options[i].prop);
659                 }
660         } while (arm_smmu_options[++i].opt);
661 }
662
663 /* Low-level queue manipulation functions */
664 static bool queue_full(struct arm_smmu_queue *q)
665 {
666         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
667                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
668 }
669
670 static bool queue_empty(struct arm_smmu_queue *q)
671 {
672         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
673                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
674 }
675
676 static void queue_sync_cons(struct arm_smmu_queue *q)
677 {
678         q->cons = readl_relaxed(q->cons_reg);
679 }
680
681 static void queue_inc_cons(struct arm_smmu_queue *q)
682 {
683         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
684
685         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
686         writel(q->cons, q->cons_reg);
687 }
688
689 static int queue_sync_prod(struct arm_smmu_queue *q)
690 {
691         int ret = 0;
692         u32 prod = readl_relaxed(q->prod_reg);
693
694         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
695                 ret = -EOVERFLOW;
696
697         q->prod = prod;
698         return ret;
699 }
700
701 static void queue_inc_prod(struct arm_smmu_queue *q)
702 {
703         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
704
705         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
706         writel(q->prod, q->prod_reg);
707 }
708
709 static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
710 {
711         if (Q_WRP(q, q->cons) == Q_WRP(q, until))
712                 return Q_IDX(q, q->cons) < Q_IDX(q, until);
713
714         return Q_IDX(q, q->cons) >= Q_IDX(q, until);
715 }
716
717 static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
718 {
719         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
720
721         while (queue_sync_cons(q), __queue_cons_before(q, until)) {
722                 if (ktime_compare(ktime_get(), timeout) > 0)
723                         return -ETIMEDOUT;
724
725                 if (wfe) {
726                         wfe();
727                 } else {
728                         cpu_relax();
729                         udelay(1);
730                 }
731         }
732
733         return 0;
734 }
735
736 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
737 {
738         int i;
739
740         for (i = 0; i < n_dwords; ++i)
741                 *dst++ = cpu_to_le64(*src++);
742 }
743
744 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
745 {
746         if (queue_full(q))
747                 return -ENOSPC;
748
749         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
750         queue_inc_prod(q);
751         return 0;
752 }
753
754 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
755 {
756         int i;
757
758         for (i = 0; i < n_dwords; ++i)
759                 *dst++ = le64_to_cpu(*src++);
760 }
761
762 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
763 {
764         if (queue_empty(q))
765                 return -EAGAIN;
766
767         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
768         queue_inc_cons(q);
769         return 0;
770 }
771
772 /* High-level queue accessors */
773 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
774 {
775         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
776         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
777
778         switch (ent->opcode) {
779         case CMDQ_OP_TLBI_EL2_ALL:
780         case CMDQ_OP_TLBI_NSNH_ALL:
781                 break;
782         case CMDQ_OP_PREFETCH_CFG:
783                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
784                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
785                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
786                 break;
787         case CMDQ_OP_CFGI_STE:
788                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
789                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
790                 break;
791         case CMDQ_OP_CFGI_ALL:
792                 /* Cover the entire SID range */
793                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
794                 break;
795         case CMDQ_OP_TLBI_NH_VA:
796                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
797                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
798                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
799                 break;
800         case CMDQ_OP_TLBI_S2_IPA:
801                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
802                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
803                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
804                 break;
805         case CMDQ_OP_TLBI_NH_ASID:
806                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
807                 /* Fallthrough */
808         case CMDQ_OP_TLBI_S12_VMALL:
809                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
810                 break;
811         case CMDQ_OP_PRI_RESP:
812                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
813                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
814                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
815                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
816                 switch (ent->pri.resp) {
817                 case PRI_RESP_DENY:
818                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
819                         break;
820                 case PRI_RESP_FAIL:
821                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
822                         break;
823                 case PRI_RESP_SUCC:
824                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
825                         break;
826                 default:
827                         return -EINVAL;
828                 }
829                 break;
830         case CMDQ_OP_CMD_SYNC:
831                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
832                 break;
833         default:
834                 return -ENOENT;
835         }
836
837         return 0;
838 }
839
840 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
841 {
842         static const char *cerror_str[] = {
843                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
844                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
845                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
846         };
847
848         int i;
849         u64 cmd[CMDQ_ENT_DWORDS];
850         struct arm_smmu_queue *q = &smmu->cmdq.q;
851         u32 cons = readl_relaxed(q->cons_reg);
852         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
853         struct arm_smmu_cmdq_ent cmd_sync = {
854                 .opcode = CMDQ_OP_CMD_SYNC,
855         };
856
857         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
858                 cerror_str[idx]);
859
860         switch (idx) {
861         case CMDQ_ERR_CERROR_ILL_IDX:
862                 break;
863         case CMDQ_ERR_CERROR_ABT_IDX:
864                 dev_err(smmu->dev, "retrying command fetch\n");
865         case CMDQ_ERR_CERROR_NONE_IDX:
866                 return;
867         }
868
869         /*
870          * We may have concurrent producers, so we need to be careful
871          * not to touch any of the shadow cmdq state.
872          */
873         queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
874         dev_err(smmu->dev, "skipping command in error state:\n");
875         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
876                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
877
878         /* Convert the erroneous command into a CMD_SYNC */
879         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
880                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
881                 return;
882         }
883
884         queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
885 }
886
887 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
888                                     struct arm_smmu_cmdq_ent *ent)
889 {
890         u32 until;
891         u64 cmd[CMDQ_ENT_DWORDS];
892         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
893         struct arm_smmu_queue *q = &smmu->cmdq.q;
894
895         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
896                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
897                          ent->opcode);
898                 return;
899         }
900
901         spin_lock(&smmu->cmdq.lock);
902         while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
903                 /*
904                  * Keep the queue locked, otherwise the producer could wrap
905                  * twice and we could see a future consumer pointer that looks
906                  * like it's behind us.
907                  */
908                 if (queue_poll_cons(q, until, wfe))
909                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
910         }
911
912         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
913                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
914         spin_unlock(&smmu->cmdq.lock);
915 }
916
917 /* Context descriptor manipulation functions */
918 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
919 {
920         u64 val = 0;
921
922         /* Repack the TCR. Just care about TTBR0 for now */
923         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
924         val |= ARM_SMMU_TCR2CD(tcr, TG0);
925         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
926         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
927         val |= ARM_SMMU_TCR2CD(tcr, SH0);
928         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
929         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
930         val |= ARM_SMMU_TCR2CD(tcr, IPS);
931         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
932
933         return val;
934 }
935
936 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
937                                     struct arm_smmu_s1_cfg *cfg)
938 {
939         u64 val;
940
941         /*
942          * We don't need to issue any invalidation here, as we'll invalidate
943          * the STE when installing the new entry anyway.
