drm/i915: WaRsUseTimeoutMode
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE                        (1<<0)
52 #define INTEL_RC6p_ENABLE                       (1<<1)
53 #define INTEL_RC6pp_ENABLE                      (1<<2)
54
55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57         struct drm_i915_private *dev_priv = dev->dev_private;
58
59         /* WaEnableLbsSlaRetryTimerDecrement:skl */
60         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
61                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62
63         /* WaDisableKillLogic:bxt,skl */
64         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
65                    ECOCHK_DIS_TLB);
66 }
67
68 static void skl_init_clock_gating(struct drm_device *dev)
69 {
70         struct drm_i915_private *dev_priv = dev->dev_private;
71
72         gen9_init_clock_gating(dev);
73
74         if (INTEL_REVID(dev) <= SKL_REVID_B0) {
75                 /*
76                  * WaDisableSDEUnitClockGating:skl
77                  * WaSetGAPSunitClckGateDisable:skl
78                  */
79                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
80                            GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
81                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
82
83                 /* WaDisableVFUnitClockGating:skl */
84                 I915_WRITE(GEN6_UCGCTL2, I915_READ(GEN6_UCGCTL2) |
85                            GEN6_VFUNIT_CLOCK_GATE_DISABLE);
86         }
87
88         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
89                 /* WaDisableHDCInvalidation:skl */
90                 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
91                            BDW_DISABLE_HDC_INVALIDATION);
92
93                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
94                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
95                            _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
96         }
97
98         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
99          * involving this register should also be added to WA batch as required.
100          */
101         if (INTEL_REVID(dev) <= SKL_REVID_E0)
102                 /* WaDisableLSQCROPERFforOCL:skl */
103                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
104                            GEN8_LQSC_RO_PERF_DIS);
105
106         /* WaEnableGapsTsvCreditFix:skl */
107         if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
108                 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
109                                            GEN9_GAPS_TSV_CREDIT_DISABLE));
110         }
111 }
112
113 static void bxt_init_clock_gating(struct drm_device *dev)
114 {
115         struct drm_i915_private *dev_priv = dev->dev_private;
116
117         gen9_init_clock_gating(dev);
118
119         /* WaDisableSDEUnitClockGating:bxt */
120         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
121                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
122
123         /*
124          * FIXME:
125          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
126          */
127         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
128                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
129
130         if (INTEL_REVID(dev) == BXT_REVID_A0) {
131                 /*
132                  * Hardware specification requires this bit to be
133                  * set to 1 for A0
134                  */
135                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
136         }
137
138         /* WaSetClckGatingDisableMedia:bxt */
139         if (INTEL_REVID(dev) == BXT_REVID_A0) {
140                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
141                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
142         }
143 }
144
145 static void i915_pineview_get_mem_freq(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         u32 tmp;
149
150         tmp = I915_READ(CLKCFG);
151
152         switch (tmp & CLKCFG_FSB_MASK) {
153         case CLKCFG_FSB_533:
154                 dev_priv->fsb_freq = 533; /* 133*4 */
155                 break;
156         case CLKCFG_FSB_800:
157                 dev_priv->fsb_freq = 800; /* 200*4 */
158                 break;
159         case CLKCFG_FSB_667:
160                 dev_priv->fsb_freq =  667; /* 167*4 */
161                 break;
162         case CLKCFG_FSB_400:
163                 dev_priv->fsb_freq = 400; /* 100*4 */
164                 break;
165         }
166
167         switch (tmp & CLKCFG_MEM_MASK) {
168         case CLKCFG_MEM_533:
169                 dev_priv->mem_freq = 533;
170                 break;
171         case CLKCFG_MEM_667:
172                 dev_priv->mem_freq = 667;
173                 break;
174         case CLKCFG_MEM_800:
175                 dev_priv->mem_freq = 800;
176                 break;
177         }
178
179         /* detect pineview DDR3 setting */
180         tmp = I915_READ(CSHRDDR3CTL);
181         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
182 }
183
184 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
185 {
186         struct drm_i915_private *dev_priv = dev->dev_private;
187         u16 ddrpll, csipll;
188
189         ddrpll = I915_READ16(DDRMPLL1);
190         csipll = I915_READ16(CSIPLL0);
191
192         switch (ddrpll & 0xff) {
193         case 0xc:
194                 dev_priv->mem_freq = 800;
195                 break;
196         case 0x10:
197                 dev_priv->mem_freq = 1066;
198                 break;
199         case 0x14:
200                 dev_priv->mem_freq = 1333;
201                 break;
202         case 0x18:
203                 dev_priv->mem_freq = 1600;
204                 break;
205         default:
206                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
207                                  ddrpll & 0xff);
208                 dev_priv->mem_freq = 0;
209                 break;
210         }
211
212         dev_priv->ips.r_t = dev_priv->mem_freq;
213
214         switch (csipll & 0x3ff) {
215         case 0x00c:
216                 dev_priv->fsb_freq = 3200;
217                 break;
218         case 0x00e:
219                 dev_priv->fsb_freq = 3733;
220                 break;
221         case 0x010:
222                 dev_priv->fsb_freq = 4266;
223                 break;
224         case 0x012:
225                 dev_priv->fsb_freq = 4800;
226                 break;
227         case 0x014:
228                 dev_priv->fsb_freq = 5333;
229                 break;
230         case 0x016:
231                 dev_priv->fsb_freq = 5866;
232                 break;
233         case 0x018:
234                 dev_priv->fsb_freq = 6400;
235                 break;
236         default:
237                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
238                                  csipll & 0x3ff);
239                 dev_priv->fsb_freq = 0;
240                 break;
241         }
242
243         if (dev_priv->fsb_freq == 3200) {
244                 dev_priv->ips.c_m = 0;
245         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
246                 dev_priv->ips.c_m = 1;
247         } else {
248                 dev_priv->ips.c_m = 2;
249         }
250 }
251
252 static const struct cxsr_latency cxsr_latency_table[] = {
253         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
254         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
255         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
256         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
257         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
258
259         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
260         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
261         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
262         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
263         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
264
265         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
266         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
267         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
268         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
269         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
270
271         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
272         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
273         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
274         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
275         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
276
277         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
278         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
279         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
280         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
281         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
282
283         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
284         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
285         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
286         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
287         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
288 };
289
290 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
291                                                          int is_ddr3,
292                                                          int fsb,
293                                                          int mem)
294 {
295         const struct cxsr_latency *latency;
296         int i;
297
298         if (fsb == 0 || mem == 0)
299                 return NULL;
300
301         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
302                 latency = &cxsr_latency_table[i];
303                 if (is_desktop == latency->is_desktop &&
304                     is_ddr3 == latency->is_ddr3 &&
305                     fsb == latency->fsb_freq && mem == latency->mem_freq)
306                         return latency;
307         }
308
309         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
310
311         return NULL;
312 }
313
314 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
315 {
316         u32 val;
317
318         mutex_lock(&dev_priv->rps.hw_lock);
319
320         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
321         if (enable)
322                 val &= ~FORCE_DDR_HIGH_FREQ;
323         else
324                 val |= FORCE_DDR_HIGH_FREQ;
325         val &= ~FORCE_DDR_LOW_FREQ;
326         val |= FORCE_DDR_FREQ_REQ_ACK;
327         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
328
329         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
330                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
331                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
332
333         mutex_unlock(&dev_priv->rps.hw_lock);
334 }
335
336 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
337 {
338         u32 val;
339
340         mutex_lock(&dev_priv->rps.hw_lock);
341
342         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
343         if (enable)
344                 val |= DSP_MAXFIFO_PM5_ENABLE;
345         else
346                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
347         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
348
349         mutex_unlock(&dev_priv->rps.hw_lock);
350 }
351
352 #define FW_WM(value, plane) \
353         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
354
355 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
356 {
357         struct drm_device *dev = dev_priv->dev;
358         u32 val;
359
360         if (IS_VALLEYVIEW(dev)) {
361                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
362                 POSTING_READ(FW_BLC_SELF_VLV);
363                 dev_priv->wm.vlv.cxsr = enable;
364         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
365                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
366                 POSTING_READ(FW_BLC_SELF);
367         } else if (IS_PINEVIEW(dev)) {
368                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
369                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
370                 I915_WRITE(DSPFW3, val);
371                 POSTING_READ(DSPFW3);
372         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
373                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
374                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
375                 I915_WRITE(FW_BLC_SELF, val);
376                 POSTING_READ(FW_BLC_SELF);
377         } else if (IS_I915GM(dev)) {
378                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
379                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
380                 I915_WRITE(INSTPM, val);
381                 POSTING_READ(INSTPM);
382         } else {
383                 return;
384         }
385
386         DRM_DEBUG_KMS("memory self-refresh is %s\n",
387                       enable ? "enabled" : "disabled");
388 }
389
390
391 /*
392  * Latency for FIFO fetches is dependent on several factors:
393  *   - memory configuration (speed, channels)
394  *   - chipset
395  *   - current MCH state
396  * It can be fairly high in some situations, so here we assume a fairly
397  * pessimal value.  It's a tradeoff between extra memory fetches (if we
398  * set this value too high, the FIFO will fetch frequently to stay full)
399  * and power consumption (set it too low to save power and we might see
400  * FIFO underruns and display "flicker").
401  *
402  * A value of 5us seems to be a good balance; safe for very low end
403  * platforms but not overly aggressive on lower latency configs.
404  */
405 static const int pessimal_latency_ns = 5000;
406
407 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
408         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
409
410 static int vlv_get_fifo_size(struct drm_device *dev,
411                               enum pipe pipe, int plane)
412 {
413         struct drm_i915_private *dev_priv = dev->dev_private;
414         int sprite0_start, sprite1_start, size;
415
416         switch (pipe) {
417                 uint32_t dsparb, dsparb2, dsparb3;
418         case PIPE_A:
419                 dsparb = I915_READ(DSPARB);
420                 dsparb2 = I915_READ(DSPARB2);
421                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
422                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
423                 break;
424         case PIPE_B:
425                 dsparb = I915_READ(DSPARB);
426                 dsparb2 = I915_READ(DSPARB2);
427                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
428                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
429                 break;
430         case PIPE_C:
431                 dsparb2 = I915_READ(DSPARB2);
432                 dsparb3 = I915_READ(DSPARB3);
433                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
434                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
435                 break;
436         default:
437                 return 0;
438         }
439
440         switch (plane) {
441         case 0:
442                 size = sprite0_start;
443                 break;
444         case 1:
445                 size = sprite1_start - sprite0_start;
446                 break;
447         case 2:
448                 size = 512 - 1 - sprite1_start;
449                 break;
450         default:
451                 return 0;
452         }
453
454         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
455                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
456                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
457                       size);
458
459         return size;
460 }
461
462 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
463 {
464         struct drm_i915_private *dev_priv = dev->dev_private;
465         uint32_t dsparb = I915_READ(DSPARB);
466         int size;
467
468         size = dsparb & 0x7f;
469         if (plane)
470                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
471
472         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
473                       plane ? "B" : "A", size);
474
475         return size;
476 }
477
478 static int i830_get_fifo_size(struct drm_device *dev, int plane)
479 {
480         struct drm_i915_private *dev_priv = dev->dev_private;
481         uint32_t dsparb = I915_READ(DSPARB);
482         int size;
483
484         size = dsparb & 0x1ff;
485         if (plane)
486                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
487         size >>= 1; /* Convert to cachelines */
488
489         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
490                       plane ? "B" : "A", size);
491
492         return size;
493 }
494
495 static int i845_get_fifo_size(struct drm_device *dev, int plane)
496 {
497         struct drm_i915_private *dev_priv = dev->dev_private;
498         uint32_t dsparb = I915_READ(DSPARB);
499         int size;
500
501         size = dsparb & 0x7f;
502         size >>= 2; /* Convert to cachelines */
503
504         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
505                       plane ? "B" : "A",
506                       size);
507
508         return size;
509 }
510
511 /* Pineview has different values for various configs */
512 static const struct intel_watermark_params pineview_display_wm = {
513         .fifo_size = PINEVIEW_DISPLAY_FIFO,
514         .max_wm = PINEVIEW_MAX_WM,
515         .default_wm = PINEVIEW_DFT_WM,
516         .guard_size = PINEVIEW_GUARD_WM,
517         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
518 };
519 static const struct intel_watermark_params pineview_display_hplloff_wm = {
520         .fifo_size = PINEVIEW_DISPLAY_FIFO,
521         .max_wm = PINEVIEW_MAX_WM,
522         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
523         .guard_size = PINEVIEW_GUARD_WM,
524         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
525 };
526 static const struct intel_watermark_params pineview_cursor_wm = {
527         .fifo_size = PINEVIEW_CURSOR_FIFO,
528         .max_wm = PINEVIEW_CURSOR_MAX_WM,
529         .default_wm = PINEVIEW_CURSOR_DFT_WM,
530         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
531         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
532 };
533 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
534         .fifo_size = PINEVIEW_CURSOR_FIFO,
535         .max_wm = PINEVIEW_CURSOR_MAX_WM,
536         .default_wm = PINEVIEW_CURSOR_DFT_WM,
537         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
538         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
539 };
540 static const struct intel_watermark_params g4x_wm_info = {
541         .fifo_size = G4X_FIFO_SIZE,
542         .max_wm = G4X_MAX_WM,
543         .default_wm = G4X_MAX_WM,
544         .guard_size = 2,
545         .cacheline_size = G4X_FIFO_LINE_SIZE,
546 };
547 static const struct intel_watermark_params g4x_cursor_wm_info = {
548         .fifo_size = I965_CURSOR_FIFO,
549         .max_wm = I965_CURSOR_MAX_WM,
550         .default_wm = I965_CURSOR_DFT_WM,
551         .guard_size = 2,
552         .cacheline_size = G4X_FIFO_LINE_SIZE,
553 };
554 static const struct intel_watermark_params valleyview_wm_info = {
555         .fifo_size = VALLEYVIEW_FIFO_SIZE,
556         .max_wm = VALLEYVIEW_MAX_WM,
557         .default_wm = VALLEYVIEW_MAX_WM,
558         .guard_size = 2,
559         .cacheline_size = G4X_FIFO_LINE_SIZE,
560 };
561 static const struct intel_watermark_params valleyview_cursor_wm_info = {
562         .fifo_size = I965_CURSOR_FIFO,
563         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
564         .default_wm = I965_CURSOR_DFT_WM,
565         .guard_size = 2,
566         .cacheline_size = G4X_FIFO_LINE_SIZE,
567 };
568 static const struct intel_watermark_params i965_cursor_wm_info = {
569         .fifo_size = I965_CURSOR_FIFO,
570         .max_wm = I965_CURSOR_MAX_WM,
571         .default_wm = I965_CURSOR_DFT_WM,
572         .guard_size = 2,
573         .cacheline_size = I915_FIFO_LINE_SIZE,
574 };
575 static const struct intel_watermark_params i945_wm_info = {
576         .fifo_size = I945_FIFO_SIZE,
577         .max_wm = I915_MAX_WM,
578         .default_wm = 1,
579         .guard_size = 2,
580         .cacheline_size = I915_FIFO_LINE_SIZE,
581 };
582 static const struct intel_watermark_params i915_wm_info = {
583         .fifo_size = I915_FIFO_SIZE,
584         .max_wm = I915_MAX_WM,
585         .default_wm = 1,
586         .guard_size = 2,
587         .cacheline_size = I915_FIFO_LINE_SIZE,
588 };
589 static const struct intel_watermark_params i830_a_wm_info = {
590         .fifo_size = I855GM_FIFO_SIZE,
591         .max_wm = I915_MAX_WM,
592         .default_wm = 1,
593         .guard_size = 2,
594         .cacheline_size = I830_FIFO_LINE_SIZE,
595 };
596 static const struct intel_watermark_params i830_bc_wm_info = {
597         .fifo_size = I855GM_FIFO_SIZE,
598         .max_wm = I915_MAX_WM/2,
599         .default_wm = 1,
600         .guard_size = 2,
601         .cacheline_size = I830_FIFO_LINE_SIZE,
602 };
603 static const struct intel_watermark_params i845_wm_info = {
604         .fifo_size = I830_FIFO_SIZE,
605         .max_wm = I915_MAX_WM,
606         .default_wm = 1,
607         .guard_size = 2,
608         .cacheline_size = I830_FIFO_LINE_SIZE,
609 };
610
611 /**
612  * intel_calculate_wm - calculate watermark level
613  * @clock_in_khz: pixel clock
614  * @wm: chip FIFO params
615  * @pixel_size: display pixel size
616  * @latency_ns: memory latency for the platform
617  *
618  * Calculate the watermark level (the level at which the display plane will
619  * start fetching from memory again).  Each chip has a different display
620  * FIFO size and allocation, so the caller needs to figure that out and pass
621  * in the correct intel_watermark_params structure.
622  *
623  * As the pixel clock runs, the FIFO will be drained at a rate that depends
624  * on the pixel size.  When it reaches the watermark level, it'll start
625  * fetching FIFO line sized based chunks from memory until the FIFO fills
626  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
627  * will occur, and a display engine hang could result.
628  */
629 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
630                                         const struct intel_watermark_params *wm,
631                                         int fifo_size,
632                                         int pixel_size,
633                                         unsigned long latency_ns)
634 {
635         long entries_required, wm_size;
636
637         /*
638          * Note: we need to make sure we don't overflow for various clock &
639          * latency values.
640          * clocks go from a few thousand to several hundred thousand.
641          * latency is usually a few thousand
642          */
643         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
644                 1000;
645         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
646
647         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
648
649         wm_size = fifo_size - (entries_required + wm->guard_size);
650
651         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
652
653         /* Don't promote wm_size to unsigned... */
654         if (wm_size > (long)wm->max_wm)
655                 wm_size = wm->max_wm;
656         if (wm_size <= 0)
657                 wm_size = wm->default_wm;
658
659         /*
660          * Bspec seems to indicate that the value shouldn't be lower than
661          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
662          * Lets go for 8 which is the burst size since certain platforms
663          * already use a hardcoded 8 (which is what the spec says should be
664          * done).
665          */
666         if (wm_size <= 8)
667                 wm_size = 8;
668
669         return wm_size;
670 }
671
672 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
673 {
674         struct drm_crtc *crtc, *enabled = NULL;
675
676         for_each_crtc(dev, crtc) {
677                 if (intel_crtc_active(crtc)) {
678                         if (enabled)
679                                 return NULL;
680                         enabled = crtc;
681                 }
682         }
683
684         return enabled;
685 }
686
687 static void pineview_update_wm(struct drm_crtc *unused_crtc)
688 {
689         struct drm_device *dev = unused_crtc->dev;
690         struct drm_i915_private *dev_priv = dev->dev_private;
691         struct drm_crtc *crtc;
692         const struct cxsr_latency *latency;
693         u32 reg;
694         unsigned long wm;
695
696         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
697                                          dev_priv->fsb_freq, dev_priv->mem_freq);
698         if (!latency) {
699                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
700                 intel_set_memory_cxsr(dev_priv, false);
701                 return;
702         }
703
704         crtc = single_enabled_crtc(dev);
705         if (crtc) {
706                 const struct drm_display_mode *adjusted_mode;
707                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
708                 int clock;
709
710                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
711                 clock = adjusted_mode->crtc_clock;
712
713                 /* Display SR */
714                 wm = intel_calculate_wm(clock, &pineview_display_wm,
715                                         pineview_display_wm.fifo_size,
716                                         pixel_size, latency->display_sr);
717                 reg = I915_READ(DSPFW1);
718                 reg &= ~DSPFW_SR_MASK;
719                 reg |= FW_WM(wm, SR);
720                 I915_WRITE(DSPFW1, reg);
721                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
722
723                 /* cursor SR */
724                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
725                                         pineview_display_wm.fifo_size,
726                                         pixel_size, latency->cursor_sr);
727                 reg = I915_READ(DSPFW3);
728                 reg &= ~DSPFW_CURSOR_SR_MASK;
729                 reg |= FW_WM(wm, CURSOR_SR);
730                 I915_WRITE(DSPFW3, reg);
731
732                 /* Display HPLL off SR */
733                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
734                                         pineview_display_hplloff_wm.fifo_size,
735                                         pixel_size, latency->display_hpll_disable);
736                 reg = I915_READ(DSPFW3);
737                 reg &= ~DSPFW_HPLL_SR_MASK;
738                 reg |= FW_WM(wm, HPLL_SR);
739                 I915_WRITE(DSPFW3, reg);
740
741                 /* cursor HPLL off SR */
742                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
743                                         pineview_display_hplloff_wm.fifo_size,
744                                         pixel_size, latency->cursor_hpll_disable);
745                 reg = I915_READ(DSPFW3);
746                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
747                 reg |= FW_WM(wm, HPLL_CURSOR);
748                 I915_WRITE(DSPFW3, reg);
749                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
750
751                 intel_set_memory_cxsr(dev_priv, true);
752         } else {
753                 intel_set_memory_cxsr(dev_priv, false);
754         }
755 }
756
757 static bool g4x_compute_wm0(struct drm_device *dev,
758                             int plane,
759                             const struct intel_watermark_params *display,
760                             int display_latency_ns,
761                             const struct intel_watermark_params *cursor,
762                             int cursor_latency_ns,
763                             int *plane_wm,
764                             int *cursor_wm)
765 {
766         struct drm_crtc *crtc;
767         const struct drm_display_mode *adjusted_mode;
768         int htotal, hdisplay, clock, pixel_size;
769         int line_time_us, line_count;
770         int entries, tlb_miss;
771
772         crtc = intel_get_crtc_for_plane(dev, plane);
773         if (!intel_crtc_active(crtc)) {
774                 *cursor_wm = cursor->guard_size;
775                 *plane_wm = display->guard_size;
776                 return false;
777         }
778
779         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
780         clock = adjusted_mode->crtc_clock;
781         htotal = adjusted_mode->crtc_htotal;
782         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
783         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
784
785         /* Use the small buffer method to calculate plane watermark */
786         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
787         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
788         if (tlb_miss > 0)
789                 entries += tlb_miss;
790         entries = DIV_ROUND_UP(entries, display->cacheline_size);
791         *plane_wm = entries + display->guard_size;
792         if (*plane_wm > (int)display->max_wm)
793                 *plane_wm = display->max_wm;
794
795         /* Use the large buffer method to calculate cursor watermark */
796         line_time_us = max(htotal * 1000 / clock, 1);
797         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
798         entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
799         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
800         if (tlb_miss > 0)
801                 entries += tlb_miss;
802         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
803         *cursor_wm = entries + cursor->guard_size;
804         if (*cursor_wm > (int)cursor->max_wm)
805                 *cursor_wm = (int)cursor->max_wm;
806
807         return true;
808 }
809
810 /*
811  * Check the wm result.
812  *
813  * If any calculated watermark values is larger than the maximum value that
814  * can be programmed into the associated watermark register, that watermark
815  * must be disabled.
816  */
817 static bool g4x_check_srwm(struct drm_device *dev,
818                            int display_wm, int cursor_wm,
819                            const struct intel_watermark_params *display,
820                            const struct intel_watermark_params *cursor)
821 {
822         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
823                       display_wm, cursor_wm);
824
825         if (display_wm > display->max_wm) {
826                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
827                               display_wm, display->max_wm);
828                 return false;
829         }
830
831         if (cursor_wm > cursor->max_wm) {
832                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
833                               cursor_wm, cursor->max_wm);
834                 return false;
835         }
836
837         if (!(display_wm || cursor_wm)) {
838                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
839                 return false;
840         }
841
842         return true;
843 }
844
845 static bool g4x_compute_srwm(struct drm_device *dev,
846                              int plane,
847                              int latency_ns,
848                              const struct intel_watermark_params *display,
849                              const struct intel_watermark_params *cursor,
850                              int *display_wm, int *cursor_wm)
851 {
852         struct drm_crtc *crtc;
853         const struct drm_display_mode *adjusted_mode;
854         int hdisplay, htotal, pixel_size, clock;
855         unsigned long line_time_us;
856         int line_count, line_size;
857         int small, large;
858         int entries;
859
860         if (!latency_ns) {
861                 *display_wm = *cursor_wm = 0;
862                 return false;
863         }
864
865         crtc = intel_get_crtc_for_plane(dev, plane);
866         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
867         clock = adjusted_mode->crtc_clock;
868         htotal = adjusted_mode->crtc_htotal;
869         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
870         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
871
872         line_time_us = max(htotal * 1000 / clock, 1);
873         line_count = (latency_ns / line_time_us + 1000) / 1000;
874         line_size = hdisplay * pixel_size;
875
876         /* Use the minimum of the small and large buffer method for primary */
877         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
878         large = line_count * line_size;
879
880         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
881         *display_wm = entries + display->guard_size;
882
883         /* calculate the self-refresh watermark for display cursor */
884         entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
885         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
886         *cursor_wm = entries + cursor->guard_size;
887
888         return g4x_check_srwm(dev,
889                               *display_wm, *cursor_wm,
890                               display, cursor);
891 }
892
893 #define FW_WM_VLV(value, plane) \
894         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
895
896 static void vlv_write_wm_values(struct intel_crtc *crtc,
897                                 const struct vlv_wm_values *wm)
898 {
899         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
900         enum pipe pipe = crtc->pipe;
901
902         I915_WRITE(VLV_DDL(pipe),
903                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
904                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
905                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
906                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
907
908         I915_WRITE(DSPFW1,
909                    FW_WM(wm->sr.plane, SR) |
910                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
911                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
912                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
913         I915_WRITE(DSPFW2,
914                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
915                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
916                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
917         I915_WRITE(DSPFW3,
918                    FW_WM(wm->sr.cursor, CURSOR_SR));
919
920         if (IS_CHERRYVIEW(dev_priv)) {
921                 I915_WRITE(DSPFW7_CHV,
922                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
923                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
924                 I915_WRITE(DSPFW8_CHV,
925                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
926                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
927                 I915_WRITE(DSPFW9_CHV,
928                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
929                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
930                 I915_WRITE(DSPHOWM,
931                            FW_WM(wm->sr.plane >> 9, SR_HI) |
932                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
933                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
934                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
935                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
936                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
937                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
938                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
939                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
940                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
941         } else {
942                 I915_WRITE(DSPFW7,
943                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
944                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
945                 I915_WRITE(DSPHOWM,
946                            FW_WM(wm->sr.plane >> 9, SR_HI) |
947                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
948                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
949                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
950                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
951                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
952                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
953         }
954
955         /* zero (unused) WM1 watermarks */
956         I915_WRITE(DSPFW4, 0);
957         I915_WRITE(DSPFW5, 0);
958         I915_WRITE(DSPFW6, 0);
959         I915_WRITE(DSPHOWM1, 0);
960
961         POSTING_READ(DSPFW1);
962 }
963
964 #undef FW_WM_VLV
965
966 enum vlv_wm_level {
967         VLV_WM_LEVEL_PM2,
968         VLV_WM_LEVEL_PM5,
969         VLV_WM_LEVEL_DDR_DVFS,
970         CHV_WM_NUM_LEVELS,
971         VLV_WM_NUM_LEVELS = 1,
972 };
973
974 /* latency must be in 0.1us units. */
975 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
976                                    unsigned int pipe_htotal,
977                                    unsigned int horiz_pixels,
978                                    unsigned int bytes_per_pixel,
979                                    unsigned int latency)
980 {
981         unsigned int ret;
982
983         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
984         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
985         ret = DIV_ROUND_UP(ret, 64);
986
987         return ret;
988 }
989
990 static void vlv_setup_wm_latency(struct drm_device *dev)
991 {
992         struct drm_i915_private *dev_priv = dev->dev_private;
993
994         /* all latencies in usec */
995         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
996
997         if (IS_CHERRYVIEW(dev_priv)) {
998                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
999                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1000         }
1001 }
1002
1003 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
1004                                      struct intel_crtc *crtc,
1005                                      const struct intel_plane_state *state,
1006                                      int level)
1007 {
1008         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1009         int clock, htotal, pixel_size, width, wm;
1010
1011         if (dev_priv->wm.pri_latency[level] == 0)
1012                 return USHRT_MAX;
1013
1014         if (!state->visible)
1015                 return 0;
1016
1017         pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1018         clock = crtc->config->base.adjusted_mode.crtc_clock;
1019         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
1020         width = crtc->config->pipe_src_w;
1021         if (WARN_ON(htotal == 0))
1022                 htotal = 1;
1023
1024         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1025                 /*
1026                  * FIXME the formula gives values that are
1027                  * too big for the cursor FIFO, and hence we
1028                  * would never be able to use cursors. For
1029                  * now just hardcode the watermark.
