IB/srp: Re-enable FMR for non-page aligned buffers
[firefly-linux-kernel-4.4.55.git] / drivers / infiniband / ulp / srp / ib_srp.c
1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44
45 #include <linux/atomic.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53
54 #include "ib_srp.h"
55
56 #define DRV_NAME        "ib_srp"
57 #define PFX             DRV_NAME ": "
58 #define DRV_VERSION     "2.0"
59 #define DRV_RELDATE     "July 26, 2015"
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65 MODULE_INFO(release_date, DRV_RELDATE);
66
67 static unsigned int srp_sg_tablesize;
68 static unsigned int cmd_sg_entries;
69 static unsigned int indirect_sg_entries;
70 static bool allow_ext_sg;
71 static bool prefer_fr;
72 static bool register_always;
73 static int topspin_workarounds = 1;
74
75 module_param(srp_sg_tablesize, uint, 0444);
76 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
77
78 module_param(cmd_sg_entries, uint, 0444);
79 MODULE_PARM_DESC(cmd_sg_entries,
80                  "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
81
82 module_param(indirect_sg_entries, uint, 0444);
83 MODULE_PARM_DESC(indirect_sg_entries,
84                  "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
85
86 module_param(allow_ext_sg, bool, 0444);
87 MODULE_PARM_DESC(allow_ext_sg,
88                   "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
89
90 module_param(topspin_workarounds, int, 0444);
91 MODULE_PARM_DESC(topspin_workarounds,
92                  "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
93
94 module_param(prefer_fr, bool, 0444);
95 MODULE_PARM_DESC(prefer_fr,
96 "Whether to use fast registration if both FMR and fast registration are supported");
97
98 module_param(register_always, bool, 0444);
99 MODULE_PARM_DESC(register_always,
100                  "Use memory registration even for contiguous memory regions");
101
102 static const struct kernel_param_ops srp_tmo_ops;
103
104 static int srp_reconnect_delay = 10;
105 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
106                 S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
108
109 static int srp_fast_io_fail_tmo = 15;
110 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
111                 S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(fast_io_fail_tmo,
113                  "Number of seconds between the observation of a transport"
114                  " layer error and failing all I/O. \"off\" means that this"
115                  " functionality is disabled.");
116
117 static int srp_dev_loss_tmo = 600;
118 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
119                 S_IRUGO | S_IWUSR);
120 MODULE_PARM_DESC(dev_loss_tmo,
121                  "Maximum number of seconds that the SRP transport should"
122                  " insulate transport layer errors. After this time has been"
123                  " exceeded the SCSI host is removed. Should be"
124                  " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
125                  " if fast_io_fail_tmo has not been set. \"off\" means that"
126                  " this functionality is disabled.");
127
128 static unsigned ch_count;
129 module_param(ch_count, uint, 0444);
130 MODULE_PARM_DESC(ch_count,
131                  "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
132
133 static void srp_add_one(struct ib_device *device);
134 static void srp_remove_one(struct ib_device *device, void *client_data);
135 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr);
136 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr);
137 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
138
139 static struct scsi_transport_template *ib_srp_transport_template;
140 static struct workqueue_struct *srp_remove_wq;
141
142 static struct ib_client srp_client = {
143         .name   = "srp",
144         .add    = srp_add_one,
145         .remove = srp_remove_one
146 };
147
148 static struct ib_sa_client srp_sa_client;
149
150 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
151 {
152         int tmo = *(int *)kp->arg;
153
154         if (tmo >= 0)
155                 return sprintf(buffer, "%d", tmo);
156         else
157                 return sprintf(buffer, "off");
158 }
159
160 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
161 {
162         int tmo, res;
163
164         res = srp_parse_tmo(&tmo, val);
165         if (res)
166                 goto out;
167
168         if (kp->arg == &srp_reconnect_delay)
169                 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
170                                     srp_dev_loss_tmo);
171         else if (kp->arg == &srp_fast_io_fail_tmo)
172                 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
173         else
174                 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
175                                     tmo);
176         if (res)
177                 goto out;
178         *(int *)kp->arg = tmo;
179
180 out:
181         return res;
182 }
183
184 static const struct kernel_param_ops srp_tmo_ops = {
185         .get = srp_tmo_get,
186         .set = srp_tmo_set,
187 };
188
189 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
190 {
191         return (struct srp_target_port *) host->hostdata;
192 }
193
194 static const char *srp_target_info(struct Scsi_Host *host)
195 {
196         return host_to_target(host)->target_name;
197 }
198
199 static int srp_target_is_topspin(struct srp_target_port *target)
200 {
201         static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
202         static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
203
204         return topspin_workarounds &&
205                 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
206                  !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
207 }
208
209 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
210                                    gfp_t gfp_mask,
211                                    enum dma_data_direction direction)
212 {
213         struct srp_iu *iu;
214
215         iu = kmalloc(sizeof *iu, gfp_mask);
216         if (!iu)
217                 goto out;
218
219         iu->buf = kzalloc(size, gfp_mask);
220         if (!iu->buf)
221                 goto out_free_iu;
222
223         iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
224                                     direction);
225         if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
226                 goto out_free_buf;
227
228         iu->size      = size;
229         iu->direction = direction;
230
231         return iu;
232
233 out_free_buf:
234         kfree(iu->buf);
235 out_free_iu:
236         kfree(iu);
237 out:
238         return NULL;
239 }
240
241 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
242 {
243         if (!iu)
244                 return;
245
246         ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
247                             iu->direction);
248         kfree(iu->buf);
249         kfree(iu);
250 }
251
252 static void srp_qp_event(struct ib_event *event, void *context)
253 {
254         pr_debug("QP event %s (%d)\n",
255                  ib_event_msg(event->event), event->event);
256 }
257
258 static int srp_init_qp(struct srp_target_port *target,
259                        struct ib_qp *qp)
260 {
261         struct ib_qp_attr *attr;
262         int ret;
263
264         attr = kmalloc(sizeof *attr, GFP_KERNEL);
265         if (!attr)
266                 return -ENOMEM;
267
268         ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
269                                   target->srp_host->port,
270                                   be16_to_cpu(target->pkey),
271                                   &attr->pkey_index);
272         if (ret)
273                 goto out;
274
275         attr->qp_state        = IB_QPS_INIT;
276         attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
277                                     IB_ACCESS_REMOTE_WRITE);
278         attr->port_num        = target->srp_host->port;
279
280         ret = ib_modify_qp(qp, attr,
281                            IB_QP_STATE          |
282                            IB_QP_PKEY_INDEX     |
283                            IB_QP_ACCESS_FLAGS   |
284                            IB_QP_PORT);
285
286 out:
287         kfree(attr);
288         return ret;
289 }
290
291 static int srp_new_cm_id(struct srp_rdma_ch *ch)
292 {
293         struct srp_target_port *target = ch->target;
294         struct ib_cm_id *new_cm_id;
295
296         new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
297                                     srp_cm_handler, ch);
298         if (IS_ERR(new_cm_id))
299                 return PTR_ERR(new_cm_id);
300
301         if (ch->cm_id)
302                 ib_destroy_cm_id(ch->cm_id);
303         ch->cm_id = new_cm_id;
304         ch->path.sgid = target->sgid;
305         ch->path.dgid = target->orig_dgid;
306         ch->path.pkey = target->pkey;
307         ch->path.service_id = target->service_id;
308
309         return 0;
310 }
311
312 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
313 {
314         struct srp_device *dev = target->srp_host->srp_dev;
315         struct ib_fmr_pool_param fmr_param;
316
317         memset(&fmr_param, 0, sizeof(fmr_param));
318         fmr_param.pool_size         = target->scsi_host->can_queue;
319         fmr_param.dirty_watermark   = fmr_param.pool_size / 4;
320         fmr_param.cache             = 1;
321         fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
322         fmr_param.page_shift        = ilog2(dev->mr_page_size);
323         fmr_param.access            = (IB_ACCESS_LOCAL_WRITE |
324                                        IB_ACCESS_REMOTE_WRITE |
325                                        IB_ACCESS_REMOTE_READ);
326
327         return ib_create_fmr_pool(dev->pd, &fmr_param);
328 }
329
330 /**
331  * srp_destroy_fr_pool() - free the resources owned by a pool
332  * @pool: Fast registration pool to be destroyed.
333  */
334 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
335 {
336         int i;
337         struct srp_fr_desc *d;
338
339         if (!pool)
340                 return;
341
342         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
343                 if (d->frpl)
344                         ib_free_fast_reg_page_list(d->frpl);
345                 if (d->mr)
346                         ib_dereg_mr(d->mr);
347         }
348         kfree(pool);
349 }
350
351 /**
352  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
353  * @device:            IB device to allocate fast registration descriptors for.
354  * @pd:                Protection domain associated with the FR descriptors.
355  * @pool_size:         Number of descriptors to allocate.
356  * @max_page_list_len: Maximum fast registration work request page list length.
357  */
358 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
359                                               struct ib_pd *pd, int pool_size,
360                                               int max_page_list_len)
361 {
362         struct srp_fr_pool *pool;
363         struct srp_fr_desc *d;
364         struct ib_mr *mr;
365         struct ib_fast_reg_page_list *frpl;
366         int i, ret = -EINVAL;
367
368         if (pool_size <= 0)
369                 goto err;
370         ret = -ENOMEM;
371         pool = kzalloc(sizeof(struct srp_fr_pool) +
372                        pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
373         if (!pool)
374                 goto err;
375         pool->size = pool_size;
376         pool->max_page_list_len = max_page_list_len;
377         spin_lock_init(&pool->lock);
378         INIT_LIST_HEAD(&pool->free_list);
379
380         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
381                 mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG,
382                                  max_page_list_len);
383                 if (IS_ERR(mr)) {
384                         ret = PTR_ERR(mr);
385                         goto destroy_pool;
386                 }
387                 d->mr = mr;
388                 frpl = ib_alloc_fast_reg_page_list(device, max_page_list_len);
389                 if (IS_ERR(frpl)) {
390                         ret = PTR_ERR(frpl);
391                         goto destroy_pool;
392                 }
393                 d->frpl = frpl;
394                 list_add_tail(&d->entry, &pool->free_list);
395         }
396
397 out:
398         return pool;
399
400 destroy_pool:
401         srp_destroy_fr_pool(pool);
402
403 err:
404         pool = ERR_PTR(ret);
405         goto out;
406 }
407
408 /**
409  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
410  * @pool: Pool to obtain descriptor from.
411  */
412 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
413 {
414         struct srp_fr_desc *d = NULL;
415         unsigned long flags;
416
417         spin_lock_irqsave(&pool->lock, flags);
418         if (!list_empty(&pool->free_list)) {
419                 d = list_first_entry(&pool->free_list, typeof(*d), entry);
420                 list_del(&d->entry);
421         }
422         spin_unlock_irqrestore(&pool->lock, flags);
423
424         return d;
425 }
426
427 /**
428  * srp_fr_pool_put() - put an FR descriptor back in the free list
429  * @pool: Pool the descriptor was allocated from.
430  * @desc: Pointer to an array of fast registration descriptor pointers.
431  * @n:    Number of descriptors to put back.
432  *
433  * Note: The caller must already have queued an invalidation request for
434  * desc->mr->rkey before calling this function.
435  */
436 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
437                             int n)
438 {
439         unsigned long flags;
440         int i;
441
442         spin_lock_irqsave(&pool->lock, flags);
443         for (i = 0; i < n; i++)
444                 list_add(&desc[i]->entry, &pool->free_list);
445         spin_unlock_irqrestore(&pool->lock, flags);
446 }
447
448 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
449 {
450         struct srp_device *dev = target->srp_host->srp_dev;
451
452         return srp_create_fr_pool(dev->dev, dev->pd,
453                                   target->scsi_host->can_queue,
454                                   dev->max_pages_per_mr);
455 }
456
457 /**
458  * srp_destroy_qp() - destroy an RDMA queue pair
459  * @ch: SRP RDMA channel.
460  *
461  * Change a queue pair into the error state and wait until all receive
462  * completions have been processed before destroying it. This avoids that
463  * the receive completion handler can access the queue pair while it is
464  * being destroyed.