944          */
945         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
946 #ifdef __BIG_ENDIAN
947               CTXDESC_CD_0_ENDI |
948 #endif
949               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
950               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
951               CTXDESC_CD_0_V;
952         cfg->cdptr[0] = cpu_to_le64(val);
953
954         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
955         cfg->cdptr[1] = cpu_to_le64(val);
956
957         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
958 }
959
960 /* Stream table manipulation functions */
961 static void
962 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
963 {
964         u64 val = 0;
965
966         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
967                 << STRTAB_L1_DESC_SPAN_SHIFT;
968         val |= desc->l2ptr_dma &
969                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
970
971         *dst = cpu_to_le64(val);
972 }
973
974 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
975 {
976         struct arm_smmu_cmdq_ent cmd = {
977                 .opcode = CMDQ_OP_CFGI_STE,
978                 .cfgi   = {
979                         .sid    = sid,
980                         .leaf   = true,
981                 },
982         };
983
984         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
985         cmd.opcode = CMDQ_OP_CMD_SYNC;
986         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
987 }
988
989 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
990                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
991 {
992         /*
993          * This is hideously complicated, but we only really care about
994          * three cases at the moment:
995          *
996          * 1. Invalid (all zero) -> bypass  (init)
997          * 2. Bypass -> translation (attach)
998          * 3. Translation -> bypass (detach)
999          *
1000          * Given that we can't update the STE atomically and the SMMU
1001          * doesn't read the thing in a defined order, that leaves us
1002          * with the following maintenance requirements:
1003          *
1004          * 1. Update Config, return (init time STEs aren't live)
1005          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1006          * 3. Update Config, sync
1007          */
1008         u64 val = le64_to_cpu(dst[0]);
1009         bool ste_live = false;
1010         struct arm_smmu_cmdq_ent prefetch_cmd = {
1011                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1012                 .prefetch       = {
1013                         .sid    = sid,
1014                 },
1015         };
1016
1017         if (val & STRTAB_STE_0_V) {
1018                 u64 cfg;
1019
1020                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1021                 switch (cfg) {
1022                 case STRTAB_STE_0_CFG_BYPASS:
1023                         break;
1024                 case STRTAB_STE_0_CFG_S1_TRANS:
1025                 case STRTAB_STE_0_CFG_S2_TRANS:
1026                         ste_live = true;
1027                         break;
1028                 default:
1029                         BUG(); /* STE corruption */
1030                 }
1031         }
1032
1033         /* Nuke the existing Config, as we're going to rewrite it */
1034         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1035
1036         if (ste->valid)
1037                 val |= STRTAB_STE_0_V;
1038         else
1039                 val &= ~STRTAB_STE_0_V;
1040
1041         if (ste->bypass) {
1042                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1043                                       : STRTAB_STE_0_CFG_BYPASS;
1044                 dst[0] = cpu_to_le64(val);
1045                 dst[2] = 0; /* Nuke the VMID */
1046                 if (ste_live)
1047                         arm_smmu_sync_ste_for_sid(smmu, sid);
1048                 return;
1049         }
1050
1051         if (ste->s1_cfg) {
1052                 BUG_ON(ste_live);
1053                 dst[1] = cpu_to_le64(
1054                          STRTAB_STE_1_S1C_CACHE_WBRA
1055                          << STRTAB_STE_1_S1CIR_SHIFT |
1056                          STRTAB_STE_1_S1C_CACHE_WBRA
1057                          << STRTAB_STE_1_S1COR_SHIFT |
1058                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1059                          STRTAB_STE_1_S1STALLD |
1060 #ifdef CONFIG_PCI_ATS
1061                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1062 #endif
1063                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1064
1065                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1066                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1067                         STRTAB_STE_0_CFG_S1_TRANS;
1068
1069         }
1070
1071         if (ste->s2_cfg) {
1072                 BUG_ON(ste_live);
1073                 dst[2] = cpu_to_le64(
1074                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1075                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1076                           << STRTAB_STE_2_VTCR_SHIFT |
1077 #ifdef __BIG_ENDIAN
1078                          STRTAB_STE_2_S2ENDI |
1079 #endif
1080                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1081                          STRTAB_STE_2_S2R);
1082
1083                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1084                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1085
1086                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1087         }
1088
1089         arm_smmu_sync_ste_for_sid(smmu, sid);
1090         dst[0] = cpu_to_le64(val);
1091         arm_smmu_sync_ste_for_sid(smmu, sid);
1092
1093         /* It's likely that we'll want to use the new STE soon */
1094         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1095                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1096 }
1097
1098 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1099 {
1100         unsigned int i;
1101         struct arm_smmu_strtab_ent ste = {
1102                 .valid  = true,
1103                 .bypass = true,
1104         };
1105
1106         for (i = 0; i < nent; ++i) {
1107                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1108                 strtab += STRTAB_STE_DWORDS;
1109         }
1110 }
1111
1112 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1113 {
1114         size_t size;
1115         void *strtab;
1116         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1117         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1118
1119         if (desc->l2ptr)
1120                 return 0;
1121
1122         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1123         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1124
1125         desc->span = STRTAB_SPLIT + 1;
1126         desc->l2ptr = dma_zalloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1127                                           GFP_KERNEL);
1128         if (!desc->l2ptr) {
1129                 dev_err(smmu->dev,
1130                         "failed to allocate l2 stream table for SID %u\n",
1131                         sid);
1132                 return -ENOMEM;
1133         }
1134
1135         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1136         arm_smmu_write_strtab_l1_desc(strtab, desc);
1137         return 0;
1138 }
1139
1140 /* IRQ and event handlers */
1141 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1142 {
1143         int i;
1144         struct arm_smmu_device *smmu = dev;
1145         struct arm_smmu_queue *q = &smmu->evtq.q;
1146         u64 evt[EVTQ_ENT_DWORDS];
1147
1148         while (!queue_remove_raw(q, evt)) {
1149                 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1150
1151                 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1152                 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1153                         dev_info(smmu->dev, "\t0x%016llx\n",
1154                                  (unsigned long long)evt[i]);
1155         }
1156
1157         /* Sync our overflow flag, as we believe we're up to speed */
1158         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1159         return IRQ_HANDLED;
1160 }
1161
1162 static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1163 {
1164         irqreturn_t ret = IRQ_WAKE_THREAD;
1165         struct arm_smmu_device *smmu = dev;
1166         struct arm_smmu_queue *q = &smmu->evtq.q;
1167
1168         /*
1169          * Not much we can do on overflow, so scream and pretend we're
1170          * trying harder.
