2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
24 * Authors: Dave Airlie
29 #include <drm/radeon_drm.h>
31 #include "radeon_trace.h"
35 * GPUVM is similar to the legacy gart on older asics, however
36 * rather than there being a single global gart table
37 * for the entire GPU, there are multiple VM page tables active
38 * at any given time. The VM page tables can contain a mix
39 * vram pages and system memory pages and system memory pages
40 * can be mapped as snooped (cached system pages) or unsnooped
41 * (uncached system pages).
42 * Each VM has an ID associated with it and there is a page table
43 * associated with each VMID. When execting a command buffer,
44 * the kernel tells the the ring what VMID to use for that command
45 * buffer. VMIDs are allocated dynamically as commands are submitted.
46 * The userspace drivers maintain their own address space and the kernel
47 * sets up their pages tables accordingly when they submit their
48 * command buffers and a VMID is assigned.
49 * Cayman/Trinity support up to 8 active VMs at any given time;
54 * radeon_vm_num_pde - return the number of page directory entries
56 * @rdev: radeon_device pointer
58 * Calculate the number of page directory entries (cayman+).
60 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev)
62 return rdev->vm_manager.max_pfn >> radeon_vm_block_size;
66 * radeon_vm_directory_size - returns the size of the page directory in bytes
68 * @rdev: radeon_device pointer
70 * Calculate the size of the page directory in bytes (cayman+).
72 static unsigned radeon_vm_directory_size(struct radeon_device *rdev)
74 return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8);
78 * radeon_vm_manager_init - init the vm manager
80 * @rdev: radeon_device pointer
82 * Init the vm manager (cayman+).
83 * Returns 0 for success, error for failure.
85 int radeon_vm_manager_init(struct radeon_device *rdev)
89 if (!rdev->vm_manager.enabled) {
90 r = radeon_asic_vm_init(rdev);
94 rdev->vm_manager.enabled = true;
100 * radeon_vm_manager_fini - tear down the vm manager
102 * @rdev: radeon_device pointer
104 * Tear down the VM manager (cayman+).
106 void radeon_vm_manager_fini(struct radeon_device *rdev)
110 if (!rdev->vm_manager.enabled)
113 for (i = 0; i < RADEON_NUM_VM; ++i)
114 radeon_fence_unref(&rdev->vm_manager.active[i]);
115 radeon_asic_vm_fini(rdev);
116 rdev->vm_manager.enabled = false;
120 * radeon_vm_get_bos - add the vm BOs to a validation list
122 * @vm: vm providing the BOs
123 * @head: head of validation list
125 * Add the page directory to the list of BOs to
126 * validate for command submission (cayman+).
128 struct radeon_bo_list *radeon_vm_get_bos(struct radeon_device *rdev,
129 struct radeon_vm *vm,
130 struct list_head *head)
132 struct radeon_bo_list *list;
135 list = drm_malloc_ab(vm->max_pde_used + 2,
136 sizeof(struct radeon_bo_list));
140 /* add the vm page table to the list */
141 list[0].robj = vm->page_directory;
142 list[0].prefered_domains = RADEON_GEM_DOMAIN_VRAM;
143 list[0].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
144 list[0].tv.bo = &vm->page_directory->tbo;
145 list[0].tv.shared = true;
146 list[0].tiling_flags = 0;
147 list_add(&list[0].tv.head, head);
149 for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
150 if (!vm->page_tables[i].bo)
153 list[idx].robj = vm->page_tables[i].bo;
154 list[idx].prefered_domains = RADEON_GEM_DOMAIN_VRAM;
155 list[idx].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
156 list[idx].tv.bo = &list[idx].robj->tbo;
157 list[idx].tv.shared = true;
158 list[idx].tiling_flags = 0;
159 list_add(&list[idx++].tv.head, head);
166 * radeon_vm_grab_id - allocate the next free VMID
168 * @rdev: radeon_device pointer
169 * @vm: vm to allocate id for
170 * @ring: ring we want to submit job to
172 * Allocate an id for the vm (cayman+).
173 * Returns the fence we need to sync to (if any).
175 * Global and local mutex must be locked!
