IB/srp: Create an insecure all physical rkey only if needed
[firefly-linux-kernel-4.4.55.git] / drivers / infiniband / ulp / srp / ib_srp.c
1 /*
2  * Copyright (c) 2005 Cisco Systems.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/string.h>
40 #include <linux/parser.h>
41 #include <linux/random.h>
42 #include <linux/jiffies.h>
43 #include <rdma/ib_cache.h>
44
45 #include <linux/atomic.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_dbg.h>
50 #include <scsi/scsi_tcq.h>
51 #include <scsi/srp.h>
52 #include <scsi/scsi_transport_srp.h>
53
54 #include "ib_srp.h"
55
56 #define DRV_NAME        "ib_srp"
57 #define PFX             DRV_NAME ": "
58 #define DRV_VERSION     "2.0"
59 #define DRV_RELDATE     "July 26, 2015"
60
61 MODULE_AUTHOR("Roland Dreier");
62 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63 MODULE_LICENSE("Dual BSD/GPL");
64 MODULE_VERSION(DRV_VERSION);
65 MODULE_INFO(release_date, DRV_RELDATE);
66
67 static unsigned int srp_sg_tablesize;
68 static unsigned int cmd_sg_entries;
69 static unsigned int indirect_sg_entries;
70 static bool allow_ext_sg;
71 static bool prefer_fr = true;
72 static bool register_always = true;
73 static int topspin_workarounds = 1;
74
75 module_param(srp_sg_tablesize, uint, 0444);
76 MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
77
78 module_param(cmd_sg_entries, uint, 0444);
79 MODULE_PARM_DESC(cmd_sg_entries,
80                  "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
81
82 module_param(indirect_sg_entries, uint, 0444);
83 MODULE_PARM_DESC(indirect_sg_entries,
84                  "Default max number of gather/scatter entries (default is 12, max is " __stringify(SCSI_MAX_SG_CHAIN_SEGMENTS) ")");
85
86 module_param(allow_ext_sg, bool, 0444);
87 MODULE_PARM_DESC(allow_ext_sg,
88                   "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");
89
90 module_param(topspin_workarounds, int, 0444);
91 MODULE_PARM_DESC(topspin_workarounds,
92                  "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");
93
94 module_param(prefer_fr, bool, 0444);
95 MODULE_PARM_DESC(prefer_fr,
96 "Whether to use fast registration if both FMR and fast registration are supported");
97
98 module_param(register_always, bool, 0444);
99 MODULE_PARM_DESC(register_always,
100                  "Use memory registration even for contiguous memory regions");
101
102 static const struct kernel_param_ops srp_tmo_ops;
103
104 static int srp_reconnect_delay = 10;
105 module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
106                 S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");
108
109 static int srp_fast_io_fail_tmo = 15;
110 module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
111                 S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(fast_io_fail_tmo,
113                  "Number of seconds between the observation of a transport"
114                  " layer error and failing all I/O. \"off\" means that this"
115                  " functionality is disabled.");
116
117 static int srp_dev_loss_tmo = 600;
118 module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
119                 S_IRUGO | S_IWUSR);
120 MODULE_PARM_DESC(dev_loss_tmo,
121                  "Maximum number of seconds that the SRP transport should"
122                  " insulate transport layer errors. After this time has been"
123                  " exceeded the SCSI host is removed. Should be"
124                  " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
125                  " if fast_io_fail_tmo has not been set. \"off\" means that"
126                  " this functionality is disabled.");
127
128 static unsigned ch_count;
129 module_param(ch_count, uint, 0444);
130 MODULE_PARM_DESC(ch_count,
131                  "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");
132
133 static void srp_add_one(struct ib_device *device);
134 static void srp_remove_one(struct ib_device *device, void *client_data);
135 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr);
136 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr);
137 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);
138
139 static struct scsi_transport_template *ib_srp_transport_template;
140 static struct workqueue_struct *srp_remove_wq;
141
142 static struct ib_client srp_client = {
143         .name   = "srp",
144         .add    = srp_add_one,
145         .remove = srp_remove_one
146 };
147
148 static struct ib_sa_client srp_sa_client;
149
150 static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
151 {
152         int tmo = *(int *)kp->arg;
153
154         if (tmo >= 0)
155                 return sprintf(buffer, "%d", tmo);
156         else
157                 return sprintf(buffer, "off");
158 }
159
160 static int srp_tmo_set(const char *val, const struct kernel_param *kp)
161 {
162         int tmo, res;
163
164         res = srp_parse_tmo(&tmo, val);
165         if (res)
166                 goto out;
167
168         if (kp->arg == &srp_reconnect_delay)
169                 res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
170                                     srp_dev_loss_tmo);
171         else if (kp->arg == &srp_fast_io_fail_tmo)
172                 res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
173         else
174                 res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
175                                     tmo);
176         if (res)
177                 goto out;
178         *(int *)kp->arg = tmo;
179
180 out:
181         return res;
182 }
183
184 static const struct kernel_param_ops srp_tmo_ops = {
185         .get = srp_tmo_get,
186         .set = srp_tmo_set,
187 };
188
189 static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
190 {
191         return (struct srp_target_port *) host->hostdata;
192 }
193
194 static const char *srp_target_info(struct Scsi_Host *host)
195 {
196         return host_to_target(host)->target_name;
197 }
198
199 static int srp_target_is_topspin(struct srp_target_port *target)
200 {
201         static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
202         static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
203
204         return topspin_workarounds &&
205                 (!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
206                  !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
207 }
208
209 static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
210                                    gfp_t gfp_mask,
211                                    enum dma_data_direction direction)
212 {
213         struct srp_iu *iu;
214
215         iu = kmalloc(sizeof *iu, gfp_mask);
216         if (!iu)
217                 goto out;
218
219         iu->buf = kzalloc(size, gfp_mask);
220         if (!iu->buf)
221                 goto out_free_iu;
222
223         iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
224                                     direction);
225         if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
226                 goto out_free_buf;
227
228         iu->size      = size;
229         iu->direction = direction;
230
231         return iu;
232
233 out_free_buf:
234         kfree(iu->buf);
235 out_free_iu:
236         kfree(iu);
237 out:
238         return NULL;
239 }
240
241 static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
242 {
243         if (!iu)
244                 return;
245
246         ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
247                             iu->direction);
248         kfree(iu->buf);
249         kfree(iu);
250 }
251
252 static void srp_qp_event(struct ib_event *event, void *context)
253 {
254         pr_debug("QP event %s (%d)\n",
255                  ib_event_msg(event->event), event->event);
256 }
257
258 static int srp_init_qp(struct srp_target_port *target,
259                        struct ib_qp *qp)
260 {
261         struct ib_qp_attr *attr;
262         int ret;
263
264         attr = kmalloc(sizeof *attr, GFP_KERNEL);
265         if (!attr)
266                 return -ENOMEM;
267
268         ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
269                                   target->srp_host->port,
270                                   be16_to_cpu(target->pkey),
271                                   &attr->pkey_index);
272         if (ret)
273                 goto out;
274
275         attr->qp_state        = IB_QPS_INIT;
276         attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
277                                     IB_ACCESS_REMOTE_WRITE);
278         attr->port_num        = target->srp_host->port;
279
280         ret = ib_modify_qp(qp, attr,
281                            IB_QP_STATE          |
282                            IB_QP_PKEY_INDEX     |
283                            IB_QP_ACCESS_FLAGS   |
284                            IB_QP_PORT);
285
286 out:
287         kfree(attr);
288         return ret;
289 }
290
291 static int srp_new_cm_id(struct srp_rdma_ch *ch)
292 {
293         struct srp_target_port *target = ch->target;
294         struct ib_cm_id *new_cm_id;
295
296         new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
297                                     srp_cm_handler, ch);
298         if (IS_ERR(new_cm_id))
299                 return PTR_ERR(new_cm_id);
300
301         if (ch->cm_id)
302                 ib_destroy_cm_id(ch->cm_id);
303         ch->cm_id = new_cm_id;
304         ch->path.sgid = target->sgid;
305         ch->path.dgid = target->orig_dgid;
306         ch->path.pkey = target->pkey;
307         ch->path.service_id = target->service_id;
308
309         return 0;
310 }
311
312 static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
313 {
314         struct srp_device *dev = target->srp_host->srp_dev;
315         struct ib_fmr_pool_param fmr_param;
316
317         memset(&fmr_param, 0, sizeof(fmr_param));
318         fmr_param.pool_size         = target->scsi_host->can_queue;
319         fmr_param.dirty_watermark   = fmr_param.pool_size / 4;
320         fmr_param.cache             = 1;
321         fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
322         fmr_param.page_shift        = ilog2(dev->mr_page_size);
323         fmr_param.access            = (IB_ACCESS_LOCAL_WRITE |
324                                        IB_ACCESS_REMOTE_WRITE |
325                                        IB_ACCESS_REMOTE_READ);
326
327         return ib_create_fmr_pool(dev->pd, &fmr_param);
328 }
329
330 /**
331  * srp_destroy_fr_pool() - free the resources owned by a pool
332  * @pool: Fast registration pool to be destroyed.
333  */
334 static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
335 {
336         int i;
337         struct srp_fr_desc *d;
338
339         if (!pool)
340                 return;
341
342         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
343                 if (d->frpl)
344                         ib_free_fast_reg_page_list(d->frpl);
345                 if (d->mr)
346                         ib_dereg_mr(d->mr);
347         }
348         kfree(pool);
349 }
350
351 /**
352  * srp_create_fr_pool() - allocate and initialize a pool for fast registration
353  * @device:            IB device to allocate fast registration descriptors for.
354  * @pd:                Protection domain associated with the FR descriptors.
355  * @pool_size:         Number of descriptors to allocate.
356  * @max_page_list_len: Maximum fast registration work request page list length.
357  */
358 static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
359                                               struct ib_pd *pd, int pool_size,
360                                               int max_page_list_len)
361 {
362         struct srp_fr_pool *pool;
363         struct srp_fr_desc *d;
364         struct ib_mr *mr;
365         struct ib_fast_reg_page_list *frpl;
366         int i, ret = -EINVAL;
367
368         if (pool_size <= 0)
369                 goto err;
370         ret = -ENOMEM;
371         pool = kzalloc(sizeof(struct srp_fr_pool) +
372                        pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
373         if (!pool)
374                 goto err;
375         pool->size = pool_size;
376         pool->max_page_list_len = max_page_list_len;
377         spin_lock_init(&pool->lock);
378         INIT_LIST_HEAD(&pool->free_list);
379
380         for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
381                 mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG,
382                                  max_page_list_len);
383                 if (IS_ERR(mr)) {
384                         ret = PTR_ERR(mr);
385                         goto destroy_pool;
386                 }
387                 d->mr = mr;
388                 frpl = ib_alloc_fast_reg_page_list(device, max_page_list_len);
389                 if (IS_ERR(frpl)) {
390                         ret = PTR_ERR(frpl);
391                         goto destroy_pool;
392                 }
393                 d->frpl = frpl;
394                 list_add_tail(&d->entry, &pool->free_list);
395         }
396
397 out:
398         return pool;
399
400 destroy_pool:
401         srp_destroy_fr_pool(pool);
402
403 err:
404         pool = ERR_PTR(ret);
405         goto out;
406 }
407
408 /**
409  * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
410  * @pool: Pool to obtain descriptor from.
411  */
412 static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
413 {
414         struct srp_fr_desc *d = NULL;
415         unsigned long flags;
416
417         spin_lock_irqsave(&pool->lock, flags);
418         if (!list_empty(&pool->free_list)) {
419                 d = list_first_entry(&pool->free_list, typeof(*d), entry);
420                 list_del(&d->entry);
421         }
422         spin_unlock_irqrestore(&pool->lock, flags);
423
424         return d;
425 }
426
427 /**
428  * srp_fr_pool_put() - put an FR descriptor back in the free list
429  * @pool: Pool the descriptor was allocated from.
430  * @desc: Pointer to an array of fast registration descriptor pointers.
431  * @n:    Number of descriptors to put back.
432  *
433  * Note: The caller must already have queued an invalidation request for
434  * desc->mr->rkey before calling this function.
435  */
436 static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
437                             int n)
438 {
439         unsigned long flags;
440         int i;
441
442         spin_lock_irqsave(&pool->lock, flags);
443         for (i = 0; i < n; i++)
444                 list_add(&desc[i]->entry, &pool->free_list);
445         spin_unlock_irqrestore(&pool->lock, flags);
446 }
447
448 static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
449 {
450         struct srp_device *dev = target->srp_host->srp_dev;
451
452         return srp_create_fr_pool(dev->dev, dev->pd,
453                                   target->scsi_host->can_queue,
454                                   dev->max_pages_per_mr);
455 }
456
457 /**
458  * srp_destroy_qp() - destroy an RDMA queue pair
459  * @ch: SRP RDMA channel.
460  *
461  * Change a queue pair into the error state and wait until all receive
462  * completions have been processed before destroying it. This avoids that
463  * the receive completion handler can access the queue pair while it is
464  * being destroyed.
