Merge tag 'iio-for-4.3b-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[firefly-linux-kernel-4.4.55.git] / drivers / iio / accel / bmc150-accel.c
1 /*
2  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3  *  - BMC150
4  *  - BMI055
5  *  - BMA255
6  *  - BMA250E
7  *  - BMA222E
8  *  - BMA280
9  *
10  * Copyright (c) 2014, Intel Corporation.
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  */
21
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/pm.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/iio/iio.h>
32 #include <linux/iio/sysfs.h>
33 #include <linux/iio/buffer.h>
34 #include <linux/iio/events.h>
35 #include <linux/iio/trigger.h>
36 #include <linux/iio/trigger_consumer.h>
37 #include <linux/iio/triggered_buffer.h>
38
39 #define BMC150_ACCEL_DRV_NAME                   "bmc150_accel"
40 #define BMC150_ACCEL_IRQ_NAME                   "bmc150_accel_event"
41 #define BMC150_ACCEL_GPIO_NAME                  "bmc150_accel_int"
42
43 #define BMC150_ACCEL_REG_CHIP_ID                0x00
44
45 #define BMC150_ACCEL_REG_INT_STATUS_2           0x0B
46 #define BMC150_ACCEL_ANY_MOTION_MASK            0x07
47 #define BMC150_ACCEL_ANY_MOTION_BIT_X           BIT(0)
48 #define BMC150_ACCEL_ANY_MOTION_BIT_Y           BIT(1)
49 #define BMC150_ACCEL_ANY_MOTION_BIT_Z           BIT(2)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN        BIT(3)
51
52 #define BMC150_ACCEL_REG_PMU_LPW                0x11
53 #define BMC150_ACCEL_PMU_MODE_MASK              0xE0
54 #define BMC150_ACCEL_PMU_MODE_SHIFT             5
55 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK     0x17
56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT    1
57
58 #define BMC150_ACCEL_REG_PMU_RANGE              0x0F
59
60 #define BMC150_ACCEL_DEF_RANGE_2G               0x03
61 #define BMC150_ACCEL_DEF_RANGE_4G               0x05
62 #define BMC150_ACCEL_DEF_RANGE_8G               0x08
63 #define BMC150_ACCEL_DEF_RANGE_16G              0x0C
64
65 /* Default BW: 125Hz */
66 #define BMC150_ACCEL_REG_PMU_BW         0x10
67 #define BMC150_ACCEL_DEF_BW                     125
68
69 #define BMC150_ACCEL_REG_INT_MAP_0              0x19
70 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE        BIT(2)
71
72 #define BMC150_ACCEL_REG_INT_MAP_1              0x1A
73 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA         BIT(0)
74 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM          BIT(1)
75 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL        BIT(2)
76
77 #define BMC150_ACCEL_REG_INT_RST_LATCH          0x21
78 #define BMC150_ACCEL_INT_MODE_LATCH_RESET       0x80
79 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
80 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT     0x00
81
82 #define BMC150_ACCEL_REG_INT_EN_0               0x16
83 #define BMC150_ACCEL_INT_EN_BIT_SLP_X           BIT(0)
84 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y           BIT(1)
85 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z           BIT(2)
86
87 #define BMC150_ACCEL_REG_INT_EN_1               0x17
88 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN         BIT(4)
89 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN        BIT(5)
90 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN          BIT(6)
91
92 #define BMC150_ACCEL_REG_INT_OUT_CTRL           0x20
93 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL      BIT(0)
94
95 #define BMC150_ACCEL_REG_INT_5                  0x27
96 #define BMC150_ACCEL_SLOPE_DUR_MASK             0x03
97
98 #define BMC150_ACCEL_REG_INT_6                  0x28
99 #define BMC150_ACCEL_SLOPE_THRES_MASK           0xFF
100
101 /* Slope duration in terms of number of samples */
102 #define BMC150_ACCEL_DEF_SLOPE_DURATION         1
103 /* in terms of multiples of g's/LSB, based on range */
104 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD        1
105
106 #define BMC150_ACCEL_REG_XOUT_L         0x02
107
108 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS        100
109
110 /* Sleep Duration values */
111 #define BMC150_ACCEL_SLEEP_500_MICRO            0x05
112 #define BMC150_ACCEL_SLEEP_1_MS         0x06
113 #define BMC150_ACCEL_SLEEP_2_MS         0x07
114 #define BMC150_ACCEL_SLEEP_4_MS         0x08
115 #define BMC150_ACCEL_SLEEP_6_MS         0x09
116 #define BMC150_ACCEL_SLEEP_10_MS                0x0A
117 #define BMC150_ACCEL_SLEEP_25_MS                0x0B
118 #define BMC150_ACCEL_SLEEP_50_MS                0x0C
119 #define BMC150_ACCEL_SLEEP_100_MS               0x0D
120 #define BMC150_ACCEL_SLEEP_500_MS               0x0E
121 #define BMC150_ACCEL_SLEEP_1_SEC                0x0F
122
123 #define BMC150_ACCEL_REG_TEMP                   0x08
124 #define BMC150_ACCEL_TEMP_CENTER_VAL            24
125
126 #define BMC150_ACCEL_AXIS_TO_REG(axis)  (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
127 #define BMC150_AUTO_SUSPEND_DELAY_MS            2000
128
129 #define BMC150_ACCEL_REG_FIFO_STATUS            0x0E
130 #define BMC150_ACCEL_REG_FIFO_CONFIG0           0x30
131 #define BMC150_ACCEL_REG_FIFO_CONFIG1           0x3E
132 #define BMC150_ACCEL_REG_FIFO_DATA              0x3F
133 #define BMC150_ACCEL_FIFO_LENGTH                32
134
135 enum bmc150_accel_axis {
136         AXIS_X,
137         AXIS_Y,
138         AXIS_Z,
139 };
140
141 enum bmc150_power_modes {
142         BMC150_ACCEL_SLEEP_MODE_NORMAL,
143         BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
144         BMC150_ACCEL_SLEEP_MODE_LPM,
145         BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
146 };
147
148 struct bmc150_scale_info {
149         int scale;
150         u8 reg_range;
151 };
152
153 struct bmc150_accel_chip_info {
154         const char *name;
155         u8 chip_id;
156         const struct iio_chan_spec *channels;
157         int num_channels;
158         const struct bmc150_scale_info scale_table[4];
159 };
160
161 struct bmc150_accel_interrupt {
162         const struct bmc150_accel_interrupt_info *info;
163         atomic_t users;
164 };
165
166 struct bmc150_accel_trigger {
167         struct bmc150_accel_data *data;
168         struct iio_trigger *indio_trig;
169         int (*setup)(struct bmc150_accel_trigger *t, bool state);
170         int intr;
171         bool enabled;
172 };
173
174 enum bmc150_accel_interrupt_id {
175         BMC150_ACCEL_INT_DATA_READY,
176         BMC150_ACCEL_INT_ANY_MOTION,
177         BMC150_ACCEL_INT_WATERMARK,
178         BMC150_ACCEL_INTERRUPTS,
179 };
180
181 enum bmc150_accel_trigger_id {
182         BMC150_ACCEL_TRIGGER_DATA_READY,
183         BMC150_ACCEL_TRIGGER_ANY_MOTION,
184         BMC150_ACCEL_TRIGGERS,
185 };
186
187 struct bmc150_accel_data {
188         struct i2c_client *client;
189         struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
190         atomic_t active_intr;
191         struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
192         struct mutex mutex;
193         u8 fifo_mode, watermark;
194         s16 buffer[8];
195         u8 bw_bits;
196         u32 slope_dur;
197         u32 slope_thres;
198         u32 range;
199         int ev_enable_state;
200         int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
201         const struct bmc150_accel_chip_info *chip_info;
202 };
203
204 static const struct {
205         int val;
206         int val2;
207         u8 bw_bits;
208 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
209                                      {31, 260000, 0x09},
210                                      {62, 500000, 0x0A},
211                                      {125, 0, 0x0B},
212                                      {250, 0, 0x0C},
213                                      {500, 0, 0x0D},
214                                      {1000, 0, 0x0E},
215                                      {2000, 0, 0x0F} };
216
217 static const struct {
218         int bw_bits;
219         int msec;
220 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
221                                      {0x09, 32},
222                                      {0x0A, 16},
223                                      {0x0B, 8},
224                                      {0x0C, 4},
225                                      {0x0D, 2},
226                                      {0x0E, 1},
227                                      {0x0F, 1} };
228
229 static const struct {
230         int sleep_dur;
231         u8 reg_value;
232 } bmc150_accel_sleep_value_table[] = { {0, 0},
233                                        {500, BMC150_ACCEL_SLEEP_500_MICRO},
234                                        {1000, BMC150_ACCEL_SLEEP_1_MS},
235                                        {2000, BMC150_ACCEL_SLEEP_2_MS},
