Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->primary->fb;
96         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
97         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
98         int cfb_pitch;
99         int i;
100         u32 fbc_ctl;
101
102         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
103         if (fb->pitches[0] < cfb_pitch)
104                 cfb_pitch = fb->pitches[0];
105
106         /* FBC_CTL wants 32B or 64B units */
107         if (IS_GEN2(dev))
108                 cfb_pitch = (cfb_pitch / 32) - 1;
109         else
110                 cfb_pitch = (cfb_pitch / 64) - 1;
111
112         /* Clear old tags */
113         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
114                 I915_WRITE(FBC_TAG + (i * 4), 0);
115
116         if (IS_GEN4(dev)) {
117                 u32 fbc_ctl2;
118
119                 /* Set it up... */
120                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
121                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
122                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
123                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
124         }
125
126         /* enable it... */
127         fbc_ctl = I915_READ(FBC_CONTROL);
128         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
129         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
130         if (IS_I945GM(dev))
131                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
132         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
133         fbc_ctl |= obj->fence_reg;
134         I915_WRITE(FBC_CONTROL, fbc_ctl);
135
136         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
137                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
138 }
139
140 static bool i8xx_fbc_enabled(struct drm_device *dev)
141 {
142         struct drm_i915_private *dev_priv = dev->dev_private;
143
144         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
145 }
146
147 static void g4x_enable_fbc(struct drm_crtc *crtc)
148 {
149         struct drm_device *dev = crtc->dev;
150         struct drm_i915_private *dev_priv = dev->dev_private;
151         struct drm_framebuffer *fb = crtc->primary->fb;
152         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
154         u32 dpfc_ctl;
155
156         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
157         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
158                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
159         else
160                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
161         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
162
163         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
164
165         /* enable it... */
166         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
167
168         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
169 }
170
171 static void g4x_disable_fbc(struct drm_device *dev)
172 {
173         struct drm_i915_private *dev_priv = dev->dev_private;
174         u32 dpfc_ctl;
175
176         /* Disable compression */
177         dpfc_ctl = I915_READ(DPFC_CONTROL);
178         if (dpfc_ctl & DPFC_CTL_EN) {
179                 dpfc_ctl &= ~DPFC_CTL_EN;
180                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
181
182                 DRM_DEBUG_KMS("disabled FBC\n");
183         }
184 }
185
186 static bool g4x_fbc_enabled(struct drm_device *dev)
187 {
188         struct drm_i915_private *dev_priv = dev->dev_private;
189
190         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
191 }
192
193 static void sandybridge_blit_fbc_update(struct drm_device *dev)
194 {
195         struct drm_i915_private *dev_priv = dev->dev_private;
196         u32 blt_ecoskpd;
197
198         /* Make sure blitter notifies FBC of writes */
199
200         /* Blitter is part of Media powerwell on VLV. No impact of
201          * his param in other platforms for now */
202         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
203
204         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
205         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
206                 GEN6_BLITTER_LOCK_SHIFT;
207         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
208         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
211                          GEN6_BLITTER_LOCK_SHIFT);
212         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
213         POSTING_READ(GEN6_BLITTER_ECOSKPD);
214
215         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
216 }
217
218 static void ironlake_enable_fbc(struct drm_crtc *crtc)
219 {
220         struct drm_device *dev = crtc->dev;
221         struct drm_i915_private *dev_priv = dev->dev_private;
222         struct drm_framebuffer *fb = crtc->primary->fb;
223         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
225         u32 dpfc_ctl;
226
227         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
228         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
229                 dev_priv->fbc.threshold++;
230
231         switch (dev_priv->fbc.threshold) {
232         case 4:
233         case 3:
234                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
235                 break;
236         case 2:
237                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
238                 break;
239         case 1:
240                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
241                 break;
242         }
243         dpfc_ctl |= DPFC_CTL_FENCE_EN;
244         if (IS_GEN5(dev))
245                 dpfc_ctl |= obj->fence_reg;
246
247         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
248         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
249         /* enable it... */
250         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
251
252         if (IS_GEN6(dev)) {
253                 I915_WRITE(SNB_DPFC_CTL_SA,
254                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
255                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
256                 sandybridge_blit_fbc_update(dev);
257         }
258
259         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
260 }
261
262 static void ironlake_disable_fbc(struct drm_device *dev)
263 {
264         struct drm_i915_private *dev_priv = dev->dev_private;
265         u32 dpfc_ctl;
266
267         /* Disable compression */
268         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
269         if (dpfc_ctl & DPFC_CTL_EN) {
270                 dpfc_ctl &= ~DPFC_CTL_EN;
271                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
272
273                 DRM_DEBUG_KMS("disabled FBC\n");
274         }
275 }
276
277 static bool ironlake_fbc_enabled(struct drm_device *dev)
278 {
279         struct drm_i915_private *dev_priv = dev->dev_private;
280
281         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
282 }
283
284 static void gen7_enable_fbc(struct drm_crtc *crtc)
285 {
286         struct drm_device *dev = crtc->dev;
287         struct drm_i915_private *dev_priv = dev->dev_private;
288         struct drm_framebuffer *fb = crtc->primary->fb;
289         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
291         u32 dpfc_ctl;
292
293         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
294         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
295                 dev_priv->fbc.threshold++;
296
297         switch (dev_priv->fbc.threshold) {
298         case 4:
299         case 3:
300                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
301                 break;
302         case 2:
303                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
304                 break;
305         case 1:
306                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
307                 break;
308         }
309
310         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
311
312         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
313
314         if (IS_IVYBRIDGE(dev)) {
315                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
316                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
317                            I915_READ(ILK_DISPLAY_CHICKEN1) |
318                            ILK_FBCQ_DIS);
319         } else {
320                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
321                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
322                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
323                            HSW_FBCQ_DIS);
324         }
325
326         I915_WRITE(SNB_DPFC_CTL_SA,
327                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
328         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
329
330         sandybridge_blit_fbc_update(dev);
331
332         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
333 }
334
335 bool intel_fbc_enabled(struct drm_device *dev)
336 {
337         struct drm_i915_private *dev_priv = dev->dev_private;
338
339         if (!dev_priv->display.fbc_enabled)
340                 return false;
341
342         return dev_priv->display.fbc_enabled(dev);
343 }
344
345 static void intel_fbc_work_fn(struct work_struct *__work)
346 {
347         struct intel_fbc_work *work =
348                 container_of(to_delayed_work(__work),
349                              struct intel_fbc_work, work);
350         struct drm_device *dev = work->crtc->dev;
351         struct drm_i915_private *dev_priv = dev->dev_private;
352
353         mutex_lock(&dev->struct_mutex);
354         if (work == dev_priv->fbc.fbc_work) {
355                 /* Double check that we haven't switched fb without cancelling
356                  * the prior work.
