drm/i915/gen8: Move GEN7_GT_MODE WA to common init fn
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39         struct drm_device *dev = ring->dev;
40
41         if (!dev)
42                 return false;
43
44         if (i915.enable_execlists) {
45                 struct intel_context *dctx = ring->default_context;
46                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48                 return ringbuf->obj;
49         } else
50                 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55         int space = head - tail;
56         if (space <= 0)
57                 space += size;
58         return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63         if (ringbuf->last_retired_head != -1) {
64                 ringbuf->head = ringbuf->last_retired_head;
65                 ringbuf->last_retired_head = -1;
66         }
67
68         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69                                             ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74         intel_ring_update_space(ringbuf);
75         return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80         struct drm_i915_private *dev_priv = ring->dev->dev_private;
81         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86         struct intel_ringbuffer *ringbuf = ring->buffer;
87         ringbuf->tail &= ringbuf->size - 1;
88         if (intel_ring_stopped(ring))
89                 return;
90         ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95                        u32      invalidate_domains,
96                        u32      flush_domains)
97 {
98         struct intel_engine_cs *ring = req->ring;
99         u32 cmd;
100         int ret;
101
102         cmd = MI_FLUSH;
103         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104                 cmd |= MI_NO_WRITE_FLUSH;
105
106         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107                 cmd |= MI_READ_FLUSH;
108
109         ret = intel_ring_begin(req, 2);
110         if (ret)
111                 return ret;
112
113         intel_ring_emit(ring, cmd);
114         intel_ring_emit(ring, MI_NOOP);
115         intel_ring_advance(ring);
116
117         return 0;
118 }
119
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122                        u32      invalidate_domains,
123                        u32      flush_domains)
124 {
125         struct intel_engine_cs *ring = req->ring;
126         struct drm_device *dev = ring->dev;
127         u32 cmd;
128         int ret;
129
130         /*
131          * read/write caches:
132          *
133          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
135          * also flushed at 2d versus 3d pipeline switches.
136          *
137          * read-only caches:
138          *
139          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140          * MI_READ_FLUSH is set, and is always flushed on 965.
141          *
142          * I915_GEM_DOMAIN_COMMAND may not exist?
143          *
144          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145          * invalidated when MI_EXE_FLUSH is set.
146          *
147          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148          * invalidated with every MI_FLUSH.
149          *
150          * TLBs:
151          *
152          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155          * are flushed at any MI_FLUSH.
156          */
157
158         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160                 cmd &= ~MI_NO_WRITE_FLUSH;
161         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162                 cmd |= MI_EXE_FLUSH;
163
164         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165             (IS_G4X(dev) || IS_GEN5(dev)))
166                 cmd |= MI_INVALIDATE_ISP;
167
168         ret = intel_ring_begin(req, 2);
169         if (ret)
170                 return ret;
171
172         intel_ring_emit(ring, cmd);
173         intel_ring_emit(ring, MI_NOOP);
174         intel_ring_advance(ring);
175
176         return 0;
177 }
178
179 /**
180  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181  * implementing two workarounds on gen6.  From section 1.4.7.1
182  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183  *
184  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185  * produced by non-pipelined state commands), software needs to first
186  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187  * 0.
188  *
189  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191  *
192  * And the workaround for these two requires this workaround first:
193  *
194  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195  * BEFORE the pipe-control with a post-sync op and no write-cache
196  * flushes.
197  *
198  * And this last workaround is tricky because of the requirements on
199  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200  * volume 2 part 1:
201  *
202  *     "1 of the following must also be set:
203  *      - Render Target Cache Flush Enable ([12] of DW1)
204  *      - Depth Cache Flush Enable ([0] of DW1)
205  *      - Stall at Pixel Scoreboard ([1] of DW1)
206  *      - Depth Stall ([13] of DW1)
207  *      - Post-Sync Operation ([13] of DW1)
208  *      - Notify Enable ([8] of DW1)"
209  *
210  * The cache flushes require the workaround flush that triggered this
211  * one, so we can't use it.  Depth stall would trigger the same.
212  * Post-sync nonzero is what triggered this second workaround, so we
213  * can't use that one either.  Notify enable is IRQs, which aren't
214  * really our business.  That leaves only stall at scoreboard.
215  */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219         struct intel_engine_cs *ring = req->ring;
220         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221         int ret;
222
223         ret = intel_ring_begin(req, 6);
224         if (ret)
225                 return ret;
226
227         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
230         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231         intel_ring_emit(ring, 0); /* low dword */
232         intel_ring_emit(ring, 0); /* high dword */
233         intel_ring_emit(ring, MI_NOOP);
234         intel_ring_advance(ring);
235
236         ret = intel_ring_begin(req, 6);
237         if (ret)
238                 return ret;
239
240         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243         intel_ring_emit(ring, 0);
244         intel_ring_emit(ring, 0);
245         intel_ring_emit(ring, MI_NOOP);
246         intel_ring_advance(ring);
247
248         return 0;
249 }
250
251 static int
252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253                        u32 invalidate_domains, u32 flush_domains)
254 {
255         struct intel_engine_cs *ring = req->ring;
256         u32 flags = 0;
257         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258         int ret;
259
260         /* Force SNB workarounds for PIPE_CONTROL flushes */
261         ret = intel_emit_post_sync_nonzero_flush(req);
262         if (ret)
263                 return ret;
264
265         /* Just flush everything.  Experiments have shown that reducing the
266          * number of bits based on the write domains has little performance
267          * impact.
268          */
269         if (flush_domains) {
270                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272                 /*
273                  * Ensure that any following seqno writes only happen
274                  * when the render cache is indeed flushed.
275                  */
276                 flags |= PIPE_CONTROL_CS_STALL;
277         }
278         if (invalidate_domains) {
279                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
280                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285                 /*
286                  * TLB invalidate requires a post-sync write.
287                  */
288                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289         }
290
291         ret = intel_ring_begin(req, 4);
292         if (ret)
293                 return ret;
294
295         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296         intel_ring_emit(ring, flags);
297         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298         intel_ring_emit(ring, 0);
299         intel_ring_advance(ring);
300
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307         struct intel_engine_cs *ring = req->ring;
308         int ret;
309
310         ret = intel_ring_begin(req, 4);
311         if (ret)
312                 return ret;
313
314         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
317         intel_ring_emit(ring, 0);
318         intel_ring_emit(ring, 0);
319         intel_ring_advance(ring);
320
321         return 0;
322 }
323
324 static int
325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326                        u32 invalidate_domains, u32 flush_domains)
327 {
328         struct intel_engine_cs *ring = req->ring;
329         u32 flags = 0;
330         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331         int ret;
332
333         /*
334          * Ensure that any following seqno writes only happen when the render
335          * cache is indeed flushed.
336          *
337          * Workaround: 4th PIPE_CONTROL command (except the ones with only
338          * read-cache invalidate bits set) must have the CS_STALL bit set. We
339          * don't try to be clever and just set it unconditionally.
340          */
341         flags |= PIPE_CONTROL_CS_STALL;
342
343         /* Just flush everything.  Experiments have shown that reducing the
344          * number of bits based on the write domains has little performance
345          * impact.
346          */
347         if (flush_domains) {
348                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350         }
351         if (invalidate_domains) {
352                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
353                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
354                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
355                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
356                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
357                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
358                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
359                 /*
360                  * TLB invalidate requires a post-sync write.
361                  */
362                 flags |= PIPE_CONTROL_QW_WRITE;
363                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
364
365                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
366
367                 /* Workaround: we must issue a pipe_control with CS-stall bit
368                  * set before a pipe_control command that has the state cache
369                  * invalidate bit set. */
370                 gen7_render_ring_cs_stall_wa(req);
371         }
372
373         ret = intel_ring_begin(req, 4);
374         if (ret)
375                 return ret;
376
377         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
378         intel_ring_emit(ring, flags);
379         intel_ring_emit(ring, scratch_addr);
380         intel_ring_emit(ring, 0);
381         intel_ring_advance(ring);
382
383         return 0;
384 }
385
386 static int
387 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
388                        u32 flags, u32 scratch_addr)
389 {
390         struct intel_engine_cs *ring = req->ring;
391         int ret;
392
393         ret = intel_ring_begin(req, 6);
394         if (ret)
395                 return ret;
396
397         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
398         intel_ring_emit(ring, flags);
399         intel_ring_emit(ring, scratch_addr);
400         intel_ring_emit(ring, 0);
401         intel_ring_emit(ring, 0);
402         intel_ring_emit(ring, 0);
403         intel_ring_advance(ring);
404
405         return 0;
406 }
407
408 static int
409 gen8_render_ring_flush(struct drm_i915_gem_request *req,
410                        u32 invalidate_domains, u32 flush_domains)
411 {
412         u32 flags = 0;
413         u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
414         int ret;
415
416         flags |= PIPE_CONTROL_CS_STALL;
417
418         if (flush_domains) {
419                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
420                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
421         }
422         if (invalidate_domains) {
423                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
424                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
425                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
426                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
427                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
428                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
429                 flags |= PIPE_CONTROL_QW_WRITE;
430                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
431
432                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
433                 ret = gen8_emit_pipe_control(req,
434                                              PIPE_CONTROL_CS_STALL |
435                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
436                                              0);
437                 if (ret)
438                         return ret;
439         }
440
441         return gen8_emit_pipe_control(req, flags, scratch_addr);
442 }
443
444 static void ring_write_tail(struct intel_engine_cs *ring,
445                             u32 value)
446 {
447         struct drm_i915_private *dev_priv = ring->dev->dev_private;
448         I915_WRITE_TAIL(ring, value);
449 }
450
451 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
452 {
453         struct drm_i915_private *dev_priv = ring->dev->dev_private;
454         u64 acthd;
455
456         if (INTEL_INFO(ring->dev)->gen >= 8)
457                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
458                                          RING_ACTHD_UDW(ring->mmio_base));
459         else if (INTEL_INFO(ring->dev)->gen >= 4)
460                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
461         else
462                 acthd = I915_READ(ACTHD);
463
464         return acthd;
465 }
466
467 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
468 {
469         struct drm_i915_private *dev_priv = ring->dev->dev_private;
470         u32 addr;
471
472         addr = dev_priv->status_page_dmah->busaddr;
473         if (INTEL_INFO(ring->dev)->gen >= 4)
474                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
475         I915_WRITE(HWS_PGA, addr);
476 }
477
478 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
479 {
480         struct drm_device *dev = ring->dev;
481         struct drm_i915_private *dev_priv = ring->dev->dev_private;
482         u32 mmio = 0;
483
484         /* The ring status page addresses are no longer next to the rest of
485          * the ring registers as of gen7.
