IB/srp: Avoid that duplicate responses trigger a kernel bug
[firefly-linux-kernel-4.4.55.git] / drivers / infiniband / ulp / srp / ib_srp.c
1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44
45 #include <linux/atomic.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53
54 #include "ib_srp.h"
55
56 #define DRV_NAME        "ib_srp"
57 #define PFX             DRV_NAME ": "
58 #define DRV_VERSION     "2.0"
59 #define DRV_RELDATE     "July 26, 2015"
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65 MODULE_INFO(release_date, DRV_RELDATE);
66
67 static unsigned int srp_sg_tablesize;
68 static unsigned int cmd_sg_entries;
69 static unsigned int indirect_sg_entries;
70 static bool allow_ext_sg;
71 static bool prefer_fr = true;
72 static bool register_always = true;
73 static int topspin_workarounds = 1;
74
75 module_param(srp_sg_tablesize, uint, 0444);
76 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
77
78 module_param(cmd_sg_entries, uint, 0444);
79 MODULE_PARM_DESC(cmd_sg_entries,
80                  "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
81
82 module_param(indirect_sg_entries, uint, 0444);
83 MODULE_PARM_DESC(indirect_sg_entries,
84                  "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
85
86 module_param(allow_ext_sg, bool, 0444);
87 MODULE_PARM_DESC(allow_ext_sg,
88                   "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
89
90 module_param(topspin_workarounds, int, 0444);
91 MODULE_PARM_DESC(topspin_workarounds,
92                  "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
93
94 module_param(prefer_fr, bool, 0444);
95 MODULE_PARM_DESC(prefer_fr,
96 "Whether to use fast registration if both FMR and fast registration are supported");
97
98 module_param(register_always, bool, 0444);
99 MODULE_PARM_DESC(register_always,
100                  "Use memory registration even for contiguous memory regions");
101
102 static const struct kernel_param_ops srp_tmo_ops;
103
104 static int srp_reconnect_delay = 10;
105 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
106                 S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
108
109 static int srp_fast_io_fail_tmo = 15;
110 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
111                 S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(fast_io_fail_tmo,
113                  "Number of seconds between the observation of a transport"
114                  " layer error and failing all I/O. \"off\" means that this"
115                  " functionality is disabled.");
116
117 static int srp_dev_loss_tmo = 600;
118 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
119                 S_IRUGO | S_IWUSR);
120 MODULE_PARM_DESC(dev_loss_tmo,
121                  "Maximum number of seconds that the SRP transport should"
122                  " insulate transport layer errors. After this time has been"
123                  " exceeded the SCSI host is removed. Should be"
124                  " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
125                  " if fast_io_fail_tmo has not been set. \"off\" means that"
126                  " this functionality is disabled.");
127
128 static unsigned ch_count;
129 module_param(ch_count, uint, 0444);
130 MODULE_PARM_DESC(ch_count,
131                  "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
132
133 static void srp_add_one(struct ib_device *device);
134 static void srp_remove_one(struct ib_device *device, void *client_data);
135 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr);
136 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr);
137 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
138
139 static struct scsi_transport_template *ib_srp_transport_template;
140 static struct workqueue_struct *srp_remove_wq;
141
142 static struct ib_client srp_client = {
143         .name   = "srp",
144         .add    = srp_add_one,
145         .remove = srp_remove_one
146 };
147
148 static struct ib_sa_client srp_sa_client;
149
150 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
151 {
152         int tmo = *(int *)kp->arg;
153
154         if (tmo >= 0)
155                 return sprintf(buffer, "%d", tmo);
156         else
157                 return sprintf(buffer, "off");
158 }
159
160 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
161 {
162         int tmo, res;
163
164         res = srp_parse_tmo(&tmo, val);
165         if (res)
166                 goto out;
167
168         if (kp->arg == &srp_reconnect_delay)
169                 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
170                                     srp_dev_loss_tmo);
171         else if (kp->arg == &srp_fast_io_fail_tmo)
172                 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
173         else
174                 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
175                                     tmo);
176         if (res)
177                 goto out;
178         *(int *)kp->arg = tmo;
179
180 out:
181         return res;
182 }
183
184 static const struct kernel_param_ops srp_tmo_ops = {
185         .get = srp_tmo_get,
186         .set = srp_tmo_set,
187 };
188
189 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
190 {
191         return (struct srp_target_port *) host->hostdata;
192 }
193
194 static const char *srp_target_info(struct Scsi_Host *host)
195 {
196         return host_to_target(host)->target_name;
197 }
198
199 static int srp_target_is_topspin(struct srp_target_port *target)
200 {
201         static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
202         static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
203
204         return topspin_workarounds &&
205                 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
206                  !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
207 }
208
209 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
210                                    gfp_t gfp_mask,
211                                    enum dma_data_direction direction)
212 {
213         struct srp_iu *iu;
214
215         iu = kmalloc(sizeof *iu, gfp_mask);
216         if (!iu)
217                 goto out;
218
219         iu->buf = kzalloc(size, gfp_mask);
220         if (!iu->buf)
221                 goto out_free_iu;
222
223         iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
224                                     direction);
225         if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
226                 goto out_free_buf;
227
228         iu->size      = size;
229         iu->direction = direction;
230
231         return iu;
232
233 out_free_buf:
234         kfree(iu->buf);
235 out_free_iu:
236         kfree(iu);
237 out:
238         return NULL;
239 }
240
241 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
242 {
243         if (!iu)
244                 return;
245
246         ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
247                             iu->direction);
248         kfree(iu->buf);
249         kfree(iu);
250 }
251
252 static void srp_qp_event(struct ib_event *event, void *context)
253 {
254         pr_debug("QP event %s (%d)\n",
255                  ib_event_msg(event->event), event->event);
256 }
257
258 static int srp_init_qp(struct srp_target_port *target,
259                        struct ib_qp *qp)
260 {
261         struct ib_qp_attr *attr;
262         int ret;
263
264         attr = kmalloc(sizeof *attr, GFP_KERNEL);
265         if (!attr)
266                 return -ENOMEM;
267
268         ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
269                                   target->srp_host->port,
270                                   be16_to_cpu(target->pkey),
271                                   &attr->pkey_index);
272         if (ret)
273                 goto out;
274
275         attr->qp_state        = IB_QPS_INIT;
276         attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
277                                     IB_ACCESS_REMOTE_WRITE);
278         attr->port_num        = target->srp_host->port;
279
280         ret = ib_modify_qp(qp, attr,
281                            IB_QP_STATE          |
282                            IB_QP_PKEY_INDEX     |
283                            IB_QP_ACCESS_FLAGS   |
284                            IB_QP_PORT);
285
286 out:
287         kfree(attr);
288         return ret;
289 }
290
291 static int srp_new_cm_id(struct srp_rdma_ch *ch)
292 {
293         struct srp_target_port *target = ch->target;
294         struct ib_cm_id *new_cm_id;
295
296         new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
297                                     srp_cm_handler, ch);
298         if (IS_ERR(new_cm_id))
299                 return PTR_ERR(new_cm_id);
300
301         if (ch->cm_id)
302                 ib_destroy_cm_id(ch->cm_id);
303         ch->cm_id = new_cm_id;
304         ch->path.sgid = target->sgid;
305         ch->path.dgid = target->orig_dgid;
306         ch->path.pkey = target->pkey;
307         ch->path.service_id = target->service_id;
308
309         return 0;
310 }
311
312 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
313 {
314         struct srp_device *dev = target->srp_host->srp_dev;
315         struct ib_fmr_pool_param fmr_param;
316
317         memset(&fmr_param, 0, sizeof(fmr_param));
318         fmr_param.pool_size         = target->scsi_host->can_queue;
319         fmr_param.dirty_watermark   = fmr_param.pool_size / 4;
320         fmr_param.cache             = 1;
321         fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
322         fmr_param.page_shift        = ilog2(dev->mr_page_size);
323         fmr_param.access            = (IB_ACCESS_LOCAL_WRITE |
324                                        IB_ACCESS_REMOTE_WRITE |
325                                        IB_ACCESS_REMOTE_READ);
326
327         return ib_create_fmr_pool(dev->pd, &fmr_param);
328 }
329
330 /**
331  * srp_destroy_fr_pool() - free the resources owned by a pool
332  * @pool: Fast registration pool to be destroyed.
333  */
334 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
335 {
336         int i;
337         struct srp_fr_desc *d;
338
339         if (!pool)
340                 return;
341
342         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
343                 if (d->mr)
344                         ib_dereg_mr(d->mr);
345         }
346         kfree(pool);
347 }
348
349 /**
350  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
351  * @device:            IB device to allocate fast registration descriptors for.
352  * @pd:                Protection domain associated with the FR descriptors.
353  * @pool_size:         Number of descriptors to allocate.
354  * @max_page_list_len: Maximum fast registration work request page list length.
355  */
356 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
357                                               struct ib_pd *pd, int pool_size,
358                                               int max_page_list_len)
359 {
360         struct srp_fr_pool *pool;
361         struct srp_fr_desc *d;
362         struct ib_mr *mr;
363         int i, ret = -EINVAL;
364
365         if (pool_size <= 0)
366                 goto err;
367         ret = -ENOMEM;
368         pool = kzalloc(sizeof(struct srp_fr_pool) +
369                        pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
370         if (!pool)
371                 goto err;
372         pool->size = pool_size;
373         pool->max_page_list_len = max_page_list_len;
374         spin_lock_init(&pool->lock);
375         INIT_LIST_HEAD(&pool->free_list);
376
377         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
378                 mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG,
379                                  max_page_list_len);
380                 if (IS_ERR(mr)) {
381                         ret = PTR_ERR(mr);
382                         goto destroy_pool;
383                 }
384                 d->mr = mr;
385                 list_add_tail(&d->entry, &pool->free_list);
386         }
387
388 out:
389         return pool;
390
391 destroy_pool:
392         srp_destroy_fr_pool(pool);
393
394 err:
395         pool = ERR_PTR(ret);
396         goto out;
397 }
398
399 /**
400  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
401  * @pool: Pool to obtain descriptor from.
402  */
403 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
404 {
405         struct srp_fr_desc *d = NULL;
406         unsigned long flags;
407
408         spin_lock_irqsave(&pool->lock, flags);
409         if (!list_empty(&pool->free_list)) {
410                 d = list_first_entry(&pool->free_list, typeof(*d), entry);
411                 list_del(&d->entry);
412         }
413         spin_unlock_irqrestore(&pool->lock, flags);
414
415         return d;
416 }
417
418 /**
419  * srp_fr_pool_put() - put an FR descriptor back in the free list
420  * @pool: Pool the descriptor was allocated from.
421  * @desc: Pointer to an array of fast registration descriptor pointers.
422  * @n:    Number of descriptors to put back.
423  *
424  * Note: The caller must already have queued an invalidation request for
425  * desc->mr->rkey before calling this function.
426  */
427 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
428                             int n)
429 {
430         unsigned long flags;
431         int i;
432
433         spin_lock_irqsave(&pool->lock, flags);
434         for (i = 0; i < n; i++)
435                 list_add(&desc[i]->entry, &pool->free_list);
436         spin_unlock_irqrestore(&pool->lock, flags);
437 }
438
439 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
440 {
441         struct srp_device *dev = target->srp_host->srp_dev;
442
443         return srp_create_fr_pool(dev->dev, dev->pd,
444                                   target->scsi_host->can_queue,
445                                   dev->max_pages_per_mr);
446 }
447
448 /**
449  * srp_destroy_qp() - destroy an RDMA queue pair
450  * @ch: SRP RDMA channel.
451  *
452  * Change a queue pair into the error state and wait until all receive
453  * completions have been processed before destroying it. This avoids that
454  * the receive completion handler can access the queue pair while it is
455  * being destroyed.
456  */
457 static void srp_destroy_qp(struct srp_rdma_ch *ch)
458 {
459         static struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
460         static struct ib_recv_wr wr = { .wr_id = SRP_LAST_WR_ID };
461         struct ib_recv_wr *bad_wr;
462         int ret;
463
464         /* Destroying a QP and reusing ch->done is only safe if not connected */
465         WARN_ON_ONCE(ch->connected);
466
467         ret = ib_modify_qp(ch->qp, &attr, IB_QP_STATE);
468         WARN_ONCE(ret, "ib_cm_init_qp_attr() returned %d\n", ret);
469         if (ret)
470                 goto out;
471
472         init_completion(&ch->done);
473         ret = ib_post_recv(ch->qp, &wr, &bad_wr);
474         WARN_ONCE(ret, "ib_post_recv() returned %d\n", ret);
475         if (ret == 0)
476                 wait_for_completion(&ch->done);
477
478 out:
479         ib_destroy_qp(ch->qp);
480 }
481
482 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
483 {
484         struct srp_target_port *target = ch->target;
485         struct srp_device *dev = target->srp_host->srp_dev;
486         struct ib_qp_init_attr *init_attr;
487         struct ib_cq *recv_cq, *send_cq;
488         struct ib_qp *qp;
489         struct ib_fmr_pool *fmr_pool = NULL;
490         struct srp_fr_pool *fr_pool = NULL;
491         const int m = dev->use_fast_reg ? 3 : 1;
492         struct ib_cq_init_attr cq_attr = {};
493         int ret;
494
495         init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
496         if (!init_attr)
497                 return -ENOMEM;
498
499         /* + 1 for SRP_LAST_WR_ID */
500         cq_attr.cqe = target->queue_size + 1;
501         cq_attr.comp_vector = ch->comp_vector;
502         recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, ch,
503                                &cq_attr);
504         if (IS_ERR(recv_cq)) {
505                 ret = PTR_ERR(recv_cq);
506                 goto err;
507         }
508
509         cq_attr.cqe = m * target->queue_size;
510         cq_attr.comp_vector = ch->comp_vector;
511         send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, ch,
512                                &cq_attr);
513         if (IS_ERR(send_cq)) {
514                 ret = PTR_ERR(send_cq);
515                 goto err_recv_cq;
516         }
517
518         ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP);
519
520         init_attr->event_handler       = srp_qp_event;
521         init_attr->cap.max_send_wr     = m * target->queue_size;
522         init_attr->cap.max_recv_wr     = target->queue_size + 1;
523         init_attr->cap.max_recv_sge    = 1;
524         init_attr->cap.max_send_sge    = 1;
525         init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
526         init_attr->qp_type             = IB_QPT_RC;
527         init_attr->send_cq             = send_cq;
528         init_attr->recv_cq             = recv_cq;
529
530         qp = ib_create_qp(dev->pd, init_attr);
531         if (IS_ERR(qp)) {
532                 ret = PTR_ERR(qp);
533                 goto err_send_cq;
534         }
535
536         ret = srp_init_qp(target, qp);
537         if (ret)
538                 goto err_qp;
539
540         if (dev->use_fast_reg) {
541                 fr_pool = srp_alloc_fr_pool(target);
542                 if (IS_ERR(fr_pool)) {
543                         ret = PTR_ERR(fr_pool);
544                         shost_printk(KERN_WARNING, target->scsi_host, PFX
545                                      "FR pool allocation failed (%d)\n", ret);
546                         goto err_qp;
547                 }
548         } else if (dev->use_fmr) {
549                 fmr_pool = srp_alloc_fmr_pool(target);
550                 if (IS_ERR(fmr_pool)) {
551                         ret = PTR_ERR(fmr_pool);
552                         shost_printk(KERN_WARNING, target->scsi_host, PFX
553                                      "FMR pool allocation failed (%d)\n", ret);
554                         goto err_qp;
555                 }
556         }
557
558         if (ch->qp)
559                 srp_destroy_qp(ch);
560         if (ch->recv_cq)
561                 ib_destroy_cq(ch->recv_cq);
562         if (ch->send_cq)
563                 ib_destroy_cq(ch->send_cq);
564
565         ch->qp = qp;
566         ch->recv_cq = recv_cq;
567         ch->send_cq = send_cq;
568
569         if (dev->use_fast_reg) {
570                 if (ch->fr_pool)
571                         srp_destroy_fr_pool(ch->fr_pool);
572                 ch->fr_pool = fr_pool;
573         } else if (dev->use_fmr) {
574                 if (ch->fmr_pool)
575                         ib_destroy_fmr_pool(ch->fmr_pool);
576                 ch->fmr_pool = fmr_pool;
577         }
578
579         kfree(init_attr);
580         return 0;
581
582 err_qp:
583         ib_destroy_qp(qp);
584
585 err_send_cq:
586         ib_destroy_cq(send_cq);
587
588 err_recv_cq:
589         ib_destroy_cq(recv_cq);
590
591 err:
592         kfree(init_attr);
593         return ret;
594 }
595
596 /*
597  * Note: this function may be called without srp_alloc_iu_bufs() having been
598  * invoked. Hence the ch->[rt]x_ring checks.
