iommu/arm-smmu: Add support for MSI on SMMUv3
[firefly-linux-kernel-4.4.55.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/iommu.h>
27 #include <linux/iopoll.h>
28 #include <linux/module.h>
29 #include <linux/msi.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_platform.h>
33 #include <linux/pci.h>
34 #include <linux/platform_device.h>
35
36 #include "io-pgtable.h"
37
38 /* MMIO registers */
39 #define ARM_SMMU_IDR0                   0x0
40 #define IDR0_ST_LVL_SHIFT               27
41 #define IDR0_ST_LVL_MASK                0x3
42 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
43 #define IDR0_STALL_MODEL                (3 << 24)
44 #define IDR0_TTENDIAN_SHIFT             21
45 #define IDR0_TTENDIAN_MASK              0x3
46 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
47 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
48 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
49 #define IDR0_CD2L                       (1 << 19)
50 #define IDR0_VMID16                     (1 << 18)
51 #define IDR0_PRI                        (1 << 16)
52 #define IDR0_SEV                        (1 << 14)
53 #define IDR0_MSI                        (1 << 13)
54 #define IDR0_ASID16                     (1 << 12)
55 #define IDR0_ATS                        (1 << 10)
56 #define IDR0_HYP                        (1 << 9)
57 #define IDR0_COHACC                     (1 << 4)
58 #define IDR0_TTF_SHIFT                  2
59 #define IDR0_TTF_MASK                   0x3
60 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
61 #define IDR0_S1P                        (1 << 1)
62 #define IDR0_S2P                        (1 << 0)
63
64 #define ARM_SMMU_IDR1                   0x4
65 #define IDR1_TABLES_PRESET              (1 << 30)
66 #define IDR1_QUEUES_PRESET              (1 << 29)
67 #define IDR1_REL                        (1 << 28)
68 #define IDR1_CMDQ_SHIFT                 21
69 #define IDR1_CMDQ_MASK                  0x1f
70 #define IDR1_EVTQ_SHIFT                 16
71 #define IDR1_EVTQ_MASK                  0x1f
72 #define IDR1_PRIQ_SHIFT                 11
73 #define IDR1_PRIQ_MASK                  0x1f
74 #define IDR1_SSID_SHIFT                 6
75 #define IDR1_SSID_MASK                  0x1f
76 #define IDR1_SID_SHIFT                  0
77 #define IDR1_SID_MASK                   0x3f
78
79 #define ARM_SMMU_IDR5                   0x14
80 #define IDR5_STALL_MAX_SHIFT            16
81 #define IDR5_STALL_MAX_MASK             0xffff
82 #define IDR5_GRAN64K                    (1 << 6)
83 #define IDR5_GRAN16K                    (1 << 5)
84 #define IDR5_GRAN4K                     (1 << 4)
85 #define IDR5_OAS_SHIFT                  0
86 #define IDR5_OAS_MASK                   0x7
87 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
88 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
89 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
90 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
91 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
92 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
93
94 #define ARM_SMMU_CR0                    0x20
95 #define CR0_CMDQEN                      (1 << 3)
96 #define CR0_EVTQEN                      (1 << 2)
97 #define CR0_PRIQEN                      (1 << 1)
98 #define CR0_SMMUEN                      (1 << 0)
99
100 #define ARM_SMMU_CR0ACK                 0x24
101
102 #define ARM_SMMU_CR1                    0x28
103 #define CR1_SH_NSH                      0
104 #define CR1_SH_OSH                      2
105 #define CR1_SH_ISH                      3
106 #define CR1_CACHE_NC                    0
107 #define CR1_CACHE_WB                    1
108 #define CR1_CACHE_WT                    2
109 #define CR1_TABLE_SH_SHIFT              10
110 #define CR1_TABLE_OC_SHIFT              8
111 #define CR1_TABLE_IC_SHIFT              6
112 #define CR1_QUEUE_SH_SHIFT              4
113 #define CR1_QUEUE_OC_SHIFT              2
114 #define CR1_QUEUE_IC_SHIFT              0
115
116 #define ARM_SMMU_CR2                    0x2c
117 #define CR2_PTM                         (1 << 2)
118 #define CR2_RECINVSID                   (1 << 1)
119 #define CR2_E2H                         (1 << 0)
120
121 #define ARM_SMMU_IRQ_CTRL               0x50
122 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
123 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
124 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
125
126 #define ARM_SMMU_IRQ_CTRLACK            0x54
127
128 #define ARM_SMMU_GERROR                 0x60
129 #define GERROR_SFM_ERR                  (1 << 8)
130 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
131 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
132 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
133 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
134 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
135 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
136 #define GERROR_CMDQ_ERR                 (1 << 0)
137 #define GERROR_ERR_MASK                 0xfd
138
139 #define ARM_SMMU_GERRORN                0x64
140
141 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
142 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
143 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
144
145 #define ARM_SMMU_STRTAB_BASE            0x80
146 #define STRTAB_BASE_RA                  (1UL << 62)
147 #define STRTAB_BASE_ADDR_SHIFT          6
148 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
149
150 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
151 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
152 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
153 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
154 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
155 #define STRTAB_BASE_CFG_FMT_SHIFT       16
156 #define STRTAB_BASE_CFG_FMT_MASK        0x3
157 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
158 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
159
160 #define ARM_SMMU_CMDQ_BASE              0x90
161 #define ARM_SMMU_CMDQ_PROD              0x98
162 #define ARM_SMMU_CMDQ_CONS              0x9c
163
164 #define ARM_SMMU_EVTQ_BASE              0xa0
165 #define ARM_SMMU_EVTQ_PROD              0x100a8
166 #define ARM_SMMU_EVTQ_CONS              0x100ac
167 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
168 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
169 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
170
171 #define ARM_SMMU_PRIQ_BASE              0xc0
172 #define ARM_SMMU_PRIQ_PROD              0x100c8
173 #define ARM_SMMU_PRIQ_CONS              0x100cc
174 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
175 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
176 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
177
178 /* Common MSI config fields */
179 #define MSI_CFG0_ADDR_SHIFT             2
180 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
181 #define MSI_CFG2_SH_SHIFT               4
182 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
183 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
184 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
185 #define MSI_CFG2_MEMATTR_SHIFT          0
186 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
187
188 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
189 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
190 #define Q_OVERFLOW_FLAG                 (1 << 31)
191 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
192 #define Q_ENT(q, p)                     ((q)->base +                    \
193                                          Q_IDX(q, p) * (q)->ent_dwords)
194
195 #define Q_BASE_RWA                      (1UL << 62)
196 #define Q_BASE_ADDR_SHIFT               5
197 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
198 #define Q_BASE_LOG2SIZE_SHIFT           0
199 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
200
201 /*
202  * Stream table.
203  *
204  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
205  * 2lvl: 128k L1 entries,
206  *       256 lazy entries per table (each table covers a PCI bus)
207  */
208 #define STRTAB_L1_SZ_SHIFT              20
209 #define STRTAB_SPLIT                    8
210
211 #define STRTAB_L1_DESC_DWORDS           1
212 #define STRTAB_L1_DESC_SPAN_SHIFT       0
213 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
214 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
215 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
216
217 #define STRTAB_STE_DWORDS               8
218 #define STRTAB_STE_0_V                  (1UL << 0)
219 #define STRTAB_STE_0_CFG_SHIFT          1
220 #define STRTAB_STE_0_CFG_MASK           0x7UL
221 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
222 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
223 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
224 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
225
226 #define STRTAB_STE_0_S1FMT_SHIFT        4
227 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
228 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
229 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
230 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
231 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
232
233 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
234 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
235 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
236 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
237 #define STRTAB_STE_1_S1C_SH_NSH         0UL
238 #define STRTAB_STE_1_S1C_SH_OSH         2UL
239 #define STRTAB_STE_1_S1C_SH_ISH         3UL
240 #define STRTAB_STE_1_S1CIR_SHIFT        2
241 #define STRTAB_STE_1_S1COR_SHIFT        4
242 #define STRTAB_STE_1_S1CSH_SHIFT        6
243
244 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
245
246 #define STRTAB_STE_1_EATS_ABT           0UL
247 #define STRTAB_STE_1_EATS_TRANS         1UL
248 #define STRTAB_STE_1_EATS_S1CHK         2UL
249 #define STRTAB_STE_1_EATS_SHIFT         28
250
251 #define STRTAB_STE_1_STRW_NSEL1         0UL
252 #define STRTAB_STE_1_STRW_EL2           2UL
253 #define STRTAB_STE_1_STRW_SHIFT         30
254
255 #define STRTAB_STE_2_S2VMID_SHIFT       0
256 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
257 #define STRTAB_STE_2_VTCR_SHIFT         32
258 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
259 #define STRTAB_STE_2_S2AA64             (1UL << 51)
260 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
261 #define STRTAB_STE_2_S2PTW              (1UL << 54)
262 #define STRTAB_STE_2_S2R                (1UL << 58)
263
264 #define STRTAB_STE_3_S2TTB_SHIFT        4
265 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
266
267 /* Context descriptor (stage-1 only) */
268 #define CTXDESC_CD_DWORDS               8
269 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
270 #define ARM64_TCR_T0SZ_SHIFT            0
271 #define ARM64_TCR_T0SZ_MASK             0x1fUL
272 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
273 #define ARM64_TCR_TG0_SHIFT             14
274 #define ARM64_TCR_TG0_MASK              0x3UL
275 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
276 #define ARM64_TCR_IRGN0_SHIFT           8
277 #define ARM64_TCR_IRGN0_MASK            0x3UL
278 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
279 #define ARM64_TCR_ORGN0_SHIFT           10
280 #define ARM64_TCR_ORGN0_MASK            0x3UL
281 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
282 #define ARM64_TCR_SH0_SHIFT             12
283 #define ARM64_TCR_SH0_MASK              0x3UL
284 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
285 #define ARM64_TCR_EPD0_SHIFT            7
286 #define ARM64_TCR_EPD0_MASK             0x1UL
287 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
288 #define ARM64_TCR_EPD1_SHIFT            23
289 #define ARM64_TCR_EPD1_MASK             0x1UL
290
291 #define CTXDESC_CD_0_ENDI               (1UL << 15)
292 #define CTXDESC_CD_0_V                  (1UL << 31)
293
294 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
