ieee1394: convert to net_device_ops
[firefly-linux-kernel-4.4.55.git] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /*
26  * This driver intends to support RFC 2734, which describes a method for
27  * transporting IPv4 datagrams over IEEE-1394 serial busses.
28  *
29  * TODO:
30  * RFC 2734 related:
31  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32  *
33  * Non-RFC 2734 related:
34  * - Handle fragmented skb's coming from the networking layer.
35  * - Move generic GASP reception to core 1394 code
36  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37  * - Stability improvements
38  * - Performance enhancements
39  * - Consider garbage collecting old partial datagrams after X amount of time
40  */
41
42 #include <linux/module.h>
43
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
51
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
65 #include <net/arp.h>
66
67 #include "config_roms.h"
68 #include "csr1212.h"
69 #include "eth1394.h"
70 #include "highlevel.h"
71 #include "ieee1394.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80         printk(level "%s: " fmt, driver_name, ## args)
81
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
84
85 struct fragment_info {
86         struct list_head list;
87         int offset;
88         int len;
89 };
90
91 struct partial_datagram {
92         struct list_head list;
93         u16 dgl;
94         u16 dg_size;
95         u16 ether_type;
96         struct sk_buff *skb;
97         char *pbuf;
98         struct list_head frag_info;
99 };
100
101 struct pdg_list {
102         struct list_head list;  /* partial datagram list per node       */
103         unsigned int sz;        /* partial datagram list size per node  */
104         spinlock_t lock;        /* partial datagram lock                */
105 };
106
107 struct eth1394_host_info {
108         struct hpsb_host *host;
109         struct net_device *dev;
110 };
111
112 struct eth1394_node_ref {
113         struct unit_directory *ud;
114         struct list_head list;
115 };
116
117 struct eth1394_node_info {
118         u16 maxpayload;         /* max payload                  */
119         u8 sspd;                /* max speed                    */
120         u64 fifo;               /* FIFO address                 */
121         struct pdg_list pdg;    /* partial RX datagram lists    */
122         int dgl;                /* outgoing datagram label      */
123 };
124
125 static const char driver_name[] = "eth1394";
126
127 static struct kmem_cache *packet_task_cache;
128
129 static struct hpsb_highlevel eth1394_highlevel;
130
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133         sizeof(struct eth1394_uf_hdr),
134         sizeof(struct eth1394_ff_hdr),
135         sizeof(struct eth1394_sf_hdr),
136         sizeof(struct eth1394_sf_hdr)
137 };
138
139 static const u16 eth1394_speedto_maxpayload[] = {
140 /*     S100, S200, S400, S800, S1600, S3200 */
141         512, 1024, 2048, 4096,  4096,  4096
142 };
143
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
147
148 /*
149  * The max_partial_datagrams parameter is the maximum number of fragmented
150  * datagrams per node that eth1394 will keep in memory.  Providing an upper
151  * bound allows us to limit the amount of memory that partial datagrams
152  * consume in the event that some partial datagrams are never completed.
153  */
154 static int max_partial_datagrams = 25;
155 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156 MODULE_PARM_DESC(max_partial_datagrams,
157                  "Maximum number of partially received fragmented datagrams "
158                  "(default = 25).");
159
160
161 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162                             unsigned short type, const void *daddr,
163                             const void *saddr, unsigned len);
164 static int ether1394_rebuild_header(struct sk_buff *skb);
165 static int ether1394_header_parse(const struct sk_buff *skb,
166                                   unsigned char *haddr);
167 static int ether1394_header_cache(const struct neighbour *neigh,
168                                   struct hh_cache *hh);
169 static void ether1394_header_cache_update(struct hh_cache *hh,
170                                           const struct net_device *dev,
171                                           const unsigned char *haddr);
172 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
173 static void ether1394_iso(struct hpsb_iso *iso);
174
175 static struct ethtool_ops ethtool_ops;
176
177 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
178                            quadlet_t *data, u64 addr, size_t len, u16 flags);
179 static void ether1394_add_host(struct hpsb_host *host);
180 static void ether1394_remove_host(struct hpsb_host *host);
181 static void ether1394_host_reset(struct hpsb_host *host);
182
183 /* Function for incoming 1394 packets */
184 static struct hpsb_address_ops addr_ops = {
185         .write =        ether1394_write,
186 };
187
188 /* Ieee1394 highlevel driver functions */
189 static struct hpsb_highlevel eth1394_highlevel = {
190         .name =         driver_name,
191         .add_host =     ether1394_add_host,
192         .remove_host =  ether1394_remove_host,
193         .host_reset =   ether1394_host_reset,
194 };
195
196 static int ether1394_recv_init(struct eth1394_priv *priv)
197 {
198         unsigned int iso_buf_size;
199
200         /* FIXME: rawiso limits us to PAGE_SIZE */
201         iso_buf_size = min((unsigned int)PAGE_SIZE,
202                            2 * (1U << (priv->host->csr.max_rec + 1)));
203
204         priv->iso = hpsb_iso_recv_init(priv->host,
205                                        ETHER1394_GASP_BUFFERS * iso_buf_size,
206                                        ETHER1394_GASP_BUFFERS,
207                                        priv->broadcast_channel,
208                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
209                                        1, ether1394_iso);
210         if (priv->iso == NULL) {
211                 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
212                 priv->bc_state = ETHER1394_BC_ERROR;
213                 return -EAGAIN;
214         }
215
216         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
217                 priv->bc_state = ETHER1394_BC_STOPPED;
218         else
219                 priv->bc_state = ETHER1394_BC_RUNNING;
220         return 0;
221 }
222
223 /* This is called after an "ifup" */
224 static int ether1394_open(struct net_device *dev)
225 {
226         struct eth1394_priv *priv = netdev_priv(dev);
227         int ret;
228
229         if (priv->bc_state == ETHER1394_BC_ERROR) {
230                 ret = ether1394_recv_init(priv);
231                 if (ret)
232                         return ret;
233         }
234         netif_start_queue(dev);
235         return 0;
236 }
237
238 /* This is called after an "ifdown" */
239 static int ether1394_stop(struct net_device *dev)
240 {
241         /* flush priv->wake */
242         flush_scheduled_work();
243
244         netif_stop_queue(dev);
245         return 0;
246 }
247
248 /* Return statistics to the caller */
249 static struct net_device_stats *ether1394_stats(struct net_device *dev)
250 {
251         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
252 }
253
254 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
255  * so that's what we do. Should we increment the stat counters too?  */
256 static void ether1394_tx_timeout(struct net_device *dev)
