05969f03c0c1bd03188f9c26a13a8395382ec708
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38  * to give some inclination as to some of the magic values used in the various
39  * workarounds!
40  */
41 #define CACHELINE_BYTES 64
42
43 static inline int __ring_space(int head, int tail, int size)
44 {
45         int space = head - (tail + I915_RING_FREE_SPACE);
46         if (space < 0)
47                 space += size;
48         return space;
49 }
50
51 static inline int ring_space(struct intel_ringbuffer *ringbuf)
52 {
53         return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
54 }
55
56 static bool intel_ring_stopped(struct intel_engine_cs *ring)
57 {
58         struct drm_i915_private *dev_priv = ring->dev->dev_private;
59         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
60 }
61
62 void __intel_ring_advance(struct intel_engine_cs *ring)
63 {
64         struct intel_ringbuffer *ringbuf = ring->buffer;
65         ringbuf->tail &= ringbuf->size - 1;
66         if (intel_ring_stopped(ring))
67                 return;
68         ring->write_tail(ring, ringbuf->tail);
69 }
70
71 static int
72 gen2_render_ring_flush(struct intel_engine_cs *ring,
73                        u32      invalidate_domains,
74                        u32      flush_domains)
75 {
76         u32 cmd;
77         int ret;
78
79         cmd = MI_FLUSH;
80         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
81                 cmd |= MI_NO_WRITE_FLUSH;
82
83         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
84                 cmd |= MI_READ_FLUSH;
85
86         ret = intel_ring_begin(ring, 2);
87         if (ret)
88                 return ret;
89
90         intel_ring_emit(ring, cmd);
91         intel_ring_emit(ring, MI_NOOP);
92         intel_ring_advance(ring);
93
94         return 0;
95 }
96
97 static int
98 gen4_render_ring_flush(struct intel_engine_cs *ring,
99                        u32      invalidate_domains,
100                        u32      flush_domains)
101 {
102         struct drm_device *dev = ring->dev;
103         u32 cmd;
104         int ret;
105
106         /*
107          * read/write caches:
108          *
109          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
110          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
111          * also flushed at 2d versus 3d pipeline switches.
112          *
113          * read-only caches:
114          *
115          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
116          * MI_READ_FLUSH is set, and is always flushed on 965.
117          *
118          * I915_GEM_DOMAIN_COMMAND may not exist?
119          *
120          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
121          * invalidated when MI_EXE_FLUSH is set.
122          *
123          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
124          * invalidated with every MI_FLUSH.
125          *
126          * TLBs:
127          *
128          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
129          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
130          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
131          * are flushed at any MI_FLUSH.
132          */
133
134         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
135         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
136                 cmd &= ~MI_NO_WRITE_FLUSH;
137         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
138                 cmd |= MI_EXE_FLUSH;
139
140         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
141             (IS_G4X(dev) || IS_GEN5(dev)))
142                 cmd |= MI_INVALIDATE_ISP;
143
144         ret = intel_ring_begin(ring, 2);
145         if (ret)
146                 return ret;
147
148         intel_ring_emit(ring, cmd);
149         intel_ring_emit(ring, MI_NOOP);
150         intel_ring_advance(ring);
151
152         return 0;
153 }
154
155 /**
156  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
157  * implementing two workarounds on gen6.  From section 1.4.7.1
158  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
159  *
160  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
161  * produced by non-pipelined state commands), software needs to first
162  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
163  * 0.
164  *
165  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
166  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
167  *
168  * And the workaround for these two requires this workaround first:
169  *
170  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
171  * BEFORE the pipe-control with a post-sync op and no write-cache
172  * flushes.
173  *
174  * And this last workaround is tricky because of the requirements on
175  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
176  * volume 2 part 1:
177  *
178  *     "1 of the following must also be set:
179  *      - Render Target Cache Flush Enable ([12] of DW1)
180  *      - Depth Cache Flush Enable ([0] of DW1)
181  *      - Stall at Pixel Scoreboard ([1] of DW1)
182  *      - Depth Stall ([13] of DW1)
183  *      - Post-Sync Operation ([13] of DW1)
184  *      - Notify Enable ([8] of DW1)"
185  *
186  * The cache flushes require the workaround flush that triggered this
187  * one, so we can't use it.  Depth stall would trigger the same.
188  * Post-sync nonzero is what triggered this second workaround, so we
189  * can't use that one either.  Notify enable is IRQs, which aren't
190  * really our business.  That leaves only stall at scoreboard.
191  */
192 static int
193 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
194 {
195         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
196         int ret;
197
198
199         ret = intel_ring_begin(ring, 6);
200         if (ret)
201                 return ret;
202
203         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
204         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
205                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
206         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
207         intel_ring_emit(ring, 0); /* low dword */
208         intel_ring_emit(ring, 0); /* high dword */
209         intel_ring_emit(ring, MI_NOOP);
210         intel_ring_advance(ring);
211
212         ret = intel_ring_begin(ring, 6);
213         if (ret)
214                 return ret;
215
216         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
217         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
218         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
219         intel_ring_emit(ring, 0);
220         intel_ring_emit(ring, 0);
221         intel_ring_emit(ring, MI_NOOP);
222         intel_ring_advance(ring);
223
224         return 0;
225 }
226
227 static int
228 gen6_render_ring_flush(struct intel_engine_cs *ring,
229                          u32 invalidate_domains, u32 flush_domains)
230 {
231         u32 flags = 0;
232         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
233         int ret;
234
235         /* Force SNB workarounds for PIPE_CONTROL flushes */
236         ret = intel_emit_post_sync_nonzero_flush(ring);
237         if (ret)
238                 return ret;
239
240         /* Just flush everything.  Experiments have shown that reducing the
241          * number of bits based on the write domains has little performance
242          * impact.
243          */
244         if (flush_domains) {
245                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
246                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
247                 /*
248                  * Ensure that any following seqno writes only happen
249                  * when the render cache is indeed flushed.
250                  */
251                 flags |= PIPE_CONTROL_CS_STALL;
252         }
253         if (invalidate_domains) {
254                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
255                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
256                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
257                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
258                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
259                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
260                 /*
261                  * TLB invalidate requires a post-sync write.
262                  */
263                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
264         }
265
266         ret = intel_ring_begin(ring, 4);
267         if (ret)
268                 return ret;
269
270         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
271         intel_ring_emit(ring, flags);
272         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
273         intel_ring_emit(ring, 0);
274         intel_ring_advance(ring);
275
276         return 0;
277 }
278
279 static int
280 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
281 {
282         int ret;
283
284         ret = intel_ring_begin(ring, 4);
285         if (ret)
286                 return ret;
287
288         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
289         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
290                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
291         intel_ring_emit(ring, 0);
292         intel_ring_emit(ring, 0);
293         intel_ring_advance(ring);
294
295         return 0;
296 }
297
298 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
299 {
300         int ret;
301
302         if (!ring->fbc_dirty)
303                 return 0;
304
305         ret = intel_ring_begin(ring, 6);
306         if (ret)
307                 return ret;
308         /* WaFbcNukeOn3DBlt:ivb/hsw */
309         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
310         intel_ring_emit(ring, MSG_FBC_REND_STATE);
311         intel_ring_emit(ring, value);
312         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
313         intel_ring_emit(ring, MSG_FBC_REND_STATE);
314         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
315         intel_ring_advance(ring);
316
317         ring->fbc_dirty = false;
318         return 0;
319 }
320
321 static int
322 gen7_render_ring_flush(struct intel_engine_cs *ring,
323                        u32 invalidate_domains, u32 flush_domains)
324 {
325         u32 flags = 0;
326         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
327         int ret;
328
329         /*
330          * Ensure that any following seqno writes only happen when the render
331          * cache is indeed flushed.
332          *
333          * Workaround: 4th PIPE_CONTROL command (except the ones with only
334          * read-cache invalidate bits set) must have the CS_STALL bit set. We
335          * don't try to be clever and just set it unconditionally.
336          */
337         flags |= PIPE_CONTROL_CS_STALL;
338
339         /* Just flush everything.  Experiments have shown that reducing the
340          * number of bits based on the write domains has little performance
341          * impact.
342          */
343         if (flush_domains) {
344                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
345                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
346         }
347         if (invalidate_domains) {
348                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
349                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
350                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
351                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
352                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
353                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
354                 /*
355                  * TLB invalidate requires a post-sync write.