295 #define ARM64_TCR_IPS_SHIFT             32
296 #define ARM64_TCR_IPS_MASK              0x7UL
297 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
298 #define ARM64_TCR_TBI0_SHIFT            37
299 #define ARM64_TCR_TBI0_MASK             0x1UL
300
301 #define CTXDESC_CD_0_AA64               (1UL << 41)
302 #define CTXDESC_CD_0_R                  (1UL << 45)
303 #define CTXDESC_CD_0_A                  (1UL << 46)
304 #define CTXDESC_CD_0_ASET_SHIFT         47
305 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
306 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
307 #define CTXDESC_CD_0_ASID_SHIFT         48
308 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
309
310 #define CTXDESC_CD_1_TTB0_SHIFT         4
311 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
312
313 #define CTXDESC_CD_3_MAIR_SHIFT         0
314
315 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
316 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
317         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
318          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
319
320 /* Command queue */
321 #define CMDQ_ENT_DWORDS                 2
322 #define CMDQ_MAX_SZ_SHIFT               8
323
324 #define CMDQ_ERR_SHIFT                  24
325 #define CMDQ_ERR_MASK                   0x7f
326 #define CMDQ_ERR_CERROR_NONE_IDX        0
327 #define CMDQ_ERR_CERROR_ILL_IDX         1
328 #define CMDQ_ERR_CERROR_ABT_IDX         2
329
330 #define CMDQ_0_OP_SHIFT                 0
331 #define CMDQ_0_OP_MASK                  0xffUL
332 #define CMDQ_0_SSV                      (1UL << 11)
333
334 #define CMDQ_PREFETCH_0_SID_SHIFT       32
335 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
336 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
337
338 #define CMDQ_CFGI_0_SID_SHIFT           32
339 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
340 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
341 #define CMDQ_CFGI_1_RANGE_SHIFT         0
342 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
343
344 #define CMDQ_TLBI_0_VMID_SHIFT          32
345 #define CMDQ_TLBI_0_ASID_SHIFT          48
346 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
347 #define CMDQ_TLBI_1_ADDR_MASK           ~0xfffUL
348
349 #define CMDQ_PRI_0_SSID_SHIFT           12
350 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
351 #define CMDQ_PRI_0_SID_SHIFT            32
352 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
353 #define CMDQ_PRI_1_GRPID_SHIFT          0
354 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
355 #define CMDQ_PRI_1_RESP_SHIFT           12
356 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
357 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
358 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
359
360 #define CMDQ_SYNC_0_CS_SHIFT            12
361 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
362 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
363
364 /* Event queue */
365 #define EVTQ_ENT_DWORDS                 4
366 #define EVTQ_MAX_SZ_SHIFT               7
367
368 #define EVTQ_0_ID_SHIFT                 0
369 #define EVTQ_0_ID_MASK                  0xffUL
370
371 /* PRI queue */
372 #define PRIQ_ENT_DWORDS                 2
373 #define PRIQ_MAX_SZ_SHIFT               8
374
375 #define PRIQ_0_SID_SHIFT                0
376 #define PRIQ_0_SID_MASK                 0xffffffffUL
377 #define PRIQ_0_SSID_SHIFT               32
378 #define PRIQ_0_SSID_MASK                0xfffffUL
379 #define PRIQ_0_OF                       (1UL << 57)
380 #define PRIQ_0_PERM_PRIV                (1UL << 58)
381 #define PRIQ_0_PERM_EXEC                (1UL << 59)
382 #define PRIQ_0_PERM_READ                (1UL << 60)
383 #define PRIQ_0_PERM_WRITE               (1UL << 61)
384 #define PRIQ_0_PRG_LAST                 (1UL << 62)
385 #define PRIQ_0_SSID_V                   (1UL << 63)
386
387 #define PRIQ_1_PRG_IDX_SHIFT            0
388 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
389 #define PRIQ_1_ADDR_SHIFT               12
390 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
391
392 /* High-level queue structures */
393 #define ARM_SMMU_POLL_TIMEOUT_US        100
394
395 static bool disable_bypass;
396 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
397 MODULE_PARM_DESC(disable_bypass,
398         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
399
400 enum pri_resp {
401         PRI_RESP_DENY,
402         PRI_RESP_FAIL,
403         PRI_RESP_SUCC,
404 };
405
406 enum arm_smmu_msi_index {
407         EVTQ_MSI_INDEX,
408         GERROR_MSI_INDEX,
409         PRIQ_MSI_INDEX,
410         ARM_SMMU_MAX_MSIS,
411 };
412
413 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
414         [EVTQ_MSI_INDEX] = {
415                 ARM_SMMU_EVTQ_IRQ_CFG0,
416                 ARM_SMMU_EVTQ_IRQ_CFG1,
417                 ARM_SMMU_EVTQ_IRQ_CFG2,
418         },
419         [GERROR_MSI_INDEX] = {
420                 ARM_SMMU_GERROR_IRQ_CFG0,
421                 ARM_SMMU_GERROR_IRQ_CFG1,
422                 ARM_SMMU_GERROR_IRQ_CFG2,
423         },
424         [PRIQ_MSI_INDEX] = {
425                 ARM_SMMU_PRIQ_IRQ_CFG0,
426                 ARM_SMMU_PRIQ_IRQ_CFG1,
427                 ARM_SMMU_PRIQ_IRQ_CFG2,
428         },
429 };
430
431 struct arm_smmu_cmdq_ent {
432         /* Common fields */
433         u8                              opcode;
434         bool                            substream_valid;
435
436         /* Command-specific fields */
437         union {
438                 #define CMDQ_OP_PREFETCH_CFG    0x1
439                 struct {
440                         u32                     sid;
441                         u8                      size;
442                         u64                     addr;
443                 } prefetch;
444
445                 #define CMDQ_OP_CFGI_STE        0x3
446                 #define CMDQ_OP_CFGI_ALL        0x4
447                 struct {
448                         u32                     sid;
449                         union {
450                                 bool            leaf;
451                                 u8              span;
452                         };
453                 } cfgi;
454
455                 #define CMDQ_OP_TLBI_NH_ASID    0x11
456                 #define CMDQ_OP_TLBI_NH_VA      0x12
457                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
458                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
459                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
460                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
461                 struct {
462                         u16                     asid;
463                         u16                     vmid;
464                         bool                    leaf;
465                         u64                     addr;
466                 } tlbi;
467
468                 #define CMDQ_OP_PRI_RESP        0x41
469                 struct {
470                         u32                     sid;
471                         u32                     ssid;
472                         u16                     grpid;
473                         enum pri_resp           resp;
474                 } pri;
475
476                 #define CMDQ_OP_CMD_SYNC        0x46
477         };
478 };
479
480 struct arm_smmu_queue {
481         int                             irq; /* Wired interrupt */
482
483         __le64                          *base;
484         dma_addr_t                      base_dma;
485         u64                             q_base;
486
487         size_t                          ent_dwords;
488         u32                             max_n_shift;
489         u32                             prod;
490         u32                             cons;
491
492         u32 __iomem                     *prod_reg;
493         u32 __iomem                     *cons_reg;
494 };
495
496 struct arm_smmu_cmdq {
497         struct arm_smmu_queue           q;
498         spinlock_t                      lock;
499 };
500
501 struct arm_smmu_evtq {
502         struct arm_smmu_queue           q;
503         u32                             max_stalls;
504 };
505
506 struct arm_smmu_priq {
507         struct arm_smmu_queue           q;
508 };
509
510 /* High-level stream table and context descriptor structures */
511 struct arm_smmu_strtab_l1_desc {
512         u8                              span;
513
514         __le64                          *l2ptr;
515         dma_addr_t                      l2ptr_dma;
516 };
517
518 struct arm_smmu_s1_cfg {
519         __le64                          *cdptr;
520         dma_addr_t                      cdptr_dma;
521
522         struct arm_smmu_ctx_desc {
523                 u16     asid;
524                 u64     ttbr;
525                 u64     tcr;
526                 u64     mair;
527         }                               cd;
528 };
529
530 struct arm_smmu_s2_cfg {
531         u16                             vmid;
532         u64                             vttbr;
533         u64                             vtcr;
534 };
535
536 struct arm_smmu_strtab_ent {
537         bool                            valid;
538
539         bool                            bypass; /* Overrides s1/s2 config */
540         struct arm_smmu_s1_cfg          *s1_cfg;
541         struct arm_smmu_s2_cfg          *s2_cfg;
542 };
543
544 struct arm_smmu_strtab_cfg {
545         __le64                          *strtab;
546         dma_addr_t                      strtab_dma;
547         struct arm_smmu_strtab_l1_desc  *l1_desc;
548         unsigned int                    num_l1_ents;
549
550         u64                             strtab_base;
551         u32                             strtab_base_cfg;
552 };
553
554 /* An SMMUv3 instance */
555 struct arm_smmu_device {
556         struct device                   *dev;
557         void __iomem                    *base;
558
559 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
560 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
561 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
562 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
563 #define ARM_SMMU_FEAT_PRI               (1 << 4)
564 #define ARM_SMMU_FEAT_ATS               (1 << 5)
565 #define ARM_SMMU_FEAT_SEV               (1 << 6)
566 #define ARM_SMMU_FEAT_MSI               (1 << 7)
567 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
568 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
569 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
570 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
571 #define ARM_SMMU_FEAT_HYP               (1 << 12)
572         u32                             features;
573
574 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
575         u32                             options;
576
577         struct arm_smmu_cmdq            cmdq;
578         struct arm_smmu_evtq            evtq;
579         struct arm_smmu_priq            priq;
580
581         int                             gerr_irq;
582
583         unsigned long                   ias; /* IPA */
584         unsigned long                   oas; /* PA */
585
586 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
587         unsigned int                    asid_bits;
588         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
589
590 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
591         unsigned int                    vmid_bits;
592         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
593
594         unsigned int                    ssid_bits;
595         unsigned int                    sid_bits;
596
597         struct arm_smmu_strtab_cfg      strtab_cfg;
598 };
599
600 /* SMMU private data for an IOMMU group */
601 struct arm_smmu_group {
602         struct arm_smmu_device          *smmu;
603         struct arm_smmu_domain          *domain;
604         int                             num_sids;
605         u32                             *sids;