1171          */
1172         if (queue_sync_prod(q) == -EOVERFLOW)
1173                 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1174         else if (queue_empty(q))
1175                 ret = IRQ_NONE;
1176
1177         return ret;
1178 }
1179
1180 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1181 {
1182         struct arm_smmu_device *smmu = dev;
1183         struct arm_smmu_queue *q = &smmu->priq.q;
1184         u64 evt[PRIQ_ENT_DWORDS];
1185
1186         while (!queue_remove_raw(q, evt)) {
1187                 u32 sid, ssid;
1188                 u16 grpid;
1189                 bool ssv, last;
1190
1191                 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1192                 ssv = evt[0] & PRIQ_0_SSID_V;
1193                 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1194                 last = evt[0] & PRIQ_0_PRG_LAST;
1195                 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1196
1197                 dev_info(smmu->dev, "unexpected PRI request received:\n");
1198                 dev_info(smmu->dev,
1199                          "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1200                          sid, ssid, grpid, last ? "L" : "",
1201                          evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1202                          evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1203                          evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1204                          evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1205                          evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1206
1207                 if (last) {
1208                         struct arm_smmu_cmdq_ent cmd = {
1209                                 .opcode                 = CMDQ_OP_PRI_RESP,
1210                                 .substream_valid        = ssv,
1211                                 .pri                    = {
1212                                         .sid    = sid,
1213                                         .ssid   = ssid,
1214                                         .grpid  = grpid,
1215                                         .resp   = PRI_RESP_DENY,
1216                                 },
1217                         };
1218
1219                         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1220                 }
1221         }
1222
1223         /* Sync our overflow flag, as we believe we're up to speed */
1224         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1225         return IRQ_HANDLED;
1226 }
1227
1228 static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1229 {
1230         irqreturn_t ret = IRQ_WAKE_THREAD;
1231         struct arm_smmu_device *smmu = dev;
1232         struct arm_smmu_queue *q = &smmu->priq.q;
1233
1234         /* PRIQ overflow indicates a programming error */
1235         if (queue_sync_prod(q) == -EOVERFLOW)
1236                 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1237         else if (queue_empty(q))
1238                 ret = IRQ_NONE;
1239
1240         return ret;
1241 }
1242
1243 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1244 {
1245         /* We don't actually use CMD_SYNC interrupts for anything */
1246         return IRQ_HANDLED;
1247 }
1248
1249 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1250
1251 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1252 {
1253         u32 gerror, gerrorn;
1254         struct arm_smmu_device *smmu = dev;
1255
1256         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1257         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1258
1259         gerror ^= gerrorn;
1260         if (!(gerror & GERROR_ERR_MASK))
1261                 return IRQ_NONE; /* No errors pending */
1262
1263         dev_warn(smmu->dev,
1264                  "unexpected global error reported (0x%08x), this could be serious\n",
1265                  gerror);
1266
1267         if (gerror & GERROR_SFM_ERR) {
1268                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1269                 arm_smmu_device_disable(smmu);
1270         }
1271
1272         if (gerror & GERROR_MSI_GERROR_ABT_ERR)
1273                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1274
1275         if (gerror & GERROR_MSI_PRIQ_ABT_ERR) {
1276                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1277                 arm_smmu_priq_handler(irq, smmu->dev);
1278         }
1279
1280         if (gerror & GERROR_MSI_EVTQ_ABT_ERR) {
1281                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1282                 arm_smmu_evtq_handler(irq, smmu->dev);
1283         }
1284
1285         if (gerror & GERROR_MSI_CMDQ_ABT_ERR) {
1286                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1287                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1288         }
1289
1290         if (gerror & GERROR_PRIQ_ABT_ERR)
1291                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1292
1293         if (gerror & GERROR_EVTQ_ABT_ERR)
1294                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1295
1296         if (gerror & GERROR_CMDQ_ERR)
1297                 arm_smmu_cmdq_skip_err(smmu);
1298
1299         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1300         return IRQ_HANDLED;
1301 }
1302
1303 /* IO_PGTABLE API */
1304 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1305 {
1306         struct arm_smmu_cmdq_ent cmd;
1307
1308         cmd.opcode = CMDQ_OP_CMD_SYNC;
1309         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1310 }
1311
1312 static void arm_smmu_tlb_sync(void *cookie)
1313 {
1314         struct arm_smmu_domain *smmu_domain = cookie;
1315         __arm_smmu_tlb_sync(smmu_domain->smmu);
1316 }
1317
1318 static void arm_smmu_tlb_inv_context(void *cookie)
1319 {
1320         struct arm_smmu_domain *smmu_domain = cookie;
1321         struct arm_smmu_device *smmu = smmu_domain->smmu;
1322         struct arm_smmu_cmdq_ent cmd;
1323
1324         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1325                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1326                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1327                 cmd.tlbi.vmid   = 0;
1328         } else {
1329                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1330                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1331         }
1332
1333         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1334         __arm_smmu_tlb_sync(smmu);
1335 }
1336
1337 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1338                                           bool leaf, void *cookie)
1339 {
1340         struct arm_smmu_domain *smmu_domain = cookie;
1341         struct arm_smmu_device *smmu = smmu_domain->smmu;
1342         struct arm_smmu_cmdq_ent cmd = {
1343                 .tlbi = {
1344                         .leaf   = leaf,
1345                         .addr   = iova,
1346                 },
1347         };
1348
1349         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1350                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1351                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1352         } else {
1353                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1354                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1355         }
1356
1357         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1358 }
1359
1360 static struct iommu_gather_ops arm_smmu_gather_ops = {
1361         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1362         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1363         .tlb_sync       = arm_smmu_tlb_sync,
1364 };
1365
1366 /* IOMMU API */
1367 static bool arm_smmu_capable(enum iommu_cap cap)
1368 {
1369         switch (cap) {
1370         case IOMMU_CAP_CACHE_COHERENCY:
1371                 return true;
1372         case IOMMU_CAP_INTR_REMAP:
1373                 return true; /* MSIs are just memory writes */
1374         case IOMMU_CAP_NOEXEC:
1375                 return true;
1376         default:
1377                 return false;
1378         }
1379 }
1380
1381 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1382 {
1383         struct arm_smmu_domain *smmu_domain;
1384
1385         if (type != IOMMU_DOMAIN_UNMANAGED)
1386                 return NULL;
1387
1388         /*
1389          * Allocate the domain and initialise some of its data structures.
1390          * We can't really do anything meaningful until we've added a
1391          * master.