465  */
466 static void srp_destroy_qp(struct srp_rdma_ch *ch)
467 {
468         static struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
469         static struct ib_recv_wr wr = { .wr_id = SRP_LAST_WR_ID };
470         struct ib_recv_wr *bad_wr;
471         int ret;
472
473         /* Destroying a QP and reusing ch->done is only safe if not connected */
474         WARN_ON_ONCE(ch->connected);
475
476         ret = ib_modify_qp(ch->qp, &attr, IB_QP_STATE);
477         WARN_ONCE(ret, "ib_cm_init_qp_attr() returned %d\n", ret);
478         if (ret)
479                 goto out;
480
481         init_completion(&ch->done);
482         ret = ib_post_recv(ch->qp, &wr, &bad_wr);
483         WARN_ONCE(ret, "ib_post_recv() returned %d\n", ret);
484         if (ret == 0)
485                 wait_for_completion(&ch->done);
486
487 out:
488         ib_destroy_qp(ch->qp);
489 }
490
491 static int srp_create_ch_ib(struct srp_rdma_ch *ch)
492 {
493         struct srp_target_port *target = ch->target;
494         struct srp_device *dev = target->srp_host->srp_dev;
495         struct ib_qp_init_attr *init_attr;
496         struct ib_cq *recv_cq, *send_cq;
497         struct ib_qp *qp;
498         struct ib_fmr_pool *fmr_pool = NULL;
499         struct srp_fr_pool *fr_pool = NULL;
500         const int m = 1 + dev->use_fast_reg;
501         struct ib_cq_init_attr cq_attr = {};
502         int ret;
503
504         init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
505         if (!init_attr)
506                 return -ENOMEM;
507
508         /* + 1 for SRP_LAST_WR_ID */
509         cq_attr.cqe = target->queue_size + 1;
510         cq_attr.comp_vector = ch->comp_vector;
511         recv_cq = ib_create_cq(dev->dev, srp_recv_completion, NULL, ch,
512                                &cq_attr);
513         if (IS_ERR(recv_cq)) {
514                 ret = PTR_ERR(recv_cq);
515                 goto err;
516         }
517
518         cq_attr.cqe = m * target->queue_size;
519         cq_attr.comp_vector = ch->comp_vector;
520         send_cq = ib_create_cq(dev->dev, srp_send_completion, NULL, ch,
521                                &cq_attr);
522         if (IS_ERR(send_cq)) {
523                 ret = PTR_ERR(send_cq);
524                 goto err_recv_cq;
525         }
526
527         ib_req_notify_cq(recv_cq, IB_CQ_NEXT_COMP);
528
529         init_attr->event_handler       = srp_qp_event;
530         init_attr->cap.max_send_wr     = m * target->queue_size;
531         init_attr->cap.max_recv_wr     = target->queue_size + 1;
532         init_attr->cap.max_recv_sge    = 1;
533         init_attr->cap.max_send_sge    = 1;
534         init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
535         init_attr->qp_type             = IB_QPT_RC;
536         init_attr->send_cq             = send_cq;
537         init_attr->recv_cq             = recv_cq;
538
539         qp = ib_create_qp(dev->pd, init_attr);
540         if (IS_ERR(qp)) {
541                 ret = PTR_ERR(qp);
542                 goto err_send_cq;
543         }
544
545         ret = srp_init_qp(target, qp);
546         if (ret)
547                 goto err_qp;
548
549         if (dev->use_fast_reg) {
550                 fr_pool = srp_alloc_fr_pool(target);
551                 if (IS_ERR(fr_pool)) {
552                         ret = PTR_ERR(fr_pool);
553                         shost_printk(KERN_WARNING, target->scsi_host, PFX
554                                      "FR pool allocation failed (%d)\n", ret);
555                         goto err_qp;
556                 }
557                 if (ch->fr_pool)
558                         srp_destroy_fr_pool(ch->fr_pool);
559                 ch->fr_pool = fr_pool;
560         } else if (dev->use_fmr) {
561                 fmr_pool = srp_alloc_fmr_pool(target);
562                 if (IS_ERR(fmr_pool)) {
563                         ret = PTR_ERR(fmr_pool);
564                         shost_printk(KERN_WARNING, target->scsi_host, PFX
565                                      "FMR pool allocation failed (%d)\n", ret);
566                         goto err_qp;
567                 }
568                 if (ch->fmr_pool)
569                         ib_destroy_fmr_pool(ch->fmr_pool);
570                 ch->fmr_pool = fmr_pool;
571         }
572
573         if (ch->qp)
574                 srp_destroy_qp(ch);
575         if (ch->recv_cq)
576                 ib_destroy_cq(ch->recv_cq);
577         if (ch->send_cq)
578                 ib_destroy_cq(ch->send_cq);
579
580         ch->qp = qp;
581         ch->recv_cq = recv_cq;
582         ch->send_cq = send_cq;
583
584         kfree(init_attr);
585         return 0;
586
587 err_qp:
588         ib_destroy_qp(qp);
589
590 err_send_cq:
591         ib_destroy_cq(send_cq);
592
593 err_recv_cq:
594         ib_destroy_cq(recv_cq);
595
596 err:
597         kfree(init_attr);
598         return ret;
599 }
600
601 /*
602  * Note: this function may be called without srp_alloc_iu_bufs() having been
603  * invoked. Hence the ch->[rt]x_ring checks.
604  */
605 static void srp_free_ch_ib(struct srp_target_port *target,
606                            struct srp_rdma_ch *ch)
607 {
608         struct srp_device *dev = target->srp_host->srp_dev;
609         int i;
610
611         if (!ch->target)
612                 return;
613
614         if (ch->cm_id) {
615                 ib_destroy_cm_id(ch->cm_id);
616                 ch->cm_id = NULL;
617         }
618
619         /* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
620         if (!ch->qp)
621                 return;
622
623         if (dev->use_fast_reg) {
624                 if (ch->fr_pool)
625                         srp_destroy_fr_pool(ch->fr_pool);
626         } else if (dev->use_fmr) {
627                 if (ch->fmr_pool)
628                         ib_destroy_fmr_pool(ch->fmr_pool);
629         }
630         srp_destroy_qp(ch);
631         ib_destroy_cq(ch->send_cq);
632         ib_destroy_cq(ch->recv_cq);
633
634         /*
635          * Avoid that the SCSI error handler tries to use this channel after
636          * it has been freed. The SCSI error handler can namely continue
637          * trying to perform recovery actions after scsi_remove_host()
638          * returned.
639          */
640         ch->target = NULL;
641
642         ch->qp = NULL;
643         ch->send_cq = ch->recv_cq = NULL;
644
645         if (ch->rx_ring) {
646                 for (i = 0; i < target->queue_size; ++i)
647                         srp_free_iu(target->srp_host, ch->rx_ring[i]);
648                 kfree(ch->rx_ring);
649                 ch->rx_ring = NULL;
650         }
651         if (ch->tx_ring) {
652                 for (i = 0; i < target->queue_size; ++i)
653                         srp_free_iu(target->srp_host, ch->tx_ring[i]);
654                 kfree(ch->tx_ring);
655                 ch->tx_ring = NULL;
656         }
657 }
658
659 static void srp_path_rec_completion(int status,
660                                     struct ib_sa_path_rec *pathrec,
661                                     void *ch_ptr)
662 {
663         struct srp_rdma_ch *ch = ch_ptr;
664         struct srp_target_port *target = ch->target;
665
666         ch->status = status;
667         if (status)
668                 shost_printk(KERN_ERR, target->scsi_host,
669                              PFX "Got failed path rec status %d\n", status);
670         else
671                 ch->path = *pathrec;
672         complete(&ch->done);
673 }
674
675 static int srp_lookup_path(struct srp_rdma_ch *ch)
676 {
677         struct srp_target_port *target = ch->target;
678         int ret;
679
680         ch->path.numb_path = 1;
681
682         init_completion(&ch->done);
683
684         ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
685                                                target->srp_host->srp_dev->dev,
686                                                target->srp_host->port,
687                                                &ch->path,
688                                                IB_SA_PATH_REC_SERVICE_ID |
689                                                IB_SA_PATH_REC_DGID       |
690                                                IB_SA_PATH_REC_SGID       |
691                                                IB_SA_PATH_REC_NUMB_PATH  |
692                                                IB_SA_PATH_REC_PKEY,
693                                                SRP_PATH_REC_TIMEOUT_MS,
694                                                GFP_KERNEL,
695                                                srp_path_rec_completion,
696                                                ch, &ch->path_query);
697         if (ch->path_query_id < 0)
698                 return ch->path_query_id;
699
700         ret = wait_for_completion_interruptible(&ch->done);
701         if (ret < 0)
702                 return ret;
703
704         if (ch->status < 0)
705                 shost_printk(KERN_WARNING, target->scsi_host,
706                              PFX "Path record query failed\n");
707
708         return ch->status;
709 }
710
711 static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
712 {
713         struct srp_target_port *target = ch->target;
714         struct {
715                 struct ib_cm_req_param param;
716                 struct srp_login_req   priv;
717         } *req = NULL;
718         int status;
719
720         req = kzalloc(sizeof *req, GFP_KERNEL);
721         if (!req)
722                 return -ENOMEM;
723
724         req->param.primary_path               = &ch->path;
725         req->param.alternate_path             = NULL;
726         req->param.service_id                 = target->service_id;
727         req->param.qp_num                     = ch->qp->qp_num;
728         req->param.qp_type                    = ch->qp->qp_type;
729         req->param.private_data               = &req->priv;
730         req->param.private_data_len           = sizeof req->priv;
731         req->param.flow_control               = 1;
732
733         get_random_bytes(&req->param.starting_psn, 4);
734         req->param.starting_psn              &= 0xffffff;
735
736         /*
737          * Pick some arbitrary defaults here; we could make these
738          * module parameters if anyone cared about setting them.
739          */
740         req->param.responder_resources        = 4;
741         req->param.remote_cm_response_timeout = 20;
742         req->param.local_cm_response_timeout  = 20;
743         req->param.retry_count                = target->tl_retry_count;
744         req->param.rnr_retry_count            = 7;
745         req->param.max_cm_retries             = 15;
746
747         req->priv.opcode        = SRP_LOGIN_REQ;
748         req->priv.tag           = 0;
749         req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
750         req->priv.req_buf_fmt   = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
751                                               SRP_BUF_FORMAT_INDIRECT);
752         req->priv.req_flags     = (multich ? SRP_MULTICHAN_MULTI :
753                                    SRP_MULTICHAN_SINGLE);
754         /*
755          * In the published SRP specification (draft rev. 16a), the
756          * port identifier format is 8 bytes of ID extension followed
757          * by 8 bytes of GUID.  Older drafts put the two halves in the
758          * opposite order, so that the GUID comes first.
759          *
760          * Targets conforming to these obsolete drafts can be
761          * recognized by the I/O Class they report.
762          */
763         if (target->io_class == SRP_REV10_IB_IO_CLASS) {
764                 memcpy(req->priv.initiator_port_id,
765                        &target->sgid.global.interface_id, 8);
766                 memcpy(req->priv.initiator_port_id + 8,
767                        &target->initiator_ext, 8);
768                 memcpy(req->priv.target_port_id,     &target->ioc_guid, 8);
769                 memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
770         } else {
771                 memcpy(req->priv.initiator_port_id,
772                        &target->initiator_ext, 8);
773                 memcpy(req->priv.initiator_port_id + 8,
774                        &target->sgid.global.interface_id, 8);
775                 memcpy(req->priv.target_port_id,     &target->id_ext, 8);
776                 memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
777         }
778
779         /*
780          * Topspin/Cisco SRP targets will reject our login unless we
781          * zero out the first 8 bytes of our initiator port ID and set
782          * the second 8 bytes to the local node GUID.
783          */
784         if (srp_target_is_topspin(target)) {
785                 shost_printk(KERN_DEBUG, target->scsi_host,
786                              PFX "Topspin/Cisco initiator port ID workaround "
787                              "activated for target GUID %016llx\n",
788                              be64_to_cpu(target->ioc_guid));
789                 memset(req->priv.initiator_port_id, 0, 8);
790                 memcpy(req->priv.initiator_port_id + 8,
791                        &target->srp_host->srp_dev->dev->node_guid, 8);
792         }
793
794         status = ib_send_cm_req(ch->cm_id, &req->param);
795
796         kfree(req);
797
798         return status;
799 }
800
801 static bool srp_queue_remove_work(struct srp_target_port *target)
802 {
803         bool changed = false;
804
805         spin_lock_irq(&target->lock);
806         if (target->state != SRP_TARGET_REMOVED) {
807                 target->state = SRP_TARGET_REMOVED;
808                 changed = true;
809         }
810         spin_unlock_irq(&target->lock);
811
812         if (changed)
813                 queue_work(srp_remove_wq, &target->remove_work);
814
815         return changed;
816 }
817
818 static void srp_disconnect_target(struct srp_target_port *target)
819 {
820         struct srp_rdma_ch *ch;
821         int i;
822
823         /* XXX should send SRP_I_LOGOUT request */
824
825         for (i = 0; i < target->ch_count; i++) {
826                 ch = &target->ch[i];
827                 ch->connected = false;
828                 if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
829                         shost_printk(KERN_DEBUG, target->scsi_host,
830                                      PFX "Sending CM DREQ failed\n");
831                 }
832         }
833 }
834
835 static void srp_free_req_data(struct srp_target_port *target,
836                               struct srp_rdma_ch *ch)
837 {
838         struct srp_device *dev = target->srp_host->srp_dev;
839         struct ib_device *ibdev = dev->dev;
840         struct srp_request *req;
841         int i;
842
843         if (!ch->req_ring)
844                 return;
845
846         for (i = 0; i < target->req_ring_size; ++i) {
847                 req = &ch->req_ring[i];
848                 if (dev->use_fast_reg)
849                         kfree(req->fr_list);
850                 else
851                         kfree(req->fmr_list);
852                 kfree(req->map_page);
853                 if (req->indirect_dma_addr) {
854                         ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
855                                             target->indirect_size,
856                                             DMA_TO_DEVICE);
857                 }
858                 kfree(req->indirect_desc);
859         }
860
861         kfree(ch->req_ring);
862         ch->req_ring = NULL;
863 }
864
865 static int srp_alloc_req_data(struct srp_rdma_ch *ch)
866 {
867         struct srp_target_port *target = ch->target;
868         struct srp_device *srp_dev = target->srp_host->srp_dev;
869         struct ib_device *ibdev = srp_dev->dev;
870         struct srp_request *req;
871         void *mr_list;
872         dma_addr_t dma_addr;
873         int i, ret = -ENOMEM;
874
875         ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
876                                GFP_KERNEL);
877         if (!ch->req_ring)
878                 goto out;
879
880         for (i = 0; i < target->req_ring_size; ++i) {
881                 req = &ch->req_ring[i];
882                 mr_list = kmalloc(target->cmd_sg_cnt * sizeof(void *),
883                                   GFP_KERNEL);
884                 if (!mr_list)
885                         goto out;
886                 if (srp_dev->use_fast_reg)
887                         req->fr_list = mr_list;
888                 else
889                         req->fmr_list = mr_list;
890                 req->map_page = kmalloc(srp_dev->max_pages_per_mr *
891                                         sizeof(void *), GFP_KERNEL);
892                 if (!req->map_page)
893                         goto out;
894                 req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
895                 if (!req->indirect_desc)
896                         goto out;
897
898                 dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
899                                              target->indirect_size,
900                                              DMA_TO_DEVICE);
901                 if (ib_dma_mapping_error(ibdev, dma_addr))
902                         goto out;
903
904                 req->indirect_dma_addr = dma_addr;
905         }
906         ret = 0;
907
908 out:
909         return ret;
910 }
911
912 /**
913  * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
914  * @shost: SCSI host whose attributes to remove from sysfs.
915  *
916  * Note: Any attributes defined in the host template and that did not exist
917  * before invocation of this function will be ignored.
918  */
919 static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
920 {
921         struct device_attribute **attr;
922
923         for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
924                 device_remove_file(&shost->shost_dev, *attr);
925 }
926
927 static void srp_remove_target(struct srp_target_port *target)
928 {
929         struct srp_rdma_ch *ch;
930         int i;
931
932         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
933
934         srp_del_scsi_host_attr(target->scsi_host);
935         srp_rport_get(target->rport);
936         srp_remove_host(target->scsi_host);
937         scsi_remove_host(target->scsi_host);
938         srp_stop_rport_timers(target->rport);
939         srp_disconnect_target(target);
940         for (i = 0; i < target->ch_count; i++) {
941                 ch = &target->ch[i];
942                 srp_free_ch_ib(target, ch);
943         }
944         cancel_work_sync(&target->tl_err_work);
945         srp_rport_put(target->rport);
946         for (i = 0; i < target->ch_count; i++) {
947                 ch = &target->ch[i];
948                 srp_free_req_data(target, ch);
949         }
950         kfree(target->ch);
951         target->ch = NULL;
952
953         spin_lock(&target->srp_host->target_lock);
954         list_del(&target->list);
955         spin_unlock(&target->srp_host->target_lock);
956
957         scsi_host_put(target->scsi_host);
958 }
959
960 static void srp_remove_work(struct work_struct *work)
961 {
962         struct srp_target_port *target =
963                 container_of(work, struct srp_target_port, remove_work);
964
965         WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
966
967         srp_remove_target(target);
968 }
969
970 static void srp_rport_delete(struct srp_rport *rport)
971 {
972         struct srp_target_port *target = rport->lld_data;
973
974         srp_queue_remove_work(target);
975 }
976
977 /**
978  * srp_connected_ch() - number of connected channels
979  * @target: SRP target port.