257 {
258         struct hpsb_host *host =
259                         ((struct eth1394_priv *)netdev_priv(dev))->host;
260
261         ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
262         ether1394_host_reset(host);
263 }
264
265 static inline int ether1394_max_mtu(struct hpsb_host* host)
266 {
267         return (1 << (host->csr.max_rec + 1))
268                         - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
269 }
270
271 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
272 {
273         int max_mtu;
274
275         if (new_mtu < 68)
276                 return -EINVAL;
277
278         max_mtu = ether1394_max_mtu(
279                         ((struct eth1394_priv *)netdev_priv(dev))->host);
280         if (new_mtu > max_mtu) {
281                 ETH1394_PRINT(KERN_INFO, dev->name,
282                               "Local node constrains MTU to %d\n", max_mtu);
283                 return -ERANGE;
284         }
285
286         dev->mtu = new_mtu;
287         return 0;
288 }
289
290 static void purge_partial_datagram(struct list_head *old)
291 {
292         struct partial_datagram *pd;
293         struct list_head *lh, *n;
294         struct fragment_info *fi;
295
296         pd = list_entry(old, struct partial_datagram, list);
297
298         list_for_each_safe(lh, n, &pd->frag_info) {
299                 fi = list_entry(lh, struct fragment_info, list);
300                 list_del(lh);
301                 kfree(fi);
302         }
303         list_del(old);
304         kfree_skb(pd->skb);
305         kfree(pd);
306 }
307
308 /******************************************
309  * 1394 bus activity functions
310  ******************************************/
311
312 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
313                                                   struct unit_directory *ud)
314 {
315         struct eth1394_node_ref *node;
316
317         list_for_each_entry(node, inl, list)
318                 if (node->ud == ud)
319                         return node;
320
321         return NULL;
322 }
323
324 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
325                                                        u64 guid)
326 {
327         struct eth1394_node_ref *node;
328
329         list_for_each_entry(node, inl, list)
330                 if (node->ud->ne->guid == guid)
331                         return node;
332
333         return NULL;
334 }
335
336 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
337                                                          nodeid_t nodeid)
338 {
339         struct eth1394_node_ref *node;
340
341         list_for_each_entry(node, inl, list)
342                 if (node->ud->ne->nodeid == nodeid)
343                         return node;
344
345         return NULL;
346 }
347
348 static int eth1394_new_node(struct eth1394_host_info *hi,
349                             struct unit_directory *ud)
350 {
351         struct eth1394_priv *priv;
352         struct eth1394_node_ref *new_node;
353         struct eth1394_node_info *node_info;
354
355         new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
356         if (!new_node)
357                 return -ENOMEM;
358
359         node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
360         if (!node_info) {
361                 kfree(new_node);
362                 return -ENOMEM;
363         }
364
365         spin_lock_init(&node_info->pdg.lock);
366         INIT_LIST_HEAD(&node_info->pdg.list);
367         node_info->pdg.sz = 0;
368         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
369
370         ud->device.driver_data = node_info;
371         new_node->ud = ud;
372
373         priv = netdev_priv(hi->dev);
374         list_add_tail(&new_node->list, &priv->ip_node_list);
375         return 0;
376 }
377
378 static int eth1394_probe(struct device *dev)
379 {
380         struct unit_directory *ud;
381         struct eth1394_host_info *hi;
382
383         ud = container_of(dev, struct unit_directory, device);
384         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
385         if (!hi)
386                 return -ENOENT;
387
388         return eth1394_new_node(hi, ud);
389 }
390
391 static int eth1394_remove(struct device *dev)
392 {
393         struct unit_directory *ud;
394         struct eth1394_host_info *hi;
395         struct eth1394_priv *priv;
396         struct eth1394_node_ref *old_node;
397         struct eth1394_node_info *node_info;
398         struct list_head *lh, *n;
399         unsigned long flags;
400
401         ud = container_of(dev, struct unit_directory, device);
402         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
403         if (!hi)
404                 return -ENOENT;
405
406         priv = netdev_priv(hi->dev);
407
408         old_node = eth1394_find_node(&priv->ip_node_list, ud);
409         if (!old_node)
410                 return 0;
411
412         list_del(&old_node->list);
413         kfree(old_node);
414
415         node_info = (struct eth1394_node_info*)ud->device.driver_data;
416
417         spin_lock_irqsave(&node_info->pdg.lock, flags);
418         /* The partial datagram list should be empty, but we'll just
419          * make sure anyway... */
420         list_for_each_safe(lh, n, &node_info->pdg.list)
421                 purge_partial_datagram(lh);
422         spin_unlock_irqrestore(&node_info->pdg.lock, flags);
423
424         kfree(node_info);
425         ud->device.driver_data = NULL;
426         return 0;
427 }
428
429 static int eth1394_update(struct unit_directory *ud)
430 {
431         struct eth1394_host_info *hi;
432         struct eth1394_priv *priv;
433         struct eth1394_node_ref *node;
434
435         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
436         if (!hi)
437                 return -ENOENT;
438
439         priv = netdev_priv(hi->dev);
440         node = eth1394_find_node(&priv->ip_node_list, ud);
441         if (node)
442                 return 0;
443
444         return eth1394_new_node(hi, ud);
445 }
446
447 static struct ieee1394_device_id eth1394_id_table[] = {
448         {
449                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
450                                 IEEE1394_MATCH_VERSION),
451                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
452                 .version = ETHER1394_GASP_VERSION,
453         },
454         {}
455 };
456
457 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
458
459 static struct hpsb_protocol_driver eth1394_proto_driver = {
460         .name           = driver_name,
461         .id_table       = eth1394_id_table,
462         .update         = eth1394_update,
463         .driver         = {
464                 .probe          = eth1394_probe,
465                 .remove         = eth1394_remove,
466         },
467 };
468
469 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
470 {
471         unsigned long flags;
472         int i;
473         struct eth1394_priv *priv = netdev_priv(dev);
474         struct hpsb_host *host = priv->host;
475         u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
476         int max_speed = IEEE1394_SPEED_MAX;
477
478         spin_lock_irqsave(&priv->lock, flags);
479
480         memset(priv->ud_list, 0, sizeof(priv->ud_list));
481         priv->bc_maxpayload = 512;
482
483         /* Determine speed limit */
484         /* FIXME: This is broken for nodes with link speed < PHY speed,
485          * and it is suboptimal for S200B...S800B hardware.