486          */
487         if (IS_GEN7(dev)) {
488                 switch (ring->id) {
489                 case RCS:
490                         mmio = RENDER_HWS_PGA_GEN7;
491                         break;
492                 case BCS:
493                         mmio = BLT_HWS_PGA_GEN7;
494                         break;
495                 /*
496                  * VCS2 actually doesn't exist on Gen7. Only shut up
497                  * gcc switch check warning
498                  */
499                 case VCS2:
500                 case VCS:
501                         mmio = BSD_HWS_PGA_GEN7;
502                         break;
503                 case VECS:
504                         mmio = VEBOX_HWS_PGA_GEN7;
505                         break;
506                 }
507         } else if (IS_GEN6(ring->dev)) {
508                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
509         } else {
510                 /* XXX: gen8 returns to sanity */
511                 mmio = RING_HWS_PGA(ring->mmio_base);
512         }
513
514         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
515         POSTING_READ(mmio);
516
517         /*
518          * Flush the TLB for this page
519          *
520          * FIXME: These two bits have disappeared on gen8, so a question
521          * arises: do we still need this and if so how should we go about
522          * invalidating the TLB?
523          */
524         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
525                 u32 reg = RING_INSTPM(ring->mmio_base);
526
527                 /* ring should be idle before issuing a sync flush*/
528                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
529
530                 I915_WRITE(reg,
531                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
532                                               INSTPM_SYNC_FLUSH));
533                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
534                              1000))
535                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
536                                   ring->name);
537         }
538 }
539
540 static bool stop_ring(struct intel_engine_cs *ring)
541 {
542         struct drm_i915_private *dev_priv = to_i915(ring->dev);
543
544         if (!IS_GEN2(ring->dev)) {
545                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
546                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
547                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
548                         /* Sometimes we observe that the idle flag is not
549                          * set even though the ring is empty. So double
550                          * check before giving up.
551                          */
552                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
553                                 return false;
554                 }
555         }
556
557         I915_WRITE_CTL(ring, 0);
558         I915_WRITE_HEAD(ring, 0);
559         ring->write_tail(ring, 0);
560
561         if (!IS_GEN2(ring->dev)) {
562                 (void)I915_READ_CTL(ring);
563                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
564         }
565
566         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
567 }
568
569 static int init_ring_common(struct intel_engine_cs *ring)
570 {
571         struct drm_device *dev = ring->dev;
572         struct drm_i915_private *dev_priv = dev->dev_private;
573         struct intel_ringbuffer *ringbuf = ring->buffer;
574         struct drm_i915_gem_object *obj = ringbuf->obj;
575         int ret = 0;
576
577         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
578
579         if (!stop_ring(ring)) {
580                 /* G45 ring initialization often fails to reset head to zero */
581                 DRM_DEBUG_KMS("%s head not reset to zero "
582                               "ctl %08x head %08x tail %08x start %08x\n",
583                               ring->name,
584                               I915_READ_CTL(ring),
585                               I915_READ_HEAD(ring),
586                               I915_READ_TAIL(ring),
587                               I915_READ_START(ring));
588
589                 if (!stop_ring(ring)) {
590                         DRM_ERROR("failed to set %s head to zero "
591                                   "ctl %08x head %08x tail %08x start %08x\n",
592                                   ring->name,
593                                   I915_READ_CTL(ring),
594                                   I915_READ_HEAD(ring),
595                                   I915_READ_TAIL(ring),
596                                   I915_READ_START(ring));
597                         ret = -EIO;
598                         goto out;
599                 }
600         }
601
602         if (I915_NEED_GFX_HWS(dev))
603                 intel_ring_setup_status_page(ring);
604         else
605                 ring_setup_phys_status_page(ring);
606
607         /* Enforce ordering by reading HEAD register back */
608         I915_READ_HEAD(ring);
609
610         /* Initialize the ring. This must happen _after_ we've cleared the ring
611          * registers with the above sequence (the readback of the HEAD registers
612          * also enforces ordering), otherwise the hw might lose the new ring
613          * register values. */
614         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
615
616         /* WaClearRingBufHeadRegAtInit:ctg,elk */
617         if (I915_READ_HEAD(ring))
618                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
619                           ring->name, I915_READ_HEAD(ring));
620         I915_WRITE_HEAD(ring, 0);
621         (void)I915_READ_HEAD(ring);
622
623         I915_WRITE_CTL(ring,
624                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
625                         | RING_VALID);
626
627         /* If the head is still not zero, the ring is dead */
628         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
629                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
630                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
631                 DRM_ERROR("%s initialization failed "
632                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
633                           ring->name,
634                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
635                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
636                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
637                 ret = -EIO;
638                 goto out;
639         }
640
641         ringbuf->last_retired_head = -1;
642         ringbuf->head = I915_READ_HEAD(ring);
643         ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
644         intel_ring_update_space(ringbuf);
645
646         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
647
648 out:
649         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
650
651         return ret;
652 }
653
654 void
655 intel_fini_pipe_control(struct intel_engine_cs *ring)
656 {
657         struct drm_device *dev = ring->dev;
658
659         if (ring->scratch.obj == NULL)
660                 return;
661
662         if (INTEL_INFO(dev)->gen >= 5) {
663                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
664                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
665         }
666
667         drm_gem_object_unreference(&ring->scratch.obj->base);
668         ring->scratch.obj = NULL;
669 }
670
671 int
672 intel_init_pipe_control(struct intel_engine_cs *ring)
673 {
674         int ret;
675
676         WARN_ON(ring->scratch.obj);
677
678         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
679         if (ring->scratch.obj == NULL) {
680                 DRM_ERROR("Failed to allocate seqno page\n");
681                 ret = -ENOMEM;
682                 goto err;
683         }
684
685         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
686         if (ret)
687                 goto err_unref;
688
689         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
690         if (ret)
691                 goto err_unref;
692
693         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
694         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
695         if (ring->scratch.cpu_page == NULL) {
696                 ret = -ENOMEM;
697                 goto err_unpin;
698         }
699
700         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
701                          ring->name, ring->scratch.gtt_offset);
702         return 0;
703
704 err_unpin:
705         i915_gem_object_ggtt_unpin(ring->scratch.obj);
706 err_unref:
707         drm_gem_object_unreference(&ring->scratch.obj->base);
708 err:
709         return ret;
710 }
711
712 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
713 {
714         int ret, i;
715         struct intel_engine_cs *ring = req->ring;
716         struct drm_device *dev = ring->dev;
717         struct drm_i915_private *dev_priv = dev->dev_private;
718         struct i915_workarounds *w = &dev_priv->workarounds;
719
720         if (WARN_ON_ONCE(w->count == 0))
721                 return 0;
722
723         ring->gpu_caches_dirty = true;
724         ret = intel_ring_flush_all_caches(req);
725         if (ret)
726                 return ret;
727
728         ret = intel_ring_begin(req, (w->count * 2 + 2));
729         if (ret)
730                 return ret;
731
732         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
733         for (i = 0; i < w->count; i++) {
734                 intel_ring_emit(ring, w->reg[i].addr);
735                 intel_ring_emit(ring, w->reg[i].value);
736         }
737         intel_ring_emit(ring, MI_NOOP);
738
739         intel_ring_advance(ring);
740
741         ring->gpu_caches_dirty = true;
742         ret = intel_ring_flush_all_caches(req);
743         if (ret)
744                 return ret;
745
746         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
747
748         return 0;
749 }
750
751 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
752 {
753         int ret;
754
755         ret = intel_ring_workarounds_emit(req);
756         if (ret != 0)
757                 return ret;
758
759         ret = i915_gem_render_state_init(req);
760         if (ret)
761                 DRM_ERROR("init render state: %d\n", ret);
762
763         return ret;
764 }
765
766 static int wa_add(struct drm_i915_private *dev_priv,
767                   const u32 addr, const u32 mask, const u32 val)
768 {
769         const u32 idx = dev_priv->workarounds.count;
770
771         if (WARN_ON(idx >= I915_MAX_WA_REGS))
772                 return -ENOSPC;
773
774         dev_priv->workarounds.reg[idx].addr = addr;
775         dev_priv->workarounds.reg[idx].value = val;
776         dev_priv->workarounds.reg[idx].mask = mask;
777
778         dev_priv->workarounds.count++;
779
780         return 0;
781 }
782
783 #define WA_REG(addr, mask, val) do { \
784                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
785                 if (r) \
786                         return r; \
787         } while (0)
788
789 #define WA_SET_BIT_MASKED(addr, mask) \
790         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
791
792 #define WA_CLR_BIT_MASKED(addr, mask) \
793         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
794
795 #define WA_SET_FIELD_MASKED(addr, mask, value) \
796         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
797
798 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
799 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
800
801 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
802
803 static int gen8_init_workarounds(struct intel_engine_cs *ring)
804 {
805         struct drm_device *dev = ring->dev;
806         struct drm_i915_private *dev_priv = dev->dev_private;
807
808         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
809
810         /* WaDisableAsyncFlipPerfMode:bdw,chv */
811         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
812
813         /* WaDisablePartialInstShootdown:bdw,chv */
814         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
815                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
816
817         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
818          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
819          *  polygons in the same 8x4 pixel/sample area to be processed without
820          *  stalling waiting for the earlier ones to write to Hierarchical Z
821          *  buffer."
822          *
823          * This optimization is off by default for BDW and CHV; turn it on.
824          */
825         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
826
827         /* Wa4x4STCOptimizationDisable:bdw,chv */
828         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
829
830         /*
831          * BSpec recommends 8x4 when MSAA is used,
832          * however in practice 16x4 seems fastest.
833          *
834          * Note that PS/WM thread counts depend on the WIZ hashing
835          * disable bit, which we don't touch here, but it's good
836          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
837          */
838         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
839                             GEN6_WIZ_HASHING_MASK,
840                             GEN6_WIZ_HASHING_16x4);
841
842         return 0;
843 }
844
845 static int bdw_init_workarounds(struct intel_engine_cs *ring)
846 {
847         int ret;
848         struct drm_device *dev = ring->dev;
849         struct drm_i915_private *dev_priv = dev->dev_private;
850
851         ret = gen8_init_workarounds(ring);
852         if (ret)
853                 return ret;
854
855         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
856         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
857
858         /* WaDisableDopClockGating:bdw */
859         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
860                           DOP_CLOCK_GATING_DISABLE);
861
862         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
863                           GEN8_SAMPLER_POWER_BYPASS_DIS);
864
865         /* Use Force Non-Coherent whenever executing a 3D context. This is a
866          * workaround for for a possible hang in the unlikely event a TLB
867          * invalidation occurs during a PSD flush.