1030                  */
1031                 wm = 63;
1032         } else {
1033                 wm = vlv_wm_method2(clock, htotal, width, pixel_size,
1034                                     dev_priv->wm.pri_latency[level] * 10);
1035         }
1036
1037         return min_t(int, wm, USHRT_MAX);
1038 }
1039
1040 static void vlv_compute_fifo(struct intel_crtc *crtc)
1041 {
1042         struct drm_device *dev = crtc->base.dev;
1043         struct vlv_wm_state *wm_state = &crtc->wm_state;
1044         struct intel_plane *plane;
1045         unsigned int total_rate = 0;
1046         const int fifo_size = 512 - 1;
1047         int fifo_extra, fifo_left = fifo_size;
1048
1049         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1050                 struct intel_plane_state *state =
1051                         to_intel_plane_state(plane->base.state);
1052
1053                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1054                         continue;
1055
1056                 if (state->visible) {
1057                         wm_state->num_active_planes++;
1058                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1059                 }
1060         }
1061
1062         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1063                 struct intel_plane_state *state =
1064                         to_intel_plane_state(plane->base.state);
1065                 unsigned int rate;
1066
1067                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1068                         plane->wm.fifo_size = 63;
1069                         continue;
1070                 }
1071
1072                 if (!state->visible) {
1073                         plane->wm.fifo_size = 0;
1074                         continue;
1075                 }
1076
1077                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1078                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1079                 fifo_left -= plane->wm.fifo_size;
1080         }
1081
1082         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1083
1084         /* spread the remainder evenly */
1085         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1086                 int plane_extra;
1087
1088                 if (fifo_left == 0)
1089                         break;
1090
1091                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1092                         continue;
1093
1094                 /* give it all to the first plane if none are active */
1095                 if (plane->wm.fifo_size == 0 &&
1096                     wm_state->num_active_planes)
1097                         continue;
1098
1099                 plane_extra = min(fifo_extra, fifo_left);
1100                 plane->wm.fifo_size += plane_extra;
1101                 fifo_left -= plane_extra;
1102         }
1103
1104         WARN_ON(fifo_left != 0);
1105 }
1106
1107 static void vlv_invert_wms(struct intel_crtc *crtc)
1108 {
1109         struct vlv_wm_state *wm_state = &crtc->wm_state;
1110         int level;
1111
1112         for (level = 0; level < wm_state->num_levels; level++) {
1113                 struct drm_device *dev = crtc->base.dev;
1114                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1115                 struct intel_plane *plane;
1116
1117                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1118                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1119
1120                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1121                         switch (plane->base.type) {
1122                                 int sprite;
1123                         case DRM_PLANE_TYPE_CURSOR:
1124                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1125                                         wm_state->wm[level].cursor;
1126                                 break;
1127                         case DRM_PLANE_TYPE_PRIMARY:
1128                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1129                                         wm_state->wm[level].primary;
1130                                 break;
1131                         case DRM_PLANE_TYPE_OVERLAY:
1132                                 sprite = plane->plane;
1133                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1134                                         wm_state->wm[level].sprite[sprite];
1135                                 break;
1136                         }
1137                 }
1138         }
1139 }
1140
1141 static void vlv_compute_wm(struct intel_crtc *crtc)
1142 {
1143         struct drm_device *dev = crtc->base.dev;
1144         struct vlv_wm_state *wm_state = &crtc->wm_state;
1145         struct intel_plane *plane;
1146         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1147         int level;
1148
1149         memset(wm_state, 0, sizeof(*wm_state));
1150
1151         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1152         if (IS_CHERRYVIEW(dev))
1153                 wm_state->num_levels = CHV_WM_NUM_LEVELS;
1154         else
1155                 wm_state->num_levels = VLV_WM_NUM_LEVELS;
1156
1157         wm_state->num_active_planes = 0;
1158
1159         vlv_compute_fifo(crtc);
1160
1161         if (wm_state->num_active_planes != 1)
1162                 wm_state->cxsr = false;
1163
1164         if (wm_state->cxsr) {
1165                 for (level = 0; level < wm_state->num_levels; level++) {
1166                         wm_state->sr[level].plane = sr_fifo_size;
1167                         wm_state->sr[level].cursor = 63;
1168                 }
1169         }
1170
1171         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1172                 struct intel_plane_state *state =
1173                         to_intel_plane_state(plane->base.state);
1174
1175                 if (!state->visible)
1176                         continue;
1177
1178                 /* normal watermarks */
1179                 for (level = 0; level < wm_state->num_levels; level++) {
1180                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1181                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1182
1183                         /* hack */
1184                         if (WARN_ON(level == 0 && wm > max_wm))
1185                                 wm = max_wm;
1186
1187                         if (wm > plane->wm.fifo_size)
1188                                 break;
1189
1190                         switch (plane->base.type) {
1191                                 int sprite;
1192                         case DRM_PLANE_TYPE_CURSOR:
1193                                 wm_state->wm[level].cursor = wm;
1194                                 break;
1195                         case DRM_PLANE_TYPE_PRIMARY:
1196                                 wm_state->wm[level].primary = wm;
1197                                 break;
1198                         case DRM_PLANE_TYPE_OVERLAY:
1199                                 sprite = plane->plane;
1200                                 wm_state->wm[level].sprite[sprite] = wm;
1201                                 break;
1202                         }
1203                 }
1204
1205                 wm_state->num_levels = level;
1206
1207                 if (!wm_state->cxsr)
1208                         continue;
1209
1210                 /* maxfifo watermarks */
1211                 switch (plane->base.type) {
1212                         int sprite, level;
1213                 case DRM_PLANE_TYPE_CURSOR:
1214                         for (level = 0; level < wm_state->num_levels; level++)
1215                                 wm_state->sr[level].cursor =
1216                                         wm_state->sr[level].cursor;
1217                         break;
1218                 case DRM_PLANE_TYPE_PRIMARY:
1219                         for (level = 0; level < wm_state->num_levels; level++)
1220                                 wm_state->sr[level].plane =
1221                                         min(wm_state->sr[level].plane,
1222                                             wm_state->wm[level].primary);
1223                         break;
1224                 case DRM_PLANE_TYPE_OVERLAY:
1225                         sprite = plane->plane;
1226                         for (level = 0; level < wm_state->num_levels; level++)
1227                                 wm_state->sr[level].plane =
1228                                         min(wm_state->sr[level].plane,
1229                                             wm_state->wm[level].sprite[sprite]);
1230                         break;
1231                 }
1232         }
1233
1234         /* clear any (partially) filled invalid levels */
1235         for (level = wm_state->num_levels; level < CHV_WM_NUM_LEVELS; level++) {
1236                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1237                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1238         }
1239
1240         vlv_invert_wms(crtc);
1241 }
1242
1243 #define VLV_FIFO(plane, value) \
1244         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1245
1246 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1247 {
1248         struct drm_device *dev = crtc->base.dev;
1249         struct drm_i915_private *dev_priv = to_i915(dev);
1250         struct intel_plane *plane;
1251         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1252
1253         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1254                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1255                         WARN_ON(plane->wm.fifo_size != 63);
1256                         continue;
1257                 }
1258
1259                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1260                         sprite0_start = plane->wm.fifo_size;
1261                 else if (plane->plane == 0)
1262                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1263                 else
1264                         fifo_size = sprite1_start + plane->wm.fifo_size;
1265         }
1266
1267         WARN_ON(fifo_size != 512 - 1);
1268
1269         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1270                       pipe_name(crtc->pipe), sprite0_start,
1271                       sprite1_start, fifo_size);
1272
1273         switch (crtc->pipe) {
1274                 uint32_t dsparb, dsparb2, dsparb3;
1275         case PIPE_A:
1276                 dsparb = I915_READ(DSPARB);
1277                 dsparb2 = I915_READ(DSPARB2);
1278
1279                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1280                             VLV_FIFO(SPRITEB, 0xff));
1281                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1282                            VLV_FIFO(SPRITEB, sprite1_start));
1283
1284                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1285                              VLV_FIFO(SPRITEB_HI, 0x1));
1286                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1287                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1288
1289                 I915_WRITE(DSPARB, dsparb);
1290                 I915_WRITE(DSPARB2, dsparb2);
1291                 break;
1292         case PIPE_B:
1293                 dsparb = I915_READ(DSPARB);
1294                 dsparb2 = I915_READ(DSPARB2);
1295
1296                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1297                             VLV_FIFO(SPRITED, 0xff));
1298                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1299                            VLV_FIFO(SPRITED, sprite1_start));
1300
1301                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1302                              VLV_FIFO(SPRITED_HI, 0xff));
1303                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1304                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1305
1306                 I915_WRITE(DSPARB, dsparb);
1307                 I915_WRITE(DSPARB2, dsparb2);
1308                 break;
1309         case PIPE_C:
1310                 dsparb3 = I915_READ(DSPARB3);
1311                 dsparb2 = I915_READ(DSPARB2);
1312
1313                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1314                              VLV_FIFO(SPRITEF, 0xff));
1315                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1316                             VLV_FIFO(SPRITEF, sprite1_start));
1317
1318                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1319                              VLV_FIFO(SPRITEF_HI, 0xff));
1320                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1321                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1322
1323                 I915_WRITE(DSPARB3, dsparb3);
1324                 I915_WRITE(DSPARB2, dsparb2);
1325                 break;
1326         default:
1327                 break;
1328         }
1329 }
1330
1331 #undef VLV_FIFO
1332
1333 static void vlv_merge_wm(struct drm_device *dev,
1334                          struct vlv_wm_values *wm)
1335 {
1336         struct intel_crtc *crtc;
1337         int num_active_crtcs = 0;
1338
1339         if (IS_CHERRYVIEW(dev))
1340                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
1341         else
1342                 wm->level = VLV_WM_LEVEL_PM2;
1343         wm->cxsr = true;
1344
1345         for_each_intel_crtc(dev, crtc) {
1346                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1347
1348                 if (!crtc->active)
1349                         continue;
1350
1351                 if (!wm_state->cxsr)
1352                         wm->cxsr = false;
1353
1354                 num_active_crtcs++;
1355                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1356         }
1357
1358         if (num_active_crtcs != 1)
1359                 wm->cxsr = false;
1360
1361         if (num_active_crtcs > 1)
1362                 wm->level = VLV_WM_LEVEL_PM2;
1363
1364         for_each_intel_crtc(dev, crtc) {
1365                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1366                 enum pipe pipe = crtc->pipe;
1367
1368                 if (!crtc->active)
1369                         continue;
1370
1371                 wm->pipe[pipe] = wm_state->wm[wm->level];
1372                 if (wm->cxsr)
1373                         wm->sr = wm_state->sr[wm->level];
1374
1375                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1376                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1377                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1378                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1379         }
1380 }
1381
1382 static void vlv_update_wm(struct drm_crtc *crtc)
1383 {
1384         struct drm_device *dev = crtc->dev;
1385         struct drm_i915_private *dev_priv = dev->dev_private;
1386         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1387         enum pipe pipe = intel_crtc->pipe;
1388         struct vlv_wm_values wm = {};
1389
1390         vlv_compute_wm(intel_crtc);
1391         vlv_merge_wm(dev, &wm);
1392
1393         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1394                 /* FIXME should be part of crtc atomic commit */
1395                 vlv_pipe_set_fifo_size(intel_crtc);
1396                 return;
1397         }
1398
1399         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1400             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1401                 chv_set_memory_dvfs(dev_priv, false);
1402
1403         if (wm.level < VLV_WM_LEVEL_PM5 &&
1404             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1405                 chv_set_memory_pm5(dev_priv, false);
1406
1407         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1408                 intel_set_memory_cxsr(dev_priv, false);
1409
1410         /* FIXME should be part of crtc atomic commit */
1411         vlv_pipe_set_fifo_size(intel_crtc);
1412
1413         vlv_write_wm_values(intel_crtc, &wm);
1414
1415         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1416                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1417                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1418                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1419                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1420
1421         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1422                 intel_set_memory_cxsr(dev_priv, true);
1423
1424         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1425             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1426                 chv_set_memory_pm5(dev_priv, true);
1427
1428         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1429             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1430                 chv_set_memory_dvfs(dev_priv, true);
1431
1432         dev_priv->wm.vlv = wm;
1433 }
1434
1435 #define single_plane_enabled(mask) is_power_of_2(mask)
1436
1437 static void g4x_update_wm(struct drm_crtc *crtc)
1438 {
1439         struct drm_device *dev = crtc->dev;
1440         static const int sr_latency_ns = 12000;
1441         struct drm_i915_private *dev_priv = dev->dev_private;
1442         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1443         int plane_sr, cursor_sr;
1444         unsigned int enabled = 0;
1445         bool cxsr_enabled;
1446
1447         if (g4x_compute_wm0(dev, PIPE_A,
1448                             &g4x_wm_info, pessimal_latency_ns,
1449                             &g4x_cursor_wm_info, pessimal_latency_ns,
1450                             &planea_wm, &cursora_wm))
1451                 enabled |= 1 << PIPE_A;
1452
1453         if (g4x_compute_wm0(dev, PIPE_B,
1454                             &g4x_wm_info, pessimal_latency_ns,
1455                             &g4x_cursor_wm_info, pessimal_latency_ns,
1456                             &planeb_wm, &cursorb_wm))
1457                 enabled |= 1 << PIPE_B;
1458
1459         if (single_plane_enabled(enabled) &&
1460             g4x_compute_srwm(dev, ffs(enabled) - 1,
1461                              sr_latency_ns,
1462                              &g4x_wm_info,
1463                              &g4x_cursor_wm_info,
1464                              &plane_sr, &cursor_sr)) {
1465                 cxsr_enabled = true;
1466         } else {
1467                 cxsr_enabled = false;
1468                 intel_set_memory_cxsr(dev_priv, false);
1469                 plane_sr = cursor_sr = 0;
1470         }
1471
1472         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1473                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1474                       planea_wm, cursora_wm,
1475                       planeb_wm, cursorb_wm,
1476                       plane_sr, cursor_sr);
1477
1478         I915_WRITE(DSPFW1,
1479                    FW_WM(plane_sr, SR) |
1480                    FW_WM(cursorb_wm, CURSORB) |
1481                    FW_WM(planeb_wm, PLANEB) |
1482                    FW_WM(planea_wm, PLANEA));
1483         I915_WRITE(DSPFW2,
1484                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1485                    FW_WM(cursora_wm, CURSORA));
1486         /* HPLL off in SR has some issues on G4x... disable it */
1487         I915_WRITE(DSPFW3,
1488                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1489                    FW_WM(cursor_sr, CURSOR_SR));
1490
1491         if (cxsr_enabled)
1492                 intel_set_memory_cxsr(dev_priv, true);
1493 }
1494
1495 static void i965_update_wm(struct drm_crtc *unused_crtc)
1496 {
1497         struct drm_device *dev = unused_crtc->dev;
1498         struct drm_i915_private *dev_priv = dev->dev_private;
1499         struct drm_crtc *crtc;
1500         int srwm = 1;
1501         int cursor_sr = 16;
1502         bool cxsr_enabled;
1503
1504         /* Calc sr entries for one plane configs */
1505         crtc = single_enabled_crtc(dev);
1506         if (crtc) {
1507                 /* self-refresh has much higher latency */
1508                 static const int sr_latency_ns = 12000;
1509                 const struct drm_display_mode *adjusted_mode =
1510                         &to_intel_crtc(crtc)->config->base.adjusted_mode;
1511                 int clock = adjusted_mode->crtc_clock;
1512                 int htotal = adjusted_mode->crtc_htotal;
1513                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1514                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1515                 unsigned long line_time_us;
1516                 int entries;
1517
1518                 line_time_us = max(htotal * 1000 / clock, 1);
1519
1520                 /* Use ns/us then divide to preserve precision */
1521                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1522                         pixel_size * hdisplay;
1523                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1524                 srwm = I965_FIFO_SIZE - entries;
1525                 if (srwm < 0)
1526                         srwm = 1;
1527                 srwm &= 0x1ff;
1528                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1529                               entries, srwm);
1530
1531                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1532                         pixel_size * crtc->cursor->state->crtc_w;
1533                 entries = DIV_ROUND_UP(entries,
1534                                           i965_cursor_wm_info.cacheline_size);
1535                 cursor_sr = i965_cursor_wm_info.fifo_size -
1536                         (entries + i965_cursor_wm_info.guard_size);
1537
1538                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1539                         cursor_sr = i965_cursor_wm_info.max_wm;
1540
1541                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1542                               "cursor %d\n", srwm, cursor_sr);
1543
1544                 cxsr_enabled = true;
1545         } else {
1546                 cxsr_enabled = false;
1547                 /* Turn off self refresh if both pipes are enabled */
1548                 intel_set_memory_cxsr(dev_priv, false);
1549         }
1550
1551         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1552                       srwm);
1553
1554         /* 965 has limitations... */
1555         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1556                    FW_WM(8, CURSORB) |
1557                    FW_WM(8, PLANEB) |
1558                    FW_WM(8, PLANEA));
1559         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1560                    FW_WM(8, PLANEC_OLD));
1561         /* update cursor SR watermark */
1562         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1563
1564         if (cxsr_enabled)
1565                 intel_set_memory_cxsr(dev_priv, true);
1566 }
1567
1568 #undef FW_WM
1569
1570 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1571 {
1572         struct drm_device *dev = unused_crtc->dev;
1573         struct drm_i915_private *dev_priv = dev->dev_private;
1574         const struct intel_watermark_params *wm_info;
1575         uint32_t fwater_lo;
1576         uint32_t fwater_hi;
1577         int cwm, srwm = 1;
1578         int fifo_size;
1579         int planea_wm, planeb_wm;
1580         struct drm_crtc *crtc, *enabled = NULL;
1581
1582         if (IS_I945GM(dev))
1583                 wm_info = &i945_wm_info;
1584         else if (!IS_GEN2(dev))
1585                 wm_info = &i915_wm_info;
1586         else
1587                 wm_info = &i830_a_wm_info;
1588
1589         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1590         crtc = intel_get_crtc_for_plane(dev, 0);
1591         if (intel_crtc_active(crtc)) {
1592                 const struct drm_display_mode *adjusted_mode;
1593                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1594                 if (IS_GEN2(dev))
1595                         cpp = 4;
1596
1597                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1598                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1599                                                wm_info, fifo_size, cpp,
1600                                                pessimal_latency_ns);
1601                 enabled = crtc;
1602         } else {
1603                 planea_wm = fifo_size - wm_info->guard_size;
1604                 if (planea_wm > (long)wm_info->max_wm)
1605                         planea_wm = wm_info->max_wm;
1606         }
1607
1608         if (IS_GEN2(dev))
1609                 wm_info = &i830_bc_wm_info;
1610
1611         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1612         crtc = intel_get_crtc_for_plane(dev, 1);
1613         if (intel_crtc_active(crtc)) {
1614                 const struct drm_display_mode *adjusted_mode;
1615                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1616                 if (IS_GEN2(dev))
1617                         cpp = 4;
1618
1619                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1620                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1621                                                wm_info, fifo_size, cpp,
1622                                                pessimal_latency_ns);
1623                 if (enabled == NULL)
1624                         enabled = crtc;
1625                 else
1626                         enabled = NULL;
1627         } else {
1628                 planeb_wm = fifo_size - wm_info->guard_size;
1629                 if (planeb_wm > (long)wm_info->max_wm)
1630                         planeb_wm = wm_info->max_wm;
1631         }
1632
1633         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1634
1635         if (IS_I915GM(dev) && enabled) {
1636                 struct drm_i915_gem_object *obj;
1637
1638                 obj = intel_fb_obj(enabled->primary->state->fb);
1639
1640                 /* self-refresh seems busted with untiled */
1641                 if (obj->tiling_mode == I915_TILING_NONE)
1642                         enabled = NULL;
1643         }
1644
1645         /*
1646          * Overlay gets an aggressive default since video jitter is bad.
1647          */
1648         cwm = 2;
1649
1650         /* Play safe and disable self-refresh before adjusting watermarks. */
1651         intel_set_memory_cxsr(dev_priv, false);
1652
1653         /* Calc sr entries for one plane configs */
1654         if (HAS_FW_BLC(dev) && enabled) {
1655                 /* self-refresh has much higher latency */
1656                 static const int sr_latency_ns = 6000;
1657                 const struct drm_display_mode *adjusted_mode =
1658                         &to_intel_crtc(enabled)->config->base.adjusted_mode;
1659                 int clock = adjusted_mode->crtc_clock;
1660                 int htotal = adjusted_mode->crtc_htotal;
1661                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1662                 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1663                 unsigned long line_time_us;
1664                 int entries;
1665
1666                 line_time_us = max(htotal * 1000 / clock, 1);
1667
1668                 /* Use ns/us then divide to preserve precision */
1669                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1670                         pixel_size * hdisplay;
1671                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1672                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1673                 srwm = wm_info->fifo_size - entries;
1674                 if (srwm < 0)
1675                         srwm = 1;
1676
1677                 if (IS_I945G(dev) || IS_I945GM(dev))
1678                         I915_WRITE(FW_BLC_SELF,
1679                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1680                 else if (IS_I915GM(dev))
1681                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1682         }
1683
1684         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1685                       planea_wm, planeb_wm, cwm, srwm);
1686
1687         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1688         fwater_hi = (cwm & 0x1f);
1689
1690         /* Set request length to 8 cachelines per fetch */
1691         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1692         fwater_hi = fwater_hi | (1 << 8);
1693
1694         I915_WRITE(FW_BLC, fwater_lo);
1695         I915_WRITE(FW_BLC2, fwater_hi);
1696
1697         if (enabled)
1698                 intel_set_memory_cxsr(dev_priv, true);
1699 }
1700
1701 static void i845_update_wm(struct drm_crtc *unused_crtc)
1702 {
1703         struct drm_device *dev = unused_crtc->dev;
1704         struct drm_i915_private *dev_priv = dev->dev_private;
1705         struct drm_crtc *crtc;
1706         const struct drm_display_mode *adjusted_mode;
1707         uint32_t fwater_lo;
1708         int planea_wm;
1709
1710         crtc = single_enabled_crtc(dev);
1711         if (crtc == NULL)
1712                 return;
1713
1714         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1715         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1716                                        &i845_wm_info,
1717                                        dev_priv->display.get_fifo_size(dev, 0),
1718                                        4, pessimal_latency_ns);
1719         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1720         fwater_lo |= (3<<8) | planea_wm;
1721
1722         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1723
1724         I915_WRITE(FW_BLC, fwater_lo);
1725 }
1726
1727 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1728 {
1729         uint32_t pixel_rate;
1730
1731         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1732
1733         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1734          * adjust the pixel_rate here. */
1735
1736         if (pipe_config->pch_pfit.enabled) {
1737                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1738                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1739
1740                 pipe_w = pipe_config->pipe_src_w;
1741                 pipe_h = pipe_config->pipe_src_h;
1742
1743                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1744                 pfit_h = pfit_size & 0xFFFF;
1745                 if (pipe_w < pfit_w)
1746                         pipe_w = pfit_w;
1747                 if (pipe_h < pfit_h)
1748                         pipe_h = pfit_h;
1749
1750                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1751                                      pfit_w * pfit_h);
1752         }
1753
1754         return pixel_rate;
1755 }
1756
1757 /* latency must be in 0.1us units. */
1758 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1759                                uint32_t latency)
1760 {
1761         uint64_t ret;
1762
1763         if (WARN(latency == 0, "Latency value missing\n"))
1764                 return UINT_MAX;
1765
1766         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1767         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1768
1769         return ret;
1770 }
1771
1772 /* latency must be in 0.1us units. */
1773 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1774                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1775                                uint32_t latency)
1776 {
1777         uint32_t ret;
1778
1779         if (WARN(latency == 0, "Latency value missing\n"))
1780                 return UINT_MAX;
1781
1782         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1783         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1784         ret = DIV_ROUND_UP(ret, 64) + 2;
1785         return ret;
1786 }
1787
1788 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1789                            uint8_t bytes_per_pixel)
1790 {
1791         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1792 }
1793
1794 struct skl_pipe_wm_parameters {
1795         bool active;
1796         uint32_t pipe_htotal;
1797         uint32_t pixel_rate; /* in KHz */
1798         struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1799         struct intel_plane_wm_parameters cursor;
1800 };
1801
1802 struct ilk_pipe_wm_parameters {
1803         bool active;
1804         uint32_t pipe_htotal;
1805         uint32_t pixel_rate;
1806         struct intel_plane_wm_parameters pri;
1807         struct intel_plane_wm_parameters spr;
1808         struct intel_plane_wm_parameters cur;
1809 };
1810
1811 struct ilk_wm_maximums {
1812         uint16_t pri;
1813         uint16_t spr;
1814         uint16_t cur;
1815         uint16_t fbc;
1816 };
1817
1818 /* used in computing the new watermarks state */
1819 struct intel_wm_config {
1820         unsigned int num_pipes_active;
1821         bool sprites_enabled;
1822         bool sprites_scaled;
1823 };
1824
1825 /*
1826  * For both WM_PIPE and WM_LP.
1827  * mem_value must be in 0.1us units.
1828  */
1829 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1830                                    uint32_t mem_value,
1831                                    bool is_lp)
1832 {
1833         uint32_t method1, method2;
1834
1835         if (!params->active || !params->pri.enabled)
1836                 return 0;
1837
1838         method1 = ilk_wm_method1(params->pixel_rate,
1839                                  params->pri.bytes_per_pixel,
1840                                  mem_value);
1841
1842         if (!is_lp)
1843                 return method1;
1844
1845         method2 = ilk_wm_method2(params->pixel_rate,
1846                                  params->pipe_htotal,
1847                                  params->pri.horiz_pixels,
1848                                  params->pri.bytes_per_pixel,
1849                                  mem_value);
1850
1851         return min(method1, method2);
1852 }
1853
1854 /*
1855  * For both WM_PIPE and WM_LP.
1856  * mem_value must be in 0.1us units.