465  */
466 static void srp_destroy_qp(struct srp_rdma_ch *ch)
467 {
468         static struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
469         static struct ib_recv_wr wr = { .wr_id = SRP_LAST_WR_ID };
470         struct ib_recv_wr *bad_wr;
471         int ret;
472
473         /* Destroying a QP and reusing ch->done is only safe if not connected */
474         WARN_ON_ONCE(ch->connected);
475
476         ret = ib_modify_qp(ch->qp, &attr, IB_QP_STATE);
477         WARN_ONCE(ret, "ib_cm_init_qp_attr() returned %d\n", ret);
478         if (ret)
479                 goto out;
480
481         init_completion(&ch->done);
482         ret = ib_post_recv(ch->qp, &wr, &bad_wr);
483         WARN_ONCE(ret, "ib_post_recv() returned %d\n", ret);
484         if (ret == 0)
485                 wait_for_completion(&ch->done);
486
487 out:
488         ib_destroy_qp(ch->qp);
489 }
490
491 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
492 {
493         struct srp_target_port *target = ch->target;
494         struct srp_device *dev = target->srp_host->srp_dev;
495         struct ib_qp_init_attr *init_attr;
496         struct ib_cq *recv_cq, *send_cq;
497         struct ib_qp *qp;
498         struct ib_fmr_pool *fmr_pool = NULL;
499         struct srp_fr_pool *fr_pool = NULL;
500         const int m = 1 + dev->use_fast_reg;
501         struct ib_cq_init_attr cq_attr = {};
502         int ret;
503
504         init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
505         if (!init_attr)
506                 return -ENOMEM;
507
508         /* + 1 for SRP_LAST_WR_ID */
509         cq_attr.cqe = target->queue_size + 1;
510         cq_attr.comp_vector = ch->comp_vector;
511         recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, ch,
512                                &cq_attr);
513         if (IS_ERR(recv_cq)) {
514                 ret = PTR_ERR(recv_cq);
515                 goto err;
516         }
517
518         cq_attr.cqe = m * target->queue_size;
519         cq_attr.comp_vector = ch->comp_vector;
520         send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, ch,
521                                &cq_attr);
522         if (IS_ERR(send_cq)) {
523                 ret = PTR_ERR(send_cq);
524                 goto err_recv_cq;
525         }
526
527         ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP);
528
529         init_attr->event_handler       = srp_qp_event;
530         init_attr->cap.max_send_wr     = m * target->queue_size;
531         init_attr->cap.max_recv_wr     = target->queue_size + 1;
532         init_attr->cap.max_recv_sge    = 1;
533         init_attr->cap.max_send_sge    = 1;
534         init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
535         init_attr->qp_type             = IB_QPT_RC;
536         init_attr->send_cq             = send_cq;
537         init_attr->recv_cq             = recv_cq;
538
539         qp = ib_create_qp(dev->pd, init_attr);
540         if (IS_ERR(qp)) {
541                 ret = PTR_ERR(qp);
542                 goto err_send_cq;
543         }
544
545         ret = srp_init_qp(target, qp);
546         if (ret)
547                 goto err_qp;
548
549         if (dev->use_fast_reg && dev->has_fr) {
550                 fr_pool = srp_alloc_fr_pool(target);
551                 if (IS_ERR(fr_pool)) {
552                         ret = PTR_ERR(fr_pool);
553                         shost_printk(KERN_WARNING, target->scsi_host, PFX
554                                      "FR pool allocation failed (%d)\n", ret);
555                         goto err_qp;
556                 }
557                 if (ch->fr_pool)
558                         srp_destroy_fr_pool(ch->fr_pool);
559                 ch->fr_pool = fr_pool;
560         } else if (!dev->use_fast_reg && dev->has_fmr) {
561                 fmr_pool = srp_alloc_fmr_pool(target);
562                 if (IS_ERR(fmr_pool)) {
563                         ret = PTR_ERR(fmr_pool);
564                         shost_printk(KERN_WARNING, target->scsi_host, PFX
565                                      "FMR pool allocation failed (%d)\n", ret);
566                         goto err_qp;
567                 }
568                 if (ch->fmr_pool)
569                         ib_destroy_fmr_pool(ch->fmr_pool);
570                 ch->fmr_pool = fmr_pool;
571         }
572
573         if (ch->qp)
574                 srp_destroy_qp(ch);
575         if (ch->recv_cq)
576                 ib_destroy_cq(ch->recv_cq);
577         if (ch->send_cq)
578                 ib_destroy_cq(ch->send_cq);
579
580         ch->qp = qp;
581         ch->recv_cq = recv_cq;
582         ch->send_cq = send_cq;
583
584         kfree(init_attr);
585         return 0;
586
587 err_qp:
588         ib_destroy_qp(qp);
589
590 err_send_cq:
591         ib_destroy_cq(send_cq);
592
593 err_recv_cq:
594         ib_destroy_cq(recv_cq);
595
596 err:
597         kfree(init_attr);
598         return ret;
599 }
600
601 /*
602  * Note: this function may be called without srp_alloc_iu_bufs() having been
603  * invoked. Hence the ch->[rt]x_ring checks.
604  */
605 static void srp_free_ch_ib(struct srp_target_port *target,
606                            struct srp_rdma_ch *ch)
607 {
608         struct srp_device *dev = target->srp_host->srp_dev;
609         int i;
610
611         if (!ch->target)
612                 return;
613
614         if (ch->cm_id) {
615                 ib_destroy_cm_id(ch->cm_id);
616                 ch->cm_id = NULL;
617         }
618
619         /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
620         if (!ch->qp)
621                 return;
622
623         if (dev->use_fast_reg) {
624                 if (ch->fr_pool)
625                         srp_destroy_fr_pool(ch->fr_pool);
626         } else {
627                 if (ch->fmr_pool)
628                         ib_destroy_fmr_pool(ch->fmr_pool);
629         }
630         srp_destroy_qp(ch);
631         ib_destroy_cq(ch->send_cq);
632         ib_destroy_cq(ch->recv_cq);
633
634         /*
635          * Avoid that the SCSI error handler tries to use this channel after
636          * it has been freed. The SCSI error handler can namely continue
637          * trying to perform recovery actions after scsi_remove_host()
638          * returned.
639          */
640         ch->target = NULL;
641
642         ch->qp = NULL;
643         ch->send_cq = ch->recv_cq = NULL;
644
645         if (ch->rx_ring) {
646                 for (i = 0; i < target->queue_size; ++i)
647                         srp_free_iu(target->srp_host, ch->rx_ring[i]);
648                 kfree(ch->rx_ring);
649                 ch->rx_ring = NULL;
650         }
651         if (ch->tx_ring) {
652                 for (i = 0; i < target->queue_size; ++i)
653                         srp_free_iu(target->srp_host, ch->tx_ring[i]);
654                 kfree(ch->tx_ring);
655                 ch->tx_ring = NULL;
656         }
657 }
658
659 static void srp_path_rec_completion(int status,
660                                     struct ib_sa_path_rec *pathrec,
661                                     void *ch_ptr)
662 {
663         struct srp_rdma_ch *ch = ch_ptr;
664         struct srp_target_port *target = ch->target;
665
666         ch->status = status;
667         if (status)
668                 shost_printk(KERN_ERR, target->scsi_host,
669                              PFX "Got failed path rec status %d\n", status);
670         else
671                 ch->path = *pathrec;
672         complete(&ch->done);
673 }
674
675 static int srp_lookup_path(struct srp_rdma_ch *ch)
676 {
677         struct srp_target_port *target = ch->target;
678         int ret;
679
680         ch->path.numb_path = 1;
681
682         init_completion(&ch->done);
683
684         ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
685                                                target->srp_host->srp_dev->dev,
686                                                target->srp_host->port,
687                                                &ch->path,
688                                                IB_SA_PATH_REC_SERVICE_ID |
689                                                IB_SA_PATH_REC_DGID       |
690                                                IB_SA_PATH_REC_SGID       |
691                                                IB_SA_PATH_REC_NUMB_PATH  |
692                                                IB_SA_PATH_REC_PKEY,
693                                                SRP_PATH_REC_TIMEOUT_MS,
694                                                GFP_KERNEL,
695                                                srp_path_rec_completion,
696                                                ch, &ch->path_query);
697         if (ch->path_query_id < 0)
698                 return ch->path_query_id;
699
700         ret = wait_for_completion_interruptible(&ch->done);
701         if (ret < 0)
702                 return ret;
703
704         if (ch->status < 0)
705                 shost_printk(KERN_WARNING, target->scsi_host,
706                              PFX "Path record query failed\n");
707
708         return ch->status;
709 }
710
711 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
712 {
713         struct srp_target_port *target = ch->target;
714         struct {
715                 struct ib_cm_req_param param;
716                 struct srp_login_req   priv;
717         } *req = NULL;
718         int status;
719
720         req = kzalloc(sizeof *req, GFP_KERNEL);
721         if (!req)
722                 return -ENOMEM;
723
724         req->param.primary_path               = &ch->path;
725         req->param.alternate_path             = NULL;
726         req->param.service_id                 = target->service_id;
727         req->param.qp_num                     = ch->qp->qp_num;
728         req->param.qp_type                    = ch->qp->qp_type;
729         req->param.private_data               = &req->priv;
730         req->param.private_data_len           = sizeof req->priv;
731         req->param.flow_control               = 1;
732
733         get_random_bytes(&req->param.starting_psn, 4);
734         req->param.starting_psn              &= 0xffffff;
735
736         /*
737          * Pick some arbitrary defaults here; we could make these
738          * module parameters if anyone cared about setting them.
739          */
740         req->param.responder_resources        = 4;
741         req->param.remote_cm_response_timeout = 20;
742         req->param.local_cm_response_timeout  = 20;
743         req->param.retry_count                = target->tl_retry_count;
744         req->param.rnr_retry_count            = 7;
745         req->param.max_cm_retries             = 15;
746
747         req->priv.opcode        = SRP_LOGIN_REQ;
748         req->priv.tag           = 0;
749         req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
750         req->priv.req_buf_fmt   = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
751                                               SRP_BUF_FORMAT_INDIRECT);
752         req->priv.req_flags     = (multich ? SRP_MULTICHAN_MULTI :
753                                    SRP_MULTICHAN_SINGLE);
754         /*
755          * In the published SRP specification (draft rev. 16a), the
756          * port identifier format is 8 bytes of ID extension followed
757          * by 8 bytes of GUID.  Older drafts put the two halves in the
758          * opposite order, so that the GUID comes first.
759          *
760          * Targets conforming to these obsolete drafts can be
761          * recognized by the I/O Class they report.
762          */
763         if (target->io_class == SRP_REV10_IB_IO_CLASS) {
764                 memcpy(req->priv.initiator_port_id,
765                        &target->sgid.global.interface_id, 8);
766                 memcpy(req->priv.initiator_port_id + 8,
767                        &target->initiator_ext, 8);
768                 memcpy(req->priv.target_port_id,     &target->ioc_guid, 8);
769                 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
770         } else {
771                 memcpy(req->priv.initiator_port_id,
772                        &target->initiator_ext, 8);
773                 memcpy(req->priv.initiator_port_id + 8,
774                        &target->sgid.global.interface_id, 8);
775                 memcpy(req->priv.target_port_id,     &target->id_ext, 8);
776                 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
777         }
778
779         /*
780          * Topspin/Cisco SRP targets will reject our login unless we
781          * zero out the first 8 bytes of our initiator port ID and set
782          * the second 8 bytes to the local node GUID.
783          */
784         if (srp_target_is_topspin(target)) {
785                 shost_printk(KERN_DEBUG, target->scsi_host,
786                              PFX "Topspin/Cisco initiator port ID workaround "
787                              "activated for target GUID %016llx\n",
788                              be64_to_cpu(target->ioc_guid));
789                 memset(req->priv.initiator_port_id, 0, 8);
790                 memcpy(req->priv.initiator_port_id + 8,
791                        &target->srp_host->srp_dev->dev->node_guid, 8);
792         }
793
794         status = ib_send_cm_req(ch->cm_id, &req->param);
795
796         kfree(req);
797
798         return status;
799 }
800
801 static bool srp_queue_remove_work(struct srp_target_port *target)
802 {
803         bool changed = false;
804
805         spin_lock_irq(&target->lock);
806         if (target->state != SRP_TARGET_REMOVED) {
807                 target->state = SRP_TARGET_REMOVED;
808                 changed = true;
809         }
810         spin_unlock_irq(&target->lock);
811
812         if (changed)
813                 queue_work(srp_remove_wq, &target->remove_work);
814
815         return changed;
816 }
817
818 static void srp_disconnect_target(struct srp_target_port *target)
819 {
820         struct srp_rdma_ch *ch;
821         int i;
822
823         /* XXX should send SRP_I_LOGOUT request */
824
825         for (i = 0; i < target->ch_count; i++) {
826                 ch = &target->ch[i];
827                 ch->connected = false;
828                 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
829                         shost_printk(KERN_DEBUG, target->scsi_host,
830                                      PFX "Sending CM DREQ failed\n");
831                 }
832         }
833 }
834
835 static void srp_free_req_data(struct srp_target_port *target,
836                               struct srp_rdma_ch *ch)
837 {
838         struct srp_device *dev = target->srp_host->srp_dev;
839         struct ib_device *ibdev = dev->dev;
840         struct srp_request *req;
841         int i;
842
843         if (!ch->req_ring)
844                 return;
845
846         for (i = 0; i < target->req_ring_size; ++i) {
847                 req = &ch->req_ring[i];
848                 if (dev->use_fast_reg)
849                         kfree(req->fr_list);
850                 else
851                         kfree(req->fmr_list);
852                 kfree(req->map_page);
853                 if (req->indirect_dma_addr) {
854                         ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
855                                             target->indirect_size,
856                                             DMA_TO_DEVICE);
857                 }
858                 kfree(req->indirect_desc);
859         }
860
861         kfree(ch->req_ring);
862         ch->req_ring = NULL;
863 }
864
865 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
866 {
867         struct srp_target_port *target = ch->target;
868         struct srp_device *srp_dev = target->srp_host->srp_dev;
869         struct ib_device *ibdev = srp_dev->dev;
870         struct srp_request *req;
871         void *mr_list;
872         dma_addr_t dma_addr;
873         int i, ret = -ENOMEM;
874
875         ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
876                                GFP_KERNEL);
877         if (!ch->req_ring)
878                 goto out;
879
880         for (i = 0; i < target->req_ring_size; ++i) {
881                 req = &ch->req_ring[i];
882                 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
883                                   GFP_KERNEL);
884                 if (!mr_list)
885                         goto out;
886                 if (srp_dev->use_fast_reg)
887                         req->fr_list = mr_list;
888                 else
889                         req->fmr_list = mr_list;
890                 req->map_page = kmalloc(srp_dev->max_pages_per_mr *
891                                         sizeof(void *), GFP_KERNEL);
892                 if (!req->map_page)
893                         goto out;
894                 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
895                 if (!req->indirect_desc)
896                         goto out;
897
898                 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
899                                              target->indirect_size,
900                                              DMA_TO_DEVICE);
901                 if (ib_dma_mapping_error(ibdev, dma_addr))
902                         goto out;
903
904                 req->indirect_dma_addr = dma_addr;
905         }
906         ret = 0;
907
908 out:
909         return ret;
910 }
911
912 /**
913  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
914  * @shost: SCSI host whose attributes to remove from sysfs.
915  *
916  * Note: Any attributes defined in the host template and that did not exist
917  * before invocation of this function will be ignored.
918  */
919 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
920 {
921         struct device_attribute **attr;
922
923         for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
924                 device_remove_file(&shost->shost_dev, *attr);
925 }
926
927 static void srp_remove_target(struct srp_target_port *target)
928 {
929         struct srp_rdma_ch *ch;
930         int i;
931
932         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
933
934         srp_del_scsi_host_attr(target->scsi_host);
935         srp_rport_get(target->rport);
936         srp_remove_host(target->scsi_host);
937         scsi_remove_host(target->scsi_host);
938         srp_stop_rport_timers(target->rport);
939         srp_disconnect_target(target);
940         for (i = 0; i < target->ch_count; i++) {
941                 ch = &target->ch[i];
942                 srp_free_ch_ib(target, ch);
943         }
944         cancel_work_sync(&target->tl_err_work);
945         srp_rport_put(target->rport);
946         for (i = 0; i < target->ch_count; i++) {
947                 ch = &target->ch[i];
948                 srp_free_req_data(target, ch);
949         }
950         kfree(target->ch);
951         target->ch = NULL;
952
953         spin_lock(&target->srp_host->target_lock);
954         list_del(&target->list);
955         spin_unlock(&target->srp_host->target_lock);
956
957         scsi_host_put(target->scsi_host);
958 }
959
960 static void srp_remove_work(struct work_struct *work)
961 {
962         struct srp_target_port *target =
963                 container_of(work, struct srp_target_port, remove_work);
964
965         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
966
967         srp_remove_target(target);
968 }
969
970 static void srp_rport_delete(struct srp_rport *rport)
971 {
972         struct srp_target_port *target = rport->lld_data;
973
974         srp_queue_remove_work(target);
975 }
976
977 /**
978  * srp_connected_ch() - number of connected channels
979  * @target: SRP target port.