868          */
869         WA_SET_BIT_MASKED(HDC_CHICKEN0,
870                           /* WaForceEnableNonCoherent:bdw */
871                           HDC_FORCE_NON_COHERENT |
872                           /* WaForceContextSaveRestoreNonCoherent:bdw */
873                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
874                           /* WaHdcDisableFetchWhenMasked:bdw */
875                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
876                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
877                           (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
878
879         return 0;
880 }
881
882 static int chv_init_workarounds(struct intel_engine_cs *ring)
883 {
884         int ret;
885         struct drm_device *dev = ring->dev;
886         struct drm_i915_private *dev_priv = dev->dev_private;
887
888         ret = gen8_init_workarounds(ring);
889         if (ret)
890                 return ret;
891
892         /* WaDisableThreadStallDopClockGating:chv */
893         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
894
895         /* Use Force Non-Coherent whenever executing a 3D context. This is a
896          * workaround for a possible hang in the unlikely event a TLB
897          * invalidation occurs during a PSD flush.
898          */
899         /* WaForceEnableNonCoherent:chv */
900         /* WaHdcDisableFetchWhenMasked:chv */
901         WA_SET_BIT_MASKED(HDC_CHICKEN0,
902                           HDC_FORCE_NON_COHERENT |
903                           HDC_DONOT_FETCH_MEM_WHEN_MASKED);
904
905         /* Improve HiZ throughput on CHV. */
906         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
907
908         return 0;
909 }
910
911 static int gen9_init_workarounds(struct intel_engine_cs *ring)
912 {
913         struct drm_device *dev = ring->dev;
914         struct drm_i915_private *dev_priv = dev->dev_private;
915         uint32_t tmp;
916
917         /* WaDisablePartialInstShootdown:skl,bxt */
918         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
919                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
920
921         /* Syncing dependencies between camera and graphics:skl,bxt */
922         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
923                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
924
925         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
926             INTEL_REVID(dev) == SKL_REVID_B0)) ||
927             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
928                 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
929                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
930                                   GEN9_DG_MIRROR_FIX_ENABLE);
931         }
932
933         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
934             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
935                 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
936                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
937                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
938                 /*
939                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
940                  * but we do that in per ctx batchbuffer as there is an issue
941                  * with this register not getting restored on ctx restore
942                  */
943         }
944
945         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
946             IS_BROXTON(dev)) {
947                 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
948                 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
949                                   GEN9_ENABLE_YV12_BUGFIX);
950         }
951
952         /* Wa4x4STCOptimizationDisable:skl,bxt */
953         /* WaDisablePartialResolveInVc:skl,bxt */
954         WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
955                                          GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
956
957         /* WaCcsTlbPrefetchDisable:skl,bxt */
958         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
959                           GEN9_CCS_TLB_PREFETCH_ENABLE);
960
961         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
962         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
963             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
964                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
965                                   PIXEL_MASK_CAMMING_DISABLE);
966
967         /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
968         tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
969         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
970             (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
971                 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
972         WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
973
974         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
975         if (IS_SKYLAKE(dev) ||
976             (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_B0)) {
977                 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
978                                   GEN8_SAMPLER_POWER_BYPASS_DIS);
979         }
980
981         /* WaDisableSTUnitPowerOptimization:skl,bxt */
982         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
983
984         return 0;
985 }
986
987 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
988 {
989         struct drm_device *dev = ring->dev;
990         struct drm_i915_private *dev_priv = dev->dev_private;
991         u8 vals[3] = { 0, 0, 0 };
992         unsigned int i;
993
994         for (i = 0; i < 3; i++) {
995                 u8 ss;
996
997                 /*
998                  * Only consider slices where one, and only one, subslice has 7
999                  * EUs
1000                  */
1001                 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1002                         continue;
1003
1004                 /*
1005                  * subslice_7eu[i] != 0 (because of the check above) and
1006                  * ss_max == 4 (maximum number of subslices possible per slice)
1007                  *
1008                  * ->    0 <= ss <= 3;
1009                  */
1010                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1011                 vals[i] = 3 - ss;
1012         }
1013
1014         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1015                 return 0;
1016
1017         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1018         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1019                             GEN9_IZ_HASHING_MASK(2) |
1020                             GEN9_IZ_HASHING_MASK(1) |
1021                             GEN9_IZ_HASHING_MASK(0),
1022                             GEN9_IZ_HASHING(2, vals[2]) |
1023                             GEN9_IZ_HASHING(1, vals[1]) |
1024                             GEN9_IZ_HASHING(0, vals[0]));
1025
1026         return 0;
1027 }
1028
1029
1030 static int skl_init_workarounds(struct intel_engine_cs *ring)
1031 {
1032         int ret;
1033         struct drm_device *dev = ring->dev;
1034         struct drm_i915_private *dev_priv = dev->dev_private;
1035
1036         ret = gen9_init_workarounds(ring);
1037         if (ret)
1038                 return ret;
1039
1040         /* WaDisablePowerCompilerClockGating:skl */
1041         if (INTEL_REVID(dev) == SKL_REVID_B0)
1042                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1043                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1044
1045         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1046                 /*
1047                  *Use Force Non-Coherent whenever executing a 3D context. This
1048                  * is a workaround for a possible hang in the unlikely event
1049                  * a TLB invalidation occurs during a PSD flush.
1050                  */
1051                 /* WaForceEnableNonCoherent:skl */
1052                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1053                                   HDC_FORCE_NON_COHERENT);
1054         }
1055
1056         if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1057             INTEL_REVID(dev) == SKL_REVID_D0)
1058                 /* WaBarrierPerformanceFixDisable:skl */
1059                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1060                                   HDC_FENCE_DEST_SLM_DISABLE |
1061                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1062
1063         /* WaDisableSbeCacheDispatchPortSharing:skl */
1064         if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1065                 WA_SET_BIT_MASKED(
1066                         GEN7_HALF_SLICE_CHICKEN1,
1067                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1068         }
1069
1070         return skl_tune_iz_hashing(ring);
1071 }
1072
1073 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1074 {
1075         int ret;
1076         struct drm_device *dev = ring->dev;
1077         struct drm_i915_private *dev_priv = dev->dev_private;
1078
1079         ret = gen9_init_workarounds(ring);
1080         if (ret)
1081                 return ret;
1082
1083         /* WaDisableThreadStallDopClockGating:bxt */
1084         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1085                           STALL_DOP_GATING_DISABLE);
1086
1087         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1088         if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1089                 WA_SET_BIT_MASKED(
1090                         GEN7_HALF_SLICE_CHICKEN1,
1091                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1092         }
1093
1094         return 0;
1095 }
1096
1097 int init_workarounds_ring(struct intel_engine_cs *ring)
1098 {
1099         struct drm_device *dev = ring->dev;
1100         struct drm_i915_private *dev_priv = dev->dev_private;
1101
1102         WARN_ON(ring->id != RCS);
1103
1104         dev_priv->workarounds.count = 0;
1105
1106         if (IS_BROADWELL(dev))
1107                 return bdw_init_workarounds(ring);
1108
1109         if (IS_CHERRYVIEW(dev))
1110                 return chv_init_workarounds(ring);
1111
1112         if (IS_SKYLAKE(dev))
1113                 return skl_init_workarounds(ring);
1114
1115         if (IS_BROXTON(dev))
1116                 return bxt_init_workarounds(ring);
1117
1118         return 0;
1119 }
1120
1121 static int init_render_ring(struct intel_engine_cs *ring)
1122 {
1123         struct drm_device *dev = ring->dev;
1124         struct drm_i915_private *dev_priv = dev->dev_private;
1125         int ret = init_ring_common(ring);
1126         if (ret)
1127                 return ret;
1128
1129         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1130         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1131                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1132
1133         /* We need to disable the AsyncFlip performance optimisations in order
1134          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1135          * programmed to '1' on all products.
1136          *
1137          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1138          */
1139         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1140                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1141
1142         /* Required for the hardware to program scanline values for waiting */
1143         /* WaEnableFlushTlbInvalidationMode:snb */
1144         if (INTEL_INFO(dev)->gen == 6)
1145                 I915_WRITE(GFX_MODE,
1146                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1147
1148         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1149         if (IS_GEN7(dev))
1150                 I915_WRITE(GFX_MODE_GEN7,
1151                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1152                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1153
1154         if (IS_GEN6(dev)) {
1155                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1156                  * "If this bit is set, STCunit will have LRA as replacement
1157                  *  policy. [...] This bit must be reset.  LRA replacement
1158                  *  policy is not supported."
1159                  */
1160                 I915_WRITE(CACHE_MODE_0,
1161                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1162         }
1163
1164         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1165                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1166
1167         if (HAS_L3_DPF(dev))
1168                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1169
1170         return init_workarounds_ring(ring);
1171 }
1172
1173 static void render_ring_cleanup(struct intel_engine_cs *ring)
1174 {
1175         struct drm_device *dev = ring->dev;
1176         struct drm_i915_private *dev_priv = dev->dev_private;
1177
1178         if (dev_priv->semaphore_obj) {
1179                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1180                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1181                 dev_priv->semaphore_obj = NULL;
1182         }
1183
1184         intel_fini_pipe_control(ring);
1185 }
1186
1187 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1188                            unsigned int num_dwords)
1189 {
1190 #define MBOX_UPDATE_DWORDS 8
1191         struct intel_engine_cs *signaller = signaller_req->ring;
1192         struct drm_device *dev = signaller->dev;
1193         struct drm_i915_private *dev_priv = dev->dev_private;
1194         struct intel_engine_cs *waiter;
1195         int i, ret, num_rings;
1196
1197         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1198         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1199 #undef MBOX_UPDATE_DWORDS
1200
1201         ret = intel_ring_begin(signaller_req, num_dwords);
1202         if (ret)
1203                 return ret;
1204
1205         for_each_ring(waiter, dev_priv, i) {
1206                 u32 seqno;
1207                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1208                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1209                         continue;
1210
1211                 seqno = i915_gem_request_get_seqno(signaller_req);
1212                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1213                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1214                                            PIPE_CONTROL_QW_WRITE |
1215                                            PIPE_CONTROL_FLUSH_ENABLE);
1216                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1217                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1218                 intel_ring_emit(signaller, seqno);
1219                 intel_ring_emit(signaller, 0);
1220                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1221                                            MI_SEMAPHORE_TARGET(waiter->id));
1222                 intel_ring_emit(signaller, 0);
1223         }
1224
1225         return 0;
1226 }
1227
1228 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1229                            unsigned int num_dwords)
1230 {
1231 #define MBOX_UPDATE_DWORDS 6
1232         struct intel_engine_cs *signaller = signaller_req->ring;
1233         struct drm_device *dev = signaller->dev;
1234         struct drm_i915_private *dev_priv = dev->dev_private;
1235         struct intel_engine_cs *waiter;
1236         int i, ret, num_rings;
1237
1238         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1239         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1240 #undef MBOX_UPDATE_DWORDS
1241
1242         ret = intel_ring_begin(signaller_req, num_dwords);
1243         if (ret)
1244                 return ret;
1245
1246         for_each_ring(waiter, dev_priv, i) {
1247                 u32 seqno;
1248                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1249                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1250                         continue;
1251
1252                 seqno = i915_gem_request_get_seqno(signaller_req);
1253                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1254                                            MI_FLUSH_DW_OP_STOREDW);
1255                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1256                                            MI_FLUSH_DW_USE_GTT);
1257                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1258                 intel_ring_emit(signaller, seqno);
1259                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1260                                            MI_SEMAPHORE_TARGET(waiter->id));
1261                 intel_ring_emit(signaller, 0);
1262         }
1263
1264         return 0;
1265 }
1266
1267 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1268                        unsigned int num_dwords)
1269 {
1270         struct intel_engine_cs *signaller = signaller_req->ring;
1271         struct drm_device *dev = signaller->dev;
1272         struct drm_i915_private *dev_priv = dev->dev_private;
1273         struct intel_engine_cs *useless;
1274         int i, ret, num_rings;
1275
1276 #define MBOX_UPDATE_DWORDS 3
1277         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1278         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1279 #undef MBOX_UPDATE_DWORDS
1280
1281         ret = intel_ring_begin(signaller_req, num_dwords);
1282         if (ret)
1283                 return ret;
1284
1285         for_each_ring(useless, dev_priv, i) {
1286                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1287                 if (mbox_reg != GEN6_NOSYNC) {
1288                         u32 seqno = i915_gem_request_get_seqno(signaller_req);
1289                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1290                         intel_ring_emit(signaller, mbox_reg);
1291                         intel_ring_emit(signaller, seqno);
1292                 }
1293         }
1294
1295         /* If num_dwords was rounded, make sure the tail pointer is correct */
1296         if (num_rings % 2 == 0)
1297                 intel_ring_emit(signaller, MI_NOOP);
1298
1299         return 0;
1300 }
1301
1302 /**
1303  * gen6_add_request - Update the semaphore mailbox registers
1304  *
1305  * @request - request to write to the ring
1306  *
1307  * Update the mailbox registers in the *other* rings with the current seqno.