357                  */
358                 if (work->crtc->primary->fb == work->fb) {
359                         dev_priv->display.enable_fbc(work->crtc);
360
361                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
362                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
363                         dev_priv->fbc.y = work->crtc->y;
364                 }
365
366                 dev_priv->fbc.fbc_work = NULL;
367         }
368         mutex_unlock(&dev->struct_mutex);
369
370         kfree(work);
371 }
372
373 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
374 {
375         if (dev_priv->fbc.fbc_work == NULL)
376                 return;
377
378         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
379
380         /* Synchronisation is provided by struct_mutex and checking of
381          * dev_priv->fbc.fbc_work, so we can perform the cancellation
382          * entirely asynchronously.
383          */
384         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
385                 /* tasklet was killed before being run, clean up */
386                 kfree(dev_priv->fbc.fbc_work);
387
388         /* Mark the work as no longer wanted so that if it does
389          * wake-up (because the work was already running and waiting
390          * for our mutex), it will discover that is no longer
391          * necessary to run.
392          */
393         dev_priv->fbc.fbc_work = NULL;
394 }
395
396 static void intel_enable_fbc(struct drm_crtc *crtc)
397 {
398         struct intel_fbc_work *work;
399         struct drm_device *dev = crtc->dev;
400         struct drm_i915_private *dev_priv = dev->dev_private;
401
402         if (!dev_priv->display.enable_fbc)
403                 return;
404
405         intel_cancel_fbc_work(dev_priv);
406
407         work = kzalloc(sizeof(*work), GFP_KERNEL);
408         if (work == NULL) {
409                 DRM_ERROR("Failed to allocate FBC work structure\n");
410                 dev_priv->display.enable_fbc(crtc);
411                 return;
412         }
413
414         work->crtc = crtc;
415         work->fb = crtc->primary->fb;
416         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
417
418         dev_priv->fbc.fbc_work = work;
419
420         /* Delay the actual enabling to let pageflipping cease and the
421          * display to settle before starting the compression. Note that
422          * this delay also serves a second purpose: it allows for a
423          * vblank to pass after disabling the FBC before we attempt
424          * to modify the control registers.
425          *
426          * A more complicated solution would involve tracking vblanks
427          * following the termination of the page-flipping sequence
428          * and indeed performing the enable as a co-routine and not
429          * waiting synchronously upon the vblank.
430          *
431          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
432          */
433         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
434 }
435
436 void intel_disable_fbc(struct drm_device *dev)
437 {
438         struct drm_i915_private *dev_priv = dev->dev_private;
439
440         intel_cancel_fbc_work(dev_priv);
441
442         if (!dev_priv->display.disable_fbc)
443                 return;
444
445         dev_priv->display.disable_fbc(dev);
446         dev_priv->fbc.plane = -1;
447 }
448
449 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
450                               enum no_fbc_reason reason)
451 {
452         if (dev_priv->fbc.no_fbc_reason == reason)
453                 return false;
454
455         dev_priv->fbc.no_fbc_reason = reason;
456         return true;
457 }
458
459 /**
460  * intel_update_fbc - enable/disable FBC as needed
461  * @dev: the drm_device
462  *
463  * Set up the framebuffer compression hardware at mode set time.  We
464  * enable it if possible:
465  *   - plane A only (on pre-965)
466  *   - no pixel mulitply/line duplication
467  *   - no alpha buffer discard
468  *   - no dual wide
469  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
470  *
471  * We can't assume that any compression will take place (worst case),
472  * so the compressed buffer has to be the same size as the uncompressed
473  * one.  It also must reside (along with the line length buffer) in
474  * stolen memory.
475  *
476  * We need to enable/disable FBC on a global basis.