1857  */
1858 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1859                                    uint32_t mem_value)
1860 {
1861         uint32_t method1, method2;
1862
1863         if (!params->active || !params->spr.enabled)
1864                 return 0;
1865
1866         method1 = ilk_wm_method1(params->pixel_rate,
1867                                  params->spr.bytes_per_pixel,
1868                                  mem_value);
1869         method2 = ilk_wm_method2(params->pixel_rate,
1870                                  params->pipe_htotal,
1871                                  params->spr.horiz_pixels,
1872                                  params->spr.bytes_per_pixel,
1873                                  mem_value);
1874         return min(method1, method2);
1875 }
1876
1877 /*
1878  * For both WM_PIPE and WM_LP.
1879  * mem_value must be in 0.1us units.
1880  */
1881 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1882                                    uint32_t mem_value)
1883 {
1884         if (!params->active || !params->cur.enabled)
1885                 return 0;
1886
1887         return ilk_wm_method2(params->pixel_rate,
1888                               params->pipe_htotal,
1889                               params->cur.horiz_pixels,
1890                               params->cur.bytes_per_pixel,
1891                               mem_value);
1892 }
1893
1894 /* Only for WM_LP. */
1895 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1896                                    uint32_t pri_val)
1897 {
1898         if (!params->active || !params->pri.enabled)
1899                 return 0;
1900
1901         return ilk_wm_fbc(pri_val,
1902                           params->pri.horiz_pixels,
1903                           params->pri.bytes_per_pixel);
1904 }
1905
1906 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1907 {
1908         if (INTEL_INFO(dev)->gen >= 8)
1909                 return 3072;
1910         else if (INTEL_INFO(dev)->gen >= 7)
1911                 return 768;
1912         else
1913                 return 512;
1914 }
1915
1916 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1917                                          int level, bool is_sprite)
1918 {
1919         if (INTEL_INFO(dev)->gen >= 8)
1920                 /* BDW primary/sprite plane watermarks */
1921                 return level == 0 ? 255 : 2047;
1922         else if (INTEL_INFO(dev)->gen >= 7)
1923                 /* IVB/HSW primary/sprite plane watermarks */
1924                 return level == 0 ? 127 : 1023;
1925         else if (!is_sprite)
1926                 /* ILK/SNB primary plane watermarks */
1927                 return level == 0 ? 127 : 511;
1928         else
1929                 /* ILK/SNB sprite plane watermarks */
1930                 return level == 0 ? 63 : 255;
1931 }
1932
1933 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1934                                           int level)
1935 {
1936         if (INTEL_INFO(dev)->gen >= 7)
1937                 return level == 0 ? 63 : 255;
1938         else
1939                 return level == 0 ? 31 : 63;
1940 }
1941
1942 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1943 {
1944         if (INTEL_INFO(dev)->gen >= 8)
1945                 return 31;
1946         else
1947                 return 15;
1948 }
1949
1950 /* Calculate the maximum primary/sprite plane watermark */
1951 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1952                                      int level,
1953                                      const struct intel_wm_config *config,
1954                                      enum intel_ddb_partitioning ddb_partitioning,
1955                                      bool is_sprite)
1956 {
1957         unsigned int fifo_size = ilk_display_fifo_size(dev);
1958
1959         /* if sprites aren't enabled, sprites get nothing */
1960         if (is_sprite && !config->sprites_enabled)
1961                 return 0;
1962
1963         /* HSW allows LP1+ watermarks even with multiple pipes */
1964         if (level == 0 || config->num_pipes_active > 1) {
1965                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1966
1967                 /*
1968                  * For some reason the non self refresh
1969                  * FIFO size is only half of the self
1970                  * refresh FIFO size on ILK/SNB.
1971                  */
1972                 if (INTEL_INFO(dev)->gen <= 6)
1973                         fifo_size /= 2;
1974         }
1975
1976         if (config->sprites_enabled) {
1977                 /* level 0 is always calculated with 1:1 split */
1978                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1979                         if (is_sprite)
1980                                 fifo_size *= 5;
1981                         fifo_size /= 6;
1982                 } else {
1983                         fifo_size /= 2;
1984                 }
1985         }
1986
1987         /* clamp to max that the registers can hold */
1988         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1989 }
1990
1991 /* Calculate the maximum cursor plane watermark */
1992 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1993                                       int level,
1994                                       const struct intel_wm_config *config)
1995 {
1996         /* HSW LP1+ watermarks w/ multiple pipes */
1997         if (level > 0 && config->num_pipes_active > 1)
1998                 return 64;
1999
2000         /* otherwise just report max that registers can hold */
2001         return ilk_cursor_wm_reg_max(dev, level);
2002 }
2003
2004 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2005                                     int level,
2006                                     const struct intel_wm_config *config,
2007                                     enum intel_ddb_partitioning ddb_partitioning,
2008                                     struct ilk_wm_maximums *max)
2009 {
2010         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2011         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2012         max->cur = ilk_cursor_wm_max(dev, level, config);
2013         max->fbc = ilk_fbc_wm_reg_max(dev);
2014 }
2015
2016 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
2017                                         int level,
2018                                         struct ilk_wm_maximums *max)
2019 {
2020         max->pri = ilk_plane_wm_reg_max(dev, level, false);
2021         max->spr = ilk_plane_wm_reg_max(dev, level, true);
2022         max->cur = ilk_cursor_wm_reg_max(dev, level);
2023         max->fbc = ilk_fbc_wm_reg_max(dev);
2024 }
2025
2026 static bool ilk_validate_wm_level(int level,
2027                                   const struct ilk_wm_maximums *max,
2028                                   struct intel_wm_level *result)
2029 {
2030         bool ret;
2031
2032         /* already determined to be invalid? */
2033         if (!result->enable)
2034                 return false;
2035
2036         result->enable = result->pri_val <= max->pri &&
2037                          result->spr_val <= max->spr &&
2038                          result->cur_val <= max->cur;
2039
2040         ret = result->enable;
2041
2042         /*
2043          * HACK until we can pre-compute everything,
2044          * and thus fail gracefully if LP0 watermarks
2045          * are exceeded...
2046          */
2047         if (level == 0 && !result->enable) {
2048                 if (result->pri_val > max->pri)
2049                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2050                                       level, result->pri_val, max->pri);
2051                 if (result->spr_val > max->spr)
2052                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2053                                       level, result->spr_val, max->spr);
2054                 if (result->cur_val > max->cur)
2055                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2056                                       level, result->cur_val, max->cur);
2057
2058                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2059                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2060                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2061                 result->enable = true;
2062         }
2063
2064         return ret;
2065 }
2066
2067 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2068                                  int level,
2069                                  const struct ilk_pipe_wm_parameters *p,
2070                                  struct intel_wm_level *result)
2071 {
2072         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2073         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2074         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2075
2076         /* WM1+ latency values stored in 0.5us units */
2077         if (level > 0) {
2078                 pri_latency *= 5;
2079                 spr_latency *= 5;
2080                 cur_latency *= 5;
2081         }
2082
2083         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2084         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2085         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2086         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2087         result->enable = true;
2088 }
2089
2090 static uint32_t
2091 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2092 {
2093         struct drm_i915_private *dev_priv = dev->dev_private;
2094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2095         struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
2096         u32 linetime, ips_linetime;
2097
2098         if (!intel_crtc->active)
2099                 return 0;
2100
2101         /* The WM are computed with base on how long it takes to fill a single
2102          * row at the given clock rate, multiplied by 8.
2103          * */
2104         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2105                                      mode->crtc_clock);
2106         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2107                                          dev_priv->cdclk_freq);
2108
2109         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2110                PIPE_WM_LINETIME_TIME(linetime);
2111 }
2112
2113 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2114 {
2115         struct drm_i915_private *dev_priv = dev->dev_private;
2116
2117         if (IS_GEN9(dev)) {
2118                 uint32_t val;
2119                 int ret, i;
2120                 int level, max_level = ilk_wm_max_level(dev);
2121
2122                 /* read the first set of memory latencies[0:3] */
2123                 val = 0; /* data0 to be programmed to 0 for first set */
2124                 mutex_lock(&dev_priv->rps.hw_lock);
2125                 ret = sandybridge_pcode_read(dev_priv,
2126                                              GEN9_PCODE_READ_MEM_LATENCY,
2127                                              &val);
2128                 mutex_unlock(&dev_priv->rps.hw_lock);
2129
2130                 if (ret) {
2131                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2132                         return;
2133                 }
2134
2135                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2136                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2137                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2138                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2139                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2140                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2141                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2142
2143                 /* read the second set of memory latencies[4:7] */
2144                 val = 1; /* data0 to be programmed to 1 for second set */
2145                 mutex_lock(&dev_priv->rps.hw_lock);
2146                 ret = sandybridge_pcode_read(dev_priv,
2147                                              GEN9_PCODE_READ_MEM_LATENCY,
2148                                              &val);
2149                 mutex_unlock(&dev_priv->rps.hw_lock);
2150                 if (ret) {
2151                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2152                         return;
2153                 }
2154
2155                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2156                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2157                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2158                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2159                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2160                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2161                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2162
2163                 /*
2164                  * WaWmMemoryReadLatency:skl
2165                  *
2166                  * punit doesn't take into account the read latency so we need
2167                  * to add 2us to the various latency levels we retrieve from
2168                  * the punit.
2169                  *   - W0 is a bit special in that it's the only level that
2170                  *   can't be disabled if we want to have display working, so
2171                  *   we always add 2us there.
2172                  *   - For levels >=1, punit returns 0us latency when they are
2173                  *   disabled, so we respect that and don't add 2us then
2174                  *
2175                  * Additionally, if a level n (n > 1) has a 0us latency, all
2176                  * levels m (m >= n) need to be disabled. We make sure to
2177                  * sanitize the values out of the punit to satisfy this
2178                  * requirement.
2179                  */
2180                 wm[0] += 2;
2181                 for (level = 1; level <= max_level; level++)
2182                         if (wm[level] != 0)
2183                                 wm[level] += 2;
2184                         else {
2185                                 for (i = level + 1; i <= max_level; i++)
2186                                         wm[i] = 0;
2187
2188                                 break;
2189                         }
2190         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2191                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2192
2193                 wm[0] = (sskpd >> 56) & 0xFF;
2194                 if (wm[0] == 0)
2195                         wm[0] = sskpd & 0xF;
2196                 wm[1] = (sskpd >> 4) & 0xFF;
2197                 wm[2] = (sskpd >> 12) & 0xFF;
2198                 wm[3] = (sskpd >> 20) & 0x1FF;
2199                 wm[4] = (sskpd >> 32) & 0x1FF;
2200         } else if (INTEL_INFO(dev)->gen >= 6) {
2201                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2202
2203                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2204                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2205                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2206                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2207         } else if (INTEL_INFO(dev)->gen >= 5) {
2208                 uint32_t mltr = I915_READ(MLTR_ILK);
2209
2210                 /* ILK primary LP0 latency is 700 ns */
2211                 wm[0] = 7;
2212                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2213                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2214         }
2215 }
2216
2217 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2218 {
2219         /* ILK sprite LP0 latency is 1300 ns */
2220         if (INTEL_INFO(dev)->gen == 5)
2221                 wm[0] = 13;
2222 }
2223
2224 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2225 {
2226         /* ILK cursor LP0 latency is 1300 ns */
2227         if (INTEL_INFO(dev)->gen == 5)
2228                 wm[0] = 13;
2229
2230         /* WaDoubleCursorLP3Latency:ivb */
2231         if (IS_IVYBRIDGE(dev))
2232                 wm[3] *= 2;
2233 }
2234
2235 int ilk_wm_max_level(const struct drm_device *dev)
2236 {
2237         /* how many WM levels are we expecting */
2238         if (INTEL_INFO(dev)->gen >= 9)
2239                 return 7;
2240         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2241                 return 4;
2242         else if (INTEL_INFO(dev)->gen >= 6)
2243                 return 3;
2244         else
2245                 return 2;
2246 }
2247
2248 static void intel_print_wm_latency(struct drm_device *dev,
2249                                    const char *name,
2250                                    const uint16_t wm[8])
2251 {
2252         int level, max_level = ilk_wm_max_level(dev);
2253
2254         for (level = 0; level <= max_level; level++) {
2255                 unsigned int latency = wm[level];
2256
2257                 if (latency == 0) {
2258                         DRM_ERROR("%s WM%d latency not provided\n",
2259                                   name, level);
2260                         continue;
2261                 }
2262
2263                 /*
2264                  * - latencies are in us on gen9.
2265                  * - before then, WM1+ latency values are in 0.5us units
2266                  */
2267                 if (IS_GEN9(dev))
2268                         latency *= 10;
2269                 else if (level > 0)
2270                         latency *= 5;
2271
2272                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2273                               name, level, wm[level],
2274                               latency / 10, latency % 10);
2275         }
2276 }
2277
2278 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2279                                     uint16_t wm[5], uint16_t min)
2280 {
2281         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2282
2283         if (wm[0] >= min)
2284                 return false;
2285
2286         wm[0] = max(wm[0], min);
2287         for (level = 1; level <= max_level; level++)
2288                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2289
2290         return true;
2291 }
2292
2293 static void snb_wm_latency_quirk(struct drm_device *dev)
2294 {
2295         struct drm_i915_private *dev_priv = dev->dev_private;
2296         bool changed;
2297
2298         /*
2299          * The BIOS provided WM memory latency values are often
2300          * inadequate for high resolution displays. Adjust them.
2301          */
2302         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2303                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2304                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2305
2306         if (!changed)
2307                 return;
2308
2309         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2310         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2311         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2312         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2313 }
2314
2315 static void ilk_setup_wm_latency(struct drm_device *dev)
2316 {
2317         struct drm_i915_private *dev_priv = dev->dev_private;
2318
2319         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2320
2321         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2322                sizeof(dev_priv->wm.pri_latency));
2323         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2324                sizeof(dev_priv->wm.pri_latency));
2325
2326         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2327         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2328
2329         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2330         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2331         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2332
2333         if (IS_GEN6(dev))
2334                 snb_wm_latency_quirk(dev);
2335 }
2336
2337 static void skl_setup_wm_latency(struct drm_device *dev)
2338 {
2339         struct drm_i915_private *dev_priv = dev->dev_private;
2340
2341         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2342         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2343 }
2344
2345 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2346                                       struct ilk_pipe_wm_parameters *p)
2347 {
2348         struct drm_device *dev = crtc->dev;
2349         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2350         enum pipe pipe = intel_crtc->pipe;
2351         struct drm_plane *plane;
2352
2353         if (!intel_crtc->active)
2354                 return;
2355
2356         p->active = true;
2357         p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2358         p->pixel_rate = ilk_pipe_pixel_rate(intel_crtc->config);
2359
2360         if (crtc->primary->state->fb)
2361                 p->pri.bytes_per_pixel =
2362                         crtc->primary->state->fb->bits_per_pixel / 8;
2363         else
2364                 p->pri.bytes_per_pixel = 4;
2365
2366         p->cur.bytes_per_pixel = 4;
2367         /*
2368          * TODO: for now, assume primary and cursor planes are always enabled.
2369          * Setting them to false makes the screen flicker.
2370          */
2371         p->pri.enabled = true;
2372         p->cur.enabled = true;
2373
2374         p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2375         p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2376
2377         drm_for_each_legacy_plane(plane, dev) {
2378                 struct intel_plane *intel_plane = to_intel_plane(plane);
2379
2380                 if (intel_plane->pipe == pipe) {
2381                         p->spr = intel_plane->wm;
2382                         break;
2383                 }
2384         }
2385 }
2386
2387 static void ilk_compute_wm_config(struct drm_device *dev,
2388                                   struct intel_wm_config *config)
2389 {
2390         struct intel_crtc *intel_crtc;
2391
2392         /* Compute the currently _active_ config */
2393         for_each_intel_crtc(dev, intel_crtc) {
2394                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2395
2396                 if (!wm->pipe_enabled)
2397                         continue;
2398
2399                 config->sprites_enabled |= wm->sprites_enabled;
2400                 config->sprites_scaled |= wm->sprites_scaled;
2401                 config->num_pipes_active++;
2402         }
2403 }
2404
2405 /* Compute new watermarks for the pipe */
2406 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2407                                   const struct ilk_pipe_wm_parameters *params,
2408                                   struct intel_pipe_wm *pipe_wm)
2409 {
2410         struct drm_device *dev = crtc->dev;
2411         const struct drm_i915_private *dev_priv = dev->dev_private;
2412         int level, max_level = ilk_wm_max_level(dev);
2413         /* LP0 watermark maximums depend on this pipe alone */
2414         struct intel_wm_config config = {
2415                 .num_pipes_active = 1,
2416                 .sprites_enabled = params->spr.enabled,
2417                 .sprites_scaled = params->spr.scaled,
2418         };
2419         struct ilk_wm_maximums max;
2420
2421         pipe_wm->pipe_enabled = params->active;
2422         pipe_wm->sprites_enabled = params->spr.enabled;
2423         pipe_wm->sprites_scaled = params->spr.scaled;
2424
2425         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2426         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2427                 max_level = 1;
2428
2429         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2430         if (params->spr.scaled)
2431                 max_level = 0;
2432
2433         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2434
2435         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2436                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2437
2438         /* LP0 watermarks always use 1/2 DDB partitioning */
2439         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2440
2441         /* At least LP0 must be valid */
2442         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2443                 return false;
2444
2445         ilk_compute_wm_reg_maximums(dev, 1, &max);
2446
2447         for (level = 1; level <= max_level; level++) {
2448                 struct intel_wm_level wm = {};
2449
2450                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2451
2452                 /*
2453                  * Disable any watermark level that exceeds the
2454                  * register maximums since such watermarks are
2455                  * always invalid.
2456                  */
2457                 if (!ilk_validate_wm_level(level, &max, &wm))
2458                         break;
2459
2460                 pipe_wm->wm[level] = wm;
2461         }
2462
2463         return true;
2464 }
2465
2466 /*
2467  * Merge the watermarks from all active pipes for a specific level.
2468  */
2469 static void ilk_merge_wm_level(struct drm_device *dev,
2470                                int level,
2471                                struct intel_wm_level *ret_wm)
2472 {
2473         const struct intel_crtc *intel_crtc;
2474
2475         ret_wm->enable = true;
2476
2477         for_each_intel_crtc(dev, intel_crtc) {
2478                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2479                 const struct intel_wm_level *wm = &active->wm[level];
2480
2481                 if (!active->pipe_enabled)
2482                         continue;
2483
2484                 /*
2485                  * The watermark values may have been used in the past,
2486                  * so we must maintain them in the registers for some
2487                  * time even if the level is now disabled.
2488                  */
2489                 if (!wm->enable)
2490                         ret_wm->enable = false;
2491
2492                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2493                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2494                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2495                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2496         }
2497 }
2498
2499 /*
2500  * Merge all low power watermarks for all active pipes.
2501  */
2502 static void ilk_wm_merge(struct drm_device *dev,
2503                          const struct intel_wm_config *config,
2504                          const struct ilk_wm_maximums *max,
2505                          struct intel_pipe_wm *merged)
2506 {
2507         struct drm_i915_private *dev_priv = dev->dev_private;
2508         int level, max_level = ilk_wm_max_level(dev);
2509         int last_enabled_level = max_level;
2510
2511         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2512         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2513             config->num_pipes_active > 1)
2514                 return;
2515
2516         /* ILK: FBC WM must be disabled always */
2517         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2518
2519         /* merge each WM1+ level */
2520         for (level = 1; level <= max_level; level++) {
2521                 struct intel_wm_level *wm = &merged->wm[level];
2522
2523                 ilk_merge_wm_level(dev, level, wm);
2524
2525                 if (level > last_enabled_level)
2526                         wm->enable = false;
2527                 else if (!ilk_validate_wm_level(level, max, wm))
2528                         /* make sure all following levels get disabled */
2529                         last_enabled_level = level - 1;
2530
2531                 /*
2532                  * The spec says it is preferred to disable
2533                  * FBC WMs instead of disabling a WM level.
2534                  */
2535                 if (wm->fbc_val > max->fbc) {
2536                         if (wm->enable)
2537                                 merged->fbc_wm_enabled = false;
2538                         wm->fbc_val = 0;
2539                 }
2540         }
2541
2542         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2543         /*
2544          * FIXME this is racy. FBC might get enabled later.
2545          * What we should check here is whether FBC can be
2546          * enabled sometime later.
2547          */
2548         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2549             intel_fbc_enabled(dev_priv)) {
2550                 for (level = 2; level <= max_level; level++) {
2551                         struct intel_wm_level *wm = &merged->wm[level];
2552
2553                         wm->enable = false;
2554                 }
2555         }
2556 }
2557
2558 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2559 {
2560         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2561         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2562 }
2563
2564 /* The value we need to program into the WM_LPx latency field */
2565 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2566 {
2567         struct drm_i915_private *dev_priv = dev->dev_private;
2568
2569         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2570                 return 2 * level;
2571         else
2572                 return dev_priv->wm.pri_latency[level];
2573 }
2574
2575 static void ilk_compute_wm_results(struct drm_device *dev,
2576                                    const struct intel_pipe_wm *merged,
2577                                    enum intel_ddb_partitioning partitioning,
2578                                    struct ilk_wm_values *results)
2579 {
2580         struct intel_crtc *intel_crtc;
2581         int level, wm_lp;
2582
2583         results->enable_fbc_wm = merged->fbc_wm_enabled;
2584         results->partitioning = partitioning;
2585
2586         /* LP1+ register values */
2587         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2588                 const struct intel_wm_level *r;
2589
2590                 level = ilk_wm_lp_to_level(wm_lp, merged);
2591
2592                 r = &merged->wm[level];
2593
2594                 /*
2595                  * Maintain the watermark values even if the level is
2596                  * disabled. Doing otherwise could cause underruns.
2597                  */
2598                 results->wm_lp[wm_lp - 1] =
2599                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2600                         (r->pri_val << WM1_LP_SR_SHIFT) |
2601                         r->cur_val;
2602
2603                 if (r->enable)
2604                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2605
2606                 if (INTEL_INFO(dev)->gen >= 8)
2607                         results->wm_lp[wm_lp - 1] |=
2608                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2609                 else
2610                         results->wm_lp[wm_lp - 1] |=
2611                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2612
2613                 /*
2614                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2615                  * level is disabled. Doing otherwise could cause underruns.
2616                  */
2617                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2618                         WARN_ON(wm_lp != 1);
2619                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2620                 } else
2621                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2622         }
2623
2624         /* LP0 register values */
2625         for_each_intel_crtc(dev, intel_crtc) {
2626                 enum pipe pipe = intel_crtc->pipe;
2627                 const struct intel_wm_level *r =
2628                         &intel_crtc->wm.active.wm[0];
2629
2630                 if (WARN_ON(!r->enable))
2631                         continue;
2632
2633                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2634
2635                 results->wm_pipe[pipe] =
2636                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2637                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2638                         r->cur_val;
2639         }
2640 }
2641
2642 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2643  * case both are at the same level. Prefer r1 in case they're the same. */
2644 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2645                                                   struct intel_pipe_wm *r1,
2646                                                   struct intel_pipe_wm *r2)
2647 {
2648         int level, max_level = ilk_wm_max_level(dev);
2649         int level1 = 0, level2 = 0;
2650
2651         for (level = 1; level <= max_level; level++) {
2652                 if (r1->wm[level].enable)
2653                         level1 = level;
2654                 if (r2->wm[level].enable)
2655                         level2 = level;
2656         }
2657
2658         if (level1 == level2) {
2659                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2660                         return r2;
2661                 else
2662                         return r1;
2663         } else if (level1 > level2) {
2664                 return r1;
2665         } else {
2666                 return r2;
2667         }
2668 }
2669
2670 /* dirty bits used to track which watermarks need changes */
2671 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2672 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2673 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2674 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2675 #define WM_DIRTY_FBC (1 << 24)
2676 #define WM_DIRTY_DDB (1 << 25)
2677
2678 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2679                                          const struct ilk_wm_values *old,
2680                                          const struct ilk_wm_values *new)
2681 {
2682         unsigned int dirty = 0;
2683         enum pipe pipe;
2684         int wm_lp;
2685
2686         for_each_pipe(dev_priv, pipe) {
2687                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2688                         dirty |= WM_DIRTY_LINETIME(pipe);
2689                         /* Must disable LP1+ watermarks too */
2690                         dirty |= WM_DIRTY_LP_ALL;
2691                 }
2692
2693                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2694                         dirty |= WM_DIRTY_PIPE(pipe);
2695                         /* Must disable LP1+ watermarks too */
2696                         dirty |= WM_DIRTY_LP_ALL;
2697                 }
2698         }
2699
2700         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2701                 dirty |= WM_DIRTY_FBC;
2702                 /* Must disable LP1+ watermarks too */
2703                 dirty |= WM_DIRTY_LP_ALL;
2704         }
2705
2706         if (old->partitioning != new->partitioning) {
2707                 dirty |= WM_DIRTY_DDB;
2708                 /* Must disable LP1+ watermarks too */
2709                 dirty |= WM_DIRTY_LP_ALL;
2710         }
2711
2712         /* LP1+ watermarks already deemed dirty, no need to continue */
2713         if (dirty & WM_DIRTY_LP_ALL)
2714                 return dirty;
2715
2716         /* Find the lowest numbered LP1+ watermark in need of an update... */
2717         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2718                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2719                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2720                         break;
2721         }
2722
2723         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2724         for (; wm_lp <= 3; wm_lp++)
2725                 dirty |= WM_DIRTY_LP(wm_lp);
2726
2727         return dirty;
2728 }
2729
2730 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2731                                unsigned int dirty)
2732 {
2733         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2734         bool changed = false;
2735
2736         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2737                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2738                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2739                 changed = true;
2740         }
2741         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2742                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2743                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2744                 changed = true;
2745         }
2746         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2747                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2748                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2749                 changed = true;
2750         }
2751
2752         /*
2753          * Don't touch WM1S_LP_EN here.
2754          * Doing so could cause underruns.
2755          */
2756
2757         return changed;
2758 }
2759
2760 /*
2761  * The spec says we shouldn't write when we don't need, because every write
2762  * causes WMs to be re-evaluated, expending some power.