599  */
600 static void srp_free_ch_ib(struct srp_target_port *target,
601                            struct srp_rdma_ch *ch)
602 {
603         struct srp_device *dev = target->srp_host->srp_dev;
604         int i;
605
606         if (!ch->target)
607                 return;
608
609         if (ch->cm_id) {
610                 ib_destroy_cm_id(ch->cm_id);
611                 ch->cm_id = NULL;
612         }
613
614         /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
615         if (!ch->qp)
616                 return;
617
618         if (dev->use_fast_reg) {
619                 if (ch->fr_pool)
620                         srp_destroy_fr_pool(ch->fr_pool);
621         } else if (dev->use_fmr) {
622                 if (ch->fmr_pool)
623                         ib_destroy_fmr_pool(ch->fmr_pool);
624         }
625         srp_destroy_qp(ch);
626         ib_destroy_cq(ch->send_cq);
627         ib_destroy_cq(ch->recv_cq);
628
629         /*
630          * Avoid that the SCSI error handler tries to use this channel after
631          * it has been freed. The SCSI error handler can namely continue
632          * trying to perform recovery actions after scsi_remove_host()
633          * returned.
634          */
635         ch->target = NULL;
636
637         ch->qp = NULL;
638         ch->send_cq = ch->recv_cq = NULL;
639
640         if (ch->rx_ring) {
641                 for (i = 0; i < target->queue_size; ++i)
642                         srp_free_iu(target->srp_host, ch->rx_ring[i]);
643                 kfree(ch->rx_ring);
644                 ch->rx_ring = NULL;
645         }
646         if (ch->tx_ring) {
647                 for (i = 0; i < target->queue_size; ++i)
648                         srp_free_iu(target->srp_host, ch->tx_ring[i]);
649                 kfree(ch->tx_ring);
650                 ch->tx_ring = NULL;
651         }
652 }
653
654 static void srp_path_rec_completion(int status,
655                                     struct ib_sa_path_rec *pathrec,
656                                     void *ch_ptr)
657 {
658         struct srp_rdma_ch *ch = ch_ptr;
659         struct srp_target_port *target = ch->target;
660
661         ch->status = status;
662         if (status)
663                 shost_printk(KERN_ERR, target->scsi_host,
664                              PFX "Got failed path rec status %d\n", status);
665         else
666                 ch->path = *pathrec;
667         complete(&ch->done);
668 }
669
670 static int srp_lookup_path(struct srp_rdma_ch *ch)
671 {
672         struct srp_target_port *target = ch->target;
673         int ret;
674
675         ch->path.numb_path = 1;
676
677         init_completion(&ch->done);
678
679         ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
680                                                target->srp_host->srp_dev->dev,
681                                                target->srp_host->port,
682                                                &ch->path,
683                                                IB_SA_PATH_REC_SERVICE_ID |
684                                                IB_SA_PATH_REC_DGID       |
685                                                IB_SA_PATH_REC_SGID       |
686                                                IB_SA_PATH_REC_NUMB_PATH  |
687                                                IB_SA_PATH_REC_PKEY,
688                                                SRP_PATH_REC_TIMEOUT_MS,
689                                                GFP_KERNEL,
690                                                srp_path_rec_completion,
691                                                ch, &ch->path_query);
692         if (ch->path_query_id < 0)
693                 return ch->path_query_id;
694
695         ret = wait_for_completion_interruptible(&ch->done);
696         if (ret < 0)
697                 return ret;
698
699         if (ch->status < 0)
700                 shost_printk(KERN_WARNING, target->scsi_host,
701                              PFX "Path record query failed\n");
702
703         return ch->status;
704 }
705
706 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
707 {
708         struct srp_target_port *target = ch->target;
709         struct {
710                 struct ib_cm_req_param param;
711                 struct srp_login_req   priv;
712         } *req = NULL;
713         int status;
714
715         req = kzalloc(sizeof *req, GFP_KERNEL);
716         if (!req)
717                 return -ENOMEM;
718
719         req->param.primary_path               = &ch->path;
720         req->param.alternate_path             = NULL;
721         req->param.service_id                 = target->service_id;
722         req->param.qp_num                     = ch->qp->qp_num;
723         req->param.qp_type                    = ch->qp->qp_type;
724         req->param.private_data               = &req->priv;
725         req->param.private_data_len           = sizeof req->priv;
726         req->param.flow_control               = 1;
727
728         get_random_bytes(&req->param.starting_psn, 4);
729         req->param.starting_psn              &= 0xffffff;
730
731         /*
732          * Pick some arbitrary defaults here; we could make these
733          * module parameters if anyone cared about setting them.
734          */
735         req->param.responder_resources        = 4;
736         req->param.remote_cm_response_timeout = 20;
737         req->param.local_cm_response_timeout  = 20;
738         req->param.retry_count                = target->tl_retry_count;
739         req->param.rnr_retry_count            = 7;
740         req->param.max_cm_retries             = 15;
741
742         req->priv.opcode        = SRP_LOGIN_REQ;
743         req->priv.tag           = 0;
744         req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
745         req->priv.req_buf_fmt   = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
746                                               SRP_BUF_FORMAT_INDIRECT);
747         req->priv.req_flags     = (multich ? SRP_MULTICHAN_MULTI :
748                                    SRP_MULTICHAN_SINGLE);
749         /*
750          * In the published SRP specification (draft rev. 16a), the
751          * port identifier format is 8 bytes of ID extension followed
752          * by 8 bytes of GUID.  Older drafts put the two halves in the
753          * opposite order, so that the GUID comes first.
754          *
755          * Targets conforming to these obsolete drafts can be
756          * recognized by the I/O Class they report.
757          */
758         if (target->io_class == SRP_REV10_IB_IO_CLASS) {
759                 memcpy(req->priv.initiator_port_id,
760                        &target->sgid.global.interface_id, 8);
761                 memcpy(req->priv.initiator_port_id + 8,
762                        &target->initiator_ext, 8);
763                 memcpy(req->priv.target_port_id,     &target->ioc_guid, 8);
764                 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
765         } else {
766                 memcpy(req->priv.initiator_port_id,
767                        &target->initiator_ext, 8);
768                 memcpy(req->priv.initiator_port_id + 8,
769                        &target->sgid.global.interface_id, 8);
770                 memcpy(req->priv.target_port_id,     &target->id_ext, 8);
771                 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
772         }
773
774         /*
775          * Topspin/Cisco SRP targets will reject our login unless we
776          * zero out the first 8 bytes of our initiator port ID and set
777          * the second 8 bytes to the local node GUID.
778          */
779         if (srp_target_is_topspin(target)) {
780                 shost_printk(KERN_DEBUG, target->scsi_host,
781                              PFX "Topspin/Cisco initiator port ID workaround "
782                              "activated for target GUID %016llx\n",
783                              be64_to_cpu(target->ioc_guid));
784                 memset(req->priv.initiator_port_id, 0, 8);
785                 memcpy(req->priv.initiator_port_id + 8,
786                        &target->srp_host->srp_dev->dev->node_guid, 8);
787         }
788
789         status = ib_send_cm_req(ch->cm_id, &req->param);
790
791         kfree(req);
792
793         return status;
794 }
795
796 static bool srp_queue_remove_work(struct srp_target_port *target)
797 {
798         bool changed = false;
799
800         spin_lock_irq(&target->lock);
801         if (target->state != SRP_TARGET_REMOVED) {
802                 target->state = SRP_TARGET_REMOVED;
803                 changed = true;
804         }
805         spin_unlock_irq(&target->lock);
806
807         if (changed)
808                 queue_work(srp_remove_wq, &target->remove_work);
809
810         return changed;
811 }
812
813 static void srp_disconnect_target(struct srp_target_port *target)
814 {
815         struct srp_rdma_ch *ch;
816         int i;
817
818         /* XXX should send SRP_I_LOGOUT request */
819
820         for (i = 0; i < target->ch_count; i++) {
821                 ch = &target->ch[i];
822                 ch->connected = false;
823                 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
824                         shost_printk(KERN_DEBUG, target->scsi_host,
825                                      PFX "Sending CM DREQ failed\n");
826                 }
827         }
828 }
829
830 static void srp_free_req_data(struct srp_target_port *target,
831                               struct srp_rdma_ch *ch)
832 {
833         struct srp_device *dev = target->srp_host->srp_dev;
834         struct ib_device *ibdev = dev->dev;
835         struct srp_request *req;
836         int i;
837
838         if (!ch->req_ring)
839                 return;
840
841         for (i = 0; i < target->req_ring_size; ++i) {
842                 req = &ch->req_ring[i];
843                 if (dev->use_fast_reg) {
844                         kfree(req->fr_list);
845                 } else {
846                         kfree(req->fmr_list);
847                         kfree(req->map_page);
848                 }
849                 if (req->indirect_dma_addr) {
850                         ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
851                                             target->indirect_size,
852                                             DMA_TO_DEVICE);
853                 }
854                 kfree(req->indirect_desc);
855         }
856
857         kfree(ch->req_ring);
858         ch->req_ring = NULL;
859 }
860
861 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
862 {
863         struct srp_target_port *target = ch->target;
864         struct srp_device *srp_dev = target->srp_host->srp_dev;
865         struct ib_device *ibdev = srp_dev->dev;
866         struct srp_request *req;
867         void *mr_list;
868         dma_addr_t dma_addr;
869         int i, ret = -ENOMEM;
870
871         ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
872                                GFP_KERNEL);
873         if (!ch->req_ring)
874                 goto out;
875
876         for (i = 0; i < target->req_ring_size; ++i) {
877                 req = &ch->req_ring[i];
878                 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
879                                   GFP_KERNEL);
880                 if (!mr_list)
881                         goto out;
882                 if (srp_dev->use_fast_reg) {
883                         req->fr_list = mr_list;
884                 } else {
885                         req->fmr_list = mr_list;
886                         req->map_page = kmalloc(srp_dev->max_pages_per_mr *
887                                                 sizeof(void *), GFP_KERNEL);
888                         if (!req->map_page)
889                                 goto out;
890                 }
891                 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
892                 if (!req->indirect_desc)
893                         goto out;
894
895                 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
896                                              target->indirect_size,
897                                              DMA_TO_DEVICE);
898                 if (ib_dma_mapping_error(ibdev, dma_addr))
899                         goto out;
900
901                 req->indirect_dma_addr = dma_addr;
902         }
903         ret = 0;
904
905 out:
906         return ret;
907 }
908
909 /**
910  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
911  * @shost: SCSI host whose attributes to remove from sysfs.
912  *
913  * Note: Any attributes defined in the host template and that did not exist
914  * before invocation of this function will be ignored.
915  */
916 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
917 {
918         struct device_attribute **attr;
919
920         for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
921                 device_remove_file(&shost->shost_dev, *attr);
922 }
923
924 static void srp_remove_target(struct srp_target_port *target)
925 {
926         struct srp_rdma_ch *ch;
927         int i;
928
929         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
930
931         srp_del_scsi_host_attr(target->scsi_host);
932         srp_rport_get(target->rport);
933         srp_remove_host(target->scsi_host);
934         scsi_remove_host(target->scsi_host);
935         srp_stop_rport_timers(target->rport);
936         srp_disconnect_target(target);
937         for (i = 0; i < target->ch_count; i++) {
938                 ch = &target->ch[i];
939                 srp_free_ch_ib(target, ch);
940         }
941         cancel_work_sync(&target->tl_err_work);
942         srp_rport_put(target->rport);
943         for (i = 0; i < target->ch_count; i++) {
944                 ch = &target->ch[i];
945                 srp_free_req_data(target, ch);
946         }
947         kfree(target->ch);
948         target->ch = NULL;
949
950         spin_lock(&target->srp_host->target_lock);
951         list_del(&target->list);
952         spin_unlock(&target->srp_host->target_lock);
953
954         scsi_host_put(target->scsi_host);
955 }
956
957 static void srp_remove_work(struct work_struct *work)
958 {
959         struct srp_target_port *target =
960                 container_of(work, struct srp_target_port, remove_work);
961
962         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
963
964         srp_remove_target(target);
965 }
966
967 static void srp_rport_delete(struct srp_rport *rport)
968 {
969         struct srp_target_port *target = rport->lld_data;
970
971         srp_queue_remove_work(target);
972 }
973
974 /**
975  * srp_connected_ch() - number of connected channels
976  * @target: SRP target port.