177 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev,
178 struct radeon_vm *vm, int ring)
180 struct radeon_fence *best[RADEON_NUM_RINGS] = {};
181 struct radeon_vm_id *vm_id = &vm->ids[ring];
183 unsigned choices[2] = {};
186 /* check if the id is still valid */
187 if (vm_id->id && vm_id->last_id_use &&
188 vm_id->last_id_use == rdev->vm_manager.active[vm_id->id])
191 /* we definately need to flush */
192 vm_id->pd_gpu_addr = ~0ll;
194 /* skip over VMID 0, since it is the system VM */
195 for (i = 1; i < rdev->vm_manager.nvm; ++i) {
196 struct radeon_fence *fence = rdev->vm_manager.active[i];
199 /* found a free one */
201 trace_radeon_vm_grab_id(i, ring);
205 if (radeon_fence_is_earlier(fence, best[fence->ring])) {
206 best[fence->ring] = fence;
207 choices[fence->ring == ring ? 0 : 1] = i;
211 for (i = 0; i < 2; ++i) {
213 vm_id->id = choices[i];
214 trace_radeon_vm_grab_id(choices[i], ring);
215 return rdev->vm_manager.active[choices[i]];
219 /* should never happen */
225 * radeon_vm_flush - hardware flush the vm
227 * @rdev: radeon_device pointer
228 * @vm: vm we want to flush
229 * @ring: ring to use for flush
230 * @updates: last vm update that is waited for
232 * Flush the vm (cayman+).
234 * Global and local mutex must be locked!
236 void radeon_vm_flush(struct radeon_device *rdev,
237 struct radeon_vm *vm,
238 int ring, struct radeon_fence *updates)
240 uint64_t pd_addr = radeon_bo_gpu_offset(vm->page_directory);
241 struct radeon_vm_id *vm_id = &vm->ids[ring];
243 if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates ||
244 radeon_fence_is_earlier(vm_id->flushed_updates, updates)) {
246 trace_radeon_vm_flush(pd_addr, ring, vm->ids[ring].id);
247 radeon_fence_unref(&vm_id->flushed_updates);
248 vm_id->flushed_updates = radeon_fence_ref(updates);
249 vm_id->pd_gpu_addr = pd_addr;
250 radeon_ring_vm_flush(rdev, &rdev->ring[ring],
251 vm_id->id, vm_id->pd_gpu_addr);
257 * radeon_vm_fence - remember fence for vm
259 * @rdev: radeon_device pointer
260 * @vm: vm we want to fence
261 * @fence: fence to remember
263 * Fence the vm (cayman+).
264 * Set the fence used to protect page table and id.
266 * Global and local mutex must be locked!
268 void radeon_vm_fence(struct radeon_device *rdev,
269 struct radeon_vm *vm,
270 struct radeon_fence *fence)
272 unsigned vm_id = vm->ids[fence->ring].id;
274 radeon_fence_unref(&rdev->vm_manager.active[vm_id]);
275 rdev->vm_manager.active[vm_id] = radeon_fence_ref(fence);
277 radeon_fence_unref(&vm->ids[fence->ring].last_id_use);
278 vm->ids[fence->ring].last_id_use = radeon_fence_ref(fence);
282 * radeon_vm_bo_find - find the bo_va for a specific vm & bo
285 * @bo: requested buffer object
287 * Find @bo inside the requested vm (cayman+).
288 * Search inside the @bos vm list for the requested vm
289 * Returns the found bo_va or NULL if none is found
291 * Object has to be reserved!
293 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm,
294 struct radeon_bo *bo)
296 struct radeon_bo_va *bo_va;
298 list_for_each_entry(bo_va, &bo->va, bo_list) {
299 if (bo_va->vm == vm) {
307 * radeon_vm_bo_add - add a bo to a specific vm
309 * @rdev: radeon_device pointer
311 * @bo: radeon buffer object
313 * Add @bo into the requested vm (cayman+).
314 * Add @bo to the list of bos associated with the vm
315 * Returns newly added bo_va or NULL for failure
317 * Object has to be reserved!
319 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev,
320 struct radeon_vm *vm,
321 struct radeon_bo *bo)
323 struct radeon_bo_va *bo_va;
325 bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
334 bo_va->ref_count = 1;
335 INIT_LIST_HEAD(&bo_va->bo_list);
336 INIT_LIST_HEAD(&bo_va->vm_status);
338 mutex_lock(&vm->mutex);
339 list_add_tail(&bo_va->bo_list, &bo->va);
340 mutex_unlock(&vm->mutex);
346 * radeon_vm_set_pages - helper to call the right asic function
348 * @rdev: radeon_device pointer
349 * @ib: indirect buffer to fill with commands
350 * @pe: addr of the page entry
351 * @addr: dst addr to write into pe
352 * @count: number of page entries to update
353 * @incr: increase next addr by incr bytes
354 * @flags: hw access flags
356 * Traces the parameters and calls the right asic functions
357 * to setup the page table using the DMA.