606         struct arm_smmu_strtab_ent      ste;
607 };
608
609 /* SMMU private data for an IOMMU domain */
610 enum arm_smmu_domain_stage {
611         ARM_SMMU_DOMAIN_S1 = 0,
612         ARM_SMMU_DOMAIN_S2,
613         ARM_SMMU_DOMAIN_NESTED,
614 };
615
616 struct arm_smmu_domain {
617         struct arm_smmu_device          *smmu;
618         struct mutex                    init_mutex; /* Protects smmu pointer */
619
620         struct io_pgtable_ops           *pgtbl_ops;
621         spinlock_t                      pgtbl_lock;
622
623         enum arm_smmu_domain_stage      stage;
624         union {
625                 struct arm_smmu_s1_cfg  s1_cfg;
626                 struct arm_smmu_s2_cfg  s2_cfg;
627         };
628
629         struct iommu_domain             domain;
630 };
631
632 struct arm_smmu_option_prop {
633         u32 opt;
634         const char *prop;
635 };
636
637 static struct arm_smmu_option_prop arm_smmu_options[] = {
638         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
639         { 0, NULL},
640 };
641
642 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
643 {
644         return container_of(dom, struct arm_smmu_domain, domain);
645 }
646
647 static void parse_driver_options(struct arm_smmu_device *smmu)
648 {
649         int i = 0;
650
651         do {
652                 if (of_property_read_bool(smmu->dev->of_node,
653                                                 arm_smmu_options[i].prop)) {
654                         smmu->options |= arm_smmu_options[i].opt;
655                         dev_notice(smmu->dev, "option %s\n",
656                                 arm_smmu_options[i].prop);
657                 }
658         } while (arm_smmu_options[++i].opt);
659 }
660
661 /* Low-level queue manipulation functions */
662 static bool queue_full(struct arm_smmu_queue *q)
663 {
664         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
665                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
666 }
667
668 static bool queue_empty(struct arm_smmu_queue *q)
669 {
670         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
671                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
672 }
673
674 static void queue_sync_cons(struct arm_smmu_queue *q)
675 {
676         q->cons = readl_relaxed(q->cons_reg);
677 }
678
679 static void queue_inc_cons(struct arm_smmu_queue *q)
680 {
681         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
682
683         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
684         writel(q->cons, q->cons_reg);
685 }
686
687 static int queue_sync_prod(struct arm_smmu_queue *q)
688 {
689         int ret = 0;
690         u32 prod = readl_relaxed(q->prod_reg);
691
692         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
693                 ret = -EOVERFLOW;
694
695         q->prod = prod;
696         return ret;
697 }
698
699 static void queue_inc_prod(struct arm_smmu_queue *q)
700 {
701         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
702
703         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
704         writel(q->prod, q->prod_reg);
705 }
706
707 static bool __queue_cons_before(struct arm_smmu_queue *q, u32 until)
708 {
709         if (Q_WRP(q, q->cons) == Q_WRP(q, until))
710                 return Q_IDX(q, q->cons) < Q_IDX(q, until);
711
712         return Q_IDX(q, q->cons) >= Q_IDX(q, until);
713 }
714
715 static int queue_poll_cons(struct arm_smmu_queue *q, u32 until, bool wfe)
716 {
717         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
718
719         while (queue_sync_cons(q), __queue_cons_before(q, until)) {
720                 if (ktime_compare(ktime_get(), timeout) > 0)
721                         return -ETIMEDOUT;
722
723                 if (wfe) {
724                         wfe();
725                 } else {
726                         cpu_relax();
727                         udelay(1);
728                 }
729         }
730
731         return 0;
732 }
733
734 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
735 {
736         int i;
737
738         for (i = 0; i < n_dwords; ++i)
739                 *dst++ = cpu_to_le64(*src++);
740 }
741
742 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
743 {
744         if (queue_full(q))
745                 return -ENOSPC;
746
747         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
748         queue_inc_prod(q);
749         return 0;
750 }
751
752 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
753 {
754         int i;
755
756         for (i = 0; i < n_dwords; ++i)
757                 *dst++ = le64_to_cpu(*src++);
758 }
759
760 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
761 {
762         if (queue_empty(q))
763                 return -EAGAIN;
764
765         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
766         queue_inc_cons(q);
767         return 0;
768 }
769
770 /* High-level queue accessors */
771 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
772 {
773         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
774         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
775
776         switch (ent->opcode) {
777         case CMDQ_OP_TLBI_EL2_ALL:
778         case CMDQ_OP_TLBI_NSNH_ALL:
779                 break;
780         case CMDQ_OP_PREFETCH_CFG:
781                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
782                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
783                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
784                 break;
785         case CMDQ_OP_CFGI_STE:
786                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
787                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
788                 break;
789         case CMDQ_OP_CFGI_ALL:
790                 /* Cover the entire SID range */
791                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
792                 break;
793         case CMDQ_OP_TLBI_NH_VA:
794                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
795                 /* Fallthrough */
796         case CMDQ_OP_TLBI_S2_IPA:
797                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
798                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
799                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_ADDR_MASK;
800                 break;
801         case CMDQ_OP_TLBI_NH_ASID:
802                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
803                 /* Fallthrough */
804         case CMDQ_OP_TLBI_S12_VMALL:
805                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
806                 break;
807         case CMDQ_OP_PRI_RESP:
808                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
809                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
810                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
811                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
812                 switch (ent->pri.resp) {
813                 case PRI_RESP_DENY:
814                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
815                         break;
816                 case PRI_RESP_FAIL:
817                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
818                         break;
819                 case PRI_RESP_SUCC:
820                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
821                         break;
822                 default:
823                         return -EINVAL;
824                 }
825                 break;
826         case CMDQ_OP_CMD_SYNC:
827                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
828                 break;
829         default:
830                 return -ENOENT;
831         }
832
833         return 0;
834 }
835
836 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
837 {
838         static const char *cerror_str[] = {
839                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
840                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
841                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
842         };
843
844         int i;
845         u64 cmd[CMDQ_ENT_DWORDS];
846         struct arm_smmu_queue *q = &smmu->cmdq.q;
847         u32 cons = readl_relaxed(q->cons_reg);
848         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
849         struct arm_smmu_cmdq_ent cmd_sync = {
850                 .opcode = CMDQ_OP_CMD_SYNC,
851         };
852
853         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
854                 cerror_str[idx]);
855
856         switch (idx) {
857         case CMDQ_ERR_CERROR_ILL_IDX:
858                 break;
859         case CMDQ_ERR_CERROR_ABT_IDX:
860                 dev_err(smmu->dev, "retrying command fetch\n");
861         case CMDQ_ERR_CERROR_NONE_IDX:
862                 return;
863         }
864
865         /*
866          * We may have concurrent producers, so we need to be careful
867          * not to touch any of the shadow cmdq state.
868          */
869         queue_read(cmd, Q_ENT(q, idx), q->ent_dwords);
870         dev_err(smmu->dev, "skipping command in error state:\n");
871         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
872                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
873
874         /* Convert the erroneous command into a CMD_SYNC */
875         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
876                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
877                 return;
878         }
879
880         queue_write(cmd, Q_ENT(q, idx), q->ent_dwords);
881 }
882
883 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
884                                     struct arm_smmu_cmdq_ent *ent)
885 {
886         u32 until;
887         u64 cmd[CMDQ_ENT_DWORDS];
888         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
889         struct arm_smmu_queue *q = &smmu->cmdq.q;
890
891         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
892                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
893                          ent->opcode);
894                 return;
895         }
896
897         spin_lock(&smmu->cmdq.lock);
898         while (until = q->prod + 1, queue_insert_raw(q, cmd) == -ENOSPC) {
899                 /*
900                  * Keep the queue locked, otherwise the producer could wrap
901                  * twice and we could see a future consumer pointer that looks
902                  * like it's behind us.
903                  */
904                 if (queue_poll_cons(q, until, wfe))
905                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
906         }
907
908         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, until, wfe))
909                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
910         spin_unlock(&smmu->cmdq.lock);
911 }
912
913 /* Context descriptor manipulation functions */
914 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
915 {
916         u64 val = 0;
917
918         /* Repack the TCR. Just care about TTBR0 for now */
919         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
920         val |= ARM_SMMU_TCR2CD(tcr, TG0);
921         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
922         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
923         val |= ARM_SMMU_TCR2CD(tcr, SH0);
924         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
925         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
926         val |= ARM_SMMU_TCR2CD(tcr, IPS);
927         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
928
929         return val;
930 }
931
932 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
933                                     struct arm_smmu_s1_cfg *cfg)
934 {
935         u64 val;
936
937         /*
938          * We don't need to issue any invalidation here, as we'll invalidate
939          * the STE when installing the new entry anyway.
