Merge branch 'acpi-cleanup'
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /*
37  * 965+ support PIPE_CONTROL commands, which provide finer grained control
38  * over cache flushing.
39  */
40 struct pipe_control {
41         struct drm_i915_gem_object *obj;
42         volatile u32 *cpu_page;
43         u32 gtt_offset;
44 };
45
46 static inline int ring_space(struct intel_ring_buffer *ring)
47 {
48         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
49         if (space < 0)
50                 space += ring->size;
51         return space;
52 }
53
54 static int
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56                        u32      invalidate_domains,
57                        u32      flush_domains)
58 {
59         u32 cmd;
60         int ret;
61
62         cmd = MI_FLUSH;
63         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64                 cmd |= MI_NO_WRITE_FLUSH;
65
66         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
67                 cmd |= MI_READ_FLUSH;
68
69         ret = intel_ring_begin(ring, 2);
70         if (ret)
71                 return ret;
72
73         intel_ring_emit(ring, cmd);
74         intel_ring_emit(ring, MI_NOOP);
75         intel_ring_advance(ring);
76
77         return 0;
78 }
79
80 static int
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82                        u32      invalidate_domains,
83                        u32      flush_domains)
84 {
85         struct drm_device *dev = ring->dev;
86         u32 cmd;
87         int ret;
88
89         /*
90          * read/write caches:
91          *
92          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
94          * also flushed at 2d versus 3d pipeline switches.
95          *
96          * read-only caches:
97          *
98          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99          * MI_READ_FLUSH is set, and is always flushed on 965.
100          *
101          * I915_GEM_DOMAIN_COMMAND may not exist?
102          *
103          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104          * invalidated when MI_EXE_FLUSH is set.
105          *
106          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107          * invalidated with every MI_FLUSH.
108          *
109          * TLBs:
110          *
111          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114          * are flushed at any MI_FLUSH.
115          */
116
117         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119                 cmd &= ~MI_NO_WRITE_FLUSH;
120         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
121                 cmd |= MI_EXE_FLUSH;
122
123         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124             (IS_G4X(dev) || IS_GEN5(dev)))
125                 cmd |= MI_INVALIDATE_ISP;
126
127         ret = intel_ring_begin(ring, 2);
128         if (ret)
129                 return ret;
130
131         intel_ring_emit(ring, cmd);
132         intel_ring_emit(ring, MI_NOOP);
133         intel_ring_advance(ring);
134
135         return 0;
136 }
137
138 /**
139  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140  * implementing two workarounds on gen6.  From section 1.4.7.1
141  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
142  *
143  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144  * produced by non-pipelined state commands), software needs to first
145  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
146  * 0.
147  *
148  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
150  *
151  * And the workaround for these two requires this workaround first:
152  *
153  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154  * BEFORE the pipe-control with a post-sync op and no write-cache
155  * flushes.
156  *
157  * And this last workaround is tricky because of the requirements on
158  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
159  * volume 2 part 1:
160  *
161  *     "1 of the following must also be set:
162  *      - Render Target Cache Flush Enable ([12] of DW1)
163  *      - Depth Cache Flush Enable ([0] of DW1)
164  *      - Stall at Pixel Scoreboard ([1] of DW1)
165  *      - Depth Stall ([13] of DW1)
166  *      - Post-Sync Operation ([13] of DW1)
167  *      - Notify Enable ([8] of DW1)"
168  *
169  * The cache flushes require the workaround flush that triggered this
170  * one, so we can't use it.  Depth stall would trigger the same.
171  * Post-sync nonzero is what triggered this second workaround, so we
172  * can't use that one either.  Notify enable is IRQs, which aren't
173  * really our business.  That leaves only stall at scoreboard.
174  */
175 static int
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
177 {
178         struct pipe_control *pc = ring->private;
179         u32 scratch_addr = pc->gtt_offset + 128;
180         int ret;
181
182
183         ret = intel_ring_begin(ring, 6);
184         if (ret)
185                 return ret;
186
187         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
188         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
189                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
190         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
191         intel_ring_emit(ring, 0); /* low dword */
192         intel_ring_emit(ring, 0); /* high dword */
193         intel_ring_emit(ring, MI_NOOP);
194         intel_ring_advance(ring);
195
196         ret = intel_ring_begin(ring, 6);
197         if (ret)
198                 return ret;
199
200         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
201         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
202         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
203         intel_ring_emit(ring, 0);
204         intel_ring_emit(ring, 0);
205         intel_ring_emit(ring, MI_NOOP);
206         intel_ring_advance(ring);
207
208         return 0;
209 }
210
211 static int
212 gen6_render_ring_flush(struct intel_ring_buffer *ring,
213                          u32 invalidate_domains, u32 flush_domains)
214 {
215         u32 flags = 0;
216         struct pipe_control *pc = ring->private;
217         u32 scratch_addr = pc->gtt_offset + 128;
218         int ret;
219
220         /* Force SNB workarounds for PIPE_CONTROL flushes */
221         ret = intel_emit_post_sync_nonzero_flush(ring);
222         if (ret)
223                 return ret;
224
225         /* Just flush everything.  Experiments have shown that reducing the
226          * number of bits based on the write domains has little performance
227          * impact.
228          */
229         if (flush_domains) {
230                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
232                 /*
233                  * Ensure that any following seqno writes only happen
234                  * when the render cache is indeed flushed.
235                  */
236                 flags |= PIPE_CONTROL_CS_STALL;
237         }
238         if (invalidate_domains) {
239                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
245                 /*
246                  * TLB invalidate requires a post-sync write.
247                  */
248                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
249         }
250
251         ret = intel_ring_begin(ring, 4);
252         if (ret)
253                 return ret;
254
255         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
256         intel_ring_emit(ring, flags);
257         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
258         intel_ring_emit(ring, 0);
259         intel_ring_advance(ring);
260
261         return 0;
262 }
263
264 static int
265 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
266 {
267         int ret;
268
269         ret = intel_ring_begin(ring, 4);
270         if (ret)
271                 return ret;
272
273         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
275                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
276         intel_ring_emit(ring, 0);
277         intel_ring_emit(ring, 0);
278         intel_ring_advance(ring);
279
280         return 0;
281 }
282
283 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
284 {
285         int ret;
286
287         if (!ring->fbc_dirty)
288                 return 0;
289
290         ret = intel_ring_begin(ring, 4);
291         if (ret)
292                 return ret;
293         intel_ring_emit(ring, MI_NOOP);
294         /* WaFbcNukeOn3DBlt:ivb/hsw */
295         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
296         intel_ring_emit(ring, MSG_FBC_REND_STATE);
297         intel_ring_emit(ring, value);
298         intel_ring_advance(ring);
299
300         ring->fbc_dirty = false;
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306                        u32 invalidate_domains, u32 flush_domains)
307 {
308         u32 flags = 0;
309         struct pipe_control *pc = ring->private;
310         u32 scratch_addr = pc->gtt_offset + 128;
311         int ret;
312
313         /*
314          * Ensure that any following seqno writes only happen when the render
315          * cache is indeed flushed.
316          *
317          * Workaround: 4th PIPE_CONTROL command (except the ones with only
318          * read-cache invalidate bits set) must have the CS_STALL bit set. We
319          * don't try to be clever and just set it unconditionally.
320          */
321         flags |= PIPE_CONTROL_CS_STALL;
322
323         /* Just flush everything.  Experiments have shown that reducing the
324          * number of bits based on the write domains has little performance
325          * impact.
326          */
327         if (flush_domains) {
328                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
329                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
330         }
331         if (invalidate_domains) {
332                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
333                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
334                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
335                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
336                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
337                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
338                 /*
339                  * TLB invalidate requires a post-sync write.