477  */
478 void intel_update_fbc(struct drm_device *dev)
479 {
480         struct drm_i915_private *dev_priv = dev->dev_private;
481         struct drm_crtc *crtc = NULL, *tmp_crtc;
482         struct intel_crtc *intel_crtc;
483         struct drm_framebuffer *fb;
484         struct drm_i915_gem_object *obj;
485         const struct drm_display_mode *adjusted_mode;
486         unsigned int max_width, max_height;
487
488         if (!HAS_FBC(dev)) {
489                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
490                 return;
491         }
492
493         if (!i915.powersave) {
494                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
495                         DRM_DEBUG_KMS("fbc disabled per module param\n");
496                 return;
497         }
498
499         /*
500          * If FBC is already on, we just have to verify that we can
501          * keep it that way...
502          * Need to disable if:
503          *   - more than one pipe is active
504          *   - changing FBC params (stride, fence, mode)
505          *   - new fb is too large to fit in compressed buffer
506          *   - going to an unsupported config (interlace, pixel multiply, etc.)
507          */
508         for_each_crtc(dev, tmp_crtc) {
509                 if (intel_crtc_active(tmp_crtc) &&
510                     to_intel_crtc(tmp_crtc)->primary_enabled) {
511                         if (crtc) {
512                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
513                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
514                                 goto out_disable;
515                         }
516                         crtc = tmp_crtc;
517                 }
518         }
519
520         if (!crtc || crtc->primary->fb == NULL) {
521                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
522                         DRM_DEBUG_KMS("no output, disabling\n");
523                 goto out_disable;
524         }
525
526         intel_crtc = to_intel_crtc(crtc);
527         fb = crtc->primary->fb;
528         obj = intel_fb_obj(fb);
529         adjusted_mode = &intel_crtc->config.adjusted_mode;
530
531         if (i915.enable_fbc < 0) {
532                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
533                         DRM_DEBUG_KMS("disabled per chip default\n");
534                 goto out_disable;
535         }
536         if (!i915.enable_fbc) {
537                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
538                         DRM_DEBUG_KMS("fbc disabled per module param\n");
539                 goto out_disable;
540         }
541         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
542             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
543                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
544                         DRM_DEBUG_KMS("mode incompatible with compression, "
545                                       "disabling\n");
546                 goto out_disable;
547         }
548
549         if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
550                 max_width = 4096;
551                 max_height = 4096;
552         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
553                 max_width = 4096;
554                 max_height = 2048;
555         } else {
556                 max_width = 2048;
557                 max_height = 1536;
558         }
559         if (intel_crtc->config.pipe_src_w > max_width ||
560             intel_crtc->config.pipe_src_h > max_height) {
561                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
562                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
563                 goto out_disable;
564         }
565         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
566             intel_crtc->plane != PLANE_A) {
567                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
568                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
569                 goto out_disable;
570         }
571
572         /* The use of a CPU fence is mandatory in order to detect writes
573          * by the CPU to the scanout and trigger updates to the FBC.
574          */
575         if (obj->tiling_mode != I915_TILING_X ||
576             obj->fence_reg == I915_FENCE_REG_NONE) {
577                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
578                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
579                 goto out_disable;
580         }
581
582         /* If the kernel debugger is active, always disable compression */
583         if (in_dbg_master())
584                 goto out_disable;
585
586         if (i915_gem_stolen_setup_compression(dev, obj->base.size,
587                                               drm_format_plane_cpp(fb->pixel_format, 0))) {
588                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
589                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
590                 goto out_disable;
591         }
592
593         /* If the scanout has not changed, don't modify the FBC settings.
594          * Note that we make the fundamental assumption that the fb->obj
595          * cannot be unpinned (and have its GTT offset and fence revoked)
596          * without first being decoupled from the scanout and FBC disabled.
597          */
598         if (dev_priv->fbc.plane == intel_crtc->plane &&
599             dev_priv->fbc.fb_id == fb->base.id &&
600             dev_priv->fbc.y == crtc->y)
601                 return;
602
603         if (intel_fbc_enabled(dev)) {
604                 /* We update FBC along two paths, after changing fb/crtc
605                  * configuration (modeswitching) and after page-flipping
606                  * finishes. For the latter, we know that not only did
607                  * we disable the FBC at the start of the page-flip
608                  * sequence, but also more than one vblank has passed.
609                  *
610                  * For the former case of modeswitching, it is possible
611                  * to switch between two FBC valid configurations
612                  * instantaneously so we do need to disable the FBC
613                  * before we can modify its control registers. We also
614                  * have to wait for the next vblank for that to take
615                  * effect. However, since we delay enabling FBC we can
616                  * assume that a vblank has passed since disabling and
617                  * that we can safely alter the registers in the deferred
618                  * callback.
619                  *
620                  * In the scenario that we go from a valid to invalid
621                  * and then back to valid FBC configuration we have
622                  * no strict enforcement that a vblank occurred since
623                  * disabling the FBC. However, along all current pipe
624                  * disabling paths we do need to wait for a vblank at
625                  * some point. And we wait before enabling FBC anyway.