1392          */
1393         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1394         if (!smmu_domain)
1395                 return NULL;
1396
1397         mutex_init(&smmu_domain->init_mutex);
1398         spin_lock_init(&smmu_domain->pgtbl_lock);
1399         return &smmu_domain->domain;
1400 }
1401
1402 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1403 {
1404         int idx, size = 1 << span;
1405
1406         do {
1407                 idx = find_first_zero_bit(map, size);
1408                 if (idx == size)
1409                         return -ENOSPC;
1410         } while (test_and_set_bit(idx, map));
1411
1412         return idx;
1413 }
1414
1415 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1416 {
1417         clear_bit(idx, map);
1418 }
1419
1420 static void arm_smmu_domain_free(struct iommu_domain *domain)
1421 {
1422         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1423         struct arm_smmu_device *smmu = smmu_domain->smmu;
1424
1425         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1426
1427         /* Free the CD and ASID, if we allocated them */
1428         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1429                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1430
1431                 if (cfg->cdptr) {
1432                         dma_free_coherent(smmu_domain->smmu->dev,
1433                                           CTXDESC_CD_DWORDS << 3,
1434                                           cfg->cdptr,
1435                                           cfg->cdptr_dma);
1436
1437                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1438                 }
1439         } else {
1440                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1441                 if (cfg->vmid)
1442                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1443         }
1444
1445         kfree(smmu_domain);
1446 }
1447
1448 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1449                                        struct io_pgtable_cfg *pgtbl_cfg)
1450 {
1451         int ret;
1452         int asid;
1453         struct arm_smmu_device *smmu = smmu_domain->smmu;
1454         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1455
1456         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1457         if (IS_ERR_VALUE(asid))
1458                 return asid;
1459
1460         cfg->cdptr = dma_zalloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1461                                          &cfg->cdptr_dma, GFP_KERNEL);
1462         if (!cfg->cdptr) {
1463                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1464                 ret = -ENOMEM;
1465                 goto out_free_asid;
1466         }
1467
1468         cfg->cd.asid    = (u16)asid;
1469         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1470         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1471         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1472         return 0;
1473
1474 out_free_asid:
1475         arm_smmu_bitmap_free(smmu->asid_map, asid);
1476         return ret;
1477 }
1478
1479 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1480                                        struct io_pgtable_cfg *pgtbl_cfg)
1481 {
1482         int vmid;
1483         struct arm_smmu_device *smmu = smmu_domain->smmu;
1484         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1485
1486         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1487         if (IS_ERR_VALUE(vmid))
1488                 return vmid;
1489
1490         cfg->vmid       = (u16)vmid;
1491         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1492         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1493         return 0;
1494 }
1495
1496 static struct iommu_ops arm_smmu_ops;
1497
1498 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1499 {
1500         int ret;
1501         unsigned long ias, oas;
1502         enum io_pgtable_fmt fmt;
1503         struct io_pgtable_cfg pgtbl_cfg;
1504         struct io_pgtable_ops *pgtbl_ops;
1505         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1506                                  struct io_pgtable_cfg *);
1507         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1508         struct arm_smmu_device *smmu = smmu_domain->smmu;
1509
1510         /* Restrict the stage to what we can actually support */
1511         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1512                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1513         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1514                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1515
1516         switch (smmu_domain->stage) {
1517         case ARM_SMMU_DOMAIN_S1:
1518                 ias = VA_BITS;
1519                 oas = smmu->ias;
1520                 fmt = ARM_64_LPAE_S1;
1521                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1522                 break;
1523         case ARM_SMMU_DOMAIN_NESTED:
1524         case ARM_SMMU_DOMAIN_S2:
1525                 ias = smmu->ias;
1526                 oas = smmu->oas;
1527                 fmt = ARM_64_LPAE_S2;
1528                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1529                 break;
1530         default:
1531                 return -EINVAL;
1532         }
1533
1534         pgtbl_cfg = (struct io_pgtable_cfg) {
1535                 .pgsize_bitmap  = arm_smmu_ops.pgsize_bitmap,
1536                 .ias            = ias,
1537                 .oas            = oas,
1538                 .tlb            = &arm_smmu_gather_ops,
1539                 .iommu_dev      = smmu->dev,
1540         };
1541
1542         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1543         if (!pgtbl_ops)
1544                 return -ENOMEM;
1545
1546         arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1547         smmu_domain->pgtbl_ops = pgtbl_ops;
1548
1549         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1550         if (IS_ERR_VALUE(ret))
1551                 free_io_pgtable_ops(pgtbl_ops);
1552
1553         return ret;
1554 }
1555
1556 static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1557 {
1558         struct iommu_group *group;
1559         struct arm_smmu_group *smmu_group;
1560
1561         group = iommu_group_get(dev);
1562         if (!group)
1563                 return NULL;
1564
1565         smmu_group = iommu_group_get_iommudata(group);
1566         iommu_group_put(group);
1567         return smmu_group;
1568 }
1569
1570 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1571 {
1572         __le64 *step;
1573         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1574
1575         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1576                 struct arm_smmu_strtab_l1_desc *l1_desc;
1577                 int idx;
1578
1579                 /* Two-level walk */
1580                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1581                 l1_desc = &cfg->l1_desc[idx];
1582                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1583                 step = &l1_desc->l2ptr[idx];
1584         } else {
1585                 /* Simple linear lookup */
1586                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1587         }
1588
1589         return step;
1590 }
1591
1592 static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1593 {
1594         int i;
1595         struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1596         struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1597         struct arm_smmu_device *smmu = smmu_group->smmu;
1598
1599         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1600                 ste->s1_cfg = &smmu_domain->s1_cfg;
1601                 ste->s2_cfg = NULL;
1602                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1603         } else {
1604                 ste->s1_cfg = NULL;
1605                 ste->s2_cfg = &smmu_domain->s2_cfg;
1606         }
1607
1608         for (i = 0; i < smmu_group->num_sids; ++i) {
1609                 u32 sid = smmu_group->sids[i];
1610                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1611
1612                 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1613         }
1614
1615         return 0;
1616 }
1617
1618 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1619 {
1620         int ret = 0;
1621         struct arm_smmu_device *smmu;
1622         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1623         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1624
1625         if (!smmu_group)
1626                 return -ENOENT;
1627
1628         /* Already attached to a different domain? */
1629         if (smmu_group->domain && smmu_group->domain != smmu_domain)
1630                 return -EEXIST;
1631
1632         smmu = smmu_group->smmu;
1633         mutex_lock(&smmu_domain->init_mutex);
1634
1635         if (!smmu_domain->smmu) {
1636                 smmu_domain->smmu = smmu;
1637                 ret = arm_smmu_domain_finalise(domain);
1638                 if (ret) {
1639                         smmu_domain->smmu = NULL;
1640                         goto out_unlock;
1641                 }
1642         } else if (smmu_domain->smmu != smmu) {
1643                 dev_err(dev,
1644                         "cannot attach to SMMU %s (upstream of %s)\n",
1645                         dev_name(smmu_domain->smmu->dev),
1646                         dev_name(smmu->dev));
1647                 ret = -ENXIO;
1648                 goto out_unlock;
1649         }
1650
1651         /* Group already attached to this domain? */
1652         if (smmu_group->domain)
1653                 goto out_unlock;
1654
1655         smmu_group->domain      = smmu_domain;
1656         smmu_group->ste.bypass  = false;
1657
1658         ret = arm_smmu_install_ste_for_group(smmu_group);
1659         if (IS_ERR_VALUE(ret))
1660                 smmu_group->domain = NULL;
1661
1662 out_unlock:
1663         mutex_unlock(&smmu_domain->init_mutex);
1664         return ret;
1665 }
1666
1667 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1668 {
1669         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1670         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1671
1672         BUG_ON(!smmu_domain);
1673         BUG_ON(!smmu_group);
1674
1675         mutex_lock(&smmu_domain->init_mutex);
1676         BUG_ON(smmu_group->domain != smmu_domain);
1677
1678         smmu_group->ste.bypass = true;
1679         if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