340                  */
341                 flags |= PIPE_CONTROL_QW_WRITE;
342                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
343
344                 /* Workaround: we must issue a pipe_control with CS-stall bit
345                  * set before a pipe_control command that has the state cache
346                  * invalidate bit set. */
347                 gen7_render_ring_cs_stall_wa(ring);
348         }
349
350         ret = intel_ring_begin(ring, 4);
351         if (ret)
352                 return ret;
353
354         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
355         intel_ring_emit(ring, flags);
356         intel_ring_emit(ring, scratch_addr);
357         intel_ring_emit(ring, 0);
358         intel_ring_advance(ring);
359
360         if (flush_domains)
361                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
362
363         return 0;
364 }
365
366 static void ring_write_tail(struct intel_ring_buffer *ring,
367                             u32 value)
368 {
369         drm_i915_private_t *dev_priv = ring->dev->dev_private;
370         I915_WRITE_TAIL(ring, value);
371 }
372
373 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
374 {
375         drm_i915_private_t *dev_priv = ring->dev->dev_private;
376         u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
377                         RING_ACTHD(ring->mmio_base) : ACTHD;
378
379         return I915_READ(acthd_reg);
380 }
381
382 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
383 {
384         struct drm_i915_private *dev_priv = ring->dev->dev_private;
385         u32 addr;
386
387         addr = dev_priv->status_page_dmah->busaddr;
388         if (INTEL_INFO(ring->dev)->gen >= 4)
389                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
390         I915_WRITE(HWS_PGA, addr);
391 }
392
393 static int init_ring_common(struct intel_ring_buffer *ring)
394 {
395         struct drm_device *dev = ring->dev;
396         drm_i915_private_t *dev_priv = dev->dev_private;
397         struct drm_i915_gem_object *obj = ring->obj;
398         int ret = 0;
399         u32 head;
400
401         if (HAS_FORCE_WAKE(dev))
402                 gen6_gt_force_wake_get(dev_priv);
403
404         if (I915_NEED_GFX_HWS(dev))
405                 intel_ring_setup_status_page(ring);
406         else
407                 ring_setup_phys_status_page(ring);
408
409         /* Stop the ring if it's running. */
410         I915_WRITE_CTL(ring, 0);
411         I915_WRITE_HEAD(ring, 0);
412         ring->write_tail(ring, 0);
413
414         head = I915_READ_HEAD(ring) & HEAD_ADDR;
415
416         /* G45 ring initialization fails to reset head to zero */
417         if (head != 0) {
418                 DRM_DEBUG_KMS("%s head not reset to zero "
419                               "ctl %08x head %08x tail %08x start %08x\n",
420                               ring->name,
421                               I915_READ_CTL(ring),
422                               I915_READ_HEAD(ring),
423                               I915_READ_TAIL(ring),
424                               I915_READ_START(ring));
425
426                 I915_WRITE_HEAD(ring, 0);
427
428                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
429                         DRM_ERROR("failed to set %s head to zero "
430                                   "ctl %08x head %08x tail %08x start %08x\n",
431                                   ring->name,
432                                   I915_READ_CTL(ring),
433                                   I915_READ_HEAD(ring),
434                                   I915_READ_TAIL(ring),
435                                   I915_READ_START(ring));
436                 }
437         }
438
439         /* Initialize the ring. This must happen _after_ we've cleared the ring
440          * registers with the above sequence (the readback of the HEAD registers
441          * also enforces ordering), otherwise the hw might lose the new ring
442          * register values. */
443         I915_WRITE_START(ring, obj->gtt_offset);
444         I915_WRITE_CTL(ring,
445                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
446                         | RING_VALID);
447
448         /* If the head is still not zero, the ring is dead */
449         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
450                      I915_READ_START(ring) == obj->gtt_offset &&
451                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
452                 DRM_ERROR("%s initialization failed "
453                                 "ctl %08x head %08x tail %08x start %08x\n",
454                                 ring->name,
455                                 I915_READ_CTL(ring),
456                                 I915_READ_HEAD(ring),
457                                 I915_READ_TAIL(ring),
458                                 I915_READ_START(ring));
459                 ret = -EIO;
460                 goto out;
461         }
462
463         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
464                 i915_kernel_lost_context(ring->dev);
465         else {
466                 ring->head = I915_READ_HEAD(ring);
467                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
468                 ring->space = ring_space(ring);
469                 ring->last_retired_head = -1;
470         }
471
472         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
473
474 out:
475         if (HAS_FORCE_WAKE(dev))
476                 gen6_gt_force_wake_put(dev_priv);
477
478         return ret;
479 }
480
481 static int
482 init_pipe_control(struct intel_ring_buffer *ring)
483 {
484         struct pipe_control *pc;
485         struct drm_i915_gem_object *obj;
486         int ret;
487
488         if (ring->private)
489                 return 0;
490
491         pc = kmalloc(sizeof(*pc), GFP_KERNEL);
492         if (!pc)
493                 return -ENOMEM;
494
495         obj = i915_gem_alloc_object(ring->dev, 4096);
496         if (obj == NULL) {
497                 DRM_ERROR("Failed to allocate seqno page\n");
498                 ret = -ENOMEM;
499                 goto err;
500         }
501
502         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
503
504         ret = i915_gem_object_pin(obj, 4096, true, false);
505         if (ret)
506                 goto err_unref;
507
508         pc->gtt_offset = obj->gtt_offset;
509         pc->cpu_page = kmap(sg_page(obj->pages->sgl));
510         if (pc->cpu_page == NULL) {
511                 ret = -ENOMEM;
512                 goto err_unpin;
513         }
514
515         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
516                          ring->name, pc->gtt_offset);
517
518         pc->obj = obj;
519         ring->private = pc;
520         return 0;
521
522 err_unpin:
523         i915_gem_object_unpin(obj);
524 err_unref:
525         drm_gem_object_unreference(&obj->base);
526 err:
527         kfree(pc);
528         return ret;
529 }
530
531 static void
532 cleanup_pipe_control(struct intel_ring_buffer *ring)
533 {
534         struct pipe_control *pc = ring->private;
535         struct drm_i915_gem_object *obj;
536
537         obj = pc->obj;
538
539         kunmap(sg_page(obj->pages->sgl));
540         i915_gem_object_unpin(obj);
541         drm_gem_object_unreference(&obj->base);
542
543         kfree(pc);
544 }
545
546 static int init_render_ring(struct intel_ring_buffer *ring)
547 {
548         struct drm_device *dev = ring->dev;
549         struct drm_i915_private *dev_priv = dev->dev_private;
550         int ret = init_ring_common(ring);
551
552         if (INTEL_INFO(dev)->gen > 3)
553                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
554
555         /* We need to disable the AsyncFlip performance optimisations in order
556          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
557          * programmed to '1' on all products.
558          *
559          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
560          */
561         if (INTEL_INFO(dev)->gen >= 6)
562                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
563
564         /* Required for the hardware to program scanline values for waiting */
565         if (INTEL_INFO(dev)->gen == 6)
566                 I915_WRITE(GFX_MODE,
567                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
568
569         if (IS_GEN7(dev))
570                 I915_WRITE(GFX_MODE_GEN7,
571                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
572                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
573
574         if (INTEL_INFO(dev)->gen >= 5) {
575                 ret = init_pipe_control(ring);
576                 if (ret)
577                         return ret;
578         }
579
580         if (IS_GEN6(dev)) {
581                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
582                  * "If this bit is set, STCunit will have LRA as replacement
583                  *  policy. [...] This bit must be reset.  LRA replacement
584                  *  policy is not supported."