626                  */
627                 DRM_DEBUG_KMS("disabling active FBC for update\n");
628                 intel_disable_fbc(dev);
629         }
630
631         intel_enable_fbc(crtc);
632         dev_priv->fbc.no_fbc_reason = FBC_OK;
633         return;
634
635 out_disable:
636         /* Multiple disables should be harmless */
637         if (intel_fbc_enabled(dev)) {
638                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
639                 intel_disable_fbc(dev);
640         }
641         i915_gem_stolen_cleanup_compression(dev);
642 }
643
644 static void i915_pineview_get_mem_freq(struct drm_device *dev)
645 {
646         struct drm_i915_private *dev_priv = dev->dev_private;
647         u32 tmp;
648
649         tmp = I915_READ(CLKCFG);
650
651         switch (tmp & CLKCFG_FSB_MASK) {
652         case CLKCFG_FSB_533:
653                 dev_priv->fsb_freq = 533; /* 133*4 */
654                 break;
655         case CLKCFG_FSB_800:
656                 dev_priv->fsb_freq = 800; /* 200*4 */
657                 break;
658         case CLKCFG_FSB_667:
659                 dev_priv->fsb_freq =  667; /* 167*4 */
660                 break;
661         case CLKCFG_FSB_400:
662                 dev_priv->fsb_freq = 400; /* 100*4 */
663                 break;
664         }
665
666         switch (tmp & CLKCFG_MEM_MASK) {
667         case CLKCFG_MEM_533:
668                 dev_priv->mem_freq = 533;
669                 break;
670         case CLKCFG_MEM_667:
671                 dev_priv->mem_freq = 667;
672                 break;
673         case CLKCFG_MEM_800:
674                 dev_priv->mem_freq = 800;
675                 break;
676         }
677
678         /* detect pineview DDR3 setting */
679         tmp = I915_READ(CSHRDDR3CTL);
680         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
681 }
682
683 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
684 {
685         struct drm_i915_private *dev_priv = dev->dev_private;
686         u16 ddrpll, csipll;
687
688         ddrpll = I915_READ16(DDRMPLL1);
689         csipll = I915_READ16(CSIPLL0);
690
691         switch (ddrpll & 0xff) {
692         case 0xc:
693                 dev_priv->mem_freq = 800;
694                 break;
695         case 0x10:
696                 dev_priv->mem_freq = 1066;
697                 break;
698         case 0x14:
699                 dev_priv->mem_freq = 1333;
700                 break;
701         case 0x18:
702                 dev_priv->mem_freq = 1600;
703                 break;
704         default:
705                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
706                                  ddrpll & 0xff);
707                 dev_priv->mem_freq = 0;
708                 break;
709         }
710
711         dev_priv->ips.r_t = dev_priv->mem_freq;
712
713         switch (csipll & 0x3ff) {
714         case 0x00c:
715                 dev_priv->fsb_freq = 3200;
716                 break;
717         case 0x00e:
718                 dev_priv->fsb_freq = 3733;
719                 break;
720         case 0x010:
721                 dev_priv->fsb_freq = 4266;
722                 break;
723         case 0x012:
724                 dev_priv->fsb_freq = 4800;
725                 break;
726         case 0x014:
727                 dev_priv->fsb_freq = 5333;
728                 break;
729         case 0x016:
730                 dev_priv->fsb_freq = 5866;
731                 break;
732         case 0x018:
733                 dev_priv->fsb_freq = 6400;
734                 break;
735         default:
736                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
737                                  csipll & 0x3ff);
738                 dev_priv->fsb_freq = 0;
739                 break;
740         }
741
742         if (dev_priv->fsb_freq == 3200) {
743                 dev_priv->ips.c_m = 0;
744         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
745                 dev_priv->ips.c_m = 1;
746         } else {
747                 dev_priv->ips.c_m = 2;
748         }
749 }
750
751 static const struct cxsr_latency cxsr_latency_table[] = {
752         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
753         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
754         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
755         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
756         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
757
758         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
759         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
760         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
761         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
762         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
763
764         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
765         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
766         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
767         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
768         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
769
770         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
771         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
772         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
773         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
774         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
775
776         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
777         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
778         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
779         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
780         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
781
782         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
783         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
784         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
785         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
786         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
787 };
788
789 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
790                                                          int is_ddr3,
791                                                          int fsb,
792                                                          int mem)
793 {
794         const struct cxsr_latency *latency;
795         int i;
796
797         if (fsb == 0 || mem == 0)
798                 return NULL;
799
800         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
801                 latency = &cxsr_latency_table[i];
802                 if (is_desktop == latency->is_desktop &&
803                     is_ddr3 == latency->is_ddr3 &&
804                     fsb == latency->fsb_freq && mem == latency->mem_freq)
805                         return latency;
806         }
807
808         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
809
810         return NULL;
811 }
812
813 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
814 {
815         struct drm_device *dev = dev_priv->dev;
816         u32 val;
817
818         if (IS_VALLEYVIEW(dev)) {
819                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
820         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
821                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
822         } else if (IS_PINEVIEW(dev)) {
823                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
824                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
825                 I915_WRITE(DSPFW3, val);
826         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
827                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
828                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
829                 I915_WRITE(FW_BLC_SELF, val);
830         } else if (IS_I915GM(dev)) {
831                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
832                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
833                 I915_WRITE(INSTPM, val);
834         } else {
835                 return;
836         }
837
838         DRM_DEBUG_KMS("memory self-refresh is %s\n",
839                       enable ? "enabled" : "disabled");
840 }
841
842 /*
843  * Latency for FIFO fetches is dependent on several factors:
844  *   - memory configuration (speed, channels)
845  *   - chipset
846  *   - current MCH state
847  * It can be fairly high in some situations, so here we assume a fairly
848  * pessimal value.  It's a tradeoff between extra memory fetches (if we
849  * set this value too high, the FIFO will fetch frequently to stay full)
850  * and power consumption (set it too low to save power and we might see
851  * FIFO underruns and display "flicker").
852  *
853  * A value of 5us seems to be a good balance; safe for very low end
854  * platforms but not overly aggressive on lower latency configs.