980  */
981 static int srp_connected_ch(struct srp_target_port *target)
982 {
983         int i, c = 0;
984
985         for (i = 0; i < target->ch_count; i++)
986                 c += target->ch[i].connected;
987
988         return c;
989 }
990
991 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
992 {
993         struct srp_target_port *target = ch->target;
994         int ret;
995
996         WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
997
998         ret = srp_lookup_path(ch);
999         if (ret)
1000                 return ret;
1001
1002         while (1) {
1003                 init_completion(&ch->done);
1004                 ret = srp_send_req(ch, multich);
1005                 if (ret)
1006                         return ret;
1007                 ret = wait_for_completion_interruptible(&ch->done);
1008                 if (ret < 0)
1009                         return ret;
1010
1011                 /*
1012                  * The CM event handling code will set status to
1013                  * SRP_PORT_REDIRECT if we get a port redirect REJ
1014                  * back, or SRP_DLID_REDIRECT if we get a lid/qp
1015                  * redirect REJ back.
1016                  */
1017                 switch (ch->status) {
1018                 case 0:
1019                         ch->connected = true;
1020                         return 0;
1021
1022                 case SRP_PORT_REDIRECT:
1023                         ret = srp_lookup_path(ch);
1024                         if (ret)
1025                                 return ret;
1026                         break;
1027
1028                 case SRP_DLID_REDIRECT:
1029                         break;
1030
1031                 case SRP_STALE_CONN:
1032                         shost_printk(KERN_ERR, target->scsi_host, PFX
1033                                      "giving up on stale connection\n");
1034                         ch->status = -ECONNRESET;
1035                         return ch->status;
1036
1037                 default:
1038                         return ch->status;
1039                 }
1040         }
1041 }
1042
1043 static int srp_inv_rkey(struct srp_rdma_ch *ch, u32 rkey)
1044 {
1045         struct ib_send_wr *bad_wr;
1046         struct ib_send_wr wr = {
1047                 .opcode             = IB_WR_LOCAL_INV,
1048                 .wr_id              = LOCAL_INV_WR_ID_MASK,
1049                 .next               = NULL,
1050                 .num_sge            = 0,
1051                 .send_flags         = 0,
1052                 .ex.invalidate_rkey = rkey,
1053         };
1054
1055         return ib_post_send(ch->qp, &wr, &bad_wr);
1056 }
1057
1058 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1059                            struct srp_rdma_ch *ch,
1060                            struct srp_request *req)
1061 {
1062         struct srp_target_port *target = ch->target;
1063         struct srp_device *dev = target->srp_host->srp_dev;
1064         struct ib_device *ibdev = dev->dev;
1065         int i, res;
1066
1067         if (!scsi_sglist(scmnd) ||
1068             (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1069              scmnd->sc_data_direction != DMA_FROM_DEVICE))
1070                 return;
1071
1072         if (dev->use_fast_reg) {
1073                 struct srp_fr_desc **pfr;
1074
1075                 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1076                         res = srp_inv_rkey(ch, (*pfr)->mr->rkey);
1077                         if (res < 0) {
1078                                 shost_printk(KERN_ERR, target->scsi_host, PFX
1079                                   "Queueing INV WR for rkey %#x failed (%d)\n",
1080                                   (*pfr)->mr->rkey, res);
1081                                 queue_work(system_long_wq,
1082                                            &target->tl_err_work);
1083                         }
1084                 }
1085                 if (req->nmdesc)
1086                         srp_fr_pool_put(ch->fr_pool, req->fr_list,
1087                                         req->nmdesc);
1088         } else {
1089                 struct ib_pool_fmr **pfmr;
1090
1091                 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1092                         ib_fmr_pool_unmap(*pfmr);
1093         }
1094
1095         ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1096                         scmnd->sc_data_direction);
1097 }
1098
1099 /**
1100  * srp_claim_req - Take ownership of the scmnd associated with a request.
1101  * @ch: SRP RDMA channel.
1102  * @req: SRP request.
1103  * @sdev: If not NULL, only take ownership for this SCSI device.
1104  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1105  *         ownership of @req->scmnd if it equals @scmnd.
1106  *
1107  * Return value:
1108  * Either NULL or a pointer to the SCSI command the caller became owner of.
1109  */
1110 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1111                                        struct srp_request *req,
1112                                        struct scsi_device *sdev,
1113                                        struct scsi_cmnd *scmnd)
1114 {
1115         unsigned long flags;
1116
1117         spin_lock_irqsave(&ch->lock, flags);
1118         if (req->scmnd &&
1119             (!sdev || req->scmnd->device == sdev) &&
1120             (!scmnd || req->scmnd == scmnd)) {
1121                 scmnd = req->scmnd;
1122                 req->scmnd = NULL;
1123         } else {
1124                 scmnd = NULL;
1125         }
1126         spin_unlock_irqrestore(&ch->lock, flags);
1127
1128         return scmnd;
1129 }
1130
1131 /**
1132  * srp_free_req() - Unmap data and add request to the free request list.
1133  * @ch:     SRP RDMA channel.
1134  * @req:    Request to be freed.
1135  * @scmnd:  SCSI command associated with @req.
1136  * @req_lim_delta: Amount to be added to @target->req_lim.
1137  */
1138 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1139                          struct scsi_cmnd *scmnd, s32 req_lim_delta)
1140 {
1141         unsigned long flags;
1142
1143         srp_unmap_data(scmnd, ch, req);
1144
1145         spin_lock_irqsave(&ch->lock, flags);
1146         ch->req_lim += req_lim_delta;
1147         spin_unlock_irqrestore(&ch->lock, flags);
1148 }
1149
1150 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1151                            struct scsi_device *sdev, int result)
1152 {
1153         struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1154
1155         if (scmnd) {
1156                 srp_free_req(ch, req, scmnd, 0);
1157                 scmnd->result = result;
1158                 scmnd->scsi_done(scmnd);
1159         }
1160 }
1161
1162 static void srp_terminate_io(struct srp_rport *rport)
1163 {
1164         struct srp_target_port *target = rport->lld_data;
1165         struct srp_rdma_ch *ch;
1166         struct Scsi_Host *shost = target->scsi_host;
1167         struct scsi_device *sdev;
1168         int i, j;
1169
1170         /*
1171          * Invoking srp_terminate_io() while srp_queuecommand() is running
1172          * is not safe. Hence the warning statement below.
1173          */
1174         shost_for_each_device(sdev, shost)
1175                 WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1176
1177         for (i = 0; i < target->ch_count; i++) {
1178                 ch = &target->ch[i];
1179
1180                 for (j = 0; j < target->req_ring_size; ++j) {
1181                         struct srp_request *req = &ch->req_ring[j];
1182
1183                         srp_finish_req(ch, req, NULL,
1184                                        DID_TRANSPORT_FAILFAST << 16);
1185                 }
1186         }
1187 }
1188
1189 /*
1190  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1191  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1192  * srp_reset_device() or srp_reset_host() calls will occur while this function
1193  * is in progress. One way to realize that is not to call this function
1194  * directly but to call srp_reconnect_rport() instead since that last function
1195  * serializes calls of this function via rport->mutex and also blocks
1196  * srp_queuecommand() calls before invoking this function.
1197  */
1198 static int srp_rport_reconnect(struct srp_rport *rport)
1199 {
1200         struct srp_target_port *target = rport->lld_data;
1201         struct srp_rdma_ch *ch;
1202         int i, j, ret = 0;
1203         bool multich = false;
1204
1205         srp_disconnect_target(target);
1206
1207         if (target->state == SRP_TARGET_SCANNING)
1208                 return -ENODEV;
1209
1210         /*
1211          * Now get a new local CM ID so that we avoid confusing the target in
1212          * case things are really fouled up. Doing so also ensures that all CM
1213          * callbacks will have finished before a new QP is allocated.
1214          */
1215         for (i = 0; i < target->ch_count; i++) {
1216                 ch = &target->ch[i];
1217                 ret += srp_new_cm_id(ch);
1218         }
1219         for (i = 0; i < target->ch_count; i++) {
1220                 ch = &target->ch[i];
1221                 for (j = 0; j < target->req_ring_size; ++j) {
1222                         struct srp_request *req = &ch->req_ring[j];
1223
1224                         srp_finish_req(ch, req, NULL, DID_RESET << 16);
1225                 }
1226         }
1227         for (i = 0; i < target->ch_count; i++) {
1228                 ch = &target->ch[i];
1229                 /*
1230                  * Whether or not creating a new CM ID succeeded, create a new
1231                  * QP. This guarantees that all completion callback function
1232                  * invocations have finished before request resetting starts.
1233                  */
1234                 ret += srp_create_ch_ib(ch);
1235
1236                 INIT_LIST_HEAD(&ch->free_tx);
1237                 for (j = 0; j < target->queue_size; ++j)
1238                         list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1239         }
1240
1241         target->qp_in_error = false;
1242
1243         for (i = 0; i < target->ch_count; i++) {
1244                 ch = &target->ch[i];
1245                 if (ret)
1246                         break;
1247                 ret = srp_connect_ch(ch, multich);
1248                 multich = true;
1249         }
1250
1251         if (ret == 0)
1252                 shost_printk(KERN_INFO, target->scsi_host,
1253                              PFX "reconnect succeeded\n");
1254
1255         return ret;
1256 }
1257
1258 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1259                          unsigned int dma_len, u32 rkey)
1260 {
1261         struct srp_direct_buf *desc = state->desc;
1262
1263         desc->va = cpu_to_be64(dma_addr);
1264         desc->key = cpu_to_be32(rkey);
1265         desc->len = cpu_to_be32(dma_len);
1266
1267         state->total_len += dma_len;
1268         state->desc++;
1269         state->ndesc++;
1270 }
1271
1272 static int srp_map_finish_fmr(struct srp_map_state *state,
1273                               struct srp_rdma_ch *ch)
1274 {
1275         struct srp_target_port *target = ch->target;
1276         struct srp_device *dev = target->srp_host->srp_dev;
1277         struct ib_pool_fmr *fmr;
1278         u64 io_addr = 0;
1279
1280         fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1281                                    state->npages, io_addr);
1282         if (IS_ERR(fmr))
1283                 return PTR_ERR(fmr);
1284
1285         *state->next_fmr++ = fmr;
1286         state->nmdesc++;
1287
1288         srp_map_desc(state, state->base_dma_addr & ~dev->mr_page_mask,
1289                      state->dma_len, fmr->fmr->rkey);
1290
1291         return 0;
1292 }
1293
1294 static int srp_map_finish_fr(struct srp_map_state *state,
1295                              struct srp_rdma_ch *ch)
1296 {
1297         struct srp_target_port *target = ch->target;
1298         struct srp_device *dev = target->srp_host->srp_dev;
1299         struct ib_send_wr *bad_wr;
1300         struct ib_send_wr wr;
1301         struct srp_fr_desc *desc;
1302         u32 rkey;
1303
1304         desc = srp_fr_pool_get(ch->fr_pool);
1305         if (!desc)
1306                 return -ENOMEM;
1307
1308         rkey = ib_inc_rkey(desc->mr->rkey);
1309         ib_update_fast_reg_key(desc->mr, rkey);
1310
1311         memcpy(desc->frpl->page_list, state->pages,
1312                sizeof(state->pages[0]) * state->npages);
1313
1314         memset(&wr, 0, sizeof(wr));
1315         wr.opcode = IB_WR_FAST_REG_MR;
1316         wr.wr_id = FAST_REG_WR_ID_MASK;
1317         wr.wr.fast_reg.iova_start = state->base_dma_addr;
1318         wr.wr.fast_reg.page_list = desc->frpl;
1319         wr.wr.fast_reg.page_list_len = state->npages;
1320         wr.wr.fast_reg.page_shift = ilog2(dev->mr_page_size);
1321         wr.wr.fast_reg.length = state->dma_len;
1322         wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE |
1323                                        IB_ACCESS_REMOTE_READ |
1324                                        IB_ACCESS_REMOTE_WRITE);
1325         wr.wr.fast_reg.rkey = desc->mr->lkey;
1326
1327         *state->next_fr++ = desc;
1328         state->nmdesc++;
1329
1330         srp_map_desc(state, state->base_dma_addr, state->dma_len,
1331                      desc->mr->rkey);
1332
1333         return ib_post_send(ch->qp, &wr, &bad_wr);
1334 }
1335
1336 static int srp_finish_mapping(struct srp_map_state *state,
1337                               struct srp_rdma_ch *ch)
1338 {
1339         struct srp_target_port *target = ch->target;
1340         int ret = 0;
1341
1342         if (state->npages == 0)
1343                 return 0;
1344
1345         if (state->npages == 1 && !register_always)
1346                 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1347                              target->rkey);
1348         else
1349                 ret = target->srp_host->srp_dev->use_fast_reg ?
1350                         srp_map_finish_fr(state, ch) :
1351                         srp_map_finish_fmr(state, ch);
1352
1353         if (ret == 0) {
1354                 state->npages = 0;
1355                 state->dma_len = 0;
1356         }
1357
1358         return ret;
1359 }
1360
1361 static void srp_map_update_start(struct srp_map_state *state,
1362                                  struct scatterlist *sg, int sg_index,
1363                                  dma_addr_t dma_addr)
1364 {
1365         state->unmapped_sg = sg;
1366         state->unmapped_index = sg_index;
1367         state->unmapped_addr = dma_addr;
1368 }
1369
1370 static int srp_map_sg_entry(struct srp_map_state *state,
1371                             struct srp_rdma_ch *ch,
1372                             struct scatterlist *sg, int sg_index,
1373                             bool use_mr)
1374 {
1375         struct srp_target_port *target = ch->target;
1376         struct srp_device *dev = target->srp_host->srp_dev;
1377         struct ib_device *ibdev = dev->dev;
1378         dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1379         unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1380         unsigned int len;
1381         int ret;
1382
1383         if (!dma_len)
1384                 return 0;
1385
1386         if (!use_mr) {
1387                 /*
1388                  * Once we're in direct map mode for a request, we don't
1389                  * go back to FMR or FR mode, so no need to update anything
1390                  * other than the descriptor.