585                  */
586                 I915_WRITE(CACHE_MODE_0,
587                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
588
589                 /* This is not explicitly set for GEN6, so read the register.
590                  * see intel_ring_mi_set_context() for why we care.
591                  * TODO: consider explicitly setting the bit for GEN5
592                  */
593                 ring->itlb_before_ctx_switch =
594                         !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
595         }
596
597         if (INTEL_INFO(dev)->gen >= 6)
598                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
599
600         if (HAS_L3_GPU_CACHE(dev))
601                 I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
602
603         return ret;
604 }
605
606 static void render_ring_cleanup(struct intel_ring_buffer *ring)
607 {
608         struct drm_device *dev = ring->dev;
609
610         if (!ring->private)
611                 return;
612
613         if (HAS_BROKEN_CS_TLB(dev))
614                 drm_gem_object_unreference(to_gem_object(ring->private));
615
616         if (INTEL_INFO(dev)->gen >= 5)
617                 cleanup_pipe_control(ring);
618
619         ring->private = NULL;
620 }
621
622 static void
623 update_mboxes(struct intel_ring_buffer *ring,
624               u32 mmio_offset)
625 {
626 /* NB: In order to be able to do semaphore MBOX updates for varying number
627  * of rings, it's easiest if we round up each individual update to a
628  * multiple of 2 (since ring updates must always be a multiple of 2)
629  * even though the actual update only requires 3 dwords.
630  */
631 #define MBOX_UPDATE_DWORDS 4
632         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
633         intel_ring_emit(ring, mmio_offset);
634         intel_ring_emit(ring, ring->outstanding_lazy_request);
635         intel_ring_emit(ring, MI_NOOP);
636 }
637
638 /**
639  * gen6_add_request - Update the semaphore mailbox registers
640  * 
641  * @ring - ring that is adding a request
642  * @seqno - return seqno stuck into the ring
643  *
644  * Update the mailbox registers in the *other* rings with the current seqno.
645  * This acts like a signal in the canonical semaphore.
646  */
647 static int
648 gen6_add_request(struct intel_ring_buffer *ring)
649 {
650         struct drm_device *dev = ring->dev;
651         struct drm_i915_private *dev_priv = dev->dev_private;
652         struct intel_ring_buffer *useless;
653         int i, ret;
654
655         ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
656                                       MBOX_UPDATE_DWORDS) +
657                                       4);
658         if (ret)
659                 return ret;
660 #undef MBOX_UPDATE_DWORDS
661
662         for_each_ring(useless, dev_priv, i) {
663                 u32 mbox_reg = ring->signal_mbox[i];
664                 if (mbox_reg != GEN6_NOSYNC)
665                         update_mboxes(ring, mbox_reg);
666         }
667
668         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
669         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
670         intel_ring_emit(ring, ring->outstanding_lazy_request);
671         intel_ring_emit(ring, MI_USER_INTERRUPT);
672         intel_ring_advance(ring);
673
674         return 0;
675 }
676
677 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
678                                               u32 seqno)
679 {
680         struct drm_i915_private *dev_priv = dev->dev_private;
681         return dev_priv->last_seqno < seqno;
682 }
683
684 /**
685  * intel_ring_sync - sync the waiter to the signaller on seqno
686  *
687  * @waiter - ring that is waiting
688  * @signaller - ring which has, or will signal
689  * @seqno - seqno which the waiter will block on
690  */
691 static int
692 gen6_ring_sync(struct intel_ring_buffer *waiter,
693                struct intel_ring_buffer *signaller,
694                u32 seqno)
695 {
696         int ret;
697         u32 dw1 = MI_SEMAPHORE_MBOX |
698                   MI_SEMAPHORE_COMPARE |
699                   MI_SEMAPHORE_REGISTER;
700
701         /* Throughout all of the GEM code, seqno passed implies our current
702          * seqno is >= the last seqno executed. However for hardware the
703          * comparison is strictly greater than.
704          */
705         seqno -= 1;
706
707         WARN_ON(signaller->semaphore_register[waiter->id] ==
708                 MI_SEMAPHORE_SYNC_INVALID);
709
710         ret = intel_ring_begin(waiter, 4);
711         if (ret)
712                 return ret;
713
714         /* If seqno wrap happened, omit the wait with no-ops */
715         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
716                 intel_ring_emit(waiter,
717                                 dw1 |
718                                 signaller->semaphore_register[waiter->id]);
719                 intel_ring_emit(waiter, seqno);
720                 intel_ring_emit(waiter, 0);
721                 intel_ring_emit(waiter, MI_NOOP);
722         } else {
723                 intel_ring_emit(waiter, MI_NOOP);
724                 intel_ring_emit(waiter, MI_NOOP);
725                 intel_ring_emit(waiter, MI_NOOP);
726                 intel_ring_emit(waiter, MI_NOOP);
727         }
728         intel_ring_advance(waiter);
729
730         return 0;
731 }
732
733 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
734 do {                                                                    \
735         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
736                  PIPE_CONTROL_DEPTH_STALL);                             \
737         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
738         intel_ring_emit(ring__, 0);                                                     \
739         intel_ring_emit(ring__, 0);                                                     \
740 } while (0)
741
742 static int
743 pc_render_add_request(struct intel_ring_buffer *ring)
744 {
745         struct pipe_control *pc = ring->private;
746         u32 scratch_addr = pc->gtt_offset + 128;
747         int ret;
748
749         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
750          * incoherent with writes to memory, i.e. completely fubar,
751          * so we need to use PIPE_NOTIFY instead.
752          *
753          * However, we also need to workaround the qword write
754          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
755          * memory before requesting an interrupt.