977  */
978 static int srp_connected_ch(struct srp_target_port *target)
979 {
980         int i, c = 0;
981
982         for (i = 0; i < target->ch_count; i++)
983                 c += target->ch[i].connected;
984
985         return c;
986 }
987
988 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
989 {
990         struct srp_target_port *target = ch->target;
991         int ret;
992
993         WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
994
995         ret = srp_lookup_path(ch);
996         if (ret)
997                 goto out;
998
999         while (1) {
1000                 init_completion(&ch->done);
1001                 ret = srp_send_req(ch, multich);
1002                 if (ret)
1003                         goto out;
1004                 ret = wait_for_completion_interruptible(&ch->done);
1005                 if (ret < 0)
1006                         goto out;
1007
1008                 /*
1009                  * The CM event handling code will set status to
1010                  * SRP_PORT_REDIRECT if we get a port redirect REJ
1011                  * back, or SRP_DLID_REDIRECT if we get a lid/qp
1012                  * redirect REJ back.
1013                  */
1014                 ret = ch->status;
1015                 switch (ret) {
1016                 case 0:
1017                         ch->connected = true;
1018                         goto out;
1019
1020                 case SRP_PORT_REDIRECT:
1021                         ret = srp_lookup_path(ch);
1022                         if (ret)
1023                                 goto out;
1024                         break;
1025
1026                 case SRP_DLID_REDIRECT:
1027                         break;
1028
1029                 case SRP_STALE_CONN:
1030                         shost_printk(KERN_ERR, target->scsi_host, PFX
1031                                      "giving up on stale connection\n");
1032                         ret = -ECONNRESET;
1033                         goto out;
1034
1035                 default:
1036                         goto out;
1037                 }
1038         }
1039
1040 out:
1041         return ret <= 0 ? ret : -ENODEV;
1042 }
1043
1044 static int srp_inv_rkey(struct srp_rdma_ch *ch, u32 rkey)
1045 {
1046         struct ib_send_wr *bad_wr;
1047         struct ib_send_wr wr = {
1048                 .opcode             = IB_WR_LOCAL_INV,
1049                 .wr_id              = LOCAL_INV_WR_ID_MASK,
1050                 .next               = NULL,
1051                 .num_sge            = 0,
1052                 .send_flags         = 0,
1053                 .ex.invalidate_rkey = rkey,
1054         };
1055
1056         return ib_post_send(ch->qp, &wr, &bad_wr);
1057 }
1058
1059 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1060                            struct srp_rdma_ch *ch,
1061                            struct srp_request *req)
1062 {
1063         struct srp_target_port *target = ch->target;
1064         struct srp_device *dev = target->srp_host->srp_dev;
1065         struct ib_device *ibdev = dev->dev;
1066         int i, res;
1067
1068         if (!scsi_sglist(scmnd) ||
1069             (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1070              scmnd->sc_data_direction != DMA_FROM_DEVICE))
1071                 return;
1072
1073         if (dev->use_fast_reg) {
1074                 struct srp_fr_desc **pfr;
1075
1076                 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1077                         res = srp_inv_rkey(ch, (*pfr)->mr->rkey);
1078                         if (res < 0) {
1079                                 shost_printk(KERN_ERR, target->scsi_host, PFX
1080                                   "Queueing INV WR for rkey %#x failed (%d)\n",
1081                                   (*pfr)->mr->rkey, res);
1082                                 queue_work(system_long_wq,
1083                                            &target->tl_err_work);
1084                         }
1085                 }
1086                 if (req->nmdesc)
1087                         srp_fr_pool_put(ch->fr_pool, req->fr_list,
1088                                         req->nmdesc);
1089         } else if (dev->use_fmr) {
1090                 struct ib_pool_fmr **pfmr;
1091
1092                 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1093                         ib_fmr_pool_unmap(*pfmr);
1094         }
1095
1096         ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1097                         scmnd->sc_data_direction);
1098 }
1099
1100 /**
1101  * srp_claim_req - Take ownership of the scmnd associated with a request.
1102  * @ch: SRP RDMA channel.
1103  * @req: SRP request.
1104  * @sdev: If not NULL, only take ownership for this SCSI device.
1105  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1106  *         ownership of @req->scmnd if it equals @scmnd.
1107  *
1108  * Return value:
1109  * Either NULL or a pointer to the SCSI command the caller became owner of.
1110  */
1111 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1112                                        struct srp_request *req,
1113                                        struct scsi_device *sdev,
1114                                        struct scsi_cmnd *scmnd)
1115 {
1116         unsigned long flags;
1117
1118         spin_lock_irqsave(&ch->lock, flags);
1119         if (req->scmnd &&
1120             (!sdev || req->scmnd->device == sdev) &&
1121             (!scmnd || req->scmnd == scmnd)) {
1122                 scmnd = req->scmnd;
1123                 req->scmnd = NULL;
1124         } else {
1125                 scmnd = NULL;
1126         }
1127         spin_unlock_irqrestore(&ch->lock, flags);
1128
1129         return scmnd;
1130 }
1131
1132 /**
1133  * srp_free_req() - Unmap data and add request to the free request list.
1134  * @ch:     SRP RDMA channel.
1135  * @req:    Request to be freed.
1136  * @scmnd:  SCSI command associated with @req.
1137  * @req_lim_delta: Amount to be added to @target->req_lim.
1138  */
1139 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1140                          struct scsi_cmnd *scmnd, s32 req_lim_delta)
1141 {
1142         unsigned long flags;
1143
1144         srp_unmap_data(scmnd, ch, req);
1145
1146         spin_lock_irqsave(&ch->lock, flags);
1147         ch->req_lim += req_lim_delta;
1148         spin_unlock_irqrestore(&ch->lock, flags);
1149 }
1150
1151 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1152                            struct scsi_device *sdev, int result)
1153 {
1154         struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1155
1156         if (scmnd) {
1157                 srp_free_req(ch, req, scmnd, 0);
1158                 scmnd->result = result;
1159                 scmnd->scsi_done(scmnd);
1160         }
1161 }
1162
1163 static void srp_terminate_io(struct srp_rport *rport)
1164 {
1165         struct srp_target_port *target = rport->lld_data;
1166         struct srp_rdma_ch *ch;
1167         struct Scsi_Host *shost = target->scsi_host;
1168         struct scsi_device *sdev;
1169         int i, j;
1170
1171         /*
1172          * Invoking srp_terminate_io() while srp_queuecommand() is running
1173          * is not safe. Hence the warning statement below.
1174          */
1175         shost_for_each_device(sdev, shost)
1176                 WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1177
1178         for (i = 0; i < target->ch_count; i++) {
1179                 ch = &target->ch[i];
1180
1181                 for (j = 0; j < target->req_ring_size; ++j) {
1182                         struct srp_request *req = &ch->req_ring[j];
1183
1184                         srp_finish_req(ch, req, NULL,
1185                                        DID_TRANSPORT_FAILFAST << 16);
1186                 }
1187         }
1188 }
1189
1190 /*
1191  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1192  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1193  * srp_reset_device() or srp_reset_host() calls will occur while this function
1194  * is in progress. One way to realize that is not to call this function
1195  * directly but to call srp_reconnect_rport() instead since that last function
1196  * serializes calls of this function via rport->mutex and also blocks
1197  * srp_queuecommand() calls before invoking this function.
1198  */
1199 static int srp_rport_reconnect(struct srp_rport *rport)
1200 {
1201         struct srp_target_port *target = rport->lld_data;
1202         struct srp_rdma_ch *ch;
1203         int i, j, ret = 0;
1204         bool multich = false;
1205
1206         srp_disconnect_target(target);
1207
1208         if (target->state == SRP_TARGET_SCANNING)
1209                 return -ENODEV;
1210
1211         /*
1212          * Now get a new local CM ID so that we avoid confusing the target in
1213          * case things are really fouled up. Doing so also ensures that all CM
1214          * callbacks will have finished before a new QP is allocated.
1215          */
1216         for (i = 0; i < target->ch_count; i++) {
1217                 ch = &target->ch[i];
1218                 ret += srp_new_cm_id(ch);
1219         }
1220         for (i = 0; i < target->ch_count; i++) {
1221                 ch = &target->ch[i];
1222                 for (j = 0; j < target->req_ring_size; ++j) {
1223                         struct srp_request *req = &ch->req_ring[j];
1224
1225                         srp_finish_req(ch, req, NULL, DID_RESET << 16);
1226                 }
1227         }
1228         for (i = 0; i < target->ch_count; i++) {
1229                 ch = &target->ch[i];
1230                 /*
1231                  * Whether or not creating a new CM ID succeeded, create a new
1232                  * QP. This guarantees that all completion callback function
1233                  * invocations have finished before request resetting starts.
1234                  */
1235                 ret += srp_create_ch_ib(ch);
1236
1237                 INIT_LIST_HEAD(&ch->free_tx);
1238                 for (j = 0; j < target->queue_size; ++j)
1239                         list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1240         }
1241
1242         target->qp_in_error = false;
1243
1244         for (i = 0; i < target->ch_count; i++) {
1245                 ch = &target->ch[i];
1246                 if (ret)
1247                         break;
1248                 ret = srp_connect_ch(ch, multich);
1249                 multich = true;
1250         }
1251
1252         if (ret == 0)
1253                 shost_printk(KERN_INFO, target->scsi_host,
1254                              PFX "reconnect succeeded\n");
1255
1256         return ret;
1257 }
1258
1259 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1260                          unsigned int dma_len, u32 rkey)
1261 {
1262         struct srp_direct_buf *desc = state->desc;
1263
1264         WARN_ON_ONCE(!dma_len);
1265
1266         desc->va = cpu_to_be64(dma_addr);
1267         desc->key = cpu_to_be32(rkey);
1268         desc->len = cpu_to_be32(dma_len);
1269
1270         state->total_len += dma_len;
1271         state->desc++;
1272         state->ndesc++;
1273 }
1274
1275 static int srp_map_finish_fmr(struct srp_map_state *state,
1276                               struct srp_rdma_ch *ch)
1277 {
1278         struct srp_target_port *target = ch->target;
1279         struct srp_device *dev = target->srp_host->srp_dev;
1280         struct ib_pool_fmr *fmr;
1281         u64 io_addr = 0;
1282
1283         if (state->fmr.next >= state->fmr.end)
1284                 return -ENOMEM;
1285
1286         WARN_ON_ONCE(!dev->use_fmr);
1287
1288         if (state->npages == 0)
1289                 return 0;
1290
1291         if (state->npages == 1 && target->global_mr) {
1292                 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1293                              target->global_mr->rkey);
1294                 goto reset_state;
1295         }
1296
1297         fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1298                                    state->npages, io_addr);
1299         if (IS_ERR(fmr))
1300                 return PTR_ERR(fmr);
1301
1302         *state->fmr.next++ = fmr;
1303         state->nmdesc++;
1304
1305         srp_map_desc(state, state->base_dma_addr & ~dev->mr_page_mask,
1306                      state->dma_len, fmr->fmr->rkey);
1307
1308 reset_state:
1309         state->npages = 0;
1310         state->dma_len = 0;
1311
1312         return 0;
1313 }
1314
1315 static int srp_map_finish_fr(struct srp_map_state *state,
1316                              struct srp_rdma_ch *ch, int sg_nents)
1317 {
1318         struct srp_target_port *target = ch->target;
1319         struct srp_device *dev = target->srp_host->srp_dev;
1320         struct ib_send_wr *bad_wr;
1321         struct ib_reg_wr wr;
1322         struct srp_fr_desc *desc;
1323         u32 rkey;
1324         int n, err;
1325
1326         if (state->fr.next >= state->fr.end)
1327                 return -ENOMEM;
1328
1329         WARN_ON_ONCE(!dev->use_fast_reg);
1330
1331         if (sg_nents == 0)
1332                 return 0;
1333
1334         if (sg_nents == 1 && target->global_mr) {
1335                 srp_map_desc(state, sg_dma_address(state->sg),
1336                              sg_dma_len(state->sg),
1337                              target->global_mr->rkey);
1338                 return 1;
1339         }
1340
1341         desc = srp_fr_pool_get(ch->fr_pool);
1342         if (!desc)
1343                 return -ENOMEM;
1344
1345         rkey = ib_inc_rkey(desc->mr->rkey);
1346         ib_update_fast_reg_key(desc->mr, rkey);
1347
1348         n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, dev->mr_page_size);
1349         if (unlikely(n < 0))
1350                 return n;
1351
1352         wr.wr.next = NULL;
1353         wr.wr.opcode = IB_WR_REG_MR;
1354         wr.wr.wr_id = FAST_REG_WR_ID_MASK;
1355         wr.wr.num_sge = 0;
1356         wr.wr.send_flags = 0;
1357         wr.mr = desc->mr;
1358         wr.key = desc->mr->rkey;
1359         wr.access = (IB_ACCESS_LOCAL_WRITE |
1360                      IB_ACCESS_REMOTE_READ |
1361                      IB_ACCESS_REMOTE_WRITE);
1362
1363         *state->fr.next++ = desc;
1364         state->nmdesc++;
1365
1366         srp_map_desc(state, desc->mr->iova,
1367                      desc->mr->length, desc->mr->rkey);
1368
1369         err = ib_post_send(ch->qp, &wr.wr, &bad_wr);
1370         if (unlikely(err))
1371                 return err;
1372
1373         return n;
1374 }
1375
1376 static int srp_map_sg_entry(struct srp_map_state *state,
1377                             struct srp_rdma_ch *ch,
1378                             struct scatterlist *sg, int sg_index)
1379 {
1380         struct srp_target_port *target = ch->target;
1381         struct srp_device *dev = target->srp_host->srp_dev;
1382         struct ib_device *ibdev = dev->dev;
1383         dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1384         unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1385         unsigned int len = 0;
1386         int ret;
1387
1388         WARN_ON_ONCE(!dma_len);
1389
1390         while (dma_len) {
1391                 unsigned offset = dma_addr & ~dev->mr_page_mask;
1392                 if (state->npages == dev->max_pages_per_mr || offset != 0) {
1393                         ret = srp_map_finish_fmr(state, ch);
1394                         if (ret)
1395                                 return ret;
1396                 }
1397
1398                 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1399
1400                 if (!state->npages)
1401                         state->base_dma_addr = dma_addr;
1402                 state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1403                 state->dma_len += len;
1404                 dma_addr += len;
1405                 dma_len -= len;
1406         }
1407
1408         /*
1409          * If the last entry of the MR wasn't a full page, then we need to
1410          * close it out and start a new one -- we can only merge at page
1411          * boundries.