940          */
941         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
942 #ifdef __BIG_ENDIAN
943               CTXDESC_CD_0_ENDI |
944 #endif
945               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
946               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
947               CTXDESC_CD_0_V;
948         cfg->cdptr[0] = cpu_to_le64(val);
949
950         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
951         cfg->cdptr[1] = cpu_to_le64(val);
952
953         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
954 }
955
956 /* Stream table manipulation functions */
957 static void
958 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
959 {
960         u64 val = 0;
961
962         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
963                 << STRTAB_L1_DESC_SPAN_SHIFT;
964         val |= desc->l2ptr_dma &
965                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
966
967         *dst = cpu_to_le64(val);
968 }
969
970 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
971 {
972         struct arm_smmu_cmdq_ent cmd = {
973                 .opcode = CMDQ_OP_CFGI_STE,
974                 .cfgi   = {
975                         .sid    = sid,
976                         .leaf   = true,
977                 },
978         };
979
980         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
981         cmd.opcode = CMDQ_OP_CMD_SYNC;
982         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
983 }
984
985 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
986                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
987 {
988         /*
989          * This is hideously complicated, but we only really care about
990          * three cases at the moment:
991          *
992          * 1. Invalid (all zero) -> bypass  (init)
993          * 2. Bypass -> translation (attach)
994          * 3. Translation -> bypass (detach)
995          *
996          * Given that we can't update the STE atomically and the SMMU
997          * doesn't read the thing in a defined order, that leaves us
998          * with the following maintenance requirements:
999          *
1000          * 1. Update Config, return (init time STEs aren't live)
1001          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1002          * 3. Update Config, sync
1003          */
1004         u64 val = le64_to_cpu(dst[0]);
1005         bool ste_live = false;
1006         struct arm_smmu_cmdq_ent prefetch_cmd = {
1007                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1008                 .prefetch       = {
1009                         .sid    = sid,
1010                 },
1011         };
1012
1013         if (val & STRTAB_STE_0_V) {
1014                 u64 cfg;
1015
1016                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1017                 switch (cfg) {
1018                 case STRTAB_STE_0_CFG_BYPASS:
1019                         break;
1020                 case STRTAB_STE_0_CFG_S1_TRANS:
1021                 case STRTAB_STE_0_CFG_S2_TRANS:
1022                         ste_live = true;
1023                         break;
1024                 default:
1025                         BUG(); /* STE corruption */
1026                 }
1027         }
1028
1029         /* Nuke the existing Config, as we're going to rewrite it */
1030         val &= ~(STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT);
1031
1032         if (ste->valid)
1033                 val |= STRTAB_STE_0_V;
1034         else
1035                 val &= ~STRTAB_STE_0_V;
1036
1037         if (ste->bypass) {
1038                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1039                                       : STRTAB_STE_0_CFG_BYPASS;
1040                 dst[0] = cpu_to_le64(val);
1041                 dst[2] = 0; /* Nuke the VMID */
1042                 if (ste_live)
1043                         arm_smmu_sync_ste_for_sid(smmu, sid);
1044                 return;
1045         }
1046
1047         if (ste->s1_cfg) {
1048                 BUG_ON(ste_live);
1049                 dst[1] = cpu_to_le64(
1050                          STRTAB_STE_1_S1C_CACHE_WBRA
1051                          << STRTAB_STE_1_S1CIR_SHIFT |
1052                          STRTAB_STE_1_S1C_CACHE_WBRA
1053                          << STRTAB_STE_1_S1COR_SHIFT |
1054                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1055                          STRTAB_STE_1_S1STALLD |
1056 #ifdef CONFIG_PCI_ATS
1057                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1058 #endif
1059                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1060
1061                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1062                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1063                         STRTAB_STE_0_CFG_S1_TRANS;
1064
1065         }
1066
1067         if (ste->s2_cfg) {
1068                 BUG_ON(ste_live);
1069                 dst[2] = cpu_to_le64(
1070                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1071                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1072                           << STRTAB_STE_2_VTCR_SHIFT |
1073 #ifdef __BIG_ENDIAN
1074                          STRTAB_STE_2_S2ENDI |
1075 #endif
1076                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1077                          STRTAB_STE_2_S2R);
1078
1079                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1080                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1081
1082                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1083         }
1084
1085         arm_smmu_sync_ste_for_sid(smmu, sid);
1086         dst[0] = cpu_to_le64(val);
1087         arm_smmu_sync_ste_for_sid(smmu, sid);
1088
1089         /* It's likely that we'll want to use the new STE soon */
1090         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1091                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1092 }
1093
1094 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1095 {
1096         unsigned int i;
1097         struct arm_smmu_strtab_ent ste = {
1098                 .valid  = true,
1099                 .bypass = true,
1100         };
1101
1102         for (i = 0; i < nent; ++i) {
1103                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1104                 strtab += STRTAB_STE_DWORDS;
1105         }
1106 }
1107
1108 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1109 {
1110         size_t size;
1111         void *strtab;
1112         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1113         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1114
1115         if (desc->l2ptr)
1116                 return 0;
1117
1118         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1119         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1120
1121         desc->span = STRTAB_SPLIT + 1;
1122         desc->l2ptr = dma_zalloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1123                                           GFP_KERNEL);
1124         if (!desc->l2ptr) {
1125                 dev_err(smmu->dev,
1126                         "failed to allocate l2 stream table for SID %u\n",
1127                         sid);
1128                 return -ENOMEM;
1129         }
1130
1131         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1132         arm_smmu_write_strtab_l1_desc(strtab, desc);
1133         return 0;
1134 }
1135
1136 /* IRQ and event handlers */
1137 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1138 {
1139         int i;
1140         struct arm_smmu_device *smmu = dev;
1141         struct arm_smmu_queue *q = &smmu->evtq.q;
1142         u64 evt[EVTQ_ENT_DWORDS];
1143
1144         while (!queue_remove_raw(q, evt)) {
1145                 u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1146
1147                 dev_info(smmu->dev, "event 0x%02x received:\n", id);
1148                 for (i = 0; i < ARRAY_SIZE(evt); ++i)
1149                         dev_info(smmu->dev, "\t0x%016llx\n",
1150                                  (unsigned long long)evt[i]);
1151         }
1152
1153         /* Sync our overflow flag, as we believe we're up to speed */
1154         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1155         return IRQ_HANDLED;
1156 }
1157
1158 static irqreturn_t arm_smmu_evtq_handler(int irq, void *dev)
1159 {
1160         irqreturn_t ret = IRQ_WAKE_THREAD;
1161         struct arm_smmu_device *smmu = dev;
1162         struct arm_smmu_queue *q = &smmu->evtq.q;
1163
1164         /*
1165          * Not much we can do on overflow, so scream and pretend we're
1166          * trying harder.
1167          */
1168         if (queue_sync_prod(q) == -EOVERFLOW)
1169                 dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1170         else if (queue_empty(q))
1171                 ret = IRQ_NONE;
1172
1173         return ret;
1174 }
1175
1176 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1177 {
1178         struct arm_smmu_device *smmu = dev;
1179         struct arm_smmu_queue *q = &smmu->priq.q;
1180         u64 evt[PRIQ_ENT_DWORDS];
1181
1182         while (!queue_remove_raw(q, evt)) {
1183                 u32 sid, ssid;
1184                 u16 grpid;
1185                 bool ssv, last;
1186
1187                 sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1188                 ssv = evt[0] & PRIQ_0_SSID_V;
1189                 ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1190                 last = evt[0] & PRIQ_0_PRG_LAST;
1191                 grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1192
1193                 dev_info(smmu->dev, "unexpected PRI request received:\n");
1194                 dev_info(smmu->dev,
1195                          "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1196                          sid, ssid, grpid, last ? "L" : "",
1197                          evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1198                          evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1199                          evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1200                          evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1201                          evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1202
1203                 if (last) {
1204                         struct arm_smmu_cmdq_ent cmd = {
1205                                 .opcode                 = CMDQ_OP_PRI_RESP,
1206                                 .substream_valid        = ssv,
1207                                 .pri                    = {
1208                                         .sid    = sid,
1209                                         .ssid   = ssid,
1210                                         .grpid  = grpid,
1211                                         .resp   = PRI_RESP_DENY,
1212                                 },
1213                         };
1214
1215                         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1216                 }
1217         }
1218
1219         /* Sync our overflow flag, as we believe we're up to speed */
1220         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1221         return IRQ_HANDLED;
1222 }
1223
1224 static irqreturn_t arm_smmu_priq_handler(int irq, void *dev)
1225 {
1226         irqreturn_t ret = IRQ_WAKE_THREAD;
1227         struct arm_smmu_device *smmu = dev;
1228         struct arm_smmu_queue *q = &smmu->priq.q;
1229
1230         /* PRIQ overflow indicates a programming error */
1231         if (queue_sync_prod(q) == -EOVERFLOW)
1232                 dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1233         else if (queue_empty(q))
1234                 ret = IRQ_NONE;
1235
1236         return ret;
1237 }
1238
1239 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1240 {
1241         /* We don't actually use CMD_SYNC interrupts for anything */
1242         return IRQ_HANDLED;
1243 }
1244
1245 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1246
1247 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1248 {
1249         u32 gerror, gerrorn;
1250         struct arm_smmu_device *smmu = dev;
1251
1252         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1253         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1254
1255         gerror ^= gerrorn;
1256         if (!(gerror & GERROR_ERR_MASK))
1257                 return IRQ_NONE; /* No errors pending */
1258
1259         dev_warn(smmu->dev,
1260                  "unexpected global error reported (0x%08x), this could be serious\n",
1261                  gerror);
1262
1263         if (gerror & GERROR_SFM_ERR) {
1264                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1265                 arm_smmu_device_disable(smmu);
1266         }
1267
1268         if (gerror & GERROR_MSI_GERROR_ABT_ERR)
1269                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1270
1271         if (gerror & GERROR_MSI_PRIQ_ABT_ERR) {
1272                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1273                 arm_smmu_priq_handler(irq, smmu->dev);
1274         }
1275
1276         if (gerror & GERROR_MSI_EVTQ_ABT_ERR) {
1277                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1278                 arm_smmu_evtq_handler(irq, smmu->dev);
1279         }
1280
1281         if (gerror & GERROR_MSI_CMDQ_ABT_ERR) {
1282                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1283                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1284         }
1285
1286         if (gerror & GERROR_PRIQ_ABT_ERR)
1287                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1288
1289         if (gerror & GERROR_EVTQ_ABT_ERR)
1290                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1291
1292         if (gerror & GERROR_CMDQ_ERR)
1293                 arm_smmu_cmdq_skip_err(smmu);
1294
1295         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1296         return IRQ_HANDLED;
1297 }
1298
1299 /* IO_PGTABLE API */
1300 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1301 {
1302         struct arm_smmu_cmdq_ent cmd;
1303
1304         cmd.opcode = CMDQ_OP_CMD_SYNC;
1305         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1306 }
1307
1308 static void arm_smmu_tlb_sync(void *cookie)
1309 {
1310         struct arm_smmu_domain *smmu_domain = cookie;
1311         __arm_smmu_tlb_sync(smmu_domain->smmu);
1312 }
1313
1314 static void arm_smmu_tlb_inv_context(void *cookie)
1315 {
1316         struct arm_smmu_domain *smmu_domain = cookie;
1317         struct arm_smmu_device *smmu = smmu_domain->smmu;
1318         struct arm_smmu_cmdq_ent cmd;
1319
1320         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1321                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1322                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1323                 cmd.tlbi.vmid   = 0;
1324         } else {
1325                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1326                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1327         }
1328
1329         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1330         __arm_smmu_tlb_sync(smmu);
1331 }
1332
1333 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1334                                           bool leaf, void *cookie)
1335 {
1336         struct arm_smmu_domain *smmu_domain = cookie;
1337         struct arm_smmu_device *smmu = smmu_domain->smmu;
1338         struct arm_smmu_cmdq_ent cmd = {
1339                 .tlbi = {
1340                         .leaf   = leaf,
1341                         .addr   = iova,
1342                 },
1343         };
1344
1345         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1346                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1347                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1348         } else {
1349                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1350                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1351         }
1352
1353         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1354 }
1355
1356 static struct iommu_gather_ops arm_smmu_gather_ops = {
1357         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1358         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1359         .tlb_sync       = arm_smmu_tlb_sync,
1360 };
1361
1362 /* IOMMU API */
1363 static bool arm_smmu_capable(enum iommu_cap cap)
1364 {
1365         switch (cap) {
1366         case IOMMU_CAP_CACHE_COHERENCY:
1367                 return true;
1368         case IOMMU_CAP_INTR_REMAP:
1369                 return true; /* MSIs are just memory writes */
1370         case IOMMU_CAP_NOEXEC:
1371                 return true;
1372         default:
1373                 return false;
1374         }
1375 }
1376
1377 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1378 {
1379         struct arm_smmu_domain *smmu_domain;
1380
1381         if (type != IOMMU_DOMAIN_UNMANAGED)
1382                 return NULL;
1383
1384         /*
1385          * Allocate the domain and initialise some of its data structures.