855  */
856 static const int latency_ns = 5000;
857
858 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
859 {
860         struct drm_i915_private *dev_priv = dev->dev_private;
861         uint32_t dsparb = I915_READ(DSPARB);
862         int size;
863
864         size = dsparb & 0x7f;
865         if (plane)
866                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
867
868         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
869                       plane ? "B" : "A", size);
870
871         return size;
872 }
873
874 static int i830_get_fifo_size(struct drm_device *dev, int plane)
875 {
876         struct drm_i915_private *dev_priv = dev->dev_private;
877         uint32_t dsparb = I915_READ(DSPARB);
878         int size;
879
880         size = dsparb & 0x1ff;
881         if (plane)
882                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
883         size >>= 1; /* Convert to cachelines */
884
885         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
886                       plane ? "B" : "A", size);
887
888         return size;
889 }
890
891 static int i845_get_fifo_size(struct drm_device *dev, int plane)
892 {
893         struct drm_i915_private *dev_priv = dev->dev_private;
894         uint32_t dsparb = I915_READ(DSPARB);
895         int size;
896
897         size = dsparb & 0x7f;
898         size >>= 2; /* Convert to cachelines */
899
900         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
901                       plane ? "B" : "A",
902                       size);
903
904         return size;
905 }
906
907 /* Pineview has different values for various configs */
908 static const struct intel_watermark_params pineview_display_wm = {
909         .fifo_size = PINEVIEW_DISPLAY_FIFO,
910         .max_wm = PINEVIEW_MAX_WM,
911         .default_wm = PINEVIEW_DFT_WM,
912         .guard_size = PINEVIEW_GUARD_WM,
913         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
914 };
915 static const struct intel_watermark_params pineview_display_hplloff_wm = {
916         .fifo_size = PINEVIEW_DISPLAY_FIFO,
917         .max_wm = PINEVIEW_MAX_WM,
918         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
919         .guard_size = PINEVIEW_GUARD_WM,
920         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
921 };
922 static const struct intel_watermark_params pineview_cursor_wm = {
923         .fifo_size = PINEVIEW_CURSOR_FIFO,
924         .max_wm = PINEVIEW_CURSOR_MAX_WM,
925         .default_wm = PINEVIEW_CURSOR_DFT_WM,
926         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
927         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
928 };
929 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
930         .fifo_size = PINEVIEW_CURSOR_FIFO,
931         .max_wm = PINEVIEW_CURSOR_MAX_WM,
932         .default_wm = PINEVIEW_CURSOR_DFT_WM,
933         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
934         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
935 };
936 static const struct intel_watermark_params g4x_wm_info = {
937         .fifo_size = G4X_FIFO_SIZE,
938         .max_wm = G4X_MAX_WM,
939         .default_wm = G4X_MAX_WM,
940         .guard_size = 2,
941         .cacheline_size = G4X_FIFO_LINE_SIZE,
942 };
943 static const struct intel_watermark_params g4x_cursor_wm_info = {
944         .fifo_size = I965_CURSOR_FIFO,
945         .max_wm = I965_CURSOR_MAX_WM,
946         .default_wm = I965_CURSOR_DFT_WM,
947         .guard_size = 2,
948         .cacheline_size = G4X_FIFO_LINE_SIZE,
949 };
950 static const struct intel_watermark_params valleyview_wm_info = {
951         .fifo_size = VALLEYVIEW_FIFO_SIZE,
952         .max_wm = VALLEYVIEW_MAX_WM,
953         .default_wm = VALLEYVIEW_MAX_WM,
954         .guard_size = 2,
955         .cacheline_size = G4X_FIFO_LINE_SIZE,
956 };
957 static const struct intel_watermark_params valleyview_cursor_wm_info = {
958         .fifo_size = I965_CURSOR_FIFO,
959         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
960         .default_wm = I965_CURSOR_DFT_WM,
961         .guard_size = 2,
962         .cacheline_size = G4X_FIFO_LINE_SIZE,
963 };
964 static const struct intel_watermark_params i965_cursor_wm_info = {
965         .fifo_size = I965_CURSOR_FIFO,
966         .max_wm = I965_CURSOR_MAX_WM,
967         .default_wm = I965_CURSOR_DFT_WM,
968         .guard_size = 2,
969         .cacheline_size = I915_FIFO_LINE_SIZE,
970 };
971 static const struct intel_watermark_params i945_wm_info = {
972         .fifo_size = I945_FIFO_SIZE,
973         .max_wm = I915_MAX_WM,
974         .default_wm = 1,
975         .guard_size = 2,
976         .cacheline_size = I915_FIFO_LINE_SIZE,
977 };
978 static const struct intel_watermark_params i915_wm_info = {
979         .fifo_size = I915_FIFO_SIZE,
980         .max_wm = I915_MAX_WM,
981         .default_wm = 1,
982         .guard_size = 2,
983         .cacheline_size = I915_FIFO_LINE_SIZE,
984 };
985 static const struct intel_watermark_params i830_wm_info = {
986         .fifo_size = I855GM_FIFO_SIZE,
987         .max_wm = I915_MAX_WM,
988         .default_wm = 1,
989         .guard_size = 2,
990         .cacheline_size = I830_FIFO_LINE_SIZE,
991 };
992 static const struct intel_watermark_params i845_wm_info = {
993         .fifo_size = I830_FIFO_SIZE,
994         .max_wm = I915_MAX_WM,
995         .default_wm = 1,
996         .guard_size = 2,
997         .cacheline_size = I830_FIFO_LINE_SIZE,
998 };
999
1000 /**
1001  * intel_calculate_wm - calculate watermark level
1002  * @clock_in_khz: pixel clock
1003  * @wm: chip FIFO params
1004  * @pixel_size: display pixel size
1005  * @latency_ns: memory latency for the platform
1006  *
1007  * Calculate the watermark level (the level at which the display plane will
1008  * start fetching from memory again).  Each chip has a different display
1009  * FIFO size and allocation, so the caller needs to figure that out and pass
1010  * in the correct intel_watermark_params structure.