1308  * This acts like a signal in the canonical semaphore.
1309  */
1310 static int
1311 gen6_add_request(struct drm_i915_gem_request *req)
1312 {
1313         struct intel_engine_cs *ring = req->ring;
1314         int ret;
1315
1316         if (ring->semaphore.signal)
1317                 ret = ring->semaphore.signal(req, 4);
1318         else
1319                 ret = intel_ring_begin(req, 4);
1320
1321         if (ret)
1322                 return ret;
1323
1324         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1325         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1326         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1327         intel_ring_emit(ring, MI_USER_INTERRUPT);
1328         __intel_ring_advance(ring);
1329
1330         return 0;
1331 }
1332
1333 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1334                                               u32 seqno)
1335 {
1336         struct drm_i915_private *dev_priv = dev->dev_private;
1337         return dev_priv->last_seqno < seqno;
1338 }
1339
1340 /**
1341  * intel_ring_sync - sync the waiter to the signaller on seqno
1342  *
1343  * @waiter - ring that is waiting
1344  * @signaller - ring which has, or will signal
1345  * @seqno - seqno which the waiter will block on
1346  */
1347
1348 static int
1349 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1350                struct intel_engine_cs *signaller,
1351                u32 seqno)
1352 {
1353         struct intel_engine_cs *waiter = waiter_req->ring;
1354         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1355         int ret;
1356
1357         ret = intel_ring_begin(waiter_req, 4);
1358         if (ret)
1359                 return ret;
1360
1361         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1362                                 MI_SEMAPHORE_GLOBAL_GTT |
1363                                 MI_SEMAPHORE_POLL |
1364                                 MI_SEMAPHORE_SAD_GTE_SDD);
1365         intel_ring_emit(waiter, seqno);
1366         intel_ring_emit(waiter,
1367                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1368         intel_ring_emit(waiter,
1369                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1370         intel_ring_advance(waiter);
1371         return 0;
1372 }
1373
1374 static int
1375 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1376                struct intel_engine_cs *signaller,
1377                u32 seqno)
1378 {
1379         struct intel_engine_cs *waiter = waiter_req->ring;
1380         u32 dw1 = MI_SEMAPHORE_MBOX |
1381                   MI_SEMAPHORE_COMPARE |
1382                   MI_SEMAPHORE_REGISTER;
1383         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1384         int ret;
1385
1386         /* Throughout all of the GEM code, seqno passed implies our current
1387          * seqno is >= the last seqno executed. However for hardware the
1388          * comparison is strictly greater than.
1389          */
1390         seqno -= 1;
1391
1392         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1393
1394         ret = intel_ring_begin(waiter_req, 4);
1395         if (ret)
1396                 return ret;
1397
1398         /* If seqno wrap happened, omit the wait with no-ops */
1399         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1400                 intel_ring_emit(waiter, dw1 | wait_mbox);
1401                 intel_ring_emit(waiter, seqno);
1402                 intel_ring_emit(waiter, 0);
1403                 intel_ring_emit(waiter, MI_NOOP);
1404         } else {
1405                 intel_ring_emit(waiter, MI_NOOP);
1406                 intel_ring_emit(waiter, MI_NOOP);
1407                 intel_ring_emit(waiter, MI_NOOP);
1408                 intel_ring_emit(waiter, MI_NOOP);
1409         }
1410         intel_ring_advance(waiter);
1411
1412         return 0;
1413 }
1414
1415 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1416 do {                                                                    \
1417         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1418                  PIPE_CONTROL_DEPTH_STALL);                             \
1419         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1420         intel_ring_emit(ring__, 0);                                                     \
1421         intel_ring_emit(ring__, 0);                                                     \
1422 } while (0)
1423
1424 static int
1425 pc_render_add_request(struct drm_i915_gem_request *req)
1426 {
1427         struct intel_engine_cs *ring = req->ring;
1428         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1429         int ret;
1430
1431         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1432          * incoherent with writes to memory, i.e. completely fubar,
1433          * so we need to use PIPE_NOTIFY instead.
1434          *
1435          * However, we also need to workaround the qword write
1436          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1437          * memory before requesting an interrupt.
1438          */
1439         ret = intel_ring_begin(req, 32);
1440         if (ret)
1441                 return ret;
1442
1443         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1444                         PIPE_CONTROL_WRITE_FLUSH |
1445                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1446         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1447         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1448         intel_ring_emit(ring, 0);
1449         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1450         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1451         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1452         scratch_addr += 2 * CACHELINE_BYTES;
1453         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1454         scratch_addr += 2 * CACHELINE_BYTES;
1455         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1456         scratch_addr += 2 * CACHELINE_BYTES;
1457         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1458         scratch_addr += 2 * CACHELINE_BYTES;
1459         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1460
1461         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1462                         PIPE_CONTROL_WRITE_FLUSH |
1463                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1464                         PIPE_CONTROL_NOTIFY);
1465         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1466         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1467         intel_ring_emit(ring, 0);
1468         __intel_ring_advance(ring);
1469
1470         return 0;
1471 }
1472
1473 static u32
1474 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1475 {
1476         /* Workaround to force correct ordering between irq and seqno writes on
1477          * ivb (and maybe also on snb) by reading from a CS register (like
1478          * ACTHD) before reading the status page. */
1479         if (!lazy_coherency) {
1480                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1481                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1482         }
1483
1484         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1485 }
1486
1487 static u32
1488 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1489 {
1490         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1491 }
1492
1493 static void
1494 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1495 {
1496         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1497 }
1498
1499 static u32
1500 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1501 {
1502         return ring->scratch.cpu_page[0];
1503 }
1504
1505 static void
1506 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1507 {
1508         ring->scratch.cpu_page[0] = seqno;
1509 }
1510
1511 static bool
1512 gen5_ring_get_irq(struct intel_engine_cs *ring)
1513 {
1514         struct drm_device *dev = ring->dev;
1515         struct drm_i915_private *dev_priv = dev->dev_private;
1516         unsigned long flags;
1517
1518         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1519                 return false;
1520
1521         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1522         if (ring->irq_refcount++ == 0)
1523                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1524         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1525
1526         return true;
1527 }
1528
1529 static void
1530 gen5_ring_put_irq(struct intel_engine_cs *ring)
1531 {
1532         struct drm_device *dev = ring->dev;
1533         struct drm_i915_private *dev_priv = dev->dev_private;
1534         unsigned long flags;
1535
1536         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1537         if (--ring->irq_refcount == 0)
1538                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1539         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1540 }
1541
1542 static bool
1543 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1544 {
1545         struct drm_device *dev = ring->dev;
1546         struct drm_i915_private *dev_priv = dev->dev_private;
1547         unsigned long flags;
1548
1549         if (!intel_irqs_enabled(dev_priv))
1550                 return false;
1551
1552         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1553         if (ring->irq_refcount++ == 0) {
1554                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1555                 I915_WRITE(IMR, dev_priv->irq_mask);
1556                 POSTING_READ(IMR);
1557         }
1558         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1559
1560         return true;
1561 }
1562
1563 static void
1564 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1565 {
1566         struct drm_device *dev = ring->dev;
1567         struct drm_i915_private *dev_priv = dev->dev_private;
1568         unsigned long flags;
1569
1570         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1571         if (--ring->irq_refcount == 0) {
1572                 dev_priv->irq_mask |= ring->irq_enable_mask;
1573                 I915_WRITE(IMR, dev_priv->irq_mask);
1574                 POSTING_READ(IMR);
1575         }
1576         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1577 }
1578
1579 static bool
1580 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1581 {
1582         struct drm_device *dev = ring->dev;
1583         struct drm_i915_private *dev_priv = dev->dev_private;
1584         unsigned long flags;
1585
1586         if (!intel_irqs_enabled(dev_priv))
1587                 return false;
1588
1589         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1590         if (ring->irq_refcount++ == 0) {
1591                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1592                 I915_WRITE16(IMR, dev_priv->irq_mask);
1593                 POSTING_READ16(IMR);
1594         }
1595         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1596
1597         return true;
1598 }
1599
1600 static void
1601 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1602 {
1603         struct drm_device *dev = ring->dev;
1604         struct drm_i915_private *dev_priv = dev->dev_private;
1605         unsigned long flags;
1606
1607         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1608         if (--ring->irq_refcount == 0) {
1609                 dev_priv->irq_mask |= ring->irq_enable_mask;
1610                 I915_WRITE16(IMR, dev_priv->irq_mask);
1611                 POSTING_READ16(IMR);
1612         }
1613         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1614 }
1615
1616 static int
1617 bsd_ring_flush(struct drm_i915_gem_request *req,
1618                u32     invalidate_domains,
1619                u32     flush_domains)
1620 {
1621         struct intel_engine_cs *ring = req->ring;
1622         int ret;
1623
1624         ret = intel_ring_begin(req, 2);
1625         if (ret)
1626                 return ret;
1627
1628         intel_ring_emit(ring, MI_FLUSH);
1629         intel_ring_emit(ring, MI_NOOP);
1630         intel_ring_advance(ring);
1631         return 0;
1632 }
1633
1634 static int
1635 i9xx_add_request(struct drm_i915_gem_request *req)
1636 {
1637         struct intel_engine_cs *ring = req->ring;
1638         int ret;
1639
1640         ret = intel_ring_begin(req, 4);
1641         if (ret)
1642                 return ret;
1643
1644         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1645         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1646         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1647         intel_ring_emit(ring, MI_USER_INTERRUPT);
1648         __intel_ring_advance(ring);
1649
1650         return 0;
1651 }
1652
1653 static bool
1654 gen6_ring_get_irq(struct intel_engine_cs *ring)
1655 {
1656         struct drm_device *dev = ring->dev;
1657         struct drm_i915_private *dev_priv = dev->dev_private;
1658         unsigned long flags;
1659
1660         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1661                 return false;
1662
1663         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1664         if (ring->irq_refcount++ == 0) {
1665                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1666                         I915_WRITE_IMR(ring,
1667                                        ~(ring->irq_enable_mask |
1668                                          GT_PARITY_ERROR(dev)));
1669                 else
1670                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1671                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1672         }
1673         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1674