359 static void radeon_vm_set_pages(struct radeon_device *rdev,
360 struct radeon_ib *ib,
362 uint64_t addr, unsigned count,
363 uint32_t incr, uint32_t flags)
365 trace_radeon_vm_set_page(pe, addr, count, incr, flags);
367 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
368 uint64_t src = rdev->gart.table_addr + (addr >> 12) * 8;
369 radeon_asic_vm_copy_pages(rdev, ib, pe, src, count);
371 } else if ((flags & R600_PTE_SYSTEM) || (count < 3)) {
372 radeon_asic_vm_write_pages(rdev, ib, pe, addr,
376 radeon_asic_vm_set_pages(rdev, ib, pe, addr,
382 * radeon_vm_clear_bo - initially clear the page dir/table
384 * @rdev: radeon_device pointer
387 static int radeon_vm_clear_bo(struct radeon_device *rdev,
388 struct radeon_bo *bo)
395 r = radeon_bo_reserve(bo, false);
399 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
401 goto error_unreserve;
403 addr = radeon_bo_gpu_offset(bo);
404 entries = radeon_bo_size(bo) / 8;
406 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, 256);
408 goto error_unreserve;
412 radeon_vm_set_pages(rdev, &ib, addr, 0, entries, 0, 0);
413 radeon_asic_vm_pad_ib(rdev, &ib);
414 WARN_ON(ib.length_dw > 64);
416 r = radeon_ib_schedule(rdev, &ib, NULL, false);
420 ib.fence->is_vm_update = true;
421 radeon_bo_fence(bo, ib.fence, false);
424 radeon_ib_free(rdev, &ib);
427 radeon_bo_unreserve(bo);
432 * radeon_vm_bo_set_addr - set bos virtual address inside a vm
434 * @rdev: radeon_device pointer
435 * @bo_va: bo_va to store the address
436 * @soffset: requested offset of the buffer in the VM address space
437 * @flags: attributes of pages (read/write/valid/etc.)
439 * Set offset of @bo_va (cayman+).
440 * Validate and set the offset requested within the vm address space.
441 * Returns 0 for success, error for failure.
443 * Object has to be reserved and gets unreserved by this function!
445 int radeon_vm_bo_set_addr(struct radeon_device *rdev,
446 struct radeon_bo_va *bo_va,
450 uint64_t size = radeon_bo_size(bo_va->bo);
451 struct radeon_vm *vm = bo_va->vm;
452 unsigned last_pfn, pt_idx;
457 /* make sure object fit at this offset */
458 eoffset = soffset + size;
459 if (soffset >= eoffset) {
461 goto error_unreserve;
464 last_pfn = eoffset / RADEON_GPU_PAGE_SIZE;
465 if (last_pfn > rdev->vm_manager.max_pfn) {
466 dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n",
467 last_pfn, rdev->vm_manager.max_pfn);
469 goto error_unreserve;
473 eoffset = last_pfn = 0;
476 mutex_lock(&vm->mutex);
477 soffset /= RADEON_GPU_PAGE_SIZE;
478 eoffset /= RADEON_GPU_PAGE_SIZE;
479 if (soffset || eoffset) {
480 struct interval_tree_node *it;
481 it = interval_tree_iter_first(&vm->va, soffset, eoffset - 1);
482 if (it && it != &bo_va->it) {
483 struct radeon_bo_va *tmp;
484 tmp = container_of(it, struct radeon_bo_va, it);
485 /* bo and tmp overlap, invalid offset */
486 dev_err(rdev->dev, "bo %p va 0x%010Lx conflict with "
487 "(bo %p 0x%010lx 0x%010lx)\n", bo_va->bo,
488 soffset, tmp->bo, tmp->it.start, tmp->it.last);
489 mutex_unlock(&vm->mutex);
491 goto error_unreserve;
495 if (bo_va->it.start || bo_va->it.last) {
496 /* add a clone of the bo_va to clear the old address */
497 struct radeon_bo_va *tmp;