356                  */
357                 flags |= PIPE_CONTROL_QW_WRITE;
358                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
359
360                 /* Workaround: we must issue a pipe_control with CS-stall bit
361                  * set before a pipe_control command that has the state cache
362                  * invalidate bit set. */
363                 gen7_render_ring_cs_stall_wa(ring);
364         }
365
366         ret = intel_ring_begin(ring, 4);
367         if (ret)
368                 return ret;
369
370         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
371         intel_ring_emit(ring, flags);
372         intel_ring_emit(ring, scratch_addr);
373         intel_ring_emit(ring, 0);
374         intel_ring_advance(ring);
375
376         if (!invalidate_domains && flush_domains)
377                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
378
379         return 0;
380 }
381
382 static int
383 gen8_emit_pipe_control(struct intel_engine_cs *ring,
384                        u32 flags, u32 scratch_addr)
385 {
386         int ret;
387
388         ret = intel_ring_begin(ring, 6);
389         if (ret)
390                 return ret;
391
392         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
393         intel_ring_emit(ring, flags);
394         intel_ring_emit(ring, scratch_addr);
395         intel_ring_emit(ring, 0);
396         intel_ring_emit(ring, 0);
397         intel_ring_emit(ring, 0);
398         intel_ring_advance(ring);
399
400         return 0;
401 }
402
403 static int
404 gen8_render_ring_flush(struct intel_engine_cs *ring,
405                        u32 invalidate_domains, u32 flush_domains)
406 {
407         u32 flags = 0;
408         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
409         int ret;
410
411         flags |= PIPE_CONTROL_CS_STALL;
412
413         if (flush_domains) {
414                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
415                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
416         }
417         if (invalidate_domains) {
418                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
419                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
420                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
421                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
422                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
423                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
424                 flags |= PIPE_CONTROL_QW_WRITE;
425                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
426
427                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
428                 ret = gen8_emit_pipe_control(ring,
429                                              PIPE_CONTROL_CS_STALL |
430                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
431                                              0);
432                 if (ret)
433                         return ret;
434         }
435
436         return gen8_emit_pipe_control(ring, flags, scratch_addr);
437 }
438
439 static void ring_write_tail(struct intel_engine_cs *ring,
440                             u32 value)
441 {
442         struct drm_i915_private *dev_priv = ring->dev->dev_private;
443         I915_WRITE_TAIL(ring, value);
444 }
445
446 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
447 {
448         struct drm_i915_private *dev_priv = ring->dev->dev_private;
449         u64 acthd;
450
451         if (INTEL_INFO(ring->dev)->gen >= 8)
452                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
453                                          RING_ACTHD_UDW(ring->mmio_base));
454         else if (INTEL_INFO(ring->dev)->gen >= 4)
455                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
456         else
457                 acthd = I915_READ(ACTHD);
458
459         return acthd;
460 }
461
462 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
463 {
464         struct drm_i915_private *dev_priv = ring->dev->dev_private;
465         u32 addr;
466
467         addr = dev_priv->status_page_dmah->busaddr;
468         if (INTEL_INFO(ring->dev)->gen >= 4)
469                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
470         I915_WRITE(HWS_PGA, addr);
471 }
472
473 static bool stop_ring(struct intel_engine_cs *ring)
474 {
475         struct drm_i915_private *dev_priv = to_i915(ring->dev);
476
477         if (!IS_GEN2(ring->dev)) {
478                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
479                 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
480                         DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
481                         return false;
482                 }
483         }
484
485         I915_WRITE_CTL(ring, 0);
486         I915_WRITE_HEAD(ring, 0);
487         ring->write_tail(ring, 0);
488
489         if (!IS_GEN2(ring->dev)) {
490                 (void)I915_READ_CTL(ring);
491                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
492         }
493
494         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
495 }
496
497 static int init_ring_common(struct intel_engine_cs *ring)
498 {
499         struct drm_device *dev = ring->dev;
500         struct drm_i915_private *dev_priv = dev->dev_private;
501         struct intel_ringbuffer *ringbuf = ring->buffer;
502         struct drm_i915_gem_object *obj = ringbuf->obj;
503         int ret = 0;
504
505         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
506
507         if (!stop_ring(ring)) {
508                 /* G45 ring initialization often fails to reset head to zero */
509                 DRM_DEBUG_KMS("%s head not reset to zero "
510                               "ctl %08x head %08x tail %08x start %08x\n",
511                               ring->name,
512                               I915_READ_CTL(ring),
513                               I915_READ_HEAD(ring),
514                               I915_READ_TAIL(ring),
515                               I915_READ_START(ring));
516
517                 if (!stop_ring(ring)) {
518                         DRM_ERROR("failed to set %s head to zero "
519                                   "ctl %08x head %08x tail %08x start %08x\n",
520                                   ring->name,
521                                   I915_READ_CTL(ring),
522                                   I915_READ_HEAD(ring),
523                                   I915_READ_TAIL(ring),
524                                   I915_READ_START(ring));
525                         ret = -EIO;
526                         goto out;
527                 }
528         }
529
530         if (I915_NEED_GFX_HWS(dev))
531                 intel_ring_setup_status_page(ring);
532         else
533                 ring_setup_phys_status_page(ring);
534
535         /* Initialize the ring. This must happen _after_ we've cleared the ring
536          * registers with the above sequence (the readback of the HEAD registers
537          * also enforces ordering), otherwise the hw might lose the new ring
538          * register values. */
539         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
540         I915_WRITE_CTL(ring,
541                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
542                         | RING_VALID);
543
544         /* If the head is still not zero, the ring is dead */
545         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
546                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
547                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
548                 DRM_ERROR("%s initialization failed "
549                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
550                           ring->name,
551                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
552                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
553                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
554                 ret = -EIO;
555                 goto out;
556         }
557
558         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
559                 i915_kernel_lost_context(ring->dev);
560         else {
561                 ringbuf->head = I915_READ_HEAD(ring);
562                 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
563                 ringbuf->space = ring_space(ringbuf);
564                 ringbuf->last_retired_head = -1;
565         }
566
567         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
568
569 out:
570         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
571
572         return ret;
573 }
574
575 static int
576 init_pipe_control(struct intel_engine_cs *ring)
577 {
578         int ret;
579
580         if (ring->scratch.obj)
581                 return 0;
582
583         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
584         if (ring->scratch.obj == NULL) {
585                 DRM_ERROR("Failed to allocate seqno page\n");
586                 ret = -ENOMEM;
587                 goto err;
588         }
589
590         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
591         if (ret)
592                 goto err_unref;
593
594         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
595         if (ret)
596                 goto err_unref;
597
598         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
599         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
600         if (ring->scratch.cpu_page == NULL) {
601                 ret = -ENOMEM;
602                 goto err_unpin;
603         }
604
605         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
606                          ring->name, ring->scratch.gtt_offset);
607         return 0;
608
609 err_unpin:
610         i915_gem_object_ggtt_unpin(ring->scratch.obj);
611 err_unref:
612         drm_gem_object_unreference(&ring->scratch.obj->base);
613 err:
614         return ret;
615 }
616
617 static int init_render_ring(struct intel_engine_cs *ring)
618 {
619         struct drm_device *dev = ring->dev;
620         struct drm_i915_private *dev_priv = dev->dev_private;
621         int ret = init_ring_common(ring);
622         if (ret)
623                 return ret;
624
625         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
626         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
627                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
628
629         /* We need to disable the AsyncFlip performance optimisations in order
630          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
631          * programmed to '1' on all products.
632          *
633          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
634          */
635         if (INTEL_INFO(dev)->gen >= 6)
636                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
637
638         /* Required for the hardware to program scanline values for waiting */
639         /* WaEnableFlushTlbInvalidationMode:snb */
640         if (INTEL_INFO(dev)->gen == 6)
641                 I915_WRITE(GFX_MODE,
642                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
643
644         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
645         if (IS_GEN7(dev))
646                 I915_WRITE(GFX_MODE_GEN7,
647                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
648                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
649
650         if (INTEL_INFO(dev)->gen >= 5) {
651                 ret = init_pipe_control(ring);
652                 if (ret)
653                         return ret;
654         }
655
656         if (IS_GEN6(dev)) {
657                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
658                  * "If this bit is set, STCunit will have LRA as replacement
659                  *  policy. [...] This bit must be reset.  LRA replacement
660                  *  policy is not supported."