1391                  */
1392                 srp_map_desc(state, dma_addr, dma_len, target->rkey);
1393                 return 0;
1394         }
1395
1396         if (dma_len > dev->mr_max_size) {
1397                 ret = srp_finish_mapping(state, ch);
1398                 if (ret)
1399                         return ret;
1400
1401                 srp_map_desc(state, dma_addr, dma_len, target->rkey);
1402                 srp_map_update_start(state, NULL, 0, 0);
1403                 return 0;
1404         }
1405
1406         /*
1407          * If this is the first sg that will be mapped via FMR or via FR, save
1408          * our position. We need to know the first unmapped entry, its index,
1409          * and the first unmapped address within that entry to be able to
1410          * restart mapping after an error.
1411          */
1412         if (!state->unmapped_sg)
1413                 srp_map_update_start(state, sg, sg_index, dma_addr);
1414
1415         while (dma_len) {
1416                 unsigned offset = dma_addr & ~dev->mr_page_mask;
1417                 if (state->npages == dev->max_pages_per_mr || offset != 0) {
1418                         ret = srp_finish_mapping(state, ch);
1419                         if (ret)
1420                                 return ret;
1421
1422                         srp_map_update_start(state, sg, sg_index, dma_addr);
1423                 }
1424
1425                 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1426
1427                 if (!state->npages)
1428                         state->base_dma_addr = dma_addr;
1429                 state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1430                 state->dma_len += len;
1431                 dma_addr += len;
1432                 dma_len -= len;
1433         }
1434
1435         /*
1436          * If the last entry of the MR wasn't a full page, then we need to
1437          * close it out and start a new one -- we can only merge at page
1438          * boundries.
1439          */
1440         ret = 0;
1441         if (len != dev->mr_page_size) {
1442                 ret = srp_finish_mapping(state, ch);
1443                 if (!ret)
1444                         srp_map_update_start(state, NULL, 0, 0);
1445         }
1446         return ret;
1447 }
1448
1449 static int srp_map_sg(struct srp_map_state *state, struct srp_rdma_ch *ch,
1450                       struct srp_request *req, struct scatterlist *scat,
1451                       int count)
1452 {
1453         struct srp_target_port *target = ch->target;
1454         struct srp_device *dev = target->srp_host->srp_dev;
1455         struct ib_device *ibdev = dev->dev;
1456         struct scatterlist *sg;
1457         int i;
1458         bool use_mr;
1459
1460         state->desc     = req->indirect_desc;
1461         state->pages    = req->map_page;
1462         if (dev->use_fast_reg) {
1463                 state->next_fr = req->fr_list;
1464                 use_mr = !!ch->fr_pool;
1465         } else {
1466                 state->next_fmr = req->fmr_list;
1467                 use_mr = !!ch->fmr_pool;
1468         }
1469
1470         for_each_sg(scat, sg, count, i) {
1471                 if (srp_map_sg_entry(state, ch, sg, i, use_mr)) {
1472                         /*
1473                          * Memory registration failed, so backtrack to the
1474                          * first unmapped entry and continue on without using
1475                          * memory registration.
1476                          */
1477                         dma_addr_t dma_addr;
1478                         unsigned int dma_len;
1479
1480 backtrack:
1481                         sg = state->unmapped_sg;
1482                         i = state->unmapped_index;
1483
1484                         dma_addr = ib_sg_dma_address(ibdev, sg);
1485                         dma_len = ib_sg_dma_len(ibdev, sg);
1486                         dma_len -= (state->unmapped_addr - dma_addr);
1487                         dma_addr = state->unmapped_addr;
1488                         use_mr = false;
1489                         srp_map_desc(state, dma_addr, dma_len, target->rkey);
1490                 }
1491         }
1492
1493         if (use_mr && srp_finish_mapping(state, ch))
1494                 goto backtrack;
1495
1496         req->nmdesc = state->nmdesc;
1497
1498         return 0;
1499 }
1500
1501 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1502                         struct srp_request *req)
1503 {
1504         struct srp_target_port *target = ch->target;
1505         struct scatterlist *scat;
1506         struct srp_cmd *cmd = req->cmd->buf;
1507         int len, nents, count;
1508         struct srp_device *dev;
1509         struct ib_device *ibdev;
1510         struct srp_map_state state;
1511         struct srp_indirect_buf *indirect_hdr;
1512         u32 table_len;
1513         u8 fmt;
1514
1515         if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1516                 return sizeof (struct srp_cmd);
1517
1518         if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1519             scmnd->sc_data_direction != DMA_TO_DEVICE) {
1520                 shost_printk(KERN_WARNING, target->scsi_host,
1521                              PFX "Unhandled data direction %d\n",
1522                              scmnd->sc_data_direction);
1523                 return -EINVAL;
1524         }
1525
1526         nents = scsi_sg_count(scmnd);
1527         scat  = scsi_sglist(scmnd);
1528
1529         dev = target->srp_host->srp_dev;
1530         ibdev = dev->dev;
1531
1532         count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1533         if (unlikely(count == 0))
1534                 return -EIO;
1535
1536         fmt = SRP_DATA_DESC_DIRECT;
1537         len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf);
1538
1539         if (count == 1 && !register_always) {
1540                 /*
1541                  * The midlayer only generated a single gather/scatter
1542                  * entry, or DMA mapping coalesced everything to a
1543                  * single entry.  So a direct descriptor along with
1544                  * the DMA MR suffices.
1545                  */
1546                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1547
1548                 buf->va  = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1549                 buf->key = cpu_to_be32(target->rkey);
1550                 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1551
1552                 req->nmdesc = 0;
1553                 goto map_complete;
1554         }
1555
1556         /*
1557          * We have more than one scatter/gather entry, so build our indirect
1558          * descriptor table, trying to merge as many entries as we can.
1559          */
1560         indirect_hdr = (void *) cmd->add_data;
1561
1562         ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1563                                    target->indirect_size, DMA_TO_DEVICE);
1564
1565         memset(&state, 0, sizeof(state));
1566         srp_map_sg(&state, ch, req, scat, count);
1567
1568         /* We've mapped the request, now pull as much of the indirect
1569          * descriptor table as we can into the command buffer. If this
1570          * target is not using an external indirect table, we are
1571          * guaranteed to fit into the command, as the SCSI layer won't
1572          * give us more S/G entries than we allow.
1573          */
1574         if (state.ndesc == 1) {
1575                 /*
1576                  * Memory registration collapsed the sg-list into one entry,
1577                  * so use a direct descriptor.
1578                  */
1579                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1580
1581                 *buf = req->indirect_desc[0];
1582                 goto map_complete;
1583         }
1584
1585         if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1586                                                 !target->allow_ext_sg)) {
1587                 shost_printk(KERN_ERR, target->scsi_host,
1588                              "Could not fit S/G list into SRP_CMD\n");
1589                 return -EIO;
1590         }
1591
1592         count = min(state.ndesc, target->cmd_sg_cnt);
1593         table_len = state.ndesc * sizeof (struct srp_direct_buf);
1594
1595         fmt = SRP_DATA_DESC_INDIRECT;
1596         len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1597         len += count * sizeof (struct srp_direct_buf);
1598
1599         memcpy(indirect_hdr->desc_list, req->indirect_desc,
1600                count * sizeof (struct srp_direct_buf));
1601
1602         indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1603         indirect_hdr->table_desc.key = cpu_to_be32(target->rkey);
1604         indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1605         indirect_hdr->len = cpu_to_be32(state.total_len);
1606
1607         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1608                 cmd->data_out_desc_cnt = count;
1609         else
1610                 cmd->data_in_desc_cnt = count;
1611
1612         ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1613                                       DMA_TO_DEVICE);
1614
1615 map_complete:
1616         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1617                 cmd->buf_fmt = fmt << 4;
1618         else
1619                 cmd->buf_fmt = fmt;
1620
1621         return len;
1622 }
1623
1624 /*
1625  * Return an IU and possible credit to the free pool
1626  */
1627 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1628                           enum srp_iu_type iu_type)
1629 {
1630         unsigned long flags;
1631
1632         spin_lock_irqsave(&ch->lock, flags);
1633         list_add(&iu->list, &ch->free_tx);
1634         if (iu_type != SRP_IU_RSP)
1635                 ++ch->req_lim;
1636         spin_unlock_irqrestore(&ch->lock, flags);
1637 }
1638
1639 /*
1640  * Must be called with ch->lock held to protect req_lim and free_tx.
1641  * If IU is not sent, it must be returned using srp_put_tx_iu().
1642  *
1643  * Note:
1644  * An upper limit for the number of allocated information units for each
1645  * request type is:
1646  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1647  *   more than Scsi_Host.can_queue requests.
1648  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1649  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1650  *   one unanswered SRP request to an initiator.
1651  */
1652 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1653                                       enum srp_iu_type iu_type)
1654 {
1655         struct srp_target_port *target = ch->target;
1656         s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1657         struct srp_iu *iu;
1658
1659         srp_send_completion(ch->send_cq, ch);
1660
1661         if (list_empty(&ch->free_tx))
1662                 return NULL;
1663
1664         /* Initiator responses to target requests do not consume credits */
1665         if (iu_type != SRP_IU_RSP) {
1666                 if (ch->req_lim <= rsv) {
1667                         ++target->zero_req_lim;
1668                         return NULL;
1669                 }
1670
1671                 --ch->req_lim;
1672         }
1673
1674         iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1675         list_del(&iu->list);
1676         return iu;
1677 }
1678
1679 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1680 {
1681         struct srp_target_port *target = ch->target;
1682         struct ib_sge list;
1683         struct ib_send_wr wr, *bad_wr;
1684
1685         list.addr   = iu->dma;
1686         list.length = len;
1687         list.lkey   = target->lkey;
1688
1689         wr.next       = NULL;
1690         wr.wr_id      = (uintptr_t) iu;
1691         wr.sg_list    = &list;
1692         wr.num_sge    = 1;
1693         wr.opcode     = IB_WR_SEND;
1694         wr.send_flags = IB_SEND_SIGNALED;
1695
1696         return ib_post_send(ch->qp, &wr, &bad_wr);
1697 }
1698
1699 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1700 {
1701         struct srp_target_port *target = ch->target;
1702         struct ib_recv_wr wr, *bad_wr;
1703         struct ib_sge list;
1704
1705         list.addr   = iu->dma;
1706         list.length = iu->size;
1707         list.lkey   = target->lkey;
1708
1709         wr.next     = NULL;
1710         wr.wr_id    = (uintptr_t) iu;
1711         wr.sg_list  = &list;
1712         wr.num_sge  = 1;
1713
1714         return ib_post_recv(ch->qp, &wr, &bad_wr);
1715 }
1716
1717 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1718 {
1719         struct srp_target_port *target = ch->target;
1720         struct srp_request *req;
1721         struct scsi_cmnd *scmnd;
1722         unsigned long flags;
1723
1724         if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1725                 spin_lock_irqsave(&ch->lock, flags);
1726                 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1727                 spin_unlock_irqrestore(&ch->lock, flags);
1728
1729                 ch->tsk_mgmt_status = -1;
1730                 if (be32_to_cpu(rsp->resp_data_len) >= 4)
1731                         ch->tsk_mgmt_status = rsp->data[3];
1732                 complete(&ch->tsk_mgmt_done);
1733         } else {
1734                 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1735                 if (scmnd) {
1736                         req = (void *)scmnd->host_scribble;
1737                         scmnd = srp_claim_req(ch, req, NULL, scmnd);
1738                 }
1739                 if (!scmnd) {
1740                         shost_printk(KERN_ERR, target->scsi_host,
1741                                      "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1742                                      rsp->tag, ch - target->ch, ch->qp->qp_num);
1743
1744                         spin_lock_irqsave(&ch->lock, flags);
1745                         ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1746                         spin_unlock_irqrestore(&ch->lock, flags);
1747
1748                         return;
1749                 }
1750                 scmnd->result = rsp->status;
1751
1752                 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1753                         memcpy(scmnd->sense_buffer, rsp->data +
1754                                be32_to_cpu(rsp->resp_data_len),
1755                                min_t(int, be32_to_cpu(rsp->sense_data_len),
1756                                      SCSI_SENSE_BUFFERSIZE));
1757                 }
1758
1759                 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1760                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1761                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1762                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1763                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1764                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1765                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1766                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1767
1768                 srp_free_req(ch, req, scmnd,
1769                              be32_to_cpu(rsp->req_lim_delta));
1770
1771                 scmnd->host_scribble = NULL;
1772                 scmnd->scsi_done(scmnd);
1773         }
1774 }
1775
1776 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1777                                void *rsp, int len)
1778 {
1779         struct srp_target_port *target = ch->target;
1780         struct ib_device *dev = target->srp_host->srp_dev->dev;
1781         unsigned long flags;
1782         struct srp_iu *iu;
1783         int err;
1784
1785         spin_lock_irqsave(&ch->lock, flags);
1786         ch->req_lim += req_delta;
1787         iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1788         spin_unlock_irqrestore(&ch->lock, flags);
1789
1790         if (!iu) {
1791                 shost_printk(KERN_ERR, target->scsi_host, PFX
1792                              "no IU available to send response\n");
1793                 return 1;
1794         }
1795
1796         ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1797         memcpy(iu->buf, rsp, len);
1798         ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1799
1800         err = srp_post_send(ch, iu, len);
1801         if (err) {
1802                 shost_printk(KERN_ERR, target->scsi_host, PFX
1803                              "unable to post response: %d\n", err);
1804                 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1805         }
1806
1807         return err;
1808 }
1809
1810 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1811                                  struct srp_cred_req *req)
1812 {
1813         struct srp_cred_rsp rsp = {
1814                 .opcode = SRP_CRED_RSP,
1815                 .tag = req->tag,
1816         };
1817         s32 delta = be32_to_cpu(req->req_lim_delta);
1818
1819         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1820                 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1821                              "problems processing SRP_CRED_REQ\n");
1822 }
1823
1824 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1825                                 struct srp_aer_req *req)
1826 {
1827         struct srp_target_port *target = ch->target;
1828         struct srp_aer_rsp rsp = {
1829                 .opcode = SRP_AER_RSP,
1830                 .tag = req->tag,
1831         };
1832         s32 delta = be32_to_cpu(req->req_lim_delta);
1833
1834         shost_printk(KERN_ERR, target->scsi_host, PFX
1835                      "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
1836
1837         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1838                 shost_printk(KERN_ERR, target->scsi_host, PFX
1839                              "problems processing SRP_AER_REQ\n");
1840 }
1841
1842 static void srp_handle_recv(struct srp_rdma_ch *ch, struct ib_wc *wc)
1843 {
1844         struct srp_target_port *target = ch->target;
1845         struct ib_device *dev = target->srp_host->srp_dev->dev;
1846         struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id;
1847         int res;
1848         u8 opcode;
1849
1850         ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
1851                                    DMA_FROM_DEVICE);
1852
1853         opcode = *(u8 *) iu->buf;
1854
1855         if (0) {
1856                 shost_printk(KERN_ERR, target->scsi_host,
1857                              PFX "recv completion, opcode 0x%02x\n", opcode);
1858                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1859                                iu->buf, wc->byte_len, true);
1860         }
1861
1862         switch (opcode) {
1863         case SRP_RSP:
1864                 srp_process_rsp(ch, iu->buf);
1865                 break;
1866
1867         case SRP_CRED_REQ:
1868                 srp_process_cred_req(ch, iu->buf);
1869                 break;
1870
1871         case SRP_AER_REQ:
1872                 srp_process_aer_req(ch, iu->buf);
1873                 break;
1874
1875         case SRP_T_LOGOUT:
1876                 /* XXX Handle target logout */
1877                 shost_printk(KERN_WARNING, target->scsi_host,
1878                              PFX "Got target logout request\n");
1879                 break;
1880
1881         default:
1882                 shost_printk(KERN_WARNING, target->scsi_host,
1883                              PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1884                 break;
1885         }
1886
1887         ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
1888                                       DMA_FROM_DEVICE);
1889
1890         res = srp_post_recv(ch, iu);
1891         if (res != 0)
1892                 shost_printk(KERN_ERR, target->scsi_host,
1893                              PFX "Recv failed with error code %d\n", res);
1894 }
1895
1896 /**
1897  * srp_tl_err_work() - handle a transport layer error
1898  * @work: Work structure embedded in an SRP target port.