1011  *
1012  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1013  * on the pixel size.  When it reaches the watermark level, it'll start
1014  * fetching FIFO line sized based chunks from memory until the FIFO fills
1015  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1016  * will occur, and a display engine hang could result.
1017  */
1018 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1019                                         const struct intel_watermark_params *wm,
1020                                         int fifo_size,
1021                                         int pixel_size,
1022                                         unsigned long latency_ns)
1023 {
1024         long entries_required, wm_size;
1025
1026         /*
1027          * Note: we need to make sure we don't overflow for various clock &
1028          * latency values.
1029          * clocks go from a few thousand to several hundred thousand.
1030          * latency is usually a few thousand
1031          */
1032         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1033                 1000;
1034         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1035
1036         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1037
1038         wm_size = fifo_size - (entries_required + wm->guard_size);
1039
1040         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1041
1042         /* Don't promote wm_size to unsigned... */
1043         if (wm_size > (long)wm->max_wm)
1044                 wm_size = wm->max_wm;
1045         if (wm_size <= 0)
1046                 wm_size = wm->default_wm;
1047         return wm_size;
1048 }
1049
1050 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1051 {
1052         struct drm_crtc *crtc, *enabled = NULL;
1053
1054         for_each_crtc(dev, crtc) {
1055                 if (intel_crtc_active(crtc)) {
1056                         if (enabled)
1057                                 return NULL;
1058                         enabled = crtc;
1059                 }
1060         }
1061
1062         return enabled;
1063 }
1064
1065 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1066 {
1067         struct drm_device *dev = unused_crtc->dev;
1068         struct drm_i915_private *dev_priv = dev->dev_private;
1069         struct drm_crtc *crtc;
1070         const struct cxsr_latency *latency;
1071         u32 reg;
1072         unsigned long wm;
1073
1074         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1075                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1076         if (!latency) {
1077                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1078                 intel_set_memory_cxsr(dev_priv, false);
1079                 return;
1080         }
1081
1082         crtc = single_enabled_crtc(dev);
1083         if (crtc) {
1084                 const struct drm_display_mode *adjusted_mode;
1085                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1086                 int clock;
1087
1088                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1089                 clock = adjusted_mode->crtc_clock;
1090
1091                 /* Display SR */
1092                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1093                                         pineview_display_wm.fifo_size,
1094                                         pixel_size, latency->display_sr);
1095                 reg = I915_READ(DSPFW1);
1096                 reg &= ~DSPFW_SR_MASK;
1097                 reg |= wm << DSPFW_SR_SHIFT;
1098                 I915_WRITE(DSPFW1, reg);
1099                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1100
1101                 /* cursor SR */
1102                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1103                                         pineview_display_wm.fifo_size,
1104                                         pixel_size, latency->cursor_sr);
1105                 reg = I915_READ(DSPFW3);
1106                 reg &= ~DSPFW_CURSOR_SR_MASK;
1107                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1108                 I915_WRITE(DSPFW3, reg);
1109
1110                 /* Display HPLL off SR */
1111                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1112                                         pineview_display_hplloff_wm.fifo_size,
1113                                         pixel_size, latency->display_hpll_disable);
1114                 reg = I915_READ(DSPFW3);
1115                 reg &= ~DSPFW_HPLL_SR_MASK;
1116                 reg |= wm & DSPFW_HPLL_SR_MASK;
1117                 I915_WRITE(DSPFW3, reg);
1118
1119                 /* cursor HPLL off SR */
1120                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1121                                         pineview_display_hplloff_wm.fifo_size,
1122                                         pixel_size, latency->cursor_hpll_disable);
1123                 reg = I915_READ(DSPFW3);
1124                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1125                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1126                 I915_WRITE(DSPFW3, reg);
1127                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1128
1129                 intel_set_memory_cxsr(dev_priv, true);
1130         } else {
1131                 intel_set_memory_cxsr(dev_priv, false);
1132         }
1133 }
1134
1135 static bool g4x_compute_wm0(struct drm_device *dev,
1136                             int plane,
1137                             const struct intel_watermark_params *display,
1138                             int display_latency_ns,
1139                             const struct intel_watermark_params *cursor,
1140                             int cursor_latency_ns,
1141                             int *plane_wm,
1142                             int *cursor_wm)
1143 {
1144         struct drm_crtc *crtc;
1145         const struct drm_display_mode *adjusted_mode;
1146         int htotal, hdisplay, clock, pixel_size;
1147         int line_time_us, line_count;
1148         int entries, tlb_miss;
1149
1150         crtc = intel_get_crtc_for_plane(dev, plane);
1151         if (!intel_crtc_active(crtc)) {
1152                 *cursor_wm = cursor->guard_size;
1153                 *plane_wm = display->guard_size;
1154                 return false;
1155         }
1156
1157         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1158         clock = adjusted_mode->crtc_clock;
1159         htotal = adjusted_mode->crtc_htotal;
1160         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1161         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1162
1163         /* Use the small buffer method to calculate plane watermark */
1164         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1165         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1166         if (tlb_miss > 0)
1167                 entries += tlb_miss;
1168         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1169         *plane_wm = entries + display->guard_size;
1170         if (*plane_wm > (int)display->max_wm)
1171                 *plane_wm = display->max_wm;
1172
1173         /* Use the large buffer method to calculate cursor watermark */
1174         line_time_us = max(htotal * 1000 / clock, 1);
1175         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1176         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1177         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1178         if (tlb_miss > 0)
1179                 entries += tlb_miss;
1180         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1181         *cursor_wm = entries + cursor->guard_size;
1182         if (*cursor_wm > (int)cursor->max_wm)
1183                 *cursor_wm = (int)cursor->max_wm;
1184
1185         return true;
1186 }
1187
1188 /*
1189  * Check the wm result.