236                                        {4000, BMC150_ACCEL_SLEEP_4_MS},
237                                        {6000, BMC150_ACCEL_SLEEP_6_MS},
238                                        {10000, BMC150_ACCEL_SLEEP_10_MS},
239                                        {25000, BMC150_ACCEL_SLEEP_25_MS},
240                                        {50000, BMC150_ACCEL_SLEEP_50_MS},
241                                        {100000, BMC150_ACCEL_SLEEP_100_MS},
242                                        {500000, BMC150_ACCEL_SLEEP_500_MS},
243                                        {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
244
245 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
246                                  enum bmc150_power_modes mode,
247                                  int dur_us)
248 {
249         int i;
250         int ret;
251         u8 lpw_bits;
252         int dur_val = -1;
253
254         if (dur_us > 0) {
255                 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
256                                                                          ++i) {
257                         if (bmc150_accel_sleep_value_table[i].sleep_dur ==
258                                                                         dur_us)
259                                 dur_val =
260                                 bmc150_accel_sleep_value_table[i].reg_value;
261                 }
262         } else {
263                 dur_val = 0;
264         }
265
266         if (dur_val < 0)
267                 return -EINVAL;
268
269         lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
270         lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
271
272         dev_dbg(&data->client->dev, "Set Mode bits %x\n", lpw_bits);
273
274         ret = i2c_smbus_write_byte_data(data->client,
275                                         BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
276         if (ret < 0) {
277                 dev_err(&data->client->dev, "Error writing reg_pmu_lpw\n");
278                 return ret;
279         }
280
281         return 0;
282 }
283
284 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
285                                int val2)
286 {
287         int i;
288         int ret;
289
290         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
291                 if (bmc150_accel_samp_freq_table[i].val == val &&
292                     bmc150_accel_samp_freq_table[i].val2 == val2) {
293                         ret = i2c_smbus_write_byte_data(
294                                 data->client,
295                                 BMC150_ACCEL_REG_PMU_BW,
296                                 bmc150_accel_samp_freq_table[i].bw_bits);
297                         if (ret < 0)
298                                 return ret;
299
300                         data->bw_bits =
301                                 bmc150_accel_samp_freq_table[i].bw_bits;
302                         return 0;
303                 }
304         }
305
306         return -EINVAL;
307 }
308
309 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
310 {
311         int ret, val;
312
313         ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_6,
314                                         data->slope_thres);
315         if (ret < 0) {
316                 dev_err(&data->client->dev, "Error writing reg_int_6\n");
317                 return ret;
318         }
319
320         ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_INT_5);
321         if (ret < 0) {
322                 dev_err(&data->client->dev, "Error reading reg_int_5\n");
323                 return ret;
324         }
325
326         val = (ret & ~BMC150_ACCEL_SLOPE_DUR_MASK) | data->slope_dur;
327         ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_5,
328                                         val);
329         if (ret < 0) {
330                 dev_err(&data->client->dev, "Error write reg_int_5\n");
331                 return ret;
332         }
333
334         dev_dbg(&data->client->dev, "%s: %x %x\n", __func__, data->slope_thres,
335                 data->slope_dur);
336
337         return ret;
338 }
339
340 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
341                                          bool state)
342 {
343         if (state)
344                 return bmc150_accel_update_slope(t->data);
345
346         return 0;
347 }
348
349 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
350                                int *val2)
351 {
352         int i;
353
354         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
355                 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
356                         *val = bmc150_accel_samp_freq_table[i].val;
357                         *val2 = bmc150_accel_samp_freq_table[i].val2;
358                         return IIO_VAL_INT_PLUS_MICRO;
359                 }
360         }
361
362         return -EINVAL;
363 }
364
365 #ifdef CONFIG_PM
366 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
367 {
368         int i;
369
370         for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
371                 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
372                         return bmc150_accel_sample_upd_time[i].msec;
373         }
374
375         return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
376 }
377
378 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
379 {
380         int ret;
381
382         if (on) {
383                 ret = pm_runtime_get_sync(&data->client->dev);
384         } else {
385                 pm_runtime_mark_last_busy(&data->client->dev);
386                 ret = pm_runtime_put_autosuspend(&data->client->dev);
387         }
388
389         if (ret < 0) {
390                 dev_err(&data->client->dev,
391                         "Failed: bmc150_accel_set_power_state for %d\n", on);
392                 if (on)
393                         pm_runtime_put_noidle(&data->client->dev);
394
395                 return ret;
396         }
397
398         return 0;
399 }
400 #else
401 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
402 {
403         return 0;
404 }
405 #endif
406
407 static const struct bmc150_accel_interrupt_info {
408         u8 map_reg;
409         u8 map_bitmask;
410         u8 en_reg;
411         u8 en_bitmask;
412 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
413         { /* data ready interrupt */
414                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
415                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
416                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
417                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
418         },
419         {  /* motion interrupt */
420                 .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
421                 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
422                 .en_reg = BMC150_ACCEL_REG_INT_EN_0,
423                 .en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
424                         BMC150_ACCEL_INT_EN_BIT_SLP_Y |
425                         BMC150_ACCEL_INT_EN_BIT_SLP_Z
426         },
427         { /* fifo watermark interrupt */
428                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
429                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
430                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
431                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
432         },
433 };
434
435 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
436                                           struct bmc150_accel_data *data)
437 {
438         int i;
439
440         for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
441                 data->interrupts[i].info = &bmc150_accel_interrupts[i];
442 }
443
444 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
445                                       bool state)
446 {
447         struct bmc150_accel_interrupt *intr = &data->interrupts[i];
448         const struct bmc150_accel_interrupt_info *info = intr->info;
449         int ret;
450
451         if (state) {
452                 if (atomic_inc_return(&intr->users) > 1)
453                         return 0;
454         } else {
455                 if (atomic_dec_return(&intr->users) > 0)
456                         return 0;
457         }
458
459         /*
460          * We will expect the enable and disable to do operation in reverse
461          * order. This will happen here anyway, as our resume operation uses
462          * sync mode runtime pm calls. The suspend operation will be delayed
463          * by autosuspend delay.