1899  *
1900  * Note: This function may get invoked before the rport has been created,
1901  * hence the target->rport test.
1902  */
1903 static void srp_tl_err_work(struct work_struct *work)
1904 {
1905         struct srp_target_port *target;
1906
1907         target = container_of(work, struct srp_target_port, tl_err_work);
1908         if (target->rport)
1909                 srp_start_tl_fail_timers(target->rport);
1910 }
1911
1912 static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status,
1913                               bool send_err, struct srp_rdma_ch *ch)
1914 {
1915         struct srp_target_port *target = ch->target;
1916
1917         if (wr_id == SRP_LAST_WR_ID) {
1918                 complete(&ch->done);
1919                 return;
1920         }
1921
1922         if (ch->connected && !target->qp_in_error) {
1923                 if (wr_id & LOCAL_INV_WR_ID_MASK) {
1924                         shost_printk(KERN_ERR, target->scsi_host, PFX
1925                                      "LOCAL_INV failed with status %s (%d)\n",
1926                                      ib_wc_status_msg(wc_status), wc_status);
1927                 } else if (wr_id & FAST_REG_WR_ID_MASK) {
1928                         shost_printk(KERN_ERR, target->scsi_host, PFX
1929                                      "FAST_REG_MR failed status %s (%d)\n",
1930                                      ib_wc_status_msg(wc_status), wc_status);
1931                 } else {
1932                         shost_printk(KERN_ERR, target->scsi_host,
1933                                      PFX "failed %s status %s (%d) for iu %p\n",
1934                                      send_err ? "send" : "receive",
1935                                      ib_wc_status_msg(wc_status), wc_status,
1936                                      (void *)(uintptr_t)wr_id);
1937                 }
1938                 queue_work(system_long_wq, &target->tl_err_work);
1939         }
1940         target->qp_in_error = true;
1941 }
1942
1943 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr)
1944 {
1945         struct srp_rdma_ch *ch = ch_ptr;
1946         struct ib_wc wc;
1947
1948         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1949         while (ib_poll_cq(cq, 1, &wc) > 0) {
1950                 if (likely(wc.status == IB_WC_SUCCESS)) {
1951                         srp_handle_recv(ch, &wc);
1952                 } else {
1953                         srp_handle_qp_err(wc.wr_id, wc.status, false, ch);
1954                 }
1955         }
1956 }
1957
1958 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr)
1959 {
1960         struct srp_rdma_ch *ch = ch_ptr;
1961         struct ib_wc wc;
1962         struct srp_iu *iu;
1963
1964         while (ib_poll_cq(cq, 1, &wc) > 0) {
1965                 if (likely(wc.status == IB_WC_SUCCESS)) {
1966                         iu = (struct srp_iu *) (uintptr_t) wc.wr_id;
1967                         list_add(&iu->list, &ch->free_tx);
1968                 } else {
1969                         srp_handle_qp_err(wc.wr_id, wc.status, true, ch);
1970                 }
1971         }
1972 }
1973
1974 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
1975 {
1976         struct srp_target_port *target = host_to_target(shost);
1977         struct srp_rport *rport = target->rport;
1978         struct srp_rdma_ch *ch;
1979         struct srp_request *req;
1980         struct srp_iu *iu;
1981         struct srp_cmd *cmd;
1982         struct ib_device *dev;
1983         unsigned long flags;
1984         u32 tag;
1985         u16 idx;
1986         int len, ret;
1987         const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
1988
1989         /*
1990          * The SCSI EH thread is the only context from which srp_queuecommand()
1991          * can get invoked for blocked devices (SDEV_BLOCK /
1992          * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
1993          * locking the rport mutex if invoked from inside the SCSI EH.
1994          */
1995         if (in_scsi_eh)
1996                 mutex_lock(&rport->mutex);
1997
1998         scmnd->result = srp_chkready(target->rport);
1999         if (unlikely(scmnd->result))
2000                 goto err;
2001
2002         WARN_ON_ONCE(scmnd->request->tag < 0);
2003         tag = blk_mq_unique_tag(scmnd->request);
2004         ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2005         idx = blk_mq_unique_tag_to_tag(tag);
2006         WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2007                   dev_name(&shost->shost_gendev), tag, idx,
2008                   target->req_ring_size);
2009
2010         spin_lock_irqsave(&ch->lock, flags);
2011         iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2012         spin_unlock_irqrestore(&ch->lock, flags);
2013
2014         if (!iu)
2015                 goto err;
2016
2017         req = &ch->req_ring[idx];
2018         dev = target->srp_host->srp_dev->dev;
2019         ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2020                                    DMA_TO_DEVICE);
2021
2022         scmnd->host_scribble = (void *) req;
2023
2024         cmd = iu->buf;
2025         memset(cmd, 0, sizeof *cmd);
2026
2027         cmd->opcode = SRP_CMD;
2028         int_to_scsilun(scmnd->device->lun, &cmd->lun);
2029         cmd->tag    = tag;
2030         memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2031
2032         req->scmnd    = scmnd;
2033         req->cmd      = iu;
2034
2035         len = srp_map_data(scmnd, ch, req);
2036         if (len < 0) {
2037                 shost_printk(KERN_ERR, target->scsi_host,
2038                              PFX "Failed to map data (%d)\n", len);
2039                 /*
2040                  * If we ran out of memory descriptors (-ENOMEM) because an
2041                  * application is queuing many requests with more than
2042                  * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2043                  * to reduce queue depth temporarily.
2044                  */
2045                 scmnd->result = len == -ENOMEM ?
2046                         DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2047                 goto err_iu;
2048         }
2049
2050         ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2051                                       DMA_TO_DEVICE);
2052
2053         if (srp_post_send(ch, iu, len)) {
2054                 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2055                 goto err_unmap;
2056         }
2057
2058         ret = 0;
2059
2060 unlock_rport:
2061         if (in_scsi_eh)
2062                 mutex_unlock(&rport->mutex);
2063
2064         return ret;
2065
2066 err_unmap:
2067         srp_unmap_data(scmnd, ch, req);
2068
2069 err_iu:
2070         srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2071
2072         /*
2073          * Avoid that the loops that iterate over the request ring can
2074          * encounter a dangling SCSI command pointer.
2075          */
2076         req->scmnd = NULL;
2077
2078 err:
2079         if (scmnd->result) {
2080                 scmnd->scsi_done(scmnd);
2081                 ret = 0;
2082         } else {
2083                 ret = SCSI_MLQUEUE_HOST_BUSY;
2084         }
2085
2086         goto unlock_rport;
2087 }
2088
2089 /*
2090  * Note: the resources allocated in this function are freed in
2091  * srp_free_ch_ib().
2092  */
2093 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2094 {
2095         struct srp_target_port *target = ch->target;
2096         int i;
2097
2098         ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2099                               GFP_KERNEL);
2100         if (!ch->rx_ring)
2101                 goto err_no_ring;
2102         ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2103                               GFP_KERNEL);
2104         if (!ch->tx_ring)
2105                 goto err_no_ring;
2106
2107         for (i = 0; i < target->queue_size; ++i) {
2108                 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2109                                               ch->max_ti_iu_len,
2110                                               GFP_KERNEL, DMA_FROM_DEVICE);
2111                 if (!ch->rx_ring[i])
2112                         goto err;
2113         }
2114
2115         for (i = 0; i < target->queue_size; ++i) {
2116                 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2117                                               target->max_iu_len,
2118                                               GFP_KERNEL, DMA_TO_DEVICE);
2119                 if (!ch->tx_ring[i])
2120                         goto err;
2121
2122                 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2123         }
2124
2125         return 0;
2126
2127 err:
2128         for (i = 0; i < target->queue_size; ++i) {
2129                 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2130                 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2131         }
2132
2133
2134 err_no_ring:
2135         kfree(ch->tx_ring);
2136         ch->tx_ring = NULL;
2137         kfree(ch->rx_ring);
2138         ch->rx_ring = NULL;
2139
2140         return -ENOMEM;
2141 }
2142
2143 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2144 {
2145         uint64_t T_tr_ns, max_compl_time_ms;
2146         uint32_t rq_tmo_jiffies;
2147
2148         /*
2149          * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2150          * table 91), both the QP timeout and the retry count have to be set
2151          * for RC QP's during the RTR to RTS transition.
2152          */
2153         WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2154                      (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2155
2156         /*
2157          * Set target->rq_tmo_jiffies to one second more than the largest time
2158          * it can take before an error completion is generated. See also
2159          * C9-140..142 in the IBTA spec for more information about how to
2160          * convert the QP Local ACK Timeout value to nanoseconds.
2161          */
2162         T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2163         max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2164         do_div(max_compl_time_ms, NSEC_PER_MSEC);
2165         rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2166
2167         return rq_tmo_jiffies;
2168 }
2169
2170 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2171                                const struct srp_login_rsp *lrsp,
2172                                struct srp_rdma_ch *ch)
2173 {
2174         struct srp_target_port *target = ch->target;
2175         struct ib_qp_attr *qp_attr = NULL;
2176         int attr_mask = 0;
2177         int ret;
2178         int i;
2179
2180         if (lrsp->opcode == SRP_LOGIN_RSP) {
2181                 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2182                 ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2183
2184                 /*
2185                  * Reserve credits for task management so we don't
2186                  * bounce requests back to the SCSI mid-layer.
2187                  */
2188                 target->scsi_host->can_queue
2189                         = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2190                               target->scsi_host->can_queue);
2191                 target->scsi_host->cmd_per_lun
2192                         = min_t(int, target->scsi_host->can_queue,
2193                                 target->scsi_host->cmd_per_lun);
2194         } else {
2195                 shost_printk(KERN_WARNING, target->scsi_host,
2196                              PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2197                 ret = -ECONNRESET;
2198                 goto error;
2199         }
2200
2201         if (!ch->rx_ring) {
2202                 ret = srp_alloc_iu_bufs(ch);
2203                 if (ret)
2204                         goto error;
2205         }
2206
2207         ret = -ENOMEM;
2208         qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2209         if (!qp_attr)
2210                 goto error;
2211
2212         qp_attr->qp_state = IB_QPS_RTR;
2213         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2214         if (ret)
2215                 goto error_free;
2216
2217         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2218         if (ret)
2219                 goto error_free;
2220
2221         for (i = 0; i < target->queue_size; i++) {
2222                 struct srp_iu *iu = ch->rx_ring[i];
2223
2224                 ret = srp_post_recv(ch, iu);
2225                 if (ret)
2226                         goto error_free;
2227         }
2228
2229         qp_attr->qp_state = IB_QPS_RTS;
2230         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2231         if (ret)
2232                 goto error_free;
2233
2234         target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2235
2236         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2237         if (ret)
2238                 goto error_free;
2239
2240         ret = ib_send_cm_rtu(cm_id, NULL, 0);
2241
2242 error_free:
2243         kfree(qp_attr);
2244
2245 error:
2246         ch->status = ret;
2247 }
2248
2249 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2250                                struct ib_cm_event *event,
2251                                struct srp_rdma_ch *ch)
2252 {
2253         struct srp_target_port *target = ch->target;
2254         struct Scsi_Host *shost = target->scsi_host;
2255         struct ib_class_port_info *cpi;
2256         int opcode;
2257
2258         switch (event->param.rej_rcvd.reason) {
2259         case IB_CM_REJ_PORT_CM_REDIRECT:
2260                 cpi = event->param.rej_rcvd.ari;
2261                 ch->path.dlid = cpi->redirect_lid;
2262                 ch->path.pkey = cpi->redirect_pkey;
2263                 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2264                 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2265
2266                 ch->status = ch->path.dlid ?
2267                         SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2268                 break;
2269
2270         case IB_CM_REJ_PORT_REDIRECT:
2271                 if (srp_target_is_topspin(target)) {
2272                         /*
2273                          * Topspin/Cisco SRP gateways incorrectly send
2274                          * reject reason code 25 when they mean 24
2275                          * (port redirect).