498 tmp = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
500 mutex_unlock(&vm->mutex);
502 goto error_unreserve;
504 tmp->it.start = bo_va->it.start;
505 tmp->it.last = bo_va->it.last;
507 tmp->bo = radeon_bo_ref(bo_va->bo);
509 interval_tree_remove(&bo_va->it, &vm->va);
510 spin_lock(&vm->status_lock);
513 list_del_init(&bo_va->vm_status);
514 list_add(&tmp->vm_status, &vm->freed);
515 spin_unlock(&vm->status_lock);
518 if (soffset || eoffset) {
519 spin_lock(&vm->status_lock);
520 bo_va->it.start = soffset;
521 bo_va->it.last = eoffset - 1;
522 list_add(&bo_va->vm_status, &vm->cleared);
523 spin_unlock(&vm->status_lock);
524 interval_tree_insert(&bo_va->it, &vm->va);
527 bo_va->flags = flags;
529 soffset >>= radeon_vm_block_size;
530 eoffset >>= radeon_vm_block_size;
532 BUG_ON(eoffset >= radeon_vm_num_pdes(rdev));
534 if (eoffset > vm->max_pde_used)
535 vm->max_pde_used = eoffset;
537 radeon_bo_unreserve(bo_va->bo);
539 /* walk over the address space and allocate the page tables */
540 for (pt_idx = soffset; pt_idx <= eoffset; ++pt_idx) {
541 struct radeon_bo *pt;
543 if (vm->page_tables[pt_idx].bo)
546 /* drop mutex to allocate and clear page table */
547 mutex_unlock(&vm->mutex);
549 r = radeon_bo_create(rdev, RADEON_VM_PTE_COUNT * 8,
550 RADEON_GPU_PAGE_SIZE, true,
551 RADEON_GEM_DOMAIN_VRAM, 0,
556 r = radeon_vm_clear_bo(rdev, pt);
558 radeon_bo_unref(&pt);
562 /* aquire mutex again */
563 mutex_lock(&vm->mutex);
564 if (vm->page_tables[pt_idx].bo) {
565 /* someone else allocated the pt in the meantime */
566 mutex_unlock(&vm->mutex);
567 radeon_bo_unref(&pt);
568 mutex_lock(&vm->mutex);
572 vm->page_tables[pt_idx].addr = 0;
573 vm->page_tables[pt_idx].bo = pt;
576 mutex_unlock(&vm->mutex);
580 radeon_bo_unreserve(bo_va->bo);
585 * radeon_vm_map_gart - get the physical address of a gart page
587 * @rdev: radeon_device pointer
588 * @addr: the unmapped addr
590 * Look up the physical address of the page that the pte resolves
592 * Returns the physical address of the page.
594 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr)
598 /* page table offset */
599 result = rdev->gart.pages_entry[addr >> RADEON_GPU_PAGE_SHIFT];
600 result &= ~RADEON_GPU_PAGE_MASK;
606 * radeon_vm_page_flags - translate page flags to what the hw uses
608 * @flags: flags comming from userspace
610 * Translate the flags the userspace ABI uses to hw flags.
612 static uint32_t radeon_vm_page_flags(uint32_t flags)
614 uint32_t hw_flags = 0;
615 hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0;
616 hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0;
617 hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0;
618 if (flags & RADEON_VM_PAGE_SYSTEM) {
619 hw_flags |= R600_PTE_SYSTEM;
620 hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0;
626 * radeon_vm_update_pdes - make sure that page directory is valid
628 * @rdev: radeon_device pointer
630 * @start: start of GPU address range
631 * @end: end of GPU address range
633 * Allocates new page tables if necessary
634 * and updates the page directory (cayman+).
635 * Returns 0 for success, error for failure.
637 * Global and local mutex must be locked!