464          * So the disable operation will still happen in reverse order of
465          * enable operation. When runtime pm is disabled the mode is always on,
466          * so sequence doesn't matter.
467          */
468         ret = bmc150_accel_set_power_state(data, state);
469         if (ret < 0)
470                 return ret;
471
472         /* map the interrupt to the appropriate pins */
473         ret = i2c_smbus_read_byte_data(data->client, info->map_reg);
474         if (ret < 0) {
475                 dev_err(&data->client->dev, "Error reading reg_int_map\n");
476                 goto out_fix_power_state;
477         }
478         if (state)
479                 ret |= info->map_bitmask;
480         else
481                 ret &= ~info->map_bitmask;
482
483         ret = i2c_smbus_write_byte_data(data->client, info->map_reg,
484                                         ret);
485         if (ret < 0) {
486                 dev_err(&data->client->dev, "Error writing reg_int_map\n");
487                 goto out_fix_power_state;
488         }
489
490         /* enable/disable the interrupt */
491         ret = i2c_smbus_read_byte_data(data->client, info->en_reg);
492         if (ret < 0) {
493                 dev_err(&data->client->dev, "Error reading reg_int_en\n");
494                 goto out_fix_power_state;
495         }
496
497         if (state)
498                 ret |= info->en_bitmask;
499         else
500                 ret &= ~info->en_bitmask;
501
502         ret = i2c_smbus_write_byte_data(data->client, info->en_reg, ret);
503         if (ret < 0) {
504                 dev_err(&data->client->dev, "Error writing reg_int_en\n");
505                 goto out_fix_power_state;
506         }
507
508         if (state)
509                 atomic_inc(&data->active_intr);
510         else
511                 atomic_dec(&data->active_intr);
512
513         return 0;
514
515 out_fix_power_state:
516         bmc150_accel_set_power_state(data, false);
517         return ret;
518 }
519
520 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
521 {
522         int ret, i;
523
524         for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
525                 if (data->chip_info->scale_table[i].scale == val) {
526                         ret = i2c_smbus_write_byte_data(
527                                      data->client,
528                                      BMC150_ACCEL_REG_PMU_RANGE,
529                                      data->chip_info->scale_table[i].reg_range);
530                         if (ret < 0) {
531                                 dev_err(&data->client->dev,
532                                         "Error writing pmu_range\n");
533                                 return ret;
534                         }
535
536                         data->range = data->chip_info->scale_table[i].reg_range;
537                         return 0;
538                 }
539         }
540
541         return -EINVAL;
542 }
543
544 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
545 {
546         int ret;
547
548         mutex_lock(&data->mutex);
549
550         ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_TEMP);
551         if (ret < 0) {
552                 dev_err(&data->client->dev, "Error reading reg_temp\n");
553                 mutex_unlock(&data->mutex);
554                 return ret;
555         }
556         *val = sign_extend32(ret, 7);
557
558         mutex_unlock(&data->mutex);
559
560         return IIO_VAL_INT;
561 }
562
563 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
564                                  struct iio_chan_spec const *chan,
565                                  int *val)
566 {
567         int ret;
568         int axis = chan->scan_index;
569
570         mutex_lock(&data->mutex);
571         ret = bmc150_accel_set_power_state(data, true);
572         if (ret < 0) {
573                 mutex_unlock(&data->mutex);
574                 return ret;
575         }
576
577         ret = i2c_smbus_read_word_data(data->client,
578                                        BMC150_ACCEL_AXIS_TO_REG(axis));
579         if (ret < 0) {
580                 dev_err(&data->client->dev, "Error reading axis %d\n", axis);
581                 bmc150_accel_set_power_state(data, false);
582                 mutex_unlock(&data->mutex);
583                 return ret;
584         }
585         *val = sign_extend32(ret >> chan->scan_type.shift,
586                              chan->scan_type.realbits - 1);
587         ret = bmc150_accel_set_power_state(data, false);
588         mutex_unlock(&data->mutex);
589         if (ret < 0)
590                 return ret;
591
592         return IIO_VAL_INT;
593 }
594
595 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
596                                  struct iio_chan_spec const *chan,
597                                  int *val, int *val2, long mask)
598 {
599         struct bmc150_accel_data *data = iio_priv(indio_dev);
600         int ret;
601
602         switch (mask) {
603         case IIO_CHAN_INFO_RAW:
604                 switch (chan->type) {
605                 case IIO_TEMP:
606                         return bmc150_accel_get_temp(data, val);
607                 case IIO_ACCEL:
608                         if (iio_buffer_enabled(indio_dev))
609                                 return -EBUSY;
610                         else
611                                 return bmc150_accel_get_axis(data, chan, val);
612                 default:
613                         return -EINVAL;
614                 }
615         case IIO_CHAN_INFO_OFFSET:
616                 if (chan->type == IIO_TEMP) {
617                         *val = BMC150_ACCEL_TEMP_CENTER_VAL;
618                         return IIO_VAL_INT;
619                 } else {
620                         return -EINVAL;
621                 }
622         case IIO_CHAN_INFO_SCALE:
623                 *val = 0;
624                 switch (chan->type) {
625                 case IIO_TEMP:
626                         *val2 = 500000;
627                         return IIO_VAL_INT_PLUS_MICRO;
628                 case IIO_ACCEL:
629                 {
630                         int i;
631                         const struct bmc150_scale_info *si;
632                         int st_size = ARRAY_SIZE(data->chip_info->scale_table);
633
634                         for (i = 0; i < st_size; ++i) {
635                                 si = &data->chip_info->scale_table[i];
636                                 if (si->reg_range == data->range) {
637                                         *val2 = si->scale;
638                                         return IIO_VAL_INT_PLUS_MICRO;
639                                 }
640                         }
641                         return -EINVAL;
642                 }
643                 default:
644                         return -EINVAL;
645                 }
646         case IIO_CHAN_INFO_SAMP_FREQ:
647                 mutex_lock(&data->mutex);
648                 ret = bmc150_accel_get_bw(data, val, val2);
649                 mutex_unlock(&data->mutex);
650                 return ret;
651         default:
652                 return -EINVAL;
653         }
654 }
655
656 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
657                                   struct iio_chan_spec const *chan,
658                                   int val, int val2, long mask)
659 {
660         struct bmc150_accel_data *data = iio_priv(indio_dev);
661         int ret;
662
663         switch (mask) {
664         case IIO_CHAN_INFO_SAMP_FREQ:
665                 mutex_lock(&data->mutex);
666                 ret = bmc150_accel_set_bw(data, val, val2);
667                 mutex_unlock(&data->mutex);
668                 break;
669         case IIO_CHAN_INFO_SCALE:
670                 if (val)
671                         return -EINVAL;
672
673                 mutex_lock(&data->mutex);
674                 ret = bmc150_accel_set_scale(data, val2);
675                 mutex_unlock(&data->mutex);
676                 return ret;
677         default:
678                 ret = -EINVAL;
679         }
680
681         return ret;
682 }
683
684 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
685                                    const struct iio_chan_spec *chan,
686                                    enum iio_event_type type,
687                                    enum iio_event_direction dir,
688                                    enum iio_event_info info,
689                                    int *val, int *val2)
690 {
691         struct bmc150_accel_data *data = iio_priv(indio_dev);
692
693         *val2 = 0;
694         switch (info) {
695         case IIO_EV_INFO_VALUE:
696                 *val = data->slope_thres;
697                 break;
698         case IIO_EV_INFO_PERIOD:
699                 *val = data->slope_dur;
700                 break;
701         default:
702                 return -EINVAL;
703         }
704
705         return IIO_VAL_INT;
706 }
707
708 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
709                                     const struct iio_chan_spec *chan,
710                                     enum iio_event_type type,
711                                     enum iio_event_direction dir,
712                                     enum iio_event_info info,
713                                     int val, int val2)
714 {
715         struct bmc150_accel_data *data = iio_priv(indio_dev);
716