2276                          */
2277                         memcpy(ch->path.dgid.raw,
2278                                event->param.rej_rcvd.ari, 16);
2279
2280                         shost_printk(KERN_DEBUG, shost,
2281                                      PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2282                                      be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2283                                      be64_to_cpu(ch->path.dgid.global.interface_id));
2284
2285                         ch->status = SRP_PORT_REDIRECT;
2286                 } else {
2287                         shost_printk(KERN_WARNING, shost,
2288                                      "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2289                         ch->status = -ECONNRESET;
2290                 }
2291                 break;
2292
2293         case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2294                 shost_printk(KERN_WARNING, shost,
2295                             "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2296                 ch->status = -ECONNRESET;
2297                 break;
2298
2299         case IB_CM_REJ_CONSUMER_DEFINED:
2300                 opcode = *(u8 *) event->private_data;
2301                 if (opcode == SRP_LOGIN_REJ) {
2302                         struct srp_login_rej *rej = event->private_data;
2303                         u32 reason = be32_to_cpu(rej->reason);
2304
2305                         if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2306                                 shost_printk(KERN_WARNING, shost,
2307                                              PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2308                         else
2309                                 shost_printk(KERN_WARNING, shost, PFX
2310                                              "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2311                                              target->sgid.raw,
2312                                              target->orig_dgid.raw, reason);
2313                 } else
2314                         shost_printk(KERN_WARNING, shost,
2315                                      "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2316                                      " opcode 0x%02x\n", opcode);
2317                 ch->status = -ECONNRESET;
2318                 break;
2319
2320         case IB_CM_REJ_STALE_CONN:
2321                 shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2322                 ch->status = SRP_STALE_CONN;
2323                 break;
2324
2325         default:
2326                 shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2327                              event->param.rej_rcvd.reason);
2328                 ch->status = -ECONNRESET;
2329         }
2330 }
2331
2332 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2333 {
2334         struct srp_rdma_ch *ch = cm_id->context;
2335         struct srp_target_port *target = ch->target;
2336         int comp = 0;
2337
2338         switch (event->event) {
2339         case IB_CM_REQ_ERROR:
2340                 shost_printk(KERN_DEBUG, target->scsi_host,
2341                              PFX "Sending CM REQ failed\n");
2342                 comp = 1;
2343                 ch->status = -ECONNRESET;
2344                 break;
2345
2346         case IB_CM_REP_RECEIVED:
2347                 comp = 1;
2348                 srp_cm_rep_handler(cm_id, event->private_data, ch);
2349                 break;
2350
2351         case IB_CM_REJ_RECEIVED:
2352                 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2353                 comp = 1;
2354
2355                 srp_cm_rej_handler(cm_id, event, ch);
2356                 break;
2357
2358         case IB_CM_DREQ_RECEIVED:
2359                 shost_printk(KERN_WARNING, target->scsi_host,
2360                              PFX "DREQ received - connection closed\n");
2361                 ch->connected = false;
2362                 if (ib_send_cm_drep(cm_id, NULL, 0))
2363                         shost_printk(KERN_ERR, target->scsi_host,
2364                                      PFX "Sending CM DREP failed\n");
2365                 queue_work(system_long_wq, &target->tl_err_work);
2366                 break;
2367
2368         case IB_CM_TIMEWAIT_EXIT:
2369                 shost_printk(KERN_ERR, target->scsi_host,
2370                              PFX "connection closed\n");
2371                 comp = 1;
2372
2373                 ch->status = 0;
2374                 break;
2375
2376         case IB_CM_MRA_RECEIVED:
2377         case IB_CM_DREQ_ERROR:
2378         case IB_CM_DREP_RECEIVED:
2379                 break;
2380
2381         default:
2382                 shost_printk(KERN_WARNING, target->scsi_host,
2383                              PFX "Unhandled CM event %d\n", event->event);
2384                 break;
2385         }
2386
2387         if (comp)
2388                 complete(&ch->done);
2389
2390         return 0;
2391 }
2392
2393 /**
2394  * srp_change_queue_depth - setting device queue depth
2395  * @sdev: scsi device struct
2396  * @qdepth: requested queue depth
2397  *
2398  * Returns queue depth.
2399  */
2400 static int
2401 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2402 {
2403         if (!sdev->tagged_supported)
2404                 qdepth = 1;
2405         return scsi_change_queue_depth(sdev, qdepth);
2406 }
2407
2408 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2409                              u8 func)
2410 {
2411         struct srp_target_port *target = ch->target;
2412         struct srp_rport *rport = target->rport;
2413         struct ib_device *dev = target->srp_host->srp_dev->dev;
2414         struct srp_iu *iu;
2415         struct srp_tsk_mgmt *tsk_mgmt;
2416
2417         if (!ch->connected || target->qp_in_error)
2418                 return -1;
2419
2420         init_completion(&ch->tsk_mgmt_done);
2421
2422         /*
2423          * Lock the rport mutex to avoid that srp_create_ch_ib() is
2424          * invoked while a task management function is being sent.
2425          */
2426         mutex_lock(&rport->mutex);
2427         spin_lock_irq(&ch->lock);
2428         iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2429         spin_unlock_irq(&ch->lock);
2430
2431         if (!iu) {
2432                 mutex_unlock(&rport->mutex);
2433
2434                 return -1;
2435         }
2436
2437         ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2438                                    DMA_TO_DEVICE);
2439         tsk_mgmt = iu->buf;
2440         memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2441
2442         tsk_mgmt->opcode        = SRP_TSK_MGMT;
2443         int_to_scsilun(lun, &tsk_mgmt->lun);
2444         tsk_mgmt->tag           = req_tag | SRP_TAG_TSK_MGMT;
2445         tsk_mgmt->tsk_mgmt_func = func;
2446         tsk_mgmt->task_tag      = req_tag;
2447
2448         ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2449                                       DMA_TO_DEVICE);
2450         if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2451                 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2452                 mutex_unlock(&rport->mutex);
2453
2454                 return -1;
2455         }
2456         mutex_unlock(&rport->mutex);
2457
2458         if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2459                                          msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2460                 return -1;
2461
2462         return 0;
2463 }
2464
2465 static int srp_abort(struct scsi_cmnd *scmnd)
2466 {
2467         struct srp_target_port *target = host_to_target(scmnd->device->host);
2468         struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2469         u32 tag;
2470         u16 ch_idx;
2471         struct srp_rdma_ch *ch;
2472         int ret;
2473
2474         shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2475
2476         if (!req)
2477                 return SUCCESS;
2478         tag = blk_mq_unique_tag(scmnd->request);
2479         ch_idx = blk_mq_unique_tag_to_hwq(tag);
2480         if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2481                 return SUCCESS;
2482         ch = &target->ch[ch_idx];
2483         if (!srp_claim_req(ch, req, NULL, scmnd))
2484                 return SUCCESS;
2485         shost_printk(KERN_ERR, target->scsi_host,
2486                      "Sending SRP abort for tag %#x\n", tag);
2487         if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2488                               SRP_TSK_ABORT_TASK) == 0)
2489                 ret = SUCCESS;
2490         else if (target->rport->state == SRP_RPORT_LOST)
2491                 ret = FAST_IO_FAIL;
2492         else
2493                 ret = FAILED;
2494         srp_free_req(ch, req, scmnd, 0);
2495         scmnd->result = DID_ABORT << 16;
2496         scmnd->scsi_done(scmnd);
2497
2498         return ret;
2499 }
2500
2501 static int srp_reset_device(struct scsi_cmnd *scmnd)
2502 {
2503         struct srp_target_port *target = host_to_target(scmnd->device->host);
2504         struct srp_rdma_ch *ch;
2505         int i;
2506
2507         shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2508
2509         ch = &target->ch[0];
2510         if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2511                               SRP_TSK_LUN_RESET))
2512                 return FAILED;
2513         if (ch->tsk_mgmt_status)
2514                 return FAILED;
2515
2516         for (i = 0; i < target->ch_count; i++) {
2517                 ch = &target->ch[i];
2518                 for (i = 0; i < target->req_ring_size; ++i) {
2519                         struct srp_request *req = &ch->req_ring[i];
2520
2521                         srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2522                 }
2523         }
2524
2525         return SUCCESS;
2526 }
2527
2528 static int srp_reset_host(struct scsi_cmnd *scmnd)
2529 {
2530         struct srp_target_port *target = host_to_target(scmnd->device->host);
2531
2532         shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2533
2534         return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2535 }
2536
2537 static int srp_slave_configure(struct scsi_device *sdev)
2538 {
2539         struct Scsi_Host *shost = sdev->host;
2540         struct srp_target_port *target = host_to_target(shost);
2541         struct request_queue *q = sdev->request_queue;
2542         unsigned long timeout;
2543
2544         if (sdev->type == TYPE_DISK) {
2545                 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2546                 blk_queue_rq_timeout(q, timeout);
2547         }
2548
2549         return 0;
2550 }
2551
2552 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2553                            char *buf)
2554 {
2555         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2556
2557         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2558 }
2559
2560 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2561                              char *buf)
2562 {
2563         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2564
2565         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2566 }
2567
2568 static ssize_t show_service_id(struct device *dev,
2569                                struct device_attribute *attr, char *buf)
2570 {
2571         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2572
2573         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2574 }
2575
2576 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2577                          char *buf)
2578 {
2579         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2580
2581         return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2582 }
2583
2584 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2585                          char *buf)
2586 {
2587         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2588
2589         return sprintf(buf, "%pI6\n", target->sgid.raw);
2590 }
2591
2592 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2593                          char *buf)
2594 {
2595         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2596         struct srp_rdma_ch *ch = &target->ch[0];
2597
2598         return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2599 }
2600
2601 static ssize_t show_orig_dgid(struct device *dev,
2602                               struct device_attribute *attr, char *buf)
2603 {
2604         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2605
2606         return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2607 }
2608
2609 static ssize_t show_req_lim(struct device *dev,
2610                             struct device_attribute *attr, char *buf)
2611 {
2612         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2613         struct srp_rdma_ch *ch;
2614         int i, req_lim = INT_MAX;
2615
2616         for (i = 0; i < target->ch_count; i++) {
2617                 ch = &target->ch[i];
2618                 req_lim = min(req_lim, ch->req_lim);
2619         }
2620         return sprintf(buf, "%d\n", req_lim);
2621 }
2622
2623 static ssize_t show_zero_req_lim(struct device *dev,
2624                                  struct device_attribute *attr, char *buf)
2625 {
2626         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2627
2628         return sprintf(buf, "%d\n", target->zero_req_lim);
2629 }
2630
2631 static ssize_t show_local_ib_port(struct device *dev,
2632                                   struct device_attribute *attr, char *buf)
2633 {
2634         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2635
2636         return sprintf(buf, "%d\n", target->srp_host->port);
2637 }
2638
2639 static ssize_t show_local_ib_device(struct device *dev,
2640                                     struct device_attribute *attr, char *buf)
2641 {
2642         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2643
2644         return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2645 }
2646
2647 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2648                              char *buf)
2649 {
2650         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2651
2652         return sprintf(buf, "%d\n", target->ch_count);
2653 }
2654
2655 static ssize_t show_comp_vector(struct device *dev,
2656                                 struct device_attribute *attr, char *buf)
2657 {
2658         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2659
2660         return sprintf(buf, "%d\n", target->comp_vector);
2661 }
2662
2663 static ssize_t show_tl_retry_count(struct device *dev,
2664                                    struct device_attribute *attr, char *buf)
2665 {
2666         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2667
2668         return sprintf(buf, "%d\n", target->tl_retry_count);
2669 }
2670
2671 static ssize_t show_cmd_sg_entries(struct device *dev,
2672                                    struct device_attribute *attr, char *buf)
2673 {
2674         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2675
2676         return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2677 }
2678
2679 static ssize_t show_allow_ext_sg(struct device *dev,
2680                                  struct device_attribute *attr, char *buf)
2681 {
2682         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2683
2684         return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2685 }
2686
2687 static DEVICE_ATTR(id_ext,          S_IRUGO, show_id_ext,          NULL);
2688 static DEVICE_ATTR(ioc_guid,        S_IRUGO, show_ioc_guid,        NULL);
2689 static DEVICE_ATTR(service_id,      S_IRUGO, show_service_id,      NULL);
2690 static DEVICE_ATTR(pkey,            S_IRUGO, show_pkey,            NULL);
2691 static DEVICE_ATTR(sgid,            S_IRUGO, show_sgid,            NULL);
2692 static DEVICE_ATTR(dgid,            S_IRUGO, show_dgid,            NULL);
2693 static DEVICE_ATTR(orig_dgid,       S_IRUGO, show_orig_dgid,       NULL);
2694 static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
2695 static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,    NULL);
2696 static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
2697 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2698 static DEVICE_ATTR(ch_count,        S_IRUGO, show_ch_count,        NULL);
2699 static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
2700 static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
2701 static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
2702 static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
2703
2704 static struct device_attribute *srp_host_attrs[] = {
2705         &dev_attr_id_ext,
2706         &dev_attr_ioc_guid,
2707         &dev_attr_service_id,
2708         &dev_attr_pkey,
2709         &dev_attr_sgid,
2710         &dev_attr_dgid,
2711         &dev_attr_orig_dgid,
2712         &dev_attr_req_lim,
2713         &dev_attr_zero_req_lim,
2714         &dev_attr_local_ib_port,
2715         &dev_attr_local_ib_device,
2716         &dev_attr_ch_count,
2717         &dev_attr_comp_vector,
2718         &dev_attr_tl_retry_count,
2719         &dev_attr_cmd_sg_entries,
2720         &dev_attr_allow_ext_sg,
2721         NULL
2722 };
2723
2724 static struct scsi_host_template srp_template = {
2725         .module                         = THIS_MODULE,
2726         .name                           = "InfiniBand SRP initiator",
2727         .proc_name                      = DRV_NAME,
2728         .slave_configure                = srp_slave_configure,
2729         .info                           = srp_target_info,
2730         .queuecommand                   = srp_queuecommand,
2731         .change_queue_depth             = srp_change_queue_depth,
2732         .eh_abort_handler               = srp_abort,
2733         .eh_device_reset_handler        = srp_reset_device,
2734         .eh_host_reset_handler          = srp_reset_host,
2735         .skip_settle_delay              = true,
2736         .sg_tablesize                   = SRP_DEF_SG_TABLESIZE,
2737         .can_queue                      = SRP_DEFAULT_CMD_SQ_SIZE,
2738         .this_id                        = -1,
2739         .cmd_per_lun                    = SRP_DEFAULT_CMD_SQ_SIZE,
2740         .use_clustering                 = ENABLE_CLUSTERING,
2741         .shost_attrs                    = srp_host_attrs,
2742         .use_blk_tags                   = 1,
2743         .track_queue_depth              = 1,
2744 };
2745
2746 static int srp_sdev_count(struct Scsi_Host *host)
2747 {
2748         struct scsi_device *sdev;
2749         int c = 0;
2750
2751         shost_for_each_device(sdev, host)
2752                 c++;
2753
2754         return c;
2755 }
2756
2757 /*
2758  * Return values:
2759  * < 0 upon failure. Caller is responsible for SRP target port cleanup.
2760  * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
2761  *    removal has been scheduled.
2762  * 0 and target->state != SRP_TARGET_REMOVED upon success.