486          * The result of nodemgr's speed probe should be used somehow. */
487         for (i = 0; i < host->node_count; i++) {
488                 /* take care of S100B...S400B PHY ports */
489                 if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
490                         max_speed = IEEE1394_SPEED_100;
491                         break;
492                 }
493                 if (max_speed > host->speed[i])
494                         max_speed = host->speed[i];
495         }
496         priv->bc_sspd = max_speed;
497
498         if (set_mtu) {
499                 /* Use the RFC 2734 default 1500 octets or the maximum payload
500                  * as initial MTU */
501                 dev->mtu = min(1500, ether1394_max_mtu(host));
502
503                 /* Set our hardware address while we're at it */
504                 memcpy(dev->dev_addr, &guid, sizeof(u64));
505                 memset(dev->broadcast, 0xff, sizeof(u64));
506         }
507
508         spin_unlock_irqrestore(&priv->lock, flags);
509 }
510
511 static const struct header_ops ether1394_header_ops = {
512         .create         = ether1394_header,
513         .rebuild        = ether1394_rebuild_header,
514         .cache          = ether1394_header_cache,
515         .cache_update   = ether1394_header_cache_update,
516         .parse          = ether1394_header_parse,
517 };
518
519 static const struct net_device_ops ether1394_netdev_ops = {
520         .ndo_open       = ether1394_open,
521         .ndo_stop       = ether1394_stop,
522         .ndo_start_xmit = ether1394_tx,
523         .ndo_get_stats  = ether1394_stats,
524         .ndo_tx_timeout = ether1394_tx_timeout,
525         .ndo_change_mtu = ether1394_change_mtu,
526 };
527
528 static void ether1394_init_dev(struct net_device *dev)
529 {
530
531         dev->header_ops         = &ether1394_header_ops;
532         dev->netdev_ops         = &ether1394_netdev_ops;
533
534         SET_ETHTOOL_OPS(dev, &ethtool_ops);
535
536         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
537         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
538         dev->features           = NETIF_F_HIGHDMA;
539         dev->addr_len           = ETH1394_ALEN;
540         dev->hard_header_len    = ETH1394_HLEN;
541         dev->type               = ARPHRD_IEEE1394;
542
543         /* FIXME: This value was copied from ether_setup(). Is it too much? */
544         dev->tx_queue_len       = 1000;
545 }
546
547 /*
548  * Wake the queue up after commonly encountered transmit failure conditions are
549  * hopefully over.  Currently only tlabel exhaustion is accounted for.
550  */
551 static void ether1394_wake_queue(struct work_struct *work)
552 {
553         struct eth1394_priv *priv;
554         struct hpsb_packet *packet;
555
556         priv = container_of(work, struct eth1394_priv, wake);
557         packet = hpsb_alloc_packet(0);
558
559         /* This is really bad, but unjam the queue anyway. */
560         if (!packet)
561                 goto out;
562
563         packet->host = priv->host;
564         packet->node_id = priv->wake_node;
565         /*
566          * A transaction label is all we really want.  If we get one, it almost
567          * always means we can get a lot more because the ieee1394 core recycled
568          * a whole batch of tlabels, at last.
569          */
570         if (hpsb_get_tlabel(packet) == 0)
571                 hpsb_free_tlabel(packet);
572
573         hpsb_free_packet(packet);
574 out:
575         netif_wake_queue(priv->wake_dev);
576 }
577
578 /*
579  * This function is called every time a card is found. It is generally called
580  * when the module is installed. This is where we add all of our ethernet
581  * devices. One for each host.
582  */
583 static void ether1394_add_host(struct hpsb_host *host)
584 {
585         struct eth1394_host_info *hi = NULL;
586         struct net_device *dev = NULL;
587         struct eth1394_priv *priv;
588         u64 fifo_addr;
589
590         if (hpsb_config_rom_ip1394_add(host) != 0) {
591                 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
592                 return;
593         }
594
595         fifo_addr = hpsb_allocate_and_register_addrspace(
596                         &eth1394_highlevel, host, &addr_ops,
597                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
598                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
599         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
600                 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
601                 hpsb_config_rom_ip1394_remove(host);
602                 return;
603         }
604
605         dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
606         if (dev == NULL) {
607                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
608                 goto out;
609         }
610
611         SET_NETDEV_DEV(dev, &host->device);
612
613         priv = netdev_priv(dev);
614         INIT_LIST_HEAD(&priv->ip_node_list);
615         spin_lock_init(&priv->lock);
616         priv->host = host;
617         priv->local_fifo = fifo_addr;
618         INIT_WORK(&priv->wake, ether1394_wake_queue);
619         priv->wake_dev = dev;
620
621         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
622         if (hi == NULL) {
623                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
624                 goto out;
625         }
626
627         ether1394_reset_priv(dev, 1);
628
629         if (register_netdev(dev)) {
630                 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
631                 goto out;
632         }
633
634         ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
635                       host->id);
636
637         hi->host = host;
638         hi->dev = dev;
639
640         /* Ignore validity in hopes that it will be set in the future.  It'll
641          * be checked when the eth device is opened. */
642         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
643
644         ether1394_recv_init(priv);
645         return;
646 out:
647         if (dev)
648                 free_netdev(dev);
649         if (hi)
650                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
651         hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
652         hpsb_config_rom_ip1394_remove(host);
653 }
654
655 /* Remove a card from our list */
656 static void ether1394_remove_host(struct hpsb_host *host)
657 {
658         struct eth1394_host_info *hi;
659         struct eth1394_priv *priv;
660
661         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
662         if (!hi)
663                 return;
664         priv = netdev_priv(hi->dev);
665         hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
666         hpsb_config_rom_ip1394_remove(host);
667         if (priv->iso)
668                 hpsb_iso_shutdown(priv->iso);
669         unregister_netdev(hi->dev);
670         free_netdev(hi->dev);
671 }
672
673 /* A bus reset happened */
674 static void ether1394_host_reset(struct hpsb_host *host)
675 {
676         struct eth1394_host_info *hi;
677         struct eth1394_priv *priv;
678         struct net_device *dev;
679         struct list_head *lh, *n;
680         struct eth1394_node_ref *node;
681         struct eth1394_node_info *node_info;
682         unsigned long flags;
683
684         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
685
686         /* This can happen for hosts that we don't use */
687         if (!hi)
688                 return;
689
690         dev = hi->dev;
691         priv = netdev_priv(dev);
692
693         /* Reset our private host data, but not our MTU */
694         netif_stop_queue(dev);
695         ether1394_reset_priv(dev, 0);
696
697         list_for_each_entry(node, &priv->ip_node_list, list) {
698                 node_info = node->ud->device.driver_data;
699
700                 spin_lock_irqsave(&node_info->pdg.lock, flags);
701
702                 list_for_each_safe(lh, n, &node_info->pdg.list)
703                         purge_partial_datagram(lh);
704
705                 INIT_LIST_HEAD(&(node_info->pdg.list));
706                 node_info->pdg.sz = 0;
707
708                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
709         }
710
711         netif_wake_queue(dev);
712 }
713
714 /******************************************
715  * HW Header net device functions
716  ******************************************/
717 /* These functions have been adapted from net/ethernet/eth.c */
718
719 /* Create a fake MAC header for an arbitrary protocol layer.