717         if (data->ev_enable_state)
718                 return -EBUSY;
719
720         switch (info) {
721         case IIO_EV_INFO_VALUE:
722                 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
723                 break;
724         case IIO_EV_INFO_PERIOD:
725                 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
726                 break;
727         default:
728                 return -EINVAL;
729         }
730
731         return 0;
732 }
733
734 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
735                                           const struct iio_chan_spec *chan,
736                                           enum iio_event_type type,
737                                           enum iio_event_direction dir)
738 {
739         struct bmc150_accel_data *data = iio_priv(indio_dev);
740
741         return data->ev_enable_state;
742 }
743
744 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
745                                            const struct iio_chan_spec *chan,
746                                            enum iio_event_type type,
747                                            enum iio_event_direction dir,
748                                            int state)
749 {
750         struct bmc150_accel_data *data = iio_priv(indio_dev);
751         int ret;
752
753         if (state == data->ev_enable_state)
754                 return 0;
755
756         mutex_lock(&data->mutex);
757
758         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
759                                          state);
760         if (ret < 0) {
761                 mutex_unlock(&data->mutex);
762                 return ret;
763         }
764
765         data->ev_enable_state = state;
766         mutex_unlock(&data->mutex);
767
768         return 0;
769 }
770
771 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
772                                          struct iio_trigger *trig)
773 {
774         struct bmc150_accel_data *data = iio_priv(indio_dev);
775         int i;
776
777         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
778                 if (data->triggers[i].indio_trig == trig)
779                         return 0;
780         }
781
782         return -EINVAL;
783 }
784
785 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
786                                                struct device_attribute *attr,
787                                                char *buf)
788 {
789         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
790         struct bmc150_accel_data *data = iio_priv(indio_dev);
791         int wm;
792
793         mutex_lock(&data->mutex);
794         wm = data->watermark;
795         mutex_unlock(&data->mutex);
796
797         return sprintf(buf, "%d\n", wm);
798 }
799
800 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
801                                            struct device_attribute *attr,
802                                            char *buf)
803 {
804         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
805         struct bmc150_accel_data *data = iio_priv(indio_dev);
806         bool state;
807
808         mutex_lock(&data->mutex);
809         state = data->fifo_mode;
810         mutex_unlock(&data->mutex);
811
812         return sprintf(buf, "%d\n", state);
813 }
814
815 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
816 static IIO_CONST_ATTR(hwfifo_watermark_max,
817                       __stringify(BMC150_ACCEL_FIFO_LENGTH));
818 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
819                        bmc150_accel_get_fifo_state, NULL, 0);
820 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
821                        bmc150_accel_get_fifo_watermark, NULL, 0);
822
823 static const struct attribute *bmc150_accel_fifo_attributes[] = {
824         &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
825         &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
826         &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
827         &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
828         NULL,
829 };
830
831 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
832 {
833         struct bmc150_accel_data *data = iio_priv(indio_dev);
834
835         if (val > BMC150_ACCEL_FIFO_LENGTH)
836                 val = BMC150_ACCEL_FIFO_LENGTH;
837
838         mutex_lock(&data->mutex);
839         data->watermark = val;
840         mutex_unlock(&data->mutex);
841
842         return 0;
843 }
844
845 /*
846  * We must read at least one full frame in one burst, otherwise the rest of the
847  * frame data is discarded.
848  */
849 static int bmc150_accel_fifo_transfer(const struct i2c_client *client,
850                                       char *buffer, int samples)
851 {
852         int sample_length = 3 * 2;
853         u8 reg_fifo_data = BMC150_ACCEL_REG_FIFO_DATA;
854         int ret = -EIO;
855
856         if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
857                 struct i2c_msg msg[2] = {
858                         {
859                                 .addr = client->addr,
860                                 .flags = 0,
861                                 .buf = &reg_fifo_data,
862                                 .len = sizeof(reg_fifo_data),
863                         },
864                         {
865                                 .addr = client->addr,
866                                 .flags = I2C_M_RD,
867                                 .buf = (u8 *)buffer,
868                                 .len = samples * sample_length,
869                         }
870                 };
871
872                 ret = i2c_transfer(client->adapter, msg, 2);
873                 if (ret != 2)
874                         ret = -EIO;
875                 else
876                         ret = 0;
877         } else {
878                 int i, step = I2C_SMBUS_BLOCK_MAX / sample_length;
879
880                 for (i = 0; i < samples * sample_length; i += step) {
881                         ret = i2c_smbus_read_i2c_block_data(client,
882                                                             reg_fifo_data, step,
883                                                             &buffer[i]);
884                         if (ret != step) {
885                                 ret = -EIO;
886                                 break;
887                         }
888
889                         ret = 0;
890                 }
891         }
892
893         if (ret)
894                 dev_err(&client->dev, "Error transferring data from fifo\n");
895
896         return ret;
897 }
898
899 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
900                                      unsigned samples, bool irq)
901 {
902         struct bmc150_accel_data *data = iio_priv(indio_dev);
903         int ret, i;
904         u8 count;
905         u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
906         int64_t tstamp;
907         uint64_t sample_period;
908
909         ret = i2c_smbus_read_byte_data(data->client,
910                                        BMC150_ACCEL_REG_FIFO_STATUS);
911         if (ret < 0) {
912                 dev_err(&data->client->dev, "Error reading reg_fifo_status\n");
913                 return ret;
914         }
915
916         count = ret & 0x7F;
917
918         if (!count)
919                 return 0;
920
921         /*
922          * If we getting called from IRQ handler we know the stored timestamp is
923          * fairly accurate for the last stored sample. Otherwise, if we are
924          * called as a result of a read operation from userspace and hence
925          * before the watermark interrupt was triggered, take a timestamp
926          * now. We can fall anywhere in between two samples so the error in this
927          * case is at most one sample period.
928          */
929         if (!irq) {
930                 data->old_timestamp = data->timestamp;
931                 data->timestamp = iio_get_time_ns();
932         }
933
934         /*
935          * Approximate timestamps for each of the sample based on the sampling
936          * frequency, timestamp for last sample and number of samples.
937          *
938          * Note that we can't use the current bandwidth settings to compute the
939          * sample period because the sample rate varies with the device
940          * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
941          * small variation adds when we store a large number of samples and
942          * creates significant jitter between the last and first samples in
943          * different batches (e.g. 32ms vs 21ms).
944          *
945          * To avoid this issue we compute the actual sample period ourselves
946          * based on the timestamp delta between the last two flush operations.
947          */
948         sample_period = (data->timestamp - data->old_timestamp);
949         do_div(sample_period, count);
950         tstamp = data->timestamp - (count - 1) * sample_period;
951
952         if (samples && count > samples)
953                 count = samples;
954
955         ret = bmc150_accel_fifo_transfer(data->client, (u8 *)buffer, count);
956         if (ret)
957                 return ret;
958
959         /*
960          * Ideally we want the IIO core to handle the demux when running in fifo
961          * mode but not when running in triggered buffer mode. Unfortunately
962          * this does not seem to be possible, so stick with driver demux for
963          * now.