1412          */
1413         ret = 0;
1414         if (len != dev->mr_page_size)
1415                 ret = srp_map_finish_fmr(state, ch);
1416         return ret;
1417 }
1418
1419 static int srp_map_sg_fmr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1420                           struct srp_request *req, struct scatterlist *scat,
1421                           int count)
1422 {
1423         struct scatterlist *sg;
1424         int i, ret;
1425
1426         state->desc = req->indirect_desc;
1427         state->pages = req->map_page;
1428         state->fmr.next = req->fmr_list;
1429         state->fmr.end = req->fmr_list + ch->target->cmd_sg_cnt;
1430
1431         for_each_sg(scat, sg, count, i) {
1432                 ret = srp_map_sg_entry(state, ch, sg, i);
1433                 if (ret)
1434                         return ret;
1435         }
1436
1437         ret = srp_map_finish_fmr(state, ch);
1438         if (ret)
1439                 return ret;
1440
1441         req->nmdesc = state->nmdesc;
1442
1443         return 0;
1444 }
1445
1446 static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch,
1447                          struct srp_request *req, struct scatterlist *scat,
1448                          int count)
1449 {
1450         state->desc = req->indirect_desc;
1451         state->fr.next = req->fr_list;
1452         state->fr.end = req->fr_list + ch->target->cmd_sg_cnt;
1453         state->sg = scat;
1454
1455         while (count) {
1456                 int i, n;
1457
1458                 n = srp_map_finish_fr(state, ch, count);
1459                 if (unlikely(n < 0))
1460                         return n;
1461
1462                 count -= n;
1463                 for (i = 0; i < n; i++)
1464                         state->sg = sg_next(state->sg);
1465         }
1466
1467         req->nmdesc = state->nmdesc;
1468
1469         return 0;
1470 }
1471
1472 static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch,
1473                           struct srp_request *req, struct scatterlist *scat,
1474                           int count)
1475 {
1476         struct srp_target_port *target = ch->target;
1477         struct srp_device *dev = target->srp_host->srp_dev;
1478         struct scatterlist *sg;
1479         int i;
1480
1481         state->desc = req->indirect_desc;
1482         for_each_sg(scat, sg, count, i) {
1483                 srp_map_desc(state, ib_sg_dma_address(dev->dev, sg),
1484                              ib_sg_dma_len(dev->dev, sg),
1485                              target->global_mr->rkey);
1486         }
1487
1488         req->nmdesc = state->nmdesc;
1489
1490         return 0;
1491 }
1492
1493 /*
1494  * Register the indirect data buffer descriptor with the HCA.
1495  *
1496  * Note: since the indirect data buffer descriptor has been allocated with
1497  * kmalloc() it is guaranteed that this buffer is a physically contiguous
1498  * memory buffer.
1499  */
1500 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
1501                        void **next_mr, void **end_mr, u32 idb_len,
1502                        __be32 *idb_rkey)
1503 {
1504         struct srp_target_port *target = ch->target;
1505         struct srp_device *dev = target->srp_host->srp_dev;
1506         struct srp_map_state state;
1507         struct srp_direct_buf idb_desc;
1508         u64 idb_pages[1];
1509         struct scatterlist idb_sg[1];
1510         int ret;
1511
1512         memset(&state, 0, sizeof(state));
1513         memset(&idb_desc, 0, sizeof(idb_desc));
1514         state.gen.next = next_mr;
1515         state.gen.end = end_mr;
1516         state.desc = &idb_desc;
1517         state.base_dma_addr = req->indirect_dma_addr;
1518         state.dma_len = idb_len;
1519
1520         if (dev->use_fast_reg) {
1521                 state.sg = idb_sg;
1522                 sg_init_one(idb_sg, req->indirect_desc, idb_len);
1523                 idb_sg->dma_address = req->indirect_dma_addr; /* hack! */
1524 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1525                 idb_sg->dma_length = idb_sg->length;          /* hack^2 */
1526 #endif
1527                 ret = srp_map_finish_fr(&state, ch, 1);
1528                 if (ret < 0)
1529                         return ret;
1530         } else if (dev->use_fmr) {
1531                 state.pages = idb_pages;
1532                 state.pages[0] = (req->indirect_dma_addr &
1533                                   dev->mr_page_mask);
1534                 state.npages = 1;
1535                 ret = srp_map_finish_fmr(&state, ch);
1536                 if (ret < 0)
1537                         return ret;
1538         } else {
1539                 return -EINVAL;
1540         }
1541
1542         *idb_rkey = idb_desc.key;
1543
1544         return 0;
1545 }
1546
1547 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1548                         struct srp_request *req)
1549 {
1550         struct srp_target_port *target = ch->target;
1551         struct scatterlist *scat;
1552         struct srp_cmd *cmd = req->cmd->buf;
1553         int len, nents, count, ret;
1554         struct srp_device *dev;
1555         struct ib_device *ibdev;
1556         struct srp_map_state state;
1557         struct srp_indirect_buf *indirect_hdr;
1558         u32 idb_len, table_len;
1559         __be32 idb_rkey;
1560         u8 fmt;
1561
1562         if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1563                 return sizeof (struct srp_cmd);
1564
1565         if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1566             scmnd->sc_data_direction != DMA_TO_DEVICE) {
1567                 shost_printk(KERN_WARNING, target->scsi_host,
1568                              PFX "Unhandled data direction %d\n",
1569                              scmnd->sc_data_direction);
1570                 return -EINVAL;
1571         }
1572
1573         nents = scsi_sg_count(scmnd);
1574         scat  = scsi_sglist(scmnd);
1575
1576         dev = target->srp_host->srp_dev;
1577         ibdev = dev->dev;
1578
1579         count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1580         if (unlikely(count == 0))
1581                 return -EIO;
1582
1583         fmt = SRP_DATA_DESC_DIRECT;
1584         len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf);
1585
1586         if (count == 1 && target->global_mr) {
1587                 /*
1588                  * The midlayer only generated a single gather/scatter
1589                  * entry, or DMA mapping coalesced everything to a
1590                  * single entry.  So a direct descriptor along with
1591                  * the DMA MR suffices.
1592                  */
1593                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1594
1595                 buf->va  = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1596                 buf->key = cpu_to_be32(target->global_mr->rkey);
1597                 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1598
1599                 req->nmdesc = 0;
1600                 goto map_complete;
1601         }
1602
1603         /*
1604          * We have more than one scatter/gather entry, so build our indirect
1605          * descriptor table, trying to merge as many entries as we can.
1606          */
1607         indirect_hdr = (void *) cmd->add_data;
1608
1609         ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1610                                    target->indirect_size, DMA_TO_DEVICE);
1611
1612         memset(&state, 0, sizeof(state));
1613         if (dev->use_fast_reg)
1614                 srp_map_sg_fr(&state, ch, req, scat, count);
1615         else if (dev->use_fmr)
1616                 srp_map_sg_fmr(&state, ch, req, scat, count);
1617         else
1618                 srp_map_sg_dma(&state, ch, req, scat, count);
1619
1620         /* We've mapped the request, now pull as much of the indirect
1621          * descriptor table as we can into the command buffer. If this
1622          * target is not using an external indirect table, we are
1623          * guaranteed to fit into the command, as the SCSI layer won't
1624          * give us more S/G entries than we allow.
1625          */
1626         if (state.ndesc == 1) {
1627                 /*
1628                  * Memory registration collapsed the sg-list into one entry,
1629                  * so use a direct descriptor.
1630                  */
1631                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1632
1633                 *buf = req->indirect_desc[0];
1634                 goto map_complete;
1635         }
1636
1637         if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1638                                                 !target->allow_ext_sg)) {
1639                 shost_printk(KERN_ERR, target->scsi_host,
1640                              "Could not fit S/G list into SRP_CMD\n");
1641                 return -EIO;
1642         }
1643
1644         count = min(state.ndesc, target->cmd_sg_cnt);
1645         table_len = state.ndesc * sizeof (struct srp_direct_buf);
1646         idb_len = sizeof(struct srp_indirect_buf) + table_len;
1647
1648         fmt = SRP_DATA_DESC_INDIRECT;
1649         len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1650         len += count * sizeof (struct srp_direct_buf);
1651
1652         memcpy(indirect_hdr->desc_list, req->indirect_desc,
1653                count * sizeof (struct srp_direct_buf));
1654
1655         if (!target->global_mr) {
1656                 ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
1657                                   idb_len, &idb_rkey);
1658                 if (ret < 0)
1659                         return ret;
1660                 req->nmdesc++;
1661         } else {
1662                 idb_rkey = cpu_to_be32(target->global_mr->rkey);
1663         }
1664
1665         indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1666         indirect_hdr->table_desc.key = idb_rkey;
1667         indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1668         indirect_hdr->len = cpu_to_be32(state.total_len);
1669
1670         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1671                 cmd->data_out_desc_cnt = count;
1672         else
1673                 cmd->data_in_desc_cnt = count;
1674
1675         ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1676                                       DMA_TO_DEVICE);
1677
1678 map_complete:
1679         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1680                 cmd->buf_fmt = fmt << 4;
1681         else
1682                 cmd->buf_fmt = fmt;
1683
1684         return len;
1685 }
1686
1687 /*
1688  * Return an IU and possible credit to the free pool
1689  */
1690 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1691                           enum srp_iu_type iu_type)
1692 {
1693         unsigned long flags;
1694
1695         spin_lock_irqsave(&ch->lock, flags);
1696         list_add(&iu->list, &ch->free_tx);
1697         if (iu_type != SRP_IU_RSP)
1698                 ++ch->req_lim;
1699         spin_unlock_irqrestore(&ch->lock, flags);
1700 }
1701
1702 /*
1703  * Must be called with ch->lock held to protect req_lim and free_tx.
1704  * If IU is not sent, it must be returned using srp_put_tx_iu().
1705  *
1706  * Note:
1707  * An upper limit for the number of allocated information units for each
1708  * request type is:
1709  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1710  *   more than Scsi_Host.can_queue requests.
1711  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1712  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1713  *   one unanswered SRP request to an initiator.
1714  */
1715 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1716                                       enum srp_iu_type iu_type)
1717 {
1718         struct srp_target_port *target = ch->target;
1719         s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1720         struct srp_iu *iu;
1721
1722         srp_send_completion(ch->send_cq, ch);
1723
1724         if (list_empty(&ch->free_tx))
1725                 return NULL;
1726
1727         /* Initiator responses to target requests do not consume credits */
1728         if (iu_type != SRP_IU_RSP) {
1729                 if (ch->req_lim <= rsv) {
1730                         ++target->zero_req_lim;
1731                         return NULL;
1732                 }
1733
1734                 --ch->req_lim;
1735         }
1736
1737         iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1738         list_del(&iu->list);
1739         return iu;
1740 }
1741
1742 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1743 {
1744         struct srp_target_port *target = ch->target;
1745         struct ib_sge list;
1746         struct ib_send_wr wr, *bad_wr;
1747
1748         list.addr   = iu->dma;
1749         list.length = len;
1750         list.lkey   = target->lkey;
1751
1752         wr.next       = NULL;
1753         wr.wr_id      = (uintptr_t) iu;
1754         wr.sg_list    = &list;
1755         wr.num_sge    = 1;
1756         wr.opcode     = IB_WR_SEND;
1757         wr.send_flags = IB_SEND_SIGNALED;
1758
1759         return ib_post_send(ch->qp, &wr, &bad_wr);
1760 }
1761
1762 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1763 {
1764         struct srp_target_port *target = ch->target;
1765         struct ib_recv_wr wr, *bad_wr;
1766         struct ib_sge list;
1767
1768         list.addr   = iu->dma;
1769         list.length = iu->size;
1770         list.lkey   = target->lkey;
1771
1772         wr.next     = NULL;
1773         wr.wr_id    = (uintptr_t) iu;
1774         wr.sg_list  = &list;
1775         wr.num_sge  = 1;
1776
1777         return ib_post_recv(ch->qp, &wr, &bad_wr);
1778 }
1779
1780 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1781 {
1782         struct srp_target_port *target = ch->target;
1783         struct srp_request *req;
1784         struct scsi_cmnd *scmnd;
1785         unsigned long flags;
1786
1787         if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1788                 spin_lock_irqsave(&ch->lock, flags);
1789                 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1790                 spin_unlock_irqrestore(&ch->lock, flags);
1791
1792                 ch->tsk_mgmt_status = -1;
1793                 if (be32_to_cpu(rsp->resp_data_len) >= 4)
1794                         ch->tsk_mgmt_status = rsp->data[3];
1795                 complete(&ch->tsk_mgmt_done);
1796         } else {
1797                 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1798                 if (scmnd && scmnd->host_scribble) {
1799                         req = (void *)scmnd->host_scribble;
1800                         scmnd = srp_claim_req(ch, req, NULL, scmnd);
1801                 } else {
1802                         scmnd = NULL;
1803                 }
1804                 if (!scmnd) {
1805                         shost_printk(KERN_ERR, target->scsi_host,
1806                                      "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1807                                      rsp->tag, ch - target->ch, ch->qp->qp_num);
1808
1809                         spin_lock_irqsave(&ch->lock, flags);
1810                         ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1811                         spin_unlock_irqrestore(&ch->lock, flags);
1812
1813                         return;
1814                 }
1815                 scmnd->result = rsp->status;
1816
1817                 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1818                         memcpy(scmnd->sense_buffer, rsp->data +
1819                                be32_to_cpu(rsp->resp_data_len),
1820                                min_t(int, be32_to_cpu(rsp->sense_data_len),
1821                                      SCSI_SENSE_BUFFERSIZE));
1822                 }
1823
1824                 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1825                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1826                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1827                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1828                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1829                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1830                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1831                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1832
1833                 srp_free_req(ch, req, scmnd,
1834                              be32_to_cpu(rsp->req_lim_delta));
1835
1836                 scmnd->host_scribble = NULL;
1837                 scmnd->scsi_done(scmnd);
1838         }
1839 }
1840
1841 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1842                                void *rsp, int len)
1843 {
1844         struct srp_target_port *target = ch->target;
1845         struct ib_device *dev = target->srp_host->srp_dev->dev;
1846         unsigned long flags;
1847         struct srp_iu *iu;
1848         int err;
1849
1850         spin_lock_irqsave(&ch->lock, flags);
1851         ch->req_lim += req_delta;
1852         iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1853         spin_unlock_irqrestore(&ch->lock, flags);
1854
1855         if (!iu) {
1856                 shost_printk(KERN_ERR, target->scsi_host, PFX
1857                              "no IU available to send response\n");
1858                 return 1;
1859         }
1860
1861         ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1862         memcpy(iu->buf, rsp, len);
1863         ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1864
1865         err = srp_post_send(ch, iu, len);
1866         if (err) {
1867                 shost_printk(KERN_ERR, target->scsi_host, PFX
1868                              "unable to post response: %d\n", err);
1869                 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1870         }
1871
1872         return err;
1873 }
1874
1875 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1876                                  struct srp_cred_req *req)
1877 {
1878         struct srp_cred_rsp rsp = {
1879                 .opcode = SRP_CRED_RSP,
1880                 .tag = req->tag,
1881         };
1882         s32 delta = be32_to_cpu(req->req_lim_delta);
1883
1884         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1885                 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1886                              "problems processing SRP_CRED_REQ\n");
1887 }
1888
1889 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1890                                 struct srp_aer_req *req)
1891 {
1892         struct srp_target_port *target = ch->target;
1893         struct srp_aer_rsp rsp = {
1894                 .opcode = SRP_AER_RSP,
1895                 .tag = req->tag,
1896         };
1897         s32 delta = be32_to_cpu(req->req_lim_delta);
1898
1899         shost_printk(KERN_ERR, target->scsi_host, PFX
1900                      "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
1901
1902         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1903                 shost_printk(KERN_ERR, target->scsi_host, PFX
1904                              "problems processing SRP_AER_REQ\n");
1905 }
1906
1907 static void srp_handle_recv(struct srp_rdma_ch *ch, struct ib_wc *wc)
1908 {
1909         struct srp_target_port *target = ch->target;
1910         struct ib_device *dev = target->srp_host->srp_dev->dev;
1911         struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id;
1912         int res;
1913         u8 opcode;
1914
1915         ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
1916                                    DMA_FROM_DEVICE);
1917
1918         opcode = *(u8 *) iu->buf;
1919
1920         if (0) {
1921                 shost_printk(KERN_ERR, target->scsi_host,
1922                              PFX "recv completion, opcode 0x%02x\n", opcode);
1923                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1924                                iu->buf, wc->byte_len, true);
1925         }
1926
1927         switch (opcode) {
1928         case SRP_RSP:
1929                 srp_process_rsp(ch, iu->buf);
1930                 break;
1931
1932         case SRP_CRED_REQ:
1933                 srp_process_cred_req(ch, iu->buf);
1934                 break;
1935
1936         case SRP_AER_REQ:
1937                 srp_process_aer_req(ch, iu->buf);
1938                 break;
1939
1940         case SRP_T_LOGOUT:
1941                 /* XXX Handle target logout */
1942                 shost_printk(KERN_WARNING, target->scsi_host,
1943                              PFX "Got target logout request\n");
1944                 break;
1945
1946         default:
1947                 shost_printk(KERN_WARNING, target->scsi_host,
1948                              PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1949                 break;
1950         }
1951
1952         ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
1953                                       DMA_FROM_DEVICE);
1954
1955         res = srp_post_recv(ch, iu);
1956         if (res != 0)
1957                 shost_printk(KERN_ERR, target->scsi_host,
1958                              PFX "Recv failed with error code %d\n", res);
1959 }
1960
1961 /**
1962  * srp_tl_err_work() - handle a transport layer error
1963  * @work: Work structure embedded in an SRP target port.