720  * saddr=NULL means use device source address
721  * daddr=NULL means leave destination address (eg unresolved arp). */
722 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
723                             unsigned short type, const void *daddr,
724                             const void *saddr, unsigned len)
725 {
726         struct eth1394hdr *eth =
727                         (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
728
729         eth->h_proto = htons(type);
730
731         if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
732                 memset(eth->h_dest, 0, dev->addr_len);
733                 return dev->hard_header_len;
734         }
735
736         if (daddr) {
737                 memcpy(eth->h_dest, daddr, dev->addr_len);
738                 return dev->hard_header_len;
739         }
740
741         return -dev->hard_header_len;
742 }
743
744 /* Rebuild the faked MAC header. This is called after an ARP
745  * (or in future other address resolution) has completed on this
746  * sk_buff. We now let ARP fill in the other fields.
747  *
748  * This routine CANNOT use cached dst->neigh!
749  * Really, it is used only when dst->neigh is wrong.
750  */
751 static int ether1394_rebuild_header(struct sk_buff *skb)
752 {
753         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
754
755         if (eth->h_proto == htons(ETH_P_IP))
756                 return arp_find((unsigned char *)&eth->h_dest, skb);
757
758         ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
759                       "unable to resolve type %04x addresses\n",
760                       ntohs(eth->h_proto));
761         return 0;
762 }
763
764 static int ether1394_header_parse(const struct sk_buff *skb,
765                                   unsigned char *haddr)
766 {
767         memcpy(haddr, skb->dev->dev_addr, ETH1394_ALEN);
768         return ETH1394_ALEN;
769 }
770
771 static int ether1394_header_cache(const struct neighbour *neigh,
772                                   struct hh_cache *hh)
773 {
774         unsigned short type = hh->hh_type;
775         struct net_device *dev = neigh->dev;
776         struct eth1394hdr *eth =
777                 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
778
779         if (type == htons(ETH_P_802_3))
780                 return -1;
781
782         eth->h_proto = type;
783         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
784
785         hh->hh_len = ETH1394_HLEN;
786         return 0;
787 }
788
789 /* Called by Address Resolution module to notify changes in address. */
790 static void ether1394_header_cache_update(struct hh_cache *hh,
791                                           const struct net_device *dev,
792                                           const unsigned char * haddr)
793 {
794         memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
795 }
796
797 /******************************************
798  * Datagram reception code
799  ******************************************/
800
801 /* Copied from net/ethernet/eth.c */
802 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
803 {
804         struct eth1394hdr *eth;
805         unsigned char *rawp;
806
807         skb_reset_mac_header(skb);
808         skb_pull(skb, ETH1394_HLEN);
809         eth = eth1394_hdr(skb);
810
811         if (*eth->h_dest & 1) {
812                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
813                         skb->pkt_type = PACKET_BROADCAST;
814 #if 0
815                 else
816                         skb->pkt_type = PACKET_MULTICAST;
817 #endif
818         } else {
819                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
820                         skb->pkt_type = PACKET_OTHERHOST;
821         }
822
823         if (ntohs(eth->h_proto) >= 1536)
824                 return eth->h_proto;
825
826         rawp = skb->data;
827
828         if (*(unsigned short *)rawp == 0xFFFF)
829                 return htons(ETH_P_802_3);
830
831         return htons(ETH_P_802_2);
832 }
833
834 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
835  * We also perform ARP translation here, if need be.  */
836 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
837                                  nodeid_t srcid, nodeid_t destid,
838                                  u16 ether_type)
839 {
840         struct eth1394_priv *priv = netdev_priv(dev);
841         u64 dest_hw;
842         unsigned short ret = 0;
843
844         /* Setup our hw addresses. We use these to build the ethernet header. */
845         if (destid == (LOCAL_BUS | ALL_NODES))
846                 dest_hw = ~0ULL;  /* broadcast */
847         else
848                 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
849                                       priv->host->csr.guid_lo);
850
851         /* If this is an ARP packet, convert it. First, we want to make
852          * use of some of the fields, since they tell us a little bit
853          * about the sending machine.  */
854         if (ether_type == htons(ETH_P_ARP)) {
855                 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
856                 struct arphdr *arp = (struct arphdr *)skb->data;
857                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
858                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
859                                            ntohl(arp1394->fifo_lo);
860                 u8 max_rec = min(priv->host->csr.max_rec,
861                                  (u8)(arp1394->max_rec));
862                 int sspd = arp1394->sspd;
863                 u16 maxpayload;
864                 struct eth1394_node_ref *node;
865                 struct eth1394_node_info *node_info;
866                 __be64 guid;
867
868                 /* Sanity check. MacOSX seems to be sending us 131 in this
869                  * field (atleast on my Panther G5). Not sure why. */
870                 if (sspd > 5 || sspd < 0)
871                         sspd = 0;
872
873                 maxpayload = min(eth1394_speedto_maxpayload[sspd],
874                                  (u16)(1 << (max_rec + 1)));
875
876                 guid = get_unaligned(&arp1394->s_uniq_id);
877                 node = eth1394_find_node_guid(&priv->ip_node_list,
878                                               be64_to_cpu(guid));
879                 if (!node)
880                         return 0;
881
882                 node_info =
883                     (struct eth1394_node_info *)node->ud->device.driver_data;
884
885                 /* Update our speed/payload/fifo_offset table */
886                 node_info->maxpayload = maxpayload;
887                 node_info->sspd =       sspd;
888                 node_info->fifo =       fifo_addr;
889
890                 /* Now that we're done with the 1394 specific stuff, we'll
891                  * need to alter some of the data.  Believe it or not, all
892                  * that needs to be done is sender_IP_address needs to be
893                  * moved, the destination hardware address get stuffed
894                  * in and the hardware address length set to 8.