980  */
981 static int srp_connected_ch(struct srp_target_port *target)
982 {
983         int i, c = 0;
984
985         for (i = 0; i < target->ch_count; i++)
986                 c += target->ch[i].connected;
987
988         return c;
989 }
990
991 static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
992 {
993         struct srp_target_port *target = ch->target;
994         int ret;
995
996         WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
997
998         ret = srp_lookup_path(ch);
999         if (ret)
1000                 return ret;
1001
1002         while (1) {
1003                 init_completion(&ch->done);
1004                 ret = srp_send_req(ch, multich);
1005                 if (ret)
1006                         return ret;
1007                 ret = wait_for_completion_interruptible(&ch->done);
1008                 if (ret < 0)
1009                         return ret;
1010
1011                 /*
1012                  * The CM event handling code will set status to
1013                  * SRP_PORT_REDIRECT if we get a port redirect REJ
1014                  * back, or SRP_DLID_REDIRECT if we get a lid/qp
1015                  * redirect REJ back.
1016                  */
1017                 switch (ch->status) {
1018                 case 0:
1019                         ch->connected = true;
1020                         return 0;
1021
1022                 case SRP_PORT_REDIRECT:
1023                         ret = srp_lookup_path(ch);
1024                         if (ret)
1025                                 return ret;
1026                         break;
1027
1028                 case SRP_DLID_REDIRECT:
1029                         break;
1030
1031                 case SRP_STALE_CONN:
1032                         shost_printk(KERN_ERR, target->scsi_host, PFX
1033                                      "giving up on stale connection\n");
1034                         ch->status = -ECONNRESET;
1035                         return ch->status;
1036
1037                 default:
1038                         return ch->status;
1039                 }
1040         }
1041 }
1042
1043 static int srp_inv_rkey(struct srp_rdma_ch *ch, u32 rkey)
1044 {
1045         struct ib_send_wr *bad_wr;
1046         struct ib_send_wr wr = {
1047                 .opcode             = IB_WR_LOCAL_INV,
1048                 .wr_id              = LOCAL_INV_WR_ID_MASK,
1049                 .next               = NULL,
1050                 .num_sge            = 0,
1051                 .send_flags         = 0,
1052                 .ex.invalidate_rkey = rkey,
1053         };
1054
1055         return ib_post_send(ch->qp, &wr, &bad_wr);
1056 }
1057
1058 static void srp_unmap_data(struct scsi_cmnd *scmnd,
1059                            struct srp_rdma_ch *ch,
1060                            struct srp_request *req)
1061 {
1062         struct srp_target_port *target = ch->target;
1063         struct srp_device *dev = target->srp_host->srp_dev;
1064         struct ib_device *ibdev = dev->dev;
1065         int i, res;
1066
1067         if (!scsi_sglist(scmnd) ||
1068             (scmnd->sc_data_direction != DMA_TO_DEVICE &&
1069              scmnd->sc_data_direction != DMA_FROM_DEVICE))
1070                 return;
1071
1072         if (dev->use_fast_reg) {
1073                 struct srp_fr_desc **pfr;
1074
1075                 for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1076                         res = srp_inv_rkey(ch, (*pfr)->mr->rkey);
1077                         if (res < 0) {
1078                                 shost_printk(KERN_ERR, target->scsi_host, PFX
1079                                   "Queueing INV WR for rkey %#x failed (%d)\n",
1080                                   (*pfr)->mr->rkey, res);
1081                                 queue_work(system_long_wq,
1082                                            &target->tl_err_work);
1083                         }
1084                 }
1085                 if (req->nmdesc)
1086                         srp_fr_pool_put(ch->fr_pool, req->fr_list,
1087                                         req->nmdesc);
1088         } else if (dev->use_fmr) {
1089                 struct ib_pool_fmr **pfmr;
1090
1091                 for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
1092                         ib_fmr_pool_unmap(*pfmr);
1093         }
1094
1095         ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
1096                         scmnd->sc_data_direction);
1097 }
1098
1099 /**
1100  * srp_claim_req - Take ownership of the scmnd associated with a request.
1101  * @ch: SRP RDMA channel.
1102  * @req: SRP request.
1103  * @sdev: If not NULL, only take ownership for this SCSI device.
1104  * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
1105  *         ownership of @req->scmnd if it equals @scmnd.
1106  *
1107  * Return value:
1108  * Either NULL or a pointer to the SCSI command the caller became owner of.
1109  */
1110 static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1111                                        struct srp_request *req,
1112                                        struct scsi_device *sdev,
1113                                        struct scsi_cmnd *scmnd)
1114 {
1115         unsigned long flags;
1116
1117         spin_lock_irqsave(&ch->lock, flags);
1118         if (req->scmnd &&
1119             (!sdev || req->scmnd->device == sdev) &&
1120             (!scmnd || req->scmnd == scmnd)) {
1121                 scmnd = req->scmnd;
1122                 req->scmnd = NULL;
1123         } else {
1124                 scmnd = NULL;
1125         }
1126         spin_unlock_irqrestore(&ch->lock, flags);
1127
1128         return scmnd;
1129 }
1130
1131 /**
1132  * srp_free_req() - Unmap data and add request to the free request list.
1133  * @ch:     SRP RDMA channel.
1134  * @req:    Request to be freed.
1135  * @scmnd:  SCSI command associated with @req.
1136  * @req_lim_delta: Amount to be added to @target->req_lim.
1137  */
1138 static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
1139                          struct scsi_cmnd *scmnd, s32 req_lim_delta)
1140 {
1141         unsigned long flags;
1142
1143         srp_unmap_data(scmnd, ch, req);
1144
1145         spin_lock_irqsave(&ch->lock, flags);
1146         ch->req_lim += req_lim_delta;
1147         spin_unlock_irqrestore(&ch->lock, flags);
1148 }
1149
1150 static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
1151                            struct scsi_device *sdev, int result)
1152 {
1153         struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1154
1155         if (scmnd) {
1156                 srp_free_req(ch, req, scmnd, 0);
1157                 scmnd->result = result;
1158                 scmnd->scsi_done(scmnd);
1159         }
1160 }
1161
1162 static void srp_terminate_io(struct srp_rport *rport)
1163 {
1164         struct srp_target_port *target = rport->lld_data;
1165         struct srp_rdma_ch *ch;
1166         struct Scsi_Host *shost = target->scsi_host;
1167         struct scsi_device *sdev;
1168         int i, j;
1169
1170         /*
1171          * Invoking srp_terminate_io() while srp_queuecommand() is running
1172          * is not safe. Hence the warning statement below.
1173          */
1174         shost_for_each_device(sdev, shost)
1175                 WARN_ON_ONCE(sdev->request_queue->request_fn_active);
1176
1177         for (i = 0; i < target->ch_count; i++) {
1178                 ch = &target->ch[i];
1179
1180                 for (j = 0; j < target->req_ring_size; ++j) {
1181                         struct srp_request *req = &ch->req_ring[j];
1182
1183                         srp_finish_req(ch, req, NULL,
1184                                        DID_TRANSPORT_FAILFAST << 16);
1185                 }
1186         }
1187 }
1188
1189 /*
1190  * It is up to the caller to ensure that srp_rport_reconnect() calls are
1191  * serialized and that no concurrent srp_queuecommand(), srp_abort(),
1192  * srp_reset_device() or srp_reset_host() calls will occur while this function
1193  * is in progress. One way to realize that is not to call this function
1194  * directly but to call srp_reconnect_rport() instead since that last function
1195  * serializes calls of this function via rport->mutex and also blocks
1196  * srp_queuecommand() calls before invoking this function.
1197  */
1198 static int srp_rport_reconnect(struct srp_rport *rport)
1199 {
1200         struct srp_target_port *target = rport->lld_data;
1201         struct srp_rdma_ch *ch;
1202         int i, j, ret = 0;
1203         bool multich = false;
1204
1205         srp_disconnect_target(target);
1206
1207         if (target->state == SRP_TARGET_SCANNING)
1208                 return -ENODEV;
1209
1210         /*
1211          * Now get a new local CM ID so that we avoid confusing the target in
1212          * case things are really fouled up. Doing so also ensures that all CM
1213          * callbacks will have finished before a new QP is allocated.
1214          */
1215         for (i = 0; i < target->ch_count; i++) {
1216                 ch = &target->ch[i];
1217                 ret += srp_new_cm_id(ch);
1218         }
1219         for (i = 0; i < target->ch_count; i++) {
1220                 ch = &target->ch[i];
1221                 for (j = 0; j < target->req_ring_size; ++j) {
1222                         struct srp_request *req = &ch->req_ring[j];
1223
1224                         srp_finish_req(ch, req, NULL, DID_RESET << 16);
1225                 }
1226         }
1227         for (i = 0; i < target->ch_count; i++) {
1228                 ch = &target->ch[i];
1229                 /*
1230                  * Whether or not creating a new CM ID succeeded, create a new
1231                  * QP. This guarantees that all completion callback function
1232                  * invocations have finished before request resetting starts.
1233                  */
1234                 ret += srp_create_ch_ib(ch);
1235
1236                 INIT_LIST_HEAD(&ch->free_tx);
1237                 for (j = 0; j < target->queue_size; ++j)
1238                         list_add(&ch->tx_ring[j]->list, &ch->free_tx);
1239         }
1240
1241         target->qp_in_error = false;
1242
1243         for (i = 0; i < target->ch_count; i++) {
1244                 ch = &target->ch[i];
1245                 if (ret)
1246                         break;
1247                 ret = srp_connect_ch(ch, multich);
1248                 multich = true;
1249         }
1250
1251         if (ret == 0)
1252                 shost_printk(KERN_INFO, target->scsi_host,
1253                              PFX "reconnect succeeded\n");
1254
1255         return ret;
1256 }
1257
1258 static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
1259                          unsigned int dma_len, u32 rkey)
1260 {
1261         struct srp_direct_buf *desc = state->desc;
1262
1263         WARN_ON_ONCE(!dma_len);
1264
1265         desc->va = cpu_to_be64(dma_addr);
1266         desc->key = cpu_to_be32(rkey);
1267         desc->len = cpu_to_be32(dma_len);
1268
1269         state->total_len += dma_len;
1270         state->desc++;
1271         state->ndesc++;
1272 }
1273
1274 static int srp_map_finish_fmr(struct srp_map_state *state,
1275                               struct srp_rdma_ch *ch)
1276 {
1277         struct srp_target_port *target = ch->target;
1278         struct srp_device *dev = target->srp_host->srp_dev;
1279         struct ib_pool_fmr *fmr;
1280         u64 io_addr = 0;
1281
1282         if (state->fmr.next >= state->fmr.end)
1283                 return -ENOMEM;
1284
1285         fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1286                                    state->npages, io_addr);
1287         if (IS_ERR(fmr))
1288                 return PTR_ERR(fmr);
1289
1290         *state->fmr.next++ = fmr;
1291         state->nmdesc++;
1292
1293         srp_map_desc(state, state->base_dma_addr & ~dev->mr_page_mask,
1294                      state->dma_len, fmr->fmr->rkey);
1295
1296         return 0;
1297 }
1298
1299 static int srp_map_finish_fr(struct srp_map_state *state,
1300                              struct srp_rdma_ch *ch)
1301 {
1302         struct srp_target_port *target = ch->target;
1303         struct srp_device *dev = target->srp_host->srp_dev;
1304         struct ib_send_wr *bad_wr;
1305         struct ib_send_wr wr;
1306         struct srp_fr_desc *desc;
1307         u32 rkey;
1308
1309         if (state->fr.next >= state->fr.end)
1310                 return -ENOMEM;
1311
1312         desc = srp_fr_pool_get(ch->fr_pool);
1313         if (!desc)
1314                 return -ENOMEM;
1315
1316         rkey = ib_inc_rkey(desc->mr->rkey);
1317         ib_update_fast_reg_key(desc->mr, rkey);
1318
1319         memcpy(desc->frpl->page_list, state->pages,
1320                sizeof(state->pages[0]) * state->npages);
1321
1322         memset(&wr, 0, sizeof(wr));
1323         wr.opcode = IB_WR_FAST_REG_MR;
1324         wr.wr_id = FAST_REG_WR_ID_MASK;
1325         wr.wr.fast_reg.iova_start = state->base_dma_addr;
1326         wr.wr.fast_reg.page_list = desc->frpl;
1327         wr.wr.fast_reg.page_list_len = state->npages;
1328         wr.wr.fast_reg.page_shift = ilog2(dev->mr_page_size);
1329         wr.wr.fast_reg.length = state->dma_len;
1330         wr.wr.fast_reg.access_flags = (IB_ACCESS_LOCAL_WRITE |
1331                                        IB_ACCESS_REMOTE_READ |
1332                                        IB_ACCESS_REMOTE_WRITE);
1333         wr.wr.fast_reg.rkey = desc->mr->lkey;
1334
1335         *state->fr.next++ = desc;
1336         state->nmdesc++;
1337
1338         srp_map_desc(state, state->base_dma_addr, state->dma_len,
1339                      desc->mr->rkey);
1340
1341         return ib_post_send(ch->qp, &wr, &bad_wr);
1342 }
1343
1344 static int srp_finish_mapping(struct srp_map_state *state,
1345                               struct srp_rdma_ch *ch)
1346 {
1347         struct srp_target_port *target = ch->target;
1348         struct srp_device *dev = target->srp_host->srp_dev;
1349         int ret = 0;
1350
1351         WARN_ON_ONCE(!dev->use_fast_reg && !dev->use_fmr);
1352
1353         if (state->npages == 0)
1354                 return 0;
1355
1356         if (state->npages == 1 && target->global_mr)
1357                 srp_map_desc(state, state->base_dma_addr, state->dma_len,
1358                              target->global_mr->rkey);
1359         else
1360                 ret = dev->use_fast_reg ? srp_map_finish_fr(state, ch) :
1361                         srp_map_finish_fmr(state, ch);
1362
1363         if (ret == 0) {
1364                 state->npages = 0;
1365                 state->dma_len = 0;
1366         }
1367
1368         return ret;
1369 }
1370
1371 static int srp_map_sg_entry(struct srp_map_state *state,
1372                             struct srp_rdma_ch *ch,
1373                             struct scatterlist *sg, int sg_index)
1374 {
1375         struct srp_target_port *target = ch->target;
1376         struct srp_device *dev = target->srp_host->srp_dev;
1377         struct ib_device *ibdev = dev->dev;
1378         dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
1379         unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1380         unsigned int len = 0;
1381         int ret;
1382
1383         WARN_ON_ONCE(!dma_len);
1384
1385         while (dma_len) {
1386                 unsigned offset = dma_addr & ~dev->mr_page_mask;
1387                 if (state->npages == dev->max_pages_per_mr || offset != 0) {
1388                         ret = srp_finish_mapping(state, ch);
1389                         if (ret)
1390                                 return ret;
1391                 }
1392
1393                 len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1394
1395                 if (!state->npages)
1396                         state->base_dma_addr = dma_addr;
1397                 state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1398                 state->dma_len += len;
1399                 dma_addr += len;
1400                 dma_len -= len;
1401         }
1402
1403         /*
1404          * If the last entry of the MR wasn't a full page, then we need to
1405          * close it out and start a new one -- we can only merge at page
1406          * boundries.