1680                 dev_warn(dev, "failed to install bypass STE\n");
1681
1682         smmu_group->domain = NULL;
1683         mutex_unlock(&smmu_domain->init_mutex);
1684 }
1685
1686 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1687                         phys_addr_t paddr, size_t size, int prot)
1688 {
1689         int ret;
1690         unsigned long flags;
1691         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1692         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1693
1694         if (!ops)
1695                 return -ENODEV;
1696
1697         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1698         ret = ops->map(ops, iova, paddr, size, prot);
1699         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1700         return ret;
1701 }
1702
1703 static size_t
1704 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1705 {
1706         size_t ret;
1707         unsigned long flags;
1708         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1709         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1710
1711         if (!ops)
1712                 return 0;
1713
1714         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1715         ret = ops->unmap(ops, iova, size);
1716         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1717         return ret;
1718 }
1719
1720 static phys_addr_t
1721 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1722 {
1723         phys_addr_t ret;
1724         unsigned long flags;
1725         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1726         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1727
1728         if (!ops)
1729                 return 0;
1730
1731         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1732         ret = ops->iova_to_phys(ops, iova);
1733         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1734
1735         return ret;
1736 }
1737
1738 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1739 {
1740         *(u32 *)sidp = alias;
1741         return 0; /* Continue walking */
1742 }
1743
1744 static void __arm_smmu_release_pci_iommudata(void *data)
1745 {
1746         kfree(data);
1747 }
1748
1749 static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1750 {
1751         struct device_node *of_node;
1752         struct platform_device *smmu_pdev;
1753         struct arm_smmu_device *smmu = NULL;
1754         struct pci_bus *bus = pdev->bus;
1755
1756         /* Walk up to the root bus */
1757         while (!pci_is_root_bus(bus))
1758                 bus = bus->parent;
1759
1760         /* Follow the "iommus" phandle from the host controller */
1761         of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1762         if (!of_node)
1763                 return NULL;
1764
1765         /* See if we can find an SMMU corresponding to the phandle */
1766         smmu_pdev = of_find_device_by_node(of_node);
1767         if (smmu_pdev)
1768                 smmu = platform_get_drvdata(smmu_pdev);
1769
1770         of_node_put(of_node);
1771         return smmu;
1772 }
1773
1774 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1775 {
1776         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1777
1778         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1779                 limit *= 1UL << STRTAB_SPLIT;
1780
1781         return sid < limit;
1782 }
1783
1784 static int arm_smmu_add_device(struct device *dev)
1785 {
1786         int i, ret;
1787         u32 sid, *sids;
1788         struct pci_dev *pdev;
1789         struct iommu_group *group;
1790         struct arm_smmu_group *smmu_group;
1791         struct arm_smmu_device *smmu;
1792
1793         /* We only support PCI, for now */
1794         if (!dev_is_pci(dev))
1795                 return -ENODEV;
1796
1797         pdev = to_pci_dev(dev);
1798         group = iommu_group_get_for_dev(dev);
1799         if (IS_ERR(group))
1800                 return PTR_ERR(group);
1801
1802         smmu_group = iommu_group_get_iommudata(group);
1803         if (!smmu_group) {
1804                 smmu = arm_smmu_get_for_pci_dev(pdev);
1805                 if (!smmu) {
1806                         ret = -ENOENT;
1807                         goto out_put_group;
1808                 }
1809
1810                 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1811                 if (!smmu_group) {
1812                         ret = -ENOMEM;
1813                         goto out_put_group;
1814                 }
1815
1816                 smmu_group->ste.valid   = true;
1817                 smmu_group->smmu        = smmu;
1818                 iommu_group_set_iommudata(group, smmu_group,
1819                                           __arm_smmu_release_pci_iommudata);
1820         } else {
1821                 smmu = smmu_group->smmu;
1822         }
1823
1824         /* Assume SID == RID until firmware tells us otherwise */
1825         pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1826         for (i = 0; i < smmu_group->num_sids; ++i) {
1827                 /* If we already know about this SID, then we're done */
1828                 if (smmu_group->sids[i] == sid)
1829                         return 0;
1830         }
1831
1832         /* Check the SID is in range of the SMMU and our stream table */
1833         if (!arm_smmu_sid_in_range(smmu, sid)) {
1834                 ret = -ERANGE;
1835                 goto out_put_group;
1836         }
1837
1838         /* Ensure l2 strtab is initialised */
1839         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1840                 ret = arm_smmu_init_l2_strtab(smmu, sid);
1841                 if (ret)
1842                         goto out_put_group;
1843         }
1844
1845         /* Resize the SID array for the group */
1846         smmu_group->num_sids++;
1847         sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1848                         GFP_KERNEL);
1849         if (!sids) {
1850                 smmu_group->num_sids--;
1851                 ret = -ENOMEM;
1852                 goto out_put_group;
1853         }
1854
1855         /* Add the new SID */
1856         sids[smmu_group->num_sids - 1] = sid;
1857         smmu_group->sids = sids;
1858         return 0;
1859
1860 out_put_group:
1861         iommu_group_put(group);
1862         return ret;
1863 }
1864
1865 static void arm_smmu_remove_device(struct device *dev)
1866 {
1867         iommu_group_remove_device(dev);
1868 }
1869
1870 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1871                                     enum iommu_attr attr, void *data)
1872 {
1873         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1874
1875         switch (attr) {
1876         case DOMAIN_ATTR_NESTING:
1877                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1878                 return 0;
1879         default:
1880                 return -ENODEV;
1881         }
1882 }
1883
1884 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1885                                     enum iommu_attr attr, void *data)
1886 {
1887         int ret = 0;
1888         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1889
1890         mutex_lock(&smmu_domain->init_mutex);
1891
1892         switch (attr) {
1893         case DOMAIN_ATTR_NESTING:
1894                 if (smmu_domain->smmu) {
1895                         ret = -EPERM;
1896                         goto out_unlock;
1897                 }
1898
1899                 if (*(int *)data)
1900                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1901                 else
1902                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1903
1904                 break;
1905         default:
1906                 ret = -ENODEV;
1907         }
1908
1909 out_unlock:
1910         mutex_unlock(&smmu_domain->init_mutex);
1911         return ret;
1912 }
1913
1914 static struct iommu_ops arm_smmu_ops = {
1915         .capable                = arm_smmu_capable,
1916         .domain_alloc           = arm_smmu_domain_alloc,
1917         .domain_free            = arm_smmu_domain_free,
1918         .attach_dev             = arm_smmu_attach_dev,
1919         .detach_dev             = arm_smmu_detach_dev,
1920         .map                    = arm_smmu_map,
1921         .unmap                  = arm_smmu_unmap,
1922         .map_sg                 = default_iommu_map_sg,
1923         .iova_to_phys           = arm_smmu_iova_to_phys,
1924         .add_device             = arm_smmu_add_device,
1925         .remove_device          = arm_smmu_remove_device,
1926         .device_group           = pci_device_group,
1927         .domain_get_attr        = arm_smmu_domain_get_attr,
1928         .domain_set_attr        = arm_smmu_domain_set_attr,
1929         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1930 };
1931
1932 /* Probing and initialisation functions */
1933 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1934                                    struct arm_smmu_queue *q,
1935                                    unsigned long prod_off,
1936                                    unsigned long cons_off,
1937                                    size_t dwords)
1938 {
1939         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1940
1941         q->base = dma_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1942         if (!q->base) {
1943                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1944                         qsz);
1945                 return -ENOMEM;
1946         }
1947
1948         q->prod_reg     = smmu->base + prod_off;
1949         q->cons_reg     = smmu->base + cons_off;
1950         q->ent_dwords   = dwords;
1951
1952         q->q_base  = Q_BASE_RWA;
1953         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1954         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1955                      << Q_BASE_LOG2SIZE_SHIFT;
1956
1957         q->prod = q->cons = 0;
1958         return 0;
1959 }
1960
1961 static void arm_smmu_free_one_queue(struct arm_smmu_device *smmu,
1962                                     struct arm_smmu_queue *q)
1963 {
1964         size_t qsz = ((1 << q->max_n_shift) * q->ent_dwords) << 3;
1965
1966         dma_free_coherent(smmu->dev, qsz, q->base, q->base_dma);
1967 }
1968
1969 static void arm_smmu_free_queues(struct arm_smmu_device *smmu)
1970 {
1971         arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
1972         arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
1973
1974         if (smmu->features & ARM_SMMU_FEAT_PRI)