1190  *
1191  * If any calculated watermark values is larger than the maximum value that
1192  * can be programmed into the associated watermark register, that watermark
1193  * must be disabled.
1194  */
1195 static bool g4x_check_srwm(struct drm_device *dev,
1196                            int display_wm, int cursor_wm,
1197                            const struct intel_watermark_params *display,
1198                            const struct intel_watermark_params *cursor)
1199 {
1200         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1201                       display_wm, cursor_wm);
1202
1203         if (display_wm > display->max_wm) {
1204                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1205                               display_wm, display->max_wm);
1206                 return false;
1207         }
1208
1209         if (cursor_wm > cursor->max_wm) {
1210                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1211                               cursor_wm, cursor->max_wm);
1212                 return false;
1213         }
1214
1215         if (!(display_wm || cursor_wm)) {
1216                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1217                 return false;
1218         }
1219
1220         return true;
1221 }
1222
1223 static bool g4x_compute_srwm(struct drm_device *dev,
1224                              int plane,
1225                              int latency_ns,
1226                              const struct intel_watermark_params *display,
1227                              const struct intel_watermark_params *cursor,
1228                              int *display_wm, int *cursor_wm)
1229 {
1230         struct drm_crtc *crtc;
1231         const struct drm_display_mode *adjusted_mode;
1232         int hdisplay, htotal, pixel_size, clock;
1233         unsigned long line_time_us;
1234         int line_count, line_size;
1235         int small, large;
1236         int entries;
1237
1238         if (!latency_ns) {
1239                 *display_wm = *cursor_wm = 0;
1240                 return false;
1241         }
1242
1243         crtc = intel_get_crtc_for_plane(dev, plane);
1244         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1245         clock = adjusted_mode->crtc_clock;
1246         htotal = adjusted_mode->crtc_htotal;
1247         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1248         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1249
1250         line_time_us = max(htotal * 1000 / clock, 1);
1251         line_count = (latency_ns / line_time_us + 1000) / 1000;
1252         line_size = hdisplay * pixel_size;
1253
1254         /* Use the minimum of the small and large buffer method for primary */
1255         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1256         large = line_count * line_size;
1257
1258         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1259         *display_wm = entries + display->guard_size;
1260
1261         /* calculate the self-refresh watermark for display cursor */
1262         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1263         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1264         *cursor_wm = entries + cursor->guard_size;
1265
1266         return g4x_check_srwm(dev,
1267                               *display_wm, *cursor_wm,
1268                               display, cursor);
1269 }
1270
1271 static bool vlv_compute_drain_latency(struct drm_device *dev,
1272                                      int plane,
1273                                      int *plane_prec_mult,
1274                                      int *plane_dl,
1275                                      int *cursor_prec_mult,
1276                                      int *cursor_dl)
1277 {
1278         struct drm_crtc *crtc;
1279         int clock, pixel_size;
1280         int entries;
1281
1282         crtc = intel_get_crtc_for_plane(dev, plane);
1283         if (!intel_crtc_active(crtc))
1284                 return false;
1285
1286         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1287         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1288
1289         entries = (clock / 1000) * pixel_size;
1290         *plane_prec_mult = (entries > 128) ?
1291                 DRAIN_LATENCY_PRECISION_64 : DRAIN_LATENCY_PRECISION_32;
1292         *plane_dl = (64 * (*plane_prec_mult) * 4) / entries;
1293
1294         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1295         *cursor_prec_mult = (entries > 128) ?
1296                 DRAIN_LATENCY_PRECISION_64 : DRAIN_LATENCY_PRECISION_32;
1297         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / entries;
1298
1299         return true;
1300 }
1301
1302 /*
1303  * Update drain latency registers of memory arbiter
1304  *
1305  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1306  * to be programmed. Each plane has a drain latency multiplier and a drain
1307  * latency value.