1407          */
1408         ret = 0;
1409         if (len != dev->mr_page_size)
1410                 ret = srp_finish_mapping(state, ch);
1411         return ret;
1412 }
1413
1414 static int srp_map_sg(struct srp_map_state *state, struct srp_rdma_ch *ch,
1415                       struct srp_request *req, struct scatterlist *scat,
1416                       int count)
1417 {
1418         struct srp_target_port *target = ch->target;
1419         struct srp_device *dev = target->srp_host->srp_dev;
1420         struct scatterlist *sg;
1421         int i, ret;
1422
1423         state->desc     = req->indirect_desc;
1424         state->pages    = req->map_page;
1425         if (dev->use_fast_reg) {
1426                 state->fr.next = req->fr_list;
1427                 state->fr.end = req->fr_list + target->cmd_sg_cnt;
1428         } else if (dev->use_fmr) {
1429                 state->fmr.next = req->fmr_list;
1430                 state->fmr.end = req->fmr_list + target->cmd_sg_cnt;
1431         }
1432
1433         if (dev->use_fast_reg || dev->use_fmr) {
1434                 for_each_sg(scat, sg, count, i) {
1435                         ret = srp_map_sg_entry(state, ch, sg, i);
1436                         if (ret)
1437                                 goto out;
1438                 }
1439                 ret = srp_finish_mapping(state, ch);
1440                 if (ret)
1441                         goto out;
1442         } else {
1443                 for_each_sg(scat, sg, count, i) {
1444                         srp_map_desc(state, ib_sg_dma_address(dev->dev, sg),
1445                                      ib_sg_dma_len(dev->dev, sg),
1446                                      target->global_mr->rkey);
1447                 }
1448         }
1449
1450         req->nmdesc = state->nmdesc;
1451         ret = 0;
1452
1453 out:
1454         return ret;
1455 }
1456
1457 /*
1458  * Register the indirect data buffer descriptor with the HCA.
1459  *
1460  * Note: since the indirect data buffer descriptor has been allocated with
1461  * kmalloc() it is guaranteed that this buffer is a physically contiguous
1462  * memory buffer.
1463  */
1464 static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
1465                        void **next_mr, void **end_mr, u32 idb_len,
1466                        __be32 *idb_rkey)
1467 {
1468         struct srp_target_port *target = ch->target;
1469         struct srp_device *dev = target->srp_host->srp_dev;
1470         struct srp_map_state state;
1471         struct srp_direct_buf idb_desc;
1472         u64 idb_pages[1];
1473         int ret;
1474
1475         memset(&state, 0, sizeof(state));
1476         memset(&idb_desc, 0, sizeof(idb_desc));
1477         state.gen.next = next_mr;
1478         state.gen.end = end_mr;
1479         state.desc = &idb_desc;
1480         state.pages = idb_pages;
1481         state.pages[0] = (req->indirect_dma_addr &
1482                           dev->mr_page_mask);
1483         state.npages = 1;
1484         state.base_dma_addr = req->indirect_dma_addr;
1485         state.dma_len = idb_len;
1486         ret = srp_finish_mapping(&state, ch);
1487         if (ret < 0)
1488                 goto out;
1489
1490         *idb_rkey = idb_desc.key;
1491
1492 out:
1493         return ret;
1494 }
1495
1496 static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1497                         struct srp_request *req)
1498 {
1499         struct srp_target_port *target = ch->target;
1500         struct scatterlist *scat;
1501         struct srp_cmd *cmd = req->cmd->buf;
1502         int len, nents, count, ret;
1503         struct srp_device *dev;
1504         struct ib_device *ibdev;
1505         struct srp_map_state state;
1506         struct srp_indirect_buf *indirect_hdr;
1507         u32 idb_len, table_len;
1508         __be32 idb_rkey;
1509         u8 fmt;
1510
1511         if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1512                 return sizeof (struct srp_cmd);
1513
1514         if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
1515             scmnd->sc_data_direction != DMA_TO_DEVICE) {
1516                 shost_printk(KERN_WARNING, target->scsi_host,
1517                              PFX "Unhandled data direction %d\n",
1518                              scmnd->sc_data_direction);
1519                 return -EINVAL;
1520         }
1521
1522         nents = scsi_sg_count(scmnd);
1523         scat  = scsi_sglist(scmnd);
1524
1525         dev = target->srp_host->srp_dev;
1526         ibdev = dev->dev;
1527
1528         count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1529         if (unlikely(count == 0))
1530                 return -EIO;
1531
1532         fmt = SRP_DATA_DESC_DIRECT;
1533         len = sizeof (struct srp_cmd) + sizeof (struct srp_direct_buf);
1534
1535         if (count == 1 && target->global_mr) {
1536                 /*
1537                  * The midlayer only generated a single gather/scatter
1538                  * entry, or DMA mapping coalesced everything to a
1539                  * single entry.  So a direct descriptor along with
1540                  * the DMA MR suffices.
1541                  */
1542                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1543
1544                 buf->va  = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1545                 buf->key = cpu_to_be32(target->global_mr->rkey);
1546                 buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1547
1548                 req->nmdesc = 0;
1549                 goto map_complete;
1550         }
1551
1552         /*
1553          * We have more than one scatter/gather entry, so build our indirect
1554          * descriptor table, trying to merge as many entries as we can.
1555          */
1556         indirect_hdr = (void *) cmd->add_data;
1557
1558         ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
1559                                    target->indirect_size, DMA_TO_DEVICE);
1560
1561         memset(&state, 0, sizeof(state));
1562         srp_map_sg(&state, ch, req, scat, count);
1563
1564         /* We've mapped the request, now pull as much of the indirect
1565          * descriptor table as we can into the command buffer. If this
1566          * target is not using an external indirect table, we are
1567          * guaranteed to fit into the command, as the SCSI layer won't
1568          * give us more S/G entries than we allow.
1569          */
1570         if (state.ndesc == 1) {
1571                 /*
1572                  * Memory registration collapsed the sg-list into one entry,
1573                  * so use a direct descriptor.
1574                  */
1575                 struct srp_direct_buf *buf = (void *) cmd->add_data;
1576
1577                 *buf = req->indirect_desc[0];
1578                 goto map_complete;
1579         }
1580
1581         if (unlikely(target->cmd_sg_cnt < state.ndesc &&
1582                                                 !target->allow_ext_sg)) {
1583                 shost_printk(KERN_ERR, target->scsi_host,
1584                              "Could not fit S/G list into SRP_CMD\n");
1585                 return -EIO;
1586         }
1587
1588         count = min(state.ndesc, target->cmd_sg_cnt);
1589         table_len = state.ndesc * sizeof (struct srp_direct_buf);
1590         idb_len = sizeof(struct srp_indirect_buf) + table_len;
1591
1592         fmt = SRP_DATA_DESC_INDIRECT;
1593         len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1594         len += count * sizeof (struct srp_direct_buf);
1595
1596         memcpy(indirect_hdr->desc_list, req->indirect_desc,
1597                count * sizeof (struct srp_direct_buf));
1598
1599         if (!target->global_mr) {
1600                 ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
1601                                   idb_len, &idb_rkey);
1602                 if (ret < 0)
1603                         return ret;
1604                 req->nmdesc++;
1605         } else {
1606                 idb_rkey = target->global_mr->rkey;
1607         }
1608
1609         indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1610         indirect_hdr->table_desc.key = idb_rkey;
1611         indirect_hdr->table_desc.len = cpu_to_be32(table_len);
1612         indirect_hdr->len = cpu_to_be32(state.total_len);
1613
1614         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1615                 cmd->data_out_desc_cnt = count;
1616         else
1617                 cmd->data_in_desc_cnt = count;
1618
1619         ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
1620                                       DMA_TO_DEVICE);
1621
1622 map_complete:
1623         if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1624                 cmd->buf_fmt = fmt << 4;
1625         else
1626                 cmd->buf_fmt = fmt;
1627
1628         return len;
1629 }
1630
1631 /*
1632  * Return an IU and possible credit to the free pool
1633  */
1634 static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1635                           enum srp_iu_type iu_type)
1636 {
1637         unsigned long flags;
1638
1639         spin_lock_irqsave(&ch->lock, flags);
1640         list_add(&iu->list, &ch->free_tx);
1641         if (iu_type != SRP_IU_RSP)
1642                 ++ch->req_lim;
1643         spin_unlock_irqrestore(&ch->lock, flags);
1644 }
1645
1646 /*
1647  * Must be called with ch->lock held to protect req_lim and free_tx.
1648  * If IU is not sent, it must be returned using srp_put_tx_iu().
1649  *
1650  * Note:
1651  * An upper limit for the number of allocated information units for each
1652  * request type is:
1653  * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
1654  *   more than Scsi_Host.can_queue requests.
1655  * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
1656  * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
1657  *   one unanswered SRP request to an initiator.
1658  */
1659 static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1660                                       enum srp_iu_type iu_type)
1661 {
1662         struct srp_target_port *target = ch->target;
1663         s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
1664         struct srp_iu *iu;
1665
1666         srp_send_completion(ch->send_cq, ch);
1667
1668         if (list_empty(&ch->free_tx))
1669                 return NULL;
1670
1671         /* Initiator responses to target requests do not consume credits */
1672         if (iu_type != SRP_IU_RSP) {
1673                 if (ch->req_lim <= rsv) {
1674                         ++target->zero_req_lim;
1675                         return NULL;
1676                 }
1677
1678                 --ch->req_lim;
1679         }
1680
1681         iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1682         list_del(&iu->list);
1683         return iu;
1684 }
1685
1686 static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1687 {
1688         struct srp_target_port *target = ch->target;
1689         struct ib_sge list;
1690         struct ib_send_wr wr, *bad_wr;
1691
1692         list.addr   = iu->dma;
1693         list.length = len;
1694         list.lkey   = target->lkey;
1695
1696         wr.next       = NULL;
1697         wr.wr_id      = (uintptr_t) iu;
1698         wr.sg_list    = &list;
1699         wr.num_sge    = 1;
1700         wr.opcode     = IB_WR_SEND;
1701         wr.send_flags = IB_SEND_SIGNALED;
1702
1703         return ib_post_send(ch->qp, &wr, &bad_wr);
1704 }
1705
1706 static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1707 {
1708         struct srp_target_port *target = ch->target;
1709         struct ib_recv_wr wr, *bad_wr;
1710         struct ib_sge list;
1711
1712         list.addr   = iu->dma;
1713         list.length = iu->size;
1714         list.lkey   = target->lkey;
1715
1716         wr.next     = NULL;
1717         wr.wr_id    = (uintptr_t) iu;
1718         wr.sg_list  = &list;
1719         wr.num_sge  = 1;
1720
1721         return ib_post_recv(ch->qp, &wr, &bad_wr);
1722 }
1723
1724 static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1725 {
1726         struct srp_target_port *target = ch->target;
1727         struct srp_request *req;
1728         struct scsi_cmnd *scmnd;
1729         unsigned long flags;
1730
1731         if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1732                 spin_lock_irqsave(&ch->lock, flags);
1733                 ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1734                 spin_unlock_irqrestore(&ch->lock, flags);
1735
1736                 ch->tsk_mgmt_status = -1;
1737                 if (be32_to_cpu(rsp->resp_data_len) >= 4)
1738                         ch->tsk_mgmt_status = rsp->data[3];
1739                 complete(&ch->tsk_mgmt_done);
1740         } else {
1741                 scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
1742                 if (scmnd) {
1743                         req = (void *)scmnd->host_scribble;
1744                         scmnd = srp_claim_req(ch, req, NULL, scmnd);
1745                 }
1746                 if (!scmnd) {
1747                         shost_printk(KERN_ERR, target->scsi_host,
1748                                      "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
1749                                      rsp->tag, ch - target->ch, ch->qp->qp_num);
1750
1751                         spin_lock_irqsave(&ch->lock, flags);
1752                         ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
1753                         spin_unlock_irqrestore(&ch->lock, flags);
1754
1755                         return;
1756                 }
1757                 scmnd->result = rsp->status;
1758
1759                 if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
1760                         memcpy(scmnd->sense_buffer, rsp->data +
1761                                be32_to_cpu(rsp->resp_data_len),
1762                                min_t(int, be32_to_cpu(rsp->sense_data_len),
1763                                      SCSI_SENSE_BUFFERSIZE));
1764                 }
1765
1766                 if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1767                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1768                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
1769                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
1770                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
1771                         scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
1772                 else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
1773                         scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1774
1775                 srp_free_req(ch, req, scmnd,
1776                              be32_to_cpu(rsp->req_lim_delta));
1777
1778                 scmnd->host_scribble = NULL;
1779                 scmnd->scsi_done(scmnd);
1780         }
1781 }
1782
1783 static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1784                                void *rsp, int len)
1785 {
1786         struct srp_target_port *target = ch->target;
1787         struct ib_device *dev = target->srp_host->srp_dev->dev;
1788         unsigned long flags;
1789         struct srp_iu *iu;
1790         int err;
1791
1792         spin_lock_irqsave(&ch->lock, flags);
1793         ch->req_lim += req_delta;
1794         iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
1795         spin_unlock_irqrestore(&ch->lock, flags);
1796
1797         if (!iu) {
1798                 shost_printk(KERN_ERR, target->scsi_host, PFX
1799                              "no IU available to send response\n");
1800                 return 1;
1801         }
1802
1803         ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
1804         memcpy(iu->buf, rsp, len);
1805         ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);
1806
1807         err = srp_post_send(ch, iu, len);
1808         if (err) {
1809                 shost_printk(KERN_ERR, target->scsi_host, PFX
1810                              "unable to post response: %d\n", err);
1811                 srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1812         }
1813
1814         return err;
1815 }
1816
1817 static void srp_process_cred_req(struct srp_rdma_ch *ch,
1818                                  struct srp_cred_req *req)
1819 {
1820         struct srp_cred_rsp rsp = {
1821                 .opcode = SRP_CRED_RSP,
1822                 .tag = req->tag,
1823         };
1824         s32 delta = be32_to_cpu(req->req_lim_delta);
1825
1826         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1827                 shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1828                              "problems processing SRP_CRED_REQ\n");
1829 }
1830
1831 static void srp_process_aer_req(struct srp_rdma_ch *ch,
1832                                 struct srp_aer_req *req)
1833 {
1834         struct srp_target_port *target = ch->target;
1835         struct srp_aer_rsp rsp = {
1836                 .opcode = SRP_AER_RSP,
1837                 .tag = req->tag,
1838         };
1839         s32 delta = be32_to_cpu(req->req_lim_delta);
1840
1841         shost_printk(KERN_ERR, target->scsi_host, PFX
1842                      "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
1843
1844         if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1845                 shost_printk(KERN_ERR, target->scsi_host, PFX
1846                              "problems processing SRP_AER_REQ\n");
1847 }
1848
1849 static void srp_handle_recv(struct srp_rdma_ch *ch, struct ib_wc *wc)
1850 {
1851         struct srp_target_port *target = ch->target;
1852         struct ib_device *dev = target->srp_host->srp_dev->dev;
1853         struct srp_iu *iu = (struct srp_iu *) (uintptr_t) wc->wr_id;
1854         int res;
1855         u8 opcode;
1856
1857         ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
1858                                    DMA_FROM_DEVICE);
1859
1860         opcode = *(u8 *) iu->buf;
1861
1862         if (0) {
1863                 shost_printk(KERN_ERR, target->scsi_host,
1864                              PFX "recv completion, opcode 0x%02x\n", opcode);
1865                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
1866                                iu->buf, wc->byte_len, true);
1867         }
1868
1869         switch (opcode) {
1870         case SRP_RSP:
1871                 srp_process_rsp(ch, iu->buf);
1872                 break;
1873
1874         case SRP_CRED_REQ:
1875                 srp_process_cred_req(ch, iu->buf);
1876                 break;
1877
1878         case SRP_AER_REQ:
1879                 srp_process_aer_req(ch, iu->buf);
1880                 break;
1881
1882         case SRP_T_LOGOUT:
1883                 /* XXX Handle target logout */
1884                 shost_printk(KERN_WARNING, target->scsi_host,
1885                              PFX "Got target logout request\n");
1886                 break;
1887
1888         default:
1889                 shost_printk(KERN_WARNING, target->scsi_host,
1890                              PFX "Unhandled SRP opcode 0x%02x\n", opcode);
1891                 break;
1892         }
1893
1894         ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
1895                                       DMA_FROM_DEVICE);
1896
1897         res = srp_post_recv(ch, iu);
1898         if (res != 0)
1899                 shost_printk(KERN_ERR, target->scsi_host,
1900                              PFX "Recv failed with error code %d\n", res);
1901 }
1902
1903 /**
1904  * srp_tl_err_work() - handle a transport layer error
1905  * @work: Work structure embedded in an SRP target port.