1964  *
1965  * Note: This function may get invoked before the rport has been created,
1966  * hence the target->rport test.
1967  */
1968 static void srp_tl_err_work(struct work_struct *work)
1969 {
1970         struct srp_target_port *target;
1971
1972         target = container_of(work, struct srp_target_port, tl_err_work);
1973         if (target->rport)
1974                 srp_start_tl_fail_timers(target->rport);
1975 }
1976
1977 static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status,
1978                               bool send_err, struct srp_rdma_ch *ch)
1979 {
1980         struct srp_target_port *target = ch->target;
1981
1982         if (wr_id == SRP_LAST_WR_ID) {
1983                 complete(&ch->done);
1984                 return;
1985         }
1986
1987         if (ch->connected && !target->qp_in_error) {
1988                 if (wr_id & LOCAL_INV_WR_ID_MASK) {
1989                         shost_printk(KERN_ERR, target->scsi_host, PFX
1990                                      "LOCAL_INV failed with status %s (%d)\n",
1991                                      ib_wc_status_msg(wc_status), wc_status);
1992                 } else if (wr_id & FAST_REG_WR_ID_MASK) {
1993                         shost_printk(KERN_ERR, target->scsi_host, PFX
1994                                      "FAST_REG_MR failed status %s (%d)\n",
1995                                      ib_wc_status_msg(wc_status), wc_status);
1996                 } else {
1997                         shost_printk(KERN_ERR, target->scsi_host,
1998                                      PFX "failed %s status %s (%d) for iu %p\n",
1999                                      send_err ? "send" : "receive",
2000                                      ib_wc_status_msg(wc_status), wc_status,
2001                                      (void *)(uintptr_t)wr_id);
2002                 }
2003                 queue_work(system_long_wq, &target->tl_err_work);
2004         }
2005         target->qp_in_error = true;
2006 }
2007
2008 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr)
2009 {
2010         struct srp_rdma_ch *ch = ch_ptr;
2011         struct ib_wc wc;
2012
2013         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2014         while (ib_poll_cq(cq, 1, &wc) > 0) {
2015                 if (likely(wc.status == IB_WC_SUCCESS)) {
2016                         srp_handle_recv(ch, &wc);
2017                 } else {
2018                         srp_handle_qp_err(wc.wr_id, wc.status, false, ch);
2019                 }
2020         }
2021 }
2022
2023 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr)
2024 {
2025         struct srp_rdma_ch *ch = ch_ptr;
2026         struct ib_wc wc;
2027         struct srp_iu *iu;
2028
2029         while (ib_poll_cq(cq, 1, &wc) > 0) {
2030                 if (likely(wc.status == IB_WC_SUCCESS)) {
2031                         iu = (struct srp_iu *) (uintptr_t) wc.wr_id;
2032                         list_add(&iu->list, &ch->free_tx);
2033                 } else {
2034                         srp_handle_qp_err(wc.wr_id, wc.status, true, ch);
2035                 }
2036         }
2037 }
2038
2039 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
2040 {
2041         struct srp_target_port *target = host_to_target(shost);
2042         struct srp_rport *rport = target->rport;
2043         struct srp_rdma_ch *ch;
2044         struct srp_request *req;
2045         struct srp_iu *iu;
2046         struct srp_cmd *cmd;
2047         struct ib_device *dev;
2048         unsigned long flags;
2049         u32 tag;
2050         u16 idx;
2051         int len, ret;
2052         const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
2053
2054         /*
2055          * The SCSI EH thread is the only context from which srp_queuecommand()
2056          * can get invoked for blocked devices (SDEV_BLOCK /
2057          * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
2058          * locking the rport mutex if invoked from inside the SCSI EH.
2059          */
2060         if (in_scsi_eh)
2061                 mutex_lock(&rport->mutex);
2062
2063         scmnd->result = srp_chkready(target->rport);
2064         if (unlikely(scmnd->result))
2065                 goto err;
2066
2067         WARN_ON_ONCE(scmnd->request->tag < 0);
2068         tag = blk_mq_unique_tag(scmnd->request);
2069         ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2070         idx = blk_mq_unique_tag_to_tag(tag);
2071         WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2072                   dev_name(&shost->shost_gendev), tag, idx,
2073                   target->req_ring_size);
2074
2075         spin_lock_irqsave(&ch->lock, flags);
2076         iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2077         spin_unlock_irqrestore(&ch->lock, flags);
2078
2079         if (!iu)
2080                 goto err;
2081
2082         req = &ch->req_ring[idx];
2083         dev = target->srp_host->srp_dev->dev;
2084         ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2085                                    DMA_TO_DEVICE);
2086
2087         scmnd->host_scribble = (void *) req;
2088
2089         cmd = iu->buf;
2090         memset(cmd, 0, sizeof *cmd);
2091
2092         cmd->opcode = SRP_CMD;
2093         int_to_scsilun(scmnd->device->lun, &cmd->lun);
2094         cmd->tag    = tag;
2095         memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2096
2097         req->scmnd    = scmnd;
2098         req->cmd      = iu;
2099
2100         len = srp_map_data(scmnd, ch, req);
2101         if (len < 0) {
2102                 shost_printk(KERN_ERR, target->scsi_host,
2103                              PFX "Failed to map data (%d)\n", len);
2104                 /*
2105                  * If we ran out of memory descriptors (-ENOMEM) because an
2106                  * application is queuing many requests with more than
2107                  * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2108                  * to reduce queue depth temporarily.
2109                  */
2110                 scmnd->result = len == -ENOMEM ?
2111                         DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2112                 goto err_iu;
2113         }
2114
2115         ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2116                                       DMA_TO_DEVICE);
2117
2118         if (srp_post_send(ch, iu, len)) {
2119                 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2120                 goto err_unmap;
2121         }
2122
2123         ret = 0;
2124
2125 unlock_rport:
2126         if (in_scsi_eh)
2127                 mutex_unlock(&rport->mutex);
2128
2129         return ret;
2130
2131 err_unmap:
2132         srp_unmap_data(scmnd, ch, req);
2133
2134 err_iu:
2135         srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2136
2137         /*
2138          * Avoid that the loops that iterate over the request ring can
2139          * encounter a dangling SCSI command pointer.
2140          */
2141         req->scmnd = NULL;
2142
2143 err:
2144         if (scmnd->result) {
2145                 scmnd->scsi_done(scmnd);
2146                 ret = 0;
2147         } else {
2148                 ret = SCSI_MLQUEUE_HOST_BUSY;
2149         }
2150
2151         goto unlock_rport;
2152 }
2153
2154 /*
2155  * Note: the resources allocated in this function are freed in
2156  * srp_free_ch_ib().
2157  */
2158 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2159 {
2160         struct srp_target_port *target = ch->target;
2161         int i;
2162
2163         ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2164                               GFP_KERNEL);
2165         if (!ch->rx_ring)
2166                 goto err_no_ring;
2167         ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2168                               GFP_KERNEL);
2169         if (!ch->tx_ring)
2170                 goto err_no_ring;
2171
2172         for (i = 0; i < target->queue_size; ++i) {
2173                 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2174                                               ch->max_ti_iu_len,
2175                                               GFP_KERNEL, DMA_FROM_DEVICE);
2176                 if (!ch->rx_ring[i])
2177                         goto err;
2178         }
2179
2180         for (i = 0; i < target->queue_size; ++i) {
2181                 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2182                                               target->max_iu_len,
2183                                               GFP_KERNEL, DMA_TO_DEVICE);
2184                 if (!ch->tx_ring[i])
2185                         goto err;
2186
2187                 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2188         }
2189
2190         return 0;
2191
2192 err:
2193         for (i = 0; i < target->queue_size; ++i) {
2194                 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2195                 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2196         }
2197
2198
2199 err_no_ring:
2200         kfree(ch->tx_ring);
2201         ch->tx_ring = NULL;
2202         kfree(ch->rx_ring);
2203         ch->rx_ring = NULL;
2204
2205         return -ENOMEM;
2206 }
2207
2208 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2209 {
2210         uint64_t T_tr_ns, max_compl_time_ms;
2211         uint32_t rq_tmo_jiffies;
2212
2213         /*
2214          * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2215          * table 91), both the QP timeout and the retry count have to be set
2216          * for RC QP's during the RTR to RTS transition.
2217          */
2218         WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2219                      (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2220
2221         /*
2222          * Set target->rq_tmo_jiffies to one second more than the largest time
2223          * it can take before an error completion is generated. See also
2224          * C9-140..142 in the IBTA spec for more information about how to
2225          * convert the QP Local ACK Timeout value to nanoseconds.
2226          */
2227         T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2228         max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2229         do_div(max_compl_time_ms, NSEC_PER_MSEC);
2230         rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2231
2232         return rq_tmo_jiffies;
2233 }
2234
2235 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2236                                const struct srp_login_rsp *lrsp,
2237                                struct srp_rdma_ch *ch)
2238 {
2239         struct srp_target_port *target = ch->target;
2240         struct ib_qp_attr *qp_attr = NULL;
2241         int attr_mask = 0;
2242         int ret;
2243         int i;
2244
2245         if (lrsp->opcode == SRP_LOGIN_RSP) {
2246                 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2247                 ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2248
2249                 /*
2250                  * Reserve credits for task management so we don't
2251                  * bounce requests back to the SCSI mid-layer.
2252                  */
2253                 target->scsi_host->can_queue
2254                         = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2255                               target->scsi_host->can_queue);
2256                 target->scsi_host->cmd_per_lun
2257                         = min_t(int, target->scsi_host->can_queue,
2258                                 target->scsi_host->cmd_per_lun);
2259         } else {
2260                 shost_printk(KERN_WARNING, target->scsi_host,
2261                              PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2262                 ret = -ECONNRESET;
2263                 goto error;
2264         }
2265
2266         if (!ch->rx_ring) {
2267                 ret = srp_alloc_iu_bufs(ch);
2268                 if (ret)
2269                         goto error;
2270         }
2271
2272         ret = -ENOMEM;
2273         qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2274         if (!qp_attr)
2275                 goto error;
2276
2277         qp_attr->qp_state = IB_QPS_RTR;
2278         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2279         if (ret)
2280                 goto error_free;
2281
2282         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2283         if (ret)
2284                 goto error_free;
2285
2286         for (i = 0; i < target->queue_size; i++) {
2287                 struct srp_iu *iu = ch->rx_ring[i];
2288
2289                 ret = srp_post_recv(ch, iu);
2290                 if (ret)
2291                         goto error_free;
2292         }
2293
2294         qp_attr->qp_state = IB_QPS_RTS;
2295         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2296         if (ret)
2297                 goto error_free;
2298
2299         target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2300
2301         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2302         if (ret)
2303                 goto error_free;
2304
2305         ret = ib_send_cm_rtu(cm_id, NULL, 0);
2306
2307 error_free:
2308         kfree(qp_attr);
2309
2310 error:
2311         ch->status = ret;
2312 }
2313
2314 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2315                                struct ib_cm_event *event,
2316                                struct srp_rdma_ch *ch)
2317 {
2318         struct srp_target_port *target = ch->target;
2319         struct Scsi_Host *shost = target->scsi_host;
2320         struct ib_class_port_info *cpi;
2321         int opcode;
2322
2323         switch (event->param.rej_rcvd.reason) {
2324         case IB_CM_REJ_PORT_CM_REDIRECT:
2325                 cpi = event->param.rej_rcvd.ari;
2326                 ch->path.dlid = cpi->redirect_lid;
2327                 ch->path.pkey = cpi->redirect_pkey;
2328                 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2329                 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2330
2331                 ch->status = ch->path.dlid ?
2332                         SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2333                 break;
2334
2335         case IB_CM_REJ_PORT_REDIRECT:
2336                 if (srp_target_is_topspin(target)) {
2337                         /*
2338                          * Topspin/Cisco SRP gateways incorrectly send
2339                          * reject reason code 25 when they mean 24
2340                          * (port redirect).