2763  */
2764 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2765                                 struct ilk_wm_values *results)
2766 {
2767         struct drm_device *dev = dev_priv->dev;
2768         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2769         unsigned int dirty;
2770         uint32_t val;
2771
2772         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2773         if (!dirty)
2774                 return;
2775
2776         _ilk_disable_lp_wm(dev_priv, dirty);
2777
2778         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2779                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2780         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2781                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2782         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2783                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2784
2785         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2786                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2787         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2788                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2789         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2790                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2791
2792         if (dirty & WM_DIRTY_DDB) {
2793                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2794                         val = I915_READ(WM_MISC);
2795                         if (results->partitioning == INTEL_DDB_PART_1_2)
2796                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2797                         else
2798                                 val |= WM_MISC_DATA_PARTITION_5_6;
2799                         I915_WRITE(WM_MISC, val);
2800                 } else {
2801                         val = I915_READ(DISP_ARB_CTL2);
2802                         if (results->partitioning == INTEL_DDB_PART_1_2)
2803                                 val &= ~DISP_DATA_PARTITION_5_6;
2804                         else
2805                                 val |= DISP_DATA_PARTITION_5_6;
2806                         I915_WRITE(DISP_ARB_CTL2, val);
2807                 }
2808         }
2809
2810         if (dirty & WM_DIRTY_FBC) {
2811                 val = I915_READ(DISP_ARB_CTL);
2812                 if (results->enable_fbc_wm)
2813                         val &= ~DISP_FBC_WM_DIS;
2814                 else
2815                         val |= DISP_FBC_WM_DIS;
2816                 I915_WRITE(DISP_ARB_CTL, val);
2817         }
2818
2819         if (dirty & WM_DIRTY_LP(1) &&
2820             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2821                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2822
2823         if (INTEL_INFO(dev)->gen >= 7) {
2824                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2825                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2826                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2827                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2828         }
2829
2830         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2831                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2832         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2833                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2834         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2835                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2836
2837         dev_priv->wm.hw = *results;
2838 }
2839
2840 static bool ilk_disable_lp_wm(struct drm_device *dev)
2841 {
2842         struct drm_i915_private *dev_priv = dev->dev_private;
2843
2844         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2845 }
2846
2847 /*
2848  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2849  * different active planes.
2850  */
2851
2852 #define SKL_DDB_SIZE            896     /* in blocks */
2853 #define BXT_DDB_SIZE            512
2854
2855 static void
2856 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2857                                    struct drm_crtc *for_crtc,
2858                                    const struct intel_wm_config *config,
2859                                    const struct skl_pipe_wm_parameters *params,
2860                                    struct skl_ddb_entry *alloc /* out */)
2861 {
2862         struct drm_crtc *crtc;
2863         unsigned int pipe_size, ddb_size;
2864         int nth_active_pipe;
2865
2866         if (!params->active) {
2867                 alloc->start = 0;
2868                 alloc->end = 0;
2869                 return;
2870         }
2871
2872         if (IS_BROXTON(dev))
2873                 ddb_size = BXT_DDB_SIZE;
2874         else
2875                 ddb_size = SKL_DDB_SIZE;
2876
2877         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2878
2879         nth_active_pipe = 0;
2880         for_each_crtc(dev, crtc) {
2881                 if (!to_intel_crtc(crtc)->active)
2882                         continue;
2883
2884                 if (crtc == for_crtc)
2885                         break;
2886
2887                 nth_active_pipe++;
2888         }
2889
2890         pipe_size = ddb_size / config->num_pipes_active;
2891         alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2892         alloc->end = alloc->start + pipe_size;
2893 }
2894
2895 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2896 {
2897         if (config->num_pipes_active == 1)
2898                 return 32;
2899
2900         return 8;
2901 }
2902
2903 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2904 {
2905         entry->start = reg & 0x3ff;
2906         entry->end = (reg >> 16) & 0x3ff;
2907         if (entry->end)
2908                 entry->end += 1;
2909 }
2910
2911 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2912                           struct skl_ddb_allocation *ddb /* out */)
2913 {
2914         enum pipe pipe;
2915         int plane;
2916         u32 val;
2917
2918         for_each_pipe(dev_priv, pipe) {
2919                 for_each_plane(dev_priv, pipe, plane) {
2920                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2921                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2922                                                    val);
2923                 }
2924
2925                 val = I915_READ(CUR_BUF_CFG(pipe));
2926                 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2927         }
2928 }
2929
2930 static unsigned int
2931 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2932 {
2933
2934         /* for planar format */
2935         if (p->y_bytes_per_pixel) {
2936                 if (y)  /* y-plane data rate */
2937                         return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2938                 else    /* uv-plane data rate */
2939                         return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2940         }
2941
2942         /* for packed formats */
2943         return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2944 }
2945
2946 /*
2947  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2948  * a 8192x4096@32bpp framebuffer:
2949  *   3 * 4096 * 8192  * 4 < 2^32
2950  */
2951 static unsigned int
2952 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2953                                  const struct skl_pipe_wm_parameters *params)
2954 {
2955         unsigned int total_data_rate = 0;
2956         int plane;
2957
2958         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2959                 const struct intel_plane_wm_parameters *p;
2960
2961                 p = &params->plane[plane];
2962                 if (!p->enabled)
2963                         continue;
2964
2965                 total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2966                 if (p->y_bytes_per_pixel) {
2967                         total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2968                 }
2969         }
2970
2971         return total_data_rate;
2972 }
2973
2974 static void
2975 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2976                       const struct intel_wm_config *config,
2977                       const struct skl_pipe_wm_parameters *params,
2978                       struct skl_ddb_allocation *ddb /* out */)
2979 {
2980         struct drm_device *dev = crtc->dev;
2981         struct drm_i915_private *dev_priv = dev->dev_private;
2982         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2983         enum pipe pipe = intel_crtc->pipe;
2984         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2985         uint16_t alloc_size, start, cursor_blocks;
2986         uint16_t minimum[I915_MAX_PLANES];
2987         uint16_t y_minimum[I915_MAX_PLANES];
2988         unsigned int total_data_rate;
2989         int plane;
2990
2991         skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2992         alloc_size = skl_ddb_entry_size(alloc);
2993         if (alloc_size == 0) {
2994                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2995                 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2996                 return;
2997         }
2998
2999         cursor_blocks = skl_cursor_allocation(config);
3000         ddb->cursor[pipe].start = alloc->end - cursor_blocks;
3001         ddb->cursor[pipe].end = alloc->end;
3002
3003         alloc_size -= cursor_blocks;
3004         alloc->end -= cursor_blocks;
3005
3006         /* 1. Allocate the mininum required blocks for each active plane */
3007         for_each_plane(dev_priv, pipe, plane) {
3008                 const struct intel_plane_wm_parameters *p;
3009
3010                 p = &params->plane[plane];
3011                 if (!p->enabled)
3012                         continue;
3013
3014                 minimum[plane] = 8;
3015                 alloc_size -= minimum[plane];
3016                 y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
3017                 alloc_size -= y_minimum[plane];
3018         }
3019
3020         /*
3021          * 2. Distribute the remaining space in proportion to the amount of
3022          * data each plane needs to fetch from memory.
3023          *
3024          * FIXME: we may not allocate every single block here.
3025          */
3026         total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
3027
3028         start = alloc->start;
3029         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
3030                 const struct intel_plane_wm_parameters *p;
3031                 unsigned int data_rate, y_data_rate;
3032                 uint16_t plane_blocks, y_plane_blocks = 0;
3033
3034                 p = &params->plane[plane];
3035                 if (!p->enabled)
3036                         continue;
3037
3038                 data_rate = skl_plane_relative_data_rate(p, 0);
3039
3040                 /*
3041                  * allocation for (packed formats) or (uv-plane part of planar format):
3042                  * promote the expression to 64 bits to avoid overflowing, the
3043                  * result is < available as data_rate / total_data_rate < 1
3044                  */
3045                 plane_blocks = minimum[plane];
3046                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3047                                         total_data_rate);
3048
3049                 ddb->plane[pipe][plane].start = start;
3050                 ddb->plane[pipe][plane].end = start + plane_blocks;
3051
3052                 start += plane_blocks;
3053
3054                 /*
3055                  * allocation for y_plane part of planar format:
3056                  */
3057                 if (p->y_bytes_per_pixel) {
3058                         y_data_rate = skl_plane_relative_data_rate(p, 1);
3059                         y_plane_blocks = y_minimum[plane];
3060                         y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3061                                                 total_data_rate);
3062
3063                         ddb->y_plane[pipe][plane].start = start;
3064                         ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
3065
3066                         start += y_plane_blocks;
3067                 }
3068
3069         }
3070
3071 }
3072
3073 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3074 {
3075         /* TODO: Take into account the scalers once we support them */
3076         return config->base.adjusted_mode.crtc_clock;
3077 }
3078
3079 /*
3080  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3081  * for the read latency) and bytes_per_pixel should always be <= 8, so that
3082  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3083  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3084 */
3085 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3086                                uint32_t latency)
3087 {
3088         uint32_t wm_intermediate_val, ret;
3089
3090         if (latency == 0)
3091                 return UINT_MAX;
3092
3093         wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3094         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3095
3096         return ret;
3097 }
3098
3099 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3100                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3101                                uint64_t tiling, uint32_t latency)
3102 {
3103         uint32_t ret;
3104         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3105         uint32_t wm_intermediate_val;
3106
3107         if (latency == 0)
3108                 return UINT_MAX;
3109
3110         plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3111
3112         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3113             tiling == I915_FORMAT_MOD_Yf_TILED) {
3114                 plane_bytes_per_line *= 4;
3115                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3116                 plane_blocks_per_line /= 4;
3117         } else {
3118                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3119         }
3120
3121         wm_intermediate_val = latency * pixel_rate;
3122         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3123                                 plane_blocks_per_line;
3124
3125         return ret;
3126 }
3127
3128 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3129                                        const struct intel_crtc *intel_crtc)
3130 {
3131         struct drm_device *dev = intel_crtc->base.dev;
3132         struct drm_i915_private *dev_priv = dev->dev_private;
3133         const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3134         enum pipe pipe = intel_crtc->pipe;
3135
3136         if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3137                    sizeof(new_ddb->plane[pipe])))
3138                 return true;
3139
3140         if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
3141                     sizeof(new_ddb->cursor[pipe])))
3142                 return true;
3143
3144         return false;
3145 }
3146
3147 static void skl_compute_wm_global_parameters(struct drm_device *dev,
3148                                              struct intel_wm_config *config)
3149 {
3150         struct drm_crtc *crtc;
3151         struct drm_plane *plane;
3152
3153         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3154                 config->num_pipes_active += to_intel_crtc(crtc)->active;
3155
3156         /* FIXME: I don't think we need those two global parameters on SKL */
3157         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3158                 struct intel_plane *intel_plane = to_intel_plane(plane);
3159
3160                 config->sprites_enabled |= intel_plane->wm.enabled;
3161                 config->sprites_scaled |= intel_plane->wm.scaled;
3162         }
3163 }
3164
3165 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3166                                            struct skl_pipe_wm_parameters *p)
3167 {
3168         struct drm_device *dev = crtc->dev;
3169         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3170         enum pipe pipe = intel_crtc->pipe;
3171         struct drm_plane *plane;
3172         struct drm_framebuffer *fb;
3173         int i = 1; /* Index for sprite planes start */
3174
3175         p->active = intel_crtc->active;
3176         if (p->active) {
3177                 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3178                 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3179
3180                 fb = crtc->primary->state->fb;
3181                 /* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3182                 if (fb) {
3183                         p->plane[0].enabled = true;
3184                         p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3185                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3186                                 drm_format_plane_cpp(fb->pixel_format, 0);
3187                         p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3188                                 drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3189                         p->plane[0].tiling = fb->modifier[0];
3190                 } else {
3191                         p->plane[0].enabled = false;
3192                         p->plane[0].bytes_per_pixel = 0;
3193                         p->plane[0].y_bytes_per_pixel = 0;
3194                         p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3195                 }
3196                 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3197                 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3198                 p->plane[0].rotation = crtc->primary->state->rotation;
3199
3200                 fb = crtc->cursor->state->fb;
3201                 p->cursor.y_bytes_per_pixel = 0;
3202                 if (fb) {
3203                         p->cursor.enabled = true;
3204                         p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
3205                         p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
3206                         p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
3207                 } else {
3208                         p->cursor.enabled = false;
3209                         p->cursor.bytes_per_pixel = 0;
3210                         p->cursor.horiz_pixels = 64;
3211                         p->cursor.vert_pixels = 64;
3212                 }
3213         }
3214
3215         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3216                 struct intel_plane *intel_plane = to_intel_plane(plane);
3217
3218                 if (intel_plane->pipe == pipe &&
3219                         plane->type == DRM_PLANE_TYPE_OVERLAY)
3220                         p->plane[i++] = intel_plane->wm;
3221         }
3222 }
3223
3224 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3225                                  struct skl_pipe_wm_parameters *p,
3226                                  struct intel_plane_wm_parameters *p_params,
3227                                  uint16_t ddb_allocation,
3228                                  int level,
3229                                  uint16_t *out_blocks, /* out */
3230                                  uint8_t *out_lines /* out */)
3231 {
3232         uint32_t latency = dev_priv->wm.skl_latency[level];
3233         uint32_t method1, method2;
3234         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3235         uint32_t res_blocks, res_lines;
3236         uint32_t selected_result;
3237         uint8_t bytes_per_pixel;
3238
3239         if (latency == 0 || !p->active || !p_params->enabled)
3240                 return false;
3241
3242         bytes_per_pixel = p_params->y_bytes_per_pixel ?
3243                 p_params->y_bytes_per_pixel :
3244                 p_params->bytes_per_pixel;
3245         method1 = skl_wm_method1(p->pixel_rate,
3246                                  bytes_per_pixel,
3247                                  latency);
3248         method2 = skl_wm_method2(p->pixel_rate,
3249                                  p->pipe_htotal,
3250                                  p_params->horiz_pixels,
3251                                  bytes_per_pixel,
3252                                  p_params->tiling,
3253                                  latency);
3254
3255         plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3256         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3257
3258         if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3259             p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3260                 uint32_t min_scanlines = 4;
3261                 uint32_t y_tile_minimum;
3262                 if (intel_rotation_90_or_270(p_params->rotation)) {
3263                         switch (p_params->bytes_per_pixel) {
3264                         case 1:
3265                                 min_scanlines = 16;
3266                                 break;
3267                         case 2:
3268                                 min_scanlines = 8;
3269                                 break;
3270                         case 8:
3271                                 WARN(1, "Unsupported pixel depth for rotation");
3272                         }
3273                 }
3274                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3275                 selected_result = max(method2, y_tile_minimum);
3276         } else {
3277                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3278                         selected_result = min(method1, method2);
3279                 else
3280                         selected_result = method1;
3281         }
3282
3283         res_blocks = selected_result + 1;
3284         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3285
3286         if (level >= 1 && level <= 7) {
3287                 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3288                     p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3289                         res_lines += 4;
3290                 else
3291                         res_blocks++;
3292         }
3293
3294         if (res_blocks >= ddb_allocation || res_lines > 31)
3295                 return false;
3296
3297         *out_blocks = res_blocks;
3298         *out_lines = res_lines;
3299
3300         return true;
3301 }
3302
3303 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3304                                  struct skl_ddb_allocation *ddb,
3305                                  struct skl_pipe_wm_parameters *p,
3306                                  enum pipe pipe,
3307                                  int level,
3308                                  int num_planes,
3309                                  struct skl_wm_level *result)
3310 {
3311         uint16_t ddb_blocks;
3312         int i;
3313
3314         for (i = 0; i < num_planes; i++) {
3315                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3316
3317                 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3318                                                 p, &p->plane[i],
3319                                                 ddb_blocks,
3320                                                 level,
3321                                                 &result->plane_res_b[i],
3322                                                 &result->plane_res_l[i]);
3323         }
3324
3325         ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
3326         result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
3327                                                  ddb_blocks, level,
3328                                                  &result->cursor_res_b,
3329                                                  &result->cursor_res_l);
3330 }
3331
3332 static uint32_t
3333 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3334 {
3335         if (!to_intel_crtc(crtc)->active)
3336                 return 0;
3337
3338         if (WARN_ON(p->pixel_rate == 0))
3339                 return 0;
3340
3341         return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3342 }
3343
3344 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3345                                       struct skl_pipe_wm_parameters *params,
3346                                       struct skl_wm_level *trans_wm /* out */)
3347 {
3348         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3349         int i;
3350
3351         if (!params->active)
3352                 return;
3353
3354         /* Until we know more, just disable transition WMs */
3355         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3356                 trans_wm->plane_en[i] = false;
3357         trans_wm->cursor_en = false;
3358 }
3359
3360 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3361                                 struct skl_ddb_allocation *ddb,
3362                                 struct skl_pipe_wm_parameters *params,
3363                                 struct skl_pipe_wm *pipe_wm)
3364 {
3365         struct drm_device *dev = crtc->dev;
3366         const struct drm_i915_private *dev_priv = dev->dev_private;
3367         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3368         int level, max_level = ilk_wm_max_level(dev);
3369
3370         for (level = 0; level <= max_level; level++) {
3371                 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3372                                      level, intel_num_planes(intel_crtc),
3373                                      &pipe_wm->wm[level]);
3374         }
3375         pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3376
3377         skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3378 }
3379
3380 static void skl_compute_wm_results(struct drm_device *dev,
3381                                    struct skl_pipe_wm_parameters *p,
3382                                    struct skl_pipe_wm *p_wm,
3383                                    struct skl_wm_values *r,
3384                                    struct intel_crtc *intel_crtc)
3385 {
3386         int level, max_level = ilk_wm_max_level(dev);
3387         enum pipe pipe = intel_crtc->pipe;
3388         uint32_t temp;
3389         int i;
3390
3391         for (level = 0; level <= max_level; level++) {
3392                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3393                         temp = 0;
3394
3395                         temp |= p_wm->wm[level].plane_res_l[i] <<
3396                                         PLANE_WM_LINES_SHIFT;
3397                         temp |= p_wm->wm[level].plane_res_b[i];
3398                         if (p_wm->wm[level].plane_en[i])
3399                                 temp |= PLANE_WM_EN;
3400
3401                         r->plane[pipe][i][level] = temp;
3402                 }
3403
3404                 temp = 0;
3405
3406                 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
3407                 temp |= p_wm->wm[level].cursor_res_b;
3408
3409                 if (p_wm->wm[level].cursor_en)
3410                         temp |= PLANE_WM_EN;
3411
3412                 r->cursor[pipe][level] = temp;
3413
3414         }
3415
3416         /* transition WMs */
3417         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3418                 temp = 0;
3419                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3420                 temp |= p_wm->trans_wm.plane_res_b[i];
3421                 if (p_wm->trans_wm.plane_en[i])
3422                         temp |= PLANE_WM_EN;
3423
3424                 r->plane_trans[pipe][i] = temp;
3425         }
3426
3427         temp = 0;
3428         temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
3429         temp |= p_wm->trans_wm.cursor_res_b;
3430         if (p_wm->trans_wm.cursor_en)
3431                 temp |= PLANE_WM_EN;
3432
3433         r->cursor_trans[pipe] = temp;
3434
3435         r->wm_linetime[pipe] = p_wm->linetime;
3436 }
3437
3438 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3439                                 const struct skl_ddb_entry *entry)
3440 {
3441         if (entry->end)
3442                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3443         else
3444                 I915_WRITE(reg, 0);
3445 }
3446
3447 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3448                                 const struct skl_wm_values *new)
3449 {
3450         struct drm_device *dev = dev_priv->dev;
3451         struct intel_crtc *crtc;
3452
3453         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3454                 int i, level, max_level = ilk_wm_max_level(dev);
3455                 enum pipe pipe = crtc->pipe;
3456
3457                 if (!new->dirty[pipe])
3458                         continue;
3459
3460                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3461
3462                 for (level = 0; level <= max_level; level++) {
3463                         for (i = 0; i < intel_num_planes(crtc); i++)
3464                                 I915_WRITE(PLANE_WM(pipe, i, level),
3465                                            new->plane[pipe][i][level]);
3466                         I915_WRITE(CUR_WM(pipe, level),
3467                                    new->cursor[pipe][level]);
3468                 }
3469                 for (i = 0; i < intel_num_planes(crtc); i++)
3470                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3471                                    new->plane_trans[pipe][i]);
3472                 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3473
3474                 for (i = 0; i < intel_num_planes(crtc); i++) {
3475                         skl_ddb_entry_write(dev_priv,
3476                                             PLANE_BUF_CFG(pipe, i),
3477                                             &new->ddb.plane[pipe][i]);
3478                         skl_ddb_entry_write(dev_priv,
3479                                             PLANE_NV12_BUF_CFG(pipe, i),
3480                                             &new->ddb.y_plane[pipe][i]);
3481                 }
3482
3483                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3484                                     &new->ddb.cursor[pipe]);
3485         }
3486 }
3487
3488 /*
3489  * When setting up a new DDB allocation arrangement, we need to correctly
3490  * sequence the times at which the new allocations for the pipes are taken into
3491  * account or we'll have pipes fetching from space previously allocated to
3492  * another pipe.
3493  *
3494  * Roughly the sequence looks like:
3495  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3496  *     overlapping with a previous light-up pipe (another way to put it is:
3497  *     pipes with their new allocation strickly included into their old ones).
3498  *  2. re-allocate the other pipes that get their allocation reduced
3499  *  3. allocate the pipes having their allocation increased
3500  *
3501  * Steps 1. and 2. are here to take care of the following case:
3502  * - Initially DDB looks like this:
3503  *     |   B    |   C    |
3504  * - enable pipe A.
3505  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3506  *   allocation
3507  *     |  A  |  B  |  C  |
3508  *
3509  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3510  */
3511
3512 static void
3513 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3514 {
3515         int plane;
3516
3517         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3518
3519         for_each_plane(dev_priv, pipe, plane) {
3520                 I915_WRITE(PLANE_SURF(pipe, plane),
3521                            I915_READ(PLANE_SURF(pipe, plane)));
3522         }
3523         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3524 }
3525
3526 static bool
3527 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3528                             const struct skl_ddb_allocation *new,
3529                             enum pipe pipe)
3530 {
3531         uint16_t old_size, new_size;
3532
3533         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3534         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3535
3536         return old_size != new_size &&
3537                new->pipe[pipe].start >= old->pipe[pipe].start &&
3538                new->pipe[pipe].end <= old->pipe[pipe].end;
3539 }
3540
3541 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3542                                 struct skl_wm_values *new_values)
3543 {
3544         struct drm_device *dev = dev_priv->dev;
3545         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3546         bool reallocated[I915_MAX_PIPES] = {};
3547         struct intel_crtc *crtc;
3548         enum pipe pipe;
3549
3550         new_ddb = &new_values->ddb;
3551         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3552
3553         /*
3554          * First pass: flush the pipes with the new allocation contained into
3555          * the old space.
3556          *
3557          * We'll wait for the vblank on those pipes to ensure we can safely
3558          * re-allocate the freed space without this pipe fetching from it.
3559          */
3560         for_each_intel_crtc(dev, crtc) {
3561                 if (!crtc->active)
3562                         continue;
3563
3564                 pipe = crtc->pipe;
3565
3566                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3567                         continue;
3568
3569                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3570                 intel_wait_for_vblank(dev, pipe);
3571
3572                 reallocated[pipe] = true;
3573         }
3574
3575
3576         /*
3577          * Second pass: flush the pipes that are having their allocation
3578          * reduced, but overlapping with a previous allocation.
3579          *
3580          * Here as well we need to wait for the vblank to make sure the freed
3581          * space is not used anymore.
3582          */
3583         for_each_intel_crtc(dev, crtc) {
3584                 if (!crtc->active)
3585                         continue;
3586
3587                 pipe = crtc->pipe;
3588
3589                 if (reallocated[pipe])
3590                         continue;
3591
3592                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3593                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3594                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3595                         intel_wait_for_vblank(dev, pipe);
3596                         reallocated[pipe] = true;
3597                 }
3598         }
3599
3600         /*
3601          * Third pass: flush the pipes that got more space allocated.
3602          *
3603          * We don't need to actively wait for the update here, next vblank
3604          * will just get more DDB space with the correct WM values.
3605          */
3606         for_each_intel_crtc(dev, crtc) {
3607                 if (!crtc->active)
3608                         continue;
3609
3610                 pipe = crtc->pipe;
3611
3612                 /*
3613                  * At this point, only the pipes more space than before are
3614                  * left to re-allocate.
3615                  */
3616                 if (reallocated[pipe])
3617                         continue;
3618
3619                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3620         }
3621 }
3622
3623 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3624                                struct skl_pipe_wm_parameters *params,
3625                                struct intel_wm_config *config,
3626                                struct skl_ddb_allocation *ddb, /* out */
3627                                struct skl_pipe_wm *pipe_wm /* out */)
3628 {
3629         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3630
3631         skl_compute_wm_pipe_parameters(crtc, params);
3632         skl_allocate_pipe_ddb(crtc, config, params, ddb);
3633         skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3634
3635         if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3636                 return false;
3637
3638         intel_crtc->wm.skl_active = *pipe_wm;
3639
3640         return true;
3641 }
3642
3643 static void skl_update_other_pipe_wm(struct drm_device *dev,
3644                                      struct drm_crtc *crtc,
3645                                      struct intel_wm_config *config,
3646                                      struct skl_wm_values *r)
3647 {
3648         struct intel_crtc *intel_crtc;
3649         struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3650
3651         /*
3652          * If the WM update hasn't changed the allocation for this_crtc (the
3653          * crtc we are currently computing the new WM values for), other
3654          * enabled crtcs will keep the same allocation and we don't need to
3655          * recompute anything for them.
3656          */
3657         if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3658                 return;
3659
3660         /*
3661          * Otherwise, because of this_crtc being freshly enabled/disabled, the
3662          * other active pipes need new DDB allocation and WM values.
3663          */
3664         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3665                                 base.head) {
3666                 struct skl_pipe_wm_parameters params = {};
3667                 struct skl_pipe_wm pipe_wm = {};
3668                 bool wm_changed;
3669
3670                 if (this_crtc->pipe == intel_crtc->pipe)
3671                         continue;
3672
3673                 if (!intel_crtc->active)
3674                         continue;
3675
3676                 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3677                                                 &params, config,
3678                                                 &r->ddb, &pipe_wm);
3679
3680                 /*
3681                  * If we end up re-computing the other pipe WM values, it's
3682                  * because it was really needed, so we expect the WM values to
3683                  * be different.
3684                  */
3685                 WARN_ON(!wm_changed);
3686
3687                 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3688                 r->dirty[intel_crtc->pipe] = true;
3689         }
3690 }
3691
3692 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3693 {
3694         watermarks->wm_linetime[pipe] = 0;
3695         memset(watermarks->plane[pipe], 0,
3696                sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3697         memset(watermarks->cursor[pipe], 0, sizeof(uint32_t) * 8);
3698         memset(watermarks->plane_trans[pipe],
3699                0, sizeof(uint32_t) * I915_MAX_PLANES);
3700         watermarks->cursor_trans[pipe] = 0;
3701
3702         /* Clear ddb entries for pipe */
3703         memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3704         memset(&watermarks->ddb.plane[pipe], 0,
3705                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3706         memset(&watermarks->ddb.y_plane[pipe], 0,
3707                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3708         memset(&watermarks->ddb.cursor[pipe], 0, sizeof(struct skl_ddb_entry));
3709
3710 }
3711
3712 static void skl_update_wm(struct drm_crtc *crtc)
3713 {
3714         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3715         struct drm_device *dev = crtc->dev;
3716         struct drm_i915_private *dev_priv = dev->dev_private;
3717         struct skl_pipe_wm_parameters params = {};
3718         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3719         struct skl_pipe_wm pipe_wm = {};
3720         struct intel_wm_config config = {};
3721
3722
3723         /* Clear all dirty flags */
3724         memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3725
3726         skl_clear_wm(results, intel_crtc->pipe);
3727
3728         skl_compute_wm_global_parameters(dev, &config);
3729
3730         if (!skl_update_pipe_wm(crtc, &params, &config,
3731                                 &results->ddb, &pipe_wm))
3732                 return;
3733
3734         skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3735         results->dirty[intel_crtc->pipe] = true;
3736
3737         skl_update_other_pipe_wm(dev, crtc, &config, results);
3738         skl_write_wm_values(dev_priv, results);
3739         skl_flush_wm_values(dev_priv, results);
3740
3741         /* store the new configuration */
3742         dev_priv->wm.skl_hw = *results;
3743 }
3744
3745 static void
3746 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3747                      uint32_t sprite_width, uint32_t sprite_height,
3748                      int pixel_size, bool enabled, bool scaled)
3749 {
3750         struct intel_plane *intel_plane = to_intel_plane(plane);
3751         struct drm_framebuffer *fb = plane->state->fb;
3752
3753         intel_plane->wm.enabled = enabled;
3754         intel_plane->wm.scaled = scaled;
3755         intel_plane->wm.horiz_pixels = sprite_width;
3756         intel_plane->wm.vert_pixels = sprite_height;
3757         intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3758
3759         /* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3760         intel_plane->wm.bytes_per_pixel =
3761                 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3762                 drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3763         intel_plane->wm.y_bytes_per_pixel =
3764                 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3765                 drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3766
3767         /*
3768          * Framebuffer can be NULL on plane disable, but it does not
3769          * matter for watermarks if we assume no tiling in that case.