1906  *
1907  * Note: This function may get invoked before the rport has been created,
1908  * hence the target->rport test.
1909  */
1910 static void srp_tl_err_work(struct work_struct *work)
1911 {
1912         struct srp_target_port *target;
1913
1914         target = container_of(work, struct srp_target_port, tl_err_work);
1915         if (target->rport)
1916                 srp_start_tl_fail_timers(target->rport);
1917 }
1918
1919 static void srp_handle_qp_err(u64 wr_id, enum ib_wc_status wc_status,
1920                               bool send_err, struct srp_rdma_ch *ch)
1921 {
1922         struct srp_target_port *target = ch->target;
1923
1924         if (wr_id == SRP_LAST_WR_ID) {
1925                 complete(&ch->done);
1926                 return;
1927         }
1928
1929         if (ch->connected && !target->qp_in_error) {
1930                 if (wr_id & LOCAL_INV_WR_ID_MASK) {
1931                         shost_printk(KERN_ERR, target->scsi_host, PFX
1932                                      "LOCAL_INV failed with status %s (%d)\n",
1933                                      ib_wc_status_msg(wc_status), wc_status);
1934                 } else if (wr_id & FAST_REG_WR_ID_MASK) {
1935                         shost_printk(KERN_ERR, target->scsi_host, PFX
1936                                      "FAST_REG_MR failed status %s (%d)\n",
1937                                      ib_wc_status_msg(wc_status), wc_status);
1938                 } else {
1939                         shost_printk(KERN_ERR, target->scsi_host,
1940                                      PFX "failed %s status %s (%d) for iu %p\n",
1941                                      send_err ? "send" : "receive",
1942                                      ib_wc_status_msg(wc_status), wc_status,
1943                                      (void *)(uintptr_t)wr_id);
1944                 }
1945                 queue_work(system_long_wq, &target->tl_err_work);
1946         }
1947         target->qp_in_error = true;
1948 }
1949
1950 static void srp_recv_completion(struct ib_cq *cq, void *ch_ptr)
1951 {
1952         struct srp_rdma_ch *ch = ch_ptr;
1953         struct ib_wc wc;
1954
1955         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1956         while (ib_poll_cq(cq, 1, &wc) > 0) {
1957                 if (likely(wc.status == IB_WC_SUCCESS)) {
1958                         srp_handle_recv(ch, &wc);
1959                 } else {
1960                         srp_handle_qp_err(wc.wr_id, wc.status, false, ch);
1961                 }
1962         }
1963 }
1964
1965 static void srp_send_completion(struct ib_cq *cq, void *ch_ptr)
1966 {
1967         struct srp_rdma_ch *ch = ch_ptr;
1968         struct ib_wc wc;
1969         struct srp_iu *iu;
1970
1971         while (ib_poll_cq(cq, 1, &wc) > 0) {
1972                 if (likely(wc.status == IB_WC_SUCCESS)) {
1973                         iu = (struct srp_iu *) (uintptr_t) wc.wr_id;
1974                         list_add(&iu->list, &ch->free_tx);
1975                 } else {
1976                         srp_handle_qp_err(wc.wr_id, wc.status, true, ch);
1977                 }
1978         }
1979 }
1980
1981 static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
1982 {
1983         struct srp_target_port *target = host_to_target(shost);
1984         struct srp_rport *rport = target->rport;
1985         struct srp_rdma_ch *ch;
1986         struct srp_request *req;
1987         struct srp_iu *iu;
1988         struct srp_cmd *cmd;
1989         struct ib_device *dev;
1990         unsigned long flags;
1991         u32 tag;
1992         u16 idx;
1993         int len, ret;
1994         const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;
1995
1996         /*
1997          * The SCSI EH thread is the only context from which srp_queuecommand()
1998          * can get invoked for blocked devices (SDEV_BLOCK /
1999          * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
2000          * locking the rport mutex if invoked from inside the SCSI EH.
2001          */
2002         if (in_scsi_eh)
2003                 mutex_lock(&rport->mutex);
2004
2005         scmnd->result = srp_chkready(target->rport);
2006         if (unlikely(scmnd->result))
2007                 goto err;
2008
2009         WARN_ON_ONCE(scmnd->request->tag < 0);
2010         tag = blk_mq_unique_tag(scmnd->request);
2011         ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2012         idx = blk_mq_unique_tag_to_tag(tag);
2013         WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
2014                   dev_name(&shost->shost_gendev), tag, idx,
2015                   target->req_ring_size);
2016
2017         spin_lock_irqsave(&ch->lock, flags);
2018         iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
2019         spin_unlock_irqrestore(&ch->lock, flags);
2020
2021         if (!iu)
2022                 goto err;
2023
2024         req = &ch->req_ring[idx];
2025         dev = target->srp_host->srp_dev->dev;
2026         ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2027                                    DMA_TO_DEVICE);
2028
2029         scmnd->host_scribble = (void *) req;
2030
2031         cmd = iu->buf;
2032         memset(cmd, 0, sizeof *cmd);
2033
2034         cmd->opcode = SRP_CMD;
2035         int_to_scsilun(scmnd->device->lun, &cmd->lun);
2036         cmd->tag    = tag;
2037         memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);
2038
2039         req->scmnd    = scmnd;
2040         req->cmd      = iu;
2041
2042         len = srp_map_data(scmnd, ch, req);
2043         if (len < 0) {
2044                 shost_printk(KERN_ERR, target->scsi_host,
2045                              PFX "Failed to map data (%d)\n", len);
2046                 /*
2047                  * If we ran out of memory descriptors (-ENOMEM) because an
2048                  * application is queuing many requests with more than
2049                  * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2050                  * to reduce queue depth temporarily.
2051                  */
2052                 scmnd->result = len == -ENOMEM ?
2053                         DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2054                 goto err_iu;
2055         }
2056
2057         ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2058                                       DMA_TO_DEVICE);
2059
2060         if (srp_post_send(ch, iu, len)) {
2061                 shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2062                 goto err_unmap;
2063         }
2064
2065         ret = 0;
2066
2067 unlock_rport:
2068         if (in_scsi_eh)
2069                 mutex_unlock(&rport->mutex);
2070
2071         return ret;
2072
2073 err_unmap:
2074         srp_unmap_data(scmnd, ch, req);
2075
2076 err_iu:
2077         srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2078
2079         /*
2080          * Avoid that the loops that iterate over the request ring can
2081          * encounter a dangling SCSI command pointer.
2082          */
2083         req->scmnd = NULL;
2084
2085 err:
2086         if (scmnd->result) {
2087                 scmnd->scsi_done(scmnd);
2088                 ret = 0;
2089         } else {
2090                 ret = SCSI_MLQUEUE_HOST_BUSY;
2091         }
2092
2093         goto unlock_rport;
2094 }
2095
2096 /*
2097  * Note: the resources allocated in this function are freed in
2098  * srp_free_ch_ib().
2099  */
2100 static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2101 {
2102         struct srp_target_port *target = ch->target;
2103         int i;
2104
2105         ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
2106                               GFP_KERNEL);
2107         if (!ch->rx_ring)
2108                 goto err_no_ring;
2109         ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
2110                               GFP_KERNEL);
2111         if (!ch->tx_ring)
2112                 goto err_no_ring;
2113
2114         for (i = 0; i < target->queue_size; ++i) {
2115                 ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
2116                                               ch->max_ti_iu_len,
2117                                               GFP_KERNEL, DMA_FROM_DEVICE);
2118                 if (!ch->rx_ring[i])
2119                         goto err;
2120         }
2121
2122         for (i = 0; i < target->queue_size; ++i) {
2123                 ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
2124                                               target->max_iu_len,
2125                                               GFP_KERNEL, DMA_TO_DEVICE);
2126                 if (!ch->tx_ring[i])
2127                         goto err;
2128
2129                 list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2130         }
2131
2132         return 0;
2133
2134 err:
2135         for (i = 0; i < target->queue_size; ++i) {
2136                 srp_free_iu(target->srp_host, ch->rx_ring[i]);
2137                 srp_free_iu(target->srp_host, ch->tx_ring[i]);
2138         }
2139
2140
2141 err_no_ring:
2142         kfree(ch->tx_ring);
2143         ch->tx_ring = NULL;
2144         kfree(ch->rx_ring);
2145         ch->rx_ring = NULL;
2146
2147         return -ENOMEM;
2148 }
2149
2150 static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
2151 {
2152         uint64_t T_tr_ns, max_compl_time_ms;
2153         uint32_t rq_tmo_jiffies;
2154
2155         /*
2156          * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
2157          * table 91), both the QP timeout and the retry count have to be set
2158          * for RC QP's during the RTR to RTS transition.
2159          */
2160         WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
2161                      (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));
2162
2163         /*
2164          * Set target->rq_tmo_jiffies to one second more than the largest time
2165          * it can take before an error completion is generated. See also
2166          * C9-140..142 in the IBTA spec for more information about how to
2167          * convert the QP Local ACK Timeout value to nanoseconds.
2168          */
2169         T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
2170         max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
2171         do_div(max_compl_time_ms, NSEC_PER_MSEC);
2172         rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);
2173
2174         return rq_tmo_jiffies;
2175 }
2176
2177 static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2178                                const struct srp_login_rsp *lrsp,
2179                                struct srp_rdma_ch *ch)
2180 {
2181         struct srp_target_port *target = ch->target;
2182         struct ib_qp_attr *qp_attr = NULL;
2183         int attr_mask = 0;
2184         int ret;
2185         int i;
2186
2187         if (lrsp->opcode == SRP_LOGIN_RSP) {
2188                 ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
2189                 ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2190
2191                 /*
2192                  * Reserve credits for task management so we don't
2193                  * bounce requests back to the SCSI mid-layer.
2194                  */
2195                 target->scsi_host->can_queue
2196                         = min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2197                               target->scsi_host->can_queue);
2198                 target->scsi_host->cmd_per_lun
2199                         = min_t(int, target->scsi_host->can_queue,
2200                                 target->scsi_host->cmd_per_lun);
2201         } else {
2202                 shost_printk(KERN_WARNING, target->scsi_host,
2203                              PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
2204                 ret = -ECONNRESET;
2205                 goto error;
2206         }
2207
2208         if (!ch->rx_ring) {
2209                 ret = srp_alloc_iu_bufs(ch);
2210                 if (ret)
2211                         goto error;
2212         }
2213
2214         ret = -ENOMEM;
2215         qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
2216         if (!qp_attr)
2217                 goto error;
2218
2219         qp_attr->qp_state = IB_QPS_RTR;
2220         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2221         if (ret)
2222                 goto error_free;
2223
2224         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2225         if (ret)
2226                 goto error_free;
2227
2228         for (i = 0; i < target->queue_size; i++) {
2229                 struct srp_iu *iu = ch->rx_ring[i];
2230
2231                 ret = srp_post_recv(ch, iu);
2232                 if (ret)
2233                         goto error_free;
2234         }
2235
2236         qp_attr->qp_state = IB_QPS_RTS;
2237         ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
2238         if (ret)
2239                 goto error_free;
2240
2241         target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);
2242
2243         ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2244         if (ret)
2245                 goto error_free;
2246
2247         ret = ib_send_cm_rtu(cm_id, NULL, 0);
2248
2249 error_free:
2250         kfree(qp_attr);
2251
2252 error:
2253         ch->status = ret;
2254 }
2255
2256 static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
2257                                struct ib_cm_event *event,
2258                                struct srp_rdma_ch *ch)
2259 {
2260         struct srp_target_port *target = ch->target;
2261         struct Scsi_Host *shost = target->scsi_host;
2262         struct ib_class_port_info *cpi;
2263         int opcode;
2264
2265         switch (event->param.rej_rcvd.reason) {
2266         case IB_CM_REJ_PORT_CM_REDIRECT:
2267                 cpi = event->param.rej_rcvd.ari;
2268                 ch->path.dlid = cpi->redirect_lid;
2269                 ch->path.pkey = cpi->redirect_pkey;
2270                 cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2271                 memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2272
2273                 ch->status = ch->path.dlid ?
2274                         SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
2275                 break;
2276
2277         case IB_CM_REJ_PORT_REDIRECT:
2278                 if (srp_target_is_topspin(target)) {
2279                         /*
2280                          * Topspin/Cisco SRP gateways incorrectly send
2281                          * reject reason code 25 when they mean 24
2282                          * (port redirect).