1386          * We can't really do anything meaningful until we've added a
1387          * master.
1388          */
1389         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1390         if (!smmu_domain)
1391                 return NULL;
1392
1393         mutex_init(&smmu_domain->init_mutex);
1394         spin_lock_init(&smmu_domain->pgtbl_lock);
1395         return &smmu_domain->domain;
1396 }
1397
1398 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1399 {
1400         int idx, size = 1 << span;
1401
1402         do {
1403                 idx = find_first_zero_bit(map, size);
1404                 if (idx == size)
1405                         return -ENOSPC;
1406         } while (test_and_set_bit(idx, map));
1407
1408         return idx;
1409 }
1410
1411 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1412 {
1413         clear_bit(idx, map);
1414 }
1415
1416 static void arm_smmu_domain_free(struct iommu_domain *domain)
1417 {
1418         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1419         struct arm_smmu_device *smmu = smmu_domain->smmu;
1420
1421         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1422
1423         /* Free the CD and ASID, if we allocated them */
1424         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1425                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1426
1427                 if (cfg->cdptr) {
1428                         dma_free_coherent(smmu_domain->smmu->dev,
1429                                           CTXDESC_CD_DWORDS << 3,
1430                                           cfg->cdptr,
1431                                           cfg->cdptr_dma);
1432
1433                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1434                 }
1435         } else {
1436                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1437                 if (cfg->vmid)
1438                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1439         }
1440
1441         kfree(smmu_domain);
1442 }
1443
1444 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1445                                        struct io_pgtable_cfg *pgtbl_cfg)
1446 {
1447         int ret;
1448         int asid;
1449         struct arm_smmu_device *smmu = smmu_domain->smmu;
1450         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1451
1452         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1453         if (IS_ERR_VALUE(asid))
1454                 return asid;
1455
1456         cfg->cdptr = dma_zalloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1457                                          &cfg->cdptr_dma, GFP_KERNEL);
1458         if (!cfg->cdptr) {
1459                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1460                 ret = -ENOMEM;
1461                 goto out_free_asid;
1462         }
1463
1464         cfg->cd.asid    = (u16)asid;
1465         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1466         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1467         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1468         return 0;
1469
1470 out_free_asid:
1471         arm_smmu_bitmap_free(smmu->asid_map, asid);
1472         return ret;
1473 }
1474
1475 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1476                                        struct io_pgtable_cfg *pgtbl_cfg)
1477 {
1478         int vmid;
1479         struct arm_smmu_device *smmu = smmu_domain->smmu;
1480         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1481
1482         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1483         if (IS_ERR_VALUE(vmid))
1484                 return vmid;
1485
1486         cfg->vmid       = (u16)vmid;
1487         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1488         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1489         return 0;
1490 }
1491
1492 static struct iommu_ops arm_smmu_ops;
1493
1494 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1495 {
1496         int ret;
1497         unsigned long ias, oas;
1498         enum io_pgtable_fmt fmt;
1499         struct io_pgtable_cfg pgtbl_cfg;
1500         struct io_pgtable_ops *pgtbl_ops;
1501         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1502                                  struct io_pgtable_cfg *);
1503         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1504         struct arm_smmu_device *smmu = smmu_domain->smmu;
1505
1506         /* Restrict the stage to what we can actually support */
1507         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1508                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1509         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1510                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1511
1512         switch (smmu_domain->stage) {
1513         case ARM_SMMU_DOMAIN_S1:
1514                 ias = VA_BITS;
1515                 oas = smmu->ias;
1516                 fmt = ARM_64_LPAE_S1;
1517                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1518                 break;
1519         case ARM_SMMU_DOMAIN_NESTED:
1520         case ARM_SMMU_DOMAIN_S2:
1521                 ias = smmu->ias;
1522                 oas = smmu->oas;
1523                 fmt = ARM_64_LPAE_S2;
1524                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1525                 break;
1526         default:
1527                 return -EINVAL;
1528         }
1529
1530         pgtbl_cfg = (struct io_pgtable_cfg) {
1531                 .pgsize_bitmap  = arm_smmu_ops.pgsize_bitmap,
1532                 .ias            = ias,
1533                 .oas            = oas,
1534                 .tlb            = &arm_smmu_gather_ops,
1535                 .iommu_dev      = smmu->dev,
1536         };
1537
1538         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1539         if (!pgtbl_ops)
1540                 return -ENOMEM;
1541
1542         arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1543         smmu_domain->pgtbl_ops = pgtbl_ops;
1544
1545         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1546         if (IS_ERR_VALUE(ret))
1547                 free_io_pgtable_ops(pgtbl_ops);
1548
1549         return ret;
1550 }
1551
1552 static struct arm_smmu_group *arm_smmu_group_get(struct device *dev)
1553 {
1554         struct iommu_group *group;
1555         struct arm_smmu_group *smmu_group;
1556
1557         group = iommu_group_get(dev);
1558         if (!group)
1559                 return NULL;
1560
1561         smmu_group = iommu_group_get_iommudata(group);
1562         iommu_group_put(group);
1563         return smmu_group;
1564 }
1565
1566 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1567 {
1568         __le64 *step;
1569         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1570
1571         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1572                 struct arm_smmu_strtab_l1_desc *l1_desc;
1573                 int idx;
1574
1575                 /* Two-level walk */
1576                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1577                 l1_desc = &cfg->l1_desc[idx];
1578                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1579                 step = &l1_desc->l2ptr[idx];
1580         } else {
1581                 /* Simple linear lookup */
1582                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1583         }
1584
1585         return step;
1586 }
1587
1588 static int arm_smmu_install_ste_for_group(struct arm_smmu_group *smmu_group)
1589 {
1590         int i;
1591         struct arm_smmu_domain *smmu_domain = smmu_group->domain;
1592         struct arm_smmu_strtab_ent *ste = &smmu_group->ste;
1593         struct arm_smmu_device *smmu = smmu_group->smmu;
1594
1595         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1596                 ste->s1_cfg = &smmu_domain->s1_cfg;
1597                 ste->s2_cfg = NULL;
1598                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1599         } else {
1600                 ste->s1_cfg = NULL;
1601                 ste->s2_cfg = &smmu_domain->s2_cfg;
1602         }
1603
1604         for (i = 0; i < smmu_group->num_sids; ++i) {
1605                 u32 sid = smmu_group->sids[i];
1606                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1607
1608                 arm_smmu_write_strtab_ent(smmu, sid, step, ste);
1609         }
1610
1611         return 0;
1612 }
1613
1614 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1615 {
1616         int ret = 0;
1617         struct arm_smmu_device *smmu;
1618         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1619         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1620
1621         if (!smmu_group)
1622                 return -ENOENT;
1623
1624         /* Already attached to a different domain? */
1625         if (smmu_group->domain && smmu_group->domain != smmu_domain)
1626                 return -EEXIST;
1627
1628         smmu = smmu_group->smmu;
1629         mutex_lock(&smmu_domain->init_mutex);
1630
1631         if (!smmu_domain->smmu) {
1632                 smmu_domain->smmu = smmu;
1633                 ret = arm_smmu_domain_finalise(domain);
1634                 if (ret) {
1635                         smmu_domain->smmu = NULL;
1636                         goto out_unlock;
1637                 }
1638         } else if (smmu_domain->smmu != smmu) {
1639                 dev_err(dev,
1640                         "cannot attach to SMMU %s (upstream of %s)\n",
1641                         dev_name(smmu_domain->smmu->dev),
1642                         dev_name(smmu->dev));
1643                 ret = -ENXIO;
1644                 goto out_unlock;
1645         }
1646
1647         /* Group already attached to this domain? */
1648         if (smmu_group->domain)
1649                 goto out_unlock;
1650
1651         smmu_group->domain      = smmu_domain;
1652         smmu_group->ste.bypass  = false;
1653
1654         ret = arm_smmu_install_ste_for_group(smmu_group);
1655         if (IS_ERR_VALUE(ret))
1656                 smmu_group->domain = NULL;
1657
1658 out_unlock:
1659         mutex_unlock(&smmu_domain->init_mutex);
1660         return ret;
1661 }
1662
1663 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1664 {
1665         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1666         struct arm_smmu_group *smmu_group = arm_smmu_group_get(dev);
1667
1668         BUG_ON(!smmu_domain);
1669         BUG_ON(!smmu_group);
1670
1671         mutex_lock(&smmu_domain->init_mutex);
1672         BUG_ON(smmu_group->domain != smmu_domain);
1673
1674         smmu_group->ste.bypass = true;
1675         if (IS_ERR_VALUE(arm_smmu_install_ste_for_group(smmu_group)))
1676                 dev_warn(dev, "failed to install bypass STE\n");
1677
1678         smmu_group->domain = NULL;
1679         mutex_unlock(&smmu_domain->init_mutex);
1680 }
1681
1682 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1683                         phys_addr_t paddr, size_t size, int prot)
1684 {
1685         int ret;
1686         unsigned long flags;
1687         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1688         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1689
1690         if (!ops)
1691                 return -ENODEV;
1692
1693         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1694         ret = ops->map(ops, iova, paddr, size, prot);
1695         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1696         return ret;
1697 }
1698
1699 static size_t
1700 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1701 {
1702         size_t ret;
1703         unsigned long flags;
1704         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1705         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1706
1707         if (!ops)
1708                 return 0;
1709
1710         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1711         ret = ops->unmap(ops, iova, size);
1712         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1713         return ret;
1714 }
1715
1716 static phys_addr_t
1717 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1718 {