661                  */
662                 I915_WRITE(CACHE_MODE_0,
663                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
664         }
665
666         if (INTEL_INFO(dev)->gen >= 6)
667                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
668
669         if (HAS_L3_DPF(dev))
670                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
671
672         return ret;
673 }
674
675 static void render_ring_cleanup(struct intel_engine_cs *ring)
676 {
677         struct drm_device *dev = ring->dev;
678         struct drm_i915_private *dev_priv = dev->dev_private;
679
680         if (dev_priv->semaphore_obj) {
681                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
682                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
683                 dev_priv->semaphore_obj = NULL;
684         }
685
686         if (ring->scratch.obj == NULL)
687                 return;
688
689         if (INTEL_INFO(dev)->gen >= 5) {
690                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
691                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
692         }
693
694         drm_gem_object_unreference(&ring->scratch.obj->base);
695         ring->scratch.obj = NULL;
696 }
697
698 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
699                            unsigned int num_dwords)
700 {
701 #define MBOX_UPDATE_DWORDS 8
702         struct drm_device *dev = signaller->dev;
703         struct drm_i915_private *dev_priv = dev->dev_private;
704         struct intel_engine_cs *waiter;
705         int i, ret, num_rings;
706
707         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
708         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
709 #undef MBOX_UPDATE_DWORDS
710
711         ret = intel_ring_begin(signaller, num_dwords);
712         if (ret)
713                 return ret;
714
715         for_each_ring(waiter, dev_priv, i) {
716                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
717                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
718                         continue;
719
720                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
721                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
722                                            PIPE_CONTROL_QW_WRITE |
723                                            PIPE_CONTROL_FLUSH_ENABLE);
724                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
725                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
726                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
727                 intel_ring_emit(signaller, 0);
728                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
729                                            MI_SEMAPHORE_TARGET(waiter->id));
730                 intel_ring_emit(signaller, 0);
731         }
732
733         return 0;
734 }
735
736 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
737                            unsigned int num_dwords)
738 {
739 #define MBOX_UPDATE_DWORDS 6
740         struct drm_device *dev = signaller->dev;
741         struct drm_i915_private *dev_priv = dev->dev_private;
742         struct intel_engine_cs *waiter;
743         int i, ret, num_rings;
744
745         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
746         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
747 #undef MBOX_UPDATE_DWORDS
748
749         ret = intel_ring_begin(signaller, num_dwords);
750         if (ret)
751                 return ret;
752
753         for_each_ring(waiter, dev_priv, i) {
754                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
755                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
756                         continue;
757
758                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
759                                            MI_FLUSH_DW_OP_STOREDW);
760                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
761                                            MI_FLUSH_DW_USE_GTT);
762                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
763                 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
764                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
765                                            MI_SEMAPHORE_TARGET(waiter->id));
766                 intel_ring_emit(signaller, 0);
767         }
768
769         return 0;
770 }
771
772 static int gen6_signal(struct intel_engine_cs *signaller,
773                        unsigned int num_dwords)
774 {
775         struct drm_device *dev = signaller->dev;
776         struct drm_i915_private *dev_priv = dev->dev_private;
777         struct intel_engine_cs *useless;
778         int i, ret, num_rings;
779
780 #define MBOX_UPDATE_DWORDS 3
781         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
782         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
783 #undef MBOX_UPDATE_DWORDS
784
785         ret = intel_ring_begin(signaller, num_dwords);
786         if (ret)
787                 return ret;
788
789         for_each_ring(useless, dev_priv, i) {
790                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
791                 if (mbox_reg != GEN6_NOSYNC) {
792                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
793                         intel_ring_emit(signaller, mbox_reg);
794                         intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
795                 }
796         }
797
798         /* If num_dwords was rounded, make sure the tail pointer is correct */
799         if (num_rings % 2 == 0)
800                 intel_ring_emit(signaller, MI_NOOP);
801
802         return 0;
803 }
804
805 /**
806  * gen6_add_request - Update the semaphore mailbox registers
807  * 
808  * @ring - ring that is adding a request
809  * @seqno - return seqno stuck into the ring
810  *
811  * Update the mailbox registers in the *other* rings with the current seqno.
812  * This acts like a signal in the canonical semaphore.
813  */
814 static int
815 gen6_add_request(struct intel_engine_cs *ring)
816 {
817         int ret;
818
819         if (ring->semaphore.signal)
820                 ret = ring->semaphore.signal(ring, 4);
821         else
822                 ret = intel_ring_begin(ring, 4);
823
824         if (ret)
825                 return ret;
826
827         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
828         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
829         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
830         intel_ring_emit(ring, MI_USER_INTERRUPT);
831         __intel_ring_advance(ring);
832
833         return 0;
834 }
835
836 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
837                                               u32 seqno)
838 {
839         struct drm_i915_private *dev_priv = dev->dev_private;
840         return dev_priv->last_seqno < seqno;
841 }
842
843 /**
844  * intel_ring_sync - sync the waiter to the signaller on seqno
845  *
846  * @waiter - ring that is waiting
847  * @signaller - ring which has, or will signal
848  * @seqno - seqno which the waiter will block on
849  */
850
851 static int
852 gen8_ring_sync(struct intel_engine_cs *waiter,
853                struct intel_engine_cs *signaller,
854                u32 seqno)
855 {
856         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
857         int ret;
858
859         ret = intel_ring_begin(waiter, 4);
860         if (ret)
861                 return ret;
862
863         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
864                                 MI_SEMAPHORE_GLOBAL_GTT |
865                                 MI_SEMAPHORE_POLL |
866                                 MI_SEMAPHORE_SAD_GTE_SDD);
867         intel_ring_emit(waiter, seqno);
868         intel_ring_emit(waiter,
869                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
870         intel_ring_emit(waiter,
871                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
872         intel_ring_advance(waiter);
873         return 0;
874 }
875
876 static int
877 gen6_ring_sync(struct intel_engine_cs *waiter,
878                struct intel_engine_cs *signaller,
879                u32 seqno)
880 {
881         u32 dw1 = MI_SEMAPHORE_MBOX |
882                   MI_SEMAPHORE_COMPARE |
883                   MI_SEMAPHORE_REGISTER;
884         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
885         int ret;
886
887         /* Throughout all of the GEM code, seqno passed implies our current
888          * seqno is >= the last seqno executed. However for hardware the
889          * comparison is strictly greater than.
890          */
891         seqno -= 1;
892
893         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
894
895         ret = intel_ring_begin(waiter, 4);
896         if (ret)
897                 return ret;
898
899         /* If seqno wrap happened, omit the wait with no-ops */
900         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
901                 intel_ring_emit(waiter, dw1 | wait_mbox);
902                 intel_ring_emit(waiter, seqno);
903                 intel_ring_emit(waiter, 0);
904                 intel_ring_emit(waiter, MI_NOOP);
905         } else {
906                 intel_ring_emit(waiter, MI_NOOP);
907                 intel_ring_emit(waiter, MI_NOOP);
908                 intel_ring_emit(waiter, MI_NOOP);
909                 intel_ring_emit(waiter, MI_NOOP);
910         }
911         intel_ring_advance(waiter);
912
913         return 0;
914 }
915
916 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
917 do {                                                                    \
918         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
919                  PIPE_CONTROL_DEPTH_STALL);                             \
920         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
921         intel_ring_emit(ring__, 0);                                                     \
922         intel_ring_emit(ring__, 0);                                                     \
923 } while (0)
924
925 static int
926 pc_render_add_request(struct intel_engine_cs *ring)
927 {
928         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
929         int ret;
930
931         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
932          * incoherent with writes to memory, i.e. completely fubar,
933          * so we need to use PIPE_NOTIFY instead.
934          *
935          * However, we also need to workaround the qword write
936          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
937          * memory before requesting an interrupt.
938          */
939         ret = intel_ring_begin(ring, 32);
940         if (ret)
941                 return ret;
942
943         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
944                         PIPE_CONTROL_WRITE_FLUSH |
945                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
946         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
947         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
948         intel_ring_emit(ring, 0);
949         PIPE_CONTROL_FLUSH(ring, scratch_addr);
950         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
951         PIPE_CONTROL_FLUSH(ring, scratch_addr);
952         scratch_addr += 2 * CACHELINE_BYTES;
953         PIPE_CONTROL_FLUSH(ring, scratch_addr);
954         scratch_addr += 2 * CACHELINE_BYTES;
955         PIPE_CONTROL_FLUSH(ring, scratch_addr);
956         scratch_addr += 2 * CACHELINE_BYTES;
957         PIPE_CONTROL_FLUSH(ring, scratch_addr);
958         scratch_addr += 2 * CACHELINE_BYTES;
959         PIPE_CONTROL_FLUSH(ring, scratch_addr);
960
961         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
962                         PIPE_CONTROL_WRITE_FLUSH |
963                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
964                         PIPE_CONTROL_NOTIFY);
965         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
966         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
967         intel_ring_emit(ring, 0);
968         __intel_ring_advance(ring);
969
970         return 0;
971 }
972
973 static u32
974 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
975 {
976         /* Workaround to force correct ordering between irq and seqno writes on
977          * ivb (and maybe also on snb) by reading from a CS register (like
978          * ACTHD) before reading the status page. */
979         if (!lazy_coherency) {
980                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
981                 POSTING_READ(RING_ACTHD(ring->mmio_base));
982         }
983
984         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
985 }
986
987 static u32
988 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
989 {
990         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
991 }
992
993 static void
994 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
995 {
996         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
997 }
998
999 static u32
1000 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1001 {
1002         return ring->scratch.cpu_page[0];
1003 }
1004
1005 static void
1006 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1007 {
1008         ring->scratch.cpu_page[0] = seqno;
1009 }
1010
1011 static bool
1012 gen5_ring_get_irq(struct intel_engine_cs *ring)
1013 {
1014         struct drm_device *dev = ring->dev;
1015         struct drm_i915_private *dev_priv = dev->dev_private;
1016         unsigned long flags;
1017
1018         if (!dev->irq_enabled)
1019                 return false;
1020
1021         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1022         if (ring->irq_refcount++ == 0)
1023                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1024         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1025
1026         return true;
1027 }
1028
1029 static void
1030 gen5_ring_put_irq(struct intel_engine_cs *ring)
1031 {
1032         struct drm_device *dev = ring->dev;
1033         struct drm_i915_private *dev_priv = dev->dev_private;
1034         unsigned long flags;
1035
1036         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1037         if (--ring->irq_refcount == 0)
1038                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1039         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1040 }
1041
1042 static bool
1043 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1044 {
1045         struct drm_device *dev = ring->dev;
1046         struct drm_i915_private *dev_priv = dev->dev_private;
1047         unsigned long flags;
1048
1049         if (!dev->irq_enabled)
1050                 return false;
1051
1052         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1053         if (ring->irq_refcount++ == 0) {
1054                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1055                 I915_WRITE(IMR, dev_priv->irq_mask);
1056                 POSTING_READ(IMR);
1057         }
1058         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1059
1060         return true;
1061 }
1062
1063 static void
1064 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1065 {
1066         struct drm_device *dev = ring->dev;
1067         struct drm_i915_private *dev_priv = dev->dev_private;
1068         unsigned long flags;
1069
1070         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1071         if (--ring->irq_refcount == 0) {
1072                 dev_priv->irq_mask |= ring->irq_enable_mask;
1073                 I915_WRITE(IMR, dev_priv->irq_mask);
1074                 POSTING_READ(IMR);
1075         }
1076         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1077 }
1078
1079 static bool
1080 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1081 {
1082         struct drm_device *dev = ring->dev;
1083         struct drm_i915_private *dev_priv = dev->dev_private;
1084         unsigned long flags;
1085
1086         if (!dev->irq_enabled)
1087                 return false;
1088
1089         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1090         if (ring->irq_refcount++ == 0) {
1091                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1092                 I915_WRITE16(IMR, dev_priv->irq_mask);
1093                 POSTING_READ16(IMR);
1094         }
1095         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1096
1097         return true;
1098 }
1099
1100 static void
1101 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1102 {
1103         struct drm_device *dev = ring->dev;
1104         struct drm_i915_private *dev_priv = dev->dev_private;
1105         unsigned long flags;
1106
1107         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1108         if (--ring->irq_refcount == 0) {
1109                 dev_priv->irq_mask |= ring->irq_enable_mask;
1110                 I915_WRITE16(IMR, dev_priv->irq_mask);
1111                 POSTING_READ16(IMR);
1112         }
1113         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1114 }
1115
1116 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1117 {
1118         struct drm_device *dev = ring->dev;
1119         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1120         u32 mmio = 0;
1121
1122         /* The ring status page addresses are no longer next to the rest of
1123          * the ring registers as of gen7.