2283                          */
2284                         memcpy(ch->path.dgid.raw,
2285                                event->param.rej_rcvd.ari, 16);
2286
2287                         shost_printk(KERN_DEBUG, shost,
2288                                      PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2289                                      be64_to_cpu(ch->path.dgid.global.subnet_prefix),
2290                                      be64_to_cpu(ch->path.dgid.global.interface_id));
2291
2292                         ch->status = SRP_PORT_REDIRECT;
2293                 } else {
2294                         shost_printk(KERN_WARNING, shost,
2295                                      "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2296                         ch->status = -ECONNRESET;
2297                 }
2298                 break;
2299
2300         case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2301                 shost_printk(KERN_WARNING, shost,
2302                             "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2303                 ch->status = -ECONNRESET;
2304                 break;
2305
2306         case IB_CM_REJ_CONSUMER_DEFINED:
2307                 opcode = *(u8 *) event->private_data;
2308                 if (opcode == SRP_LOGIN_REJ) {
2309                         struct srp_login_rej *rej = event->private_data;
2310                         u32 reason = be32_to_cpu(rej->reason);
2311
2312                         if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2313                                 shost_printk(KERN_WARNING, shost,
2314                                              PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2315                         else
2316                                 shost_printk(KERN_WARNING, shost, PFX
2317                                              "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2318                                              target->sgid.raw,
2319                                              target->orig_dgid.raw, reason);
2320                 } else
2321                         shost_printk(KERN_WARNING, shost,
2322                                      "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
2323                                      " opcode 0x%02x\n", opcode);
2324                 ch->status = -ECONNRESET;
2325                 break;
2326
2327         case IB_CM_REJ_STALE_CONN:
2328                 shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2329                 ch->status = SRP_STALE_CONN;
2330                 break;
2331
2332         default:
2333                 shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
2334                              event->param.rej_rcvd.reason);
2335                 ch->status = -ECONNRESET;
2336         }
2337 }
2338
2339 static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2340 {
2341         struct srp_rdma_ch *ch = cm_id->context;
2342         struct srp_target_port *target = ch->target;
2343         int comp = 0;
2344
2345         switch (event->event) {
2346         case IB_CM_REQ_ERROR:
2347                 shost_printk(KERN_DEBUG, target->scsi_host,
2348                              PFX "Sending CM REQ failed\n");
2349                 comp = 1;
2350                 ch->status = -ECONNRESET;
2351                 break;
2352
2353         case IB_CM_REP_RECEIVED:
2354                 comp = 1;
2355                 srp_cm_rep_handler(cm_id, event->private_data, ch);
2356                 break;
2357
2358         case IB_CM_REJ_RECEIVED:
2359                 shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2360                 comp = 1;
2361
2362                 srp_cm_rej_handler(cm_id, event, ch);
2363                 break;
2364
2365         case IB_CM_DREQ_RECEIVED:
2366                 shost_printk(KERN_WARNING, target->scsi_host,
2367                              PFX "DREQ received - connection closed\n");
2368                 ch->connected = false;
2369                 if (ib_send_cm_drep(cm_id, NULL, 0))
2370                         shost_printk(KERN_ERR, target->scsi_host,
2371                                      PFX "Sending CM DREP failed\n");
2372                 queue_work(system_long_wq, &target->tl_err_work);
2373                 break;
2374
2375         case IB_CM_TIMEWAIT_EXIT:
2376                 shost_printk(KERN_ERR, target->scsi_host,
2377                              PFX "connection closed\n");
2378                 comp = 1;
2379
2380                 ch->status = 0;
2381                 break;
2382
2383         case IB_CM_MRA_RECEIVED:
2384         case IB_CM_DREQ_ERROR:
2385         case IB_CM_DREP_RECEIVED:
2386                 break;
2387
2388         default:
2389                 shost_printk(KERN_WARNING, target->scsi_host,
2390                              PFX "Unhandled CM event %d\n", event->event);
2391                 break;
2392         }
2393
2394         if (comp)
2395                 complete(&ch->done);
2396
2397         return 0;
2398 }
2399
2400 /**
2401  * srp_change_queue_depth - setting device queue depth
2402  * @sdev: scsi device struct
2403  * @qdepth: requested queue depth
2404  *
2405  * Returns queue depth.
2406  */
2407 static int
2408 srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2409 {
2410         if (!sdev->tagged_supported)
2411                 qdepth = 1;
2412         return scsi_change_queue_depth(sdev, qdepth);
2413 }
2414
2415 static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
2416                              u8 func)
2417 {
2418         struct srp_target_port *target = ch->target;
2419         struct srp_rport *rport = target->rport;
2420         struct ib_device *dev = target->srp_host->srp_dev->dev;
2421         struct srp_iu *iu;
2422         struct srp_tsk_mgmt *tsk_mgmt;
2423
2424         if (!ch->connected || target->qp_in_error)
2425                 return -1;
2426
2427         init_completion(&ch->tsk_mgmt_done);
2428
2429         /*
2430          * Lock the rport mutex to avoid that srp_create_ch_ib() is
2431          * invoked while a task management function is being sent.
2432          */
2433         mutex_lock(&rport->mutex);
2434         spin_lock_irq(&ch->lock);
2435         iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
2436         spin_unlock_irq(&ch->lock);
2437
2438         if (!iu) {
2439                 mutex_unlock(&rport->mutex);
2440
2441                 return -1;
2442         }
2443
2444         ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
2445                                    DMA_TO_DEVICE);
2446         tsk_mgmt = iu->buf;
2447         memset(tsk_mgmt, 0, sizeof *tsk_mgmt);
2448
2449         tsk_mgmt->opcode        = SRP_TSK_MGMT;
2450         int_to_scsilun(lun, &tsk_mgmt->lun);
2451         tsk_mgmt->tag           = req_tag | SRP_TAG_TSK_MGMT;
2452         tsk_mgmt->tsk_mgmt_func = func;
2453         tsk_mgmt->task_tag      = req_tag;
2454
2455         ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
2456                                       DMA_TO_DEVICE);
2457         if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
2458                 srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2459                 mutex_unlock(&rport->mutex);
2460
2461                 return -1;
2462         }
2463         mutex_unlock(&rport->mutex);
2464
2465         if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2466                                          msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2467                 return -1;
2468
2469         return 0;
2470 }
2471
2472 static int srp_abort(struct scsi_cmnd *scmnd)
2473 {
2474         struct srp_target_port *target = host_to_target(scmnd->device->host);
2475         struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2476         u32 tag;
2477         u16 ch_idx;
2478         struct srp_rdma_ch *ch;
2479         int ret;
2480
2481         shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2482
2483         if (!req)
2484                 return SUCCESS;
2485         tag = blk_mq_unique_tag(scmnd->request);
2486         ch_idx = blk_mq_unique_tag_to_hwq(tag);
2487         if (WARN_ON_ONCE(ch_idx >= target->ch_count))
2488                 return SUCCESS;
2489         ch = &target->ch[ch_idx];
2490         if (!srp_claim_req(ch, req, NULL, scmnd))
2491                 return SUCCESS;
2492         shost_printk(KERN_ERR, target->scsi_host,
2493                      "Sending SRP abort for tag %#x\n", tag);
2494         if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2495                               SRP_TSK_ABORT_TASK) == 0)
2496                 ret = SUCCESS;
2497         else if (target->rport->state == SRP_RPORT_LOST)
2498                 ret = FAST_IO_FAIL;
2499         else
2500                 ret = FAILED;
2501         srp_free_req(ch, req, scmnd, 0);
2502         scmnd->result = DID_ABORT << 16;
2503         scmnd->scsi_done(scmnd);
2504
2505         return ret;
2506 }
2507
2508 static int srp_reset_device(struct scsi_cmnd *scmnd)
2509 {
2510         struct srp_target_port *target = host_to_target(scmnd->device->host);
2511         struct srp_rdma_ch *ch;
2512         int i;
2513
2514         shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2515
2516         ch = &target->ch[0];
2517         if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2518                               SRP_TSK_LUN_RESET))
2519                 return FAILED;
2520         if (ch->tsk_mgmt_status)
2521                 return FAILED;
2522
2523         for (i = 0; i < target->ch_count; i++) {
2524                 ch = &target->ch[i];
2525                 for (i = 0; i < target->req_ring_size; ++i) {
2526                         struct srp_request *req = &ch->req_ring[i];
2527
2528                         srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
2529                 }
2530         }
2531
2532         return SUCCESS;
2533 }
2534
2535 static int srp_reset_host(struct scsi_cmnd *scmnd)
2536 {
2537         struct srp_target_port *target = host_to_target(scmnd->device->host);
2538
2539         shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2540
2541         return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2542 }
2543
2544 static int srp_slave_configure(struct scsi_device *sdev)
2545 {
2546         struct Scsi_Host *shost = sdev->host;
2547         struct srp_target_port *target = host_to_target(shost);
2548         struct request_queue *q = sdev->request_queue;
2549         unsigned long timeout;
2550
2551         if (sdev->type == TYPE_DISK) {
2552                 timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
2553                 blk_queue_rq_timeout(q, timeout);
2554         }
2555
2556         return 0;
2557 }
2558
2559 static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
2560                            char *buf)
2561 {
2562         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2563
2564         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2565 }
2566
2567 static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
2568                              char *buf)
2569 {
2570         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2571
2572         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2573 }
2574
2575 static ssize_t show_service_id(struct device *dev,
2576                                struct device_attribute *attr, char *buf)
2577 {
2578         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2579
2580         return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2581 }
2582
2583 static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
2584                          char *buf)
2585 {
2586         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2587
2588         return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2589 }
2590
2591 static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
2592                          char *buf)
2593 {
2594         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2595
2596         return sprintf(buf, "%pI6\n", target->sgid.raw);
2597 }
2598
2599 static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
2600                          char *buf)
2601 {
2602         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2603         struct srp_rdma_ch *ch = &target->ch[0];
2604
2605         return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2606 }
2607
2608 static ssize_t show_orig_dgid(struct device *dev,
2609                               struct device_attribute *attr, char *buf)
2610 {
2611         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2612
2613         return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2614 }
2615
2616 static ssize_t show_req_lim(struct device *dev,
2617                             struct device_attribute *attr, char *buf)
2618 {
2619         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2620         struct srp_rdma_ch *ch;
2621         int i, req_lim = INT_MAX;
2622
2623         for (i = 0; i < target->ch_count; i++) {
2624                 ch = &target->ch[i];
2625                 req_lim = min(req_lim, ch->req_lim);
2626         }
2627         return sprintf(buf, "%d\n", req_lim);
2628 }
2629
2630 static ssize_t show_zero_req_lim(struct device *dev,
2631                                  struct device_attribute *attr, char *buf)
2632 {
2633         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2634
2635         return sprintf(buf, "%d\n", target->zero_req_lim);
2636 }
2637
2638 static ssize_t show_local_ib_port(struct device *dev,
2639                                   struct device_attribute *attr, char *buf)
2640 {
2641         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2642
2643         return sprintf(buf, "%d\n", target->srp_host->port);
2644 }
2645
2646 static ssize_t show_local_ib_device(struct device *dev,
2647                                     struct device_attribute *attr, char *buf)
2648 {
2649         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2650
2651         return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2652 }
2653
2654 static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
2655                              char *buf)
2656 {
2657         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2658
2659         return sprintf(buf, "%d\n", target->ch_count);
2660 }
2661
2662 static ssize_t show_comp_vector(struct device *dev,
2663                                 struct device_attribute *attr, char *buf)
2664 {
2665         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2666
2667         return sprintf(buf, "%d\n", target->comp_vector);
2668 }
2669
2670 static ssize_t show_tl_retry_count(struct device *dev,
2671                                    struct device_attribute *attr, char *buf)
2672 {
2673         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2674
2675         return sprintf(buf, "%d\n", target->tl_retry_count);
2676 }
2677
2678 static ssize_t show_cmd_sg_entries(struct device *dev,
2679                                    struct device_attribute *attr, char *buf)
2680 {
2681         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2682
2683         return sprintf(buf, "%u\n", target->cmd_sg_cnt);
2684 }
2685
2686 static ssize_t show_allow_ext_sg(struct device *dev,
2687                                  struct device_attribute *attr, char *buf)
2688 {
2689         struct srp_target_port *target = host_to_target(class_to_shost(dev));
2690
2691         return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
2692 }
2693
2694 static DEVICE_ATTR(id_ext,          S_IRUGO, show_id_ext,          NULL);
2695 static DEVICE_ATTR(ioc_guid,        S_IRUGO, show_ioc_guid,        NULL);
2696 static DEVICE_ATTR(service_id,      S_IRUGO, show_service_id,      NULL);
2697 static DEVICE_ATTR(pkey,            S_IRUGO, show_pkey,            NULL);
2698 static DEVICE_ATTR(sgid,            S_IRUGO, show_sgid,            NULL);
2699 static DEVICE_ATTR(dgid,            S_IRUGO, show_dgid,            NULL);
2700 static DEVICE_ATTR(orig_dgid,       S_IRUGO, show_orig_dgid,       NULL);
2701 static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
2702 static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,    NULL);
2703 static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
2704 static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2705 static DEVICE_ATTR(ch_count,        S_IRUGO, show_ch_count,        NULL);
2706 static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
2707 static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
2708 static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
2709 static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
2710
2711 static struct device_attribute *srp_host_attrs[] = {
2712         &dev_attr_id_ext,
2713         &dev_attr_ioc_guid,
2714         &dev_attr_service_id,
2715         &dev_attr_pkey,
2716         &dev_attr_sgid,
2717         &dev_attr_dgid,
2718         &dev_attr_orig_dgid,
2719         &dev_attr_req_lim,
2720         &dev_attr_zero_req_lim,
2721         &dev_attr_local_ib_port,
2722         &dev_attr_local_ib_device,
2723         &dev_attr_ch_count,
2724         &dev_attr_comp_vector,
2725         &dev_attr_tl_retry_count,
2726         &dev_attr_cmd_sg_entries,
2727         &dev_attr_allow_ext_sg,
2728         NULL
2729 };
2730
2731 static struct scsi_host_template srp_template = {
2732         .module                         = THIS_MODULE,
2733         .name                           = "InfiniBand SRP initiator",
2734         .proc_name                      = DRV_NAME,
2735         .slave_configure                = srp_slave_configure,
2736         .info                           = srp_target_info,
2737         .queuecommand                   = srp_queuecommand,
2738         .change_queue_depth             = srp_change_queue_depth,
2739         .eh_abort_handler               = srp_abort,
2740         .eh_device_reset_handler        = srp_reset_device,
2741         .eh_host_reset_handler          = srp_reset_host,
2742         .skip_settle_delay              = true,
2743         .sg_tablesize                   = SRP_DEF_SG_TABLESIZE,
2744         .can_queue                      = SRP_DEFAULT_CMD_SQ_SIZE,
2745         .this_id                        = -1,
2746         .cmd_per_lun                    = SRP_DEFAULT_CMD_SQ_SIZE,
2747         .use_clustering                 = ENABLE_CLUSTERING,
2748         .shost_attrs                    = srp_host_attrs,
2749         .use_blk_tags                   = 1,
2750         .track_queue_depth              = 1,
2751 };
2752
2753 static int srp_sdev_count(struct Scsi_Host *host)
2754 {
2755         struct scsi_device *sdev;
2756         int c = 0;
2757
2758         shost_for_each_device(sdev, host)
2759                 c++;
2760
2761         return c;
2762 }
2763
2764 /*
2765  * Return values:
2766  * < 0 upon failure. Caller is responsible for SRP target port cleanup.
2767  * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
2768  *    removal has been scheduled.
2769  * 0 and target->state != SRP_TARGET_REMOVED upon success.