639 int radeon_vm_update_page_directory(struct radeon_device *rdev,
640 struct radeon_vm *vm)
642 struct radeon_bo *pd = vm->page_directory;
643 uint64_t pd_addr = radeon_bo_gpu_offset(pd);
644 uint32_t incr = RADEON_VM_PTE_COUNT * 8;
645 uint64_t last_pde = ~0, last_pt = ~0;
646 unsigned count = 0, pt_idx, ndw;
653 /* assume the worst case */
654 ndw += vm->max_pde_used * 6;
656 /* update too big for an IB */
660 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
665 /* walk over the address space and update the page directory */
666 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
667 struct radeon_bo *bo = vm->page_tables[pt_idx].bo;
673 pt = radeon_bo_gpu_offset(bo);
674 if (vm->page_tables[pt_idx].addr == pt)
676 vm->page_tables[pt_idx].addr = pt;
678 pde = pd_addr + pt_idx * 8;
679 if (((last_pde + 8 * count) != pde) ||
680 ((last_pt + incr * count) != pt)) {
683 radeon_vm_set_pages(rdev, &ib, last_pde,
684 last_pt, count, incr,
697 radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count,
698 incr, R600_PTE_VALID);
700 if (ib.length_dw != 0) {
701 radeon_asic_vm_pad_ib(rdev, &ib);
703 radeon_sync_resv(rdev, &ib.sync, pd->tbo.resv, true);
704 WARN_ON(ib.length_dw > ndw);
705 r = radeon_ib_schedule(rdev, &ib, NULL, false);
707 radeon_ib_free(rdev, &ib);
710 ib.fence->is_vm_update = true;
711 radeon_bo_fence(pd, ib.fence, false);
713 radeon_ib_free(rdev, &ib);
719 * radeon_vm_frag_ptes - add fragment information to PTEs
721 * @rdev: radeon_device pointer
722 * @ib: IB for the update
723 * @pe_start: first PTE to handle
724 * @pe_end: last PTE to handle
725 * @addr: addr those PTEs should point to
726 * @flags: hw mapping flags
728 * Global and local mutex must be locked!
730 static void radeon_vm_frag_ptes(struct radeon_device *rdev,
731 struct radeon_ib *ib,
732 uint64_t pe_start, uint64_t pe_end,
733 uint64_t addr, uint32_t flags)
736 * The MC L1 TLB supports variable sized pages, based on a fragment
737 * field in the PTE. When this field is set to a non-zero value, page
738 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
739 * flags are considered valid for all PTEs within the fragment range
740 * and corresponding mappings are assumed to be physically contiguous.
742 * The L1 TLB can store a single PTE for the whole fragment,
743 * significantly increasing the space available for translation
744 * caching. This leads to large improvements in throughput when the
745 * TLB is under pressure.
747 * The L2 TLB distributes small and large fragments into two
748 * asymmetric partitions. The large fragment cache is significantly
749 * larger. Thus, we try to use large fragments wherever possible.
750 * Userspace can support this by aligning virtual base address and
751 * allocation size to the fragment size.
754 /* NI is optimized for 256KB fragments, SI and newer for 64KB */
755 uint64_t frag_flags = ((rdev->family == CHIP_CAYMAN) ||
756 (rdev->family == CHIP_ARUBA)) ?
757 R600_PTE_FRAG_256KB : R600_PTE_FRAG_64KB;
758 uint64_t frag_align = ((rdev->family == CHIP_CAYMAN) ||
759 (rdev->family == CHIP_ARUBA)) ? 0x200 : 0x80;
761 uint64_t frag_start = ALIGN(pe_start, frag_align);
762 uint64_t frag_end = pe_end & ~(frag_align - 1);
766 /* system pages are non continuously */
767 if ((flags & R600_PTE_SYSTEM) || !(flags & R600_PTE_VALID) ||
768 (frag_start >= frag_end)) {
770 count = (pe_end - pe_start) / 8;
771 radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
772 RADEON_GPU_PAGE_SIZE, flags);
776 /* handle the 4K area at the beginning */
777 if (pe_start != frag_start) {
778 count = (frag_start - pe_start) / 8;
779 radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
780 RADEON_GPU_PAGE_SIZE, flags);
781 addr += RADEON_GPU_PAGE_SIZE * count;
784 /* handle the area in the middle */
785 count = (frag_end - frag_start) / 8;
786 radeon_vm_set_pages(rdev, ib, frag_start, addr, count,
787 RADEON_GPU_PAGE_SIZE, flags | frag_flags);
789 /* handle the 4K area at the end */
790 if (frag_end != pe_end) {
791 addr += RADEON_GPU_PAGE_SIZE * count;
792 count = (pe_end - frag_end) / 8;
793 radeon_vm_set_pages(rdev, ib, frag_end, addr, count,
794 RADEON_GPU_PAGE_SIZE, flags);
799 * radeon_vm_update_ptes - make sure that page tables are valid
801 * @rdev: radeon_device pointer
803 * @start: start of GPU address range
804 * @end: end of GPU address range
805 * @dst: destination address to map to
806 * @flags: mapping flags
808 * Update the page tables in the range @start - @end (cayman+).