964          */
965         for (i = 0; i < count; i++) {
966                 u16 sample[8];
967                 int j, bit;
968
969                 j = 0;
970                 for_each_set_bit(bit, indio_dev->active_scan_mask,
971                                  indio_dev->masklength)
972                         memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
973
974                 iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
975
976                 tstamp += sample_period;
977         }
978
979         return count;
980 }
981
982 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
983 {
984         struct bmc150_accel_data *data = iio_priv(indio_dev);
985         int ret;
986
987         mutex_lock(&data->mutex);
988         ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
989         mutex_unlock(&data->mutex);
990
991         return ret;
992 }
993
994 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
995                 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
996
997 static struct attribute *bmc150_accel_attributes[] = {
998         &iio_const_attr_sampling_frequency_available.dev_attr.attr,
999         NULL,
1000 };
1001
1002 static const struct attribute_group bmc150_accel_attrs_group = {
1003         .attrs = bmc150_accel_attributes,
1004 };
1005
1006 static const struct iio_event_spec bmc150_accel_event = {
1007                 .type = IIO_EV_TYPE_ROC,
1008                 .dir = IIO_EV_DIR_EITHER,
1009                 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
1010                                  BIT(IIO_EV_INFO_ENABLE) |
1011                                  BIT(IIO_EV_INFO_PERIOD)
1012 };
1013
1014 #define BMC150_ACCEL_CHANNEL(_axis, bits) {                             \
1015         .type = IIO_ACCEL,                                              \
1016         .modified = 1,                                                  \
1017         .channel2 = IIO_MOD_##_axis,                                    \
1018         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),                   \
1019         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |          \
1020                                 BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
1021         .scan_index = AXIS_##_axis,                                     \
1022         .scan_type = {                                                  \
1023                 .sign = 's',                                            \
1024                 .realbits = (bits),                                     \
1025                 .storagebits = 16,                                      \
1026                 .shift = 16 - (bits),                                   \
1027         },                                                              \
1028         .event_spec = &bmc150_accel_event,                              \
1029         .num_event_specs = 1                                            \
1030 }
1031
1032 #define BMC150_ACCEL_CHANNELS(bits) {                                   \
1033         {                                                               \
1034                 .type = IIO_TEMP,                                       \
1035                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
1036                                       BIT(IIO_CHAN_INFO_SCALE) |        \
1037                                       BIT(IIO_CHAN_INFO_OFFSET),        \
1038                 .scan_index = -1,                                       \
1039         },                                                              \
1040         BMC150_ACCEL_CHANNEL(X, bits),                                  \
1041         BMC150_ACCEL_CHANNEL(Y, bits),                                  \
1042         BMC150_ACCEL_CHANNEL(Z, bits),                                  \
1043         IIO_CHAN_SOFT_TIMESTAMP(3),                                     \
1044 }
1045
1046 static const struct iio_chan_spec bma222e_accel_channels[] =
1047         BMC150_ACCEL_CHANNELS(8);
1048 static const struct iio_chan_spec bma250e_accel_channels[] =
1049         BMC150_ACCEL_CHANNELS(10);
1050 static const struct iio_chan_spec bmc150_accel_channels[] =
1051         BMC150_ACCEL_CHANNELS(12);
1052 static const struct iio_chan_spec bma280_accel_channels[] =
1053         BMC150_ACCEL_CHANNELS(14);
1054
1055 enum {
1056         bmc150,
1057         bmi055,
1058         bma255,
1059         bma250e,
1060         bma222e,
1061         bma280,
1062 };
1063
1064 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1065         [bmc150] = {
1066                 .name = "BMC150A",
1067                 .chip_id = 0xFA,
1068                 .channels = bmc150_accel_channels,
1069                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1070                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1071                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1072                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1073                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1074         },
1075         [bmi055] = {
1076                 .name = "BMI055A",
1077                 .chip_id = 0xFA,
1078                 .channels = bmc150_accel_channels,
1079                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1080                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1081                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1082                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1083                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1084         },
1085         [bma255] = {
1086                 .name = "BMA0255",
1087                 .chip_id = 0xFA,
1088                 .channels = bmc150_accel_channels,
1089                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1090                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1091                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1092                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1093                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1094         },
1095         [bma250e] = {
1096                 .name = "BMA250E",
1097                 .chip_id = 0xF9,
1098                 .channels = bma250e_accel_channels,
1099                 .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1100                 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1101                                  {76590, BMC150_ACCEL_DEF_RANGE_4G},
1102                                  {153277, BMC150_ACCEL_DEF_RANGE_8G},
1103                                  {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1104         },
1105         [bma222e] = {
1106                 .name = "BMA222E",
1107                 .chip_id = 0xF8,
1108                 .channels = bma222e_accel_channels,
1109                 .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1110                 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1111                                  {306457, BMC150_ACCEL_DEF_RANGE_4G},
1112                                  {612915, BMC150_ACCEL_DEF_RANGE_8G},
1113                                  {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1114         },
1115         [bma280] = {
1116                 .name = "BMA0280",
1117                 .chip_id = 0xFB,
1118                 .channels = bma280_accel_channels,
1119                 .num_channels = ARRAY_SIZE(bma280_accel_channels),
1120                 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1121                                  {4785, BMC150_ACCEL_DEF_RANGE_4G},
1122                                  {9581, BMC150_ACCEL_DEF_RANGE_8G},
1123                                  {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1124         },
1125 };
1126
1127 static const struct iio_info bmc150_accel_info = {
1128         .attrs                  = &bmc150_accel_attrs_group,
1129         .read_raw               = bmc150_accel_read_raw,
1130         .write_raw              = bmc150_accel_write_raw,
1131         .read_event_value       = bmc150_accel_read_event,
1132         .write_event_value      = bmc150_accel_write_event,
1133         .write_event_config     = bmc150_accel_write_event_config,
1134         .read_event_config      = bmc150_accel_read_event_config,
1135         .driver_module          = THIS_MODULE,
1136 };
1137
1138 static const struct iio_info bmc150_accel_info_fifo = {
1139         .attrs                  = &bmc150_accel_attrs_group,
1140         .read_raw               = bmc150_accel_read_raw,
1141         .write_raw              = bmc150_accel_write_raw,
1142         .read_event_value       = bmc150_accel_read_event,
1143         .write_event_value      = bmc150_accel_write_event,
1144         .write_event_config     = bmc150_accel_write_event_config,
1145         .read_event_config      = bmc150_accel_read_event_config,
1146         .validate_trigger       = bmc150_accel_validate_trigger,
1147         .hwfifo_set_watermark   = bmc150_accel_set_watermark,
1148         .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1149         .driver_module          = THIS_MODULE,
1150 };
1151
1152 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1153 {
1154         struct iio_poll_func *pf = p;
1155         struct iio_dev *indio_dev = pf->indio_dev;
1156         struct bmc150_accel_data *data = iio_priv(indio_dev);
1157         int bit, ret, i = 0;
1158
1159         mutex_lock(&data->mutex);
1160         for_each_set_bit(bit, indio_dev->active_scan_mask,