895                  *
896                  * IMPORTANT: The code below overwrites 1394 specific data
897                  * needed above so keep the munging of the data for the
898                  * higher level IP stack last. */
899
900                 arp->ar_hln = 8;
901                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
902                 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
903                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
904
905                 if (arp->ar_op == htons(ARPOP_REQUEST))
906                         memset(arp_ptr, 0, sizeof(u64));
907                 else
908                         memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
909         }
910
911         /* Now add the ethernet header. */
912         if (dev_hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
913                             skb->len) >= 0)
914                 ret = ether1394_type_trans(skb, dev);
915
916         return ret;
917 }
918
919 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
920 {
921         struct fragment_info *fi;
922         int end = offset + len;
923
924         list_for_each_entry(fi, frag_list, list)
925                 if (offset < fi->offset + fi->len && end > fi->offset)
926                         return 1;
927
928         return 0;
929 }
930
931 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
932 {
933         struct partial_datagram *pd;
934
935         list_for_each_entry(pd, pdgl, list)
936                 if (pd->dgl == dgl)
937                         return &pd->list;
938
939         return NULL;
940 }
941
942 /* Assumes that new fragment does not overlap any existing fragments */
943 static int new_fragment(struct list_head *frag_info, int offset, int len)
944 {
945         struct list_head *lh;
946         struct fragment_info *fi, *fi2, *new;
947
948         list_for_each(lh, frag_info) {
949                 fi = list_entry(lh, struct fragment_info, list);
950                 if (fi->offset + fi->len == offset) {
951                         /* The new fragment can be tacked on to the end */
952                         fi->len += len;
953                         /* Did the new fragment plug a hole? */
954                         fi2 = list_entry(lh->next, struct fragment_info, list);
955                         if (fi->offset + fi->len == fi2->offset) {
956                                 /* glue fragments together */
957                                 fi->len += fi2->len;
958                                 list_del(lh->next);
959                                 kfree(fi2);
960                         }
961                         return 0;
962                 } else if (offset + len == fi->offset) {
963                         /* The new fragment can be tacked on to the beginning */
964                         fi->offset = offset;
965                         fi->len += len;
966                         /* Did the new fragment plug a hole? */
967                         fi2 = list_entry(lh->prev, struct fragment_info, list);
968                         if (fi2->offset + fi2->len == fi->offset) {
969                                 /* glue fragments together */
970                                 fi2->len += fi->len;
971                                 list_del(lh);
972                                 kfree(fi);
973                         }
974                         return 0;
975                 } else if (offset > fi->offset + fi->len) {
976                         break;
977                 } else if (offset + len < fi->offset) {
978                         lh = lh->prev;
979                         break;
980                 }
981         }
982
983         new = kmalloc(sizeof(*new), GFP_ATOMIC);
984         if (!new)
985                 return -ENOMEM;
986
987         new->offset = offset;
988         new->len = len;
989
990         list_add(&new->list, lh);
991         return 0;
992 }
993
994 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
995                                 int dgl, int dg_size, char *frag_buf,
996                                 int frag_off, int frag_len)
997 {
998         struct partial_datagram *new;
999
1000         new = kmalloc(sizeof(*new), GFP_ATOMIC);
1001         if (!new)
1002                 return -ENOMEM;
1003
1004         INIT_LIST_HEAD(&new->frag_info);
1005
1006         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1007                 kfree(new);
1008                 return -ENOMEM;
1009         }
1010
1011         new->dgl = dgl;
1012         new->dg_size = dg_size;
1013
1014         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1015         if (!new->skb) {
1016                 struct fragment_info *fi = list_entry(new->frag_info.next,
1017                                                       struct fragment_info,
1018                                                       list);
1019                 kfree(fi);
1020                 kfree(new);
1021                 return -ENOMEM;
1022         }
1023
1024         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1025         new->pbuf = skb_put(new->skb, dg_size);
1026         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1027
1028         list_add(&new->list, pdgl);
1029         return 0;
1030 }
1031
1032 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1033                                    char *frag_buf, int frag_off, int frag_len)
1034 {
1035         struct partial_datagram *pd =
1036                         list_entry(lh, struct partial_datagram, list);
1037
1038         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1039                 return -ENOMEM;
1040
1041         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1042
1043         /* Move list entry to beginnig of list so that oldest partial
1044          * datagrams percolate to the end of the list */
1045         list_move(lh, pdgl);
1046         return 0;
1047 }
1048
1049 static int is_datagram_complete(struct list_head *lh, int dg_size)
1050 {
1051         struct partial_datagram *pd;
1052         struct fragment_info *fi;
1053
1054         pd = list_entry(lh, struct partial_datagram, list);
1055         fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1056
1057         return (fi->len == dg_size);
1058 }
1059
1060 /* Packet reception. We convert the IP1394 encapsulation header to an
1061  * ethernet header, and fill it with some of our other fields. This is
1062  * an incoming packet from the 1394 bus.  */
1063 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1064                                   char *buf, int len)
1065 {
1066         struct sk_buff *skb;
1067         unsigned long flags;
1068         struct eth1394_priv *priv = netdev_priv(dev);
1069         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1070         u16 ether_type = 0;  /* initialized to clear warning */
1071         int hdr_len;
1072         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1073         struct eth1394_node_info *node_info;
1074
1075         if (!ud) {
1076                 struct eth1394_node_ref *node;
1077                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1078                 if (unlikely(!node)) {
1079                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1080                                    "lookup failure: " NODE_BUS_FMT,
1081                                    NODE_BUS_ARGS(priv->host, srcid));
1082                         priv->stats.rx_dropped++;
1083                         return -1;
1084                 }
1085                 ud = node->ud;
1086
1087                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1088         }
1089
1090         node_info = (struct eth1394_node_info *)ud->device.driver_data;
1091
1092         /* First, did we receive a fragmented or unfragmented datagram? */
1093         hdr->words.word1 = ntohs(hdr->words.word1);
1094
1095         hdr_len = hdr_type_len[hdr->common.lf];
1096
1097         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1098                 /* An unfragmented datagram has been received by the ieee1394
1099                  * bus. Build an skbuff around it so we can pass it to the
1100                  * high level network layer. */
1101
1102                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1103                 if (unlikely(!skb)) {
1104                         ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1105                         priv->stats.rx_dropped++;
1106                         return -1;
1107                 }
1108                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1109                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1110                        len - hdr_len);
1111                 ether_type = hdr->uf.ether_type;
1112         } else {
1113                 /* A datagram fragment has been received, now the fun begins. */
1114
1115                 struct list_head *pdgl, *lh;
1116                 struct partial_datagram *pd;
1117                 int fg_off;
1118                 int fg_len = len - hdr_len;
1119                 int dg_size;
1120                 int dgl;
1121                 int retval;
1122                 struct pdg_list *pdg = &(node_info->pdg);
1123