1124          */
1125         if (IS_GEN7(dev)) {
1126                 switch (ring->id) {
1127                 case RCS:
1128                         mmio = RENDER_HWS_PGA_GEN7;
1129                         break;
1130                 case BCS:
1131                         mmio = BLT_HWS_PGA_GEN7;
1132                         break;
1133                 /*
1134                  * VCS2 actually doesn't exist on Gen7. Only shut up
1135                  * gcc switch check warning
1136                  */
1137                 case VCS2:
1138                 case VCS:
1139                         mmio = BSD_HWS_PGA_GEN7;
1140                         break;
1141                 case VECS:
1142                         mmio = VEBOX_HWS_PGA_GEN7;
1143                         break;
1144                 }
1145         } else if (IS_GEN6(ring->dev)) {
1146                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1147         } else {
1148                 /* XXX: gen8 returns to sanity */
1149                 mmio = RING_HWS_PGA(ring->mmio_base);
1150         }
1151
1152         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1153         POSTING_READ(mmio);
1154
1155         /*
1156          * Flush the TLB for this page
1157          *
1158          * FIXME: These two bits have disappeared on gen8, so a question
1159          * arises: do we still need this and if so how should we go about
1160          * invalidating the TLB?
1161          */
1162         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1163                 u32 reg = RING_INSTPM(ring->mmio_base);
1164
1165                 /* ring should be idle before issuing a sync flush*/
1166                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1167
1168                 I915_WRITE(reg,
1169                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1170                                               INSTPM_SYNC_FLUSH));
1171                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1172                              1000))
1173                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1174                                   ring->name);
1175         }
1176 }
1177
1178 static int
1179 bsd_ring_flush(struct intel_engine_cs *ring,
1180                u32     invalidate_domains,
1181                u32     flush_domains)
1182 {
1183         int ret;
1184
1185         ret = intel_ring_begin(ring, 2);
1186         if (ret)
1187                 return ret;
1188
1189         intel_ring_emit(ring, MI_FLUSH);
1190         intel_ring_emit(ring, MI_NOOP);
1191         intel_ring_advance(ring);
1192         return 0;
1193 }
1194
1195 static int
1196 i9xx_add_request(struct intel_engine_cs *ring)
1197 {
1198         int ret;
1199
1200         ret = intel_ring_begin(ring, 4);
1201         if (ret)
1202                 return ret;
1203
1204         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1205         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1206         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1207         intel_ring_emit(ring, MI_USER_INTERRUPT);
1208         __intel_ring_advance(ring);
1209
1210         return 0;
1211 }
1212
1213 static bool
1214 gen6_ring_get_irq(struct intel_engine_cs *ring)
1215 {
1216         struct drm_device *dev = ring->dev;
1217         struct drm_i915_private *dev_priv = dev->dev_private;
1218         unsigned long flags;
1219
1220         if (!dev->irq_enabled)
1221                return false;
1222
1223         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1224         if (ring->irq_refcount++ == 0) {
1225                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1226                         I915_WRITE_IMR(ring,
1227                                        ~(ring->irq_enable_mask |
1228                                          GT_PARITY_ERROR(dev)));
1229                 else
1230                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1231                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1232         }
1233         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1234
1235         return true;
1236 }
1237
1238 static void
1239 gen6_ring_put_irq(struct intel_engine_cs *ring)
1240 {
1241         struct drm_device *dev = ring->dev;
1242         struct drm_i915_private *dev_priv = dev->dev_private;
1243         unsigned long flags;
1244
1245         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1246         if (--ring->irq_refcount == 0) {
1247                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1248                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1249                 else
1250                         I915_WRITE_IMR(ring, ~0);
1251                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1252         }
1253         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1254 }
1255
1256 static bool
1257 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1258 {
1259         struct drm_device *dev = ring->dev;
1260         struct drm_i915_private *dev_priv = dev->dev_private;
1261         unsigned long flags;
1262
1263         if (!dev->irq_enabled)
1264                 return false;
1265
1266         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1267         if (ring->irq_refcount++ == 0) {
1268                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1269                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1270         }
1271         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1272
1273         return true;
1274 }
1275
1276 static void
1277 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1278 {
1279         struct drm_device *dev = ring->dev;
1280         struct drm_i915_private *dev_priv = dev->dev_private;
1281         unsigned long flags;
1282
1283         if (!dev->irq_enabled)
1284                 return;
1285
1286         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1287         if (--ring->irq_refcount == 0) {
1288                 I915_WRITE_IMR(ring, ~0);
1289                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1290         }
1291         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1292 }
1293
1294 static bool
1295 gen8_ring_get_irq(struct intel_engine_cs *ring)
1296 {
1297         struct drm_device *dev = ring->dev;
1298         struct drm_i915_private *dev_priv = dev->dev_private;
1299         unsigned long flags;
1300
1301         if (!dev->irq_enabled)
1302                 return false;
1303
1304         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1305         if (ring->irq_refcount++ == 0) {
1306                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1307                         I915_WRITE_IMR(ring,
1308                                        ~(ring->irq_enable_mask |
1309                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1310                 } else {
1311                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1312                 }
1313                 POSTING_READ(RING_IMR(ring->mmio_base));
1314         }
1315         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1316
1317         return true;
1318 }
1319
1320 static void
1321 gen8_ring_put_irq(struct intel_engine_cs *ring)
1322 {
1323         struct drm_device *dev = ring->dev;
1324         struct drm_i915_private *dev_priv = dev->dev_private;
1325         unsigned long flags;
1326
1327         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1328         if (--ring->irq_refcount == 0) {
1329                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1330                         I915_WRITE_IMR(ring,
1331                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1332                 } else {
1333                         I915_WRITE_IMR(ring, ~0);
1334                 }
1335                 POSTING_READ(RING_IMR(ring->mmio_base));
1336         }
1337         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1338 }
1339
1340 static int
1341 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1342                          u64 offset, u32 length,
1343                          unsigned flags)
1344 {
1345         int ret;
1346
1347         ret = intel_ring_begin(ring, 2);
1348         if (ret)
1349                 return ret;
1350
1351         intel_ring_emit(ring,
1352                         MI_BATCH_BUFFER_START |
1353                         MI_BATCH_GTT |
1354                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1355         intel_ring_emit(ring, offset);
1356         intel_ring_advance(ring);
1357
1358         return 0;
1359 }
1360
1361 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1362 #define I830_BATCH_LIMIT (256*1024)
1363 static int
1364 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1365                                 u64 offset, u32 len,
1366                                 unsigned flags)
1367 {
1368         int ret;
1369
1370         if (flags & I915_DISPATCH_PINNED) {
1371                 ret = intel_ring_begin(ring, 4);
1372                 if (ret)
1373                         return ret;
1374
1375                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1376                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1377                 intel_ring_emit(ring, offset + len - 8);
1378                 intel_ring_emit(ring, MI_NOOP);
1379                 intel_ring_advance(ring);
1380         } else {
1381                 u32 cs_offset = ring->scratch.gtt_offset;
1382
1383                 if (len > I830_BATCH_LIMIT)
1384                         return -ENOSPC;
1385
1386                 ret = intel_ring_begin(ring, 9+3);
1387                 if (ret)
1388                         return ret;
1389                 /* Blit the batch (which has now all relocs applied) to the stable batch
1390                  * scratch bo area (so that the CS never stumbles over its tlb
1391                  * invalidation bug) ... */
1392                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1393                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1394                                 XY_SRC_COPY_BLT_WRITE_RGB);
1395                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1396                 intel_ring_emit(ring, 0);
1397                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1398                 intel_ring_emit(ring, cs_offset);
1399                 intel_ring_emit(ring, 0);
1400                 intel_ring_emit(ring, 4096);
1401                 intel_ring_emit(ring, offset);
1402                 intel_ring_emit(ring, MI_FLUSH);
1403
1404                 /* ... and execute it. */
1405                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1406                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1407                 intel_ring_emit(ring, cs_offset + len - 8);
1408                 intel_ring_advance(ring);
1409         }
1410
1411         return 0;
1412 }
1413
1414 static int
1415 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1416                          u64 offset, u32 len,
1417                          unsigned flags)
1418 {
1419         int ret;
1420
1421         ret = intel_ring_begin(ring, 2);
1422         if (ret)
1423                 return ret;
1424
1425         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1426         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1427         intel_ring_advance(ring);
1428
1429         return 0;
1430 }
1431
1432 static void cleanup_status_page(struct intel_engine_cs *ring)
1433 {
1434         struct drm_i915_gem_object *obj;
1435
1436         obj = ring->status_page.obj;
1437         if (obj == NULL)
1438                 return;
1439
1440         kunmap(sg_page(obj->pages->sgl));
1441         i915_gem_object_ggtt_unpin(obj);
1442         drm_gem_object_unreference(&obj->base);
1443         ring->status_page.obj = NULL;
1444 }
1445
1446 static int init_status_page(struct intel_engine_cs *ring)
1447 {
1448         struct drm_i915_gem_object *obj;
1449
1450         if ((obj = ring->status_page.obj) == NULL) {
1451                 unsigned flags;
1452                 int ret;
1453
1454                 obj = i915_gem_alloc_object(ring->dev, 4096);
1455                 if (obj == NULL) {
1456                         DRM_ERROR("Failed to allocate status page\n");
1457                         return -ENOMEM;
1458                 }
1459
1460                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1461                 if (ret)
1462                         goto err_unref;
1463
1464                 flags = 0;
1465                 if (!HAS_LLC(ring->dev))
1466                         /* On g33, we cannot place HWS above 256MiB, so
1467                          * restrict its pinning to the low mappable arena.