1161                          indio_dev->masklength) {
1162                 ret = i2c_smbus_read_word_data(data->client,
1163                                                BMC150_ACCEL_AXIS_TO_REG(bit));
1164                 if (ret < 0) {
1165                         mutex_unlock(&data->mutex);
1166                         goto err_read;
1167                 }
1168                 data->buffer[i++] = ret;
1169         }
1170         mutex_unlock(&data->mutex);
1171
1172         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1173                                            pf->timestamp);
1174 err_read:
1175         iio_trigger_notify_done(indio_dev->trig);
1176
1177         return IRQ_HANDLED;
1178 }
1179
1180 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1181 {
1182         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1183         struct bmc150_accel_data *data = t->data;
1184         int ret;
1185
1186         /* new data interrupts don't need ack */
1187         if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1188                 return 0;
1189
1190         mutex_lock(&data->mutex);
1191         /* clear any latched interrupt */
1192         ret = i2c_smbus_write_byte_data(data->client,
1193                                         BMC150_ACCEL_REG_INT_RST_LATCH,
1194                                         BMC150_ACCEL_INT_MODE_LATCH_INT |
1195                                         BMC150_ACCEL_INT_MODE_LATCH_RESET);
1196         mutex_unlock(&data->mutex);
1197         if (ret < 0) {
1198                 dev_err(&data->client->dev,
1199                         "Error writing reg_int_rst_latch\n");
1200                 return ret;
1201         }
1202
1203         return 0;
1204 }
1205
1206 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1207                                           bool state)
1208 {
1209         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1210         struct bmc150_accel_data *data = t->data;
1211         int ret;
1212
1213         mutex_lock(&data->mutex);
1214
1215         if (t->enabled == state) {
1216                 mutex_unlock(&data->mutex);
1217                 return 0;
1218         }
1219
1220         if (t->setup) {
1221                 ret = t->setup(t, state);
1222                 if (ret < 0) {
1223                         mutex_unlock(&data->mutex);
1224                         return ret;
1225                 }
1226         }
1227
1228         ret = bmc150_accel_set_interrupt(data, t->intr, state);
1229         if (ret < 0) {
1230                 mutex_unlock(&data->mutex);
1231                 return ret;
1232         }
1233
1234         t->enabled = state;
1235
1236         mutex_unlock(&data->mutex);
1237
1238         return ret;
1239 }
1240
1241 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1242         .set_trigger_state = bmc150_accel_trigger_set_state,
1243         .try_reenable = bmc150_accel_trig_try_reen,
1244         .owner = THIS_MODULE,
1245 };
1246
1247 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1248 {
1249         struct bmc150_accel_data *data = iio_priv(indio_dev);
1250         int dir;
1251         int ret;
1252
1253         ret = i2c_smbus_read_byte_data(data->client,
1254                                        BMC150_ACCEL_REG_INT_STATUS_2);
1255         if (ret < 0) {
1256                 dev_err(&data->client->dev, "Error reading reg_int_status_2\n");
1257                 return ret;
1258         }
1259
1260         if (ret & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1261                 dir = IIO_EV_DIR_FALLING;
1262         else
1263                 dir = IIO_EV_DIR_RISING;
1264
1265         if (ret & BMC150_ACCEL_ANY_MOTION_BIT_X)
1266                 iio_push_event(indio_dev,
1267                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1268                                                   0,
1269                                                   IIO_MOD_X,
1270                                                   IIO_EV_TYPE_ROC,
1271                                                   dir),
1272                                data->timestamp);
1273
1274         if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1275                 iio_push_event(indio_dev,
1276                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1277                                                   0,
1278                                                   IIO_MOD_Y,
1279                                                   IIO_EV_TYPE_ROC,
1280                                                   dir),
1281                                data->timestamp);
1282
1283         if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1284                 iio_push_event(indio_dev,
1285                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1286                                                   0,
1287                                                   IIO_MOD_Z,
1288                                                   IIO_EV_TYPE_ROC,
1289                                                   dir),
1290                                data->timestamp);
1291
1292         return ret;
1293 }
1294
1295 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1296 {
1297         struct iio_dev *indio_dev = private;
1298         struct bmc150_accel_data *data = iio_priv(indio_dev);
1299         bool ack = false;
1300         int ret;
1301
1302         mutex_lock(&data->mutex);
1303
1304         if (data->fifo_mode) {
1305                 ret = __bmc150_accel_fifo_flush(indio_dev,
1306                                                 BMC150_ACCEL_FIFO_LENGTH, true);
1307                 if (ret > 0)
1308                         ack = true;
1309         }
1310
1311         if (data->ev_enable_state) {
1312                 ret = bmc150_accel_handle_roc_event(indio_dev);
1313                 if (ret > 0)
1314                         ack = true;
1315         }
1316
1317         if (ack) {
1318                 ret = i2c_smbus_write_byte_data(data->client,
1319                                         BMC150_ACCEL_REG_INT_RST_LATCH,
1320                                         BMC150_ACCEL_INT_MODE_LATCH_INT |
1321                                         BMC150_ACCEL_INT_MODE_LATCH_RESET);
1322                 if (ret)
1323                         dev_err(&data->client->dev,
1324                                 "Error writing reg_int_rst_latch\n");
1325
1326                 ret = IRQ_HANDLED;
1327         } else {
1328                 ret = IRQ_NONE;
1329         }
1330
1331         mutex_unlock(&data->mutex);
1332
1333         return ret;
1334 }
1335
1336 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1337 {
1338         struct iio_dev *indio_dev = private;
1339         struct bmc150_accel_data *data = iio_priv(indio_dev);
1340         bool ack = false;
1341         int i;
1342
1343         data->old_timestamp = data->timestamp;
1344         data->timestamp = iio_get_time_ns();
1345
1346         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1347                 if (data->triggers[i].enabled) {
1348                         iio_trigger_poll(data->triggers[i].indio_trig);
1349                         ack = true;
1350                         break;
1351                 }
1352         }
1353
1354         if (data->ev_enable_state || data->fifo_mode)
1355                 return IRQ_WAKE_THREAD;
1356
1357         if (ack)
1358                 return IRQ_HANDLED;
1359
1360         return IRQ_NONE;
1361 }
1362
1363 static int bmc150_accel_gpio_probe(struct i2c_client *client,
1364                                    struct bmc150_accel_data *data)
1365 {
1366         struct device *dev;
1367         struct gpio_desc *gpio;
1368         int ret;
1369
1370         if (!client)
1371                 return -EINVAL;
1372
1373         dev = &client->dev;
1374
1375         /* data ready gpio interrupt pin */
1376         gpio = devm_gpiod_get_index(dev, BMC150_ACCEL_GPIO_NAME, 0, GPIOD_IN);
1377         if (IS_ERR(gpio)) {
1378                 dev_err(dev, "Failed: gpio get index\n");
1379                 return PTR_ERR(gpio);
1380         }
1381
1382         ret = gpiod_to_irq(gpio);
1383
1384         dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret);
1385
1386         return ret;
1387 }
1388
1389 static const struct {
1390         int intr;
1391         const char *name;
1392         int (*setup)(struct bmc150_accel_trigger *t, bool state);
1393 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1394         {
1395                 .intr = 0,
1396                 .name = "%s-dev%d",
1397         },
1398         {
1399                 .intr = 1,
1400                 .name = "%s-any-motion-dev%d",
1401                 .setup = bmc150_accel_any_motion_setup,
1402         },
1403 };
1404
1405 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1406                                              int from)
1407 {
1408         int i;
1409
1410         for (i = from; i >= 0; i--) {
1411                 if (data->triggers[i].indio_trig) {
1412                         iio_trigger_unregister(data->triggers[i].indio_trig);
1413                         data->triggers[i].indio_trig = NULL;
1414                 }
1415         }
1416 }
1417
1418 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1419                                        struct bmc150_accel_data *data)
1420 {
1421         int i, ret;
1422
1423         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1424                 struct bmc150_accel_trigger *t = &data->triggers[i];
1425
1426                 t->indio_trig = devm_iio_trigger_alloc(&data->client->dev,