1124                 hdr->words.word3 = ntohs(hdr->words.word3);
1125                 /* The 4th header word is reserved so no need to do ntohs() */
1126
1127                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1128                         ether_type = hdr->ff.ether_type;
1129                         dgl = hdr->ff.dgl;
1130                         dg_size = hdr->ff.dg_size + 1;
1131                         fg_off = 0;
1132                 } else {
1133                         hdr->words.word2 = ntohs(hdr->words.word2);
1134                         dgl = hdr->sf.dgl;
1135                         dg_size = hdr->sf.dg_size + 1;
1136                         fg_off = hdr->sf.fg_off;
1137                 }
1138                 spin_lock_irqsave(&pdg->lock, flags);
1139
1140                 pdgl = &(pdg->list);
1141                 lh = find_partial_datagram(pdgl, dgl);
1142
1143                 if (lh == NULL) {
1144                         while (pdg->sz >= max_partial_datagrams) {
1145                                 /* remove the oldest */
1146                                 purge_partial_datagram(pdgl->prev);
1147                                 pdg->sz--;
1148                         }
1149
1150                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1151                                                       buf + hdr_len, fg_off,
1152                                                       fg_len);
1153                         if (retval < 0) {
1154                                 spin_unlock_irqrestore(&pdg->lock, flags);
1155                                 goto bad_proto;
1156                         }
1157                         pdg->sz++;
1158                         lh = find_partial_datagram(pdgl, dgl);
1159                 } else {
1160                         pd = list_entry(lh, struct partial_datagram, list);
1161
1162                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1163                                 /* Overlapping fragments, obliterate old
1164                                  * datagram and start new one. */
1165                                 purge_partial_datagram(lh);
1166                                 retval = new_partial_datagram(dev, pdgl, dgl,
1167                                                               dg_size,
1168                                                               buf + hdr_len,
1169                                                               fg_off, fg_len);
1170                                 if (retval < 0) {
1171                                         pdg->sz--;
1172                                         spin_unlock_irqrestore(&pdg->lock, flags);
1173                                         goto bad_proto;
1174                                 }
1175                         } else {
1176                                 retval = update_partial_datagram(pdgl, lh,
1177                                                                  buf + hdr_len,
1178                                                                  fg_off, fg_len);
1179                                 if (retval < 0) {
1180                                         /* Couldn't save off fragment anyway
1181                                          * so might as well obliterate the
1182                                          * datagram now. */
1183                                         purge_partial_datagram(lh);
1184                                         pdg->sz--;
1185                                         spin_unlock_irqrestore(&pdg->lock, flags);
1186                                         goto bad_proto;
1187                                 }
1188                         } /* fragment overlap */
1189                 } /* new datagram or add to existing one */
1190
1191                 pd = list_entry(lh, struct partial_datagram, list);
1192
1193                 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1194                         pd->ether_type = ether_type;
1195
1196                 if (is_datagram_complete(lh, dg_size)) {
1197                         ether_type = pd->ether_type;
1198                         pdg->sz--;
1199                         skb = skb_get(pd->skb);
1200                         purge_partial_datagram(lh);
1201                         spin_unlock_irqrestore(&pdg->lock, flags);
1202                 } else {
1203                         /* Datagram is not complete, we're done for the
1204                          * moment. */
1205                         spin_unlock_irqrestore(&pdg->lock, flags);
1206                         return 0;
1207                 }
1208         } /* unframgented datagram or fragmented one */
1209
1210         /* Write metadata, and then pass to the receive level */
1211         skb->dev = dev;
1212         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1213
1214         /* Parse the encapsulation header. This actually does the job of
1215          * converting to an ethernet frame header, aswell as arp
1216          * conversion if needed. ARP conversion is easier in this
1217          * direction, since we are using ethernet as our backend.  */
1218         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1219                                               ether_type);
1220
1221         spin_lock_irqsave(&priv->lock, flags);
1222
1223         if (!skb->protocol) {
1224                 priv->stats.rx_errors++;
1225                 priv->stats.rx_dropped++;
1226                 dev_kfree_skb_any(skb);
1227         } else if (netif_rx(skb) == NET_RX_DROP) {
1228                 priv->stats.rx_errors++;
1229                 priv->stats.rx_dropped++;
1230         } else {
1231                 priv->stats.rx_packets++;
1232                 priv->stats.rx_bytes += skb->len;
1233         }
1234
1235         spin_unlock_irqrestore(&priv->lock, flags);
1236
1237 bad_proto:
1238         if (netif_queue_stopped(dev))
1239                 netif_wake_queue(dev);
1240
1241         dev->last_rx = jiffies;
1242
1243         return 0;
1244 }
1245
1246 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1247                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1248 {
1249         struct eth1394_host_info *hi;
1250
1251         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1252         if (unlikely(!hi)) {
1253                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1254                                 host->id);
1255                 return RCODE_ADDRESS_ERROR;
1256         }
1257
1258         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1259                 return RCODE_ADDRESS_ERROR;
1260         else
1261                 return RCODE_COMPLETE;
1262 }
1263
1264 static void ether1394_iso(struct hpsb_iso *iso)
1265 {
1266         quadlet_t *data;
1267         char *buf;
1268         struct eth1394_host_info *hi;
1269         struct net_device *dev;
1270         struct eth1394_priv *priv;
1271         unsigned int len;
1272         u32 specifier_id;
1273         u16 source_id;
1274         int i;
1275         int nready;
1276
1277         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1278         if (unlikely(!hi)) {
1279                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1280                                 iso->host->id);
1281                 return;
1282         }
1283
1284         dev = hi->dev;
1285
1286         nready = hpsb_iso_n_ready(iso);
1287         for (i = 0; i < nready; i++) {
1288                 struct hpsb_iso_packet_info *info =
1289                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1290                 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1291
1292                 /* skip over GASP header */
1293                 buf = (char *)data + 8;
1294                 len = info->len - 8;
1295
1296                 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1297                                (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1298                 source_id = be32_to_cpu(data[0]) >> 16;
1299
1300                 priv = netdev_priv(dev);
1301
1302                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1303                     || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1304                         /* This packet is not for us */
1305                         continue;
1306                 }
1307                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1308                                        buf, len);
1309         }
1310
1311         hpsb_iso_recv_release_packets(iso, i);
1312
1313         dev->last_rx = jiffies;
1314 }
1315
1316 /******************************************
1317  * Datagram transmission code
1318  ******************************************/
1319
1320 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1321  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1322  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1323  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1324  * judge.
1325  *
1326  * Now that the EUI is used for the hardware address all we need to do to make
1327  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1328  * speed, and unicast FIFO address information between the sender_unique_id
1329  * and the IP addresses.