1675         return true;
1676 }
1677
1678 static void
1679 gen6_ring_put_irq(struct intel_engine_cs *ring)
1680 {
1681         struct drm_device *dev = ring->dev;
1682         struct drm_i915_private *dev_priv = dev->dev_private;
1683         unsigned long flags;
1684
1685         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1686         if (--ring->irq_refcount == 0) {
1687                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1688                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1689                 else
1690                         I915_WRITE_IMR(ring, ~0);
1691                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1692         }
1693         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1694 }
1695
1696 static bool
1697 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1698 {
1699         struct drm_device *dev = ring->dev;
1700         struct drm_i915_private *dev_priv = dev->dev_private;
1701         unsigned long flags;
1702
1703         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1704                 return false;
1705
1706         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1707         if (ring->irq_refcount++ == 0) {
1708                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1709                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1710         }
1711         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1712
1713         return true;
1714 }
1715
1716 static void
1717 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1718 {
1719         struct drm_device *dev = ring->dev;
1720         struct drm_i915_private *dev_priv = dev->dev_private;
1721         unsigned long flags;
1722
1723         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1724         if (--ring->irq_refcount == 0) {
1725                 I915_WRITE_IMR(ring, ~0);
1726                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1727         }
1728         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1729 }
1730
1731 static bool
1732 gen8_ring_get_irq(struct intel_engine_cs *ring)
1733 {
1734         struct drm_device *dev = ring->dev;
1735         struct drm_i915_private *dev_priv = dev->dev_private;
1736         unsigned long flags;
1737
1738         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1739                 return false;
1740
1741         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1742         if (ring->irq_refcount++ == 0) {
1743                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1744                         I915_WRITE_IMR(ring,
1745                                        ~(ring->irq_enable_mask |
1746                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1747                 } else {
1748                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1749                 }
1750                 POSTING_READ(RING_IMR(ring->mmio_base));
1751         }
1752         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1753
1754         return true;
1755 }
1756
1757 static void
1758 gen8_ring_put_irq(struct intel_engine_cs *ring)
1759 {
1760         struct drm_device *dev = ring->dev;
1761         struct drm_i915_private *dev_priv = dev->dev_private;
1762         unsigned long flags;
1763
1764         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1765         if (--ring->irq_refcount == 0) {
1766                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1767                         I915_WRITE_IMR(ring,
1768                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1769                 } else {
1770                         I915_WRITE_IMR(ring, ~0);
1771                 }
1772                 POSTING_READ(RING_IMR(ring->mmio_base));
1773         }
1774         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1775 }
1776
1777 static int
1778 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1779                          u64 offset, u32 length,
1780                          unsigned dispatch_flags)
1781 {
1782         struct intel_engine_cs *ring = req->ring;
1783         int ret;
1784
1785         ret = intel_ring_begin(req, 2);
1786         if (ret)
1787                 return ret;
1788
1789         intel_ring_emit(ring,
1790                         MI_BATCH_BUFFER_START |
1791                         MI_BATCH_GTT |
1792                         (dispatch_flags & I915_DISPATCH_SECURE ?
1793                          0 : MI_BATCH_NON_SECURE_I965));
1794         intel_ring_emit(ring, offset);
1795         intel_ring_advance(ring);
1796
1797         return 0;
1798 }
1799
1800 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1801 #define I830_BATCH_LIMIT (256*1024)
1802 #define I830_TLB_ENTRIES (2)
1803 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1804 static int
1805 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1806                          u64 offset, u32 len,
1807                          unsigned dispatch_flags)
1808 {
1809         struct intel_engine_cs *ring = req->ring;
1810         u32 cs_offset = ring->scratch.gtt_offset;
1811         int ret;
1812
1813         ret = intel_ring_begin(req, 6);
1814         if (ret)
1815                 return ret;
1816
1817         /* Evict the invalid PTE TLBs */
1818         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1819         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1820         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1821         intel_ring_emit(ring, cs_offset);
1822         intel_ring_emit(ring, 0xdeadbeef);
1823         intel_ring_emit(ring, MI_NOOP);
1824         intel_ring_advance(ring);
1825
1826         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1827                 if (len > I830_BATCH_LIMIT)
1828                         return -ENOSPC;
1829
1830                 ret = intel_ring_begin(req, 6 + 2);
1831                 if (ret)
1832                         return ret;
1833
1834                 /* Blit the batch (which has now all relocs applied) to the
1835                  * stable batch scratch bo area (so that the CS never
1836                  * stumbles over its tlb invalidation bug) ...
1837                  */
1838                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1839                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1840                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1841                 intel_ring_emit(ring, cs_offset);
1842                 intel_ring_emit(ring, 4096);
1843                 intel_ring_emit(ring, offset);
1844
1845                 intel_ring_emit(ring, MI_FLUSH);
1846                 intel_ring_emit(ring, MI_NOOP);
1847                 intel_ring_advance(ring);
1848
1849                 /* ... and execute it. */
1850                 offset = cs_offset;
1851         }
1852
1853         ret = intel_ring_begin(req, 4);
1854         if (ret)
1855                 return ret;
1856
1857         intel_ring_emit(ring, MI_BATCH_BUFFER);
1858         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1859                                         0 : MI_BATCH_NON_SECURE));
1860         intel_ring_emit(ring, offset + len - 8);
1861         intel_ring_emit(ring, MI_NOOP);
1862         intel_ring_advance(ring);
1863
1864         return 0;
1865 }
1866
1867 static int
1868 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1869                          u64 offset, u32 len,
1870                          unsigned dispatch_flags)
1871 {
1872         struct intel_engine_cs *ring = req->ring;
1873         int ret;
1874
1875         ret = intel_ring_begin(req, 2);
1876         if (ret)
1877                 return ret;
1878
1879         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1880         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1881                                         0 : MI_BATCH_NON_SECURE));
1882         intel_ring_advance(ring);
1883
1884         return 0;
1885 }
1886
1887 static void cleanup_status_page(struct intel_engine_cs *ring)
1888 {
1889         struct drm_i915_gem_object *obj;
1890
1891         obj = ring->status_page.obj;
1892         if (obj == NULL)
1893                 return;
1894
1895         kunmap(sg_page(obj->pages->sgl));
1896         i915_gem_object_ggtt_unpin(obj);
1897         drm_gem_object_unreference(&obj->base);
1898         ring->status_page.obj = NULL;
1899 }
1900
1901 static int init_status_page(struct intel_engine_cs *ring)
1902 {
1903         struct drm_i915_gem_object *obj;
1904
1905         if ((obj = ring->status_page.obj) == NULL) {
1906                 unsigned flags;
1907                 int ret;
1908
1909                 obj = i915_gem_alloc_object(ring->dev, 4096);
1910                 if (obj == NULL) {
1911                         DRM_ERROR("Failed to allocate status page\n");
1912                         return -ENOMEM;
1913                 }
1914
1915                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1916                 if (ret)
1917                         goto err_unref;
1918
1919                 flags = 0;
1920                 if (!HAS_LLC(ring->dev))
1921                         /* On g33, we cannot place HWS above 256MiB, so
1922                          * restrict its pinning to the low mappable arena.
1923                          * Though this restriction is not documented for
1924                          * gen4, gen5, or byt, they also behave similarly
1925                          * and hang if the HWS is placed at the top of the
1926                          * GTT. To generalise, it appears that all !llc
1927                          * platforms have issues with us placing the HWS
1928                          * above the mappable region (even though we never
1929                          * actualy map it).
1930                          */
1931                         flags |= PIN_MAPPABLE;
1932                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1933                 if (ret) {
1934 err_unref:
1935                         drm_gem_object_unreference(&obj->base);
1936                         return ret;
1937                 }
1938
1939                 ring->status_page.obj = obj;
1940         }
1941
1942         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1943         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1944         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1945
1946         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1947                         ring->name, ring->status_page.gfx_addr);
1948
1949         return 0;
1950 }
1951
1952 static int init_phys_status_page(struct intel_engine_cs *ring)
1953 {
1954         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1955
1956         if (!dev_priv->status_page_dmah) {
1957                 dev_priv->status_page_dmah =
1958                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1959                 if (!dev_priv->status_page_dmah)
1960                         return -ENOMEM;
1961         }
1962
1963         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1964         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1965
1966         return 0;
1967 }
1968
1969 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1970 {
1971         iounmap(ringbuf->virtual_start);
1972         ringbuf->virtual_start = NULL;
1973         i915_gem_object_ggtt_unpin(ringbuf->obj);
1974 }
1975
1976 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1977                                      struct intel_ringbuffer *ringbuf)
1978 {
1979         struct drm_i915_private *dev_priv = to_i915(dev);
1980         struct drm_i915_gem_object *obj = ringbuf->obj;
1981         int ret;
1982
1983         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1984         if (ret)
1985                 return ret;
1986
1987         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1988         if (ret) {
1989                 i915_gem_object_ggtt_unpin(obj);
1990                 return ret;
1991         }
1992
1993         ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1994                         i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1995         if (ringbuf->virtual_start == NULL) {
1996                 i915_gem_object_ggtt_unpin(obj);
1997                 return -EINVAL;
1998         }
1999
2000         return 0;
2001 }
2002
2003 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2004 {
2005         drm_gem_object_unreference(&ringbuf->obj->base);
2006         ringbuf->obj = NULL;
2007 }
2008
2009 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2010                                       struct intel_ringbuffer *ringbuf)
2011 {
2012         struct drm_i915_gem_object *obj;
2013
2014         obj = NULL;
2015         if (!HAS_LLC(dev))
2016                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2017         if (obj == NULL)
2018                 obj = i915_gem_alloc_object(dev, ringbuf->size);
2019         if (obj == NULL)
2020                 return -ENOMEM;
2021
2022         /* mark ring buffers as read-only from GPU side by default */
2023         obj->gt_ro = 1;
2024
2025         ringbuf->obj = obj;
2026
2027         return 0;
2028 }
2029
2030 struct intel_ringbuffer *
2031 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2032 {
2033         struct intel_ringbuffer *ring;
2034         int ret;
2035
2036         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2037         if (ring == NULL)
2038                 return ERR_PTR(-ENOMEM);
2039
2040         ring->ring = engine;
2041
2042         ring->size = size;
2043         /* Workaround an erratum on the i830 which causes a hang if
2044          * the TAIL pointer points to within the last 2 cachelines
2045          * of the buffer.