1975                 arm_smmu_free_one_queue(smmu, &smmu->priq.q);
1976 }
1977
1978 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1979 {
1980         int ret;
1981
1982         /* cmdq */
1983         spin_lock_init(&smmu->cmdq.lock);
1984         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1985                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1986         if (ret)
1987                 goto out;
1988
1989         /* evtq */
1990         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1991                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1992         if (ret)
1993                 goto out_free_cmdq;
1994
1995         /* priq */
1996         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1997                 return 0;
1998
1999         ret = arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2000                                       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
2001         if (ret)
2002                 goto out_free_evtq;
2003
2004         return 0;
2005
2006 out_free_evtq:
2007         arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
2008 out_free_cmdq:
2009         arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
2010 out:
2011         return ret;
2012 }
2013
2014 static void arm_smmu_free_l2_strtab(struct arm_smmu_device *smmu)
2015 {
2016         int i;
2017         size_t size;
2018         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2019
2020         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
2021         for (i = 0; i < cfg->num_l1_ents; ++i) {
2022                 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[i];
2023
2024                 if (!desc->l2ptr)
2025                         continue;
2026
2027                 dma_free_coherent(smmu->dev, size, desc->l2ptr,
2028                                   desc->l2ptr_dma);
2029         }
2030 }
2031
2032 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2033 {
2034         unsigned int i;
2035         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2036         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2037         void *strtab = smmu->strtab_cfg.strtab;
2038
2039         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2040         if (!cfg->l1_desc) {
2041                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2042                 return -ENOMEM;
2043         }
2044
2045         for (i = 0; i < cfg->num_l1_ents; ++i) {
2046                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2047                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2048         }
2049
2050         return 0;
2051 }
2052
2053 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2054 {
2055         void *strtab;
2056         u64 reg;
2057         u32 size, l1size;
2058         int ret;
2059         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2060
2061         /*
2062          * If we can resolve everything with a single L2 table, then we
2063          * just need a single L1 descriptor. Otherwise, calculate the L1
2064          * size, capped to the SIDSIZE.
2065          */
2066         if (smmu->sid_bits < STRTAB_SPLIT) {
2067                 size = 0;
2068         } else {
2069                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2070                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2071         }
2072         cfg->num_l1_ents = 1 << size;
2073
2074         size += STRTAB_SPLIT;
2075         if (size < smmu->sid_bits)
2076                 dev_warn(smmu->dev,
2077                          "2-level strtab only covers %u/%u bits of SID\n",
2078                          size, smmu->sid_bits);
2079
2080         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2081         strtab = dma_zalloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2082                                      GFP_KERNEL);
2083         if (!strtab) {
2084                 dev_err(smmu->dev,
2085                         "failed to allocate l1 stream table (%u bytes)\n",
2086                         size);
2087                 return -ENOMEM;
2088         }
2089         cfg->strtab = strtab;
2090
2091         /* Configure strtab_base_cfg for 2 levels */
2092         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2093         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2094                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2095         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2096                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2097         cfg->strtab_base_cfg = reg;
2098
2099         ret = arm_smmu_init_l1_strtab(smmu);
2100         if (ret)
2101                 dma_free_coherent(smmu->dev,
2102                                   l1size,
2103                                   strtab,
2104                                   cfg->strtab_dma);
2105         return ret;
2106 }
2107
2108 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2109 {
2110         void *strtab;
2111         u64 reg;
2112         u32 size;
2113         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2114
2115         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2116         strtab = dma_zalloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2117                                      GFP_KERNEL);
2118         if (!strtab) {
2119                 dev_err(smmu->dev,
2120                         "failed to allocate linear stream table (%u bytes)\n",
2121                         size);
2122                 return -ENOMEM;
2123         }
2124         cfg->strtab = strtab;
2125         cfg->num_l1_ents = 1 << smmu->sid_bits;
2126
2127         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2128         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2129         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2130                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2131         cfg->strtab_base_cfg = reg;
2132
2133         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2134         return 0;
2135 }
2136
2137 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2138 {
2139         u64 reg;
2140         int ret;
2141
2142         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2143                 ret = arm_smmu_init_strtab_2lvl(smmu);
2144         else
2145                 ret = arm_smmu_init_strtab_linear(smmu);
2146
2147         if (ret)
2148                 return ret;
2149
2150         /* Set the strtab base address */
2151         reg  = smmu->strtab_cfg.strtab_dma &
2152                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2153         reg |= STRTAB_BASE_RA;
2154         smmu->strtab_cfg.strtab_base = reg;
2155
2156         /* Allocate the first VMID for stage-2 bypass STEs */
2157         set_bit(0, smmu->vmid_map);
2158         return 0;
2159 }
2160
2161 static void arm_smmu_free_strtab(struct arm_smmu_device *smmu)
2162 {
2163         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2164         u32 size = cfg->num_l1_ents;
2165
2166         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
2167                 arm_smmu_free_l2_strtab(smmu);
2168                 size *= STRTAB_L1_DESC_DWORDS << 3;
2169         } else {
2170                 size *= STRTAB_STE_DWORDS * 3;
2171         }
2172
2173         dma_free_coherent(smmu->dev, size, cfg->strtab, cfg->strtab_dma);
2174 }
2175
2176 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2177 {
2178         int ret;
2179
2180         ret = arm_smmu_init_queues(smmu);
2181         if (ret)
2182                 return ret;
2183
2184         ret = arm_smmu_init_strtab(smmu);
2185         if (ret)
2186                 goto out_free_queues;
2187
2188         return 0;
2189
2190 out_free_queues:
2191         arm_smmu_free_queues(smmu);
2192         return ret;
2193 }
2194
2195 static void arm_smmu_free_structures(struct arm_smmu_device *smmu)
2196 {
2197         arm_smmu_free_strtab(smmu);
2198         arm_smmu_free_queues(smmu);
2199 }
2200
2201 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2202                                    unsigned int reg_off, unsigned int ack_off)
2203 {
2204         u32 reg;
2205
2206         writel_relaxed(val, smmu->base + reg_off);
2207         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2208                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2209 }
2210
2211 static void arm_smmu_free_msis(void *data)
2212 {
2213         struct device *dev = data;
2214         platform_msi_domain_free_irqs(dev);
2215 }
2216
2217 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2218 {
2219         phys_addr_t doorbell;
2220         struct device *dev = msi_desc_to_dev(desc);
2221         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2222         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2223
2224         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2225         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2226
2227         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2228         writel_relaxed(msg->data, smmu->base + cfg[1]);
2229         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2230 }
2231
2232 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2233 {
2234         struct msi_desc *desc;
2235         int ret, nvec = ARM_SMMU_MAX_MSIS;
2236         struct device *dev = smmu->dev;
2237
2238         /* Clear the MSI address regs */
2239         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2240         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2241
2242         if (smmu->features & ARM_SMMU_FEAT_PRI)
2243                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2244         else
2245                 nvec--;
2246
2247         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2248                 return;
2249
2250         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2251         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2252         if (ret) {
2253                 dev_warn(dev, "failed to allocate MSIs\n");
2254                 return;
2255         }
2256
2257         for_each_msi_entry(desc, dev) {
2258                 switch (desc->platform.msi_index) {
2259                 case EVTQ_MSI_INDEX:
2260                         smmu->evtq.q.irq = desc->irq;
2261                         break;
2262                 case GERROR_MSI_INDEX:
2263                         smmu->gerr_irq = desc->irq;
2264                         break;
2265                 case PRIQ_MSI_INDEX:
2266                         smmu->priq.q.irq = desc->irq;
2267                         break;