2763  */
2764 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2765 {
2766         struct srp_rport_identifiers ids;
2767         struct srp_rport *rport;
2768
2769         target->state = SRP_TARGET_SCANNING;
2770         sprintf(target->target_name, "SRP.T10:%016llX",
2771                 be64_to_cpu(target->id_ext));
2772
2773         if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2774                 return -ENODEV;
2775
2776         memcpy(ids.port_id, &target->id_ext, 8);
2777         memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2778         ids.roles = SRP_RPORT_ROLE_TARGET;
2779         rport = srp_rport_add(target->scsi_host, &ids);
2780         if (IS_ERR(rport)) {
2781                 scsi_remove_host(target->scsi_host);
2782                 return PTR_ERR(rport);
2783         }
2784
2785         rport->lld_data = target;
2786         target->rport = rport;
2787
2788         spin_lock(&host->target_lock);
2789         list_add_tail(&target->list, &host->target_list);
2790         spin_unlock(&host->target_lock);
2791
2792         scsi_scan_target(&target->scsi_host->shost_gendev,
2793                          0, target->scsi_id, SCAN_WILD_CARD, 0);
2794
2795         if (srp_connected_ch(target) < target->ch_count ||
2796             target->qp_in_error) {
2797                 shost_printk(KERN_INFO, target->scsi_host,
2798                              PFX "SCSI scan failed - removing SCSI host\n");
2799                 srp_queue_remove_work(target);
2800                 goto out;
2801         }
2802
2803         pr_debug(PFX "%s: SCSI scan succeeded - detected %d LUNs\n",
2804                  dev_name(&target->scsi_host->shost_gendev),
2805                  srp_sdev_count(target->scsi_host));
2806
2807         spin_lock_irq(&target->lock);
2808         if (target->state == SRP_TARGET_SCANNING)
2809                 target->state = SRP_TARGET_LIVE;
2810         spin_unlock_irq(&target->lock);
2811
2812 out:
2813         return 0;
2814 }
2815
2816 static void srp_release_dev(struct device *dev)
2817 {
2818         struct srp_host *host =
2819                 container_of(dev, struct srp_host, dev);
2820
2821         complete(&host->released);
2822 }
2823
2824 static struct class srp_class = {
2825         .name    = "infiniband_srp",
2826         .dev_release = srp_release_dev
2827 };
2828
2829 /**
2830  * srp_conn_unique() - check whether the connection to a target is unique
2831  * @host:   SRP host.
2832  * @target: SRP target port.
2833  */
2834 static bool srp_conn_unique(struct srp_host *host,
2835                             struct srp_target_port *target)
2836 {
2837         struct srp_target_port *t;
2838         bool ret = false;
2839
2840         if (target->state == SRP_TARGET_REMOVED)
2841                 goto out;
2842
2843         ret = true;
2844
2845         spin_lock(&host->target_lock);
2846         list_for_each_entry(t, &host->target_list, list) {
2847                 if (t != target &&
2848                     target->id_ext == t->id_ext &&
2849                     target->ioc_guid == t->ioc_guid &&
2850                     target->initiator_ext == t->initiator_ext) {
2851                         ret = false;
2852                         break;
2853                 }
2854         }
2855         spin_unlock(&host->target_lock);
2856
2857 out:
2858         return ret;
2859 }
2860
2861 /*
2862  * Target ports are added by writing
2863  *
2864  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2865  *     pkey=<P_Key>,service_id=<service ID>
2866  *
2867  * to the add_target sysfs attribute.
2868  */
2869 enum {
2870         SRP_OPT_ERR             = 0,
2871         SRP_OPT_ID_EXT          = 1 << 0,
2872         SRP_OPT_IOC_GUID        = 1 << 1,
2873         SRP_OPT_DGID            = 1 << 2,
2874         SRP_OPT_PKEY            = 1 << 3,
2875         SRP_OPT_SERVICE_ID      = 1 << 4,
2876         SRP_OPT_MAX_SECT        = 1 << 5,
2877         SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
2878         SRP_OPT_IO_CLASS        = 1 << 7,
2879         SRP_OPT_INITIATOR_EXT   = 1 << 8,
2880         SRP_OPT_CMD_SG_ENTRIES  = 1 << 9,
2881         SRP_OPT_ALLOW_EXT_SG    = 1 << 10,
2882         SRP_OPT_SG_TABLESIZE    = 1 << 11,
2883         SRP_OPT_COMP_VECTOR     = 1 << 12,
2884         SRP_OPT_TL_RETRY_COUNT  = 1 << 13,
2885         SRP_OPT_QUEUE_SIZE      = 1 << 14,
2886         SRP_OPT_ALL             = (SRP_OPT_ID_EXT       |
2887                                    SRP_OPT_IOC_GUID     |
2888                                    SRP_OPT_DGID         |
2889                                    SRP_OPT_PKEY         |
2890                                    SRP_OPT_SERVICE_ID),
2891 };
2892
2893 static const match_table_t srp_opt_tokens = {
2894         { SRP_OPT_ID_EXT,               "id_ext=%s"             },
2895         { SRP_OPT_IOC_GUID,             "ioc_guid=%s"           },
2896         { SRP_OPT_DGID,                 "dgid=%s"               },
2897         { SRP_OPT_PKEY,                 "pkey=%x"               },
2898         { SRP_OPT_SERVICE_ID,           "service_id=%s"         },
2899         { SRP_OPT_MAX_SECT,             "max_sect=%d"           },
2900         { SRP_OPT_MAX_CMD_PER_LUN,      "max_cmd_per_lun=%d"    },
2901         { SRP_OPT_IO_CLASS,             "io_class=%x"           },
2902         { SRP_OPT_INITIATOR_EXT,        "initiator_ext=%s"      },
2903         { SRP_OPT_CMD_SG_ENTRIES,       "cmd_sg_entries=%u"     },
2904         { SRP_OPT_ALLOW_EXT_SG,         "allow_ext_sg=%u"       },
2905         { SRP_OPT_SG_TABLESIZE,         "sg_tablesize=%u"       },
2906         { SRP_OPT_COMP_VECTOR,          "comp_vector=%u"        },
2907         { SRP_OPT_TL_RETRY_COUNT,       "tl_retry_count=%u"     },
2908         { SRP_OPT_QUEUE_SIZE,           "queue_size=%d"         },
2909         { SRP_OPT_ERR,                  NULL                    }
2910 };
2911
2912 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2913 {
2914         char *options, *sep_opt;
2915         char *p;
2916         char dgid[3];
2917         substring_t args[MAX_OPT_ARGS];
2918         int opt_mask = 0;
2919         int token;
2920         int ret = -EINVAL;
2921         int i;
2922
2923         options = kstrdup(buf, GFP_KERNEL);
2924         if (!options)
2925                 return -ENOMEM;
2926
2927         sep_opt = options;
2928         while ((p = strsep(&sep_opt, ",\n")) != NULL) {
2929                 if (!*p)
2930                         continue;
2931
2932                 token = match_token(p, srp_opt_tokens, args);
2933                 opt_mask |= token;
2934
2935                 switch (token) {
2936                 case SRP_OPT_ID_EXT:
2937                         p = match_strdup(args);
2938                         if (!p) {
2939                                 ret = -ENOMEM;
2940                                 goto out;
2941                         }
2942                         target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
2943                         kfree(p);
2944                         break;
2945
2946                 case SRP_OPT_IOC_GUID:
2947                         p = match_strdup(args);
2948                         if (!p) {
2949                                 ret = -ENOMEM;
2950                                 goto out;
2951                         }
2952                         target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
2953                         kfree(p);
2954                         break;
2955
2956                 case SRP_OPT_DGID:
2957                         p = match_strdup(args);
2958                         if (!p) {
2959                                 ret = -ENOMEM;
2960                                 goto out;
2961                         }
2962                         if (strlen(p) != 32) {
2963                                 pr_warn("bad dest GID parameter '%s'\n", p);
2964                                 kfree(p);
2965                                 goto out;
2966                         }
2967
2968                         for (i = 0; i < 16; ++i) {
2969                                 strlcpy(dgid, p + i * 2, sizeof(dgid));
2970                                 if (sscanf(dgid, "%hhx",
2971                                            &target->orig_dgid.raw[i]) < 1) {
2972                                         ret = -EINVAL;
2973                                         kfree(p);
2974                                         goto out;
2975                                 }
2976                         }
2977                         kfree(p);
2978                         break;
2979
2980                 case SRP_OPT_PKEY:
2981                         if (match_hex(args, &token)) {
2982                                 pr_warn("bad P_Key parameter '%s'\n", p);
2983                                 goto out;
2984                         }
2985                         target->pkey = cpu_to_be16(token);
2986                         break;
2987
2988                 case SRP_OPT_SERVICE_ID:
2989                         p = match_strdup(args);
2990                         if (!p) {
2991                                 ret = -ENOMEM;
2992                                 goto out;
2993                         }
2994                         target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
2995                         kfree(p);
2996                         break;
2997
2998                 case SRP_OPT_MAX_SECT:
2999                         if (match_int(args, &token)) {
3000                                 pr_warn("bad max sect parameter '%s'\n", p);
3001                                 goto out;
3002                         }
3003                         target->scsi_host->max_sectors = token;
3004                         break;
3005
3006                 case SRP_OPT_QUEUE_SIZE:
3007                         if (match_int(args, &token) || token < 1) {
3008                                 pr_warn("bad queue_size parameter '%s'\n", p);
3009                                 goto out;
3010                         }
3011                         target->scsi_host->can_queue = token;
3012                         target->queue_size = token + SRP_RSP_SQ_SIZE +
3013                                              SRP_TSK_MGMT_SQ_SIZE;
3014                         if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3015                                 target->scsi_host->cmd_per_lun = token;
3016                         break;
3017
3018                 case SRP_OPT_MAX_CMD_PER_LUN:
3019                         if (match_int(args, &token) || token < 1) {
3020                                 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3021                                         p);
3022                                 goto out;
3023                         }
3024                         target->scsi_host->cmd_per_lun = token;
3025                         break;
3026
3027                 case SRP_OPT_IO_CLASS:
3028                         if (match_hex(args, &token)) {
3029                                 pr_warn("bad IO class parameter '%s'\n", p);
3030                                 goto out;
3031                         }
3032                         if (token != SRP_REV10_IB_IO_CLASS &&
3033                             token != SRP_REV16A_IB_IO_CLASS) {
3034                                 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3035                                         token, SRP_REV10_IB_IO_CLASS,
3036                                         SRP_REV16A_IB_IO_CLASS);
3037                                 goto out;
3038                         }
3039                         target->io_class = token;
3040                         break;
3041
3042                 case SRP_OPT_INITIATOR_EXT:
3043                         p = match_strdup(args);
3044                         if (!p) {
3045                                 ret = -ENOMEM;
3046                                 goto out;
3047                         }
3048                         target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3049                         kfree(p);
3050                         break;
3051
3052                 case SRP_OPT_CMD_SG_ENTRIES:
3053                         if (match_int(args, &token) || token < 1 || token > 255) {
3054                                 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3055                                         p);
3056                                 goto out;
3057                         }
3058                         target->cmd_sg_cnt = token;
3059                         break;
3060
3061                 case SRP_OPT_ALLOW_EXT_SG:
3062                         if (match_int(args, &token)) {
3063                                 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3064                                 goto out;
3065                         }
3066                         target->allow_ext_sg = !!token;
3067                         break;
3068
3069                 case SRP_OPT_SG_TABLESIZE:
3070                         if (match_int(args, &token) || token < 1 ||
3071                                         token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
3072                                 pr_warn("bad max sg_tablesize parameter '%s'\n",
3073                                         p);
3074                                 goto out;
3075                         }
3076                         target->sg_tablesize = token;
3077                         break;
3078
3079                 case SRP_OPT_COMP_VECTOR:
3080                         if (match_int(args, &token) || token < 0) {
3081                                 pr_warn("bad comp_vector parameter '%s'\n", p);
3082                                 goto out;
3083                         }
3084                         target->comp_vector = token;
3085                         break;
3086
3087                 case SRP_OPT_TL_RETRY_COUNT:
3088                         if (match_int(args, &token) || token < 2 || token > 7) {
3089                                 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3090                                         p);
3091                                 goto out;
3092                         }
3093                         target->tl_retry_count = token;
3094                         break;
3095
3096                 default:
3097                         pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3098                                 p);
3099                         goto out;
3100                 }
3101         }
3102
3103         if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3104                 ret = 0;
3105         else
3106                 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3107                         if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3108                             !(srp_opt_tokens[i].token & opt_mask))
3109                                 pr_warn("target creation request is missing parameter '%s'\n",
3110                                         srp_opt_tokens[i].pattern);
3111
3112         if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3113             && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3114                 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3115                         target->scsi_host->cmd_per_lun,
3116                         target->scsi_host->can_queue);
3117
3118 out:
3119         kfree(options);
3120         return ret;
3121 }
3122
3123 static ssize_t srp_create_target(struct device *dev,
3124                                  struct device_attribute *attr,
3125                                  const char *buf, size_t count)
3126 {
3127         struct srp_host *host =
3128                 container_of(dev, struct srp_host, dev);
3129         struct Scsi_Host *target_host;
3130         struct srp_target_port *target;
3131         struct srp_rdma_ch *ch;
3132         struct srp_device *srp_dev = host->srp_dev;
3133         struct ib_device *ibdev = srp_dev->dev;
3134         int ret, node_idx, node, cpu, i;
3135         bool multich = false;
3136
3137         target_host = scsi_host_alloc(&srp_template,
3138                                       sizeof (struct srp_target_port));
3139         if (!target_host)
3140                 return -ENOMEM;
3141
3142         target_host->transportt  = ib_srp_transport_template;
3143         target_host->max_channel = 0;
3144         target_host->max_id      = 1;
3145         target_host->max_lun     = -1LL;
3146         target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3147
3148         target = host_to_target(target_host);
3149
3150         target->io_class        = SRP_REV16A_IB_IO_CLASS;
3151         target->scsi_host       = target_host;
3152         target->srp_host        = host;
3153         target->lkey            = host->srp_dev->pd->local_dma_lkey;
3154         target->rkey            = host->srp_dev->mr->rkey;
3155         target->cmd_sg_cnt      = cmd_sg_entries;
3156         target->sg_tablesize    = indirect_sg_entries ? : cmd_sg_entries;
3157         target->allow_ext_sg    = allow_ext_sg;
3158         target->tl_retry_count  = 7;
3159         target->queue_size      = SRP_DEFAULT_QUEUE_SIZE;
3160
3161         /*
3162          * Avoid that the SCSI host can be removed by srp_remove_target()
3163          * before this function returns.