1427                                                bmc150_accel_triggers[i].name,
1428                                                        indio_dev->name,
1429                                                        indio_dev->id);
1430                 if (!t->indio_trig) {
1431                         ret = -ENOMEM;
1432                         break;
1433                 }
1434
1435                 t->indio_trig->dev.parent = &data->client->dev;
1436                 t->indio_trig->ops = &bmc150_accel_trigger_ops;
1437                 t->intr = bmc150_accel_triggers[i].intr;
1438                 t->data = data;
1439                 t->setup = bmc150_accel_triggers[i].setup;
1440                 iio_trigger_set_drvdata(t->indio_trig, t);
1441
1442                 ret = iio_trigger_register(t->indio_trig);
1443                 if (ret)
1444                         break;
1445         }
1446
1447         if (ret)
1448                 bmc150_accel_unregister_triggers(data, i - 1);
1449
1450         return ret;
1451 }
1452
1453 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1454 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1455 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1456
1457 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1458 {
1459         u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1460         int ret;
1461
1462         ret = i2c_smbus_write_byte_data(data->client, reg, data->fifo_mode);
1463         if (ret < 0) {
1464                 dev_err(&data->client->dev, "Error writing reg_fifo_config1\n");
1465                 return ret;
1466         }
1467
1468         if (!data->fifo_mode)
1469                 return 0;
1470
1471         ret = i2c_smbus_write_byte_data(data->client,
1472                                         BMC150_ACCEL_REG_FIFO_CONFIG0,
1473                                         data->watermark);
1474         if (ret < 0)
1475                 dev_err(&data->client->dev, "Error writing reg_fifo_config0\n");
1476
1477         return ret;
1478 }
1479
1480 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1481 {
1482         struct bmc150_accel_data *data = iio_priv(indio_dev);
1483
1484         return bmc150_accel_set_power_state(data, true);
1485 }
1486
1487 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1488 {
1489         struct bmc150_accel_data *data = iio_priv(indio_dev);
1490         int ret = 0;
1491
1492         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1493                 return iio_triggered_buffer_postenable(indio_dev);
1494
1495         mutex_lock(&data->mutex);
1496
1497         if (!data->watermark)
1498                 goto out;
1499
1500         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1501                                          true);
1502         if (ret)
1503                 goto out;
1504
1505         data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1506
1507         ret = bmc150_accel_fifo_set_mode(data);
1508         if (ret) {
1509                 data->fifo_mode = 0;
1510                 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1511                                            false);
1512         }
1513
1514 out:
1515         mutex_unlock(&data->mutex);
1516
1517         return ret;
1518 }
1519
1520 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1521 {
1522         struct bmc150_accel_data *data = iio_priv(indio_dev);
1523
1524         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1525                 return iio_triggered_buffer_predisable(indio_dev);
1526
1527         mutex_lock(&data->mutex);
1528
1529         if (!data->fifo_mode)
1530                 goto out;
1531
1532         bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1533         __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1534         data->fifo_mode = 0;
1535         bmc150_accel_fifo_set_mode(data);
1536
1537 out:
1538         mutex_unlock(&data->mutex);
1539
1540         return 0;
1541 }
1542
1543 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1544 {
1545         struct bmc150_accel_data *data = iio_priv(indio_dev);
1546
1547         return bmc150_accel_set_power_state(data, false);
1548 }
1549
1550 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1551         .preenable = bmc150_accel_buffer_preenable,
1552         .postenable = bmc150_accel_buffer_postenable,
1553         .predisable = bmc150_accel_buffer_predisable,
1554         .postdisable = bmc150_accel_buffer_postdisable,
1555 };
1556
1557 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1558 {
1559         int ret, i;
1560
1561         ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_CHIP_ID);
1562         if (ret < 0) {
1563                 dev_err(&data->client->dev, "Error: Reading chip id\n");
1564                 return ret;
1565         }
1566
1567         dev_dbg(&data->client->dev, "Chip Id %x\n", ret);
1568         for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1569                 if (bmc150_accel_chip_info_tbl[i].chip_id == ret) {
1570                         data->chip_info = &bmc150_accel_chip_info_tbl[i];
1571                         break;
1572                 }
1573         }
1574
1575         if (!data->chip_info) {
1576                 dev_err(&data->client->dev, "Unsupported chip %x\n", ret);
1577                 return -ENODEV;
1578         }
1579
1580         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1581         if (ret < 0)
1582                 return ret;
1583
1584         /* Set Bandwidth */
1585         ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1586         if (ret < 0)
1587                 return ret;
1588
1589         /* Set Default Range */
1590         ret = i2c_smbus_write_byte_data(data->client,
1591                                         BMC150_ACCEL_REG_PMU_RANGE,
1592                                         BMC150_ACCEL_DEF_RANGE_4G);
1593         if (ret < 0) {
1594                 dev_err(&data->client->dev, "Error writing reg_pmu_range\n");
1595                 return ret;
1596         }
1597
1598         data->range = BMC150_ACCEL_DEF_RANGE_4G;
1599
1600         /* Set default slope duration and thresholds */
1601         data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1602         data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1603         ret = bmc150_accel_update_slope(data);
1604         if (ret < 0)
1605                 return ret;
1606
1607         /* Set default as latched interrupts */
1608         ret = i2c_smbus_write_byte_data(data->client,
1609                                         BMC150_ACCEL_REG_INT_RST_LATCH,
1610                                         BMC150_ACCEL_INT_MODE_LATCH_INT |
1611                                         BMC150_ACCEL_INT_MODE_LATCH_RESET);
1612         if (ret < 0) {
1613                 dev_err(&data->client->dev,
1614                         "Error writing reg_int_rst_latch\n");
1615                 return ret;
1616         }
1617
1618         return 0;
1619 }
1620
1621 static int bmc150_accel_probe(struct i2c_client *client,
1622                               const struct i2c_device_id *id)
1623 {
1624         struct bmc150_accel_data *data;
1625         struct iio_dev *indio_dev;
1626         int ret;
1627         const char *name = NULL;
1628
1629         indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1630         if (!indio_dev)
1631                 return -ENOMEM;
1632
1633         data = iio_priv(indio_dev);
1634         i2c_set_clientdata(client, indio_dev);
1635         data->client = client;
1636
1637         if (id)
1638                 name = id->name;
1639
1640         ret = bmc150_accel_chip_init(data);
1641         if (ret < 0)
1642                 return ret;
1643
1644         mutex_init(&data->mutex);
1645
1646         indio_dev->dev.parent = &client->dev;
1647         indio_dev->channels = data->chip_info->channels;
1648         indio_dev->num_channels = data->chip_info->num_channels;
1649         indio_dev->name = name ? name : data->chip_info->name;
1650         indio_dev->modes = INDIO_DIRECT_MODE;
1651         indio_dev->info = &bmc150_accel_info;
1652
1653         ret = iio_triggered_buffer_setup(indio_dev,
1654                                          &iio_pollfunc_store_time,
1655                                          bmc150_accel_trigger_handler,
1656                                          &bmc150_accel_buffer_ops);
1657         if (ret < 0) {
1658                 dev_err(&client->dev, "Failed: iio triggered buffer setup\n");
1659                 return ret;
1660         }
1661
1662         if (client->irq < 0)
1663                 client->irq = bmc150_accel_gpio_probe(client, data);
1664
1665         if (client->irq > 0) {
1666                 ret = devm_request_threaded_irq(
1667                                                 &client->dev, client->irq,
1668                                                 bmc150_accel_irq_handler,
1669                                                 bmc150_accel_irq_thread_handler,
1670                                                 IRQF_TRIGGER_RISING,
1671                                                 BMC150_ACCEL_IRQ_NAME,
1672                                                 indio_dev);
1673                 if (ret)
1674                         goto err_buffer_cleanup;
1675
1676                 /*
1677                  * Set latched mode interrupt. While certain interrupts are
1678                  * non-latched regardless of this settings (e.g. new data) we
1679                  * want to use latch mode when we can to prevent interrupt
1680                  * flooding.