2046          */
2047         ring->effective_size = size;
2048         if (IS_I830(engine->dev) || IS_845G(engine->dev))
2049                 ring->effective_size -= 2 * CACHELINE_BYTES;
2050
2051         ring->last_retired_head = -1;
2052         intel_ring_update_space(ring);
2053
2054         ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2055         if (ret) {
2056                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2057                           engine->name, ret);
2058                 kfree(ring);
2059                 return ERR_PTR(ret);
2060         }
2061
2062         return ring;
2063 }
2064
2065 void
2066 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2067 {
2068         intel_destroy_ringbuffer_obj(ring);
2069         kfree(ring);
2070 }
2071
2072 static int intel_init_ring_buffer(struct drm_device *dev,
2073                                   struct intel_engine_cs *ring)
2074 {
2075         struct intel_ringbuffer *ringbuf;
2076         int ret;
2077
2078         WARN_ON(ring->buffer);
2079
2080         ring->dev = dev;
2081         INIT_LIST_HEAD(&ring->active_list);
2082         INIT_LIST_HEAD(&ring->request_list);
2083         INIT_LIST_HEAD(&ring->execlist_queue);
2084         i915_gem_batch_pool_init(dev, &ring->batch_pool);
2085         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2086
2087         init_waitqueue_head(&ring->irq_queue);
2088
2089         ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2090         if (IS_ERR(ringbuf))
2091                 return PTR_ERR(ringbuf);
2092         ring->buffer = ringbuf;
2093
2094         if (I915_NEED_GFX_HWS(dev)) {
2095                 ret = init_status_page(ring);
2096                 if (ret)
2097                         goto error;
2098         } else {
2099                 BUG_ON(ring->id != RCS);
2100                 ret = init_phys_status_page(ring);
2101                 if (ret)
2102                         goto error;
2103         }
2104
2105         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2106         if (ret) {
2107                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2108                                 ring->name, ret);
2109                 intel_destroy_ringbuffer_obj(ringbuf);
2110                 goto error;
2111         }
2112
2113         ret = i915_cmd_parser_init_ring(ring);
2114         if (ret)
2115                 goto error;
2116
2117         return 0;
2118
2119 error:
2120         intel_ringbuffer_free(ringbuf);
2121         ring->buffer = NULL;
2122         return ret;
2123 }
2124
2125 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2126 {
2127         struct drm_i915_private *dev_priv;
2128
2129         if (!intel_ring_initialized(ring))
2130                 return;
2131
2132         dev_priv = to_i915(ring->dev);
2133
2134         intel_stop_ring_buffer(ring);
2135         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2136
2137         intel_unpin_ringbuffer_obj(ring->buffer);
2138         intel_ringbuffer_free(ring->buffer);
2139         ring->buffer = NULL;
2140
2141         if (ring->cleanup)
2142                 ring->cleanup(ring);
2143
2144         cleanup_status_page(ring);
2145
2146         i915_cmd_parser_fini_ring(ring);
2147         i915_gem_batch_pool_fini(&ring->batch_pool);
2148 }
2149
2150 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2151 {
2152         struct intel_ringbuffer *ringbuf = ring->buffer;
2153         struct drm_i915_gem_request *request;
2154         unsigned space;
2155         int ret;
2156
2157         if (intel_ring_space(ringbuf) >= n)
2158                 return 0;
2159
2160         /* The whole point of reserving space is to not wait! */
2161         WARN_ON(ringbuf->reserved_in_use);
2162
2163         list_for_each_entry(request, &ring->request_list, list) {
2164                 space = __intel_ring_space(request->postfix, ringbuf->tail,
2165                                            ringbuf->size);
2166                 if (space >= n)
2167                         break;
2168         }
2169
2170         if (WARN_ON(&request->list == &ring->request_list))
2171                 return -ENOSPC;
2172
2173         ret = i915_wait_request(request);
2174         if (ret)
2175                 return ret;
2176
2177         ringbuf->space = space;
2178         return 0;
2179 }
2180
2181 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2182 {
2183         uint32_t __iomem *virt;
2184         int rem = ringbuf->size - ringbuf->tail;
2185
2186         virt = ringbuf->virtual_start + ringbuf->tail;
2187         rem /= 4;
2188         while (rem--)
2189                 iowrite32(MI_NOOP, virt++);
2190
2191         ringbuf->tail = 0;
2192         intel_ring_update_space(ringbuf);
2193 }
2194
2195 int intel_ring_idle(struct intel_engine_cs *ring)
2196 {
2197         struct drm_i915_gem_request *req;
2198
2199         /* Wait upon the last request to be completed */
2200         if (list_empty(&ring->request_list))
2201                 return 0;
2202
2203         req = list_entry(ring->request_list.prev,
2204                         struct drm_i915_gem_request,
2205                         list);
2206
2207         /* Make sure we do not trigger any retires */
2208         return __i915_wait_request(req,
2209                                    atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2210                                    to_i915(ring->dev)->mm.interruptible,
2211                                    NULL, NULL);
2212 }
2213
2214 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2215 {
2216         request->ringbuf = request->ring->buffer;
2217         return 0;
2218 }
2219
2220 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2221 {
2222         /*
2223          * The first call merely notes the reserve request and is common for
2224          * all back ends. The subsequent localised _begin() call actually
2225          * ensures that the reservation is available. Without the begin, if
2226          * the request creator immediately submitted the request without
2227          * adding any commands to it then there might not actually be
2228          * sufficient room for the submission commands.
2229          */
2230         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2231
2232         return intel_ring_begin(request, 0);
2233 }
2234
2235 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2236 {
2237         WARN_ON(ringbuf->reserved_size);
2238         WARN_ON(ringbuf->reserved_in_use);
2239
2240         ringbuf->reserved_size = size;
2241 }
2242
2243 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2244 {
2245         WARN_ON(ringbuf->reserved_in_use);
2246
2247         ringbuf->reserved_size   = 0;
2248         ringbuf->reserved_in_use = false;
2249 }
2250
2251 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2252 {
2253         WARN_ON(ringbuf->reserved_in_use);
2254
2255         ringbuf->reserved_in_use = true;
2256         ringbuf->reserved_tail   = ringbuf->tail;
2257 }
2258
2259 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2260 {
2261         WARN_ON(!ringbuf->reserved_in_use);
2262         if (ringbuf->tail > ringbuf->reserved_tail) {
2263                 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2264                      "request reserved size too small: %d vs %d!\n",
2265                      ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2266         } else {
2267                 /*
2268                  * The ring was wrapped while the reserved space was in use.
2269                  * That means that some unknown amount of the ring tail was
2270                  * no-op filled and skipped. Thus simply adding the ring size
2271                  * to the tail and doing the above space check will not work.
2272                  * Rather than attempt to track how much tail was skipped,
2273                  * it is much simpler to say that also skipping the sanity
2274                  * check every once in a while is not a big issue.
2275                  */
2276         }
2277
2278         ringbuf->reserved_size   = 0;
2279         ringbuf->reserved_in_use = false;
2280 }
2281
2282 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2283 {
2284         struct intel_ringbuffer *ringbuf = ring->buffer;
2285         int remain_usable = ringbuf->effective_size - ringbuf->tail;
2286         int remain_actual = ringbuf->size - ringbuf->tail;
2287         int ret, total_bytes, wait_bytes = 0;
2288         bool need_wrap = false;
2289
2290         if (ringbuf->reserved_in_use)
2291                 total_bytes = bytes;
2292         else
2293                 total_bytes = bytes + ringbuf->reserved_size;
2294
2295         if (unlikely(bytes > remain_usable)) {
2296                 /*
2297                  * Not enough space for the basic request. So need to flush
2298                  * out the remainder and then wait for base + reserved.
2299                  */
2300                 wait_bytes = remain_actual + total_bytes;
2301                 need_wrap = true;
2302         } else {
2303                 if (unlikely(total_bytes > remain_usable)) {
2304                         /*
2305                          * The base request will fit but the reserved space
2306                          * falls off the end. So only need to to wait for the
2307                          * reserved size after flushing out the remainder.
2308                          */
2309                         wait_bytes = remain_actual + ringbuf->reserved_size;
2310                         need_wrap = true;
2311                 } else if (total_bytes > ringbuf->space) {
2312                         /* No wrapping required, just waiting. */
2313                         wait_bytes = total_bytes;
2314                 }
2315         }
2316
2317         if (wait_bytes) {
2318                 ret = ring_wait_for_space(ring, wait_bytes);
2319                 if (unlikely(ret))
2320                         return ret;
2321
2322                 if (need_wrap)
2323                         __wrap_ring_buffer(ringbuf);
2324         }
2325
2326         return 0;
2327 }
2328
2329 int intel_ring_begin(struct drm_i915_gem_request *req,
2330                      int num_dwords)
2331 {
2332         struct intel_engine_cs *ring;
2333         struct drm_i915_private *dev_priv;
2334         int ret;
2335
2336         WARN_ON(req == NULL);
2337         ring = req->ring;
2338         dev_priv = ring->dev->dev_private;
2339
2340         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2341                                    dev_priv->mm.interruptible);
2342         if (ret)
2343                 return ret;
2344
2345         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2346         if (ret)
2347                 return ret;
2348
2349         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2350         return 0;
2351 }
2352
2353 /* Align the ring tail to a cacheline boundary */
2354 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2355 {
2356         struct intel_engine_cs *ring = req->ring;
2357         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2358         int ret;
2359
2360         if (num_dwords == 0)
2361                 return 0;
2362
2363         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2364         ret = intel_ring_begin(req, num_dwords);
2365         if (ret)
2366                 return ret;
2367
2368         while (num_dwords--)
2369                 intel_ring_emit(ring, MI_NOOP);
2370
2371         intel_ring_advance(ring);
2372
2373         return 0;
2374 }
2375
2376 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2377 {
2378         struct drm_device *dev = ring->dev;
2379         struct drm_i915_private *dev_priv = dev->dev_private;
2380
2381         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2382                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2383                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2384                 if (HAS_VEBOX(dev))
2385                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2386         }
2387
2388         ring->set_seqno(ring, seqno);
2389         ring->hangcheck.seqno = seqno;
2390 }
2391
2392 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2393                                      u32 value)
2394 {
2395         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2396
2397        /* Every tail move must follow the sequence below */
2398
2399         /* Disable notification that the ring is IDLE. The GT
2400          * will then assume that it is busy and bring it out of rc6.