810 * Global and local mutex must be locked!
812 static int radeon_vm_update_ptes(struct radeon_device *rdev,
813 struct radeon_vm *vm,
814 struct radeon_ib *ib,
815 uint64_t start, uint64_t end,
816 uint64_t dst, uint32_t flags)
818 uint64_t mask = RADEON_VM_PTE_COUNT - 1;
819 uint64_t last_pte = ~0, last_dst = ~0;
823 /* walk over the address space and update the page tables */
824 for (addr = start; addr < end; ) {
825 uint64_t pt_idx = addr >> radeon_vm_block_size;
826 struct radeon_bo *pt = vm->page_tables[pt_idx].bo;
831 radeon_sync_resv(rdev, &ib->sync, pt->tbo.resv, true);
832 r = reservation_object_reserve_shared(pt->tbo.resv);
836 if ((addr & ~mask) == (end & ~mask))
839 nptes = RADEON_VM_PTE_COUNT - (addr & mask);
841 pte = radeon_bo_gpu_offset(pt);
842 pte += (addr & mask) * 8;
844 if ((last_pte + 8 * count) != pte) {
847 radeon_vm_frag_ptes(rdev, ib, last_pte,
848 last_pte + 8 * count,
860 dst += nptes * RADEON_GPU_PAGE_SIZE;
864 radeon_vm_frag_ptes(rdev, ib, last_pte,
865 last_pte + 8 * count,
873 * radeon_vm_fence_pts - fence page tables after an update
876 * @start: start of GPU address range
877 * @end: end of GPU address range
878 * @fence: fence to use
880 * Fence the page tables in the range @start - @end (cayman+).
882 * Global and local mutex must be locked!
884 static void radeon_vm_fence_pts(struct radeon_vm *vm,
885 uint64_t start, uint64_t end,
886 struct radeon_fence *fence)
890 start >>= radeon_vm_block_size;
891 end >>= radeon_vm_block_size;
893 for (i = start; i <= end; ++i)
894 radeon_bo_fence(vm->page_tables[i].bo, fence, true);
898 * radeon_vm_bo_update - map a bo into the vm page table
900 * @rdev: radeon_device pointer
902 * @bo: radeon buffer object
905 * Fill in the page table entries for @bo (cayman+).
906 * Returns 0 for success, -EINVAL for failure.
908 * Object have to be reserved and mutex must be locked!
910 int radeon_vm_bo_update(struct radeon_device *rdev,
911 struct radeon_bo_va *bo_va,
912 struct ttm_mem_reg *mem)
914 struct radeon_vm *vm = bo_va->vm;
916 unsigned nptes, ncmds, ndw;
921 if (!bo_va->it.start) {
922 dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n",
927 spin_lock(&vm->status_lock);
929 if (list_empty(&bo_va->vm_status)) {
930 spin_unlock(&vm->status_lock);
933 list_del_init(&bo_va->vm_status);
935 list_del(&bo_va->vm_status);
936 list_add(&bo_va->vm_status, &vm->cleared);
938 spin_unlock(&vm->status_lock);
940 bo_va->flags &= ~RADEON_VM_PAGE_VALID;
941 bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
942 bo_va->flags &= ~RADEON_VM_PAGE_SNOOPED;
943 if (bo_va->bo && radeon_ttm_tt_is_readonly(bo_va->bo->tbo.ttm))
944 bo_va->flags &= ~RADEON_VM_PAGE_WRITEABLE;
947 addr = mem->start << PAGE_SHIFT;
948 if (mem->mem_type != TTM_PL_SYSTEM) {
949 bo_va->flags |= RADEON_VM_PAGE_VALID;
951 if (mem->mem_type == TTM_PL_TT) {
952 bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
953 if (!(bo_va->bo->flags & (RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC)))
954 bo_va->flags |= RADEON_VM_PAGE_SNOOPED;
957 addr += rdev->vm_manager.vram_base_offset;