2268                 default:        /* Unknown */
2269                         continue;
2270                 }
2271         }
2272
2273         /* Add callback to free MSIs on teardown */
2274         devm_add_action(dev, arm_smmu_free_msis, dev);
2275 }
2276
2277 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2278 {
2279         int ret, irq;
2280         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2281
2282         /* Disable IRQs first */
2283         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2284                                       ARM_SMMU_IRQ_CTRLACK);
2285         if (ret) {
2286                 dev_err(smmu->dev, "failed to disable irqs\n");
2287                 return ret;
2288         }
2289
2290         arm_smmu_setup_msis(smmu);
2291
2292         /* Request interrupt lines */
2293         irq = smmu->evtq.q.irq;
2294         if (irq) {
2295                 ret = devm_request_threaded_irq(smmu->dev, irq,
2296                                                 arm_smmu_evtq_handler,
2297                                                 arm_smmu_evtq_thread,
2298                                                 0, "arm-smmu-v3-evtq", smmu);
2299                 if (IS_ERR_VALUE(ret))
2300                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2301         }
2302
2303         irq = smmu->cmdq.q.irq;
2304         if (irq) {
2305                 ret = devm_request_irq(smmu->dev, irq,
2306                                        arm_smmu_cmdq_sync_handler, 0,
2307                                        "arm-smmu-v3-cmdq-sync", smmu);
2308                 if (IS_ERR_VALUE(ret))
2309                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2310         }
2311
2312         irq = smmu->gerr_irq;
2313         if (irq) {
2314                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2315                                        0, "arm-smmu-v3-gerror", smmu);
2316                 if (IS_ERR_VALUE(ret))
2317                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2318         }
2319
2320         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2321                 irq = smmu->priq.q.irq;
2322                 if (irq) {
2323                         ret = devm_request_threaded_irq(smmu->dev, irq,
2324                                                         arm_smmu_priq_handler,
2325                                                         arm_smmu_priq_thread,
2326                                                         0, "arm-smmu-v3-priq",
2327                                                         smmu);
2328                         if (IS_ERR_VALUE(ret))
2329                                 dev_warn(smmu->dev,
2330                                          "failed to enable priq irq\n");
2331                         else
2332                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2333                 }
2334         }
2335
2336         /* Enable interrupt generation on the SMMU */
2337         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2338                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2339         if (ret)
2340                 dev_warn(smmu->dev, "failed to enable irqs\n");
2341
2342         return 0;
2343 }
2344
2345 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2346 {
2347         int ret;
2348
2349         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2350         if (ret)
2351                 dev_err(smmu->dev, "failed to clear cr0\n");
2352
2353         return ret;
2354 }
2355
2356 static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2357 {
2358         int ret;
2359         u32 reg, enables;
2360         struct arm_smmu_cmdq_ent cmd;
2361
2362         /* Clear CR0 and sync (disables SMMU and queue processing) */
2363         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2364         if (reg & CR0_SMMUEN)
2365                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2366
2367         ret = arm_smmu_device_disable(smmu);
2368         if (ret)
2369                 return ret;
2370
2371         /* CR1 (table and queue memory attributes) */
2372         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2373               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2374               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2375               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2376               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2377               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2378         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2379
2380         /* CR2 (random crap) */
2381         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2382         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2383
2384         /* Stream table */
2385         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2386                        smmu->base + ARM_SMMU_STRTAB_BASE);
2387         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2388                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2389
2390         /* Command queue */
2391         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2392         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2393         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2394
2395         enables = CR0_CMDQEN;
2396         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2397                                       ARM_SMMU_CR0ACK);
2398         if (ret) {
2399                 dev_err(smmu->dev, "failed to enable command queue\n");
2400                 return ret;
2401         }
2402
2403         /* Invalidate any cached configuration */
2404         cmd.opcode = CMDQ_OP_CFGI_ALL;
2405         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2406         cmd.opcode = CMDQ_OP_CMD_SYNC;
2407         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2408
2409         /* Invalidate any stale TLB entries */
2410         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2411                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2412                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2413         }
2414
2415         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2416         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2417         cmd.opcode = CMDQ_OP_CMD_SYNC;
2418         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2419
2420         /* Event queue */
2421         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2422         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2423         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2424
2425         enables |= CR0_EVTQEN;
2426         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2427                                       ARM_SMMU_CR0ACK);
2428         if (ret) {
2429                 dev_err(smmu->dev, "failed to enable event queue\n");
2430                 return ret;
2431         }
2432
2433         /* PRI queue */
2434         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2435                 writeq_relaxed(smmu->priq.q.q_base,
2436                                smmu->base + ARM_SMMU_PRIQ_BASE);
2437                 writel_relaxed(smmu->priq.q.prod,
2438                                smmu->base + ARM_SMMU_PRIQ_PROD);
2439                 writel_relaxed(smmu->priq.q.cons,
2440                                smmu->base + ARM_SMMU_PRIQ_CONS);
2441
2442                 enables |= CR0_PRIQEN;
2443                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2444                                               ARM_SMMU_CR0ACK);
2445                 if (ret) {
2446                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2447                         return ret;
2448                 }
2449         }
2450
2451         ret = arm_smmu_setup_irqs(smmu);
2452         if (ret) {
2453                 dev_err(smmu->dev, "failed to setup irqs\n");
2454                 return ret;
2455         }
2456
2457         /* Enable the SMMU interface */
2458         enables |= CR0_SMMUEN;
2459         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2460                                       ARM_SMMU_CR0ACK);
2461         if (ret) {
2462                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2463                 return ret;
2464         }
2465
2466         return 0;
2467 }
2468
2469 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2470 {
2471         u32 reg;
2472         bool coherent;
2473         unsigned long pgsize_bitmap = 0;
2474
2475         /* IDR0 */
2476         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2477
2478         /* 2-level structures */
2479         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2480                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2481
2482         if (reg & IDR0_CD2L)
2483                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2484
2485         /*
2486          * Translation table endianness.
2487          * We currently require the same endianness as the CPU, but this
2488          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2489          */
2490         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2491         case IDR0_TTENDIAN_MIXED:
2492                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2493                 break;
2494 #ifdef __BIG_ENDIAN
2495         case IDR0_TTENDIAN_BE:
2496                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2497                 break;
2498 #else
2499         case IDR0_TTENDIAN_LE:
2500                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2501                 break;
2502 #endif
2503         default:
2504                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2505                 return -ENXIO;
2506         }
2507
2508         /* Boolean feature flags */
2509         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2510                 smmu->features |= ARM_SMMU_FEAT_PRI;
2511
2512         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2513                 smmu->features |= ARM_SMMU_FEAT_ATS;
2514
2515         if (reg & IDR0_SEV)
2516                 smmu->features |= ARM_SMMU_FEAT_SEV;
2517
2518         if (reg & IDR0_MSI)
2519                 smmu->features |= ARM_SMMU_FEAT_MSI;
2520
2521         if (reg & IDR0_HYP)
2522                 smmu->features |= ARM_SMMU_FEAT_HYP;
2523
2524         /*
2525          * The dma-coherent property is used in preference to the ID
2526          * register, but warn on mismatch.