756          */
757         ret = intel_ring_begin(ring, 32);
758         if (ret)
759                 return ret;
760
761         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
762                         PIPE_CONTROL_WRITE_FLUSH |
763                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
764         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
765         intel_ring_emit(ring, ring->outstanding_lazy_request);
766         intel_ring_emit(ring, 0);
767         PIPE_CONTROL_FLUSH(ring, scratch_addr);
768         scratch_addr += 128; /* write to separate cachelines */
769         PIPE_CONTROL_FLUSH(ring, scratch_addr);
770         scratch_addr += 128;
771         PIPE_CONTROL_FLUSH(ring, scratch_addr);
772         scratch_addr += 128;
773         PIPE_CONTROL_FLUSH(ring, scratch_addr);
774         scratch_addr += 128;
775         PIPE_CONTROL_FLUSH(ring, scratch_addr);
776         scratch_addr += 128;
777         PIPE_CONTROL_FLUSH(ring, scratch_addr);
778
779         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
780                         PIPE_CONTROL_WRITE_FLUSH |
781                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
782                         PIPE_CONTROL_NOTIFY);
783         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
784         intel_ring_emit(ring, ring->outstanding_lazy_request);
785         intel_ring_emit(ring, 0);
786         intel_ring_advance(ring);
787
788         return 0;
789 }
790
791 static u32
792 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
793 {
794         /* Workaround to force correct ordering between irq and seqno writes on
795          * ivb (and maybe also on snb) by reading from a CS register (like
796          * ACTHD) before reading the status page. */
797         if (!lazy_coherency)
798                 intel_ring_get_active_head(ring);
799         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
800 }
801
802 static u32
803 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
804 {
805         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
806 }
807
808 static void
809 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
810 {
811         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
812 }
813
814 static u32
815 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
816 {
817         struct pipe_control *pc = ring->private;
818         return pc->cpu_page[0];
819 }
820
821 static void
822 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
823 {
824         struct pipe_control *pc = ring->private;
825         pc->cpu_page[0] = seqno;
826 }
827
828 static bool
829 gen5_ring_get_irq(struct intel_ring_buffer *ring)
830 {
831         struct drm_device *dev = ring->dev;
832         drm_i915_private_t *dev_priv = dev->dev_private;
833         unsigned long flags;
834
835         if (!dev->irq_enabled)
836                 return false;
837
838         spin_lock_irqsave(&dev_priv->irq_lock, flags);
839         if (ring->irq_refcount.gt++ == 0) {
840                 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
841                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
842                 POSTING_READ(GTIMR);
843         }
844         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
845
846         return true;
847 }
848
849 static void
850 gen5_ring_put_irq(struct intel_ring_buffer *ring)
851 {
852         struct drm_device *dev = ring->dev;
853         drm_i915_private_t *dev_priv = dev->dev_private;
854         unsigned long flags;
855
856         spin_lock_irqsave(&dev_priv->irq_lock, flags);
857         if (--ring->irq_refcount.gt == 0) {
858                 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
859                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
860                 POSTING_READ(GTIMR);
861         }
862         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
863 }
864
865 static bool
866 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
867 {
868         struct drm_device *dev = ring->dev;
869         drm_i915_private_t *dev_priv = dev->dev_private;
870         unsigned long flags;
871
872         if (!dev->irq_enabled)
873                 return false;
874
875         spin_lock_irqsave(&dev_priv->irq_lock, flags);
876         if (ring->irq_refcount.gt++ == 0) {
877                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
878                 I915_WRITE(IMR, dev_priv->irq_mask);
879                 POSTING_READ(IMR);
880         }
881         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
882
883         return true;
884 }
885
886 static void
887 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
888 {
889         struct drm_device *dev = ring->dev;
890         drm_i915_private_t *dev_priv = dev->dev_private;
891         unsigned long flags;
892
893         spin_lock_irqsave(&dev_priv->irq_lock, flags);
894         if (--ring->irq_refcount.gt == 0) {
895                 dev_priv->irq_mask |= ring->irq_enable_mask;
896                 I915_WRITE(IMR, dev_priv->irq_mask);
897                 POSTING_READ(IMR);
898         }
899         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
900 }
901
902 static bool
903 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
904 {
905         struct drm_device *dev = ring->dev;
906         drm_i915_private_t *dev_priv = dev->dev_private;
907         unsigned long flags;
908
909         if (!dev->irq_enabled)
910                 return false;
911
912         spin_lock_irqsave(&dev_priv->irq_lock, flags);
913         if (ring->irq_refcount.gt++ == 0) {
914                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
915                 I915_WRITE16(IMR, dev_priv->irq_mask);
916                 POSTING_READ16(IMR);
917         }
918         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
919
920         return true;
921 }
922
923 static void
924 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
925 {
926         struct drm_device *dev = ring->dev;
927         drm_i915_private_t *dev_priv = dev->dev_private;
928         unsigned long flags;
929
930         spin_lock_irqsave(&dev_priv->irq_lock, flags);
931         if (--ring->irq_refcount.gt == 0) {
932                 dev_priv->irq_mask |= ring->irq_enable_mask;
933                 I915_WRITE16(IMR, dev_priv->irq_mask);
934                 POSTING_READ16(IMR);
935         }
936         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
937 }
938
939 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
940 {
941         struct drm_device *dev = ring->dev;
942         drm_i915_private_t *dev_priv = ring->dev->dev_private;
943         u32 mmio = 0;
944
945         /* The ring status page addresses are no longer next to the rest of
946          * the ring registers as of gen7.
947          */
948         if (IS_GEN7(dev)) {
949                 switch (ring->id) {
950                 case RCS:
951                         mmio = RENDER_HWS_PGA_GEN7;
952                         break;
953                 case BCS:
954                         mmio = BLT_HWS_PGA_GEN7;
955                         break;
956                 case VCS:
957                         mmio = BSD_HWS_PGA_GEN7;
958                         break;
959                 case VECS:
960                         mmio = VEBOX_HWS_PGA_GEN7;
961                         break;
962                 }
963         } else if (IS_GEN6(ring->dev)) {
964                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
965         } else {
966                 mmio = RING_HWS_PGA(ring->mmio_base);
967         }
968
969         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
970         POSTING_READ(mmio);
971
972         /* Flush the TLB for this page */
973         if (INTEL_INFO(dev)->gen >= 6) {
974                 u32 reg = RING_INSTPM(ring->mmio_base);
975                 I915_WRITE(reg,
976                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
977                                               INSTPM_SYNC_FLUSH));
978                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
979                              1000))
980                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
981                                   ring->name);
982         }
983 }
984
985 static int
986 bsd_ring_flush(struct intel_ring_buffer *ring,
987                u32     invalidate_domains,
988                u32     flush_domains)
989 {
990         int ret;
991
992         ret = intel_ring_begin(ring, 2);
993         if (ret)
994                 return ret;
995
996         intel_ring_emit(ring, MI_FLUSH);
997         intel_ring_emit(ring, MI_NOOP);
998         intel_ring_advance(ring);
999         return 0;
1000 }
1001
1002 static int
1003 i9xx_add_request(struct intel_ring_buffer *ring)
1004 {
1005         int ret;
1006
1007         ret = intel_ring_begin(ring, 4);
1008         if (ret)
1009                 return ret;
1010
1011         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1012         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1013         intel_ring_emit(ring, ring->outstanding_lazy_request);
1014         intel_ring_emit(ring, MI_USER_INTERRUPT);
1015         intel_ring_advance(ring);
1016
1017         return 0;
1018 }
1019
1020 static bool
1021 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1022 {
1023         struct drm_device *dev = ring->dev;
1024         drm_i915_private_t *dev_priv = dev->dev_private;
1025         unsigned long flags;
1026
1027         if (!dev->irq_enabled)
1028                return false;
1029
1030         /* It looks like we need to prevent the gt from suspending while waiting
1031          * for an notifiy irq, otherwise irqs seem to get lost on at least the
1032          * blt/bsd rings on ivb. */
1033         gen6_gt_force_wake_get(dev_priv);
1034
1035         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1036         if (ring->irq_refcount.gt++ == 0) {
1037                 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1038                         I915_WRITE_IMR(ring,
1039                                        ~(ring->irq_enable_mask |
1040                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1041                 else
1042                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1043                 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
1044                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1045                 POSTING_READ(GTIMR);
1046         }
1047         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1048
1049         return true;
1050 }
1051
1052 static void
1053 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1054 {