1681                  */
1682                 ret = i2c_smbus_write_byte_data(data->client,
1683                                                 BMC150_ACCEL_REG_INT_RST_LATCH,
1684                                              BMC150_ACCEL_INT_MODE_LATCH_RESET);
1685                 if (ret < 0) {
1686                         dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n");
1687                         goto err_buffer_cleanup;
1688                 }
1689
1690                 bmc150_accel_interrupts_setup(indio_dev, data);
1691
1692                 ret = bmc150_accel_triggers_setup(indio_dev, data);
1693                 if (ret)
1694                         goto err_buffer_cleanup;
1695
1696                 if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C) ||
1697                     i2c_check_functionality(client->adapter,
1698                                             I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
1699                         indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1700                         indio_dev->info = &bmc150_accel_info_fifo;
1701                         indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
1702                 }
1703         }
1704
1705         ret = iio_device_register(indio_dev);
1706         if (ret < 0) {
1707                 dev_err(&client->dev, "Unable to register iio device\n");
1708                 goto err_trigger_unregister;
1709         }
1710
1711         ret = pm_runtime_set_active(&client->dev);
1712         if (ret)
1713                 goto err_iio_unregister;
1714
1715         pm_runtime_enable(&client->dev);
1716         pm_runtime_set_autosuspend_delay(&client->dev,
1717                                          BMC150_AUTO_SUSPEND_DELAY_MS);
1718         pm_runtime_use_autosuspend(&client->dev);
1719
1720         return 0;
1721
1722 err_iio_unregister:
1723         iio_device_unregister(indio_dev);
1724 err_trigger_unregister:
1725         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1726 err_buffer_cleanup:
1727         iio_triggered_buffer_cleanup(indio_dev);
1728
1729         return ret;
1730 }
1731
1732 static int bmc150_accel_remove(struct i2c_client *client)
1733 {
1734         struct iio_dev *indio_dev = i2c_get_clientdata(client);
1735         struct bmc150_accel_data *data = iio_priv(indio_dev);
1736
1737         pm_runtime_disable(&client->dev);
1738         pm_runtime_set_suspended(&client->dev);
1739         pm_runtime_put_noidle(&client->dev);
1740
1741         iio_device_unregister(indio_dev);
1742
1743         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1744
1745         iio_triggered_buffer_cleanup(indio_dev);
1746
1747         mutex_lock(&data->mutex);
1748         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1749         mutex_unlock(&data->mutex);
1750
1751         return 0;
1752 }
1753
1754 #ifdef CONFIG_PM_SLEEP
1755 static int bmc150_accel_suspend(struct device *dev)
1756 {
1757         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1758         struct bmc150_accel_data *data = iio_priv(indio_dev);
1759
1760         mutex_lock(&data->mutex);
1761         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1762         mutex_unlock(&data->mutex);
1763
1764         return 0;
1765 }
1766
1767 static int bmc150_accel_resume(struct device *dev)
1768 {
1769         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1770         struct bmc150_accel_data *data = iio_priv(indio_dev);
1771
1772         mutex_lock(&data->mutex);
1773         if (atomic_read(&data->active_intr))
1774                 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1775         bmc150_accel_fifo_set_mode(data);
1776         mutex_unlock(&data->mutex);
1777
1778         return 0;
1779 }
1780 #endif
1781
1782 #ifdef CONFIG_PM
1783 static int bmc150_accel_runtime_suspend(struct device *dev)
1784 {
1785         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1786         struct bmc150_accel_data *data = iio_priv(indio_dev);
1787         int ret;
1788
1789         dev_dbg(&data->client->dev,  __func__);
1790         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1791         if (ret < 0)
1792                 return -EAGAIN;
1793
1794         return 0;
1795 }
1796
1797 static int bmc150_accel_runtime_resume(struct device *dev)
1798 {
1799         struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1800         struct bmc150_accel_data *data = iio_priv(indio_dev);
1801         int ret;
1802         int sleep_val;
1803
1804         dev_dbg(&data->client->dev,  __func__);
1805
1806         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1807         if (ret < 0)
1808                 return ret;
1809         ret = bmc150_accel_fifo_set_mode(data);
1810         if (ret < 0)
1811                 return ret;
1812
1813         sleep_val = bmc150_accel_get_startup_times(data);
1814         if (sleep_val < 20)
1815                 usleep_range(sleep_val * 1000, 20000);
1816         else
1817                 msleep_interruptible(sleep_val);
1818
1819         return 0;
1820 }
1821 #endif
1822
1823 static const struct dev_pm_ops bmc150_accel_pm_ops = {
1824         SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1825         SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1826                            bmc150_accel_runtime_resume, NULL)
1827 };
1828
1829 static const struct acpi_device_id bmc150_accel_acpi_match[] = {
1830         {"BSBA0150",    bmc150},
1831         {"BMC150A",     bmc150},
1832         {"BMI055A",     bmi055},
1833         {"BMA0255",     bma255},
1834         {"BMA250E",     bma250e},
1835         {"BMA222E",     bma222e},
1836         {"BMA0280",     bma280},
1837         { },
1838 };
1839 MODULE_DEVICE_TABLE(acpi, bmc150_accel_acpi_match);
1840
1841 static const struct i2c_device_id bmc150_accel_id[] = {
1842         {"bmc150_accel",        bmc150},
1843         {"bmi055_accel",        bmi055},
1844         {"bma255",              bma255},
1845         {"bma250e",             bma250e},
1846         {"bma222e",             bma222e},
1847         {"bma280",              bma280},
1848         {}
1849 };
1850
1851 MODULE_DEVICE_TABLE(i2c, bmc150_accel_id);
1852
1853 static struct i2c_driver bmc150_accel_driver = {
1854         .driver = {
1855                 .name   = BMC150_ACCEL_DRV_NAME,
1856                 .acpi_match_table = ACPI_PTR(bmc150_accel_acpi_match),
1857                 .pm     = &bmc150_accel_pm_ops,
1858         },
1859         .probe          = bmc150_accel_probe,
1860         .remove         = bmc150_accel_remove,
1861         .id_table       = bmc150_accel_id,
1862 };
1863 module_i2c_driver(bmc150_accel_driver);
1864
1865 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1866 MODULE_LICENSE("GPL v2");
1867 MODULE_DESCRIPTION("BMC150 accelerometer driver");