3770          */
3771         if (fb)
3772                 intel_plane->wm.tiling = fb->modifier[0];
3773         intel_plane->wm.rotation = plane->state->rotation;
3774
3775         skl_update_wm(crtc);
3776 }
3777
3778 static void ilk_update_wm(struct drm_crtc *crtc)
3779 {
3780         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3781         struct drm_device *dev = crtc->dev;
3782         struct drm_i915_private *dev_priv = dev->dev_private;
3783         struct ilk_wm_maximums max;
3784         struct ilk_pipe_wm_parameters params = {};
3785         struct ilk_wm_values results = {};
3786         enum intel_ddb_partitioning partitioning;
3787         struct intel_pipe_wm pipe_wm = {};
3788         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3789         struct intel_wm_config config = {};
3790
3791         ilk_compute_wm_parameters(crtc, &params);
3792
3793         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3794
3795         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3796                 return;
3797
3798         intel_crtc->wm.active = pipe_wm;
3799
3800         ilk_compute_wm_config(dev, &config);
3801
3802         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3803         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3804
3805         /* 5/6 split only in single pipe config on IVB+ */
3806         if (INTEL_INFO(dev)->gen >= 7 &&
3807             config.num_pipes_active == 1 && config.sprites_enabled) {
3808                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3809                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3810
3811                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3812         } else {
3813                 best_lp_wm = &lp_wm_1_2;
3814         }
3815
3816         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3817                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3818
3819         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3820
3821         ilk_write_wm_values(dev_priv, &results);
3822 }
3823
3824 static void
3825 ilk_update_sprite_wm(struct drm_plane *plane,
3826                      struct drm_crtc *crtc,
3827                      uint32_t sprite_width, uint32_t sprite_height,
3828                      int pixel_size, bool enabled, bool scaled)
3829 {
3830         struct drm_device *dev = plane->dev;
3831         struct intel_plane *intel_plane = to_intel_plane(plane);
3832
3833         intel_plane->wm.enabled = enabled;
3834         intel_plane->wm.scaled = scaled;
3835         intel_plane->wm.horiz_pixels = sprite_width;
3836         intel_plane->wm.vert_pixels = sprite_width;
3837         intel_plane->wm.bytes_per_pixel = pixel_size;
3838
3839         /*
3840          * IVB workaround: must disable low power watermarks for at least
3841          * one frame before enabling scaling.  LP watermarks can be re-enabled
3842          * when scaling is disabled.
3843          *
3844          * WaCxSRDisabledForSpriteScaling:ivb
3845          */
3846         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3847                 intel_wait_for_vblank(dev, intel_plane->pipe);
3848
3849         ilk_update_wm(crtc);
3850 }
3851
3852 static void skl_pipe_wm_active_state(uint32_t val,
3853                                      struct skl_pipe_wm *active,
3854                                      bool is_transwm,
3855                                      bool is_cursor,
3856                                      int i,
3857                                      int level)
3858 {
3859         bool is_enabled = (val & PLANE_WM_EN) != 0;
3860
3861         if (!is_transwm) {
3862                 if (!is_cursor) {
3863                         active->wm[level].plane_en[i] = is_enabled;
3864                         active->wm[level].plane_res_b[i] =
3865                                         val & PLANE_WM_BLOCKS_MASK;
3866                         active->wm[level].plane_res_l[i] =
3867                                         (val >> PLANE_WM_LINES_SHIFT) &
3868                                                 PLANE_WM_LINES_MASK;
3869                 } else {
3870                         active->wm[level].cursor_en = is_enabled;
3871                         active->wm[level].cursor_res_b =
3872                                         val & PLANE_WM_BLOCKS_MASK;
3873                         active->wm[level].cursor_res_l =
3874                                         (val >> PLANE_WM_LINES_SHIFT) &
3875                                                 PLANE_WM_LINES_MASK;
3876                 }
3877         } else {
3878                 if (!is_cursor) {
3879                         active->trans_wm.plane_en[i] = is_enabled;
3880                         active->trans_wm.plane_res_b[i] =
3881                                         val & PLANE_WM_BLOCKS_MASK;
3882                         active->trans_wm.plane_res_l[i] =
3883                                         (val >> PLANE_WM_LINES_SHIFT) &
3884                                                 PLANE_WM_LINES_MASK;
3885                 } else {
3886                         active->trans_wm.cursor_en = is_enabled;
3887                         active->trans_wm.cursor_res_b =
3888                                         val & PLANE_WM_BLOCKS_MASK;
3889                         active->trans_wm.cursor_res_l =
3890                                         (val >> PLANE_WM_LINES_SHIFT) &
3891                                                 PLANE_WM_LINES_MASK;
3892                 }
3893         }
3894 }
3895
3896 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3897 {
3898         struct drm_device *dev = crtc->dev;
3899         struct drm_i915_private *dev_priv = dev->dev_private;
3900         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3901         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3902         struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3903         enum pipe pipe = intel_crtc->pipe;
3904         int level, i, max_level;
3905         uint32_t temp;
3906
3907         max_level = ilk_wm_max_level(dev);
3908
3909         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3910
3911         for (level = 0; level <= max_level; level++) {
3912                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3913                         hw->plane[pipe][i][level] =
3914                                         I915_READ(PLANE_WM(pipe, i, level));
3915                 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3916         }
3917
3918         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3919                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3920         hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3921
3922         if (!intel_crtc->active)
3923                 return;
3924
3925         hw->dirty[pipe] = true;
3926
3927         active->linetime = hw->wm_linetime[pipe];
3928
3929         for (level = 0; level <= max_level; level++) {
3930                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3931                         temp = hw->plane[pipe][i][level];
3932                         skl_pipe_wm_active_state(temp, active, false,
3933                                                 false, i, level);
3934                 }
3935                 temp = hw->cursor[pipe][level];
3936                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3937         }
3938
3939         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3940                 temp = hw->plane_trans[pipe][i];
3941                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3942         }
3943
3944         temp = hw->cursor_trans[pipe];
3945         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3946 }
3947
3948 void skl_wm_get_hw_state(struct drm_device *dev)
3949 {
3950         struct drm_i915_private *dev_priv = dev->dev_private;
3951         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3952         struct drm_crtc *crtc;
3953
3954         skl_ddb_get_hw_state(dev_priv, ddb);
3955         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3956                 skl_pipe_wm_get_hw_state(crtc);
3957 }
3958
3959 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3960 {
3961         struct drm_device *dev = crtc->dev;
3962         struct drm_i915_private *dev_priv = dev->dev_private;
3963         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3964         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3965         struct intel_pipe_wm *active = &intel_crtc->wm.active;
3966         enum pipe pipe = intel_crtc->pipe;
3967         static const unsigned int wm0_pipe_reg[] = {
3968                 [PIPE_A] = WM0_PIPEA_ILK,
3969                 [PIPE_B] = WM0_PIPEB_ILK,
3970                 [PIPE_C] = WM0_PIPEC_IVB,
3971         };
3972
3973         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3974         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3975                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3976
3977         active->pipe_enabled = intel_crtc->active;
3978
3979         if (active->pipe_enabled) {
3980                 u32 tmp = hw->wm_pipe[pipe];
3981
3982                 /*
3983                  * For active pipes LP0 watermark is marked as
3984                  * enabled, and LP1+ watermaks as disabled since
3985                  * we can't really reverse compute them in case
3986                  * multiple pipes are active.
3987                  */
3988                 active->wm[0].enable = true;
3989                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3990                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3991                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3992                 active->linetime = hw->wm_linetime[pipe];
3993         } else {
3994                 int level, max_level = ilk_wm_max_level(dev);
3995
3996                 /*
3997                  * For inactive pipes, all watermark levels
3998                  * should be marked as enabled but zeroed,
3999                  * which is what we'd compute them to.
4000                  */
4001                 for (level = 0; level <= max_level; level++)
4002                         active->wm[level].enable = true;
4003         }
4004 }
4005
4006 #define _FW_WM(value, plane) \
4007         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4008 #define _FW_WM_VLV(value, plane) \
4009         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4010
4011 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4012                                struct vlv_wm_values *wm)
4013 {
4014         enum pipe pipe;
4015         uint32_t tmp;
4016
4017         for_each_pipe(dev_priv, pipe) {
4018                 tmp = I915_READ(VLV_DDL(pipe));
4019
4020                 wm->ddl[pipe].primary =
4021                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4022                 wm->ddl[pipe].cursor =
4023                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4024                 wm->ddl[pipe].sprite[0] =
4025                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4026                 wm->ddl[pipe].sprite[1] =
4027                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4028         }
4029
4030         tmp = I915_READ(DSPFW1);
4031         wm->sr.plane = _FW_WM(tmp, SR);
4032         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4033         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4034         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4035
4036         tmp = I915_READ(DSPFW2);
4037         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4038         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4039         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4040
4041         tmp = I915_READ(DSPFW3);
4042         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4043
4044         if (IS_CHERRYVIEW(dev_priv)) {
4045                 tmp = I915_READ(DSPFW7_CHV);
4046                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4047                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4048
4049                 tmp = I915_READ(DSPFW8_CHV);
4050                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4051                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4052
4053                 tmp = I915_READ(DSPFW9_CHV);
4054                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4055                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4056
4057                 tmp = I915_READ(DSPHOWM);
4058                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4059                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4060                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4061                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4062                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4063                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4064                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4065                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4066                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4067                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4068         } else {
4069                 tmp = I915_READ(DSPFW7);
4070                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4071                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4072
4073                 tmp = I915_READ(DSPHOWM);
4074                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4075                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4076                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4077                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4078                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4079                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4080                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4081         }
4082 }
4083
4084 #undef _FW_WM
4085 #undef _FW_WM_VLV
4086
4087 void vlv_wm_get_hw_state(struct drm_device *dev)
4088 {
4089         struct drm_i915_private *dev_priv = to_i915(dev);
4090         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4091         struct intel_plane *plane;
4092         enum pipe pipe;
4093         u32 val;
4094
4095         vlv_read_wm_values(dev_priv, wm);
4096
4097         for_each_intel_plane(dev, plane) {
4098                 switch (plane->base.type) {
4099                         int sprite;
4100                 case DRM_PLANE_TYPE_CURSOR:
4101                         plane->wm.fifo_size = 63;
4102                         break;
4103                 case DRM_PLANE_TYPE_PRIMARY:
4104                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4105                         break;
4106                 case DRM_PLANE_TYPE_OVERLAY:
4107                         sprite = plane->plane;
4108                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4109                         break;
4110                 }
4111         }
4112
4113         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4114         wm->level = VLV_WM_LEVEL_PM2;
4115
4116         if (IS_CHERRYVIEW(dev_priv)) {
4117                 mutex_lock(&dev_priv->rps.hw_lock);
4118
4119                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4120                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4121                         wm->level = VLV_WM_LEVEL_PM5;
4122
4123                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4124                 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4125                         wm->level = VLV_WM_LEVEL_DDR_DVFS;
4126
4127                 mutex_unlock(&dev_priv->rps.hw_lock);
4128         }
4129
4130         for_each_pipe(dev_priv, pipe)
4131                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4132                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4133                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4134
4135         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4136                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4137 }
4138
4139 void ilk_wm_get_hw_state(struct drm_device *dev)
4140 {
4141         struct drm_i915_private *dev_priv = dev->dev_private;
4142         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4143         struct drm_crtc *crtc;
4144
4145         for_each_crtc(dev, crtc)
4146                 ilk_pipe_wm_get_hw_state(crtc);
4147
4148         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4149         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4150         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4151
4152         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4153         if (INTEL_INFO(dev)->gen >= 7) {
4154                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4155                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4156         }
4157
4158         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4159                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4160                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4161         else if (IS_IVYBRIDGE(dev))
4162                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4163                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4164
4165         hw->enable_fbc_wm =
4166                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4167 }
4168
4169 /**
4170  * intel_update_watermarks - update FIFO watermark values based on current modes
4171  *
4172  * Calculate watermark values for the various WM regs based on current mode
4173  * and plane configuration.
4174  *
4175  * There are several cases to deal with here:
4176  *   - normal (i.e. non-self-refresh)
4177  *   - self-refresh (SR) mode
4178  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4179  *   - lines are small relative to FIFO size (buffer can hold more than 2
4180  *     lines), so need to account for TLB latency
4181  *
4182  *   The normal calculation is:
4183  *     watermark = dotclock * bytes per pixel * latency
4184  *   where latency is platform & configuration dependent (we assume pessimal
4185  *   values here).
4186  *
4187  *   The SR calculation is:
4188  *     watermark = (trunc(latency/line time)+1) * surface width *
4189  *       bytes per pixel
4190  *   where
4191  *     line time = htotal / dotclock
4192  *     surface width = hdisplay for normal plane and 64 for cursor
4193  *   and latency is assumed to be high, as above.
4194  *
4195  * The final value programmed to the register should always be rounded up,
4196  * and include an extra 2 entries to account for clock crossings.
4197  *
4198  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4199  * to set the non-SR watermarks to 8.
4200  */
4201 void intel_update_watermarks(struct drm_crtc *crtc)
4202 {
4203         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4204
4205         if (dev_priv->display.update_wm)
4206                 dev_priv->display.update_wm(crtc);
4207 }
4208
4209 void intel_update_sprite_watermarks(struct drm_plane *plane,
4210                                     struct drm_crtc *crtc,
4211                                     uint32_t sprite_width,
4212                                     uint32_t sprite_height,
4213                                     int pixel_size,
4214                                     bool enabled, bool scaled)
4215 {
4216         struct drm_i915_private *dev_priv = plane->dev->dev_private;
4217
4218         if (dev_priv->display.update_sprite_wm)
4219                 dev_priv->display.update_sprite_wm(plane, crtc,
4220                                                    sprite_width, sprite_height,
4221                                                    pixel_size, enabled, scaled);
4222 }
4223
4224 /**
4225  * Lock protecting IPS related data structures
4226  */
4227 DEFINE_SPINLOCK(mchdev_lock);
4228
4229 /* Global for IPS driver to get at the current i915 device. Protected by
4230  * mchdev_lock. */
4231 static struct drm_i915_private *i915_mch_dev;
4232
4233 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4234 {
4235         struct drm_i915_private *dev_priv = dev->dev_private;
4236         u16 rgvswctl;
4237
4238         assert_spin_locked(&mchdev_lock);
4239
4240         rgvswctl = I915_READ16(MEMSWCTL);
4241         if (rgvswctl & MEMCTL_CMD_STS) {
4242                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4243                 return false; /* still busy with another command */
4244         }
4245
4246         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4247                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4248         I915_WRITE16(MEMSWCTL, rgvswctl);
4249         POSTING_READ16(MEMSWCTL);
4250
4251         rgvswctl |= MEMCTL_CMD_STS;
4252         I915_WRITE16(MEMSWCTL, rgvswctl);
4253
4254         return true;
4255 }
4256
4257 static void ironlake_enable_drps(struct drm_device *dev)
4258 {
4259         struct drm_i915_private *dev_priv = dev->dev_private;
4260         u32 rgvmodectl = I915_READ(MEMMODECTL);
4261         u8 fmax, fmin, fstart, vstart;
4262
4263         spin_lock_irq(&mchdev_lock);
4264
4265         /* Enable temp reporting */
4266         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4267         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4268
4269         /* 100ms RC evaluation intervals */
4270         I915_WRITE(RCUPEI, 100000);
4271         I915_WRITE(RCDNEI, 100000);
4272
4273         /* Set max/min thresholds to 90ms and 80ms respectively */
4274         I915_WRITE(RCBMAXAVG, 90000);
4275         I915_WRITE(RCBMINAVG, 80000);
4276
4277         I915_WRITE(MEMIHYST, 1);
4278
4279         /* Set up min, max, and cur for interrupt handling */
4280         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4281         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4282         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4283                 MEMMODE_FSTART_SHIFT;
4284
4285         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
4286                 PXVFREQ_PX_SHIFT;
4287
4288         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4289         dev_priv->ips.fstart = fstart;
4290
4291         dev_priv->ips.max_delay = fstart;
4292         dev_priv->ips.min_delay = fmin;
4293         dev_priv->ips.cur_delay = fstart;
4294
4295         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4296                          fmax, fmin, fstart);
4297
4298         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4299
4300         /*
4301          * Interrupts will be enabled in ironlake_irq_postinstall
4302          */
4303
4304         I915_WRITE(VIDSTART, vstart);
4305         POSTING_READ(VIDSTART);
4306
4307         rgvmodectl |= MEMMODE_SWMODE_EN;
4308         I915_WRITE(MEMMODECTL, rgvmodectl);
4309
4310         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4311                 DRM_ERROR("stuck trying to change perf mode\n");
4312         mdelay(1);
4313
4314         ironlake_set_drps(dev, fstart);
4315
4316         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
4317                 I915_READ(0x112e0);
4318         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4319         dev_priv->ips.last_count2 = I915_READ(0x112f4);
4320         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4321
4322         spin_unlock_irq(&mchdev_lock);
4323 }
4324
4325 static void ironlake_disable_drps(struct drm_device *dev)
4326 {
4327         struct drm_i915_private *dev_priv = dev->dev_private;
4328         u16 rgvswctl;
4329
4330         spin_lock_irq(&mchdev_lock);
4331
4332         rgvswctl = I915_READ16(MEMSWCTL);
4333
4334         /* Ack interrupts, disable EFC interrupt */
4335         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4336         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4337         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4338         I915_WRITE(DEIIR, DE_PCU_EVENT);
4339         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4340
4341         /* Go back to the starting frequency */
4342         ironlake_set_drps(dev, dev_priv->ips.fstart);
4343         mdelay(1);
4344         rgvswctl |= MEMCTL_CMD_STS;
4345         I915_WRITE(MEMSWCTL, rgvswctl);
4346         mdelay(1);
4347
4348         spin_unlock_irq(&mchdev_lock);
4349 }
4350
4351 /* There's a funny hw issue where the hw returns all 0 when reading from
4352  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4353  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4354  * all limits and the gpu stuck at whatever frequency it is at atm).
4355  */
4356 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4357 {
4358         u32 limits;
4359
4360         /* Only set the down limit when we've reached the lowest level to avoid
4361          * getting more interrupts, otherwise leave this clear. This prevents a
4362          * race in the hw when coming out of rc6: There's a tiny window where
4363          * the hw runs at the minimal clock before selecting the desired
4364          * frequency, if the down threshold expires in that window we will not
4365          * receive a down interrupt. */
4366         if (IS_GEN9(dev_priv->dev)) {
4367                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4368                 if (val <= dev_priv->rps.min_freq_softlimit)
4369                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4370         } else {
4371                 limits = dev_priv->rps.max_freq_softlimit << 24;
4372                 if (val <= dev_priv->rps.min_freq_softlimit)
4373                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4374         }
4375
4376         return limits;
4377 }
4378
4379 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4380 {
4381         int new_power;
4382         u32 threshold_up = 0, threshold_down = 0; /* in % */
4383         u32 ei_up = 0, ei_down = 0;
4384
4385         new_power = dev_priv->rps.power;
4386         switch (dev_priv->rps.power) {
4387         case LOW_POWER:
4388                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4389                         new_power = BETWEEN;
4390                 break;
4391
4392         case BETWEEN:
4393                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4394                         new_power = LOW_POWER;
4395                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4396                         new_power = HIGH_POWER;
4397                 break;
4398
4399         case HIGH_POWER:
4400                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4401                         new_power = BETWEEN;
4402                 break;
4403         }
4404         /* Max/min bins are special */
4405         if (val <= dev_priv->rps.min_freq_softlimit)
4406                 new_power = LOW_POWER;
4407         if (val >= dev_priv->rps.max_freq_softlimit)
4408                 new_power = HIGH_POWER;
4409         if (new_power == dev_priv->rps.power)
4410                 return;
4411
4412         /* Note the units here are not exactly 1us, but 1280ns. */
4413         switch (new_power) {
4414         case LOW_POWER:
4415                 /* Upclock if more than 95% busy over 16ms */
4416                 ei_up = 16000;
4417                 threshold_up = 95;
4418
4419                 /* Downclock if less than 85% busy over 32ms */
4420                 ei_down = 32000;
4421                 threshold_down = 85;
4422                 break;
4423
4424         case BETWEEN:
4425                 /* Upclock if more than 90% busy over 13ms */
4426                 ei_up = 13000;
4427                 threshold_up = 90;
4428
4429                 /* Downclock if less than 75% busy over 32ms */
4430                 ei_down = 32000;
4431                 threshold_down = 75;
4432                 break;
4433
4434         case HIGH_POWER:
4435                 /* Upclock if more than 85% busy over 10ms */
4436                 ei_up = 10000;
4437                 threshold_up = 85;
4438
4439                 /* Downclock if less than 60% busy over 32ms */
4440                 ei_down = 32000;
4441                 threshold_down = 60;
4442                 break;
4443         }
4444
4445         I915_WRITE(GEN6_RP_UP_EI,
4446                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4447         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4448                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4449
4450         I915_WRITE(GEN6_RP_DOWN_EI,
4451                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4452         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4453                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4454
4455          I915_WRITE(GEN6_RP_CONTROL,
4456                     GEN6_RP_MEDIA_TURBO |
4457                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4458                     GEN6_RP_MEDIA_IS_GFX |
4459                     GEN6_RP_ENABLE |
4460                     GEN6_RP_UP_BUSY_AVG |
4461                     GEN6_RP_DOWN_IDLE_AVG);
4462
4463         dev_priv->rps.power = new_power;
4464         dev_priv->rps.up_threshold = threshold_up;
4465         dev_priv->rps.down_threshold = threshold_down;
4466         dev_priv->rps.last_adj = 0;
4467 }
4468
4469 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4470 {
4471         u32 mask = 0;
4472
4473         if (val > dev_priv->rps.min_freq_softlimit)
4474                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4475         if (val < dev_priv->rps.max_freq_softlimit)
4476                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4477
4478         mask &= dev_priv->pm_rps_events;
4479
4480         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4481 }
4482
4483 /* gen6_set_rps is called to update the frequency request, but should also be
4484  * called when the range (min_delay and max_delay) is modified so that we can
4485  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4486 static void gen6_set_rps(struct drm_device *dev, u8 val)
4487 {
4488         struct drm_i915_private *dev_priv = dev->dev_private;
4489
4490         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4491         if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4492                 return;
4493
4494         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4495         WARN_ON(val > dev_priv->rps.max_freq);
4496         WARN_ON(val < dev_priv->rps.min_freq);
4497
4498         /* min/max delay may still have been modified so be sure to
4499          * write the limits value.
4500          */
4501         if (val != dev_priv->rps.cur_freq) {
4502                 gen6_set_rps_thresholds(dev_priv, val);
4503
4504                 if (IS_GEN9(dev))
4505                         I915_WRITE(GEN6_RPNSWREQ,
4506                                    GEN9_FREQUENCY(val));
4507                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4508                         I915_WRITE(GEN6_RPNSWREQ,
4509                                    HSW_FREQUENCY(val));
4510                 else
4511                         I915_WRITE(GEN6_RPNSWREQ,
4512                                    GEN6_FREQUENCY(val) |
4513                                    GEN6_OFFSET(0) |
4514                                    GEN6_AGGRESSIVE_TURBO);
4515         }
4516
4517         /* Make sure we continue to get interrupts
4518          * until we hit the minimum or maximum frequencies.
4519          */
4520         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4521         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4522
4523         POSTING_READ(GEN6_RPNSWREQ);
4524
4525         dev_priv->rps.cur_freq = val;
4526         trace_intel_gpu_freq_change(val * 50);
4527 }
4528
4529 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4530 {
4531         struct drm_i915_private *dev_priv = dev->dev_private;
4532
4533         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4534         WARN_ON(val > dev_priv->rps.max_freq);
4535         WARN_ON(val < dev_priv->rps.min_freq);
4536
4537         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4538                       "Odd GPU freq value\n"))
4539                 val &= ~1;
4540
4541         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4542
4543         if (val != dev_priv->rps.cur_freq) {
4544                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4545                 if (!IS_CHERRYVIEW(dev_priv))
4546                         gen6_set_rps_thresholds(dev_priv, val);
4547         }
4548
4549         dev_priv->rps.cur_freq = val;
4550         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4551 }
4552
4553 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4554  *
4555  * * If Gfx is Idle, then
4556  * 1. Forcewake Media well.
4557  * 2. Request idle freq.
4558  * 3. Release Forcewake of Media well.
4559 */
4560 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4561 {
4562         u32 val = dev_priv->rps.idle_freq;
4563
4564         if (dev_priv->rps.cur_freq <= val)
4565                 return;
4566
4567         /* Wake up the media well, as that takes a lot less
4568          * power than the Render well. */
4569         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4570         valleyview_set_rps(dev_priv->dev, val);
4571         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4572 }
4573
4574 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4575 {
4576         mutex_lock(&dev_priv->rps.hw_lock);
4577         if (dev_priv->rps.enabled) {
4578                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4579                         gen6_rps_reset_ei(dev_priv);
4580                 I915_WRITE(GEN6_PMINTRMSK,
4581                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4582         }
4583         mutex_unlock(&dev_priv->rps.hw_lock);
4584 }
4585
4586 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4587 {
4588         struct drm_device *dev = dev_priv->dev;
4589
4590         mutex_lock(&dev_priv->rps.hw_lock);
4591         if (dev_priv->rps.enabled) {
4592                 if (IS_VALLEYVIEW(dev))
4593                         vlv_set_rps_idle(dev_priv);
4594                 else
4595                         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4596                 dev_priv->rps.last_adj = 0;
4597                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4598         }
4599         mutex_unlock(&dev_priv->rps.hw_lock);
4600
4601         spin_lock(&dev_priv->rps.client_lock);
4602         while (!list_empty(&dev_priv->rps.clients))
4603                 list_del_init(dev_priv->rps.clients.next);
4604         spin_unlock(&dev_priv->rps.client_lock);
4605 }
4606
4607 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4608                     struct intel_rps_client *rps,
4609                     unsigned long submitted)
4610 {
4611         /* This is intentionally racy! We peek at the state here, then
4612          * validate inside the RPS worker.