2341                          */
2342                         memcpy(ch->path.dgid.raw,
2343                                event->param.rej_rcvd.ari, 16);
2344
2345                         shost_printk(KERN_DEBUG, shost,
2346                                      PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2347                                      be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2348                                      be64_to_cpu(ch->path.dgid.global.interface_id));
2349
2350                         ch->status = SRP_PORT_REDIRECT;
2351                 } else {
2352                         shost_printk(KERN_WARNING, shost,
2353                                      "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2354                         ch->status = -ECONNRESET;
2355                 }
2356                 break;
2357
2358         case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2359                 shost_printk(KERN_WARNING, shost,
2360                             "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2361                 ch->status = -ECONNRESET;
2362                 break;
2363
2364         case IB_CM_REJ_CONSUMER_DEFINED:
2365                 opcode = *(u8 *) event->private_data;
2366                 if (opcode == SRP_LOGIN_REJ) {
2367                         struct srp_login_rej *rej = event->private_data;
2368                         u32 reason = be32_to_cpu(rej->reason);
2369
2370                         if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2371                                 shost_printk(KERN_WARNING, shost,
2372                                              PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2373                         else
2374                                 shost_printk(KERN_WARNING, shost, PFX
2375                                              "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2376                                              target->sgid.raw,
2377                                              target->orig_dgid.raw, reason);
2378                 } else
2379                         shost_printk(KERN_WARNING, shost,
2380                                      "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2381                                      " opcode 0x%02x\n", opcode);
2382                 ch->status = -ECONNRESET;
2383                 break;
2384
2385         case IB_CM_REJ_STALE_CONN:
2386                 shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2387                 ch->status = SRP_STALE_CONN;
2388                 break;
2389
2390         default:
2391                 shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2392                              event->param.rej_rcvd.reason);
2393                 ch->status = -ECONNRESET;
2394         }
2395 }
2396
2397 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2398 {
2399         struct srp_rdma_ch *ch = cm_id->context;
2400         struct srp_target_port *target = ch->target;
2401         int comp = 0;
2402
2403         switch (event->event) {
2404         case IB_CM_REQ_ERROR:
2405                 shost_printk(KERN_DEBUG, target->scsi_host,
2406                              PFX "Sending CM REQ failed\n");
2407                 comp = 1;
2408                 ch->status = -ECONNRESET;
2409                 break;
2410
2411         case IB_CM_REP_RECEIVED:
2412                 comp = 1;
2413                 srp_cm_rep_handler(cm_id, event->private_data, ch);
2414                 break;
2415
2416         case IB_CM_REJ_RECEIVED:
2417                 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2418                 comp = 1;
2419
2420                 srp_cm_rej_handler(cm_id, event, ch);
2421                 break;
2422
2423         case IB_CM_DREQ_RECEIVED:
2424                 shost_printk(KERN_WARNING, target->scsi_host,
2425                              PFX "DREQ received - connection closed\n");
2426                 ch->connected = false;
2427                 if (ib_send_cm_drep(cm_id, NULL, 0))
2428                         shost_printk(KERN_ERR, target->scsi_host,
2429                                      PFX "Sending CM DREP failed\n");
2430                 queue_work(system_long_wq, &target->tl_err_work);
2431                 break;
2432
2433         case IB_CM_TIMEWAIT_EXIT:
2434                 shost_printk(KERN_ERR, target->scsi_host,
2435                              PFX "connection closed\n");
2436                 comp = 1;
2437
2438                 ch->status = 0;
2439                 break;
2440
2441         case IB_CM_MRA_RECEIVED:
2442         case IB_CM_DREQ_ERROR:
2443         case IB_CM_DREP_RECEIVED:
2444                 break;
2445
2446         default:
2447                 shost_printk(KERN_WARNING, target->scsi_host,
2448                              PFX "Unhandled CM event %d\n", event->event);
2449                 break;
2450         }
2451
2452         if (comp)
2453                 complete(&ch->done);
2454
2455         return 0;
2456 }
2457
2458 /**
2459  * srp_change_queue_depth - setting device queue depth
2460  * @sdev: scsi device struct
2461  * @qdepth: requested queue depth
2462  *
2463  * Returns queue depth.
2464  */
2465 static int
2466 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2467 {
2468         if (!sdev->tagged_supported)
2469                 qdepth = 1;
2470         return scsi_change_queue_depth(sdev, qdepth);
2471 }
2472
2473 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2474                              u8 func)
2475 {
2476         struct srp_target_port *target = ch->target;
2477         struct srp_rport *rport = target->rport;
2478         struct ib_device *dev = target->srp_host->srp_dev->dev;
2479         struct srp_iu *iu;
2480         struct srp_tsk_mgmt *tsk_mgmt;
2481
2482         if (!ch->connected || target->qp_in_error)
2483                 return -1;
2484
2485         init_completion(&ch->tsk_mgmt_done);
2486
2487         /*
2488          * Lock the rport mutex to avoid that srp_create_ch_ib() is
2489          * invoked while a task management function is being sent.
2490          */
2491         mutex_lock(&rport->mutex);
2492         spin_lock_irq(&ch->lock);
2493         iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2494         spin_unlock_irq(&ch->lock);
2495
2496         if (!iu) {
2497                 mutex_unlock(&rport->mutex);
2498
2499                 return -1;
2500         }
2501
2502         ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2503                                    DMA_TO_DEVICE);
2504         tsk_mgmt = iu->buf;
2505         memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2506
2507         tsk_mgmt->opcode        = SRP_TSK_MGMT;
2508         int_to_scsilun(lun, &tsk_mgmt->lun);
2509         tsk_mgmt->tag           = req_tag | SRP_TAG_TSK_MGMT;
2510         tsk_mgmt->tsk_mgmt_func = func;
2511         tsk_mgmt->task_tag      = req_tag;
2512
2513         ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2514                                       DMA_TO_DEVICE);
2515         if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2516                 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2517                 mutex_unlock(&rport->mutex);
2518
2519                 return -1;
2520         }
2521         mutex_unlock(&rport->mutex);
2522
2523         if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2524                                          msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2525                 return -1;
2526
2527         return 0;
2528 }
2529
2530 static int srp_abort(struct scsi_cmnd *scmnd)
2531 {
2532         struct srp_target_port *target = host_to_target(scmnd->device->host);
2533         struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2534         u32 tag;
2535         u16 ch_idx;
2536         struct srp_rdma_ch *ch;
2537         int ret;
2538
2539         shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2540
2541         if (!req)
2542                 return SUCCESS;
2543         tag = blk_mq_unique_tag(scmnd->request);
2544         ch_idx = blk_mq_unique_tag_to_hwq(tag);
2545         if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2546                 return SUCCESS;
2547         ch = &target->ch[ch_idx];
2548         if (!srp_claim_req(ch, req, NULL, scmnd))
2549                 return SUCCESS;
2550         shost_printk(KERN_ERR, target->scsi_host,
2551                      "Sending SRP abort for tag %#x\n", tag);
2552         if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2553                               SRP_TSK_ABORT_TASK) == 0)
2554                 ret = SUCCESS;
2555         else if (target->rport->state == SRP_RPORT_LOST)
2556                 ret = FAST_IO_FAIL;
2557         else
2558                 ret = FAILED;
2559         srp_free_req(ch, req, scmnd, 0);
2560         scmnd->result = DID_ABORT << 16;
2561         scmnd->scsi_done(scmnd);
2562
2563         return ret;
2564 }
2565
2566 static int srp_reset_device(struct scsi_cmnd *scmnd)
2567 {
2568         struct srp_target_port *target = host_to_target(scmnd->device->host);
2569         struct srp_rdma_ch *ch;
2570         int i;
2571
2572         shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2573
2574         ch = &target->ch[0];
2575         if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2576                               SRP_TSK_LUN_RESET))
2577                 return FAILED;
2578         if (ch->tsk_mgmt_status)
2579                 return FAILED;
2580
2581         for (i = 0; i < target->ch_count; i++) {
2582                 ch = &target->ch[i];
2583                 for (i = 0; i < target->req_ring_size; ++i) {
2584                         struct srp_request *req = &ch->req_ring[i];
2585
2586                         srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2587                 }
2588         }
2589
2590         return SUCCESS;
2591 }
2592
2593 static int srp_reset_host(struct scsi_cmnd *scmnd)
2594 {
2595         struct srp_target_port *target = host_to_target(scmnd->device->host);
2596
2597         shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2598
2599         return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2600 }
2601
2602 static int srp_slave_configure(struct scsi_device *sdev)
2603 {
2604         struct Scsi_Host *shost = sdev->host;
2605         struct srp_target_port *target = host_to_target(shost);
2606         struct request_queue *q = sdev->request_queue;
2607         unsigned long timeout;
2608
2609         if (sdev->type == TYPE_DISK) {
2610                 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2611                 blk_queue_rq_timeout(q, timeout);
2612         }
2613
2614         return 0;
2615 }
2616
2617 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2618                            char *buf)
2619 {
2620         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2621
2622         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2623 }
2624
2625 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2626                              char *buf)
2627 {
2628         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2629
2630         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2631 }
2632
2633 static ssize_t show_service_id(struct device *dev,
2634                                struct device_attribute *attr, char *buf)
2635 {
2636         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2637
2638         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2639 }
2640
2641 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2642                          char *buf)
2643 {
2644         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2645
2646         return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2647 }
2648
2649 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2650                          char *buf)
2651 {
2652         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2653
2654         return sprintf(buf, "%pI6\n", target->sgid.raw);
2655 }
2656
2657 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2658                          char *buf)
2659 {
2660         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2661         struct srp_rdma_ch *ch = &target->ch[0];
2662
2663         return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2664 }
2665
2666 static ssize_t show_orig_dgid(struct device *dev,
2667                               struct device_attribute *attr, char *buf)
2668 {
2669         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2670
2671         return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2672 }
2673
2674 static ssize_t show_req_lim(struct device *dev,
2675                             struct device_attribute *attr, char *buf)
2676 {
2677         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2678         struct srp_rdma_ch *ch;
2679         int i, req_lim = INT_MAX;
2680
2681         for (i = 0; i < target->ch_count; i++) {
2682                 ch = &target->ch[i];
2683                 req_lim = min(req_lim, ch->req_lim);
2684         }
2685         return sprintf(buf, "%d\n", req_lim);
2686 }
2687
2688 static ssize_t show_zero_req_lim(struct device *dev,
2689                                  struct device_attribute *attr, char *buf)
2690 {
2691         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2692
2693         return sprintf(buf, "%d\n", target->zero_req_lim);
2694 }
2695
2696 static ssize_t show_local_ib_port(struct device *dev,
2697                                   struct device_attribute *attr, char *buf)
2698 {
2699         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2700
2701         return sprintf(buf, "%d\n", target->srp_host->port);
2702 }
2703
2704 static ssize_t show_local_ib_device(struct device *dev,
2705                                     struct device_attribute *attr, char *buf)
2706 {
2707         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2708
2709         return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2710 }
2711
2712 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2713                              char *buf)
2714 {
2715         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2716
2717         return sprintf(buf, "%d\n", target->ch_count);
2718 }
2719
2720 static ssize_t show_comp_vector(struct device *dev,
2721                                 struct device_attribute *attr, char *buf)
2722 {
2723         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2724
2725         return sprintf(buf, "%d\n", target->comp_vector);
2726 }
2727
2728 static ssize_t show_tl_retry_count(struct device *dev,
2729                                    struct device_attribute *attr, char *buf)
2730 {
2731         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2732
2733         return sprintf(buf, "%d\n", target->tl_retry_count);
2734 }
2735
2736 static ssize_t show_cmd_sg_entries(struct device *dev,
2737                                    struct device_attribute *attr, char *buf)
2738 {
2739         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2740
2741         return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2742 }
2743
2744 static ssize_t show_allow_ext_sg(struct device *dev,
2745                                  struct device_attribute *attr, char *buf)
2746 {
2747         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2748
2749         return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2750 }
2751
2752 static DEVICE_ATTR(id_ext,          S_IRUGO, show_id_ext,          NULL);
2753 static DEVICE_ATTR(ioc_guid,        S_IRUGO, show_ioc_guid,        NULL);
2754 static DEVICE_ATTR(service_id,      S_IRUGO, show_service_id,      NULL);
2755 static DEVICE_ATTR(pkey,            S_IRUGO, show_pkey,            NULL);
2756 static DEVICE_ATTR(sgid,            S_IRUGO, show_sgid,            NULL);
2757 static DEVICE_ATTR(dgid,            S_IRUGO, show_dgid,            NULL);
2758 static DEVICE_ATTR(orig_dgid,       S_IRUGO, show_orig_dgid,       NULL);
2759 static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
2760 static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,    NULL);
2761 static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
2762 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2763 static DEVICE_ATTR(ch_count,        S_IRUGO, show_ch_count,        NULL);
2764 static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
2765 static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
2766 static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
2767 static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
2768
2769 static struct device_attribute *srp_host_attrs[] = {
2770         &dev_attr_id_ext,
2771         &dev_attr_ioc_guid,
2772         &dev_attr_service_id,
2773         &dev_attr_pkey,
2774         &dev_attr_sgid,
2775         &dev_attr_dgid,
2776         &dev_attr_orig_dgid,
2777         &dev_attr_req_lim,
2778         &dev_attr_zero_req_lim,
2779         &dev_attr_local_ib_port,
2780         &dev_attr_local_ib_device,
2781         &dev_attr_ch_count,
2782         &dev_attr_comp_vector,
2783         &dev_attr_tl_retry_count,
2784         &dev_attr_cmd_sg_entries,
2785         &dev_attr_allow_ext_sg,
2786         NULL
2787 };
2788
2789 static struct scsi_host_template srp_template = {
2790         .module                         = THIS_MODULE,
2791         .name                           = "InfiniBand SRP initiator",
2792         .proc_name                      = DRV_NAME,
2793         .slave_configure                = srp_slave_configure,
2794         .info                           = srp_target_info,
2795         .queuecommand                   = srp_queuecommand,
2796         .change_queue_depth             = srp_change_queue_depth,
2797         .eh_abort_handler               = srp_abort,
2798         .eh_device_reset_handler        = srp_reset_device,
2799         .eh_host_reset_handler          = srp_reset_host,
2800         .skip_settle_delay              = true,
2801         .sg_tablesize                   = SRP_DEF_SG_TABLESIZE,
2802         .can_queue                      = SRP_DEFAULT_CMD_SQ_SIZE,
2803         .this_id                        = -1,
2804         .cmd_per_lun                    = SRP_DEFAULT_CMD_SQ_SIZE,
2805         .use_clustering                 = ENABLE_CLUSTERING,
2806         .shost_attrs                    = srp_host_attrs,
2807         .track_queue_depth              = 1,
2808 };
2809
2810 static int srp_sdev_count(struct Scsi_Host *host)
2811 {
2812         struct scsi_device *sdev;
2813         int c = 0;
2814
2815         shost_for_each_device(sdev, host)
2816                 c++;
2817
2818         return c;
2819 }
2820
2821 /*
2822  * Return values:
2823  * < 0 upon failure. Caller is responsible for SRP target port cleanup.
2824  * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
2825  *    removal has been scheduled.
2826  * 0 and target->state != SRP_TARGET_REMOVED upon success.