1468                          * Though this restriction is not documented for
1469                          * gen4, gen5, or byt, they also behave similarly
1470                          * and hang if the HWS is placed at the top of the
1471                          * GTT. To generalise, it appears that all !llc
1472                          * platforms have issues with us placing the HWS
1473                          * above the mappable region (even though we never
1474                          * actualy map it).
1475                          */
1476                         flags |= PIN_MAPPABLE;
1477                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1478                 if (ret) {
1479 err_unref:
1480                         drm_gem_object_unreference(&obj->base);
1481                         return ret;
1482                 }
1483
1484                 ring->status_page.obj = obj;
1485         }
1486
1487         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1488         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1489         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1490
1491         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1492                         ring->name, ring->status_page.gfx_addr);
1493
1494         return 0;
1495 }
1496
1497 static int init_phys_status_page(struct intel_engine_cs *ring)
1498 {
1499         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1500
1501         if (!dev_priv->status_page_dmah) {
1502                 dev_priv->status_page_dmah =
1503                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1504                 if (!dev_priv->status_page_dmah)
1505                         return -ENOMEM;
1506         }
1507
1508         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1509         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1510
1511         return 0;
1512 }
1513
1514 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1515 {
1516         if (!ringbuf->obj)
1517                 return;
1518
1519         iounmap(ringbuf->virtual_start);
1520         i915_gem_object_ggtt_unpin(ringbuf->obj);
1521         drm_gem_object_unreference(&ringbuf->obj->base);
1522         ringbuf->obj = NULL;
1523 }
1524
1525 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1526                                       struct intel_ringbuffer *ringbuf)
1527 {
1528         struct drm_i915_private *dev_priv = to_i915(dev);
1529         struct drm_i915_gem_object *obj;
1530         int ret;
1531
1532         if (ringbuf->obj)
1533                 return 0;
1534
1535         obj = NULL;
1536         if (!HAS_LLC(dev))
1537                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1538         if (obj == NULL)
1539                 obj = i915_gem_alloc_object(dev, ringbuf->size);
1540         if (obj == NULL)
1541                 return -ENOMEM;
1542
1543         /* mark ring buffers as read-only from GPU side by default */
1544         obj->gt_ro = 1;
1545
1546         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1547         if (ret)
1548                 goto err_unref;
1549
1550         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1551         if (ret)
1552                 goto err_unpin;
1553
1554         ringbuf->virtual_start =
1555                 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1556                                 ringbuf->size);
1557         if (ringbuf->virtual_start == NULL) {
1558                 ret = -EINVAL;
1559                 goto err_unpin;
1560         }
1561
1562         ringbuf->obj = obj;
1563         return 0;
1564
1565 err_unpin:
1566         i915_gem_object_ggtt_unpin(obj);
1567 err_unref:
1568         drm_gem_object_unreference(&obj->base);
1569         return ret;
1570 }
1571
1572 static int intel_init_ring_buffer(struct drm_device *dev,
1573                                   struct intel_engine_cs *ring)
1574 {
1575         struct intel_ringbuffer *ringbuf = ring->buffer;
1576         int ret;
1577
1578         if (ringbuf == NULL) {
1579                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1580                 if (!ringbuf)
1581                         return -ENOMEM;
1582                 ring->buffer = ringbuf;
1583         }
1584
1585         ring->dev = dev;
1586         INIT_LIST_HEAD(&ring->active_list);
1587         INIT_LIST_HEAD(&ring->request_list);
1588         ringbuf->size = 32 * PAGE_SIZE;
1589         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1590
1591         init_waitqueue_head(&ring->irq_queue);
1592
1593         if (I915_NEED_GFX_HWS(dev)) {
1594                 ret = init_status_page(ring);
1595                 if (ret)
1596                         goto error;
1597         } else {
1598                 BUG_ON(ring->id != RCS);
1599                 ret = init_phys_status_page(ring);
1600                 if (ret)
1601                         goto error;
1602         }
1603
1604         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1605         if (ret) {
1606                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1607                 goto error;
1608         }
1609
1610         /* Workaround an erratum on the i830 which causes a hang if
1611          * the TAIL pointer points to within the last 2 cachelines
1612          * of the buffer.
1613          */
1614         ringbuf->effective_size = ringbuf->size;
1615         if (IS_I830(dev) || IS_845G(dev))
1616                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1617
1618         ret = i915_cmd_parser_init_ring(ring);
1619         if (ret)
1620                 goto error;
1621
1622         ret = ring->init(ring);
1623         if (ret)
1624                 goto error;
1625
1626         return 0;
1627
1628 error:
1629         kfree(ringbuf);
1630         ring->buffer = NULL;
1631         return ret;
1632 }
1633
1634 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1635 {
1636         struct drm_i915_private *dev_priv = to_i915(ring->dev);
1637         struct intel_ringbuffer *ringbuf = ring->buffer;
1638
1639         if (!intel_ring_initialized(ring))
1640                 return;
1641
1642         intel_stop_ring_buffer(ring);
1643         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1644
1645         intel_destroy_ringbuffer_obj(ringbuf);
1646         ring->preallocated_lazy_request = NULL;
1647         ring->outstanding_lazy_seqno = 0;
1648
1649         if (ring->cleanup)
1650                 ring->cleanup(ring);
1651
1652         cleanup_status_page(ring);
1653
1654         i915_cmd_parser_fini_ring(ring);
1655
1656         kfree(ringbuf);
1657         ring->buffer = NULL;
1658 }
1659
1660 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1661 {
1662         struct intel_ringbuffer *ringbuf = ring->buffer;
1663         struct drm_i915_gem_request *request;
1664         u32 seqno = 0;
1665         int ret;
1666
1667         if (ringbuf->last_retired_head != -1) {
1668                 ringbuf->head = ringbuf->last_retired_head;
1669                 ringbuf->last_retired_head = -1;
1670
1671                 ringbuf->space = ring_space(ringbuf);
1672                 if (ringbuf->space >= n)
1673                         return 0;
1674         }
1675
1676         list_for_each_entry(request, &ring->request_list, list) {
1677                 if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
1678                         seqno = request->seqno;
1679                         break;
1680                 }
1681         }
1682
1683         if (seqno == 0)
1684                 return -ENOSPC;
1685
1686         ret = i915_wait_seqno(ring, seqno);
1687         if (ret)
1688                 return ret;
1689
1690         i915_gem_retire_requests_ring(ring);
1691         ringbuf->head = ringbuf->last_retired_head;
1692         ringbuf->last_retired_head = -1;
1693
1694         ringbuf->space = ring_space(ringbuf);
1695         return 0;
1696 }
1697
1698 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1699 {
1700         struct drm_device *dev = ring->dev;
1701         struct drm_i915_private *dev_priv = dev->dev_private;
1702         struct intel_ringbuffer *ringbuf = ring->buffer;
1703         unsigned long end;
1704         int ret;
1705
1706         ret = intel_ring_wait_request(ring, n);
1707         if (ret != -ENOSPC)
1708                 return ret;
1709
1710         /* force the tail write in case we have been skipping them */
1711         __intel_ring_advance(ring);
1712
1713         /* With GEM the hangcheck timer should kick us out of the loop,
1714          * leaving it early runs the risk of corrupting GEM state (due
1715          * to running on almost untested codepaths). But on resume
1716          * timers don't work yet, so prevent a complete hang in that
1717          * case by choosing an insanely large timeout. */
1718         end = jiffies + 60 * HZ;
1719
1720         trace_i915_ring_wait_begin(ring);
1721         do {
1722                 ringbuf->head = I915_READ_HEAD(ring);
1723                 ringbuf->space = ring_space(ringbuf);
1724                 if (ringbuf->space >= n) {
1725                         ret = 0;
1726                         break;
1727                 }
1728
1729                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1730                     dev->primary->master) {
1731                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1732                         if (master_priv->sarea_priv)
1733                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1734                 }
1735
1736                 msleep(1);
1737
1738                 if (dev_priv->mm.interruptible && signal_pending(current)) {
1739                         ret = -ERESTARTSYS;
1740                         break;
1741                 }
1742
1743                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1744                                            dev_priv->mm.interruptible);
1745                 if (ret)
1746                         break;
1747
1748                 if (time_after(jiffies, end)) {
1749                         ret = -EBUSY;
1750                         break;
1751                 }
1752         } while (1);
1753         trace_i915_ring_wait_end(ring);
1754         return ret;
1755 }
1756
1757 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1758 {
1759         uint32_t __iomem *virt;
1760         struct intel_ringbuffer *ringbuf = ring->buffer;
1761         int rem = ringbuf->size - ringbuf->tail;