963 trace_radeon_vm_bo_update(bo_va);
965 nptes = bo_va->it.last - bo_va->it.start + 1;
967 /* reserve space for one command every (1 << BLOCK_SIZE) entries
968 or 2k dwords (whatever is smaller) */
969 ncmds = (nptes >> min(radeon_vm_block_size, 11)) + 1;
974 flags = radeon_vm_page_flags(bo_va->flags);
975 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
976 /* only copy commands needed */
979 } else if (flags & R600_PTE_SYSTEM) {
980 /* header for write data commands */
983 /* body of write data command */
987 /* set page commands needed */
990 /* two extra commands for begin/end of fragment */
994 /* update too big for an IB */
998 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
1003 if (!(bo_va->flags & RADEON_VM_PAGE_VALID)) {
1006 for (i = 0; i < RADEON_NUM_RINGS; ++i)
1007 radeon_sync_fence(&ib.sync, vm->ids[i].last_id_use);
1010 r = radeon_vm_update_ptes(rdev, vm, &ib, bo_va->it.start,
1011 bo_va->it.last + 1, addr,
1012 radeon_vm_page_flags(bo_va->flags));
1014 radeon_ib_free(rdev, &ib);
1018 radeon_asic_vm_pad_ib(rdev, &ib);
1019 WARN_ON(ib.length_dw > ndw);
1021 r = radeon_ib_schedule(rdev, &ib, NULL, false);
1023 radeon_ib_free(rdev, &ib);
1026 ib.fence->is_vm_update = true;
1027 radeon_vm_fence_pts(vm, bo_va->it.start, bo_va->it.last + 1, ib.fence);
1028 radeon_fence_unref(&bo_va->last_pt_update);
1029 bo_va->last_pt_update = radeon_fence_ref(ib.fence);
1030 radeon_ib_free(rdev, &ib);
1036 * radeon_vm_clear_freed - clear freed BOs in the PT
1038 * @rdev: radeon_device pointer
1041 * Make sure all freed BOs are cleared in the PT.
1042 * Returns 0 for success.
1044 * PTs have to be reserved and mutex must be locked!
1046 int radeon_vm_clear_freed(struct radeon_device *rdev,
1047 struct radeon_vm *vm)
1049 struct radeon_bo_va *bo_va;
1052 spin_lock(&vm->status_lock);
1053 while (!list_empty(&vm->freed)) {
1054 bo_va = list_first_entry(&vm->freed,
1055 struct radeon_bo_va, vm_status);
1056 spin_unlock(&vm->status_lock);
1058 r = radeon_vm_bo_update(rdev, bo_va, NULL);
1059 radeon_bo_unref(&bo_va->bo);
1060 radeon_fence_unref(&bo_va->last_pt_update);
1061 spin_lock(&vm->status_lock);
1062 list_del(&bo_va->vm_status);
1068 spin_unlock(&vm->status_lock);
1074 * radeon_vm_clear_invalids - clear invalidated BOs in the PT
1076 * @rdev: radeon_device pointer
1079 * Make sure all invalidated BOs are cleared in the PT.
1080 * Returns 0 for success.
1082 * PTs have to be reserved and mutex must be locked!
1084 int radeon_vm_clear_invalids(struct radeon_device *rdev,
1085 struct radeon_vm *vm)
1087 struct radeon_bo_va *bo_va;
1090 spin_lock(&vm->status_lock);
1091 while (!list_empty(&vm->invalidated)) {
1092 bo_va = list_first_entry(&vm->invalidated,
1093 struct radeon_bo_va, vm_status);
1094 spin_unlock(&vm->status_lock);
1096 r = radeon_vm_bo_update(rdev, bo_va, NULL);
1100 spin_lock(&vm->status_lock);
1102 spin_unlock(&vm->status_lock);
1108 * radeon_vm_bo_rmv - remove a bo to a specific vm
1110 * @rdev: radeon_device pointer
1111 * @bo_va: requested bo_va
1113 * Remove @bo_va->bo from the requested vm (cayman+).
1115 * Object have to be reserved!