1330  */
1331 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1332                                      struct net_device *dev)
1333 {
1334         struct eth1394_priv *priv = netdev_priv(dev);
1335         struct arphdr *arp = (struct arphdr *)skb->data;
1336         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1337         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1338
1339         arp1394->hw_addr_len    = 16;
1340         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1341         arp1394->max_rec        = priv->host->csr.max_rec;
1342         arp1394->sspd           = priv->host->csr.lnk_spd;
1343         arp1394->fifo_hi        = htons(priv->local_fifo >> 32);
1344         arp1394->fifo_lo        = htonl(priv->local_fifo & ~0x0);
1345 }
1346
1347 /* We need to encapsulate the standard header with our own. We use the
1348  * ethernet header's proto for our own. */
1349 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1350                                                __be16 proto,
1351                                                union eth1394_hdr *hdr,
1352                                                u16 dg_size, u16 dgl)
1353 {
1354         unsigned int adj_max_payload =
1355                                 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1356
1357         /* Does it all fit in one packet? */
1358         if (dg_size <= adj_max_payload) {
1359                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1360                 hdr->uf.ether_type = proto;
1361         } else {
1362                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1363                 hdr->ff.ether_type = proto;
1364                 hdr->ff.dg_size = dg_size - 1;
1365                 hdr->ff.dgl = dgl;
1366                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1367         }
1368         return DIV_ROUND_UP(dg_size, adj_max_payload);
1369 }
1370
1371 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1372                                           unsigned int max_payload,
1373                                           union eth1394_hdr *hdr)
1374 {
1375         union eth1394_hdr *bufhdr;
1376         int ftype = hdr->common.lf;
1377         int hdrsz = hdr_type_len[ftype];
1378         unsigned int adj_max_payload = max_payload - hdrsz;
1379
1380         switch (ftype) {
1381         case ETH1394_HDR_LF_UF:
1382                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1383                 bufhdr->words.word1 = htons(hdr->words.word1);
1384                 bufhdr->words.word2 = hdr->words.word2;
1385                 break;
1386
1387         case ETH1394_HDR_LF_FF:
1388                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1389                 bufhdr->words.word1 = htons(hdr->words.word1);
1390                 bufhdr->words.word2 = hdr->words.word2;
1391                 bufhdr->words.word3 = htons(hdr->words.word3);
1392                 bufhdr->words.word4 = 0;
1393
1394                 /* Set frag type here for future interior fragments */
1395                 hdr->common.lf = ETH1394_HDR_LF_IF;
1396                 hdr->sf.fg_off = 0;
1397                 break;
1398
1399         default:
1400                 hdr->sf.fg_off += adj_max_payload;
1401                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1402                 if (max_payload >= skb->len)
1403                         hdr->common.lf = ETH1394_HDR_LF_LF;
1404                 bufhdr->words.word1 = htons(hdr->words.word1);
1405                 bufhdr->words.word2 = htons(hdr->words.word2);
1406                 bufhdr->words.word3 = htons(hdr->words.word3);
1407                 bufhdr->words.word4 = 0;
1408         }
1409         return min(max_payload, skb->len);
1410 }
1411
1412 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1413 {
1414         struct hpsb_packet *p;
1415
1416         p = hpsb_alloc_packet(0);
1417         if (p) {
1418                 p->host = host;
1419                 p->generation = get_hpsb_generation(host);
1420                 p->type = hpsb_async;
1421         }
1422         return p;
1423 }
1424
1425 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1426                                        struct hpsb_host *host, nodeid_t node,
1427                                        u64 addr, void *data, int tx_len)
1428 {
1429         p->node_id = node;
1430
1431         if (hpsb_get_tlabel(p))
1432                 return -EAGAIN;
1433
1434         p->tcode = TCODE_WRITEB;
1435         p->header_size = 16;
1436         p->expect_response = 1;
1437         p->header[0] =
1438                 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1439         p->header[1] = host->node_id << 16 | addr >> 32;
1440         p->header[2] = addr & 0xffffffff;
1441         p->header[3] = tx_len << 16;
1442         p->data_size = (tx_len + 3) & ~3;
1443         p->data = data;
1444
1445         return 0;
1446 }
1447
1448 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1449                                        struct eth1394_priv *priv,
1450                                        struct sk_buff *skb, int length)
1451 {
1452         p->header_size = 4;
1453         p->tcode = TCODE_STREAM_DATA;
1454
1455         p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1456                        TCODE_STREAM_DATA << 4;
1457         p->data_size = length;
1458         p->data = (quadlet_t *)skb->data - 2;
1459         p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1460                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1461         p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1462                                  ETHER1394_GASP_VERSION);
1463
1464         p->speed_code = priv->bc_sspd;
1465
1466         /* prevent hpsb_send_packet() from overriding our speed code */
1467         p->node_id = LOCAL_BUS | ALL_NODES;
1468 }
1469
1470 static void ether1394_free_packet(struct hpsb_packet *packet)
1471 {
1472         if (packet->tcode != TCODE_STREAM_DATA)
1473                 hpsb_free_tlabel(packet);
1474         hpsb_free_packet(packet);
1475 }
1476
1477 static void ether1394_complete_cb(void *__ptask);
1478
1479 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1480 {
1481         struct eth1394_priv *priv = ptask->priv;
1482         struct hpsb_packet *packet = NULL;
1483
1484         packet = ether1394_alloc_common_packet(priv->host);
1485         if (!packet)
1486                 return -ENOMEM;
1487
1488         if (ptask->tx_type == ETH1394_GASP) {
1489                 int length = tx_len + 2 * sizeof(quadlet_t);
1490
1491                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1492         } else if (ether1394_prep_write_packet(packet, priv->host,
1493                                                ptask->dest_node,
1494                                                ptask->addr, ptask->skb->data,
1495                                                tx_len)) {
1496                 hpsb_free_packet(packet);
1497                 return -EAGAIN;
1498         }
1499
1500         ptask->packet = packet;
1501         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1502                                       ptask);
1503
1504         if (hpsb_send_packet(packet) < 0) {
1505                 ether1394_free_packet(packet);
1506                 return -EIO;
1507         }
1508
1509         return 0;
1510 }
1511
1512 /* Task function to be run when a datagram transmission is completed */
1513 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1514 {
1515         struct sk_buff *skb = ptask->skb;
1516         struct eth1394_priv *priv = netdev_priv(skb->dev);
1517         unsigned long flags;
1518
1519         /* Statistics */
1520         spin_lock_irqsave(&priv->lock, flags);
1521         if (fail) {
1522                 priv->stats.tx_dropped++;
1523                 priv->stats.tx_errors++;
1524         } else {
1525                 priv->stats.tx_bytes += skb->len;
1526                 priv->stats.tx_packets++;
1527         }
1528         spin_unlock_irqrestore(&priv->lock, flags);
1529
1530         dev_kfree_skb_any(skb);
1531         kmem_cache_free(packet_task_cache, ptask);
1532 }
1533
1534 /* Callback for when a packet has been sent and the status of that packet is
1535  * known */
1536 static void ether1394_complete_cb(void *__ptask)
1537 {
1538         struct packet_task *ptask = (struct packet_task *)__ptask;
1539         struct hpsb_packet *packet = ptask->packet;
1540         int fail = 0;
1541
1542         if (packet->tcode != TCODE_STREAM_DATA)
1543                 fail = hpsb_packet_success(packet);
1544
1545         ether1394_free_packet(packet);
1546
1547         ptask->outstanding_pkts--;
1548         if (ptask->outstanding_pkts > 0 && !fail) {
1549                 int tx_len, err;
1550
1551                 /* Add the encapsulation header to the fragment */
1552                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1553                                                &ptask->hdr);
1554                 err = ether1394_send_packet(ptask, tx_len);
1555                 if (err) {
1556                         if (err == -EAGAIN)
1557                                 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1558
1559                         ether1394_dg_complete(ptask, 1);
1560                 }
1561         } else {
1562                 ether1394_dg_complete(ptask, fail);
1563         }
1564 }
1565
1566 /* Transmit a packet (called by kernel) */
1567 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1568 {
1569         struct eth1394hdr hdr_buf;
1570         struct eth1394_priv *priv = netdev_priv(dev);
1571         __be16 proto;
1572         unsigned long flags;
1573         nodeid_t dest_node;
1574         eth1394_tx_type tx_type;
1575         unsigned int tx_len;
1576         unsigned int max_payload;
1577         u16 dg_size;
1578         u16 dgl;
1579         struct packet_task *ptask;
1580         struct eth1394_node_ref *node;
1581         struct eth1394_node_info *node_info = NULL;
1582
1583         ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1584         if (ptask == NULL)
1585                 goto fail;
1586
1587         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1588          * it does not set our validity bit. We need to compensate for
1589          * that somewhere else, but not in eth1394. */
1590 #if 0
1591         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1592                 goto fail;
1593 #endif
1594
1595         skb = skb_share_check(skb, GFP_ATOMIC);
1596         if (!skb)
1597                 goto fail;
1598
1599         /* Get rid of the fake eth1394 header, but first make a copy.