1719         phys_addr_t ret;
1720         unsigned long flags;
1721         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1722         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1723
1724         if (!ops)
1725                 return 0;
1726
1727         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1728         ret = ops->iova_to_phys(ops, iova);
1729         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1730
1731         return ret;
1732 }
1733
1734 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *sidp)
1735 {
1736         *(u32 *)sidp = alias;
1737         return 0; /* Continue walking */
1738 }
1739
1740 static void __arm_smmu_release_pci_iommudata(void *data)
1741 {
1742         kfree(data);
1743 }
1744
1745 static struct arm_smmu_device *arm_smmu_get_for_pci_dev(struct pci_dev *pdev)
1746 {
1747         struct device_node *of_node;
1748         struct platform_device *smmu_pdev;
1749         struct arm_smmu_device *smmu = NULL;
1750         struct pci_bus *bus = pdev->bus;
1751
1752         /* Walk up to the root bus */
1753         while (!pci_is_root_bus(bus))
1754                 bus = bus->parent;
1755
1756         /* Follow the "iommus" phandle from the host controller */
1757         of_node = of_parse_phandle(bus->bridge->parent->of_node, "iommus", 0);
1758         if (!of_node)
1759                 return NULL;
1760
1761         /* See if we can find an SMMU corresponding to the phandle */
1762         smmu_pdev = of_find_device_by_node(of_node);
1763         if (smmu_pdev)
1764                 smmu = platform_get_drvdata(smmu_pdev);
1765
1766         of_node_put(of_node);
1767         return smmu;
1768 }
1769
1770 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1771 {
1772         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1773
1774         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1775                 limit *= 1UL << STRTAB_SPLIT;
1776
1777         return sid < limit;
1778 }
1779
1780 static int arm_smmu_add_device(struct device *dev)
1781 {
1782         int i, ret;
1783         u32 sid, *sids;
1784         struct pci_dev *pdev;
1785         struct iommu_group *group;
1786         struct arm_smmu_group *smmu_group;
1787         struct arm_smmu_device *smmu;
1788
1789         /* We only support PCI, for now */
1790         if (!dev_is_pci(dev))
1791                 return -ENODEV;
1792
1793         pdev = to_pci_dev(dev);
1794         group = iommu_group_get_for_dev(dev);
1795         if (IS_ERR(group))
1796                 return PTR_ERR(group);
1797
1798         smmu_group = iommu_group_get_iommudata(group);
1799         if (!smmu_group) {
1800                 smmu = arm_smmu_get_for_pci_dev(pdev);
1801                 if (!smmu) {
1802                         ret = -ENOENT;
1803                         goto out_put_group;
1804                 }
1805
1806                 smmu_group = kzalloc(sizeof(*smmu_group), GFP_KERNEL);
1807                 if (!smmu_group) {
1808                         ret = -ENOMEM;
1809                         goto out_put_group;
1810                 }
1811
1812                 smmu_group->ste.valid   = true;
1813                 smmu_group->smmu        = smmu;
1814                 iommu_group_set_iommudata(group, smmu_group,
1815                                           __arm_smmu_release_pci_iommudata);
1816         } else {
1817                 smmu = smmu_group->smmu;
1818         }
1819
1820         /* Assume SID == RID until firmware tells us otherwise */
1821         pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1822         for (i = 0; i < smmu_group->num_sids; ++i) {
1823                 /* If we already know about this SID, then we're done */
1824                 if (smmu_group->sids[i] == sid)
1825                         return 0;
1826         }
1827
1828         /* Check the SID is in range of the SMMU and our stream table */
1829         if (!arm_smmu_sid_in_range(smmu, sid)) {
1830                 ret = -ERANGE;
1831                 goto out_put_group;
1832         }
1833
1834         /* Ensure l2 strtab is initialised */
1835         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1836                 ret = arm_smmu_init_l2_strtab(smmu, sid);
1837                 if (ret)
1838                         goto out_put_group;
1839         }
1840
1841         /* Resize the SID array for the group */
1842         smmu_group->num_sids++;
1843         sids = krealloc(smmu_group->sids, smmu_group->num_sids * sizeof(*sids),
1844                         GFP_KERNEL);
1845         if (!sids) {
1846                 smmu_group->num_sids--;
1847                 ret = -ENOMEM;
1848                 goto out_put_group;
1849         }
1850
1851         /* Add the new SID */
1852         sids[smmu_group->num_sids - 1] = sid;
1853         smmu_group->sids = sids;
1854         return 0;
1855
1856 out_put_group:
1857         iommu_group_put(group);
1858         return ret;
1859 }
1860
1861 static void arm_smmu_remove_device(struct device *dev)
1862 {
1863         iommu_group_remove_device(dev);
1864 }
1865
1866 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1867                                     enum iommu_attr attr, void *data)
1868 {
1869         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1870
1871         switch (attr) {
1872         case DOMAIN_ATTR_NESTING:
1873                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1874                 return 0;
1875         default:
1876                 return -ENODEV;
1877         }
1878 }
1879
1880 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1881                                     enum iommu_attr attr, void *data)
1882 {
1883         int ret = 0;
1884         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1885
1886         mutex_lock(&smmu_domain->init_mutex);
1887
1888         switch (attr) {
1889         case DOMAIN_ATTR_NESTING:
1890                 if (smmu_domain->smmu) {
1891                         ret = -EPERM;
1892                         goto out_unlock;
1893                 }
1894
1895                 if (*(int *)data)
1896                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1897                 else
1898                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1899
1900                 break;
1901         default:
1902                 ret = -ENODEV;
1903         }
1904
1905 out_unlock:
1906         mutex_unlock(&smmu_domain->init_mutex);
1907         return ret;
1908 }
1909
1910 static struct iommu_ops arm_smmu_ops = {
1911         .capable                = arm_smmu_capable,
1912         .domain_alloc           = arm_smmu_domain_alloc,
1913         .domain_free            = arm_smmu_domain_free,
1914         .attach_dev             = arm_smmu_attach_dev,
1915         .detach_dev             = arm_smmu_detach_dev,
1916         .map                    = arm_smmu_map,
1917         .unmap                  = arm_smmu_unmap,
1918         .iova_to_phys           = arm_smmu_iova_to_phys,
1919         .add_device             = arm_smmu_add_device,
1920         .remove_device          = arm_smmu_remove_device,
1921         .domain_get_attr        = arm_smmu_domain_get_attr,
1922         .domain_set_attr        = arm_smmu_domain_set_attr,
1923         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1924 };
1925
1926 /* Probing and initialisation functions */
1927 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1928                                    struct arm_smmu_queue *q,
1929                                    unsigned long prod_off,
1930                                    unsigned long cons_off,
1931                                    size_t dwords)
1932 {
1933         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1934
1935         q->base = dma_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1936         if (!q->base) {
1937                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1938                         qsz);
1939                 return -ENOMEM;
1940         }
1941
1942         q->prod_reg     = smmu->base + prod_off;
1943         q->cons_reg     = smmu->base + cons_off;
1944         q->ent_dwords   = dwords;
1945
1946         q->q_base  = Q_BASE_RWA;
1947         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1948         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1949                      << Q_BASE_LOG2SIZE_SHIFT;
1950
1951         q->prod = q->cons = 0;
1952         return 0;
1953 }
1954
1955 static void arm_smmu_free_one_queue(struct arm_smmu_device *smmu,
1956                                     struct arm_smmu_queue *q)
1957 {
1958         size_t qsz = ((1 << q->max_n_shift) * q->ent_dwords) << 3;
1959
1960         dma_free_coherent(smmu->dev, qsz, q->base, q->base_dma);
1961 }
1962
1963 static void arm_smmu_free_queues(struct arm_smmu_device *smmu)
1964 {
1965         arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
1966         arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
1967
1968         if (smmu->features & ARM_SMMU_FEAT_PRI)
1969                 arm_smmu_free_one_queue(smmu, &smmu->priq.q);
1970 }
1971
1972 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1973 {
1974         int ret;
1975
1976         /* cmdq */
1977         spin_lock_init(&smmu->cmdq.lock);
1978         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1979                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1980         if (ret)
1981                 goto out;
1982
1983         /* evtq */
1984         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1985                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1986         if (ret)
1987                 goto out_free_cmdq;
1988
1989         /* priq */
1990         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1991                 return 0;
1992
1993         ret = arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1994                                       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1995         if (ret)
1996                 goto out_free_evtq;
1997
1998         return 0;
1999
2000 out_free_evtq:
2001         arm_smmu_free_one_queue(smmu, &smmu->evtq.q);
2002 out_free_cmdq:
2003         arm_smmu_free_one_queue(smmu, &smmu->cmdq.q);
2004 out:
2005         return ret;
2006 }
2007
2008 static void arm_smmu_free_l2_strtab(struct arm_smmu_device *smmu)
2009 {
2010         int i;
2011         size_t size;
2012         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2013
2014         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
2015         for (i = 0; i < cfg->num_l1_ents; ++i) {
2016                 struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[i];
2017
2018                 if (!desc->l2ptr)
2019                         continue;
2020
2021                 dma_free_coherent(smmu->dev, size, desc->l2ptr,
2022                                   desc->l2ptr_dma);
2023         }
2024 }
2025
2026 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
2027 {
2028         unsigned int i;
2029         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2030         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
2031         void *strtab = smmu->strtab_cfg.strtab;
2032
2033         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
2034         if (!cfg->l1_desc) {
2035                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
2036                 return -ENOMEM;
2037         }
2038
2039         for (i = 0; i < cfg->num_l1_ents; ++i) {
2040                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
2041                 strtab += STRTAB_L1_DESC_DWORDS << 3;
2042         }
2043
2044         return 0;
2045 }
2046
2047 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2048 {
2049         void *strtab;
2050         u64 reg;
2051         u32 size, l1size;
2052         int ret;
2053         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2054
2055         /*
2056          * If we can resolve everything with a single L2 table, then we
2057          * just need a single L1 descriptor. Otherwise, calculate the L1
2058          * size, capped to the SIDSIZE.