2527          */
2528         coherent = of_dma_is_coherent(smmu->dev->of_node);
2529         if (coherent)
2530                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2531
2532         if (!!(reg & IDR0_COHACC) != coherent)
2533                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2534                          coherent ? "true" : "false");
2535
2536         if (reg & IDR0_STALL_MODEL)
2537                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2538
2539         if (reg & IDR0_S1P)
2540                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2541
2542         if (reg & IDR0_S2P)
2543                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2544
2545         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2546                 dev_err(smmu->dev, "no translation support!\n");
2547                 return -ENXIO;
2548         }
2549
2550         /* We only support the AArch64 table format at present */
2551         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2552         case IDR0_TTF_AARCH32_64:
2553                 smmu->ias = 40;
2554                 /* Fallthrough */
2555         case IDR0_TTF_AARCH64:
2556                 break;
2557         default:
2558                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2559                 return -ENXIO;
2560         }
2561
2562         /* ASID/VMID sizes */
2563         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2564         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2565
2566         /* IDR1 */
2567         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2568         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2569                 dev_err(smmu->dev, "embedded implementation not supported\n");
2570                 return -ENXIO;
2571         }
2572
2573         /* Queue sizes, capped at 4k */
2574         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2575                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2576         if (!smmu->cmdq.q.max_n_shift) {
2577                 /* Odd alignment restrictions on the base, so ignore for now */
2578                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2579                 return -ENXIO;
2580         }
2581
2582         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2583                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2584         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2585                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2586
2587         /* SID/SSID sizes */
2588         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2589         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2590
2591         /* IDR5 */
2592         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2593
2594         /* Maximum number of outstanding stalls */
2595         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2596                                 & IDR5_STALL_MAX_MASK;
2597
2598         /* Page sizes */
2599         if (reg & IDR5_GRAN64K)
2600                 pgsize_bitmap |= SZ_64K | SZ_512M;
2601         if (reg & IDR5_GRAN16K)
2602                 pgsize_bitmap |= SZ_16K | SZ_32M;
2603         if (reg & IDR5_GRAN4K)
2604                 pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2605
2606         arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;
2607
2608         /* Output address size */
2609         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2610         case IDR5_OAS_32_BIT:
2611                 smmu->oas = 32;
2612                 break;
2613         case IDR5_OAS_36_BIT:
2614                 smmu->oas = 36;
2615                 break;
2616         case IDR5_OAS_40_BIT:
2617                 smmu->oas = 40;
2618                 break;
2619         case IDR5_OAS_42_BIT:
2620                 smmu->oas = 42;
2621                 break;
2622         case IDR5_OAS_44_BIT:
2623                 smmu->oas = 44;
2624                 break;
2625         default:
2626                 dev_info(smmu->dev,
2627                         "unknown output address size. Truncating to 48-bit\n");
2628                 /* Fallthrough */
2629         case IDR5_OAS_48_BIT:
2630                 smmu->oas = 48;
2631         }
2632
2633         /* Set the DMA mask for our table walker */
2634         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2635                 dev_warn(smmu->dev,
2636                          "failed to set DMA mask for table walker\n");
2637
2638         smmu->ias = max(smmu->ias, smmu->oas);
2639
2640         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2641                  smmu->ias, smmu->oas, smmu->features);
2642         return 0;
2643 }
2644
2645 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2646 {
2647         int irq, ret;
2648         struct resource *res;
2649         struct arm_smmu_device *smmu;
2650         struct device *dev = &pdev->dev;
2651
2652         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2653         if (!smmu) {
2654                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2655                 return -ENOMEM;
2656         }
2657         smmu->dev = dev;
2658
2659         /* Base address */
2660         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2661         if (resource_size(res) + 1 < SZ_128K) {
2662                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2663                 return -EINVAL;
2664         }
2665
2666         smmu->base = devm_ioremap_resource(dev, res);
2667         if (IS_ERR(smmu->base))
2668                 return PTR_ERR(smmu->base);
2669
2670         /* Interrupt lines */
2671         irq = platform_get_irq_byname(pdev, "eventq");
2672         if (irq > 0)
2673                 smmu->evtq.q.irq = irq;
2674
2675         irq = platform_get_irq_byname(pdev, "priq");
2676         if (irq > 0)
2677                 smmu->priq.q.irq = irq;
2678
2679         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2680         if (irq > 0)
2681                 smmu->cmdq.q.irq = irq;
2682
2683         irq = platform_get_irq_byname(pdev, "gerror");
2684         if (irq > 0)
2685                 smmu->gerr_irq = irq;
2686
2687         parse_driver_options(smmu);
2688
2689         /* Probe the h/w */
2690         ret = arm_smmu_device_probe(smmu);
2691         if (ret)
2692                 return ret;
2693
2694         /* Initialise in-memory data structures */
2695         ret = arm_smmu_init_structures(smmu);
2696         if (ret)
2697                 return ret;
2698
2699         /* Record our private device structure */
2700         platform_set_drvdata(pdev, smmu);
2701
2702         /* Reset the device */
2703         ret = arm_smmu_device_reset(smmu);
2704         if (ret)
2705                 goto out_free_structures;
2706
2707         return 0;
2708
2709 out_free_structures:
2710         arm_smmu_free_structures(smmu);
2711         return ret;
2712 }
2713
2714 static int arm_smmu_device_remove(struct platform_device *pdev)
2715 {
2716         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2717
2718         arm_smmu_device_disable(smmu);
2719         arm_smmu_free_structures(smmu);
2720         return 0;
2721 }
2722
2723 static struct of_device_id arm_smmu_of_match[] = {
2724         { .compatible = "arm,smmu-v3", },
2725         { },
2726 };
2727 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2728
2729 static struct platform_driver arm_smmu_driver = {
2730         .driver = {
2731                 .name           = "arm-smmu-v3",
2732                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2733         },
2734         .probe  = arm_smmu_device_dt_probe,
2735         .remove = arm_smmu_device_remove,
2736 };
2737
2738 static int __init arm_smmu_init(void)
2739 {
2740         struct device_node *np;
2741         int ret;
2742
2743         np = of_find_matching_node(NULL, arm_smmu_of_match);
2744         if (!np)
2745                 return 0;
2746
2747         of_node_put(np);
2748
2749         ret = platform_driver_register(&arm_smmu_driver);
2750         if (ret)
2751                 return ret;
2752
2753         return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2754 }
2755
2756 static void __exit arm_smmu_exit(void)
2757 {
2758         return platform_driver_unregister(&arm_smmu_driver);
2759 }
2760
2761 subsys_initcall(arm_smmu_init);
2762 module_exit(arm_smmu_exit);
2763
2764 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2765 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2766 MODULE_LICENSE("GPL v2");