1055         struct drm_device *dev = ring->dev;
1056         drm_i915_private_t *dev_priv = dev->dev_private;
1057         unsigned long flags;
1058
1059         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1060         if (--ring->irq_refcount.gt == 0) {
1061                 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1062                         I915_WRITE_IMR(ring,
1063                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1064                 else
1065                         I915_WRITE_IMR(ring, ~0);
1066                 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
1067                 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1068                 POSTING_READ(GTIMR);
1069         }
1070         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1071
1072         gen6_gt_force_wake_put(dev_priv);
1073 }
1074
1075 static bool
1076 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1077 {
1078         struct drm_device *dev = ring->dev;
1079         struct drm_i915_private *dev_priv = dev->dev_private;
1080         unsigned long flags;
1081
1082         if (!dev->irq_enabled)
1083                 return false;
1084
1085         spin_lock_irqsave(&dev_priv->rps.lock, flags);
1086         if (ring->irq_refcount.pm++ == 0) {
1087                 u32 pm_imr = I915_READ(GEN6_PMIMR);
1088                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1089                 I915_WRITE(GEN6_PMIMR, pm_imr & ~ring->irq_enable_mask);
1090                 POSTING_READ(GEN6_PMIMR);
1091         }
1092         spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
1093
1094         return true;
1095 }
1096
1097 static void
1098 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1099 {
1100         struct drm_device *dev = ring->dev;
1101         struct drm_i915_private *dev_priv = dev->dev_private;
1102         unsigned long flags;
1103
1104         if (!dev->irq_enabled)
1105                 return;
1106
1107         spin_lock_irqsave(&dev_priv->rps.lock, flags);
1108         if (--ring->irq_refcount.pm == 0) {
1109                 u32 pm_imr = I915_READ(GEN6_PMIMR);
1110                 I915_WRITE_IMR(ring, ~0);
1111                 I915_WRITE(GEN6_PMIMR, pm_imr | ring->irq_enable_mask);
1112                 POSTING_READ(GEN6_PMIMR);
1113         }
1114         spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
1115 }
1116
1117 static int
1118 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1119                          u32 offset, u32 length,
1120                          unsigned flags)
1121 {
1122         int ret;
1123
1124         ret = intel_ring_begin(ring, 2);
1125         if (ret)
1126                 return ret;
1127
1128         intel_ring_emit(ring,
1129                         MI_BATCH_BUFFER_START |
1130                         MI_BATCH_GTT |
1131                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1132         intel_ring_emit(ring, offset);
1133         intel_ring_advance(ring);
1134
1135         return 0;
1136 }
1137
1138 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1139 #define I830_BATCH_LIMIT (256*1024)
1140 static int
1141 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1142                                 u32 offset, u32 len,
1143                                 unsigned flags)
1144 {
1145         int ret;
1146
1147         if (flags & I915_DISPATCH_PINNED) {
1148                 ret = intel_ring_begin(ring, 4);
1149                 if (ret)
1150                         return ret;
1151
1152                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1153                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1154                 intel_ring_emit(ring, offset + len - 8);
1155                 intel_ring_emit(ring, MI_NOOP);
1156                 intel_ring_advance(ring);
1157         } else {
1158                 struct drm_i915_gem_object *obj = ring->private;
1159                 u32 cs_offset = obj->gtt_offset;
1160
1161                 if (len > I830_BATCH_LIMIT)
1162                         return -ENOSPC;
1163
1164                 ret = intel_ring_begin(ring, 9+3);
1165                 if (ret)
1166                         return ret;
1167                 /* Blit the batch (which has now all relocs applied) to the stable batch
1168                  * scratch bo area (so that the CS never stumbles over its tlb
1169                  * invalidation bug) ... */
1170                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1171                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1172                                 XY_SRC_COPY_BLT_WRITE_RGB);
1173                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1174                 intel_ring_emit(ring, 0);
1175                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1176                 intel_ring_emit(ring, cs_offset);
1177                 intel_ring_emit(ring, 0);
1178                 intel_ring_emit(ring, 4096);
1179                 intel_ring_emit(ring, offset);
1180                 intel_ring_emit(ring, MI_FLUSH);
1181
1182                 /* ... and execute it. */
1183                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1184                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1185                 intel_ring_emit(ring, cs_offset + len - 8);
1186                 intel_ring_advance(ring);
1187         }
1188
1189         return 0;
1190 }
1191
1192 static int
1193 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1194                          u32 offset, u32 len,
1195                          unsigned flags)
1196 {
1197         int ret;
1198
1199         ret = intel_ring_begin(ring, 2);
1200         if (ret)
1201                 return ret;
1202
1203         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1204         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1205         intel_ring_advance(ring);
1206
1207         return 0;
1208 }
1209
1210 static void cleanup_status_page(struct intel_ring_buffer *ring)
1211 {
1212         struct drm_i915_gem_object *obj;
1213
1214         obj = ring->status_page.obj;
1215         if (obj == NULL)
1216                 return;
1217
1218         kunmap(sg_page(obj->pages->sgl));
1219         i915_gem_object_unpin(obj);
1220         drm_gem_object_unreference(&obj->base);
1221         ring->status_page.obj = NULL;
1222 }
1223
1224 static int init_status_page(struct intel_ring_buffer *ring)
1225 {
1226         struct drm_device *dev = ring->dev;
1227         struct drm_i915_gem_object *obj;
1228         int ret;
1229
1230         obj = i915_gem_alloc_object(dev, 4096);
1231         if (obj == NULL) {
1232                 DRM_ERROR("Failed to allocate status page\n");
1233                 ret = -ENOMEM;
1234                 goto err;
1235         }
1236
1237         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1238
1239         ret = i915_gem_object_pin(obj, 4096, true, false);
1240         if (ret != 0) {
1241                 goto err_unref;
1242         }
1243
1244         ring->status_page.gfx_addr = obj->gtt_offset;
1245         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1246         if (ring->status_page.page_addr == NULL) {
1247                 ret = -ENOMEM;
1248                 goto err_unpin;
1249         }
1250         ring->status_page.obj = obj;
1251         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1252
1253         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1254                         ring->name, ring->status_page.gfx_addr);
1255
1256         return 0;
1257
1258 err_unpin:
1259         i915_gem_object_unpin(obj);
1260 err_unref:
1261         drm_gem_object_unreference(&obj->base);
1262 err:
1263         return ret;
1264 }
1265
1266 static int init_phys_status_page(struct intel_ring_buffer *ring)
1267 {
1268         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1269
1270         if (!dev_priv->status_page_dmah) {
1271                 dev_priv->status_page_dmah =
1272                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1273                 if (!dev_priv->status_page_dmah)
1274                         return -ENOMEM;
1275         }
1276
1277         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1278         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1279
1280         return 0;
1281 }
1282
1283 static int intel_init_ring_buffer(struct drm_device *dev,
1284                                   struct intel_ring_buffer *ring)
1285 {
1286         struct drm_i915_gem_object *obj;
1287         struct drm_i915_private *dev_priv = dev->dev_private;
1288         int ret;
1289
1290         ring->dev = dev;
1291         INIT_LIST_HEAD(&ring->active_list);
1292         INIT_LIST_HEAD(&ring->request_list);
1293         ring->size = 32 * PAGE_SIZE;
1294         memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1295
1296         init_waitqueue_head(&ring->irq_queue);
1297
1298         if (I915_NEED_GFX_HWS(dev)) {
1299                 ret = init_status_page(ring);
1300                 if (ret)
1301                         return ret;
1302         } else {
1303                 BUG_ON(ring->id != RCS);
1304                 ret = init_phys_status_page(ring);
1305                 if (ret)
1306                         return ret;
1307         }
1308
1309         obj = NULL;
1310         if (!HAS_LLC(dev))
1311                 obj = i915_gem_object_create_stolen(dev, ring->size);
1312         if (obj == NULL)
1313                 obj = i915_gem_alloc_object(dev, ring->size);
1314         if (obj == NULL) {
1315                 DRM_ERROR("Failed to allocate ringbuffer\n");
1316                 ret = -ENOMEM;
1317                 goto err_hws;
1318         }
1319
1320         ring->obj = obj;
1321
1322         ret = i915_gem_object_pin(obj, PAGE_SIZE, true, false);
1323         if (ret)
1324                 goto err_unref;
1325
1326         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1327         if (ret)
1328                 goto err_unpin;
1329
1330         ring->virtual_start =
1331                 ioremap_wc(dev_priv->gtt.mappable_base + obj->gtt_offset,
1332                            ring->size);
1333         if (ring->virtual_start == NULL) {
1334                 DRM_ERROR("Failed to map ringbuffer.\n");
1335                 ret = -EINVAL;
1336                 goto err_unpin;
1337         }
1338
1339         ret = ring->init(ring);
1340         if (ret)
1341                 goto err_unmap;
1342
1343         /* Workaround an erratum on the i830 which causes a hang if
1344          * the TAIL pointer points to within the last 2 cachelines
1345          * of the buffer.