3164          */
3165         scsi_host_get(target->scsi_host);
3166
3167         mutex_lock(&host->add_target_mutex);
3168
3169         ret = srp_parse_options(buf, target);
3170         if (ret)
3171                 goto out;
3172
3173         ret = scsi_init_shared_tag_map(target_host, target_host->can_queue);
3174         if (ret)
3175                 goto out;
3176
3177         target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3178
3179         if (!srp_conn_unique(target->srp_host, target)) {
3180                 shost_printk(KERN_INFO, target->scsi_host,
3181                              PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3182                              be64_to_cpu(target->id_ext),
3183                              be64_to_cpu(target->ioc_guid),
3184                              be64_to_cpu(target->initiator_ext));
3185                 ret = -EEXIST;
3186                 goto out;
3187         }
3188
3189         if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3190             target->cmd_sg_cnt < target->sg_tablesize) {
3191                 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3192                 target->sg_tablesize = target->cmd_sg_cnt;
3193         }
3194
3195         target_host->sg_tablesize = target->sg_tablesize;
3196         target->indirect_size = target->sg_tablesize *
3197                                 sizeof (struct srp_direct_buf);
3198         target->max_iu_len = sizeof (struct srp_cmd) +
3199                              sizeof (struct srp_indirect_buf) +
3200                              target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3201
3202         INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3203         INIT_WORK(&target->remove_work, srp_remove_work);
3204         spin_lock_init(&target->lock);
3205         ret = ib_query_gid(ibdev, host->port, 0, &target->sgid);
3206         if (ret)
3207                 goto out;
3208
3209         ret = -ENOMEM;
3210         target->ch_count = max_t(unsigned, num_online_nodes(),
3211                                  min(ch_count ? :
3212                                      min(4 * num_online_nodes(),
3213                                          ibdev->num_comp_vectors),
3214                                      num_online_cpus()));
3215         target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3216                              GFP_KERNEL);
3217         if (!target->ch)
3218                 goto out;
3219
3220         node_idx = 0;
3221         for_each_online_node(node) {
3222                 const int ch_start = (node_idx * target->ch_count /
3223                                       num_online_nodes());
3224                 const int ch_end = ((node_idx + 1) * target->ch_count /
3225                                     num_online_nodes());
3226                 const int cv_start = (node_idx * ibdev->num_comp_vectors /
3227                                       num_online_nodes() + target->comp_vector)
3228                                      % ibdev->num_comp_vectors;
3229                 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3230                                     num_online_nodes() + target->comp_vector)
3231                                    % ibdev->num_comp_vectors;
3232                 int cpu_idx = 0;
3233
3234                 for_each_online_cpu(cpu) {
3235                         if (cpu_to_node(cpu) != node)
3236                                 continue;
3237                         if (ch_start + cpu_idx >= ch_end)
3238                                 continue;
3239                         ch = &target->ch[ch_start + cpu_idx];
3240                         ch->target = target;
3241                         ch->comp_vector = cv_start == cv_end ? cv_start :
3242                                 cv_start + cpu_idx % (cv_end - cv_start);
3243                         spin_lock_init(&ch->lock);
3244                         INIT_LIST_HEAD(&ch->free_tx);
3245                         ret = srp_new_cm_id(ch);
3246                         if (ret)
3247                                 goto err_disconnect;
3248
3249                         ret = srp_create_ch_ib(ch);
3250                         if (ret)
3251                                 goto err_disconnect;
3252
3253                         ret = srp_alloc_req_data(ch);
3254                         if (ret)
3255                                 goto err_disconnect;
3256
3257                         ret = srp_connect_ch(ch, multich);
3258                         if (ret) {
3259                                 shost_printk(KERN_ERR, target->scsi_host,
3260                                              PFX "Connection %d/%d failed\n",
3261                                              ch_start + cpu_idx,
3262                                              target->ch_count);
3263                                 if (node_idx == 0 && cpu_idx == 0) {
3264                                         goto err_disconnect;
3265                                 } else {
3266                                         srp_free_ch_ib(target, ch);
3267                                         srp_free_req_data(target, ch);
3268                                         target->ch_count = ch - target->ch;
3269                                         goto connected;
3270                                 }
3271                         }
3272
3273                         multich = true;
3274                         cpu_idx++;
3275                 }
3276                 node_idx++;
3277         }
3278
3279 connected:
3280         target->scsi_host->nr_hw_queues = target->ch_count;
3281
3282         ret = srp_add_target(host, target);
3283         if (ret)
3284                 goto err_disconnect;
3285
3286         if (target->state != SRP_TARGET_REMOVED) {
3287                 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3288                              "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3289                              be64_to_cpu(target->id_ext),
3290                              be64_to_cpu(target->ioc_guid),
3291                              be16_to_cpu(target->pkey),
3292                              be64_to_cpu(target->service_id),
3293                              target->sgid.raw, target->orig_dgid.raw);
3294         }
3295
3296         ret = count;
3297
3298 out:
3299         mutex_unlock(&host->add_target_mutex);
3300
3301         scsi_host_put(target->scsi_host);
3302         if (ret < 0)
3303                 scsi_host_put(target->scsi_host);
3304
3305         return ret;
3306
3307 err_disconnect:
3308         srp_disconnect_target(target);
3309
3310         for (i = 0; i < target->ch_count; i++) {
3311                 ch = &target->ch[i];
3312                 srp_free_ch_ib(target, ch);
3313                 srp_free_req_data(target, ch);
3314         }
3315
3316         kfree(target->ch);
3317         goto out;
3318 }
3319
3320 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3321
3322 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3323                           char *buf)
3324 {
3325         struct srp_host *host = container_of(dev, struct srp_host, dev);
3326
3327         return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3328 }
3329
3330 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3331
3332 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3333                          char *buf)
3334 {
3335         struct srp_host *host = container_of(dev, struct srp_host, dev);
3336
3337         return sprintf(buf, "%d\n", host->port);
3338 }
3339
3340 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3341
3342 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3343 {
3344         struct srp_host *host;
3345
3346         host = kzalloc(sizeof *host, GFP_KERNEL);
3347         if (!host)
3348                 return NULL;
3349
3350         INIT_LIST_HEAD(&host->target_list);
3351         spin_lock_init(&host->target_lock);
3352         init_completion(&host->released);
3353         mutex_init(&host->add_target_mutex);
3354         host->srp_dev = device;
3355         host->port = port;
3356
3357         host->dev.class = &srp_class;
3358         host->dev.parent = device->dev->dma_device;
3359         dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3360
3361         if (device_register(&host->dev))
3362                 goto free_host;
3363         if (device_create_file(&host->dev, &dev_attr_add_target))
3364                 goto err_class;
3365         if (device_create_file(&host->dev, &dev_attr_ibdev))
3366                 goto err_class;
3367         if (device_create_file(&host->dev, &dev_attr_port))
3368                 goto err_class;
3369
3370         return host;
3371
3372 err_class:
3373         device_unregister(&host->dev);
3374
3375 free_host:
3376         kfree(host);
3377
3378         return NULL;
3379 }
3380
3381 static void srp_add_one(struct ib_device *device)
3382 {
3383         struct srp_device *srp_dev;
3384         struct ib_device_attr *dev_attr;
3385         struct srp_host *host;
3386         int mr_page_shift, p;
3387         u64 max_pages_per_mr;
3388
3389         dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
3390         if (!dev_attr)
3391                 return;
3392
3393         if (ib_query_device(device, dev_attr)) {
3394                 pr_warn("Query device failed for %s\n", device->name);
3395                 goto free_attr;
3396         }
3397
3398         srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
3399         if (!srp_dev)
3400                 goto free_attr;
3401
3402         srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3403                             device->map_phys_fmr && device->unmap_fmr);
3404         srp_dev->has_fr = (dev_attr->device_cap_flags &
3405                            IB_DEVICE_MEM_MGT_EXTENSIONS);
3406         if (!srp_dev->has_fmr && !srp_dev->has_fr)
3407                 dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3408
3409         srp_dev->use_fast_reg = (srp_dev->has_fr &&
3410                                  (!srp_dev->has_fmr || prefer_fr));
3411
3412         /*
3413          * Use the smallest page size supported by the HCA, down to a
3414          * minimum of 4096 bytes. We're unlikely to build large sglists
3415          * out of smaller entries.
3416          */
3417         mr_page_shift           = max(12, ffs(dev_attr->page_size_cap) - 1);
3418         srp_dev->mr_page_size   = 1 << mr_page_shift;
3419         srp_dev->mr_page_mask   = ~((u64) srp_dev->mr_page_size - 1);
3420         max_pages_per_mr        = dev_attr->max_mr_size;
3421         do_div(max_pages_per_mr, srp_dev->mr_page_size);
3422         srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3423                                           max_pages_per_mr);
3424         if (srp_dev->use_fast_reg) {
3425                 srp_dev->max_pages_per_mr =
3426                         min_t(u32, srp_dev->max_pages_per_mr,
3427                               dev_attr->max_fast_reg_page_list_len);
3428         }
3429         srp_dev->mr_max_size    = srp_dev->mr_page_size *
3430                                    srp_dev->max_pages_per_mr;
3431         pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3432                  device->name, mr_page_shift, dev_attr->max_mr_size,
3433                  dev_attr->max_fast_reg_page_list_len,
3434                  srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3435
3436         INIT_LIST_HEAD(&srp_dev->dev_list);
3437
3438         srp_dev->dev = device;
3439         srp_dev->pd  = ib_alloc_pd(device);
3440         if (IS_ERR(srp_dev->pd))
3441                 goto free_dev;
3442
3443         srp_dev->mr = ib_get_dma_mr(srp_dev->pd,
3444                                     IB_ACCESS_LOCAL_WRITE |
3445                                     IB_ACCESS_REMOTE_READ |
3446                                     IB_ACCESS_REMOTE_WRITE);
3447         if (IS_ERR(srp_dev->mr))
3448                 goto err_pd;
3449
3450         for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) {
3451                 host = srp_add_port(srp_dev, p);
3452                 if (host)
3453                         list_add_tail(&host->list, &srp_dev->dev_list);
3454         }
3455
3456         ib_set_client_data(device, &srp_client, srp_dev);
3457
3458         goto free_attr;
3459
3460 err_pd:
3461         ib_dealloc_pd(srp_dev->pd);
3462
3463 free_dev:
3464         kfree(srp_dev);
3465
3466 free_attr:
3467         kfree(dev_attr);
3468 }
3469
3470 static void srp_remove_one(struct ib_device *device, void *client_data)
3471 {
3472         struct srp_device *srp_dev;
3473         struct srp_host *host, *tmp_host;
3474         struct srp_target_port *target;
3475
3476         srp_dev = client_data;
3477         if (!srp_dev)
3478                 return;
3479
3480         list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3481                 device_unregister(&host->dev);
3482                 /*
3483                  * Wait for the sysfs entry to go away, so that no new
3484                  * target ports can be created.
3485                  */
3486                 wait_for_completion(&host->released);
3487
3488                 /*
3489                  * Remove all target ports.
3490                  */
3491                 spin_lock(&host->target_lock);
3492                 list_for_each_entry(target, &host->target_list, list)
3493                         srp_queue_remove_work(target);
3494                 spin_unlock(&host->target_lock);
3495
3496                 /*
3497                  * Wait for tl_err and target port removal tasks.
3498                  */
3499                 flush_workqueue(system_long_wq);
3500                 flush_workqueue(srp_remove_wq);
3501
3502                 kfree(host);
3503         }
3504
3505         ib_dereg_mr(srp_dev->mr);
3506         ib_dealloc_pd(srp_dev->pd);
3507
3508         kfree(srp_dev);
3509 }
3510
3511 static struct srp_function_template ib_srp_transport_functions = {
3512         .has_rport_state         = true,
3513         .reset_timer_if_blocked  = true,
3514         .reconnect_delay         = &srp_reconnect_delay,
3515         .fast_io_fail_tmo        = &srp_fast_io_fail_tmo,
3516         .dev_loss_tmo            = &srp_dev_loss_tmo,
3517         .reconnect               = srp_rport_reconnect,
3518         .rport_delete            = srp_rport_delete,
3519         .terminate_rport_io      = srp_terminate_io,
3520 };
3521
3522 static int __init srp_init_module(void)
3523 {
3524         int ret;
3525
3526         BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *));
3527
3528         if (srp_sg_tablesize) {
3529                 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3530                 if (!cmd_sg_entries)
3531                         cmd_sg_entries = srp_sg_tablesize;
3532         }
3533
3534         if (!cmd_sg_entries)
3535                 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3536
3537         if (cmd_sg_entries > 255) {
3538                 pr_warn("Clamping cmd_sg_entries to 255\n");
3539                 cmd_sg_entries = 255;
3540         }
3541
3542         if (!indirect_sg_entries)
3543                 indirect_sg_entries = cmd_sg_entries;
3544         else if (indirect_sg_entries < cmd_sg_entries) {
3545                 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3546                         cmd_sg_entries);
3547                 indirect_sg_entries = cmd_sg_entries;
3548         }
3549
3550         srp_remove_wq = create_workqueue("srp_remove");
3551         if (!srp_remove_wq) {
3552                 ret = -ENOMEM;
3553                 goto out;
3554         }
3555
3556         ret = -ENOMEM;
3557         ib_srp_transport_template =
3558                 srp_attach_transport(&ib_srp_transport_functions);
3559         if (!ib_srp_transport_template)
3560                 goto destroy_wq;
3561
3562         ret = class_register(&srp_class);
3563         if (ret) {
3564                 pr_err("couldn't register class infiniband_srp\n");
3565                 goto release_tr;
3566         }
3567
3568         ib_sa_register_client(&srp_sa_client);
3569
3570         ret = ib_register_client(&srp_client);
3571         if (ret) {
3572                 pr_err("couldn't register IB client\n");
3573                 goto unreg_sa;
3574         }
3575
3576 out:
3577         return ret;
3578
3579 unreg_sa:
3580         ib_sa_unregister_client(&srp_sa_client);
3581         class_unregister(&srp_class);
3582
3583 release_tr:
3584         srp_release_transport(ib_srp_transport_template);
3585
3586 destroy_wq:
3587         destroy_workqueue(srp_remove_wq);
3588         goto out;
3589 }
3590
3591 static void __exit srp_cleanup_module(void)
3592 {
3593         ib_unregister_client(&srp_client);
3594         ib_sa_unregister_client(&srp_sa_client);
3595         class_unregister(&srp_class);
3596         srp_release_transport(ib_srp_transport_template);
3597         destroy_workqueue(srp_remove_wq);
3598 }
3599
3600 module_init(srp_init_module);
3601 module_exit(srp_cleanup_module);