2827  */
2828 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2829 {
2830         struct srp_rport_identifiers ids;
2831         struct srp_rport *rport;
2832
2833         target->state = SRP_TARGET_SCANNING;
2834         sprintf(target->target_name, "SRP.T10:%016llX",
2835                 be64_to_cpu(target->id_ext));
2836
2837         if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2838                 return -ENODEV;
2839
2840         memcpy(ids.port_id, &target->id_ext, 8);
2841         memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2842         ids.roles = SRP_RPORT_ROLE_TARGET;
2843         rport = srp_rport_add(target->scsi_host, &ids);
2844         if (IS_ERR(rport)) {
2845                 scsi_remove_host(target->scsi_host);
2846                 return PTR_ERR(rport);
2847         }
2848
2849         rport->lld_data = target;
2850         target->rport = rport;
2851
2852         spin_lock(&host->target_lock);
2853         list_add_tail(&target->list, &host->target_list);
2854         spin_unlock(&host->target_lock);
2855
2856         scsi_scan_target(&target->scsi_host->shost_gendev,
2857                          0, target->scsi_id, SCAN_WILD_CARD, 0);
2858
2859         if (srp_connected_ch(target) < target->ch_count ||
2860             target->qp_in_error) {
2861                 shost_printk(KERN_INFO, target->scsi_host,
2862                              PFX "SCSI scan failed - removing SCSI host\n");
2863                 srp_queue_remove_work(target);
2864                 goto out;
2865         }
2866
2867         pr_debug(PFX "%s: SCSI scan succeeded - detected %d LUNs\n",
2868                  dev_name(&target->scsi_host->shost_gendev),
2869                  srp_sdev_count(target->scsi_host));
2870
2871         spin_lock_irq(&target->lock);
2872         if (target->state == SRP_TARGET_SCANNING)
2873                 target->state = SRP_TARGET_LIVE;
2874         spin_unlock_irq(&target->lock);
2875
2876 out:
2877         return 0;
2878 }
2879
2880 static void srp_release_dev(struct device *dev)
2881 {
2882         struct srp_host *host =
2883                 container_of(dev, struct srp_host, dev);
2884
2885         complete(&host->released);
2886 }
2887
2888 static struct class srp_class = {
2889         .name    = "infiniband_srp",
2890         .dev_release = srp_release_dev
2891 };
2892
2893 /**
2894  * srp_conn_unique() - check whether the connection to a target is unique
2895  * @host:   SRP host.
2896  * @target: SRP target port.
2897  */
2898 static bool srp_conn_unique(struct srp_host *host,
2899                             struct srp_target_port *target)
2900 {
2901         struct srp_target_port *t;
2902         bool ret = false;
2903
2904         if (target->state == SRP_TARGET_REMOVED)
2905                 goto out;
2906
2907         ret = true;
2908
2909         spin_lock(&host->target_lock);
2910         list_for_each_entry(t, &host->target_list, list) {
2911                 if (t != target &&
2912                     target->id_ext == t->id_ext &&
2913                     target->ioc_guid == t->ioc_guid &&
2914                     target->initiator_ext == t->initiator_ext) {
2915                         ret = false;
2916                         break;
2917                 }
2918         }
2919         spin_unlock(&host->target_lock);
2920
2921 out:
2922         return ret;
2923 }
2924
2925 /*
2926  * Target ports are added by writing
2927  *
2928  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2929  *     pkey=<P_Key>,service_id=<service ID>
2930  *
2931  * to the add_target sysfs attribute.
2932  */
2933 enum {
2934         SRP_OPT_ERR             = 0,
2935         SRP_OPT_ID_EXT          = 1 << 0,
2936         SRP_OPT_IOC_GUID        = 1 << 1,
2937         SRP_OPT_DGID            = 1 << 2,
2938         SRP_OPT_PKEY            = 1 << 3,
2939         SRP_OPT_SERVICE_ID      = 1 << 4,
2940         SRP_OPT_MAX_SECT        = 1 << 5,
2941         SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
2942         SRP_OPT_IO_CLASS        = 1 << 7,
2943         SRP_OPT_INITIATOR_EXT   = 1 << 8,
2944         SRP_OPT_CMD_SG_ENTRIES  = 1 << 9,
2945         SRP_OPT_ALLOW_EXT_SG    = 1 << 10,
2946         SRP_OPT_SG_TABLESIZE    = 1 << 11,
2947         SRP_OPT_COMP_VECTOR     = 1 << 12,
2948         SRP_OPT_TL_RETRY_COUNT  = 1 << 13,
2949         SRP_OPT_QUEUE_SIZE      = 1 << 14,
2950         SRP_OPT_ALL             = (SRP_OPT_ID_EXT       |
2951                                    SRP_OPT_IOC_GUID     |
2952                                    SRP_OPT_DGID         |
2953                                    SRP_OPT_PKEY         |
2954                                    SRP_OPT_SERVICE_ID),
2955 };
2956
2957 static const match_table_t srp_opt_tokens = {
2958         { SRP_OPT_ID_EXT,               "id_ext=%s"             },
2959         { SRP_OPT_IOC_GUID,             "ioc_guid=%s"           },
2960         { SRP_OPT_DGID,                 "dgid=%s"               },
2961         { SRP_OPT_PKEY,                 "pkey=%x"               },
2962         { SRP_OPT_SERVICE_ID,           "service_id=%s"         },
2963         { SRP_OPT_MAX_SECT,             "max_sect=%d"           },
2964         { SRP_OPT_MAX_CMD_PER_LUN,      "max_cmd_per_lun=%d"    },
2965         { SRP_OPT_IO_CLASS,             "io_class=%x"           },
2966         { SRP_OPT_INITIATOR_EXT,        "initiator_ext=%s"      },
2967         { SRP_OPT_CMD_SG_ENTRIES,       "cmd_sg_entries=%u"     },
2968         { SRP_OPT_ALLOW_EXT_SG,         "allow_ext_sg=%u"       },
2969         { SRP_OPT_SG_TABLESIZE,         "sg_tablesize=%u"       },
2970         { SRP_OPT_COMP_VECTOR,          "comp_vector=%u"        },
2971         { SRP_OPT_TL_RETRY_COUNT,       "tl_retry_count=%u"     },
2972         { SRP_OPT_QUEUE_SIZE,           "queue_size=%d"         },
2973         { SRP_OPT_ERR,                  NULL                    }
2974 };
2975
2976 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2977 {
2978         char *options, *sep_opt;
2979         char *p;
2980         char dgid[3];
2981         substring_t args[MAX_OPT_ARGS];
2982         int opt_mask = 0;
2983         int token;
2984         int ret = -EINVAL;
2985         int i;
2986
2987         options = kstrdup(buf, GFP_KERNEL);
2988         if (!options)
2989                 return -ENOMEM;
2990
2991         sep_opt = options;
2992         while ((p = strsep(&sep_opt, ",\n")) != NULL) {
2993                 if (!*p)
2994                         continue;
2995
2996                 token = match_token(p, srp_opt_tokens, args);
2997                 opt_mask |= token;
2998
2999                 switch (token) {
3000                 case SRP_OPT_ID_EXT:
3001                         p = match_strdup(args);
3002                         if (!p) {
3003                                 ret = -ENOMEM;
3004                                 goto out;
3005                         }
3006                         target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3007                         kfree(p);
3008                         break;
3009
3010                 case SRP_OPT_IOC_GUID:
3011                         p = match_strdup(args);
3012                         if (!p) {
3013                                 ret = -ENOMEM;
3014                                 goto out;
3015                         }
3016                         target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
3017                         kfree(p);
3018                         break;
3019
3020                 case SRP_OPT_DGID:
3021                         p = match_strdup(args);
3022                         if (!p) {
3023                                 ret = -ENOMEM;
3024                                 goto out;
3025                         }
3026                         if (strlen(p) != 32) {
3027                                 pr_warn("bad dest GID parameter '%s'\n", p);
3028                                 kfree(p);
3029                                 goto out;
3030                         }
3031
3032                         for (i = 0; i < 16; ++i) {
3033                                 strlcpy(dgid, p + i * 2, sizeof(dgid));
3034                                 if (sscanf(dgid, "%hhx",
3035                                            &target->orig_dgid.raw[i]) < 1) {
3036                                         ret = -EINVAL;
3037                                         kfree(p);
3038                                         goto out;
3039                                 }
3040                         }
3041                         kfree(p);
3042                         break;
3043
3044                 case SRP_OPT_PKEY:
3045                         if (match_hex(args, &token)) {
3046                                 pr_warn("bad P_Key parameter '%s'\n", p);
3047                                 goto out;
3048                         }
3049                         target->pkey = cpu_to_be16(token);
3050                         break;
3051
3052                 case SRP_OPT_SERVICE_ID:
3053                         p = match_strdup(args);
3054                         if (!p) {
3055                                 ret = -ENOMEM;
3056                                 goto out;
3057                         }
3058                         target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
3059                         kfree(p);
3060                         break;
3061
3062                 case SRP_OPT_MAX_SECT:
3063                         if (match_int(args, &token)) {
3064                                 pr_warn("bad max sect parameter '%s'\n", p);
3065                                 goto out;
3066                         }
3067                         target->scsi_host->max_sectors = token;
3068                         break;
3069
3070                 case SRP_OPT_QUEUE_SIZE:
3071                         if (match_int(args, &token) || token < 1) {
3072                                 pr_warn("bad queue_size parameter '%s'\n", p);
3073                                 goto out;
3074                         }
3075                         target->scsi_host->can_queue = token;
3076                         target->queue_size = token + SRP_RSP_SQ_SIZE +
3077                                              SRP_TSK_MGMT_SQ_SIZE;
3078                         if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3079                                 target->scsi_host->cmd_per_lun = token;
3080                         break;
3081
3082                 case SRP_OPT_MAX_CMD_PER_LUN:
3083                         if (match_int(args, &token) || token < 1) {
3084                                 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3085                                         p);
3086                                 goto out;
3087                         }
3088                         target->scsi_host->cmd_per_lun = token;
3089                         break;
3090
3091                 case SRP_OPT_IO_CLASS:
3092                         if (match_hex(args, &token)) {
3093                                 pr_warn("bad IO class parameter '%s'\n", p);
3094                                 goto out;
3095                         }
3096                         if (token != SRP_REV10_IB_IO_CLASS &&
3097                             token != SRP_REV16A_IB_IO_CLASS) {
3098                                 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3099                                         token, SRP_REV10_IB_IO_CLASS,
3100                                         SRP_REV16A_IB_IO_CLASS);
3101                                 goto out;
3102                         }
3103                         target->io_class = token;
3104                         break;
3105
3106                 case SRP_OPT_INITIATOR_EXT:
3107                         p = match_strdup(args);
3108                         if (!p) {
3109                                 ret = -ENOMEM;
3110                                 goto out;
3111                         }
3112                         target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3113                         kfree(p);
3114                         break;
3115
3116                 case SRP_OPT_CMD_SG_ENTRIES:
3117                         if (match_int(args, &token) || token < 1 || token > 255) {
3118                                 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3119                                         p);
3120                                 goto out;
3121                         }
3122                         target->cmd_sg_cnt = token;
3123                         break;
3124
3125                 case SRP_OPT_ALLOW_EXT_SG:
3126                         if (match_int(args, &token)) {
3127                                 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3128                                 goto out;
3129                         }
3130                         target->allow_ext_sg = !!token;
3131                         break;
3132
3133                 case SRP_OPT_SG_TABLESIZE:
3134                         if (match_int(args, &token) || token < 1 ||
3135                                         token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
3136                                 pr_warn("bad max sg_tablesize parameter '%s'\n",
3137                                         p);
3138                                 goto out;
3139                         }
3140                         target->sg_tablesize = token;
3141                         break;
3142
3143                 case SRP_OPT_COMP_VECTOR:
3144                         if (match_int(args, &token) || token < 0) {
3145                                 pr_warn("bad comp_vector parameter '%s'\n", p);
3146                                 goto out;
3147                         }
3148                         target->comp_vector = token;
3149                         break;
3150
3151                 case SRP_OPT_TL_RETRY_COUNT:
3152                         if (match_int(args, &token) || token < 2 || token > 7) {
3153                                 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3154                                         p);
3155                                 goto out;
3156                         }
3157                         target->tl_retry_count = token;
3158                         break;
3159
3160                 default:
3161                         pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3162                                 p);
3163                         goto out;
3164                 }
3165         }
3166
3167         if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3168                 ret = 0;
3169         else
3170                 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3171                         if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3172                             !(srp_opt_tokens[i].token & opt_mask))
3173                                 pr_warn("target creation request is missing parameter '%s'\n",
3174                                         srp_opt_tokens[i].pattern);
3175
3176         if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3177             && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3178                 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3179                         target->scsi_host->cmd_per_lun,
3180                         target->scsi_host->can_queue);
3181
3182 out:
3183         kfree(options);
3184         return ret;
3185 }
3186
3187 static ssize_t srp_create_target(struct device *dev,
3188                                  struct device_attribute *attr,
3189                                  const char *buf, size_t count)
3190 {
3191         struct srp_host *host =
3192                 container_of(dev, struct srp_host, dev);
3193         struct Scsi_Host *target_host;
3194         struct srp_target_port *target;
3195         struct srp_rdma_ch *ch;
3196         struct srp_device *srp_dev = host->srp_dev;
3197         struct ib_device *ibdev = srp_dev->dev;
3198         int ret, node_idx, node, cpu, i;
3199         bool multich = false;
3200
3201         target_host = scsi_host_alloc(&srp_template,
3202                                       sizeof (struct srp_target_port));
3203         if (!target_host)
3204                 return -ENOMEM;
3205
3206         target_host->transportt  = ib_srp_transport_template;
3207         target_host->max_channel = 0;
3208         target_host->max_id      = 1;
3209         target_host->max_lun     = -1LL;
3210         target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3211
3212         target = host_to_target(target_host);
3213
3214         target->io_class        = SRP_REV16A_IB_IO_CLASS;
3215         target->scsi_host       = target_host;
3216         target->srp_host        = host;
3217         target->lkey            = host->srp_dev->pd->local_dma_lkey;
3218         target->global_mr       = host->srp_dev->global_mr;
3219         target->cmd_sg_cnt      = cmd_sg_entries;
3220         target->sg_tablesize    = indirect_sg_entries ? : cmd_sg_entries;
3221         target->allow_ext_sg    = allow_ext_sg;
3222         target->tl_retry_count  = 7;
3223         target->queue_size      = SRP_DEFAULT_QUEUE_SIZE;
3224
3225         /*
3226          * Avoid that the SCSI host can be removed by srp_remove_target()
3227          * before this function returns.