1346          */
1347         ring->effective_size = ring->size;
1348         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1349                 ring->effective_size -= 128;
1350
1351         return 0;
1352
1353 err_unmap:
1354         iounmap(ring->virtual_start);
1355 err_unpin:
1356         i915_gem_object_unpin(obj);
1357 err_unref:
1358         drm_gem_object_unreference(&obj->base);
1359         ring->obj = NULL;
1360 err_hws:
1361         cleanup_status_page(ring);
1362         return ret;
1363 }
1364
1365 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1366 {
1367         struct drm_i915_private *dev_priv;
1368         int ret;
1369
1370         if (ring->obj == NULL)
1371                 return;
1372
1373         /* Disable the ring buffer. The ring must be idle at this point */
1374         dev_priv = ring->dev->dev_private;
1375         ret = intel_ring_idle(ring);
1376         if (ret)
1377                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1378                           ring->name, ret);
1379
1380         I915_WRITE_CTL(ring, 0);
1381
1382         iounmap(ring->virtual_start);
1383
1384         i915_gem_object_unpin(ring->obj);
1385         drm_gem_object_unreference(&ring->obj->base);
1386         ring->obj = NULL;
1387
1388         if (ring->cleanup)
1389                 ring->cleanup(ring);
1390
1391         cleanup_status_page(ring);
1392 }
1393
1394 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1395 {
1396         int ret;
1397
1398         ret = i915_wait_seqno(ring, seqno);
1399         if (!ret)
1400                 i915_gem_retire_requests_ring(ring);
1401
1402         return ret;
1403 }
1404
1405 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1406 {
1407         struct drm_i915_gem_request *request;
1408         u32 seqno = 0;
1409         int ret;
1410
1411         i915_gem_retire_requests_ring(ring);
1412
1413         if (ring->last_retired_head != -1) {
1414                 ring->head = ring->last_retired_head;
1415                 ring->last_retired_head = -1;
1416                 ring->space = ring_space(ring);
1417                 if (ring->space >= n)
1418                         return 0;
1419         }
1420
1421         list_for_each_entry(request, &ring->request_list, list) {
1422                 int space;
1423
1424                 if (request->tail == -1)
1425                         continue;
1426
1427                 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1428                 if (space < 0)
1429                         space += ring->size;
1430                 if (space >= n) {
1431                         seqno = request->seqno;
1432                         break;
1433                 }
1434
1435                 /* Consume this request in case we need more space than
1436                  * is available and so need to prevent a race between
1437                  * updating last_retired_head and direct reads of
1438                  * I915_RING_HEAD. It also provides a nice sanity check.
1439                  */
1440                 request->tail = -1;
1441         }
1442
1443         if (seqno == 0)
1444                 return -ENOSPC;
1445
1446         ret = intel_ring_wait_seqno(ring, seqno);
1447         if (ret)
1448                 return ret;
1449
1450         if (WARN_ON(ring->last_retired_head == -1))
1451                 return -ENOSPC;
1452
1453         ring->head = ring->last_retired_head;
1454         ring->last_retired_head = -1;
1455         ring->space = ring_space(ring);
1456         if (WARN_ON(ring->space < n))
1457                 return -ENOSPC;
1458
1459         return 0;
1460 }
1461
1462 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1463 {
1464         struct drm_device *dev = ring->dev;
1465         struct drm_i915_private *dev_priv = dev->dev_private;
1466         unsigned long end;
1467         int ret;
1468
1469         ret = intel_ring_wait_request(ring, n);
1470         if (ret != -ENOSPC)
1471                 return ret;
1472
1473         trace_i915_ring_wait_begin(ring);
1474         /* With GEM the hangcheck timer should kick us out of the loop,
1475          * leaving it early runs the risk of corrupting GEM state (due
1476          * to running on almost untested codepaths). But on resume
1477          * timers don't work yet, so prevent a complete hang in that
1478          * case by choosing an insanely large timeout. */
1479         end = jiffies + 60 * HZ;
1480
1481         do {
1482                 ring->head = I915_READ_HEAD(ring);
1483                 ring->space = ring_space(ring);
1484                 if (ring->space >= n) {
1485                         trace_i915_ring_wait_end(ring);
1486                         return 0;
1487                 }
1488
1489                 if (dev->primary->master) {
1490                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1491                         if (master_priv->sarea_priv)
1492                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1493                 }
1494
1495                 msleep(1);
1496
1497                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1498                                            dev_priv->mm.interruptible);
1499                 if (ret)
1500                         return ret;
1501         } while (!time_after(jiffies, end));
1502         trace_i915_ring_wait_end(ring);
1503         return -EBUSY;
1504 }
1505
1506 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1507 {
1508         uint32_t __iomem *virt;
1509         int rem = ring->size - ring->tail;
1510
1511         if (ring->space < rem) {
1512                 int ret = ring_wait_for_space(ring, rem);
1513                 if (ret)
1514                         return ret;
1515         }
1516
1517         virt = ring->virtual_start + ring->tail;
1518         rem /= 4;
1519         while (rem--)
1520                 iowrite32(MI_NOOP, virt++);
1521
1522         ring->tail = 0;
1523         ring->space = ring_space(ring);
1524
1525         return 0;
1526 }
1527
1528 int intel_ring_idle(struct intel_ring_buffer *ring)
1529 {
1530         u32 seqno;
1531         int ret;
1532
1533         /* We need to add any requests required to flush the objects and ring */
1534         if (ring->outstanding_lazy_request) {
1535                 ret = i915_add_request(ring, NULL);
1536                 if (ret)
1537                         return ret;
1538         }
1539
1540         /* Wait upon the last request to be completed */
1541         if (list_empty(&ring->request_list))
1542                 return 0;
1543
1544         seqno = list_entry(ring->request_list.prev,
1545                            struct drm_i915_gem_request,
1546                            list)->seqno;
1547
1548         return i915_wait_seqno(ring, seqno);
1549 }
1550
1551 static int
1552 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1553 {
1554         if (ring->outstanding_lazy_request)
1555                 return 0;
1556
1557         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1558 }
1559
1560 static int __intel_ring_begin(struct intel_ring_buffer *ring,
1561                               int bytes)
1562 {
1563         int ret;
1564
1565         if (unlikely(ring->tail + bytes > ring->effective_size)) {
1566                 ret = intel_wrap_ring_buffer(ring);
1567                 if (unlikely(ret))
1568                         return ret;
1569         }
1570
1571         if (unlikely(ring->space < bytes)) {
1572                 ret = ring_wait_for_space(ring, bytes);
1573                 if (unlikely(ret))
1574                         return ret;
1575         }
1576
1577         ring->space -= bytes;
1578         return 0;
1579 }
1580
1581 int intel_ring_begin(struct intel_ring_buffer *ring,
1582                      int num_dwords)
1583 {
1584         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1585         int ret;
1586
1587         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1588                                    dev_priv->mm.interruptible);
1589         if (ret)
1590                 return ret;
1591
1592         /* Preallocate the olr before touching the ring */
1593         ret = intel_ring_alloc_seqno(ring);
1594         if (ret)
1595                 return ret;
1596
1597         return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1598 }
1599
1600 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1601 {
1602         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1603
1604         BUG_ON(ring->outstanding_lazy_request);
1605
1606         if (INTEL_INFO(ring->dev)->gen >= 6) {
1607                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1608                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1609         }
1610
1611         ring->set_seqno(ring, seqno);
1612         ring->hangcheck.seqno = seqno;
1613 }
1614
1615 void intel_ring_advance(struct intel_ring_buffer *ring)
1616 {
1617         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1618
1619         ring->tail &= ring->size - 1;
1620         if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
1621                 return;
1622         ring->write_tail(ring, ring->tail);
1623 }
1624
1625
1626 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1627                                      u32 value)
1628 {
1629         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1630
1631        /* Every tail move must follow the sequence below */
1632
1633         /* Disable notification that the ring is IDLE. The GT
1634          * will then assume that it is busy and bring it out of rc6.