2059          */
2060         if (smmu->sid_bits < STRTAB_SPLIT) {
2061                 size = 0;
2062         } else {
2063                 size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2064                 size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2065         }
2066         cfg->num_l1_ents = 1 << size;
2067
2068         size += STRTAB_SPLIT;
2069         if (size < smmu->sid_bits)
2070                 dev_warn(smmu->dev,
2071                          "2-level strtab only covers %u/%u bits of SID\n",
2072                          size, smmu->sid_bits);
2073
2074         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2075         strtab = dma_zalloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2076                                      GFP_KERNEL);
2077         if (!strtab) {
2078                 dev_err(smmu->dev,
2079                         "failed to allocate l1 stream table (%u bytes)\n",
2080                         size);
2081                 return -ENOMEM;
2082         }
2083         cfg->strtab = strtab;
2084
2085         /* Configure strtab_base_cfg for 2 levels */
2086         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2087         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2088                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2089         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2090                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2091         cfg->strtab_base_cfg = reg;
2092
2093         ret = arm_smmu_init_l1_strtab(smmu);
2094         if (ret)
2095                 dma_free_coherent(smmu->dev,
2096                                   l1size,
2097                                   strtab,
2098                                   cfg->strtab_dma);
2099         return ret;
2100 }
2101
2102 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2103 {
2104         void *strtab;
2105         u64 reg;
2106         u32 size;
2107         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2108
2109         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2110         strtab = dma_zalloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2111                                      GFP_KERNEL);
2112         if (!strtab) {
2113                 dev_err(smmu->dev,
2114                         "failed to allocate linear stream table (%u bytes)\n",
2115                         size);
2116                 return -ENOMEM;
2117         }
2118         cfg->strtab = strtab;
2119         cfg->num_l1_ents = 1 << smmu->sid_bits;
2120
2121         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2122         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2123         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2124                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2125         cfg->strtab_base_cfg = reg;
2126
2127         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2128         return 0;
2129 }
2130
2131 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2132 {
2133         u64 reg;
2134         int ret;
2135
2136         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2137                 ret = arm_smmu_init_strtab_2lvl(smmu);
2138         else
2139                 ret = arm_smmu_init_strtab_linear(smmu);
2140
2141         if (ret)
2142                 return ret;
2143
2144         /* Set the strtab base address */
2145         reg  = smmu->strtab_cfg.strtab_dma &
2146                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2147         reg |= STRTAB_BASE_RA;
2148         smmu->strtab_cfg.strtab_base = reg;
2149
2150         /* Allocate the first VMID for stage-2 bypass STEs */
2151         set_bit(0, smmu->vmid_map);
2152         return 0;
2153 }
2154
2155 static void arm_smmu_free_strtab(struct arm_smmu_device *smmu)
2156 {
2157         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2158         u32 size = cfg->num_l1_ents;
2159
2160         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
2161                 arm_smmu_free_l2_strtab(smmu);
2162                 size *= STRTAB_L1_DESC_DWORDS << 3;
2163         } else {
2164                 size *= STRTAB_STE_DWORDS * 3;
2165         }
2166
2167         dma_free_coherent(smmu->dev, size, cfg->strtab, cfg->strtab_dma);
2168 }
2169
2170 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2171 {
2172         int ret;
2173
2174         ret = arm_smmu_init_queues(smmu);
2175         if (ret)
2176                 return ret;
2177
2178         ret = arm_smmu_init_strtab(smmu);
2179         if (ret)
2180                 goto out_free_queues;
2181
2182         return 0;
2183
2184 out_free_queues:
2185         arm_smmu_free_queues(smmu);
2186         return ret;
2187 }
2188
2189 static void arm_smmu_free_structures(struct arm_smmu_device *smmu)
2190 {
2191         arm_smmu_free_strtab(smmu);
2192         arm_smmu_free_queues(smmu);
2193 }
2194
2195 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2196                                    unsigned int reg_off, unsigned int ack_off)
2197 {
2198         u32 reg;
2199
2200         writel_relaxed(val, smmu->base + reg_off);
2201         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2202                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2203 }
2204
2205 static void arm_smmu_free_msis(void *data)
2206 {
2207         struct device *dev = data;
2208         platform_msi_domain_free_irqs(dev);
2209 }
2210
2211 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2212 {
2213         phys_addr_t doorbell;
2214         struct device *dev = msi_desc_to_dev(desc);
2215         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2216         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2217
2218         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2219         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2220
2221         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2222         writel_relaxed(msg->data, smmu->base + cfg[1]);
2223         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2224 }
2225
2226 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2227 {
2228         struct msi_desc *desc;
2229         int ret, nvec = ARM_SMMU_MAX_MSIS;
2230         struct device *dev = smmu->dev;
2231
2232         /* Clear the MSI address regs */
2233         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2234         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2235
2236         if (smmu->features & ARM_SMMU_FEAT_PRI)
2237                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2238         else
2239                 nvec--;
2240
2241         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2242                 return;
2243
2244         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2245         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2246         if (ret) {
2247                 dev_warn(dev, "failed to allocate MSIs\n");
2248                 return;
2249         }
2250
2251         for_each_msi_entry(desc, dev) {
2252                 switch (desc->platform.msi_index) {
2253                 case EVTQ_MSI_INDEX:
2254                         smmu->evtq.q.irq = desc->irq;
2255                         break;
2256                 case GERROR_MSI_INDEX:
2257                         smmu->gerr_irq = desc->irq;
2258                         break;
2259                 case PRIQ_MSI_INDEX:
2260                         smmu->priq.q.irq = desc->irq;
2261                         break;
2262                 default:        /* Unknown */
2263                         continue;
2264                 }
2265         }
2266
2267         /* Add callback to free MSIs on teardown */
2268         devm_add_action(dev, arm_smmu_free_msis, dev);
2269 }
2270
2271 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2272 {
2273         int ret, irq;
2274         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2275
2276         /* Disable IRQs first */
2277         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2278                                       ARM_SMMU_IRQ_CTRLACK);
2279         if (ret) {
2280                 dev_err(smmu->dev, "failed to disable irqs\n");
2281                 return ret;
2282         }
2283
2284         arm_smmu_setup_msis(smmu);
2285
2286         /* Request interrupt lines */
2287         irq = smmu->evtq.q.irq;
2288         if (irq) {
2289                 ret = devm_request_threaded_irq(smmu->dev, irq,
2290                                                 arm_smmu_evtq_handler,
2291                                                 arm_smmu_evtq_thread,
2292                                                 0, "arm-smmu-v3-evtq", smmu);
2293                 if (IS_ERR_VALUE(ret))
2294                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2295         }
2296
2297         irq = smmu->cmdq.q.irq;
2298         if (irq) {
2299                 ret = devm_request_irq(smmu->dev, irq,
2300                                        arm_smmu_cmdq_sync_handler, 0,
2301                                        "arm-smmu-v3-cmdq-sync", smmu);
2302                 if (IS_ERR_VALUE(ret))
2303                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2304         }
2305
2306         irq = smmu->gerr_irq;
2307         if (irq) {
2308                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2309                                        0, "arm-smmu-v3-gerror", smmu);
2310                 if (IS_ERR_VALUE(ret))
2311                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2312         }
2313
2314         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2315                 irq = smmu->priq.q.irq;
2316                 if (irq) {
2317                         ret = devm_request_threaded_irq(smmu->dev, irq,
2318                                                         arm_smmu_priq_handler,
2319                                                         arm_smmu_priq_thread,
2320                                                         0, "arm-smmu-v3-priq",
2321                                                         smmu);
2322                         if (IS_ERR_VALUE(ret))
2323                                 dev_warn(smmu->dev,
2324                                          "failed to enable priq irq\n");
2325                         else
2326                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2327                 }
2328         }
2329
2330         /* Enable interrupt generation on the SMMU */
2331         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2332                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2333         if (ret)
2334                 dev_warn(smmu->dev, "failed to enable irqs\n");
2335
2336         return 0;
2337 }
2338
2339 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2340 {
2341         int ret;
2342
2343         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2344         if (ret)
2345                 dev_err(smmu->dev, "failed to clear cr0\n");
2346
2347         return ret;
2348 }
2349
2350 static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
2351 {
2352         int ret;
2353         u32 reg, enables;
2354         struct arm_smmu_cmdq_ent cmd;
2355
2356         /* Clear CR0 and sync (disables SMMU and queue processing) */
2357         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2358         if (reg & CR0_SMMUEN)
2359                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2360
2361         ret = arm_smmu_device_disable(smmu);
2362         if (ret)
2363                 return ret;
2364
2365         /* CR1 (table and queue memory attributes) */
2366         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2367               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2368               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2369               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2370               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2371               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2372         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2373
2374         /* CR2 (random crap) */
2375         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2376         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2377
2378         /* Stream table */
2379         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2380                        smmu->base + ARM_SMMU_STRTAB_BASE);
2381         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2382                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2383
2384         /* Command queue */
2385         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2386         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2387         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2388
2389         enables = CR0_CMDQEN;
2390         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2391                                       ARM_SMMU_CR0ACK);
2392         if (ret) {
2393                 dev_err(smmu->dev, "failed to enable command queue\n");
2394                 return ret;
2395         }
2396
2397         /* Invalidate any cached configuration */
2398         cmd.opcode = CMDQ_OP_CFGI_ALL;
2399         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2400         cmd.opcode = CMDQ_OP_CMD_SYNC;
2401         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2402
2403         /* Invalidate any stale TLB entries */
2404         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2405                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2406                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2407         }
2408
2409         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2410         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2411         cmd.opcode = CMDQ_OP_CMD_SYNC;
2412         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2413
2414         /* Event queue */
2415         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2416         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2417         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2418
2419         enables |= CR0_EVTQEN;
2420         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2421                                       ARM_SMMU_CR0ACK);
2422         if (ret) {
2423                 dev_err(smmu->dev, "failed to enable event queue\n");
2424                 return ret;
2425         }
2426
2427         /* PRI queue */
2428         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2429                 writeq_relaxed(smmu->priq.q.q_base,
2430                                smmu->base + ARM_SMMU_PRIQ_BASE);
2431                 writel_relaxed(smmu->priq.q.prod,
2432                                smmu->base + ARM_SMMU_PRIQ_PROD);
2433                 writel_relaxed(smmu->priq.q.cons,
2434                                smmu->base + ARM_SMMU_PRIQ_CONS);
2435
2436                 enables |= CR0_PRIQEN;
2437                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2438                                               ARM_SMMU_CR0ACK);
2439                 if (ret) {
2440                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2441                         return ret;
2442                 }
2443         }
2444
2445         ret = arm_smmu_setup_irqs(smmu);
2446         if (ret) {
2447                 dev_err(smmu->dev, "failed to setup irqs\n");
2448                 return ret;
2449         }
2450
2451         /* Enable the SMMU interface */
2452         enables |= CR0_SMMUEN;
2453         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2454                                       ARM_SMMU_CR0ACK);
2455         if (ret) {
2456                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2457                 return ret;
2458         }
2459
2460         return 0;
2461 }
2462
2463 static int arm_smmu_device_probe(struct arm_smmu_device *smmu)
2464 {
2465         u32 reg;
2466         bool coherent;
2467         unsigned long pgsize_bitmap = 0;
2468
2469         /* IDR0 */
2470         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2471
2472         /* 2-level structures */
2473         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2474                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2475
2476         if (reg & IDR0_CD2L)
2477                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2478
2479         /*
2480          * Translation table endianness.