4613          */
4614         if (!(dev_priv->mm.busy &&
4615               dev_priv->rps.enabled &&
4616               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4617                 return;
4618
4619         /* Force a RPS boost (and don't count it against the client) if
4620          * the GPU is severely congested.
4621          */
4622         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4623                 rps = NULL;
4624
4625         spin_lock(&dev_priv->rps.client_lock);
4626         if (rps == NULL || list_empty(&rps->link)) {
4627                 spin_lock_irq(&dev_priv->irq_lock);
4628                 if (dev_priv->rps.interrupts_enabled) {
4629                         dev_priv->rps.client_boost = true;
4630                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4631                 }
4632                 spin_unlock_irq(&dev_priv->irq_lock);
4633
4634                 if (rps != NULL) {
4635                         list_add(&rps->link, &dev_priv->rps.clients);
4636                         rps->boosts++;
4637                 } else
4638                         dev_priv->rps.boosts++;
4639         }
4640         spin_unlock(&dev_priv->rps.client_lock);
4641 }
4642
4643 void intel_set_rps(struct drm_device *dev, u8 val)
4644 {
4645         if (IS_VALLEYVIEW(dev))
4646                 valleyview_set_rps(dev, val);
4647         else
4648                 gen6_set_rps(dev, val);
4649 }
4650
4651 static void gen9_disable_rps(struct drm_device *dev)
4652 {
4653         struct drm_i915_private *dev_priv = dev->dev_private;
4654
4655         I915_WRITE(GEN6_RC_CONTROL, 0);
4656         I915_WRITE(GEN9_PG_ENABLE, 0);
4657 }
4658
4659 static void gen6_disable_rps(struct drm_device *dev)
4660 {
4661         struct drm_i915_private *dev_priv = dev->dev_private;
4662
4663         I915_WRITE(GEN6_RC_CONTROL, 0);
4664         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4665 }
4666
4667 static void cherryview_disable_rps(struct drm_device *dev)
4668 {
4669         struct drm_i915_private *dev_priv = dev->dev_private;
4670
4671         I915_WRITE(GEN6_RC_CONTROL, 0);
4672 }
4673
4674 static void valleyview_disable_rps(struct drm_device *dev)
4675 {
4676         struct drm_i915_private *dev_priv = dev->dev_private;
4677
4678         /* we're doing forcewake before Disabling RC6,
4679          * This what the BIOS expects when going into suspend */
4680         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4681
4682         I915_WRITE(GEN6_RC_CONTROL, 0);
4683
4684         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4685 }
4686
4687 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4688 {
4689         if (IS_VALLEYVIEW(dev)) {
4690                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4691                         mode = GEN6_RC_CTL_RC6_ENABLE;
4692                 else
4693                         mode = 0;
4694         }
4695         if (HAS_RC6p(dev))
4696                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4697                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4698                               (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4699                               (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4700
4701         else
4702                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4703                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4704 }
4705
4706 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4707 {
4708         /* No RC6 before Ironlake and code is gone for ilk. */
4709         if (INTEL_INFO(dev)->gen < 6)
4710                 return 0;
4711
4712         /* Respect the kernel parameter if it is set */
4713         if (enable_rc6 >= 0) {
4714                 int mask;
4715
4716                 if (HAS_RC6p(dev))
4717                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4718                                INTEL_RC6pp_ENABLE;
4719                 else
4720                         mask = INTEL_RC6_ENABLE;
4721
4722                 if ((enable_rc6 & mask) != enable_rc6)
4723                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4724                                       enable_rc6 & mask, enable_rc6, mask);
4725
4726                 return enable_rc6 & mask;
4727         }
4728
4729         if (IS_IVYBRIDGE(dev))
4730                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4731
4732         return INTEL_RC6_ENABLE;
4733 }
4734
4735 int intel_enable_rc6(const struct drm_device *dev)
4736 {
4737         return i915.enable_rc6;
4738 }
4739
4740 static void gen6_init_rps_frequencies(struct drm_device *dev)
4741 {
4742         struct drm_i915_private *dev_priv = dev->dev_private;
4743         uint32_t rp_state_cap;
4744         u32 ddcc_status = 0;
4745         int ret;
4746
4747         /* All of these values are in units of 50MHz */
4748         dev_priv->rps.cur_freq          = 0;
4749         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4750         if (IS_BROXTON(dev)) {
4751                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4752                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4753                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4754                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4755         } else {
4756                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4757                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4758                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4759                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4760         }
4761
4762         /* hw_max = RP0 until we check for overclocking */
4763         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4764
4765         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4766         if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4767                 ret = sandybridge_pcode_read(dev_priv,
4768                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4769                                         &ddcc_status);
4770                 if (0 == ret)
4771                         dev_priv->rps.efficient_freq =
4772                                 clamp_t(u8,
4773                                         ((ddcc_status >> 8) & 0xff),
4774                                         dev_priv->rps.min_freq,
4775                                         dev_priv->rps.max_freq);
4776         }
4777
4778         if (IS_SKYLAKE(dev)) {
4779                 /* Store the frequency values in 16.66 MHZ units, which is
4780                    the natural hardware unit for SKL */
4781                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4782                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4783                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4784                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4785                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4786         }
4787
4788         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4789
4790         /* Preserve min/max settings in case of re-init */
4791         if (dev_priv->rps.max_freq_softlimit == 0)
4792                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4793
4794         if (dev_priv->rps.min_freq_softlimit == 0) {
4795                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4796                         dev_priv->rps.min_freq_softlimit =
4797                                 max_t(int, dev_priv->rps.efficient_freq,
4798                                       intel_freq_opcode(dev_priv, 450));
4799                 else
4800                         dev_priv->rps.min_freq_softlimit =
4801                                 dev_priv->rps.min_freq;
4802         }
4803 }
4804
4805 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4806 static void gen9_enable_rps(struct drm_device *dev)
4807 {
4808         struct drm_i915_private *dev_priv = dev->dev_private;
4809
4810         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4811
4812         gen6_init_rps_frequencies(dev);
4813
4814         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4815         if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4816                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4817                 return;
4818         }
4819
4820         /* Program defaults and thresholds for RPS*/
4821         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4822                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4823
4824         /* 1 second timeout*/
4825         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4826                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4827
4828         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4829
4830         /* Leaning on the below call to gen6_set_rps to program/setup the
4831          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4832          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4833         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4834         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4835
4836         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4837 }
4838
4839 static void gen9_enable_rc6(struct drm_device *dev)
4840 {
4841         struct drm_i915_private *dev_priv = dev->dev_private;
4842         struct intel_engine_cs *ring;
4843         uint32_t rc6_mask = 0;
4844         int unused;
4845
4846         /* 1a: Software RC state - RC0 */
4847         I915_WRITE(GEN6_RC_STATE, 0);
4848
4849         /* 1b: Get forcewake during program sequence. Although the driver
4850          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4851         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4852
4853         /* 2a: Disable RC states. */
4854         I915_WRITE(GEN6_RC_CONTROL, 0);
4855
4856         /* 2b: Program RC6 thresholds.*/
4857         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4858         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4859         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4860         for_each_ring(ring, dev_priv, unused)
4861                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4862         I915_WRITE(GEN6_RC_SLEEP, 0);
4863         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4864
4865         /* 2c: Program Coarse Power Gating Policies. */
4866         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4867         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4868
4869         /* 3a: Enable RC6 */
4870         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4871                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4872         DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4873                         "on" : "off");
4874
4875         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4876             (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0))
4877                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4878                            GEN7_RC_CTL_TO_MODE |
4879                            rc6_mask);
4880         else
4881                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4882                            GEN6_RC_CTL_EI_MODE(1) |
4883                            rc6_mask);
4884
4885         /*
4886          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4887          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4888          */
4889         if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4890             ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_E0)))
4891                 I915_WRITE(GEN9_PG_ENABLE, 0);
4892         else
4893                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4894                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4895
4896         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4897
4898 }
4899
4900 static void gen8_enable_rps(struct drm_device *dev)
4901 {
4902         struct drm_i915_private *dev_priv = dev->dev_private;
4903         struct intel_engine_cs *ring;
4904         uint32_t rc6_mask = 0;
4905         int unused;
4906
4907         /* 1a: Software RC state - RC0 */
4908         I915_WRITE(GEN6_RC_STATE, 0);
4909
4910         /* 1c & 1d: Get forcewake during program sequence. Although the driver
4911          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4912         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4913
4914         /* 2a: Disable RC states. */
4915         I915_WRITE(GEN6_RC_CONTROL, 0);
4916
4917         /* Initialize rps frequencies */
4918         gen6_init_rps_frequencies(dev);
4919
4920         /* 2b: Program RC6 thresholds.*/
4921         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4922         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4923         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4924         for_each_ring(ring, dev_priv, unused)
4925                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4926         I915_WRITE(GEN6_RC_SLEEP, 0);
4927         if (IS_BROADWELL(dev))
4928                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4929         else
4930                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4931
4932         /* 3: Enable RC6 */
4933         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4934                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4935         intel_print_rc6_info(dev, rc6_mask);
4936         if (IS_BROADWELL(dev))
4937                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4938                                 GEN7_RC_CTL_TO_MODE |
4939                                 rc6_mask);
4940         else
4941                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4942                                 GEN6_RC_CTL_EI_MODE(1) |
4943                                 rc6_mask);
4944
4945         /* 4 Program defaults and thresholds for RPS*/
4946         I915_WRITE(GEN6_RPNSWREQ,
4947                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4948         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4949                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4950         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4951         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4952
4953         /* Docs recommend 900MHz, and 300 MHz respectively */
4954         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4955                    dev_priv->rps.max_freq_softlimit << 24 |
4956                    dev_priv->rps.min_freq_softlimit << 16);
4957
4958         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4959         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4960         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4961         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4962
4963         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4964
4965         /* 5: Enable RPS */
4966         I915_WRITE(GEN6_RP_CONTROL,
4967                    GEN6_RP_MEDIA_TURBO |
4968                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4969                    GEN6_RP_MEDIA_IS_GFX |
4970                    GEN6_RP_ENABLE |
4971                    GEN6_RP_UP_BUSY_AVG |
4972                    GEN6_RP_DOWN_IDLE_AVG);
4973
4974         /* 6: Ring frequency + overclocking (our driver does this later */
4975
4976         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4977         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4978
4979         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4980 }
4981
4982 static void gen6_enable_rps(struct drm_device *dev)
4983 {
4984         struct drm_i915_private *dev_priv = dev->dev_private;
4985         struct intel_engine_cs *ring;
4986         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4987         u32 gtfifodbg;
4988         int rc6_mode;
4989         int i, ret;
4990
4991         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4992
4993         /* Here begins a magic sequence of register writes to enable
4994          * auto-downclocking.
4995          *
4996          * Perhaps there might be some value in exposing these to
4997          * userspace...
4998          */
4999         I915_WRITE(GEN6_RC_STATE, 0);
5000
5001         /* Clear the DBG now so we don't confuse earlier errors */
5002         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5003                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5004                 I915_WRITE(GTFIFODBG, gtfifodbg);
5005         }
5006
5007         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5008
5009         /* Initialize rps frequencies */
5010         gen6_init_rps_frequencies(dev);
5011
5012         /* disable the counters and set deterministic thresholds */
5013         I915_WRITE(GEN6_RC_CONTROL, 0);
5014
5015         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5016         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5017         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5018         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5019         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5020
5021         for_each_ring(ring, dev_priv, i)
5022                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5023
5024         I915_WRITE(GEN6_RC_SLEEP, 0);
5025         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5026         if (IS_IVYBRIDGE(dev))
5027                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5028         else
5029                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5030         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5031         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5032
5033         /* Check if we are enabling RC6 */
5034         rc6_mode = intel_enable_rc6(dev_priv->dev);
5035         if (rc6_mode & INTEL_RC6_ENABLE)
5036                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5037
5038         /* We don't use those on Haswell */
5039         if (!IS_HASWELL(dev)) {
5040                 if (rc6_mode & INTEL_RC6p_ENABLE)
5041                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5042
5043                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5044                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5045         }
5046
5047         intel_print_rc6_info(dev, rc6_mask);
5048
5049         I915_WRITE(GEN6_RC_CONTROL,
5050                    rc6_mask |
5051                    GEN6_RC_CTL_EI_MODE(1) |
5052                    GEN6_RC_CTL_HW_ENABLE);
5053
5054         /* Power down if completely idle for over 50ms */
5055         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5056         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5057
5058         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5059         if (ret)
5060                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5061
5062         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5063         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5064                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5065                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5066                                  (pcu_mbox & 0xff) * 50);
5067                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5068         }
5069
5070         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5071         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5072
5073         rc6vids = 0;
5074         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5075         if (IS_GEN6(dev) && ret) {
5076                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5077         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5078                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5079                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5080                 rc6vids &= 0xffff00;
5081                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5082                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5083                 if (ret)
5084                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5085         }
5086
5087         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5088 }
5089
5090 static void __gen6_update_ring_freq(struct drm_device *dev)
5091 {
5092         struct drm_i915_private *dev_priv = dev->dev_private;
5093         int min_freq = 15;
5094         unsigned int gpu_freq;
5095         unsigned int max_ia_freq, min_ring_freq;
5096         unsigned int max_gpu_freq, min_gpu_freq;
5097         int scaling_factor = 180;
5098         struct cpufreq_policy *policy;
5099
5100         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5101
5102         policy = cpufreq_cpu_get(0);
5103         if (policy) {
5104                 max_ia_freq = policy->cpuinfo.max_freq;
5105                 cpufreq_cpu_put(policy);
5106         } else {
5107                 /*
5108                  * Default to measured freq if none found, PCU will ensure we
5109                  * don't go over
5110                  */
5111                 max_ia_freq = tsc_khz;
5112         }
5113
5114         /* Convert from kHz to MHz */
5115         max_ia_freq /= 1000;
5116
5117         min_ring_freq = I915_READ(DCLK) & 0xf;
5118         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5119         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5120
5121         if (IS_SKYLAKE(dev)) {
5122                 /* Convert GT frequency to 50 HZ units */
5123                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5124                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5125         } else {
5126                 min_gpu_freq = dev_priv->rps.min_freq;
5127                 max_gpu_freq = dev_priv->rps.max_freq;
5128         }
5129
5130         /*
5131          * For each potential GPU frequency, load a ring frequency we'd like
5132          * to use for memory access.  We do this by specifying the IA frequency
5133          * the PCU should use as a reference to determine the ring frequency.
5134          */
5135         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5136                 int diff = max_gpu_freq - gpu_freq;
5137                 unsigned int ia_freq = 0, ring_freq = 0;
5138
5139                 if (IS_SKYLAKE(dev)) {
5140                         /*
5141                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5142                          * No floor required for ring frequency on SKL.
5143                          */
5144                         ring_freq = gpu_freq;
5145                 } else if (INTEL_INFO(dev)->gen >= 8) {
5146                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5147                         ring_freq = max(min_ring_freq, gpu_freq);
5148                 } else if (IS_HASWELL(dev)) {
5149                         ring_freq = mult_frac(gpu_freq, 5, 4);
5150                         ring_freq = max(min_ring_freq, ring_freq);
5151                         /* leave ia_freq as the default, chosen by cpufreq */
5152                 } else {
5153                         /* On older processors, there is no separate ring
5154                          * clock domain, so in order to boost the bandwidth
5155                          * of the ring, we need to upclock the CPU (ia_freq).
5156                          *
5157                          * For GPU frequencies less than 750MHz,
5158                          * just use the lowest ring freq.
5159                          */
5160                         if (gpu_freq < min_freq)
5161                                 ia_freq = 800;
5162                         else
5163                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5164                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5165                 }
5166
5167                 sandybridge_pcode_write(dev_priv,
5168                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5169                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5170                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5171                                         gpu_freq);
5172         }
5173 }
5174
5175 void gen6_update_ring_freq(struct drm_device *dev)
5176 {
5177         struct drm_i915_private *dev_priv = dev->dev_private;
5178
5179         if (!HAS_CORE_RING_FREQ(dev))
5180                 return;
5181
5182         mutex_lock(&dev_priv->rps.hw_lock);
5183         __gen6_update_ring_freq(dev);
5184         mutex_unlock(&dev_priv->rps.hw_lock);
5185 }
5186
5187 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5188 {
5189         struct drm_device *dev = dev_priv->dev;
5190         u32 val, rp0;
5191
5192         if (dev->pdev->revision >= 0x20) {
5193                 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5194
5195                 switch (INTEL_INFO(dev)->eu_total) {
5196                 case 8:
5197                                 /* (2 * 4) config */
5198                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5199                                 break;
5200                 case 12:
5201                                 /* (2 * 6) config */
5202                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5203                                 break;
5204                 case 16:
5205                                 /* (2 * 8) config */
5206                 default:
5207                                 /* Setting (2 * 8) Min RP0 for any other combination */
5208                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5209                                 break;
5210                 }
5211                 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5212         } else {
5213                 /* For pre-production hardware */
5214                 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
5215                 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
5216                        PUNIT_GPU_STATUS_MAX_FREQ_MASK;
5217         }
5218         return rp0;
5219 }
5220
5221 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5222 {
5223         u32 val, rpe;
5224
5225         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5226         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5227
5228         return rpe;
5229 }
5230
5231 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5232 {
5233         struct drm_device *dev = dev_priv->dev;
5234         u32 val, rp1;
5235
5236         if (dev->pdev->revision >= 0x20) {
5237                 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5238                 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5239         } else {
5240                 /* For pre-production hardware */
5241                 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5242                 rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
5243                        PUNIT_GPU_STATUS_MAX_FREQ_MASK);
5244         }
5245         return rp1;
5246 }
5247
5248 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5249 {
5250         u32 val, rp1;
5251
5252         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5253
5254         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5255
5256         return rp1;
5257 }
5258
5259 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5260 {
5261         u32 val, rp0;
5262
5263         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5264
5265         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5266         /* Clamp to max */
5267         rp0 = min_t(u32, rp0, 0xea);
5268
5269         return rp0;
5270 }
5271
5272 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5273 {
5274         u32 val, rpe;
5275
5276         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5277         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5278         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5279         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5280
5281         return rpe;
5282 }
5283
5284 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5285 {
5286         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5287 }
5288
5289 /* Check that the pctx buffer wasn't move under us. */
5290 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5291 {
5292         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5293
5294         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5295                              dev_priv->vlv_pctx->stolen->start);
5296 }
5297
5298
5299 /* Check that the pcbr address is not empty. */
5300 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5301 {
5302         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5303
5304         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5305 }
5306
5307 static void cherryview_setup_pctx(struct drm_device *dev)
5308 {
5309         struct drm_i915_private *dev_priv = dev->dev_private;
5310         unsigned long pctx_paddr, paddr;
5311         struct i915_gtt *gtt = &dev_priv->gtt;
5312         u32 pcbr;
5313         int pctx_size = 32*1024;
5314
5315         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5316
5317         pcbr = I915_READ(VLV_PCBR);
5318         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5319                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5320                 paddr = (dev_priv->mm.stolen_base +
5321                          (gtt->stolen_size - pctx_size));
5322
5323                 pctx_paddr = (paddr & (~4095));
5324                 I915_WRITE(VLV_PCBR, pctx_paddr);
5325         }
5326
5327         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5328 }
5329
5330 static void valleyview_setup_pctx(struct drm_device *dev)
5331 {
5332         struct drm_i915_private *dev_priv = dev->dev_private;
5333         struct drm_i915_gem_object *pctx;
5334         unsigned long pctx_paddr;
5335         u32 pcbr;
5336         int pctx_size = 24*1024;
5337
5338         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5339
5340         pcbr = I915_READ(VLV_PCBR);
5341         if (pcbr) {
5342                 /* BIOS set it up already, grab the pre-alloc'd space */
5343                 int pcbr_offset;
5344
5345                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5346                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5347                                                                       pcbr_offset,
5348                                                                       I915_GTT_OFFSET_NONE,
5349                                                                       pctx_size);
5350                 goto out;
5351         }
5352
5353         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5354
5355         /*
5356          * From the Gunit register HAS:
5357          * The Gfx driver is expected to program this register and ensure
5358          * proper allocation within Gfx stolen memory.  For example, this
5359          * register should be programmed such than the PCBR range does not
5360          * overlap with other ranges, such as the frame buffer, protected
5361          * memory, or any other relevant ranges.
5362          */
5363         pctx = i915_gem_object_create_stolen(dev, pctx_size);
5364         if (!pctx) {
5365                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5366                 return;
5367         }
5368
5369         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5370         I915_WRITE(VLV_PCBR, pctx_paddr);
5371
5372 out:
5373         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5374         dev_priv->vlv_pctx = pctx;
5375 }
5376
5377 static void valleyview_cleanup_pctx(struct drm_device *dev)
5378 {
5379         struct drm_i915_private *dev_priv = dev->dev_private;
5380
5381         if (WARN_ON(!dev_priv->vlv_pctx))
5382                 return;
5383
5384         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5385         dev_priv->vlv_pctx = NULL;
5386 }
5387
5388 static void valleyview_init_gt_powersave(struct drm_device *dev)
5389 {
5390         struct drm_i915_private *dev_priv = dev->dev_private;
5391         u32 val;
5392
5393         valleyview_setup_pctx(dev);
5394
5395         mutex_lock(&dev_priv->rps.hw_lock);
5396
5397         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5398         switch ((val >> 6) & 3) {
5399         case 0:
5400         case 1:
5401                 dev_priv->mem_freq = 800;
5402                 break;
5403         case 2:
5404                 dev_priv->mem_freq = 1066;
5405                 break;
5406         case 3:
5407                 dev_priv->mem_freq = 1333;
5408                 break;
5409         }
5410         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5411
5412         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5413         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5414         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5415                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5416                          dev_priv->rps.max_freq);
5417
5418         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5419         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5420                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5421                          dev_priv->rps.efficient_freq);
5422
5423         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5424         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5425                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5426                          dev_priv->rps.rp1_freq);
5427
5428         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5429         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5430                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5431                          dev_priv->rps.min_freq);
5432
5433         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5434
5435         /* Preserve min/max settings in case of re-init */
5436         if (dev_priv->rps.max_freq_softlimit == 0)
5437                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5438
5439         if (dev_priv->rps.min_freq_softlimit == 0)
5440                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5441
5442         mutex_unlock(&dev_priv->rps.hw_lock);
5443 }
5444
5445 static void cherryview_init_gt_powersave(struct drm_device *dev)
5446 {
5447         struct drm_i915_private *dev_priv = dev->dev_private;
5448         u32 val;
5449
5450         cherryview_setup_pctx(dev);
5451
5452         mutex_lock(&dev_priv->rps.hw_lock);
5453
5454         mutex_lock(&dev_priv->sb_lock);
5455         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5456         mutex_unlock(&dev_priv->sb_lock);
5457
5458         switch ((val >> 2) & 0x7) {
5459         case 0:
5460         case 1:
5461                 dev_priv->rps.cz_freq = 200;
5462                 dev_priv->mem_freq = 1600;
5463                 break;
5464         case 2:
5465                 dev_priv->rps.cz_freq = 267;
5466                 dev_priv->mem_freq = 1600;
5467                 break;
5468         case 3:
5469                 dev_priv->rps.cz_freq = 333;
5470                 dev_priv->mem_freq = 2000;
5471                 break;
5472         case 4:
5473                 dev_priv->rps.cz_freq = 320;
5474                 dev_priv->mem_freq = 1600;
5475                 break;
5476         case 5:
5477                 dev_priv->rps.cz_freq = 400;
5478                 dev_priv->mem_freq = 1600;
5479                 break;
5480         }
5481         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5482
5483         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5484         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5485         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5486                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5487                          dev_priv->rps.max_freq);
5488
5489         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5490         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5491                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5492                          dev_priv->rps.efficient_freq);
5493
5494         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5495         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5496                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5497                          dev_priv->rps.rp1_freq);
5498
5499         /* PUnit validated range is only [RPe, RP0] */
5500         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5501         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5502                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5503                          dev_priv->rps.min_freq);
5504
5505         WARN_ONCE((dev_priv->rps.max_freq |
5506                    dev_priv->rps.efficient_freq |
5507                    dev_priv->rps.rp1_freq |
5508                    dev_priv->rps.min_freq) & 1,
5509                   "Odd GPU freq values\n");
5510
5511         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5512
5513         /* Preserve min/max settings in case of re-init */
5514         if (dev_priv->rps.max_freq_softlimit == 0)
5515                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5516
5517         if (dev_priv->rps.min_freq_softlimit == 0)
5518                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5519
5520         mutex_unlock(&dev_priv->rps.hw_lock);
5521 }
5522
5523 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5524 {
5525         valleyview_cleanup_pctx(dev);
5526 }
5527
5528 static void cherryview_enable_rps(struct drm_device *dev)
5529 {
5530         struct drm_i915_private *dev_priv = dev->dev_private;
5531         struct intel_engine_cs *ring;
5532         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5533         int i;
5534
5535         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5536
5537         gtfifodbg = I915_READ(GTFIFODBG);
5538         if (gtfifodbg) {
5539                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5540                                  gtfifodbg);
5541                 I915_WRITE(GTFIFODBG, gtfifodbg);
5542         }
5543
5544         cherryview_check_pctx(dev_priv);
5545
5546         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5547          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5548         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5549
5550         /*  Disable RC states. */
5551         I915_WRITE(GEN6_RC_CONTROL, 0);
5552
5553         /* 2a: Program RC6 thresholds.*/
5554         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5555         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5556         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5557
5558         for_each_ring(ring, dev_priv, i)
5559                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5560         I915_WRITE(GEN6_RC_SLEEP, 0);
5561
5562         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5563         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5564
5565         /* allows RC6 residency counter to work */
5566         I915_WRITE(VLV_COUNTER_CONTROL,
5567                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5568                                       VLV_MEDIA_RC6_COUNT_EN |
5569                                       VLV_RENDER_RC6_COUNT_EN));
5570
5571         /* For now we assume BIOS is allocating and populating the PCBR  */
5572         pcbr = I915_READ(VLV_PCBR);
5573
5574         /* 3: Enable RC6 */
5575         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5576                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5577                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5578
5579         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5580
5581         /* 4 Program defaults and thresholds for RPS*/
5582         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5583         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5584         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5585         I915_WRITE(GEN6_RP_UP_EI, 66000);
5586         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5587
5588         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5589
5590         /* 5: Enable RPS */
5591         I915_WRITE(GEN6_RP_CONTROL,
5592                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5593                    GEN6_RP_MEDIA_IS_GFX |
5594                    GEN6_RP_ENABLE |
5595                    GEN6_RP_UP_BUSY_AVG |
5596                    GEN6_RP_DOWN_IDLE_AVG);
5597
5598         /* Setting Fixed Bias */
5599         val = VLV_OVERRIDE_EN |
5600                   VLV_SOC_TDP_EN |
5601                   CHV_BIAS_CPU_50_SOC_50;
5602         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5603
5604         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5605
5606         /* RPS code assumes GPLL is used */
5607         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5608
5609         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5610         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5611
5612         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5613         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5614                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5615                          dev_priv->rps.cur_freq);
5616
5617         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5618                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5619                          dev_priv->rps.efficient_freq);
5620
5621         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5622
5623         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5624 }
5625
5626 static void valleyview_enable_rps(struct drm_device *dev)
5627 {
5628         struct drm_i915_private *dev_priv = dev->dev_private;
5629         struct intel_engine_cs *ring;
5630         u32 gtfifodbg, val, rc6_mode = 0;
5631         int i;
5632
5633         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5634
5635         valleyview_check_pctx(dev_priv);
5636
5637         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5638                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5639                                  gtfifodbg);
5640                 I915_WRITE(GTFIFODBG, gtfifodbg);
5641         }
5642
5643         /* If VLV, Forcewake all wells, else re-direct to regular path */
5644         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5645
5646         /*  Disable RC states. */
5647         I915_WRITE(GEN6_RC_CONTROL, 0);
5648
5649         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5650         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5651         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5652         I915_WRITE(GEN6_RP_UP_EI, 66000);
5653         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5654
5655         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5656
5657         I915_WRITE(GEN6_RP_CONTROL,
5658                    GEN6_RP_MEDIA_TURBO |
5659                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5660                    GEN6_RP_MEDIA_IS_GFX |
5661                    GEN6_RP_ENABLE |
5662                    GEN6_RP_UP_BUSY_AVG |
5663                    GEN6_RP_DOWN_IDLE_CONT);
5664
5665         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5666         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5667         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5668
5669         for_each_ring(ring, dev_priv, i)
5670                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5671
5672         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5673
5674         /* allows RC6 residency counter to work */
5675         I915_WRITE(VLV_COUNTER_CONTROL,
5676                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5677                                       VLV_RENDER_RC0_COUNT_EN |
5678                                       VLV_MEDIA_RC6_COUNT_EN |
5679                                       VLV_RENDER_RC6_COUNT_EN));
5680
5681         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5682                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5683
5684         intel_print_rc6_info(dev, rc6_mode);
5685
5686         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5687
5688         /* Setting Fixed Bias */
5689         val = VLV_OVERRIDE_EN |
5690                   VLV_SOC_TDP_EN |
5691                   VLV_BIAS_CPU_125_SOC_875;
5692         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5693
5694         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5695
5696         /* RPS code assumes GPLL is used */
5697         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5698
5699         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5700         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5701
5702         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5703         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5704                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5705                          dev_priv->rps.cur_freq);
5706
5707         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5708                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5709                          dev_priv->rps.efficient_freq);
5710
5711         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5712
5713         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5714 }
5715
5716 static unsigned long intel_pxfreq(u32 vidfreq)
5717 {
5718         unsigned long freq;
5719         int div = (vidfreq & 0x3f0000) >> 16;
5720         int post = (vidfreq & 0x3000) >> 12;
5721         int pre = (vidfreq & 0x7);
5722
5723         if (!pre)
5724                 return 0;
5725
5726         freq = ((div * 133333) / ((1<<post) * pre));
5727
5728         return freq;
5729 }
5730
5731 static const struct cparams {
5732         u16 i;
5733         u16 t;
5734         u16 m;
5735         u16 c;
5736 } cparams[] = {
5737         { 1, 1333, 301, 28664 },
5738         { 1, 1066, 294, 24460 },
5739         { 1, 800, 294, 25192 },
5740         { 0, 1333, 276, 27605 },
5741         { 0, 1066, 276, 27605 },
5742         { 0, 800, 231, 23784 },
5743 };
5744
5745 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5746 {
5747         u64 total_count, diff, ret;
5748         u32 count1, count2, count3, m = 0, c = 0;
5749         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5750         int i;
5751
5752         assert_spin_locked(&mchdev_lock);
5753
5754         diff1 = now - dev_priv->ips.last_time1;
5755
5756         /* Prevent division-by-zero if we are asking too fast.