1635          */
1636         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1637                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1638
1639         /* Clear the context id. Here be magic! */
1640         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1641
1642         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1643         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1644                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1645                      50))
1646                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1647
1648         /* Now that the ring is fully powered up, update the tail */
1649         I915_WRITE_TAIL(ring, value);
1650         POSTING_READ(RING_TAIL(ring->mmio_base));
1651
1652         /* Let the ring send IDLE messages to the GT again,
1653          * and so let it sleep to conserve power when idle.
1654          */
1655         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1656                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1657 }
1658
1659 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1660                                u32 invalidate, u32 flush)
1661 {
1662         uint32_t cmd;
1663         int ret;
1664
1665         ret = intel_ring_begin(ring, 4);
1666         if (ret)
1667                 return ret;
1668
1669         cmd = MI_FLUSH_DW;
1670         /*
1671          * Bspec vol 1c.5 - video engine command streamer:
1672          * "If ENABLED, all TLBs will be invalidated once the flush
1673          * operation is complete. This bit is only valid when the
1674          * Post-Sync Operation field is a value of 1h or 3h."
1675          */
1676         if (invalidate & I915_GEM_GPU_DOMAINS)
1677                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1678                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1679         intel_ring_emit(ring, cmd);
1680         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1681         intel_ring_emit(ring, 0);
1682         intel_ring_emit(ring, MI_NOOP);
1683         intel_ring_advance(ring);
1684         return 0;
1685 }
1686
1687 static int
1688 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1689                               u32 offset, u32 len,
1690                               unsigned flags)
1691 {
1692         int ret;
1693
1694         ret = intel_ring_begin(ring, 2);
1695         if (ret)
1696                 return ret;
1697
1698         intel_ring_emit(ring,
1699                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1700                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1701         /* bit0-7 is the length on GEN6+ */
1702         intel_ring_emit(ring, offset);
1703         intel_ring_advance(ring);
1704
1705         return 0;
1706 }
1707
1708 static int
1709 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1710                               u32 offset, u32 len,
1711                               unsigned flags)
1712 {
1713         int ret;
1714
1715         ret = intel_ring_begin(ring, 2);
1716         if (ret)
1717                 return ret;
1718
1719         intel_ring_emit(ring,
1720                         MI_BATCH_BUFFER_START |
1721                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1722         /* bit0-7 is the length on GEN6+ */
1723         intel_ring_emit(ring, offset);
1724         intel_ring_advance(ring);
1725
1726         return 0;
1727 }
1728
1729 /* Blitter support (SandyBridge+) */
1730
1731 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1732                            u32 invalidate, u32 flush)
1733 {
1734         struct drm_device *dev = ring->dev;
1735         uint32_t cmd;
1736         int ret;
1737
1738         ret = intel_ring_begin(ring, 4);
1739         if (ret)
1740                 return ret;
1741
1742         cmd = MI_FLUSH_DW;
1743         /*
1744          * Bspec vol 1c.3 - blitter engine command streamer:
1745          * "If ENABLED, all TLBs will be invalidated once the flush
1746          * operation is complete. This bit is only valid when the
1747          * Post-Sync Operation field is a value of 1h or 3h."
1748          */
1749         if (invalidate & I915_GEM_DOMAIN_RENDER)
1750                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1751                         MI_FLUSH_DW_OP_STOREDW;
1752         intel_ring_emit(ring, cmd);
1753         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1754         intel_ring_emit(ring, 0);
1755         intel_ring_emit(ring, MI_NOOP);
1756         intel_ring_advance(ring);
1757
1758         if (IS_GEN7(dev) && flush)
1759                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1760
1761         return 0;
1762 }
1763
1764 int intel_init_render_ring_buffer(struct drm_device *dev)
1765 {
1766         drm_i915_private_t *dev_priv = dev->dev_private;
1767         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1768
1769         ring->name = "render ring";
1770         ring->id = RCS;
1771         ring->mmio_base = RENDER_RING_BASE;
1772
1773         if (INTEL_INFO(dev)->gen >= 6) {
1774                 ring->add_request = gen6_add_request;
1775                 ring->flush = gen7_render_ring_flush;
1776                 if (INTEL_INFO(dev)->gen == 6)
1777                         ring->flush = gen6_render_ring_flush;
1778                 ring->irq_get = gen6_ring_get_irq;
1779                 ring->irq_put = gen6_ring_put_irq;
1780                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1781                 ring->get_seqno = gen6_ring_get_seqno;
1782                 ring->set_seqno = ring_set_seqno;
1783                 ring->sync_to = gen6_ring_sync;
1784                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1785                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1786                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1787                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1788                 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1789                 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1790                 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1791                 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1792         } else if (IS_GEN5(dev)) {
1793                 ring->add_request = pc_render_add_request;
1794                 ring->flush = gen4_render_ring_flush;
1795                 ring->get_seqno = pc_render_get_seqno;
1796                 ring->set_seqno = pc_render_set_seqno;
1797                 ring->irq_get = gen5_ring_get_irq;
1798                 ring->irq_put = gen5_ring_put_irq;
1799                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1800                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1801         } else {
1802                 ring->add_request = i9xx_add_request;
1803                 if (INTEL_INFO(dev)->gen < 4)
1804                         ring->flush = gen2_render_ring_flush;
1805                 else
1806                         ring->flush = gen4_render_ring_flush;
1807                 ring->get_seqno = ring_get_seqno;
1808                 ring->set_seqno = ring_set_seqno;
1809                 if (IS_GEN2(dev)) {
1810                         ring->irq_get = i8xx_ring_get_irq;
1811                         ring->irq_put = i8xx_ring_put_irq;
1812                 } else {
1813                         ring->irq_get = i9xx_ring_get_irq;
1814                         ring->irq_put = i9xx_ring_put_irq;
1815                 }
1816                 ring->irq_enable_mask = I915_USER_INTERRUPT;
1817         }
1818         ring->write_tail = ring_write_tail;
1819         if (IS_HASWELL(dev))
1820                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1821         else if (INTEL_INFO(dev)->gen >= 6)
1822                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1823         else if (INTEL_INFO(dev)->gen >= 4)
1824                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1825         else if (IS_I830(dev) || IS_845G(dev))
1826                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1827         else
1828                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1829         ring->init = init_render_ring;
1830         ring->cleanup = render_ring_cleanup;
1831
1832         /* Workaround batchbuffer to combat CS tlb bug. */
1833         if (HAS_BROKEN_CS_TLB(dev)) {
1834                 struct drm_i915_gem_object *obj;
1835                 int ret;
1836
1837                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1838                 if (obj == NULL) {
1839                         DRM_ERROR("Failed to allocate batch bo\n");
1840                         return -ENOMEM;
1841                 }
1842
1843                 ret = i915_gem_object_pin(obj, 0, true, false);
1844                 if (ret != 0) {
1845                         drm_gem_object_unreference(&obj->base);
1846                         DRM_ERROR("Failed to ping batch bo\n");
1847                         return ret;
1848                 }
1849
1850                 ring->private = obj;
1851         }
1852
1853         return intel_init_ring_buffer(dev, ring);
1854 }
1855