2401          */
2402         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2403                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2404
2405         /* Clear the context id. Here be magic! */
2406         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2407
2408         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2409         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2410                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2411                      50))
2412                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2413
2414         /* Now that the ring is fully powered up, update the tail */
2415         I915_WRITE_TAIL(ring, value);
2416         POSTING_READ(RING_TAIL(ring->mmio_base));
2417
2418         /* Let the ring send IDLE messages to the GT again,
2419          * and so let it sleep to conserve power when idle.
2420          */
2421         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2422                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2423 }
2424
2425 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2426                                u32 invalidate, u32 flush)
2427 {
2428         struct intel_engine_cs *ring = req->ring;
2429         uint32_t cmd;
2430         int ret;
2431
2432         ret = intel_ring_begin(req, 4);
2433         if (ret)
2434                 return ret;
2435
2436         cmd = MI_FLUSH_DW;
2437         if (INTEL_INFO(ring->dev)->gen >= 8)
2438                 cmd += 1;
2439
2440         /* We always require a command barrier so that subsequent
2441          * commands, such as breadcrumb interrupts, are strictly ordered
2442          * wrt the contents of the write cache being flushed to memory
2443          * (and thus being coherent from the CPU).
2444          */
2445         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2446
2447         /*
2448          * Bspec vol 1c.5 - video engine command streamer:
2449          * "If ENABLED, all TLBs will be invalidated once the flush
2450          * operation is complete. This bit is only valid when the
2451          * Post-Sync Operation field is a value of 1h or 3h."
2452          */
2453         if (invalidate & I915_GEM_GPU_DOMAINS)
2454                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2455
2456         intel_ring_emit(ring, cmd);
2457         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2458         if (INTEL_INFO(ring->dev)->gen >= 8) {
2459                 intel_ring_emit(ring, 0); /* upper addr */
2460                 intel_ring_emit(ring, 0); /* value */
2461         } else  {
2462                 intel_ring_emit(ring, 0);
2463                 intel_ring_emit(ring, MI_NOOP);
2464         }
2465         intel_ring_advance(ring);
2466         return 0;
2467 }
2468
2469 static int
2470 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2471                               u64 offset, u32 len,
2472                               unsigned dispatch_flags)
2473 {
2474         struct intel_engine_cs *ring = req->ring;
2475         bool ppgtt = USES_PPGTT(ring->dev) &&
2476                         !(dispatch_flags & I915_DISPATCH_SECURE);
2477         int ret;
2478
2479         ret = intel_ring_begin(req, 4);
2480         if (ret)
2481                 return ret;
2482
2483         /* FIXME(BDW): Address space and security selectors. */
2484         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2485                         (dispatch_flags & I915_DISPATCH_RS ?
2486                          MI_BATCH_RESOURCE_STREAMER : 0));
2487         intel_ring_emit(ring, lower_32_bits(offset));
2488         intel_ring_emit(ring, upper_32_bits(offset));
2489         intel_ring_emit(ring, MI_NOOP);
2490         intel_ring_advance(ring);
2491
2492         return 0;
2493 }
2494
2495 static int
2496 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2497                              u64 offset, u32 len,
2498                              unsigned dispatch_flags)
2499 {
2500         struct intel_engine_cs *ring = req->ring;
2501         int ret;
2502
2503         ret = intel_ring_begin(req, 2);
2504         if (ret)
2505                 return ret;
2506
2507         intel_ring_emit(ring,
2508                         MI_BATCH_BUFFER_START |
2509                         (dispatch_flags & I915_DISPATCH_SECURE ?
2510                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2511                         (dispatch_flags & I915_DISPATCH_RS ?
2512                          MI_BATCH_RESOURCE_STREAMER : 0));
2513         /* bit0-7 is the length on GEN6+ */
2514         intel_ring_emit(ring, offset);
2515         intel_ring_advance(ring);
2516
2517         return 0;
2518 }
2519
2520 static int
2521 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2522                               u64 offset, u32 len,
2523                               unsigned dispatch_flags)
2524 {
2525         struct intel_engine_cs *ring = req->ring;
2526         int ret;
2527
2528         ret = intel_ring_begin(req, 2);
2529         if (ret)
2530                 return ret;
2531
2532         intel_ring_emit(ring,
2533                         MI_BATCH_BUFFER_START |
2534                         (dispatch_flags & I915_DISPATCH_SECURE ?
2535                          0 : MI_BATCH_NON_SECURE_I965));
2536         /* bit0-7 is the length on GEN6+ */
2537         intel_ring_emit(ring, offset);
2538         intel_ring_advance(ring);
2539
2540         return 0;
2541 }
2542
2543 /* Blitter support (SandyBridge+) */
2544
2545 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2546                            u32 invalidate, u32 flush)
2547 {
2548         struct intel_engine_cs *ring = req->ring;
2549         struct drm_device *dev = ring->dev;
2550         uint32_t cmd;
2551         int ret;
2552
2553         ret = intel_ring_begin(req, 4);
2554         if (ret)
2555                 return ret;
2556
2557         cmd = MI_FLUSH_DW;
2558         if (INTEL_INFO(dev)->gen >= 8)
2559                 cmd += 1;
2560
2561         /* We always require a command barrier so that subsequent
2562          * commands, such as breadcrumb interrupts, are strictly ordered
2563          * wrt the contents of the write cache being flushed to memory
2564          * (and thus being coherent from the CPU).
2565          */
2566         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2567
2568         /*
2569          * Bspec vol 1c.3 - blitter engine command streamer:
2570          * "If ENABLED, all TLBs will be invalidated once the flush
2571          * operation is complete. This bit is only valid when the
2572          * Post-Sync Operation field is a value of 1h or 3h."
2573          */
2574         if (invalidate & I915_GEM_DOMAIN_RENDER)
2575                 cmd |= MI_INVALIDATE_TLB;
2576         intel_ring_emit(ring, cmd);
2577         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2578         if (INTEL_INFO(dev)->gen >= 8) {
2579                 intel_ring_emit(ring, 0); /* upper addr */
2580                 intel_ring_emit(ring, 0); /* value */
2581         } else  {
2582                 intel_ring_emit(ring, 0);
2583                 intel_ring_emit(ring, MI_NOOP);
2584         }
2585         intel_ring_advance(ring);
2586
2587         return 0;
2588 }
2589
2590 int intel_init_render_ring_buffer(struct drm_device *dev)
2591 {
2592         struct drm_i915_private *dev_priv = dev->dev_private;
2593         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2594         struct drm_i915_gem_object *obj;
2595         int ret;
2596
2597         ring->name = "render ring";
2598         ring->id = RCS;
2599         ring->mmio_base = RENDER_RING_BASE;
2600
2601         if (INTEL_INFO(dev)->gen >= 8) {
2602                 if (i915_semaphore_is_enabled(dev)) {
2603                         obj = i915_gem_alloc_object(dev, 4096);
2604                         if (obj == NULL) {
2605                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2606                                 i915.semaphores = 0;
2607                         } else {
2608                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2609                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2610                                 if (ret != 0) {
2611                                         drm_gem_object_unreference(&obj->base);
2612                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2613                                         i915.semaphores = 0;
2614                                 } else
2615                                         dev_priv->semaphore_obj = obj;
2616                         }
2617                 }
2618
2619                 ring->init_context = intel_rcs_ctx_init;
2620                 ring->add_request = gen6_add_request;
2621                 ring->flush = gen8_render_ring_flush;
2622                 ring->irq_get = gen8_ring_get_irq;
2623                 ring->irq_put = gen8_ring_put_irq;
2624                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2625                 ring->get_seqno = gen6_ring_get_seqno;
2626                 ring->set_seqno = ring_set_seqno;
2627                 if (i915_semaphore_is_enabled(dev)) {
2628                         WARN_ON(!dev_priv->semaphore_obj);
2629                         ring->semaphore.sync_to = gen8_ring_sync;
2630                         ring->semaphore.signal = gen8_rcs_signal;
2631                         GEN8_RING_SEMAPHORE_INIT;
2632                 }
2633         } else if (INTEL_INFO(dev)->gen >= 6) {
2634                 ring->add_request = gen6_add_request;
2635                 ring->flush = gen7_render_ring_flush;
2636                 if (INTEL_INFO(dev)->gen == 6)
2637                         ring->flush = gen6_render_ring_flush;
2638                 ring->irq_get = gen6_ring_get_irq;
2639                 ring->irq_put = gen6_ring_put_irq;
2640                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2641                 ring->get_seqno = gen6_ring_get_seqno;
2642                 ring->set_seqno = ring_set_seqno;
2643                 if (i915_semaphore_is_enabled(dev)) {
2644                         ring->semaphore.sync_to = gen6_ring_sync;
2645                         ring->semaphore.signal = gen6_signal;
2646                         /*
2647                          * The current semaphore is only applied on pre-gen8
2648                          * platform.  And there is no VCS2 ring on the pre-gen8
2649                          * platform. So the semaphore between RCS and VCS2 is
2650                          * initialized as INVALID.  Gen8 will initialize the
2651                          * sema between VCS2 and RCS later.