5757          * Also, we don't get interesting results if we are polling
5758          * faster than once in 10ms, so just return the saved value
5759          * in such cases.
5760          */
5761         if (diff1 <= 10)
5762                 return dev_priv->ips.chipset_power;
5763
5764         count1 = I915_READ(DMIEC);
5765         count2 = I915_READ(DDREC);
5766         count3 = I915_READ(CSIEC);
5767
5768         total_count = count1 + count2 + count3;
5769
5770         /* FIXME: handle per-counter overflow */
5771         if (total_count < dev_priv->ips.last_count1) {
5772                 diff = ~0UL - dev_priv->ips.last_count1;
5773                 diff += total_count;
5774         } else {
5775                 diff = total_count - dev_priv->ips.last_count1;
5776         }
5777
5778         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5779                 if (cparams[i].i == dev_priv->ips.c_m &&
5780                     cparams[i].t == dev_priv->ips.r_t) {
5781                         m = cparams[i].m;
5782                         c = cparams[i].c;
5783                         break;
5784                 }
5785         }
5786
5787         diff = div_u64(diff, diff1);
5788         ret = ((m * diff) + c);
5789         ret = div_u64(ret, 10);
5790
5791         dev_priv->ips.last_count1 = total_count;
5792         dev_priv->ips.last_time1 = now;
5793
5794         dev_priv->ips.chipset_power = ret;
5795
5796         return ret;
5797 }
5798
5799 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5800 {
5801         struct drm_device *dev = dev_priv->dev;
5802         unsigned long val;
5803
5804         if (INTEL_INFO(dev)->gen != 5)
5805                 return 0;
5806
5807         spin_lock_irq(&mchdev_lock);
5808
5809         val = __i915_chipset_val(dev_priv);
5810
5811         spin_unlock_irq(&mchdev_lock);
5812
5813         return val;
5814 }
5815
5816 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5817 {
5818         unsigned long m, x, b;
5819         u32 tsfs;
5820
5821         tsfs = I915_READ(TSFS);
5822
5823         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5824         x = I915_READ8(TR1);
5825
5826         b = tsfs & TSFS_INTR_MASK;
5827
5828         return ((m * x) / 127) - b;
5829 }
5830
5831 static int _pxvid_to_vd(u8 pxvid)
5832 {
5833         if (pxvid == 0)
5834                 return 0;
5835
5836         if (pxvid >= 8 && pxvid < 31)
5837                 pxvid = 31;
5838
5839         return (pxvid + 2) * 125;
5840 }
5841
5842 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5843 {
5844         struct drm_device *dev = dev_priv->dev;
5845         const int vd = _pxvid_to_vd(pxvid);
5846         const int vm = vd - 1125;
5847
5848         if (INTEL_INFO(dev)->is_mobile)
5849                 return vm > 0 ? vm : 0;
5850
5851         return vd;
5852 }
5853
5854 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5855 {
5856         u64 now, diff, diffms;
5857         u32 count;
5858
5859         assert_spin_locked(&mchdev_lock);
5860
5861         now = ktime_get_raw_ns();
5862         diffms = now - dev_priv->ips.last_time2;
5863         do_div(diffms, NSEC_PER_MSEC);
5864
5865         /* Don't divide by 0 */
5866         if (!diffms)
5867                 return;
5868
5869         count = I915_READ(GFXEC);
5870
5871         if (count < dev_priv->ips.last_count2) {
5872                 diff = ~0UL - dev_priv->ips.last_count2;
5873                 diff += count;
5874         } else {
5875                 diff = count - dev_priv->ips.last_count2;
5876         }
5877
5878         dev_priv->ips.last_count2 = count;
5879         dev_priv->ips.last_time2 = now;
5880
5881         /* More magic constants... */
5882         diff = diff * 1181;
5883         diff = div_u64(diff, diffms * 10);
5884         dev_priv->ips.gfx_power = diff;
5885 }
5886
5887 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5888 {
5889         struct drm_device *dev = dev_priv->dev;
5890
5891         if (INTEL_INFO(dev)->gen != 5)
5892                 return;
5893
5894         spin_lock_irq(&mchdev_lock);
5895
5896         __i915_update_gfx_val(dev_priv);
5897
5898         spin_unlock_irq(&mchdev_lock);
5899 }
5900
5901 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5902 {
5903         unsigned long t, corr, state1, corr2, state2;
5904         u32 pxvid, ext_v;
5905
5906         assert_spin_locked(&mchdev_lock);
5907
5908         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5909         pxvid = (pxvid >> 24) & 0x7f;
5910         ext_v = pvid_to_extvid(dev_priv, pxvid);
5911
5912         state1 = ext_v;
5913
5914         t = i915_mch_val(dev_priv);
5915
5916         /* Revel in the empirically derived constants */
5917
5918         /* Correction factor in 1/100000 units */
5919         if (t > 80)
5920                 corr = ((t * 2349) + 135940);
5921         else if (t >= 50)
5922                 corr = ((t * 964) + 29317);
5923         else /* < 50 */
5924                 corr = ((t * 301) + 1004);
5925
5926         corr = corr * ((150142 * state1) / 10000 - 78642);
5927         corr /= 100000;
5928         corr2 = (corr * dev_priv->ips.corr);
5929
5930         state2 = (corr2 * state1) / 10000;
5931         state2 /= 100; /* convert to mW */
5932
5933         __i915_update_gfx_val(dev_priv);
5934
5935         return dev_priv->ips.gfx_power + state2;
5936 }
5937
5938 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5939 {
5940         struct drm_device *dev = dev_priv->dev;
5941         unsigned long val;
5942
5943         if (INTEL_INFO(dev)->gen != 5)
5944                 return 0;
5945
5946         spin_lock_irq(&mchdev_lock);
5947
5948         val = __i915_gfx_val(dev_priv);
5949
5950         spin_unlock_irq(&mchdev_lock);
5951
5952         return val;
5953 }
5954
5955 /**
5956  * i915_read_mch_val - return value for IPS use
5957  *
5958  * Calculate and return a value for the IPS driver to use when deciding whether
5959  * we have thermal and power headroom to increase CPU or GPU power budget.
5960  */
5961 unsigned long i915_read_mch_val(void)
5962 {
5963         struct drm_i915_private *dev_priv;
5964         unsigned long chipset_val, graphics_val, ret = 0;
5965
5966         spin_lock_irq(&mchdev_lock);
5967         if (!i915_mch_dev)
5968                 goto out_unlock;
5969         dev_priv = i915_mch_dev;
5970
5971         chipset_val = __i915_chipset_val(dev_priv);
5972         graphics_val = __i915_gfx_val(dev_priv);
5973
5974         ret = chipset_val + graphics_val;
5975
5976 out_unlock:
5977         spin_unlock_irq(&mchdev_lock);
5978
5979         return ret;
5980 }
5981 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5982
5983 /**
5984  * i915_gpu_raise - raise GPU frequency limit
5985  *
5986  * Raise the limit; IPS indicates we have thermal headroom.
5987  */
5988 bool i915_gpu_raise(void)
5989 {
5990         struct drm_i915_private *dev_priv;
5991         bool ret = true;
5992
5993         spin_lock_irq(&mchdev_lock);
5994         if (!i915_mch_dev) {
5995                 ret = false;
5996                 goto out_unlock;
5997         }
5998         dev_priv = i915_mch_dev;
5999
6000         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6001                 dev_priv->ips.max_delay--;
6002
6003 out_unlock:
6004         spin_unlock_irq(&mchdev_lock);
6005
6006         return ret;
6007 }
6008 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6009
6010 /**
6011  * i915_gpu_lower - lower GPU frequency limit
6012  *
6013  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6014  * frequency maximum.
6015  */
6016 bool i915_gpu_lower(void)
6017 {
6018         struct drm_i915_private *dev_priv;
6019         bool ret = true;
6020
6021         spin_lock_irq(&mchdev_lock);
6022         if (!i915_mch_dev) {
6023                 ret = false;
6024                 goto out_unlock;
6025         }
6026         dev_priv = i915_mch_dev;
6027
6028         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6029                 dev_priv->ips.max_delay++;
6030
6031 out_unlock:
6032         spin_unlock_irq(&mchdev_lock);
6033
6034         return ret;
6035 }
6036 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6037
6038 /**
6039  * i915_gpu_busy - indicate GPU business to IPS
6040  *
6041  * Tell the IPS driver whether or not the GPU is busy.
6042  */
6043 bool i915_gpu_busy(void)
6044 {
6045         struct drm_i915_private *dev_priv;
6046         struct intel_engine_cs *ring;
6047         bool ret = false;
6048         int i;
6049
6050         spin_lock_irq(&mchdev_lock);
6051         if (!i915_mch_dev)
6052                 goto out_unlock;
6053         dev_priv = i915_mch_dev;
6054
6055         for_each_ring(ring, dev_priv, i)
6056                 ret |= !list_empty(&ring->request_list);
6057
6058 out_unlock:
6059         spin_unlock_irq(&mchdev_lock);
6060
6061         return ret;
6062 }
6063 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6064
6065 /**
6066  * i915_gpu_turbo_disable - disable graphics turbo
6067  *
6068  * Disable graphics turbo by resetting the max frequency and setting the
6069  * current frequency to the default.
6070  */
6071 bool i915_gpu_turbo_disable(void)
6072 {
6073         struct drm_i915_private *dev_priv;
6074         bool ret = true;
6075
6076         spin_lock_irq(&mchdev_lock);
6077         if (!i915_mch_dev) {
6078                 ret = false;
6079                 goto out_unlock;
6080         }
6081         dev_priv = i915_mch_dev;
6082
6083         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6084
6085         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6086                 ret = false;
6087
6088 out_unlock:
6089         spin_unlock_irq(&mchdev_lock);
6090
6091         return ret;
6092 }
6093 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6094
6095 /**
6096  * Tells the intel_ips driver that the i915 driver is now loaded, if
6097  * IPS got loaded first.
6098  *
6099  * This awkward dance is so that neither module has to depend on the
6100  * other in order for IPS to do the appropriate communication of
6101  * GPU turbo limits to i915.
6102  */
6103 static void
6104 ips_ping_for_i915_load(void)
6105 {
6106         void (*link)(void);
6107
6108         link = symbol_get(ips_link_to_i915_driver);
6109         if (link) {
6110                 link();
6111                 symbol_put(ips_link_to_i915_driver);
6112         }
6113 }
6114
6115 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6116 {
6117         /* We only register the i915 ips part with intel-ips once everything is
6118          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6119         spin_lock_irq(&mchdev_lock);
6120         i915_mch_dev = dev_priv;
6121         spin_unlock_irq(&mchdev_lock);
6122
6123         ips_ping_for_i915_load();
6124 }
6125
6126 void intel_gpu_ips_teardown(void)
6127 {
6128         spin_lock_irq(&mchdev_lock);
6129         i915_mch_dev = NULL;
6130         spin_unlock_irq(&mchdev_lock);
6131 }
6132
6133 static void intel_init_emon(struct drm_device *dev)
6134 {
6135         struct drm_i915_private *dev_priv = dev->dev_private;
6136         u32 lcfuse;
6137         u8 pxw[16];
6138         int i;
6139
6140         /* Disable to program */
6141         I915_WRITE(ECR, 0);
6142         POSTING_READ(ECR);
6143
6144         /* Program energy weights for various events */
6145         I915_WRITE(SDEW, 0x15040d00);
6146         I915_WRITE(CSIEW0, 0x007f0000);
6147         I915_WRITE(CSIEW1, 0x1e220004);
6148         I915_WRITE(CSIEW2, 0x04000004);
6149
6150         for (i = 0; i < 5; i++)
6151                 I915_WRITE(PEW + (i * 4), 0);
6152         for (i = 0; i < 3; i++)
6153                 I915_WRITE(DEW + (i * 4), 0);
6154
6155         /* Program P-state weights to account for frequency power adjustment */
6156         for (i = 0; i < 16; i++) {
6157                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
6158                 unsigned long freq = intel_pxfreq(pxvidfreq);
6159                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6160                         PXVFREQ_PX_SHIFT;
6161                 unsigned long val;
6162
6163                 val = vid * vid;
6164                 val *= (freq / 1000);
6165                 val *= 255;
6166                 val /= (127*127*900);
6167                 if (val > 0xff)
6168                         DRM_ERROR("bad pxval: %ld\n", val);
6169                 pxw[i] = val;
6170         }
6171         /* Render standby states get 0 weight */
6172         pxw[14] = 0;
6173         pxw[15] = 0;
6174
6175         for (i = 0; i < 4; i++) {
6176                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6177                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6178                 I915_WRITE(PXW + (i * 4), val);
6179         }
6180
6181         /* Adjust magic regs to magic values (more experimental results) */
6182         I915_WRITE(OGW0, 0);
6183         I915_WRITE(OGW1, 0);
6184         I915_WRITE(EG0, 0x00007f00);
6185         I915_WRITE(EG1, 0x0000000e);
6186         I915_WRITE(EG2, 0x000e0000);
6187         I915_WRITE(EG3, 0x68000300);
6188         I915_WRITE(EG4, 0x42000000);
6189         I915_WRITE(EG5, 0x00140031);
6190         I915_WRITE(EG6, 0);
6191         I915_WRITE(EG7, 0);
6192
6193         for (i = 0; i < 8; i++)
6194                 I915_WRITE(PXWL + (i * 4), 0);
6195
6196         /* Enable PMON + select events */
6197         I915_WRITE(ECR, 0x80000019);
6198
6199         lcfuse = I915_READ(LCFUSE02);
6200
6201         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6202 }
6203
6204 void intel_init_gt_powersave(struct drm_device *dev)
6205 {
6206         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6207
6208         if (IS_CHERRYVIEW(dev))
6209                 cherryview_init_gt_powersave(dev);
6210         else if (IS_VALLEYVIEW(dev))
6211                 valleyview_init_gt_powersave(dev);
6212 }
6213
6214 void intel_cleanup_gt_powersave(struct drm_device *dev)
6215 {
6216         if (IS_CHERRYVIEW(dev))
6217                 return;
6218         else if (IS_VALLEYVIEW(dev))
6219                 valleyview_cleanup_gt_powersave(dev);
6220 }
6221
6222 static void gen6_suspend_rps(struct drm_device *dev)
6223 {
6224         struct drm_i915_private *dev_priv = dev->dev_private;
6225
6226         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6227
6228         gen6_disable_rps_interrupts(dev);
6229 }
6230
6231 /**
6232  * intel_suspend_gt_powersave - suspend PM work and helper threads
6233  * @dev: drm device
6234  *
6235  * We don't want to disable RC6 or other features here, we just want
6236  * to make sure any work we've queued has finished and won't bother
6237  * us while we're suspended.
6238  */
6239 void intel_suspend_gt_powersave(struct drm_device *dev)
6240 {
6241         struct drm_i915_private *dev_priv = dev->dev_private;
6242
6243         if (INTEL_INFO(dev)->gen < 6)
6244                 return;
6245
6246         gen6_suspend_rps(dev);
6247
6248         /* Force GPU to min freq during suspend */
6249         gen6_rps_idle(dev_priv);
6250 }
6251
6252 void intel_disable_gt_powersave(struct drm_device *dev)
6253 {
6254         struct drm_i915_private *dev_priv = dev->dev_private;
6255
6256         if (IS_IRONLAKE_M(dev)) {
6257                 ironlake_disable_drps(dev);
6258         } else if (INTEL_INFO(dev)->gen >= 6) {
6259                 intel_suspend_gt_powersave(dev);
6260
6261                 mutex_lock(&dev_priv->rps.hw_lock);
6262                 if (INTEL_INFO(dev)->gen >= 9)
6263                         gen9_disable_rps(dev);
6264                 else if (IS_CHERRYVIEW(dev))
6265                         cherryview_disable_rps(dev);
6266                 else if (IS_VALLEYVIEW(dev))
6267                         valleyview_disable_rps(dev);
6268                 else
6269                         gen6_disable_rps(dev);
6270
6271                 dev_priv->rps.enabled = false;
6272                 mutex_unlock(&dev_priv->rps.hw_lock);
6273         }
6274 }
6275
6276 static void intel_gen6_powersave_work(struct work_struct *work)
6277 {
6278         struct drm_i915_private *dev_priv =
6279                 container_of(work, struct drm_i915_private,
6280                              rps.delayed_resume_work.work);
6281         struct drm_device *dev = dev_priv->dev;
6282
6283         mutex_lock(&dev_priv->rps.hw_lock);
6284
6285         gen6_reset_rps_interrupts(dev);
6286
6287         if (IS_CHERRYVIEW(dev)) {
6288                 cherryview_enable_rps(dev);
6289         } else if (IS_VALLEYVIEW(dev)) {
6290                 valleyview_enable_rps(dev);
6291         } else if (INTEL_INFO(dev)->gen >= 9) {
6292                 gen9_enable_rc6(dev);
6293                 gen9_enable_rps(dev);
6294                 if (IS_SKYLAKE(dev))
6295                         __gen6_update_ring_freq(dev);
6296         } else if (IS_BROADWELL(dev)) {
6297                 gen8_enable_rps(dev);
6298                 __gen6_update_ring_freq(dev);
6299         } else {
6300                 gen6_enable_rps(dev);
6301                 __gen6_update_ring_freq(dev);
6302         }
6303
6304         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6305         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6306
6307         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6308         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6309
6310         dev_priv->rps.enabled = true;
6311
6312         gen6_enable_rps_interrupts(dev);
6313
6314         mutex_unlock(&dev_priv->rps.hw_lock);
6315
6316         intel_runtime_pm_put(dev_priv);
6317 }
6318
6319 void intel_enable_gt_powersave(struct drm_device *dev)
6320 {
6321         struct drm_i915_private *dev_priv = dev->dev_private;
6322
6323         /* Powersaving is controlled by the host when inside a VM */
6324         if (intel_vgpu_active(dev))
6325                 return;
6326
6327         if (IS_IRONLAKE_M(dev)) {
6328                 mutex_lock(&dev->struct_mutex);
6329                 ironlake_enable_drps(dev);
6330                 intel_init_emon(dev);
6331                 mutex_unlock(&dev->struct_mutex);
6332         } else if (INTEL_INFO(dev)->gen >= 6) {
6333                 /*
6334                  * PCU communication is slow and this doesn't need to be
6335                  * done at any specific time, so do this out of our fast path
6336                  * to make resume and init faster.
6337                  *
6338                  * We depend on the HW RC6 power context save/restore
6339                  * mechanism when entering D3 through runtime PM suspend. So
6340                  * disable RPM until RPS/RC6 is properly setup. We can only
6341                  * get here via the driver load/system resume/runtime resume
6342                  * paths, so the _noresume version is enough (and in case of
6343                  * runtime resume it's necessary).
6344                  */
6345                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6346                                            round_jiffies_up_relative(HZ)))
6347                         intel_runtime_pm_get_noresume(dev_priv);
6348         }
6349 }
6350
6351 void intel_reset_gt_powersave(struct drm_device *dev)
6352 {
6353         struct drm_i915_private *dev_priv = dev->dev_private;
6354
6355         if (INTEL_INFO(dev)->gen < 6)
6356                 return;
6357
6358         gen6_suspend_rps(dev);
6359         dev_priv->rps.enabled = false;
6360 }
6361
6362 static void ibx_init_clock_gating(struct drm_device *dev)
6363 {
6364         struct drm_i915_private *dev_priv = dev->dev_private;
6365
6366         /*
6367          * On Ibex Peak and Cougar Point, we need to disable clock
6368          * gating for the panel power sequencer or it will fail to
6369          * start up when no ports are active.
6370          */
6371         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6372 }
6373
6374 static void g4x_disable_trickle_feed(struct drm_device *dev)
6375 {
6376         struct drm_i915_private *dev_priv = dev->dev_private;
6377         enum pipe pipe;
6378
6379         for_each_pipe(dev_priv, pipe) {
6380                 I915_WRITE(DSPCNTR(pipe),
6381                            I915_READ(DSPCNTR(pipe)) |
6382                            DISPPLANE_TRICKLE_FEED_DISABLE);
6383
6384                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6385                 POSTING_READ(DSPSURF(pipe));
6386         }
6387 }
6388
6389 static void ilk_init_lp_watermarks(struct drm_device *dev)
6390 {
6391         struct drm_i915_private *dev_priv = dev->dev_private;
6392
6393         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6394         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6395         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6396
6397         /*
6398          * Don't touch WM1S_LP_EN here.
6399          * Doing so could cause underruns.
6400          */
6401 }
6402
6403 static void ironlake_init_clock_gating(struct drm_device *dev)
6404 {
6405         struct drm_i915_private *dev_priv = dev->dev_private;
6406         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6407
6408         /*
6409          * Required for FBC
6410          * WaFbcDisableDpfcClockGating:ilk
6411          */
6412         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6413                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6414                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6415
6416         I915_WRITE(PCH_3DCGDIS0,
6417                    MARIUNIT_CLOCK_GATE_DISABLE |
6418                    SVSMUNIT_CLOCK_GATE_DISABLE);
6419         I915_WRITE(PCH_3DCGDIS1,
6420                    VFMUNIT_CLOCK_GATE_DISABLE);
6421
6422         /*
6423          * According to the spec the following bits should be set in
6424          * order to enable memory self-refresh
6425          * The bit 22/21 of 0x42004
6426          * The bit 5 of 0x42020
6427          * The bit 15 of 0x45000
6428          */
6429         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6430                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6431                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6432         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6433         I915_WRITE(DISP_ARB_CTL,
6434                    (I915_READ(DISP_ARB_CTL) |
6435                     DISP_FBC_WM_DIS));
6436
6437         ilk_init_lp_watermarks(dev);
6438
6439         /*
6440          * Based on the document from hardware guys the following bits
6441          * should be set unconditionally in order to enable FBC.
6442          * The bit 22 of 0x42000
6443          * The bit 22 of 0x42004
6444          * The bit 7,8,9 of 0x42020.
6445          */
6446         if (IS_IRONLAKE_M(dev)) {
6447                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6448                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6449                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6450                            ILK_FBCQ_DIS);
6451                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6452                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6453                            ILK_DPARB_GATE);
6454         }
6455
6456         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6457
6458         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6459                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6460                    ILK_ELPIN_409_SELECT);
6461         I915_WRITE(_3D_CHICKEN2,
6462                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6463                    _3D_CHICKEN2_WM_READ_PIPELINED);
6464
6465         /* WaDisableRenderCachePipelinedFlush:ilk */
6466         I915_WRITE(CACHE_MODE_0,
6467                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6468
6469         /* WaDisable_RenderCache_OperationalFlush:ilk */
6470         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6471
6472         g4x_disable_trickle_feed(dev);
6473
6474         ibx_init_clock_gating(dev);
6475 }
6476
6477 static void cpt_init_clock_gating(struct drm_device *dev)
6478 {
6479         struct drm_i915_private *dev_priv = dev->dev_private;
6480         int pipe;
6481         uint32_t val;
6482
6483         /*
6484          * On Ibex Peak and Cougar Point, we need to disable clock
6485          * gating for the panel power sequencer or it will fail to
6486          * start up when no ports are active.
6487          */
6488         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6489                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6490                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6491         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6492                    DPLS_EDP_PPS_FIX_DIS);
6493         /* The below fixes the weird display corruption, a few pixels shifted
6494          * downward, on (only) LVDS of some HP laptops with IVY.