2770  */
2771 static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
2772 {
2773         struct srp_rport_identifiers ids;
2774         struct srp_rport *rport;
2775
2776         target->state = SRP_TARGET_SCANNING;
2777         sprintf(target->target_name, "SRP.T10:%016llX",
2778                 be64_to_cpu(target->id_ext));
2779
2780         if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2781                 return -ENODEV;
2782
2783         memcpy(ids.port_id, &target->id_ext, 8);
2784         memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2785         ids.roles = SRP_RPORT_ROLE_TARGET;
2786         rport = srp_rport_add(target->scsi_host, &ids);
2787         if (IS_ERR(rport)) {
2788                 scsi_remove_host(target->scsi_host);
2789                 return PTR_ERR(rport);
2790         }
2791
2792         rport->lld_data = target;
2793         target->rport = rport;
2794
2795         spin_lock(&host->target_lock);
2796         list_add_tail(&target->list, &host->target_list);
2797         spin_unlock(&host->target_lock);
2798
2799         scsi_scan_target(&target->scsi_host->shost_gendev,
2800                          0, target->scsi_id, SCAN_WILD_CARD, 0);
2801
2802         if (srp_connected_ch(target) < target->ch_count ||
2803             target->qp_in_error) {
2804                 shost_printk(KERN_INFO, target->scsi_host,
2805                              PFX "SCSI scan failed - removing SCSI host\n");
2806                 srp_queue_remove_work(target);
2807                 goto out;
2808         }
2809
2810         pr_debug(PFX "%s: SCSI scan succeeded - detected %d LUNs\n",
2811                  dev_name(&target->scsi_host->shost_gendev),
2812                  srp_sdev_count(target->scsi_host));
2813
2814         spin_lock_irq(&target->lock);
2815         if (target->state == SRP_TARGET_SCANNING)
2816                 target->state = SRP_TARGET_LIVE;
2817         spin_unlock_irq(&target->lock);
2818
2819 out:
2820         return 0;
2821 }
2822
2823 static void srp_release_dev(struct device *dev)
2824 {
2825         struct srp_host *host =
2826                 container_of(dev, struct srp_host, dev);
2827
2828         complete(&host->released);
2829 }
2830
2831 static struct class srp_class = {
2832         .name    = "infiniband_srp",
2833         .dev_release = srp_release_dev
2834 };
2835
2836 /**
2837  * srp_conn_unique() - check whether the connection to a target is unique
2838  * @host:   SRP host.
2839  * @target: SRP target port.
2840  */
2841 static bool srp_conn_unique(struct srp_host *host,
2842                             struct srp_target_port *target)
2843 {
2844         struct srp_target_port *t;
2845         bool ret = false;
2846
2847         if (target->state == SRP_TARGET_REMOVED)
2848                 goto out;
2849
2850         ret = true;
2851
2852         spin_lock(&host->target_lock);
2853         list_for_each_entry(t, &host->target_list, list) {
2854                 if (t != target &&
2855                     target->id_ext == t->id_ext &&
2856                     target->ioc_guid == t->ioc_guid &&
2857                     target->initiator_ext == t->initiator_ext) {
2858                         ret = false;
2859                         break;
2860                 }
2861         }
2862         spin_unlock(&host->target_lock);
2863
2864 out:
2865         return ret;
2866 }
2867
2868 /*
2869  * Target ports are added by writing
2870  *
2871  *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
2872  *     pkey=<P_Key>,service_id=<service ID>
2873  *
2874  * to the add_target sysfs attribute.
2875  */
2876 enum {
2877         SRP_OPT_ERR             = 0,
2878         SRP_OPT_ID_EXT          = 1 << 0,
2879         SRP_OPT_IOC_GUID        = 1 << 1,
2880         SRP_OPT_DGID            = 1 << 2,
2881         SRP_OPT_PKEY            = 1 << 3,
2882         SRP_OPT_SERVICE_ID      = 1 << 4,
2883         SRP_OPT_MAX_SECT        = 1 << 5,
2884         SRP_OPT_MAX_CMD_PER_LUN = 1 << 6,
2885         SRP_OPT_IO_CLASS        = 1 << 7,
2886         SRP_OPT_INITIATOR_EXT   = 1 << 8,
2887         SRP_OPT_CMD_SG_ENTRIES  = 1 << 9,
2888         SRP_OPT_ALLOW_EXT_SG    = 1 << 10,
2889         SRP_OPT_SG_TABLESIZE    = 1 << 11,
2890         SRP_OPT_COMP_VECTOR     = 1 << 12,
2891         SRP_OPT_TL_RETRY_COUNT  = 1 << 13,
2892         SRP_OPT_QUEUE_SIZE      = 1 << 14,
2893         SRP_OPT_ALL             = (SRP_OPT_ID_EXT       |
2894                                    SRP_OPT_IOC_GUID     |
2895                                    SRP_OPT_DGID         |
2896                                    SRP_OPT_PKEY         |
2897                                    SRP_OPT_SERVICE_ID),
2898 };
2899
2900 static const match_table_t srp_opt_tokens = {
2901         { SRP_OPT_ID_EXT,               "id_ext=%s"             },
2902         { SRP_OPT_IOC_GUID,             "ioc_guid=%s"           },
2903         { SRP_OPT_DGID,                 "dgid=%s"               },
2904         { SRP_OPT_PKEY,                 "pkey=%x"               },
2905         { SRP_OPT_SERVICE_ID,           "service_id=%s"         },
2906         { SRP_OPT_MAX_SECT,             "max_sect=%d"           },
2907         { SRP_OPT_MAX_CMD_PER_LUN,      "max_cmd_per_lun=%d"    },
2908         { SRP_OPT_IO_CLASS,             "io_class=%x"           },
2909         { SRP_OPT_INITIATOR_EXT,        "initiator_ext=%s"      },
2910         { SRP_OPT_CMD_SG_ENTRIES,       "cmd_sg_entries=%u"     },
2911         { SRP_OPT_ALLOW_EXT_SG,         "allow_ext_sg=%u"       },
2912         { SRP_OPT_SG_TABLESIZE,         "sg_tablesize=%u"       },
2913         { SRP_OPT_COMP_VECTOR,          "comp_vector=%u"        },
2914         { SRP_OPT_TL_RETRY_COUNT,       "tl_retry_count=%u"     },
2915         { SRP_OPT_QUEUE_SIZE,           "queue_size=%d"         },
2916         { SRP_OPT_ERR,                  NULL                    }
2917 };
2918
2919 static int srp_parse_options(const char *buf, struct srp_target_port *target)
2920 {
2921         char *options, *sep_opt;
2922         char *p;
2923         char dgid[3];
2924         substring_t args[MAX_OPT_ARGS];
2925         int opt_mask = 0;
2926         int token;
2927         int ret = -EINVAL;
2928         int i;
2929
2930         options = kstrdup(buf, GFP_KERNEL);
2931         if (!options)
2932                 return -ENOMEM;
2933
2934         sep_opt = options;
2935         while ((p = strsep(&sep_opt, ",\n")) != NULL) {
2936                 if (!*p)
2937                         continue;
2938
2939                 token = match_token(p, srp_opt_tokens, args);
2940                 opt_mask |= token;
2941
2942                 switch (token) {
2943                 case SRP_OPT_ID_EXT:
2944                         p = match_strdup(args);
2945                         if (!p) {
2946                                 ret = -ENOMEM;
2947                                 goto out;
2948                         }
2949                         target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
2950                         kfree(p);
2951                         break;
2952
2953                 case SRP_OPT_IOC_GUID:
2954                         p = match_strdup(args);
2955                         if (!p) {
2956                                 ret = -ENOMEM;
2957                                 goto out;
2958                         }
2959                         target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
2960                         kfree(p);
2961                         break;
2962
2963                 case SRP_OPT_DGID:
2964                         p = match_strdup(args);
2965                         if (!p) {
2966                                 ret = -ENOMEM;
2967                                 goto out;
2968                         }
2969                         if (strlen(p) != 32) {
2970                                 pr_warn("bad dest GID parameter '%s'\n", p);
2971                                 kfree(p);
2972                                 goto out;
2973                         }
2974
2975                         for (i = 0; i < 16; ++i) {
2976                                 strlcpy(dgid, p + i * 2, sizeof(dgid));
2977                                 if (sscanf(dgid, "%hhx",
2978                                            &target->orig_dgid.raw[i]) < 1) {
2979                                         ret = -EINVAL;
2980                                         kfree(p);
2981                                         goto out;
2982                                 }
2983                         }
2984                         kfree(p);
2985                         break;
2986
2987                 case SRP_OPT_PKEY:
2988                         if (match_hex(args, &token)) {
2989                                 pr_warn("bad P_Key parameter '%s'\n", p);
2990                                 goto out;
2991                         }
2992                         target->pkey = cpu_to_be16(token);
2993                         break;
2994
2995                 case SRP_OPT_SERVICE_ID:
2996                         p = match_strdup(args);
2997                         if (!p) {
2998                                 ret = -ENOMEM;
2999                                 goto out;
3000                         }
3001                         target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
3002                         kfree(p);
3003                         break;
3004
3005                 case SRP_OPT_MAX_SECT:
3006                         if (match_int(args, &token)) {
3007                                 pr_warn("bad max sect parameter '%s'\n", p);
3008                                 goto out;
3009                         }
3010                         target->scsi_host->max_sectors = token;
3011                         break;
3012
3013                 case SRP_OPT_QUEUE_SIZE:
3014                         if (match_int(args, &token) || token < 1) {
3015                                 pr_warn("bad queue_size parameter '%s'\n", p);
3016                                 goto out;
3017                         }
3018                         target->scsi_host->can_queue = token;
3019                         target->queue_size = token + SRP_RSP_SQ_SIZE +
3020                                              SRP_TSK_MGMT_SQ_SIZE;
3021                         if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3022                                 target->scsi_host->cmd_per_lun = token;
3023                         break;
3024
3025                 case SRP_OPT_MAX_CMD_PER_LUN:
3026                         if (match_int(args, &token) || token < 1) {
3027                                 pr_warn("bad max cmd_per_lun parameter '%s'\n",
3028                                         p);
3029                                 goto out;
3030                         }
3031                         target->scsi_host->cmd_per_lun = token;
3032                         break;
3033
3034                 case SRP_OPT_IO_CLASS:
3035                         if (match_hex(args, &token)) {
3036                                 pr_warn("bad IO class parameter '%s'\n", p);
3037                                 goto out;
3038                         }
3039                         if (token != SRP_REV10_IB_IO_CLASS &&
3040                             token != SRP_REV16A_IB_IO_CLASS) {
3041                                 pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
3042                                         token, SRP_REV10_IB_IO_CLASS,
3043                                         SRP_REV16A_IB_IO_CLASS);
3044                                 goto out;
3045                         }
3046                         target->io_class = token;
3047                         break;
3048
3049                 case SRP_OPT_INITIATOR_EXT:
3050                         p = match_strdup(args);
3051                         if (!p) {
3052                                 ret = -ENOMEM;
3053                                 goto out;
3054                         }
3055                         target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
3056                         kfree(p);
3057                         break;
3058
3059                 case SRP_OPT_CMD_SG_ENTRIES:
3060                         if (match_int(args, &token) || token < 1 || token > 255) {
3061                                 pr_warn("bad max cmd_sg_entries parameter '%s'\n",
3062                                         p);
3063                                 goto out;
3064                         }
3065                         target->cmd_sg_cnt = token;
3066                         break;
3067
3068                 case SRP_OPT_ALLOW_EXT_SG:
3069                         if (match_int(args, &token)) {
3070                                 pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3071                                 goto out;
3072                         }
3073                         target->allow_ext_sg = !!token;
3074                         break;
3075
3076                 case SRP_OPT_SG_TABLESIZE:
3077                         if (match_int(args, &token) || token < 1 ||
3078                                         token > SCSI_MAX_SG_CHAIN_SEGMENTS) {
3079                                 pr_warn("bad max sg_tablesize parameter '%s'\n",
3080                                         p);
3081                                 goto out;
3082                         }
3083                         target->sg_tablesize = token;
3084                         break;
3085
3086                 case SRP_OPT_COMP_VECTOR:
3087                         if (match_int(args, &token) || token < 0) {
3088                                 pr_warn("bad comp_vector parameter '%s'\n", p);
3089                                 goto out;
3090                         }
3091                         target->comp_vector = token;
3092                         break;
3093
3094                 case SRP_OPT_TL_RETRY_COUNT:
3095                         if (match_int(args, &token) || token < 2 || token > 7) {
3096                                 pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
3097                                         p);
3098                                 goto out;
3099                         }
3100                         target->tl_retry_count = token;
3101                         break;
3102
3103                 default:
3104                         pr_warn("unknown parameter or missing value '%s' in target creation request\n",
3105                                 p);
3106                         goto out;
3107                 }
3108         }
3109
3110         if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
3111                 ret = 0;
3112         else
3113                 for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
3114                         if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
3115                             !(srp_opt_tokens[i].token & opt_mask))
3116                                 pr_warn("target creation request is missing parameter '%s'\n",
3117                                         srp_opt_tokens[i].pattern);
3118
3119         if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
3120             && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
3121                 pr_warn("cmd_per_lun = %d > queue_size = %d\n",
3122                         target->scsi_host->cmd_per_lun,
3123                         target->scsi_host->can_queue);
3124
3125 out:
3126         kfree(options);
3127         return ret;
3128 }
3129
3130 static ssize_t srp_create_target(struct device *dev,
3131                                  struct device_attribute *attr,
3132                                  const char *buf, size_t count)
3133 {
3134         struct srp_host *host =
3135                 container_of(dev, struct srp_host, dev);
3136         struct Scsi_Host *target_host;
3137         struct srp_target_port *target;
3138         struct srp_rdma_ch *ch;
3139         struct srp_device *srp_dev = host->srp_dev;
3140         struct ib_device *ibdev = srp_dev->dev;
3141         int ret, node_idx, node, cpu, i;
3142         bool multich = false;
3143
3144         target_host = scsi_host_alloc(&srp_template,
3145                                       sizeof (struct srp_target_port));
3146         if (!target_host)
3147                 return -ENOMEM;
3148
3149         target_host->transportt  = ib_srp_transport_template;
3150         target_host->max_channel = 0;
3151         target_host->max_id      = 1;
3152         target_host->max_lun     = -1LL;
3153         target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
3154
3155         target = host_to_target(target_host);
3156
3157         target->io_class        = SRP_REV16A_IB_IO_CLASS;
3158         target->scsi_host       = target_host;
3159         target->srp_host        = host;
3160         target->lkey            = host->srp_dev->pd->local_dma_lkey;
3161         target->global_mr       = host->srp_dev->global_mr;
3162         target->cmd_sg_cnt      = cmd_sg_entries;
3163         target->sg_tablesize    = indirect_sg_entries ? : cmd_sg_entries;
3164         target->allow_ext_sg    = allow_ext_sg;
3165         target->tl_retry_count  = 7;
3166         target->queue_size      = SRP_DEFAULT_QUEUE_SIZE;
3167
3168         /*
3169          * Avoid that the SCSI host can be removed by srp_remove_target()
3170          * before this function returns.