1762
1763         if (ringbuf->space < rem) {
1764                 int ret = ring_wait_for_space(ring, rem);
1765                 if (ret)
1766                         return ret;
1767         }
1768
1769         virt = ringbuf->virtual_start + ringbuf->tail;
1770         rem /= 4;
1771         while (rem--)
1772                 iowrite32(MI_NOOP, virt++);
1773
1774         ringbuf->tail = 0;
1775         ringbuf->space = ring_space(ringbuf);
1776
1777         return 0;
1778 }
1779
1780 int intel_ring_idle(struct intel_engine_cs *ring)
1781 {
1782         u32 seqno;
1783         int ret;
1784
1785         /* We need to add any requests required to flush the objects and ring */
1786         if (ring->outstanding_lazy_seqno) {
1787                 ret = i915_add_request(ring, NULL);
1788                 if (ret)
1789                         return ret;
1790         }
1791
1792         /* Wait upon the last request to be completed */
1793         if (list_empty(&ring->request_list))
1794                 return 0;
1795
1796         seqno = list_entry(ring->request_list.prev,
1797                            struct drm_i915_gem_request,
1798                            list)->seqno;
1799
1800         return i915_wait_seqno(ring, seqno);
1801 }
1802
1803 static int
1804 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1805 {
1806         if (ring->outstanding_lazy_seqno)
1807                 return 0;
1808
1809         if (ring->preallocated_lazy_request == NULL) {
1810                 struct drm_i915_gem_request *request;
1811
1812                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1813                 if (request == NULL)
1814                         return -ENOMEM;
1815
1816                 ring->preallocated_lazy_request = request;
1817         }
1818
1819         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1820 }
1821
1822 static int __intel_ring_prepare(struct intel_engine_cs *ring,
1823                                 int bytes)
1824 {
1825         struct intel_ringbuffer *ringbuf = ring->buffer;
1826         int ret;
1827
1828         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1829                 ret = intel_wrap_ring_buffer(ring);
1830                 if (unlikely(ret))
1831                         return ret;
1832         }
1833
1834         if (unlikely(ringbuf->space < bytes)) {
1835                 ret = ring_wait_for_space(ring, bytes);
1836                 if (unlikely(ret))
1837                         return ret;
1838         }
1839
1840         return 0;
1841 }
1842
1843 int intel_ring_begin(struct intel_engine_cs *ring,
1844                      int num_dwords)
1845 {
1846         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1847         int ret;
1848
1849         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1850                                    dev_priv->mm.interruptible);
1851         if (ret)
1852                 return ret;
1853
1854         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1855         if (ret)
1856                 return ret;
1857
1858         /* Preallocate the olr before touching the ring */
1859         ret = intel_ring_alloc_seqno(ring);
1860         if (ret)
1861                 return ret;
1862
1863         ring->buffer->space -= num_dwords * sizeof(uint32_t);
1864         return 0;
1865 }
1866
1867 /* Align the ring tail to a cacheline boundary */
1868 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
1869 {
1870         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1871         int ret;
1872
1873         if (num_dwords == 0)
1874                 return 0;
1875
1876         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1877         ret = intel_ring_begin(ring, num_dwords);
1878         if (ret)
1879                 return ret;
1880
1881         while (num_dwords--)
1882                 intel_ring_emit(ring, MI_NOOP);
1883
1884         intel_ring_advance(ring);
1885
1886         return 0;
1887 }
1888
1889 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1890 {
1891         struct drm_device *dev = ring->dev;
1892         struct drm_i915_private *dev_priv = dev->dev_private;
1893
1894         BUG_ON(ring->outstanding_lazy_seqno);
1895
1896         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
1897                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1898                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1899                 if (HAS_VEBOX(dev))
1900                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1901         }
1902
1903         ring->set_seqno(ring, seqno);
1904         ring->hangcheck.seqno = seqno;
1905 }
1906
1907 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
1908                                      u32 value)
1909 {
1910         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1911
1912        /* Every tail move must follow the sequence below */
1913
1914         /* Disable notification that the ring is IDLE. The GT
1915          * will then assume that it is busy and bring it out of rc6.
1916          */
1917         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1918                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1919
1920         /* Clear the context id. Here be magic! */
1921         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1922
1923         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1924         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1925                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1926                      50))
1927                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1928
1929         /* Now that the ring is fully powered up, update the tail */
1930         I915_WRITE_TAIL(ring, value);
1931         POSTING_READ(RING_TAIL(ring->mmio_base));
1932
1933         /* Let the ring send IDLE messages to the GT again,
1934          * and so let it sleep to conserve power when idle.
1935          */
1936         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1937                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1938 }
1939
1940 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
1941                                u32 invalidate, u32 flush)
1942 {
1943         uint32_t cmd;
1944         int ret;
1945
1946         ret = intel_ring_begin(ring, 4);
1947         if (ret)
1948                 return ret;
1949
1950         cmd = MI_FLUSH_DW;
1951         if (INTEL_INFO(ring->dev)->gen >= 8)
1952                 cmd += 1;
1953         /*
1954          * Bspec vol 1c.5 - video engine command streamer:
1955          * "If ENABLED, all TLBs will be invalidated once the flush
1956          * operation is complete. This bit is only valid when the
1957          * Post-Sync Operation field is a value of 1h or 3h."
1958          */
1959         if (invalidate & I915_GEM_GPU_DOMAINS)
1960                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1961                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1962         intel_ring_emit(ring, cmd);
1963         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1964         if (INTEL_INFO(ring->dev)->gen >= 8) {
1965                 intel_ring_emit(ring, 0); /* upper addr */
1966                 intel_ring_emit(ring, 0); /* value */
1967         } else  {
1968                 intel_ring_emit(ring, 0);
1969                 intel_ring_emit(ring, MI_NOOP);
1970         }
1971         intel_ring_advance(ring);
1972         return 0;
1973 }
1974
1975 static int
1976 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1977                               u64 offset, u32 len,
1978                               unsigned flags)
1979 {
1980         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1981         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1982                 !(flags & I915_DISPATCH_SECURE);
1983         int ret;
1984
1985         ret = intel_ring_begin(ring, 4);
1986         if (ret)
1987                 return ret;
1988
1989         /* FIXME(BDW): Address space and security selectors. */
1990         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1991         intel_ring_emit(ring, lower_32_bits(offset));
1992         intel_ring_emit(ring, upper_32_bits(offset));
1993         intel_ring_emit(ring, MI_NOOP);
1994         intel_ring_advance(ring);
1995
1996         return 0;
1997 }
1998
1999 static int
2000 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2001                               u64 offset, u32 len,
2002                               unsigned flags)
2003 {
2004         int ret;
2005
2006         ret = intel_ring_begin(ring, 2);
2007         if (ret)
2008                 return ret;
2009
2010         intel_ring_emit(ring,
2011                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
2012                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
2013         /* bit0-7 is the length on GEN6+ */
2014         intel_ring_emit(ring, offset);
2015         intel_ring_advance(ring);
2016
2017         return 0;
2018 }
2019
2020 static int
2021 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2022                               u64 offset, u32 len,
2023                               unsigned flags)
2024 {
2025         int ret;
2026
2027         ret = intel_ring_begin(ring, 2);
2028         if (ret)
2029                 return ret;
2030
2031         intel_ring_emit(ring,
2032                         MI_BATCH_BUFFER_START |
2033                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2034         /* bit0-7 is the length on GEN6+ */
2035         intel_ring_emit(ring, offset);
2036         intel_ring_advance(ring);
2037
2038         return 0;
2039 }
2040
2041 /* Blitter support (SandyBridge+) */
2042
2043 static int gen6_ring_flush(struct intel_engine_cs *ring,
2044                            u32 invalidate, u32 flush)
2045 {
2046         struct drm_device *dev = ring->dev;
2047         uint32_t cmd;
2048         int ret;
2049
2050         ret = intel_ring_begin(ring, 4);
2051         if (ret)
2052                 return ret;
2053
2054         cmd = MI_FLUSH_DW;
2055         if (INTEL_INFO(ring->dev)->gen >= 8)
2056                 cmd += 1;
2057         /*
2058          * Bspec vol 1c.3 - blitter engine command streamer:
2059          * "If ENABLED, all TLBs will be invalidated once the flush
2060          * operation is complete. This bit is only valid when the
2061          * Post-Sync Operation field is a value of 1h or 3h."