6495          */
6496         for_each_pipe(dev_priv, pipe) {
6497                 val = I915_READ(TRANS_CHICKEN2(pipe));
6498                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6499                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6500                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6501                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6502                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6503                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6504                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6505                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6506         }
6507         /* WADP0ClockGatingDisable */
6508         for_each_pipe(dev_priv, pipe) {
6509                 I915_WRITE(TRANS_CHICKEN1(pipe),
6510                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6511         }
6512 }
6513
6514 static void gen6_check_mch_setup(struct drm_device *dev)
6515 {
6516         struct drm_i915_private *dev_priv = dev->dev_private;
6517         uint32_t tmp;
6518
6519         tmp = I915_READ(MCH_SSKPD);
6520         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6521                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6522                               tmp);
6523 }
6524
6525 static void gen6_init_clock_gating(struct drm_device *dev)
6526 {
6527         struct drm_i915_private *dev_priv = dev->dev_private;
6528         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6529
6530         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6531
6532         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6533                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6534                    ILK_ELPIN_409_SELECT);
6535
6536         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6537         I915_WRITE(_3D_CHICKEN,
6538                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6539
6540         /* WaDisable_RenderCache_OperationalFlush:snb */
6541         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6542
6543         /*
6544          * BSpec recoomends 8x4 when MSAA is used,
6545          * however in practice 16x4 seems fastest.
6546          *
6547          * Note that PS/WM thread counts depend on the WIZ hashing
6548          * disable bit, which we don't touch here, but it's good
6549          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6550          */
6551         I915_WRITE(GEN6_GT_MODE,
6552                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6553
6554         ilk_init_lp_watermarks(dev);
6555
6556         I915_WRITE(CACHE_MODE_0,
6557                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6558
6559         I915_WRITE(GEN6_UCGCTL1,
6560                    I915_READ(GEN6_UCGCTL1) |
6561                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6562                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6563
6564         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6565          * gating disable must be set.  Failure to set it results in
6566          * flickering pixels due to Z write ordering failures after
6567          * some amount of runtime in the Mesa "fire" demo, and Unigine
6568          * Sanctuary and Tropics, and apparently anything else with
6569          * alpha test or pixel discard.
6570          *
6571          * According to the spec, bit 11 (RCCUNIT) must also be set,
6572          * but we didn't debug actual testcases to find it out.
6573          *
6574          * WaDisableRCCUnitClockGating:snb
6575          * WaDisableRCPBUnitClockGating:snb
6576          */
6577         I915_WRITE(GEN6_UCGCTL2,
6578                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6579                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6580
6581         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6582         I915_WRITE(_3D_CHICKEN3,
6583                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6584
6585         /*
6586          * Bspec says:
6587          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6588          * 3DSTATE_SF number of SF output attributes is more than 16."
6589          */
6590         I915_WRITE(_3D_CHICKEN3,
6591                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6592
6593         /*
6594          * According to the spec the following bits should be
6595          * set in order to enable memory self-refresh and fbc:
6596          * The bit21 and bit22 of 0x42000
6597          * The bit21 and bit22 of 0x42004
6598          * The bit5 and bit7 of 0x42020
6599          * The bit14 of 0x70180
6600          * The bit14 of 0x71180
6601          *
6602          * WaFbcAsynchFlipDisableFbcQueue:snb
6603          */
6604         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6605                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6606                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6607         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6608                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6609                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6610         I915_WRITE(ILK_DSPCLK_GATE_D,
6611                    I915_READ(ILK_DSPCLK_GATE_D) |
6612                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6613                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6614
6615         g4x_disable_trickle_feed(dev);
6616
6617         cpt_init_clock_gating(dev);
6618
6619         gen6_check_mch_setup(dev);
6620 }
6621
6622 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6623 {
6624         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6625
6626         /*
6627          * WaVSThreadDispatchOverride:ivb,vlv
6628          *
6629          * This actually overrides the dispatch
6630          * mode for all thread types.
6631          */
6632         reg &= ~GEN7_FF_SCHED_MASK;
6633         reg |= GEN7_FF_TS_SCHED_HW;
6634         reg |= GEN7_FF_VS_SCHED_HW;
6635         reg |= GEN7_FF_DS_SCHED_HW;
6636
6637         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6638 }
6639
6640 static void lpt_init_clock_gating(struct drm_device *dev)
6641 {
6642         struct drm_i915_private *dev_priv = dev->dev_private;
6643
6644         /*
6645          * TODO: this bit should only be enabled when really needed, then
6646          * disabled when not needed anymore in order to save power.
6647          */
6648         if (HAS_PCH_LPT_LP(dev))
6649                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6650                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6651                            PCH_LP_PARTITION_LEVEL_DISABLE);
6652
6653         /* WADPOClockGatingDisable:hsw */
6654         I915_WRITE(_TRANSA_CHICKEN1,
6655                    I915_READ(_TRANSA_CHICKEN1) |
6656                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6657 }
6658
6659 static void lpt_suspend_hw(struct drm_device *dev)
6660 {
6661         struct drm_i915_private *dev_priv = dev->dev_private;
6662
6663         if (HAS_PCH_LPT_LP(dev)) {
6664                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6665
6666                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6667                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6668         }
6669 }
6670
6671 static void broadwell_init_clock_gating(struct drm_device *dev)
6672 {
6673         struct drm_i915_private *dev_priv = dev->dev_private;
6674         enum pipe pipe;
6675         uint32_t misccpctl;
6676
6677         ilk_init_lp_watermarks(dev);
6678
6679         /* WaSwitchSolVfFArbitrationPriority:bdw */
6680         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6681
6682         /* WaPsrDPAMaskVBlankInSRD:bdw */
6683         I915_WRITE(CHICKEN_PAR1_1,
6684                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6685
6686         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6687         for_each_pipe(dev_priv, pipe) {
6688                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6689                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6690                            BDW_DPRS_MASK_VBLANK_SRD);
6691         }
6692
6693         /* WaVSRefCountFullforceMissDisable:bdw */
6694         /* WaDSRefCountFullforceMissDisable:bdw */
6695         I915_WRITE(GEN7_FF_THREAD_MODE,
6696                    I915_READ(GEN7_FF_THREAD_MODE) &
6697                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6698
6699         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6700                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6701
6702         /* WaDisableSDEUnitClockGating:bdw */
6703         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6704                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6705
6706         /*
6707          * WaProgramL3SqcReg1Default:bdw
6708          * WaTempDisableDOPClkGating:bdw
6709          */
6710         misccpctl = I915_READ(GEN7_MISCCPCTL);
6711         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6712         I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6713         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6714
6715         /*
6716          * WaGttCachingOffByDefault:bdw
6717          * GTT cache may not work with big pages, so if those
6718          * are ever enabled GTT cache may need to be disabled.
6719          */
6720         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6721
6722         lpt_init_clock_gating(dev);
6723 }
6724
6725 static void haswell_init_clock_gating(struct drm_device *dev)
6726 {
6727         struct drm_i915_private *dev_priv = dev->dev_private;
6728
6729         ilk_init_lp_watermarks(dev);
6730
6731         /* L3 caching of data atomics doesn't work -- disable it. */
6732         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6733         I915_WRITE(HSW_ROW_CHICKEN3,
6734                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6735
6736         /* This is required by WaCatErrorRejectionIssue:hsw */
6737         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6738                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6739                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6740
6741         /* WaVSRefCountFullforceMissDisable:hsw */
6742         I915_WRITE(GEN7_FF_THREAD_MODE,
6743                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6744
6745         /* WaDisable_RenderCache_OperationalFlush:hsw */
6746         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6747
6748         /* enable HiZ Raw Stall Optimization */
6749         I915_WRITE(CACHE_MODE_0_GEN7,
6750                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6751
6752         /* WaDisable4x2SubspanOptimization:hsw */
6753         I915_WRITE(CACHE_MODE_1,
6754                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6755
6756         /*
6757          * BSpec recommends 8x4 when MSAA is used,
6758          * however in practice 16x4 seems fastest.
6759          *
6760          * Note that PS/WM thread counts depend on the WIZ hashing
6761          * disable bit, which we don't touch here, but it's good
6762          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6763          */
6764         I915_WRITE(GEN7_GT_MODE,
6765                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6766
6767         /* WaSampleCChickenBitEnable:hsw */
6768         I915_WRITE(HALF_SLICE_CHICKEN3,
6769                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6770
6771         /* WaSwitchSolVfFArbitrationPriority:hsw */
6772         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6773
6774         /* WaRsPkgCStateDisplayPMReq:hsw */
6775         I915_WRITE(CHICKEN_PAR1_1,
6776                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6777
6778         lpt_init_clock_gating(dev);
6779 }
6780
6781 static void ivybridge_init_clock_gating(struct drm_device *dev)
6782 {
6783         struct drm_i915_private *dev_priv = dev->dev_private;
6784         uint32_t snpcr;
6785
6786         ilk_init_lp_watermarks(dev);
6787
6788         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6789
6790         /* WaDisableEarlyCull:ivb */
6791         I915_WRITE(_3D_CHICKEN3,
6792                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6793
6794         /* WaDisableBackToBackFlipFix:ivb */
6795         I915_WRITE(IVB_CHICKEN3,
6796                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6797                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6798
6799         /* WaDisablePSDDualDispatchEnable:ivb */
6800         if (IS_IVB_GT1(dev))
6801                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6802                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6803
6804         /* WaDisable_RenderCache_OperationalFlush:ivb */
6805         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6806
6807         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6808         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6809                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6810
6811         /* WaApplyL3ControlAndL3ChickenMode:ivb */
6812         I915_WRITE(GEN7_L3CNTLREG1,
6813                         GEN7_WA_FOR_GEN7_L3_CONTROL);
6814         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6815                    GEN7_WA_L3_CHICKEN_MODE);
6816         if (IS_IVB_GT1(dev))
6817                 I915_WRITE(GEN7_ROW_CHICKEN2,
6818                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6819         else {
6820                 /* must write both registers */
6821                 I915_WRITE(GEN7_ROW_CHICKEN2,
6822                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6823                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6824                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6825         }
6826
6827         /* WaForceL3Serialization:ivb */
6828         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6829                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6830
6831         /*
6832          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6833          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6834          */
6835         I915_WRITE(GEN6_UCGCTL2,
6836                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6837
6838         /* This is required by WaCatErrorRejectionIssue:ivb */
6839         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6840                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6841                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6842
6843         g4x_disable_trickle_feed(dev);
6844
6845         gen7_setup_fixed_func_scheduler(dev_priv);
6846
6847         if (0) { /* causes HiZ corruption on ivb:gt1 */
6848                 /* enable HiZ Raw Stall Optimization */
6849                 I915_WRITE(CACHE_MODE_0_GEN7,
6850                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6851         }
6852
6853         /* WaDisable4x2SubspanOptimization:ivb */
6854         I915_WRITE(CACHE_MODE_1,
6855                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6856
6857         /*
6858          * BSpec recommends 8x4 when MSAA is used,
6859          * however in practice 16x4 seems fastest.
6860          *
6861          * Note that PS/WM thread counts depend on the WIZ hashing
6862          * disable bit, which we don't touch here, but it's good
6863          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6864          */
6865         I915_WRITE(GEN7_GT_MODE,
6866                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6867
6868         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6869         snpcr &= ~GEN6_MBC_SNPCR_MASK;
6870         snpcr |= GEN6_MBC_SNPCR_MED;
6871         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6872
6873         if (!HAS_PCH_NOP(dev))
6874                 cpt_init_clock_gating(dev);
6875
6876         gen6_check_mch_setup(dev);
6877 }
6878
6879 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6880 {
6881         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6882
6883         /*
6884          * Disable trickle feed and enable pnd deadline calculation
6885          */
6886         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6887         I915_WRITE(CBR1_VLV, 0);
6888 }
6889
6890 static void valleyview_init_clock_gating(struct drm_device *dev)
6891 {
6892         struct drm_i915_private *dev_priv = dev->dev_private;
6893
6894         vlv_init_display_clock_gating(dev_priv);
6895
6896         /* WaDisableEarlyCull:vlv */
6897         I915_WRITE(_3D_CHICKEN3,
6898                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6899
6900         /* WaDisableBackToBackFlipFix:vlv */
6901         I915_WRITE(IVB_CHICKEN3,
6902                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6903                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6904
6905         /* WaPsdDispatchEnable:vlv */
6906         /* WaDisablePSDDualDispatchEnable:vlv */
6907         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6908                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6909                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6910
6911         /* WaDisable_RenderCache_OperationalFlush:vlv */
6912         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6913
6914         /* WaForceL3Serialization:vlv */
6915         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6916                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6917
6918         /* WaDisableDopClockGating:vlv */
6919         I915_WRITE(GEN7_ROW_CHICKEN2,
6920                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6921
6922         /* This is required by WaCatErrorRejectionIssue:vlv */
6923         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6924                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6925                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6926
6927         gen7_setup_fixed_func_scheduler(dev_priv);
6928
6929         /*
6930          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6931          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6932          */
6933         I915_WRITE(GEN6_UCGCTL2,
6934                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6935
6936         /* WaDisableL3Bank2xClockGate:vlv
6937          * Disabling L3 clock gating- MMIO 940c[25] = 1
6938          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6939         I915_WRITE(GEN7_UCGCTL4,
6940                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6941
6942         /*
6943          * BSpec says this must be set, even though
6944          * WaDisable4x2SubspanOptimization isn't listed for VLV.
6945          */
6946         I915_WRITE(CACHE_MODE_1,
6947                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6948
6949         /*
6950          * BSpec recommends 8x4 when MSAA is used,
6951          * however in practice 16x4 seems fastest.
6952          *
6953          * Note that PS/WM thread counts depend on the WIZ hashing
6954          * disable bit, which we don't touch here, but it's good
6955          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6956          */
6957         I915_WRITE(GEN7_GT_MODE,
6958                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6959
6960         /*
6961          * WaIncreaseL3CreditsForVLVB0:vlv
6962          * This is the hardware default actually.
6963          */
6964         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6965
6966         /*
6967          * WaDisableVLVClockGating_VBIIssue:vlv
6968          * Disable clock gating on th GCFG unit to prevent a delay
6969          * in the reporting of vblank events.
6970          */
6971         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6972 }
6973
6974 static void cherryview_init_clock_gating(struct drm_device *dev)
6975 {
6976         struct drm_i915_private *dev_priv = dev->dev_private;
6977
6978         vlv_init_display_clock_gating(dev_priv);
6979
6980         /* WaVSRefCountFullforceMissDisable:chv */
6981         /* WaDSRefCountFullforceMissDisable:chv */
6982         I915_WRITE(GEN7_FF_THREAD_MODE,
6983                    I915_READ(GEN7_FF_THREAD_MODE) &
6984                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6985
6986         /* WaDisableSemaphoreAndSyncFlipWait:chv */
6987         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6988                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6989
6990         /* WaDisableCSUnitClockGating:chv */
6991         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6992                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6993
6994         /* WaDisableSDEUnitClockGating:chv */
6995         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6996                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6997
6998         /*
6999          * GTT cache may not work with big pages, so if those
7000          * are ever enabled GTT cache may need to be disabled.
7001          */
7002         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7003 }
7004
7005 static void g4x_init_clock_gating(struct drm_device *dev)
7006 {
7007         struct drm_i915_private *dev_priv = dev->dev_private;
7008         uint32_t dspclk_gate;
7009
7010         I915_WRITE(RENCLK_GATE_D1, 0);
7011         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7012                    GS_UNIT_CLOCK_GATE_DISABLE |
7013                    CL_UNIT_CLOCK_GATE_DISABLE);
7014         I915_WRITE(RAMCLK_GATE_D, 0);
7015         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7016                 OVRUNIT_CLOCK_GATE_DISABLE |
7017                 OVCUNIT_CLOCK_GATE_DISABLE;
7018         if (IS_GM45(dev))
7019                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7020         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7021
7022         /* WaDisableRenderCachePipelinedFlush */
7023         I915_WRITE(CACHE_MODE_0,
7024                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7025
7026         /* WaDisable_RenderCache_OperationalFlush:g4x */
7027         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7028
7029         g4x_disable_trickle_feed(dev);
7030 }
7031
7032 static void crestline_init_clock_gating(struct drm_device *dev)
7033 {
7034         struct drm_i915_private *dev_priv = dev->dev_private;
7035
7036         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7037         I915_WRITE(RENCLK_GATE_D2, 0);
7038         I915_WRITE(DSPCLK_GATE_D, 0);
7039         I915_WRITE(RAMCLK_GATE_D, 0);
7040         I915_WRITE16(DEUC, 0);
7041         I915_WRITE(MI_ARB_STATE,
7042                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7043
7044         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7045         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7046 }
7047
7048 static void broadwater_init_clock_gating(struct drm_device *dev)
7049 {
7050         struct drm_i915_private *dev_priv = dev->dev_private;
7051
7052         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7053                    I965_RCC_CLOCK_GATE_DISABLE |
7054                    I965_RCPB_CLOCK_GATE_DISABLE |
7055                    I965_ISC_CLOCK_GATE_DISABLE |
7056                    I965_FBC_CLOCK_GATE_DISABLE);
7057         I915_WRITE(RENCLK_GATE_D2, 0);
7058         I915_WRITE(MI_ARB_STATE,
7059                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7060
7061         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7062         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7063 }
7064
7065 static void gen3_init_clock_gating(struct drm_device *dev)
7066 {
7067         struct drm_i915_private *dev_priv = dev->dev_private;
7068         u32 dstate = I915_READ(D_STATE);
7069
7070         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7071                 DSTATE_DOT_CLOCK_GATING;
7072         I915_WRITE(D_STATE, dstate);
7073
7074         if (IS_PINEVIEW(dev))
7075                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7076
7077         /* IIR "flip pending" means done if this bit is set */
7078         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7079
7080         /* interrupts should cause a wake up from C3 */
7081         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7082
7083         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7084         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7085
7086         I915_WRITE(MI_ARB_STATE,
7087                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7088 }
7089
7090 static void i85x_init_clock_gating(struct drm_device *dev)
7091 {
7092         struct drm_i915_private *dev_priv = dev->dev_private;
7093
7094         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7095
7096         /* interrupts should cause a wake up from C3 */
7097         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7098                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7099
7100         I915_WRITE(MEM_MODE,
7101                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7102 }
7103
7104 static void i830_init_clock_gating(struct drm_device *dev)
7105 {
7106         struct drm_i915_private *dev_priv = dev->dev_private;
7107
7108         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7109
7110         I915_WRITE(MEM_MODE,
7111                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7112                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7113 }
7114
7115 void intel_init_clock_gating(struct drm_device *dev)
7116 {
7117         struct drm_i915_private *dev_priv = dev->dev_private;
7118
7119         if (dev_priv->display.init_clock_gating)
7120                 dev_priv->display.init_clock_gating(dev);
7121 }
7122
7123 void intel_suspend_hw(struct drm_device *dev)
7124 {
7125         if (HAS_PCH_LPT(dev))
7126                 lpt_suspend_hw(dev);
7127 }
7128
7129 /* Set up chip specific power management-related functions */
7130 void intel_init_pm(struct drm_device *dev)
7131 {
7132         struct drm_i915_private *dev_priv = dev->dev_private;
7133
7134         intel_fbc_init(dev_priv);
7135
7136         /* For cxsr */
7137         if (IS_PINEVIEW(dev))
7138                 i915_pineview_get_mem_freq(dev);
7139         else if (IS_GEN5(dev))
7140                 i915_ironlake_get_mem_freq(dev);
7141
7142         /* For FIFO watermark updates */
7143         if (INTEL_INFO(dev)->gen >= 9) {
7144                 skl_setup_wm_latency(dev);
7145
7146                 if (IS_BROXTON(dev))
7147                         dev_priv->display.init_clock_gating =
7148                                 bxt_init_clock_gating;
7149                 else if (IS_SKYLAKE(dev))
7150                         dev_priv->display.init_clock_gating =
7151                                 skl_init_clock_gating;
7152                 dev_priv->display.update_wm = skl_update_wm;
7153                 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7154         } else if (HAS_PCH_SPLIT(dev)) {
7155                 ilk_setup_wm_latency(dev);
7156
7157                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7158                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7159                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7160                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7161                         dev_priv->display.update_wm = ilk_update_wm;
7162                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7163                 } else {
7164                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7165                                       "Disable CxSR\n");
7166                 }
7167
7168                 if (IS_GEN5(dev))
7169                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7170                 else if (IS_GEN6(dev))
7171                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7172                 else if (IS_IVYBRIDGE(dev))
7173                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7174                 else if (IS_HASWELL(dev))
7175                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7176                 else if (INTEL_INFO(dev)->gen == 8)
7177                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7178         } else if (IS_CHERRYVIEW(dev)) {
7179                 vlv_setup_wm_latency(dev);
7180
7181                 dev_priv->display.update_wm = vlv_update_wm;
7182                 dev_priv->display.init_clock_gating =
7183                         cherryview_init_clock_gating;
7184         } else if (IS_VALLEYVIEW(dev)) {
7185                 vlv_setup_wm_latency(dev);
7186
7187                 dev_priv->display.update_wm = vlv_update_wm;
7188                 dev_priv->display.init_clock_gating =
7189                         valleyview_init_clock_gating;
7190         } else if (IS_PINEVIEW(dev)) {
7191                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7192                                             dev_priv->is_ddr3,
7193                                             dev_priv->fsb_freq,
7194                                             dev_priv->mem_freq)) {
7195                         DRM_INFO("failed to find known CxSR latency "
7196                                  "(found ddr%s fsb freq %d, mem freq %d), "
7197                                  "disabling CxSR\n",
7198                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7199                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7200                         /* Disable CxSR and never update its watermark again */
7201                         intel_set_memory_cxsr(dev_priv, false);
7202                         dev_priv->display.update_wm = NULL;
7203                 } else
7204                         dev_priv->display.update_wm = pineview_update_wm;
7205                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7206         } else if (IS_G4X(dev)) {
7207                 dev_priv->display.update_wm = g4x_update_wm;
7208                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7209         } else if (IS_GEN4(dev)) {
7210                 dev_priv->display.update_wm = i965_update_wm;
7211                 if (IS_CRESTLINE(dev))
7212                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7213                 else if (IS_BROADWATER(dev))
7214                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7215         } else if (IS_GEN3(dev)) {
7216                 dev_priv->display.update_wm = i9xx_update_wm;
7217                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7218                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7219         } else if (IS_GEN2(dev)) {
7220                 if (INTEL_INFO(dev)->num_pipes == 1) {
7221                         dev_priv->display.update_wm = i845_update_wm;
7222                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7223                 } else {
7224                         dev_priv->display.update_wm = i9xx_update_wm;
7225                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7226                 }
7227
7228                 if (IS_I85X(dev) || IS_I865G(dev))
7229                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7230                 else
7231                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
7232         } else {
7233                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7234         }
7235 }
7236
7237 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7238 {
7239         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7240
7241         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7242                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7243                 return -EAGAIN;
7244         }
7245
7246         I915_WRITE(GEN6_PCODE_DATA, *val);
7247         I915_WRITE(GEN6_PCODE_DATA1, 0);
7248         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7249
7250         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7251                      500)) {
7252                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7253                 return -ETIMEDOUT;
7254         }
7255
7256         *val = I915_READ(GEN6_PCODE_DATA);
7257         I915_WRITE(GEN6_PCODE_DATA, 0);
7258
7259         return 0;
7260 }
7261
7262 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7263 {
7264         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7265
7266         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7267                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7268                 return -EAGAIN;
7269         }
7270
7271         I915_WRITE(GEN6_PCODE_DATA, val);
7272         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7273
7274         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7275                      500)) {
7276                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7277                 return -ETIMEDOUT;
7278         }
7279
7280         I915_WRITE(GEN6_PCODE_DATA, 0);
7281
7282         return 0;
7283 }
7284
7285 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7286 {
7287         switch (czclk_freq) {
7288         case 200:
7289                 return 10;
7290         case 267:
7291                 return 12;
7292         case 320:
7293         case 333:
7294                 return 16;
7295         case 400:
7296                 return 20;
7297         default:
7298                 return -1;
7299         }
7300 }
7301
7302 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7303 {
7304         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
7305
7306         div = vlv_gpu_freq_div(czclk_freq);
7307         if (div < 0)
7308                 return div;
7309
7310         return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7311 }
7312
7313 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7314 {
7315         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
7316
7317         mul = vlv_gpu_freq_div(czclk_freq);
7318         if (mul < 0)
7319                 return mul;
7320
7321         return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7322 }
7323
7324 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7325 {
7326         int div, czclk_freq = dev_priv->rps.cz_freq;
7327
7328         div = vlv_gpu_freq_div(czclk_freq) / 2;
7329         if (div < 0)
7330                 return div;
7331
7332         return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7333 }
7334
7335 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7336 {
7337         int mul, czclk_freq = dev_priv->rps.cz_freq;
7338
7339         mul = vlv_gpu_freq_div(czclk_freq) / 2;
7340         if (mul < 0)
7341                 return mul;
7342
7343         /* CHV needs even values */
7344         return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7345 }
7346
7347 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7348 {
7349         if (IS_GEN9(dev_priv->dev))
7350                 return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
7351         else if (IS_CHERRYVIEW(dev_priv->dev))
7352                 return chv_gpu_freq(dev_priv, val);
7353         else if (IS_VALLEYVIEW(dev_priv->dev))
7354                 return byt_gpu_freq(dev_priv, val);
7355         else
7356                 return val * GT_FREQUENCY_MULTIPLIER;
7357 }
7358
7359 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7360 {
7361         if (IS_GEN9(dev_priv->dev))
7362                 return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
7363         else if (IS_CHERRYVIEW(dev_priv->dev))
7364                 return chv_freq_opcode(dev_priv, val);
7365         else if (IS_VALLEYVIEW(dev_priv->dev))
7366                 return byt_freq_opcode(dev_priv, val);
7367         else
7368                 return val / GT_FREQUENCY_MULTIPLIER;
7369 }
7370
7371 struct request_boost {
7372         struct work_struct work;
7373         struct drm_i915_gem_request *req;
7374 };
7375
7376 static void __intel_rps_boost_work(struct work_struct *work)
7377 {
7378         struct request_boost *boost = container_of(work, struct request_boost, work);
7379         struct drm_i915_gem_request *req = boost->req;
7380
7381         if (!i915_gem_request_completed(req, true))
7382                 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7383                                req->emitted_jiffies);
7384
7385         i915_gem_request_unreference__unlocked(req);
7386         kfree(boost);
7387 }
7388
7389 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7390                                        struct drm_i915_gem_request *req)
7391 {
7392         struct request_boost *boost;
7393
7394         if (req == NULL || INTEL_INFO(dev)->gen < 6)
7395                 return;
7396
7397         if (i915_gem_request_completed(req, true))
7398                 return;
7399
7400         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7401         if (boost == NULL)
7402                 return;
7403
7404         i915_gem_request_reference(req);
7405         boost->req = req;
7406
7407         INIT_WORK(&boost->work, __intel_rps_boost_work);
7408         queue_work(to_i915(dev)->wq, &boost->work);
7409 }
7410
7411 void intel_pm_setup(struct drm_device *dev)
7412 {
7413         struct drm_i915_private *dev_priv = dev->dev_private;
7414
7415         mutex_init(&dev_priv->rps.hw_lock);
7416         spin_lock_init(&dev_priv->rps.client_lock);
7417
7418         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7419                           intel_gen6_powersave_work);
7420         INIT_LIST_HEAD(&dev_priv->rps.clients);
7421         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7422         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7423
7424         dev_priv->pm.suspended = false;
7425 }