2481          * We currently require the same endianness as the CPU, but this
2482          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2483          */
2484         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2485         case IDR0_TTENDIAN_MIXED:
2486                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2487                 break;
2488 #ifdef __BIG_ENDIAN
2489         case IDR0_TTENDIAN_BE:
2490                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2491                 break;
2492 #else
2493         case IDR0_TTENDIAN_LE:
2494                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2495                 break;
2496 #endif
2497         default:
2498                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2499                 return -ENXIO;
2500         }
2501
2502         /* Boolean feature flags */
2503         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2504                 smmu->features |= ARM_SMMU_FEAT_PRI;
2505
2506         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2507                 smmu->features |= ARM_SMMU_FEAT_ATS;
2508
2509         if (reg & IDR0_SEV)
2510                 smmu->features |= ARM_SMMU_FEAT_SEV;
2511
2512         if (reg & IDR0_MSI)
2513                 smmu->features |= ARM_SMMU_FEAT_MSI;
2514
2515         if (reg & IDR0_HYP)
2516                 smmu->features |= ARM_SMMU_FEAT_HYP;
2517
2518         /*
2519          * The dma-coherent property is used in preference to the ID
2520          * register, but warn on mismatch.
2521          */
2522         coherent = of_dma_is_coherent(smmu->dev->of_node);
2523         if (coherent)
2524                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2525
2526         if (!!(reg & IDR0_COHACC) != coherent)
2527                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2528                          coherent ? "true" : "false");
2529
2530         if (reg & IDR0_STALL_MODEL)
2531                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2532
2533         if (reg & IDR0_S1P)
2534                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2535
2536         if (reg & IDR0_S2P)
2537                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2538
2539         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2540                 dev_err(smmu->dev, "no translation support!\n");
2541                 return -ENXIO;
2542         }
2543
2544         /* We only support the AArch64 table format at present */
2545         if ((reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) < IDR0_TTF_AARCH64) {
2546                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2547                 return -ENXIO;
2548         }
2549
2550         /* ASID/VMID sizes */
2551         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2552         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2553
2554         /* IDR1 */
2555         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2556         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2557                 dev_err(smmu->dev, "embedded implementation not supported\n");
2558                 return -ENXIO;
2559         }
2560
2561         /* Queue sizes, capped at 4k */
2562         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2563                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2564         if (!smmu->cmdq.q.max_n_shift) {
2565                 /* Odd alignment restrictions on the base, so ignore for now */
2566                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2567                 return -ENXIO;
2568         }
2569
2570         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2571                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2572         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2573                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2574
2575         /* SID/SSID sizes */
2576         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2577         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2578
2579         /* IDR5 */
2580         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2581
2582         /* Maximum number of outstanding stalls */
2583         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2584                                 & IDR5_STALL_MAX_MASK;
2585
2586         /* Page sizes */
2587         if (reg & IDR5_GRAN64K)
2588                 pgsize_bitmap |= SZ_64K | SZ_512M;
2589         if (reg & IDR5_GRAN16K)
2590                 pgsize_bitmap |= SZ_16K | SZ_32M;
2591         if (reg & IDR5_GRAN4K)
2592                 pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2593
2594         arm_smmu_ops.pgsize_bitmap &= pgsize_bitmap;
2595
2596         /* Output address size */
2597         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2598         case IDR5_OAS_32_BIT:
2599                 smmu->oas = 32;
2600                 break;
2601         case IDR5_OAS_36_BIT:
2602                 smmu->oas = 36;
2603                 break;
2604         case IDR5_OAS_40_BIT:
2605                 smmu->oas = 40;
2606                 break;
2607         case IDR5_OAS_42_BIT:
2608                 smmu->oas = 42;
2609                 break;
2610         case IDR5_OAS_44_BIT:
2611                 smmu->oas = 44;
2612                 break;
2613         default:
2614                 dev_info(smmu->dev,
2615                         "unknown output address size. Truncating to 48-bit\n");
2616                 /* Fallthrough */
2617         case IDR5_OAS_48_BIT:
2618                 smmu->oas = 48;
2619         }
2620
2621         /* Set the DMA mask for our table walker */
2622         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2623                 dev_warn(smmu->dev,
2624                          "failed to set DMA mask for table walker\n");
2625
2626         if (!smmu->ias)
2627                 smmu->ias = smmu->oas;
2628
2629         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2630                  smmu->ias, smmu->oas, smmu->features);
2631         return 0;
2632 }
2633
2634 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
2635 {
2636         int irq, ret;
2637         struct resource *res;
2638         struct arm_smmu_device *smmu;
2639         struct device *dev = &pdev->dev;
2640
2641         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2642         if (!smmu) {
2643                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2644                 return -ENOMEM;
2645         }
2646         smmu->dev = dev;
2647
2648         /* Base address */
2649         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2650         if (resource_size(res) + 1 < SZ_128K) {
2651                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2652                 return -EINVAL;
2653         }
2654
2655         smmu->base = devm_ioremap_resource(dev, res);
2656         if (IS_ERR(smmu->base))
2657                 return PTR_ERR(smmu->base);
2658
2659         /* Interrupt lines */
2660         irq = platform_get_irq_byname(pdev, "eventq");
2661         if (irq > 0)
2662                 smmu->evtq.q.irq = irq;
2663
2664         irq = platform_get_irq_byname(pdev, "priq");
2665         if (irq > 0)
2666                 smmu->priq.q.irq = irq;
2667
2668         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2669         if (irq > 0)
2670                 smmu->cmdq.q.irq = irq;
2671
2672         irq = platform_get_irq_byname(pdev, "gerror");
2673         if (irq > 0)
2674                 smmu->gerr_irq = irq;
2675
2676         parse_driver_options(smmu);
2677
2678         /* Probe the h/w */
2679         ret = arm_smmu_device_probe(smmu);
2680         if (ret)
2681                 return ret;
2682
2683         /* Initialise in-memory data structures */
2684         ret = arm_smmu_init_structures(smmu);
2685         if (ret)
2686                 return ret;
2687
2688         /* Record our private device structure */
2689         platform_set_drvdata(pdev, smmu);
2690
2691         /* Reset the device */
2692         ret = arm_smmu_device_reset(smmu);
2693         if (ret)
2694                 goto out_free_structures;
2695
2696         return 0;
2697
2698 out_free_structures:
2699         arm_smmu_free_structures(smmu);
2700         return ret;
2701 }
2702
2703 static int arm_smmu_device_remove(struct platform_device *pdev)
2704 {
2705         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2706
2707         arm_smmu_device_disable(smmu);
2708         arm_smmu_free_structures(smmu);
2709         return 0;
2710 }
2711
2712 static struct of_device_id arm_smmu_of_match[] = {
2713         { .compatible = "arm,smmu-v3", },
2714         { },
2715 };
2716 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2717
2718 static struct platform_driver arm_smmu_driver = {
2719         .driver = {
2720                 .name           = "arm-smmu-v3",
2721                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2722         },
2723         .probe  = arm_smmu_device_dt_probe,
2724         .remove = arm_smmu_device_remove,
2725 };
2726
2727 static int __init arm_smmu_init(void)
2728 {
2729         struct device_node *np;
2730         int ret;
2731
2732         np = of_find_matching_node(NULL, arm_smmu_of_match);
2733         if (!np)
2734                 return 0;
2735
2736         of_node_put(np);
2737
2738         ret = platform_driver_register(&arm_smmu_driver);
2739         if (ret)
2740                 return ret;
2741
2742         return bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2743 }
2744
2745 static void __exit arm_smmu_exit(void)
2746 {
2747         return platform_driver_unregister(&arm_smmu_driver);
2748 }
2749
2750 subsys_initcall(arm_smmu_init);
2751 module_exit(arm_smmu_exit);
2752
2753 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2754 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2755 MODULE_LICENSE("GPL v2");