3171          */
3172         scsi_host_get(target->scsi_host);
3173
3174         mutex_lock(&host->add_target_mutex);
3175
3176         ret = srp_parse_options(buf, target);
3177         if (ret)
3178                 goto out;
3179
3180         ret = scsi_init_shared_tag_map(target_host, target_host->can_queue);
3181         if (ret)
3182                 goto out;
3183
3184         target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;
3185
3186         if (!srp_conn_unique(target->srp_host, target)) {
3187                 shost_printk(KERN_INFO, target->scsi_host,
3188                              PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
3189                              be64_to_cpu(target->id_ext),
3190                              be64_to_cpu(target->ioc_guid),
3191                              be64_to_cpu(target->initiator_ext));
3192                 ret = -EEXIST;
3193                 goto out;
3194         }
3195
3196         if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3197             target->cmd_sg_cnt < target->sg_tablesize) {
3198                 pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3199                 target->sg_tablesize = target->cmd_sg_cnt;
3200         }
3201
3202         target_host->sg_tablesize = target->sg_tablesize;
3203         target->indirect_size = target->sg_tablesize *
3204                                 sizeof (struct srp_direct_buf);
3205         target->max_iu_len = sizeof (struct srp_cmd) +
3206                              sizeof (struct srp_indirect_buf) +
3207                              target->cmd_sg_cnt * sizeof (struct srp_direct_buf);
3208
3209         INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3210         INIT_WORK(&target->remove_work, srp_remove_work);
3211         spin_lock_init(&target->lock);
3212         ret = ib_query_gid(ibdev, host->port, 0, &target->sgid);
3213         if (ret)
3214                 goto out;
3215
3216         ret = -ENOMEM;
3217         target->ch_count = max_t(unsigned, num_online_nodes(),
3218                                  min(ch_count ? :
3219                                      min(4 * num_online_nodes(),
3220                                          ibdev->num_comp_vectors),
3221                                      num_online_cpus()));
3222         target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
3223                              GFP_KERNEL);
3224         if (!target->ch)
3225                 goto out;
3226
3227         node_idx = 0;
3228         for_each_online_node(node) {
3229                 const int ch_start = (node_idx * target->ch_count /
3230                                       num_online_nodes());
3231                 const int ch_end = ((node_idx + 1) * target->ch_count /
3232                                     num_online_nodes());
3233                 const int cv_start = (node_idx * ibdev->num_comp_vectors /
3234                                       num_online_nodes() + target->comp_vector)
3235                                      % ibdev->num_comp_vectors;
3236                 const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
3237                                     num_online_nodes() + target->comp_vector)
3238                                    % ibdev->num_comp_vectors;
3239                 int cpu_idx = 0;
3240
3241                 for_each_online_cpu(cpu) {
3242                         if (cpu_to_node(cpu) != node)
3243                                 continue;
3244                         if (ch_start + cpu_idx >= ch_end)
3245                                 continue;
3246                         ch = &target->ch[ch_start + cpu_idx];
3247                         ch->target = target;
3248                         ch->comp_vector = cv_start == cv_end ? cv_start :
3249                                 cv_start + cpu_idx % (cv_end - cv_start);
3250                         spin_lock_init(&ch->lock);
3251                         INIT_LIST_HEAD(&ch->free_tx);
3252                         ret = srp_new_cm_id(ch);
3253                         if (ret)
3254                                 goto err_disconnect;
3255
3256                         ret = srp_create_ch_ib(ch);
3257                         if (ret)
3258                                 goto err_disconnect;
3259
3260                         ret = srp_alloc_req_data(ch);
3261                         if (ret)
3262                                 goto err_disconnect;
3263
3264                         ret = srp_connect_ch(ch, multich);
3265                         if (ret) {
3266                                 shost_printk(KERN_ERR, target->scsi_host,
3267                                              PFX "Connection %d/%d failed\n",
3268                                              ch_start + cpu_idx,
3269                                              target->ch_count);
3270                                 if (node_idx == 0 && cpu_idx == 0) {
3271                                         goto err_disconnect;
3272                                 } else {
3273                                         srp_free_ch_ib(target, ch);
3274                                         srp_free_req_data(target, ch);
3275                                         target->ch_count = ch - target->ch;
3276                                         goto connected;
3277                                 }
3278                         }
3279
3280                         multich = true;
3281                         cpu_idx++;
3282                 }
3283                 node_idx++;
3284         }
3285
3286 connected:
3287         target->scsi_host->nr_hw_queues = target->ch_count;
3288
3289         ret = srp_add_target(host, target);
3290         if (ret)
3291                 goto err_disconnect;
3292
3293         if (target->state != SRP_TARGET_REMOVED) {
3294                 shost_printk(KERN_DEBUG, target->scsi_host, PFX
3295                              "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
3296                              be64_to_cpu(target->id_ext),
3297                              be64_to_cpu(target->ioc_guid),
3298                              be16_to_cpu(target->pkey),
3299                              be64_to_cpu(target->service_id),
3300                              target->sgid.raw, target->orig_dgid.raw);
3301         }
3302
3303         ret = count;
3304
3305 out:
3306         mutex_unlock(&host->add_target_mutex);
3307
3308         scsi_host_put(target->scsi_host);
3309         if (ret < 0)
3310                 scsi_host_put(target->scsi_host);
3311
3312         return ret;
3313
3314 err_disconnect:
3315         srp_disconnect_target(target);
3316
3317         for (i = 0; i < target->ch_count; i++) {
3318                 ch = &target->ch[i];
3319                 srp_free_ch_ib(target, ch);
3320                 srp_free_req_data(target, ch);
3321         }
3322
3323         kfree(target->ch);
3324         goto out;
3325 }
3326
3327 static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3328
3329 static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
3330                           char *buf)
3331 {
3332         struct srp_host *host = container_of(dev, struct srp_host, dev);
3333
3334         return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3335 }
3336
3337 static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3338
3339 static ssize_t show_port(struct device *dev, struct device_attribute *attr,
3340                          char *buf)
3341 {
3342         struct srp_host *host = container_of(dev, struct srp_host, dev);
3343
3344         return sprintf(buf, "%d\n", host->port);
3345 }
3346
3347 static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3348
3349 static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3350 {
3351         struct srp_host *host;
3352
3353         host = kzalloc(sizeof *host, GFP_KERNEL);
3354         if (!host)
3355                 return NULL;
3356
3357         INIT_LIST_HEAD(&host->target_list);
3358         spin_lock_init(&host->target_lock);
3359         init_completion(&host->released);
3360         mutex_init(&host->add_target_mutex);
3361         host->srp_dev = device;
3362         host->port = port;
3363
3364         host->dev.class = &srp_class;
3365         host->dev.parent = device->dev->dma_device;
3366         dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3367
3368         if (device_register(&host->dev))
3369                 goto free_host;
3370         if (device_create_file(&host->dev, &dev_attr_add_target))
3371                 goto err_class;
3372         if (device_create_file(&host->dev, &dev_attr_ibdev))
3373                 goto err_class;
3374         if (device_create_file(&host->dev, &dev_attr_port))
3375                 goto err_class;
3376
3377         return host;
3378
3379 err_class:
3380         device_unregister(&host->dev);
3381
3382 free_host:
3383         kfree(host);
3384
3385         return NULL;
3386 }
3387
3388 static void srp_add_one(struct ib_device *device)
3389 {
3390         struct srp_device *srp_dev;
3391         struct ib_device_attr *dev_attr;
3392         struct srp_host *host;
3393         int mr_page_shift, p;
3394         u64 max_pages_per_mr;
3395
3396         dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL);
3397         if (!dev_attr)
3398                 return;
3399
3400         if (ib_query_device(device, dev_attr)) {
3401                 pr_warn("Query device failed for %s\n", device->name);
3402                 goto free_attr;
3403         }
3404
3405         srp_dev = kmalloc(sizeof *srp_dev, GFP_KERNEL);
3406         if (!srp_dev)
3407                 goto free_attr;
3408
3409         srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
3410                             device->map_phys_fmr && device->unmap_fmr);
3411         srp_dev->has_fr = (dev_attr->device_cap_flags &
3412                            IB_DEVICE_MEM_MGT_EXTENSIONS);
3413         if (!srp_dev->has_fmr && !srp_dev->has_fr)
3414                 dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3415
3416         srp_dev->use_fast_reg = (srp_dev->has_fr &&
3417                                  (!srp_dev->has_fmr || prefer_fr));
3418         srp_dev->use_fmr = !srp_dev->use_fast_reg && srp_dev->has_fmr;
3419
3420         /*
3421          * Use the smallest page size supported by the HCA, down to a
3422          * minimum of 4096 bytes. We're unlikely to build large sglists
3423          * out of smaller entries.
3424          */
3425         mr_page_shift           = max(12, ffs(dev_attr->page_size_cap) - 1);
3426         srp_dev->mr_page_size   = 1 << mr_page_shift;
3427         srp_dev->mr_page_mask   = ~((u64) srp_dev->mr_page_size - 1);
3428         max_pages_per_mr        = dev_attr->max_mr_size;
3429         do_div(max_pages_per_mr, srp_dev->mr_page_size);
3430         srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
3431                                           max_pages_per_mr);
3432         if (srp_dev->use_fast_reg) {
3433                 srp_dev->max_pages_per_mr =
3434                         min_t(u32, srp_dev->max_pages_per_mr,
3435                               dev_attr->max_fast_reg_page_list_len);
3436         }
3437         srp_dev->mr_max_size    = srp_dev->mr_page_size *
3438                                    srp_dev->max_pages_per_mr;
3439         pr_debug("%s: mr_page_shift = %d, dev_attr->max_mr_size = %#llx, dev_attr->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
3440                  device->name, mr_page_shift, dev_attr->max_mr_size,
3441                  dev_attr->max_fast_reg_page_list_len,
3442                  srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3443
3444         INIT_LIST_HEAD(&srp_dev->dev_list);
3445
3446         srp_dev->dev = device;
3447         srp_dev->pd  = ib_alloc_pd(device);
3448         if (IS_ERR(srp_dev->pd))
3449                 goto free_dev;
3450
3451         if (!register_always || (!srp_dev->has_fmr && !srp_dev->has_fr)) {
3452                 srp_dev->global_mr = ib_get_dma_mr(srp_dev->pd,
3453                                                    IB_ACCESS_LOCAL_WRITE |
3454                                                    IB_ACCESS_REMOTE_READ |
3455                                                    IB_ACCESS_REMOTE_WRITE);
3456                 if (IS_ERR(srp_dev->global_mr))
3457                         goto err_pd;
3458         } else {
3459                 srp_dev->global_mr = NULL;
3460         }
3461
3462         for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) {
3463                 host = srp_add_port(srp_dev, p);
3464                 if (host)
3465                         list_add_tail(&host->list, &srp_dev->dev_list);
3466         }
3467
3468         ib_set_client_data(device, &srp_client, srp_dev);
3469
3470         goto free_attr;
3471
3472 err_pd:
3473         ib_dealloc_pd(srp_dev->pd);
3474
3475 free_dev:
3476         kfree(srp_dev);
3477
3478 free_attr:
3479         kfree(dev_attr);
3480 }
3481
3482 static void srp_remove_one(struct ib_device *device, void *client_data)
3483 {
3484         struct srp_device *srp_dev;
3485         struct srp_host *host, *tmp_host;
3486         struct srp_target_port *target;
3487
3488         srp_dev = client_data;
3489         if (!srp_dev)
3490                 return;
3491
3492         list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3493                 device_unregister(&host->dev);
3494                 /*
3495                  * Wait for the sysfs entry to go away, so that no new
3496                  * target ports can be created.
3497                  */
3498                 wait_for_completion(&host->released);
3499
3500                 /*
3501                  * Remove all target ports.
3502                  */
3503                 spin_lock(&host->target_lock);
3504                 list_for_each_entry(target, &host->target_list, list)
3505                         srp_queue_remove_work(target);
3506                 spin_unlock(&host->target_lock);
3507
3508                 /*
3509                  * Wait for tl_err and target port removal tasks.
3510                  */
3511                 flush_workqueue(system_long_wq);
3512                 flush_workqueue(srp_remove_wq);
3513
3514                 kfree(host);
3515         }
3516
3517         if (srp_dev->global_mr)
3518                 ib_dereg_mr(srp_dev->global_mr);
3519         ib_dealloc_pd(srp_dev->pd);
3520
3521         kfree(srp_dev);
3522 }
3523
3524 static struct srp_function_template ib_srp_transport_functions = {
3525         .has_rport_state         = true,
3526         .reset_timer_if_blocked  = true,
3527         .reconnect_delay         = &srp_reconnect_delay,
3528         .fast_io_fail_tmo        = &srp_fast_io_fail_tmo,
3529         .dev_loss_tmo            = &srp_dev_loss_tmo,
3530         .reconnect               = srp_rport_reconnect,
3531         .rport_delete            = srp_rport_delete,
3532         .terminate_rport_io      = srp_terminate_io,
3533 };
3534
3535 static int __init srp_init_module(void)
3536 {
3537         int ret;
3538
3539         BUILD_BUG_ON(FIELD_SIZEOF(struct ib_wc, wr_id) < sizeof(void *));
3540
3541         if (srp_sg_tablesize) {
3542                 pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3543                 if (!cmd_sg_entries)
3544                         cmd_sg_entries = srp_sg_tablesize;
3545         }
3546
3547         if (!cmd_sg_entries)
3548                 cmd_sg_entries = SRP_DEF_SG_TABLESIZE;
3549
3550         if (cmd_sg_entries > 255) {
3551                 pr_warn("Clamping cmd_sg_entries to 255\n");
3552                 cmd_sg_entries = 255;
3553         }
3554
3555         if (!indirect_sg_entries)
3556                 indirect_sg_entries = cmd_sg_entries;
3557         else if (indirect_sg_entries < cmd_sg_entries) {
3558                 pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
3559                         cmd_sg_entries);
3560                 indirect_sg_entries = cmd_sg_entries;
3561         }
3562
3563         srp_remove_wq = create_workqueue("srp_remove");
3564         if (!srp_remove_wq) {
3565                 ret = -ENOMEM;
3566                 goto out;
3567         }
3568
3569         ret = -ENOMEM;
3570         ib_srp_transport_template =
3571                 srp_attach_transport(&ib_srp_transport_functions);
3572         if (!ib_srp_transport_template)
3573                 goto destroy_wq;
3574
3575         ret = class_register(&srp_class);
3576         if (ret) {
3577                 pr_err("couldn't register class infiniband_srp\n");
3578                 goto release_tr;
3579         }
3580
3581         ib_sa_register_client(&srp_sa_client);
3582
3583         ret = ib_register_client(&srp_client);
3584         if (ret) {
3585                 pr_err("couldn't register IB client\n");
3586                 goto unreg_sa;
3587         }
3588
3589 out:
3590         return ret;
3591
3592 unreg_sa:
3593         ib_sa_unregister_client(&srp_sa_client);
3594         class_unregister(&srp_class);
3595
3596 release_tr:
3597         srp_release_transport(ib_srp_transport_template);
3598
3599 destroy_wq:
3600         destroy_workqueue(srp_remove_wq);
3601         goto out;
3602 }
3603
3604 static void __exit srp_cleanup_module(void)
3605 {
3606         ib_unregister_client(&srp_client);
3607         ib_sa_unregister_client(&srp_sa_client);
3608         class_unregister(&srp_class);
3609         srp_release_transport(ib_srp_transport_template);
3610         destroy_workqueue(srp_remove_wq);
3611 }
3612
3613 module_init(srp_init_module);
3614 module_exit(srp_cleanup_module);