1117 void radeon_vm_bo_rmv(struct radeon_device *rdev,
1118 struct radeon_bo_va *bo_va)
1120 struct radeon_vm *vm = bo_va->vm;
1122 list_del(&bo_va->bo_list);
1124 mutex_lock(&vm->mutex);
1125 if (bo_va->it.start || bo_va->it.last)
1126 interval_tree_remove(&bo_va->it, &vm->va);
1128 spin_lock(&vm->status_lock);
1129 list_del(&bo_va->vm_status);
1130 if (bo_va->it.start || bo_va->it.last) {
1131 bo_va->bo = radeon_bo_ref(bo_va->bo);
1132 list_add(&bo_va->vm_status, &vm->freed);
1134 radeon_fence_unref(&bo_va->last_pt_update);
1137 spin_unlock(&vm->status_lock);
1139 mutex_unlock(&vm->mutex);
1143 * radeon_vm_bo_invalidate - mark the bo as invalid
1145 * @rdev: radeon_device pointer
1147 * @bo: radeon buffer object
1149 * Mark @bo as invalid (cayman+).
1151 void radeon_vm_bo_invalidate(struct radeon_device *rdev,
1152 struct radeon_bo *bo)
1154 struct radeon_bo_va *bo_va;
1156 list_for_each_entry(bo_va, &bo->va, bo_list) {
1157 spin_lock(&bo_va->vm->status_lock);
1158 if (list_empty(&bo_va->vm_status) &&
1159 (bo_va->it.start || bo_va->it.last))
1160 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1161 spin_unlock(&bo_va->vm->status_lock);
1166 * radeon_vm_init - initialize a vm instance
1168 * @rdev: radeon_device pointer
1171 * Init @vm fields (cayman+).
1173 int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
1175 const unsigned align = min(RADEON_VM_PTB_ALIGN_SIZE,
1176 RADEON_VM_PTE_COUNT * 8);
1177 unsigned pd_size, pd_entries, pts_size;
1180 vm->ib_bo_va = NULL;
1181 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1183 vm->ids[i].flushed_updates = NULL;
1184 vm->ids[i].last_id_use = NULL;
1186 mutex_init(&vm->mutex);
1188 spin_lock_init(&vm->status_lock);
1189 INIT_LIST_HEAD(&vm->invalidated);
1190 INIT_LIST_HEAD(&vm->freed);
1191 INIT_LIST_HEAD(&vm->cleared);
1193 pd_size = radeon_vm_directory_size(rdev);
1194 pd_entries = radeon_vm_num_pdes(rdev);
1196 /* allocate page table array */
1197 pts_size = pd_entries * sizeof(struct radeon_vm_pt);
1198 vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
1199 if (vm->page_tables == NULL) {
1200 DRM_ERROR("Cannot allocate memory for page table array\n");
1204 r = radeon_bo_create(rdev, pd_size, align, true,
1205 RADEON_GEM_DOMAIN_VRAM, 0, NULL,
1206 NULL, &vm->page_directory);
1210 r = radeon_vm_clear_bo(rdev, vm->page_directory);
1212 radeon_bo_unref(&vm->page_directory);
1213 vm->page_directory = NULL;
1221 * radeon_vm_fini - tear down a vm instance
1223 * @rdev: radeon_device pointer
1226 * Tear down @vm (cayman+).
1227 * Unbind the VM and remove all bos from the vm bo list
1229 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
1231 struct radeon_bo_va *bo_va, *tmp;
1234 if (!RB_EMPTY_ROOT(&vm->va)) {
1235 dev_err(rdev->dev, "still active bo inside vm\n");
1237 rbtree_postorder_for_each_entry_safe(bo_va, tmp, &vm->va, it.rb) {
1238 interval_tree_remove(&bo_va->it, &vm->va);
1239 r = radeon_bo_reserve(bo_va->bo, false);
1241 list_del_init(&bo_va->bo_list);
1242 radeon_bo_unreserve(bo_va->bo);
1243 radeon_fence_unref(&bo_va->last_pt_update);
1247 list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) {
1248 radeon_bo_unref(&bo_va->bo);
1249 radeon_fence_unref(&bo_va->last_pt_update);
1253 for (i = 0; i < radeon_vm_num_pdes(rdev); i++)
1254 radeon_bo_unref(&vm->page_tables[i].bo);
1255 kfree(vm->page_tables);
1257 radeon_bo_unref(&vm->page_directory);
1259 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1260 radeon_fence_unref(&vm->ids[i].flushed_updates);
1261 radeon_fence_unref(&vm->ids[i].last_id_use);
1264 mutex_destroy(&vm->mutex);