1600          * We might need to rebuild the header on tx failure. */
1601         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1602         skb_pull(skb, ETH1394_HLEN);
1603
1604         proto = hdr_buf.h_proto;
1605         dg_size = skb->len;
1606
1607         /* Set the transmission type for the packet.  ARP packets and IP
1608          * broadcast packets are sent via GASP. */
1609         if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1610             proto == htons(ETH_P_ARP) ||
1611             (proto == htons(ETH_P_IP) &&
1612              IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1613                 tx_type = ETH1394_GASP;
1614                 dest_node = LOCAL_BUS | ALL_NODES;
1615                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1616                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1617                 dgl = priv->bc_dgl;
1618                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1619                         priv->bc_dgl++;
1620         } else {
1621                 __be64 guid = get_unaligned((u64 *)hdr_buf.h_dest);
1622
1623                 node = eth1394_find_node_guid(&priv->ip_node_list,
1624                                               be64_to_cpu(guid));
1625                 if (!node)
1626                         goto fail;
1627
1628                 node_info =
1629                     (struct eth1394_node_info *)node->ud->device.driver_data;
1630                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1631                         goto fail;
1632
1633                 dest_node = node->ud->ne->nodeid;
1634                 max_payload = node_info->maxpayload;
1635                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1636
1637                 dgl = node_info->dgl;
1638                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1639                         node_info->dgl++;
1640                 tx_type = ETH1394_WRREQ;
1641         }
1642
1643         /* If this is an ARP packet, convert it */
1644         if (proto == htons(ETH_P_ARP))
1645                 ether1394_arp_to_1394arp(skb, dev);
1646
1647         ptask->hdr.words.word1 = 0;
1648         ptask->hdr.words.word2 = 0;
1649         ptask->hdr.words.word3 = 0;
1650         ptask->hdr.words.word4 = 0;
1651         ptask->skb = skb;
1652         ptask->priv = priv;
1653         ptask->tx_type = tx_type;
1654
1655         if (tx_type != ETH1394_GASP) {
1656                 u64 addr;
1657
1658                 spin_lock_irqsave(&priv->lock, flags);
1659                 addr = node_info->fifo;
1660                 spin_unlock_irqrestore(&priv->lock, flags);
1661
1662                 ptask->addr = addr;
1663                 ptask->dest_node = dest_node;
1664         }
1665
1666         ptask->tx_type = tx_type;
1667         ptask->max_payload = max_payload;
1668         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1669                                         proto, &ptask->hdr, dg_size, dgl);
1670
1671         /* Add the encapsulation header to the fragment */
1672         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1673         dev->trans_start = jiffies;
1674         if (ether1394_send_packet(ptask, tx_len)) {
1675                 if (dest_node == (LOCAL_BUS | ALL_NODES))
1676                         goto fail;
1677
1678                 /* At this point we want to restore the packet.  When we return
1679                  * here with NETDEV_TX_BUSY we will get another entrance in this
1680                  * routine with the same skb and we need it to look the same.
1681                  * So we pull 4 more bytes, then build the header again. */
1682                 skb_pull(skb, 4);
1683                 ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
1684                                  hdr_buf.h_dest, NULL, 0);
1685
1686                 /* Most failures of ether1394_send_packet are recoverable. */
1687                 netif_stop_queue(dev);
1688                 priv->wake_node = dest_node;
1689                 schedule_work(&priv->wake);
1690                 kmem_cache_free(packet_task_cache, ptask);
1691                 return NETDEV_TX_BUSY;
1692         }
1693
1694         return NETDEV_TX_OK;
1695 fail:
1696         if (ptask)
1697                 kmem_cache_free(packet_task_cache, ptask);
1698
1699         if (skb != NULL)
1700                 dev_kfree_skb(skb);
1701
1702         spin_lock_irqsave(&priv->lock, flags);
1703         priv->stats.tx_dropped++;
1704         priv->stats.tx_errors++;
1705         spin_unlock_irqrestore(&priv->lock, flags);
1706
1707         /*
1708          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1709          * causes serious problems" here, allegedly.  Before that patch,
1710          * -ERRNO was returned which is not appropriate under Linux 2.6.
1711          * Perhaps more needs to be done?  Stop the queue in serious
1712          * conditions and restart it elsewhere?
1713          */
1714         /* return NETDEV_TX_BUSY; */
1715         return NETDEV_TX_OK;
1716 }
1717
1718 static void ether1394_get_drvinfo(struct net_device *dev,
1719                                   struct ethtool_drvinfo *info)
1720 {
1721         strcpy(info->driver, driver_name);
1722         strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1723 }
1724
1725 static struct ethtool_ops ethtool_ops = {
1726         .get_drvinfo = ether1394_get_drvinfo
1727 };
1728
1729 static int __init ether1394_init_module(void)
1730 {
1731         int err;
1732
1733         packet_task_cache = kmem_cache_create("packet_task",
1734                                               sizeof(struct packet_task),
1735                                               0, 0, NULL);
1736         if (!packet_task_cache)
1737                 return -ENOMEM;
1738
1739         hpsb_register_highlevel(&eth1394_highlevel);
1740         err = hpsb_register_protocol(&eth1394_proto_driver);
1741         if (err) {
1742                 hpsb_unregister_highlevel(&eth1394_highlevel);
1743                 kmem_cache_destroy(packet_task_cache);
1744         }
1745         return err;
1746 }
1747
1748 static void __exit ether1394_exit_module(void)
1749 {
1750         hpsb_unregister_protocol(&eth1394_proto_driver);
1751         hpsb_unregister_highlevel(&eth1394_highlevel);
1752         kmem_cache_destroy(packet_task_cache);
1753 }
1754
1755 module_init(ether1394_init_module);
1756 module_exit(ether1394_exit_module);