2062          */
2063         if (invalidate & I915_GEM_DOMAIN_RENDER)
2064                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2065                         MI_FLUSH_DW_OP_STOREDW;
2066         intel_ring_emit(ring, cmd);
2067         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2068         if (INTEL_INFO(ring->dev)->gen >= 8) {
2069                 intel_ring_emit(ring, 0); /* upper addr */
2070                 intel_ring_emit(ring, 0); /* value */
2071         } else  {
2072                 intel_ring_emit(ring, 0);
2073                 intel_ring_emit(ring, MI_NOOP);
2074         }
2075         intel_ring_advance(ring);
2076
2077         if (IS_GEN7(dev) && !invalidate && flush)
2078                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2079
2080         return 0;
2081 }
2082
2083 int intel_init_render_ring_buffer(struct drm_device *dev)
2084 {
2085         struct drm_i915_private *dev_priv = dev->dev_private;
2086         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2087         struct drm_i915_gem_object *obj;
2088         int ret;
2089
2090         ring->name = "render ring";
2091         ring->id = RCS;
2092         ring->mmio_base = RENDER_RING_BASE;
2093
2094         if (INTEL_INFO(dev)->gen >= 8) {
2095                 if (i915_semaphore_is_enabled(dev)) {
2096                         obj = i915_gem_alloc_object(dev, 4096);
2097                         if (obj == NULL) {
2098                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2099                                 i915.semaphores = 0;
2100                         } else {
2101                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2102                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2103                                 if (ret != 0) {
2104                                         drm_gem_object_unreference(&obj->base);
2105                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2106                                         i915.semaphores = 0;
2107                                 } else
2108                                         dev_priv->semaphore_obj = obj;
2109                         }
2110                 }
2111                 ring->add_request = gen6_add_request;
2112                 ring->flush = gen8_render_ring_flush;
2113                 ring->irq_get = gen8_ring_get_irq;
2114                 ring->irq_put = gen8_ring_put_irq;
2115                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2116                 ring->get_seqno = gen6_ring_get_seqno;
2117                 ring->set_seqno = ring_set_seqno;
2118                 if (i915_semaphore_is_enabled(dev)) {
2119                         WARN_ON(!dev_priv->semaphore_obj);
2120                         ring->semaphore.sync_to = gen8_ring_sync;
2121                         ring->semaphore.signal = gen8_rcs_signal;
2122                         GEN8_RING_SEMAPHORE_INIT;
2123                 }
2124         } else if (INTEL_INFO(dev)->gen >= 6) {
2125                 ring->add_request = gen6_add_request;
2126                 ring->flush = gen7_render_ring_flush;
2127                 if (INTEL_INFO(dev)->gen == 6)
2128                         ring->flush = gen6_render_ring_flush;
2129                 ring->irq_get = gen6_ring_get_irq;
2130                 ring->irq_put = gen6_ring_put_irq;
2131                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2132                 ring->get_seqno = gen6_ring_get_seqno;
2133                 ring->set_seqno = ring_set_seqno;
2134                 if (i915_semaphore_is_enabled(dev)) {
2135                         ring->semaphore.sync_to = gen6_ring_sync;
2136                         ring->semaphore.signal = gen6_signal;
2137                         /*
2138                          * The current semaphore is only applied on pre-gen8
2139                          * platform.  And there is no VCS2 ring on the pre-gen8
2140                          * platform. So the semaphore between RCS and VCS2 is
2141                          * initialized as INVALID.  Gen8 will initialize the
2142                          * sema between VCS2 and RCS later.
2143                          */
2144                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2145                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2146                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2147                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2148                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2149                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2150                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2151                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2152                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2153                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2154                 }
2155         } else if (IS_GEN5(dev)) {
2156                 ring->add_request = pc_render_add_request;
2157                 ring->flush = gen4_render_ring_flush;
2158                 ring->get_seqno = pc_render_get_seqno;
2159                 ring->set_seqno = pc_render_set_seqno;
2160                 ring->irq_get = gen5_ring_get_irq;
2161                 ring->irq_put = gen5_ring_put_irq;
2162                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2163                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2164         } else {
2165                 ring->add_request = i9xx_add_request;
2166                 if (INTEL_INFO(dev)->gen < 4)
2167                         ring->flush = gen2_render_ring_flush;
2168                 else
2169                         ring->flush = gen4_render_ring_flush;
2170                 ring->get_seqno = ring_get_seqno;
2171                 ring->set_seqno = ring_set_seqno;
2172                 if (IS_GEN2(dev)) {
2173                         ring->irq_get = i8xx_ring_get_irq;
2174                         ring->irq_put = i8xx_ring_put_irq;
2175                 } else {
2176                         ring->irq_get = i9xx_ring_get_irq;
2177                         ring->irq_put = i9xx_ring_put_irq;
2178                 }
2179                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2180         }
2181         ring->write_tail = ring_write_tail;
2182
2183         if (IS_HASWELL(dev))
2184                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2185         else if (IS_GEN8(dev))
2186                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2187         else if (INTEL_INFO(dev)->gen >= 6)
2188                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2189         else if (INTEL_INFO(dev)->gen >= 4)
2190                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2191         else if (IS_I830(dev) || IS_845G(dev))
2192                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2193         else
2194                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2195         ring->init = init_render_ring;
2196         ring->cleanup = render_ring_cleanup;
2197
2198         /* Workaround batchbuffer to combat CS tlb bug. */
2199         if (HAS_BROKEN_CS_TLB(dev)) {
2200                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2201                 if (obj == NULL) {
2202                         DRM_ERROR("Failed to allocate batch bo\n");
2203                         return -ENOMEM;
2204                 }
2205
2206                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2207                 if (ret != 0) {
2208                         drm_gem_object_unreference(&obj->base);
2209                         DRM_ERROR("Failed to ping batch bo\n");
2210                         return ret;
2211                 }
2212
2213                 ring->scratch.obj = obj;
2214                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2215         }
2216
2217         return intel_init_ring_buffer(dev, ring);
2218 }
2219
2220 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2221 {
2222         struct drm_i915_private *dev_priv = dev->dev_private;
2223         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2224         struct intel_ringbuffer *ringbuf = ring->buffer;
2225         int ret;
2226
2227         if (ringbuf == NULL) {
2228                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2229                 if (!ringbuf)
2230                         return -ENOMEM;
2231                 ring->buffer = ringbuf;
2232         }
2233
2234         ring->name = "render ring";
2235         ring->id = RCS;
2236         ring->mmio_base = RENDER_RING_BASE;
2237
2238         if (INTEL_INFO(dev)->gen >= 6) {
2239                 /* non-kms not supported on gen6+ */
2240                 ret = -ENODEV;
2241                 goto err_ringbuf;
2242         }
2243
2244         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2245          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2246          * the special gen5 functions. */
2247         ring->add_request = i9xx_add_request;
2248         if (INTEL_INFO(dev)->gen < 4)
2249                 ring->flush = gen2_render_ring_flush;
2250         else
2251                 ring->flush = gen4_render_ring_flush;
2252         ring->get_seqno = ring_get_seqno;
2253         ring->set_seqno = ring_set_seqno;
2254         if (IS_GEN2(dev)) {
2255                 ring->irq_get = i8xx_ring_get_irq;
2256                 ring->irq_put = i8xx_ring_put_irq;
2257         } else {
2258                 ring->irq_get = i9xx_ring_get_irq;
2259                 ring->irq_put = i9xx_ring_put_irq;
2260         }
2261         ring->irq_enable_mask = I915_USER_INTERRUPT;
2262         ring->write_tail = ring_write_tail;
2263         if (INTEL_INFO(dev)->gen >= 4)
2264                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2265         else if (IS_I830(dev) || IS_845G(dev))
2266                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2267         else
2268                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2269         ring->init = init_render_ring;
2270         ring->cleanup = render_ring_cleanup;
2271
2272         ring->dev = dev;
2273         INIT_LIST_HEAD(&ring->active_list);
2274         INIT_LIST_HEAD(&ring->request_list);
2275
2276         ringbuf->size = size;
2277         ringbuf->effective_size = ringbuf->size;
2278         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2279                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2280
2281         ringbuf->virtual_start = ioremap_wc(start, size);
2282         if (ringbuf->virtual_start == NULL) {
2283                 DRM_ERROR("can not ioremap virtual address for"
2284                           " ring buffer\n");
2285                 ret = -ENOMEM;
2286                 goto err_ringbuf;
2287         }
2288
2289         if (!I915_NEED_GFX_HWS(dev)) {
2290                 ret = init_phys_status_page(ring);
2291                 if (ret)
2292                         goto err_vstart;
2293         }
2294
2295         return 0;
2296
2297 err_vstart:
2298         iounmap(ringbuf->virtual_start);
2299 err_ringbuf:
2300         kfree(ringbuf);
2301         ring->buffer = NULL;
2302         return ret;
2303 }
2304
2305 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2306 {
2307         struct drm_i915_private *dev_priv = dev->dev_private;
2308         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2309
2310         ring->name = "bsd ring";
2311         ring->id = VCS;
2312
2313         ring->write_tail = ring_write_tail;
2314         if (INTEL_INFO(dev)->gen >= 6) {
2315                 ring->mmio_base = GEN6_BSD_RING_BASE;
2316                 /* gen6 bsd needs a special wa for tail updates */
2317                 if (IS_GEN6(dev))
2318                         ring->write_tail = gen6_bsd_ring_write_tail;