1856 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1857 {
1858         drm_i915_private_t *dev_priv = dev->dev_private;
1859         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1860         int ret;
1861
1862         ring->name = "render ring";
1863         ring->id = RCS;
1864         ring->mmio_base = RENDER_RING_BASE;
1865
1866         if (INTEL_INFO(dev)->gen >= 6) {
1867                 /* non-kms not supported on gen6+ */
1868                 return -ENODEV;
1869         }
1870
1871         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1872          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1873          * the special gen5 functions. */
1874         ring->add_request = i9xx_add_request;
1875         if (INTEL_INFO(dev)->gen < 4)
1876                 ring->flush = gen2_render_ring_flush;
1877         else
1878                 ring->flush = gen4_render_ring_flush;
1879         ring->get_seqno = ring_get_seqno;
1880         ring->set_seqno = ring_set_seqno;
1881         if (IS_GEN2(dev)) {
1882                 ring->irq_get = i8xx_ring_get_irq;
1883                 ring->irq_put = i8xx_ring_put_irq;
1884         } else {
1885                 ring->irq_get = i9xx_ring_get_irq;
1886                 ring->irq_put = i9xx_ring_put_irq;
1887         }
1888         ring->irq_enable_mask = I915_USER_INTERRUPT;
1889         ring->write_tail = ring_write_tail;
1890         if (INTEL_INFO(dev)->gen >= 4)
1891                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1892         else if (IS_I830(dev) || IS_845G(dev))
1893                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1894         else
1895                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1896         ring->init = init_render_ring;
1897         ring->cleanup = render_ring_cleanup;
1898
1899         ring->dev = dev;
1900         INIT_LIST_HEAD(&ring->active_list);
1901         INIT_LIST_HEAD(&ring->request_list);
1902
1903         ring->size = size;
1904         ring->effective_size = ring->size;
1905         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1906                 ring->effective_size -= 128;
1907
1908         ring->virtual_start = ioremap_wc(start, size);
1909         if (ring->virtual_start == NULL) {
1910                 DRM_ERROR("can not ioremap virtual address for"
1911                           " ring buffer\n");
1912                 return -ENOMEM;
1913         }
1914
1915         if (!I915_NEED_GFX_HWS(dev)) {
1916                 ret = init_phys_status_page(ring);
1917                 if (ret)
1918                         return ret;
1919         }
1920
1921         return 0;
1922 }
1923
1924 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1925 {
1926         drm_i915_private_t *dev_priv = dev->dev_private;
1927         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1928
1929         ring->name = "bsd ring";
1930         ring->id = VCS;
1931
1932         ring->write_tail = ring_write_tail;
1933         if (IS_GEN6(dev) || IS_GEN7(dev)) {
1934                 ring->mmio_base = GEN6_BSD_RING_BASE;
1935                 /* gen6 bsd needs a special wa for tail updates */
1936                 if (IS_GEN6(dev))
1937                         ring->write_tail = gen6_bsd_ring_write_tail;
1938                 ring->flush = gen6_bsd_ring_flush;
1939                 ring->add_request = gen6_add_request;
1940                 ring->get_seqno = gen6_ring_get_seqno;
1941                 ring->set_seqno = ring_set_seqno;
1942                 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1943                 ring->irq_get = gen6_ring_get_irq;
1944                 ring->irq_put = gen6_ring_put_irq;
1945                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1946                 ring->sync_to = gen6_ring_sync;
1947                 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
1948                 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
1949                 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
1950                 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
1951                 ring->signal_mbox[RCS] = GEN6_RVSYNC;
1952                 ring->signal_mbox[VCS] = GEN6_NOSYNC;
1953                 ring->signal_mbox[BCS] = GEN6_BVSYNC;
1954                 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
1955         } else {
1956                 ring->mmio_base = BSD_RING_BASE;
1957                 ring->flush = bsd_ring_flush;
1958                 ring->add_request = i9xx_add_request;
1959                 ring->get_seqno = ring_get_seqno;
1960                 ring->set_seqno = ring_set_seqno;
1961                 if (IS_GEN5(dev)) {
1962                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1963                         ring->irq_get = gen5_ring_get_irq;
1964                         ring->irq_put = gen5_ring_put_irq;
1965                 } else {
1966                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1967                         ring->irq_get = i9xx_ring_get_irq;
1968                         ring->irq_put = i9xx_ring_put_irq;
1969                 }
1970                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1971         }
1972         ring->init = init_ring_common;
1973
1974         return intel_init_ring_buffer(dev, ring);
1975 }
1976
1977 int intel_init_blt_ring_buffer(struct drm_device *dev)
1978 {
1979         drm_i915_private_t *dev_priv = dev->dev_private;
1980         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1981
1982         ring->name = "blitter ring";
1983         ring->id = BCS;
1984
1985         ring->mmio_base = BLT_RING_BASE;
1986         ring->write_tail = ring_write_tail;
1987         ring->flush = gen6_ring_flush;
1988         ring->add_request = gen6_add_request;
1989         ring->get_seqno = gen6_ring_get_seqno;
1990         ring->set_seqno = ring_set_seqno;
1991         ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1992         ring->irq_get = gen6_ring_get_irq;
1993         ring->irq_put = gen6_ring_put_irq;
1994         ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1995         ring->sync_to = gen6_ring_sync;
1996         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
1997         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
1998         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
1999         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2000         ring->signal_mbox[RCS] = GEN6_RBSYNC;
2001         ring->signal_mbox[VCS] = GEN6_VBSYNC;
2002         ring->signal_mbox[BCS] = GEN6_NOSYNC;
2003         ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2004         ring->init = init_ring_common;
2005
2006         return intel_init_ring_buffer(dev, ring);
2007 }
2008
2009 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2010 {
2011         drm_i915_private_t *dev_priv = dev->dev_private;
2012         struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2013
2014         ring->name = "video enhancement ring";
2015         ring->id = VECS;
2016
2017         ring->mmio_base = VEBOX_RING_BASE;
2018         ring->write_tail = ring_write_tail;
2019         ring->flush = gen6_ring_flush;
2020         ring->add_request = gen6_add_request;
2021         ring->get_seqno = gen6_ring_get_seqno;
2022         ring->set_seqno = ring_set_seqno;
2023         ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT |
2024                 PM_VEBOX_CS_ERROR_INTERRUPT;
2025         ring->irq_get = hsw_vebox_get_irq;
2026         ring->irq_put = hsw_vebox_put_irq;
2027         ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2028         ring->sync_to = gen6_ring_sync;
2029         ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2030         ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2031         ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2032         ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2033         ring->signal_mbox[RCS] = GEN6_RVESYNC;
2034         ring->signal_mbox[VCS] = GEN6_VVESYNC;
2035         ring->signal_mbox[BCS] = GEN6_BVESYNC;
2036         ring->signal_mbox[VECS] = GEN6_NOSYNC;
2037         ring->init = init_ring_common;
2038
2039         return intel_init_ring_buffer(dev, ring);
2040 }
2041
2042 int
2043 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2044 {
2045         int ret;
2046
2047         if (!ring->gpu_caches_dirty)
2048                 return 0;
2049
2050         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2051         if (ret)
2052                 return ret;
2053
2054         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2055
2056         ring->gpu_caches_dirty = false;
2057         return 0;
2058 }
2059
2060 int
2061 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2062 {
2063         uint32_t flush_domains;
2064         int ret;
2065
2066         flush_domains = 0;
2067         if (ring->gpu_caches_dirty)
2068                 flush_domains = I915_GEM_GPU_DOMAINS;
2069
2070         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2071         if (ret)
2072                 return ret;
2073
2074         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2075
2076         ring->gpu_caches_dirty = false;
2077         return 0;
2078 }