2652                          */
2653                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2654                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2655                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2656                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2657                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2658                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2659                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2660                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2661                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2662                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2663                 }
2664         } else if (IS_GEN5(dev)) {
2665                 ring->add_request = pc_render_add_request;
2666                 ring->flush = gen4_render_ring_flush;
2667                 ring->get_seqno = pc_render_get_seqno;
2668                 ring->set_seqno = pc_render_set_seqno;
2669                 ring->irq_get = gen5_ring_get_irq;
2670                 ring->irq_put = gen5_ring_put_irq;
2671                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2672                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2673         } else {
2674                 ring->add_request = i9xx_add_request;
2675                 if (INTEL_INFO(dev)->gen < 4)
2676                         ring->flush = gen2_render_ring_flush;
2677                 else
2678                         ring->flush = gen4_render_ring_flush;
2679                 ring->get_seqno = ring_get_seqno;
2680                 ring->set_seqno = ring_set_seqno;
2681                 if (IS_GEN2(dev)) {
2682                         ring->irq_get = i8xx_ring_get_irq;
2683                         ring->irq_put = i8xx_ring_put_irq;
2684                 } else {
2685                         ring->irq_get = i9xx_ring_get_irq;
2686                         ring->irq_put = i9xx_ring_put_irq;
2687                 }
2688                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2689         }
2690         ring->write_tail = ring_write_tail;
2691
2692         if (IS_HASWELL(dev))
2693                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2694         else if (IS_GEN8(dev))
2695                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2696         else if (INTEL_INFO(dev)->gen >= 6)
2697                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2698         else if (INTEL_INFO(dev)->gen >= 4)
2699                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2700         else if (IS_I830(dev) || IS_845G(dev))
2701                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2702         else
2703                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2704         ring->init_hw = init_render_ring;
2705         ring->cleanup = render_ring_cleanup;
2706
2707         /* Workaround batchbuffer to combat CS tlb bug. */
2708         if (HAS_BROKEN_CS_TLB(dev)) {
2709                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2710                 if (obj == NULL) {
2711                         DRM_ERROR("Failed to allocate batch bo\n");
2712                         return -ENOMEM;
2713                 }
2714
2715                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2716                 if (ret != 0) {
2717                         drm_gem_object_unreference(&obj->base);
2718                         DRM_ERROR("Failed to ping batch bo\n");
2719                         return ret;
2720                 }
2721
2722                 ring->scratch.obj = obj;
2723                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2724         }
2725
2726         ret = intel_init_ring_buffer(dev, ring);
2727         if (ret)
2728                 return ret;
2729
2730         if (INTEL_INFO(dev)->gen >= 5) {
2731                 ret = intel_init_pipe_control(ring);
2732                 if (ret)
2733                         return ret;
2734         }
2735
2736         return 0;
2737 }
2738
2739 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2740 {
2741         struct drm_i915_private *dev_priv = dev->dev_private;
2742         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2743
2744         ring->name = "bsd ring";
2745         ring->id = VCS;
2746
2747         ring->write_tail = ring_write_tail;
2748         if (INTEL_INFO(dev)->gen >= 6) {
2749                 ring->mmio_base = GEN6_BSD_RING_BASE;
2750                 /* gen6 bsd needs a special wa for tail updates */
2751                 if (IS_GEN6(dev))
2752                         ring->write_tail = gen6_bsd_ring_write_tail;
2753                 ring->flush = gen6_bsd_ring_flush;
2754                 ring->add_request = gen6_add_request;
2755                 ring->get_seqno = gen6_ring_get_seqno;
2756                 ring->set_seqno = ring_set_seqno;
2757                 if (INTEL_INFO(dev)->gen >= 8) {
2758                         ring->irq_enable_mask =
2759                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2760                         ring->irq_get = gen8_ring_get_irq;
2761                         ring->irq_put = gen8_ring_put_irq;
2762                         ring->dispatch_execbuffer =
2763                                 gen8_ring_dispatch_execbuffer;
2764                         if (i915_semaphore_is_enabled(dev)) {
2765                                 ring->semaphore.sync_to = gen8_ring_sync;
2766                                 ring->semaphore.signal = gen8_xcs_signal;
2767                                 GEN8_RING_SEMAPHORE_INIT;
2768                         }
2769                 } else {
2770                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2771                         ring->irq_get = gen6_ring_get_irq;
2772                         ring->irq_put = gen6_ring_put_irq;
2773                         ring->dispatch_execbuffer =
2774                                 gen6_ring_dispatch_execbuffer;
2775                         if (i915_semaphore_is_enabled(dev)) {
2776                                 ring->semaphore.sync_to = gen6_ring_sync;
2777                                 ring->semaphore.signal = gen6_signal;
2778                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2779                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2780                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2781                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2782                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2783                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2784                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2785                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2786                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2787                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2788                         }
2789                 }
2790         } else {
2791                 ring->mmio_base = BSD_RING_BASE;
2792                 ring->flush = bsd_ring_flush;
2793                 ring->add_request = i9xx_add_request;
2794                 ring->get_seqno = ring_get_seqno;
2795                 ring->set_seqno = ring_set_seqno;
2796                 if (IS_GEN5(dev)) {
2797                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2798                         ring->irq_get = gen5_ring_get_irq;
2799                         ring->irq_put = gen5_ring_put_irq;
2800                 } else {
2801                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2802                         ring->irq_get = i9xx_ring_get_irq;
2803                         ring->irq_put = i9xx_ring_put_irq;
2804                 }
2805                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2806         }
2807         ring->init_hw = init_ring_common;
2808
2809         return intel_init_ring_buffer(dev, ring);
2810 }
2811
2812 /**
2813  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2814  */
2815 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2816 {
2817         struct drm_i915_private *dev_priv = dev->dev_private;
2818         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2819
2820         ring->name = "bsd2 ring";
2821         ring->id = VCS2;
2822
2823         ring->write_tail = ring_write_tail;
2824         ring->mmio_base = GEN8_BSD2_RING_BASE;
2825         ring->flush = gen6_bsd_ring_flush;
2826         ring->add_request = gen6_add_request;
2827         ring->get_seqno = gen6_ring_get_seqno;
2828         ring->set_seqno = ring_set_seqno;
2829         ring->irq_enable_mask =
2830                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2831         ring->irq_get = gen8_ring_get_irq;
2832         ring->irq_put = gen8_ring_put_irq;
2833         ring->dispatch_execbuffer =
2834                         gen8_ring_dispatch_execbuffer;
2835         if (i915_semaphore_is_enabled(dev)) {
2836                 ring->semaphore.sync_to = gen8_ring_sync;
2837                 ring->semaphore.signal = gen8_xcs_signal;
2838                 GEN8_RING_SEMAPHORE_INIT;
2839         }
2840         ring->init_hw = init_ring_common;
2841
2842         return intel_init_ring_buffer(dev, ring);
2843 }
2844
2845 int intel_init_blt_ring_buffer(struct drm_device *dev)
2846 {
2847         struct drm_i915_private *dev_priv = dev->dev_private;
2848         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2849
2850         ring->name = "blitter ring";
2851         ring->id = BCS;
2852
2853         ring->mmio_base = BLT_RING_BASE;
2854         ring->write_tail = ring_write_tail;
2855         ring->flush = gen6_ring_flush;
2856         ring->add_request = gen6_add_request;
2857         ring->get_seqno = gen6_ring_get_seqno;
2858         ring->set_seqno = ring_set_seqno;
2859         if (INTEL_INFO(dev)->gen >= 8) {
2860                 ring->irq_enable_mask =
2861                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2862                 ring->irq_get = gen8_ring_get_irq;
2863                 ring->irq_put = gen8_ring_put_irq;
2864                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2865                 if (i915_semaphore_is_enabled(dev)) {
2866                         ring->semaphore.sync_to = gen8_ring_sync;
2867                         ring->semaphore.signal = gen8_xcs_signal;
2868                         GEN8_RING_SEMAPHORE_INIT;
2869                 }
2870         } else {
2871                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2872                 ring->irq_get = gen6_ring_get_irq;
2873                 ring->irq_put = gen6_ring_put_irq;
2874                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2875                 if (i915_semaphore_is_enabled(dev)) {
2876                         ring->semaphore.signal = gen6_signal;
2877                         ring->semaphore.sync_to = gen6_ring_sync;
2878                         /*
2879                          * The current semaphore is only applied on pre-gen8
2880                          * platform.  And there is no VCS2 ring on the pre-gen8
2881                          * platform. So the semaphore between BCS and VCS2 is
2882                          * initialized as INVALID.  Gen8 will initialize the
2883                          * sema between BCS and VCS2 later.
2884                          */
2885                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2886                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2887                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2888                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2889                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2890                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2891                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2892                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2893                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2894                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2895                 }
2896         }
2897         ring->init_hw = init_ring_common;
2898
2899         return intel_init_ring_buffer(dev, ring);
2900 }
2901
2902 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2903 {
2904         struct drm_i915_private *dev_priv = dev->dev_private;
2905         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2906
2907         ring->name = "video enhancement ring";
2908         ring->id = VECS;
2909
2910         ring->mmio_base = VEBOX_RING_BASE;
2911         ring->write_tail = ring_write_tail;
2912         ring->flush = gen6_ring_flush;
2913         ring->add_request = gen6_add_request;
2914         ring->get_seqno = gen6_ring_get_seqno;
2915         ring->set_seqno = ring_set_seqno;
2916
2917         if (INTEL_INFO(dev)->gen >= 8) {
2918                 ring->irq_enable_mask =
2919                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2920                 ring->irq_get = gen8_ring_get_irq;
2921                 ring->irq_put = gen8_ring_put_irq;
2922                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2923                 if (i915_semaphore_is_enabled(dev)) {
2924                         ring->semaphore.sync_to = gen8_ring_sync;
2925                         ring->semaphore.signal = gen8_xcs_signal;
2926                         GEN8_RING_SEMAPHORE_INIT;
2927                 }
2928         } else {
2929                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2930                 ring->irq_get = hsw_vebox_get_irq;
2931                 ring->irq_put = hsw_vebox_put_irq;
2932                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2933                 if (i915_semaphore_is_enabled(dev)) {
2934                         ring->semaphore.sync_to = gen6_ring_sync;
2935                         ring->semaphore.signal = gen6_signal;
2936                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2937                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2938                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2939                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2940                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2941                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2942                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2943                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2944                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2945                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2946                 }
2947         }
2948         ring->init_hw = init_ring_common;
2949
2950         return intel_init_ring_buffer(dev, ring);
2951 }
2952
2953 int
2954 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2955 {
2956         struct intel_engine_cs *ring = req->ring;
2957         int ret;
2958
2959         if (!ring->gpu_caches_dirty)
2960                 return 0;
2961
2962         ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
2963         if (ret)
2964                 return ret;
2965
2966         trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2967
2968         ring->gpu_caches_dirty = false;
2969         return 0;
2970 }
2971
2972 int
2973 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2974 {
2975         struct intel_engine_cs *ring = req->ring;
2976         uint32_t flush_domains;
2977         int ret;
2978
2979         flush_domains = 0;
2980         if (ring->gpu_caches_dirty)
2981                 flush_domains = I915_GEM_GPU_DOMAINS;
2982
2983         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2984         if (ret)
2985                 return ret;
2986
2987         trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2988
2989         ring->gpu_caches_dirty = false;
2990         return 0;
2991 }
2992
2993 void
2994 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2995 {
2996         int ret;
2997
2998         if (!intel_ring_initialized(ring))
2999                 return;
3000
3001         ret = intel_ring_idle(ring);
3002         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3003                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3004                           ring->name, ret);
3005
3006         stop_ring(ring);
3007 }