3228          */
3229         scsi_host_get(target->scsi_host);
3230
3231         mutex_lock(&host->add_target_mutex);
3232
3233         ret = srp_parse_options(buf, target);
3234         if (ret)
3235                 goto out;
3236
3237         target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3238
3239         if (!srp_conn_unique(target->srp_host, target)) {
3240                 shost_printk(KERN_INFO, target->scsi_host,
3241                              PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3242                              be64_to_cpu(target->id_ext),
3243                              be64_to_cpu(target->ioc_guid),
3244                              be64_to_cpu(target->initiator_ext));
3245                 ret = -EEXIST;
3246                 goto out;
3247         }
3248
3249         if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3250             target->cmd_sg_cnt < target->sg_tablesize) {
3251                 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3252                 target->sg_tablesize = target->cmd_sg_cnt;
3253         }
3254
3255         target_host->sg_tablesize = target->sg_tablesize;
3256         target->indirect_size = target->sg_tablesize *
3257                                 sizeof (struct srp_direct_buf);
3258         target->max_iu_len = sizeof (struct srp_cmd) +
3259                              sizeof (struct srp_indirect_buf) +
3260                              target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3261
3262         INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3263         INIT_WORK(&target->remove_work, srp_remove_work);
3264         spin_lock_init(&target->lock);
3265         ret = ib_query_gid(ibdev, host->port, 0, &target->sgid, NULL);
3266         if (ret)
3267                 goto out;
3268
3269         ret = -ENOMEM;
3270         target->ch_count = max_t(unsigned, num_online_nodes(),
3271                                  min(ch_count ? :
3272                                      min(4 * num_online_nodes(),
3273                                          ibdev->num_comp_vectors),
3274                                      num_online_cpus()));
3275         target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3276                              GFP_KERNEL);
3277         if (!target->ch)
3278                 goto out;
3279
3280         node_idx = 0;
3281         for_each_online_node(node) {
3282                 const int ch_start = (node_idx * target->ch_count /
3283                                       num_online_nodes());
3284                 const int ch_end = ((node_idx + 1) * target->ch_count /
3285                                     num_online_nodes());
3286                 const int cv_start = (node_idx * ibdev->num_comp_vectors /
3287                                       num_online_nodes() + target->comp_vector)
3288                                      % ibdev->num_comp_vectors;
3289                 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3290                                     num_online_nodes() + target->comp_vector)
3291                                    % ibdev->num_comp_vectors;
3292                 int cpu_idx = 0;
3293
3294                 for_each_online_cpu(cpu) {
3295                         if (cpu_to_node(cpu) != node)
3296                                 continue;
3297                         if (ch_start + cpu_idx >= ch_end)
3298                                 continue;
3299                         ch = &target->ch[ch_start + cpu_idx];
3300                         ch->target = target;
3301                         ch->comp_vector = cv_start == cv_end ? cv_start :
3302                                 cv_start + cpu_idx % (cv_end - cv_start);
3303                         spin_lock_init(&ch->lock);
3304                         INIT_LIST_HEAD(&ch->free_tx);
3305                         ret = srp_new_cm_id(ch);
3306                         if (ret)
3307                                 goto err_disconnect;
3308
3309                         ret = srp_create_ch_ib(ch);
3310                         if (ret)
3311                                 goto err_disconnect;
3312
3313                         ret = srp_alloc_req_data(ch);
3314                         if (ret)
3315                                 goto err_disconnect;
3316
3317                         ret = srp_connect_ch(ch, multich);
3318                         if (ret) {
3319                                 shost_printk(KERN_ERR, target->scsi_host,
3320                                              PFX "Connection %d/%d failed\n",
3321                                              ch_start + cpu_idx,
3322                                              target->ch_count);
3323                                 if (node_idx == 0 && cpu_idx == 0) {
3324                                         goto err_disconnect;
3325                                 } else {
3326                                         srp_free_ch_ib(target, ch);
3327                                         srp_free_req_data(target, ch);
3328                                         target->ch_count = ch - target->ch;
3329                                         goto connected;
3330                                 }
3331                         }
3332
3333                         multich = true;
3334                         cpu_idx++;
3335                 }
3336                 node_idx++;
3337         }
3338
3339 connected:
3340         target->scsi_host->nr_hw_queues = target->ch_count;
3341
3342         ret = srp_add_target(host, target);
3343         if (ret)
3344                 goto err_disconnect;
3345
3346         if (target->state != SRP_TARGET_REMOVED) {
3347                 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3348                              "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3349                              be64_to_cpu(target->id_ext),
3350                              be64_to_cpu(target->ioc_guid),
3351                              be16_to_cpu(target->pkey),
3352                              be64_to_cpu(target->service_id),
3353                              target->sgid.raw, target->orig_dgid.raw);
3354         }
3355
3356         ret = count;
3357
3358 out:
3359         mutex_unlock(&host->add_target_mutex);
3360
3361         scsi_host_put(target->scsi_host);
3362         if (ret < 0)
3363                 scsi_host_put(target->scsi_host);
3364
3365         return ret;
3366
3367 err_disconnect:
3368         srp_disconnect_target(target);
3369
3370         for (i = 0; i < target->ch_count; i++) {
3371                 ch = &target->ch[i];
3372                 srp_free_ch_ib(target, ch);
3373                 srp_free_req_data(target, ch);
3374         }
3375
3376         kfree(target->ch);
3377         goto out;
3378 }
3379
3380 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3381
3382 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3383                           char *buf)
3384 {
3385         struct srp_host *host = container_of(dev, struct srp_host, dev);
3386
3387         return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3388 }
3389
3390 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3391
3392 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3393                          char *buf)
3394 {
3395         struct srp_host *host = container_of(dev, struct srp_host, dev);
3396
3397         return sprintf(buf, "%d\n", host->port);
3398 }
3399
3400 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3401
3402 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3403 {
3404         struct srp_host *host;
3405
3406         host = kzalloc(sizeof *host, GFP_KERNEL);
3407         if (!host)
3408                 return NULL;
3409
3410         INIT_LIST_HEAD(&host->target_list);
3411         spin_lock_init(&host->target_lock);
3412         init_completion(&host->released);
3413         mutex_init(&host->add_target_mutex);
3414         host->srp_dev = device;
3415         host->port = port;
3416
3417         host->dev.class = &srp_class;
3418         host->dev.parent = device->dev->dma_device;
3419         dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3420
3421         if (device_register(&host->dev))
3422                 goto free_host;
3423         if (device_create_file(&host->dev, &dev_attr_add_target))
3424                 goto err_class;
3425         if (device_create_file(&host->dev, &dev_attr_ibdev))
3426                 goto err_class;
3427         if (device_create_file(&host->dev, &dev_attr_port))
3428                 goto err_class;
3429
3430         return host;
3431
3432 err_class:
3433         device_unregister(&host->dev);
3434
3435 free_host:
3436         kfree(host);
3437
3438         return NULL;
3439 }
3440
3441 static void srp_add_one(struct ib_device *device)
3442 {
3443         struct srp_device *srp_dev;
3444         struct ib_device_attr *dev_attr;
3445         struct srp_host *host;
3446         int mr_page_shift, p;
3447         u64 max_pages_per_mr;
3448
3449         dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
3450         if (!dev_attr)
3451                 return;
3452
3453         if (ib_query_device(device, dev_attr)) {
3454                 pr_warn("Query device failed for %s\n", device->name);
3455                 goto free_attr;
3456         }
3457
3458         srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
3459         if (!srp_dev)
3460                 goto free_attr;
3461
3462         srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3463                             device->map_phys_fmr && device->unmap_fmr);
3464         srp_dev->has_fr = (dev_attr->device_cap_flags &
3465                            IB_DEVICE_MEM_MGT_EXTENSIONS);
3466         if (!srp_dev->has_fmr && !srp_dev->has_fr)
3467                 dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3468
3469         srp_dev->use_fast_reg = (srp_dev->has_fr &&
3470                                  (!srp_dev->has_fmr || prefer_fr));
3471         srp_dev->use_fmr = !srp_dev->use_fast_reg && srp_dev->has_fmr;
3472
3473         /*
3474          * Use the smallest page size supported by the HCA, down to a
3475          * minimum of 4096 bytes. We're unlikely to build large sglists
3476          * out of smaller entries.
3477          */
3478         mr_page_shift           = max(12, ffs(dev_attr->page_size_cap) - 1);
3479         srp_dev->mr_page_size   = 1 << mr_page_shift;
3480         srp_dev->mr_page_mask   = ~((u64) srp_dev->mr_page_size - 1);
3481         max_pages_per_mr        = dev_attr->max_mr_size;
3482         do_div(max_pages_per_mr, srp_dev->mr_page_size);
3483         srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3484                                           max_pages_per_mr);
3485         if (srp_dev->use_fast_reg) {
3486                 srp_dev->max_pages_per_mr =
3487                         min_t(u32, srp_dev->max_pages_per_mr,
3488                               dev_attr->max_fast_reg_page_list_len);
3489         }
3490         srp_dev->mr_max_size    = srp_dev->mr_page_size *
3491                                    srp_dev->max_pages_per_mr;
3492         pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3493                  device->name, mr_page_shift, dev_attr->max_mr_size,
3494                  dev_attr->max_fast_reg_page_list_len,
3495                  srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3496
3497         INIT_LIST_HEAD(&srp_dev->dev_list);
3498
3499         srp_dev->dev = device;
3500         srp_dev->pd  = ib_alloc_pd(device);
3501         if (IS_ERR(srp_dev->pd))
3502                 goto free_dev;
3503
3504         if (!register_always || (!srp_dev->has_fmr && !srp_dev->has_fr)) {
3505                 srp_dev->global_mr = ib_get_dma_mr(srp_dev->pd,
3506                                                    IB_ACCESS_LOCAL_WRITE |
3507                                                    IB_ACCESS_REMOTE_READ |
3508                                                    IB_ACCESS_REMOTE_WRITE);
3509                 if (IS_ERR(srp_dev->global_mr))
3510                         goto err_pd;
3511         } else {
3512                 srp_dev->global_mr = NULL;
3513         }
3514
3515         for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) {
3516                 host = srp_add_port(srp_dev, p);
3517                 if (host)
3518                         list_add_tail(&host->list, &srp_dev->dev_list);
3519         }
3520
3521         ib_set_client_data(device, &srp_client, srp_dev);
3522
3523         goto free_attr;
3524
3525 err_pd:
3526         ib_dealloc_pd(srp_dev->pd);
3527
3528 free_dev:
3529         kfree(srp_dev);
3530
3531 free_attr:
3532         kfree(dev_attr);
3533 }
3534
3535 static void srp_remove_one(struct ib_device *device, void *client_data)
3536 {
3537         struct srp_device *srp_dev;
3538         struct srp_host *host, *tmp_host;
3539         struct srp_target_port *target;
3540
3541         srp_dev = client_data;
3542         if (!srp_dev)
3543                 return;
3544
3545         list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3546                 device_unregister(&host->dev);
3547                 /*
3548                  * Wait for the sysfs entry to go away, so that no new
3549                  * target ports can be created.
3550                  */
3551                 wait_for_completion(&host->released);
3552
3553                 /*
3554                  * Remove all target ports.
3555                  */
3556                 spin_lock(&host->target_lock);
3557                 list_for_each_entry(target, &host->target_list, list)
3558                         srp_queue_remove_work(target);
3559                 spin_unlock(&host->target_lock);
3560
3561                 /*
3562                  * Wait for tl_err and target port removal tasks.
3563                  */
3564                 flush_workqueue(system_long_wq);
3565                 flush_workqueue(srp_remove_wq);
3566
3567                 kfree(host);
3568         }
3569
3570         if (srp_dev->global_mr)
3571                 ib_dereg_mr(srp_dev->global_mr);
3572         ib_dealloc_pd(srp_dev->pd);
3573
3574         kfree(srp_dev);
3575 }
3576
3577 static struct srp_function_template ib_srp_transport_functions = {
3578         .has_rport_state         = true,
3579         .reset_timer_if_blocked  = true,
3580         .reconnect_delay         = &srp_reconnect_delay,
3581         .fast_io_fail_tmo        = &srp_fast_io_fail_tmo,
3582         .dev_loss_tmo            = &srp_dev_loss_tmo,
3583         .reconnect               = srp_rport_reconnect,
3584         .rport_delete            = srp_rport_delete,
3585         .terminate_rport_io      = srp_terminate_io,
3586 };
3587
3588 static int __init srp_init_module(void)
3589 {
3590         int ret;
3591
3592         BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *));
3593
3594         if (srp_sg_tablesize) {
3595                 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3596                 if (!cmd_sg_entries)
3597                         cmd_sg_entries = srp_sg_tablesize;
3598         }
3599
3600         if (!cmd_sg_entries)
3601                 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3602
3603         if (cmd_sg_entries > 255) {
3604                 pr_warn("Clamping cmd_sg_entries to 255\n");
3605                 cmd_sg_entries = 255;
3606         }
3607
3608         if (!indirect_sg_entries)
3609                 indirect_sg_entries = cmd_sg_entries;
3610         else if (indirect_sg_entries < cmd_sg_entries) {
3611                 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3612                         cmd_sg_entries);
3613                 indirect_sg_entries = cmd_sg_entries;
3614         }
3615
3616         srp_remove_wq = create_workqueue("srp_remove");
3617         if (!srp_remove_wq) {
3618                 ret = -ENOMEM;
3619                 goto out;
3620         }
3621
3622         ret = -ENOMEM;
3623         ib_srp_transport_template =
3624                 srp_attach_transport(&ib_srp_transport_functions);
3625         if (!ib_srp_transport_template)
3626                 goto destroy_wq;
3627
3628         ret = class_register(&srp_class);
3629         if (ret) {
3630                 pr_err("couldn't register class infiniband_srp\n");
3631                 goto release_tr;
3632         }
3633
3634         ib_sa_register_client(&srp_sa_client);
3635
3636         ret = ib_register_client(&srp_client);
3637         if (ret) {
3638                 pr_err("couldn't register IB client\n");
3639                 goto unreg_sa;
3640         }
3641
3642 out:
3643         return ret;
3644
3645 unreg_sa:
3646         ib_sa_unregister_client(&srp_sa_client);
3647         class_unregister(&srp_class);
3648
3649 release_tr:
3650         srp_release_transport(ib_srp_transport_template);
3651
3652 destroy_wq:
3653         destroy_workqueue(srp_remove_wq);
3654         goto out;
3655 }
3656
3657 static void __exit srp_cleanup_module(void)
3658 {
3659         ib_unregister_client(&srp_client);
3660         ib_sa_unregister_client(&srp_sa_client);
3661         class_unregister(&srp_class);
3662         srp_release_transport(ib_srp_transport_template);
3663         destroy_workqueue(srp_remove_wq);
3664 }
3665
3666 module_init(srp_init_module);
3667 module_exit(srp_cleanup_module);