2319                 ring->flush = gen6_bsd_ring_flush;
2320                 ring->add_request = gen6_add_request;
2321                 ring->get_seqno = gen6_ring_get_seqno;
2322                 ring->set_seqno = ring_set_seqno;
2323                 if (INTEL_INFO(dev)->gen >= 8) {
2324                         ring->irq_enable_mask =
2325                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2326                         ring->irq_get = gen8_ring_get_irq;
2327                         ring->irq_put = gen8_ring_put_irq;
2328                         ring->dispatch_execbuffer =
2329                                 gen8_ring_dispatch_execbuffer;
2330                         if (i915_semaphore_is_enabled(dev)) {
2331                                 ring->semaphore.sync_to = gen8_ring_sync;
2332                                 ring->semaphore.signal = gen8_xcs_signal;
2333                                 GEN8_RING_SEMAPHORE_INIT;
2334                         }
2335                 } else {
2336                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2337                         ring->irq_get = gen6_ring_get_irq;
2338                         ring->irq_put = gen6_ring_put_irq;
2339                         ring->dispatch_execbuffer =
2340                                 gen6_ring_dispatch_execbuffer;
2341                         if (i915_semaphore_is_enabled(dev)) {
2342                                 ring->semaphore.sync_to = gen6_ring_sync;
2343                                 ring->semaphore.signal = gen6_signal;
2344                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2345                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2346                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2347                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2348                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2349                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2350                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2351                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2352                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2353                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2354                         }
2355                 }
2356         } else {
2357                 ring->mmio_base = BSD_RING_BASE;
2358                 ring->flush = bsd_ring_flush;
2359                 ring->add_request = i9xx_add_request;
2360                 ring->get_seqno = ring_get_seqno;
2361                 ring->set_seqno = ring_set_seqno;
2362                 if (IS_GEN5(dev)) {
2363                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2364                         ring->irq_get = gen5_ring_get_irq;
2365                         ring->irq_put = gen5_ring_put_irq;
2366                 } else {
2367                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2368                         ring->irq_get = i9xx_ring_get_irq;
2369                         ring->irq_put = i9xx_ring_put_irq;
2370                 }
2371                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2372         }
2373         ring->init = init_ring_common;
2374
2375         return intel_init_ring_buffer(dev, ring);
2376 }
2377
2378 /**
2379  * Initialize the second BSD ring for Broadwell GT3.
2380  * It is noted that this only exists on Broadwell GT3.
2381  */
2382 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2383 {
2384         struct drm_i915_private *dev_priv = dev->dev_private;
2385         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2386
2387         if ((INTEL_INFO(dev)->gen != 8)) {
2388                 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2389                 return -EINVAL;
2390         }
2391
2392         ring->name = "bsd2 ring";
2393         ring->id = VCS2;
2394
2395         ring->write_tail = ring_write_tail;
2396         ring->mmio_base = GEN8_BSD2_RING_BASE;
2397         ring->flush = gen6_bsd_ring_flush;
2398         ring->add_request = gen6_add_request;
2399         ring->get_seqno = gen6_ring_get_seqno;
2400         ring->set_seqno = ring_set_seqno;
2401         ring->irq_enable_mask =
2402                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2403         ring->irq_get = gen8_ring_get_irq;
2404         ring->irq_put = gen8_ring_put_irq;
2405         ring->dispatch_execbuffer =
2406                         gen8_ring_dispatch_execbuffer;
2407         if (i915_semaphore_is_enabled(dev)) {
2408                 ring->semaphore.sync_to = gen8_ring_sync;
2409                 ring->semaphore.signal = gen8_xcs_signal;
2410                 GEN8_RING_SEMAPHORE_INIT;
2411         }
2412         ring->init = init_ring_common;
2413
2414         return intel_init_ring_buffer(dev, ring);
2415 }
2416
2417 int intel_init_blt_ring_buffer(struct drm_device *dev)
2418 {
2419         struct drm_i915_private *dev_priv = dev->dev_private;
2420         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2421
2422         ring->name = "blitter ring";
2423         ring->id = BCS;
2424
2425         ring->mmio_base = BLT_RING_BASE;
2426         ring->write_tail = ring_write_tail;
2427         ring->flush = gen6_ring_flush;
2428         ring->add_request = gen6_add_request;
2429         ring->get_seqno = gen6_ring_get_seqno;
2430         ring->set_seqno = ring_set_seqno;
2431         if (INTEL_INFO(dev)->gen >= 8) {
2432                 ring->irq_enable_mask =
2433                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2434                 ring->irq_get = gen8_ring_get_irq;
2435                 ring->irq_put = gen8_ring_put_irq;
2436                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2437                 if (i915_semaphore_is_enabled(dev)) {
2438                         ring->semaphore.sync_to = gen8_ring_sync;
2439                         ring->semaphore.signal = gen8_xcs_signal;
2440                         GEN8_RING_SEMAPHORE_INIT;
2441                 }
2442         } else {
2443                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2444                 ring->irq_get = gen6_ring_get_irq;
2445                 ring->irq_put = gen6_ring_put_irq;
2446                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2447                 if (i915_semaphore_is_enabled(dev)) {
2448                         ring->semaphore.signal = gen6_signal;
2449                         ring->semaphore.sync_to = gen6_ring_sync;
2450                         /*
2451                          * The current semaphore is only applied on pre-gen8
2452                          * platform.  And there is no VCS2 ring on the pre-gen8
2453                          * platform. So the semaphore between BCS and VCS2 is
2454                          * initialized as INVALID.  Gen8 will initialize the
2455                          * sema between BCS and VCS2 later.
2456                          */
2457                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2458                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2459                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2460                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2461                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2462                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2463                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2464                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2465                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2466                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2467                 }
2468         }
2469         ring->init = init_ring_common;
2470
2471         return intel_init_ring_buffer(dev, ring);
2472 }
2473
2474 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2475 {
2476         struct drm_i915_private *dev_priv = dev->dev_private;
2477         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2478
2479         ring->name = "video enhancement ring";
2480         ring->id = VECS;
2481
2482         ring->mmio_base = VEBOX_RING_BASE;
2483         ring->write_tail = ring_write_tail;
2484         ring->flush = gen6_ring_flush;
2485         ring->add_request = gen6_add_request;
2486         ring->get_seqno = gen6_ring_get_seqno;
2487         ring->set_seqno = ring_set_seqno;
2488
2489         if (INTEL_INFO(dev)->gen >= 8) {
2490                 ring->irq_enable_mask =
2491                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2492                 ring->irq_get = gen8_ring_get_irq;
2493                 ring->irq_put = gen8_ring_put_irq;
2494                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2495                 if (i915_semaphore_is_enabled(dev)) {
2496                         ring->semaphore.sync_to = gen8_ring_sync;
2497                         ring->semaphore.signal = gen8_xcs_signal;
2498                         GEN8_RING_SEMAPHORE_INIT;
2499                 }
2500         } else {
2501                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2502                 ring->irq_get = hsw_vebox_get_irq;
2503                 ring->irq_put = hsw_vebox_put_irq;
2504                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2505                 if (i915_semaphore_is_enabled(dev)) {
2506                         ring->semaphore.sync_to = gen6_ring_sync;
2507                         ring->semaphore.signal = gen6_signal;
2508                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2509                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2510                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2511                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2512                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2513                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2514                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2515                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2516                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2517                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2518                 }
2519         }
2520         ring->init = init_ring_common;
2521
2522         return intel_init_ring_buffer(dev, ring);
2523 }
2524
2525 int
2526 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2527 {
2528         int ret;
2529
2530         if (!ring->gpu_caches_dirty)
2531                 return 0;
2532
2533         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2534         if (ret)
2535                 return ret;
2536
2537         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2538
2539         ring->gpu_caches_dirty = false;
2540         return 0;
2541 }
2542
2543 int
2544 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2545 {
2546         uint32_t flush_domains;
2547         int ret;
2548
2549         flush_domains = 0;
2550         if (ring->gpu_caches_dirty)
2551                 flush_domains = I915_GEM_GPU_DOMAINS;
2552
2553         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2554         if (ret)
2555                 return ret;
2556
2557         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2558
2559         ring->gpu_caches_dirty = false;
2560         return 0;
2561 }
2562
2563 void
2564 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2565 {
2566         int ret;
2567
2568         if (!intel_ring_initialized(ring))
2569                 return;
2570
2571         ret = intel_ring_idle(ring);
2572         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2573                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2574                           ring->name, ret);
2575
2576         stop_ring(ring);
2577 }