1308  */
1309
1310 static void vlv_update_drain_latency(struct drm_device *dev)
1311 {
1312         struct drm_i915_private *dev_priv = dev->dev_private;
1313         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1314         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1315         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1316                                                         either 16 or 32 */
1317
1318         /* For plane A, Cursor A */
1319         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1320                                       &cursor_prec_mult, &cursora_dl)) {
1321                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1322                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_64;
1323                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1324                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_64;
1325
1326                 I915_WRITE(VLV_DDL1, cursora_prec |
1327                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1328                                 planea_prec | planea_dl);
1329         }
1330
1331         /* For plane B, Cursor B */
1332         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1333                                       &cursor_prec_mult, &cursorb_dl)) {
1334                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1335                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_64;
1336                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1337                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_64;
1338
1339                 I915_WRITE(VLV_DDL2, cursorb_prec |
1340                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1341                                 planeb_prec | planeb_dl);
1342         }
1343 }
1344
1345 #define single_plane_enabled(mask) is_power_of_2(mask)
1346
1347 static void valleyview_update_wm(struct drm_crtc *crtc)
1348 {
1349         struct drm_device *dev = crtc->dev;
1350         static const int sr_latency_ns = 12000;
1351         struct drm_i915_private *dev_priv = dev->dev_private;
1352         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1353         int plane_sr, cursor_sr;
1354         int ignore_plane_sr, ignore_cursor_sr;
1355         unsigned int enabled = 0;
1356         bool cxsr_enabled;
1357
1358         vlv_update_drain_latency(dev);
1359
1360         if (g4x_compute_wm0(dev, PIPE_A,
1361                             &valleyview_wm_info, latency_ns,
1362                             &valleyview_cursor_wm_info, latency_ns,
1363                             &planea_wm, &cursora_wm))
1364                 enabled |= 1 << PIPE_A;
1365
1366         if (g4x_compute_wm0(dev, PIPE_B,
1367                             &valleyview_wm_info, latency_ns,
1368                             &valleyview_cursor_wm_info, latency_ns,
1369                             &planeb_wm, &cursorb_wm))
1370                 enabled |= 1 << PIPE_B;
1371
1372         if (single_plane_enabled(enabled) &&
1373             g4x_compute_srwm(dev, ffs(enabled) - 1,
1374                              sr_latency_ns,
1375                              &valleyview_wm_info,
1376                              &valleyview_cursor_wm_info,
1377                              &plane_sr, &ignore_cursor_sr) &&
1378             g4x_compute_srwm(dev, ffs(enabled) - 1,
1379                              2*sr_latency_ns,
1380                              &valleyview_wm_info,
1381                              &valleyview_cursor_wm_info,
1382                              &ignore_plane_sr, &cursor_sr)) {
1383                 cxsr_enabled = true;
1384         } else {
1385                 cxsr_enabled = false;
1386                 intel_set_memory_cxsr(dev_priv, false);
1387                 plane_sr = cursor_sr = 0;
1388         }
1389
1390         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1391                       planea_wm, cursora_wm,
1392                       planeb_wm, cursorb_wm,
1393                       plane_sr, cursor_sr);
1394
1395         I915_WRITE(DSPFW1,
1396                    (plane_sr << DSPFW_SR_SHIFT) |
1397                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1398                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1399                    planea_wm);
1400         I915_WRITE(DSPFW2,
1401                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1402                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1403         I915_WRITE(DSPFW3,
1404                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1405                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1406
1407         if (cxsr_enabled)
1408                 intel_set_memory_cxsr(dev_priv, true);
1409 }
1410
1411 static void g4x_update_wm(struct drm_crtc *crtc)
1412 {
1413         struct drm_device *dev = crtc->dev;
1414         static const int sr_latency_ns = 12000;
1415         struct drm_i915_private *dev_priv = dev->dev_private;
1416         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1417         int plane_sr, cursor_sr;
1418         unsigned int enabled = 0;
1419         bool cxsr_enabled;
1420
1421         if (g4x_compute_wm0(dev, PIPE_A,
1422                             &g4x_wm_info, latency_ns,
1423                             &g4x_cursor_wm_info, latency_ns,
1424                             &planea_wm, &cursora_wm))
1425                 enabled |= 1 << PIPE_A;
1426
1427         if (g4x_compute_wm0(dev, PIPE_B,
1428                             &g4x_wm_info, latency_ns,
1429                             &g4x_cursor_wm_info, latency_ns,
1430                             &planeb_wm, &cursorb_wm))
1431                 enabled |= 1 << PIPE_B;
1432
1433         if (single_plane_enabled(enabled) &&
1434             g4x_compute_srwm(dev, ffs(enabled) - 1,
1435                              sr_latency_ns,
1436                              &g4x_wm_info,
1437                              &g4x_cursor_wm_info,
1438                              &plane_sr, &cursor_sr)) {
1439                 cxsr_enabled = true;
1440         } else {
1441                 cxsr_enabled = false;
1442                 intel_set_memory_cxsr(dev_priv, false);
1443                 plane_sr = cursor_sr = 0;
1444         }
1445
1446         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1447                       planea_wm, cursora_wm,
1448                       planeb_wm, cursorb_wm,
1449                       plane_sr, cursor_sr);
1450
1451         I915_WRITE(DSPFW1,
1452                    (plane_sr << DSPFW_SR_SHIFT) |
1453                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1454                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1455                    planea_wm);
1456         I915_WRITE(DSPFW2,
1457                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1458                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1459         /* HPLL off in SR has some issues on G4x... disable it */
1460         I915_WRITE(DSPFW3,
1461                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1462                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1463
1464         if (cxsr_enabled)
1465                 intel_set_memory_cxsr(dev_priv, true);
1466 }
1467
1468 static void i965_update_wm(struct drm_crtc *unused_crtc)
1469 {
1470         struct drm_device *dev = unused_crtc->dev;
1471         struct drm_i915_private *dev_priv = dev->dev_private;
1472         struct drm_crtc *crtc;
1473         int srwm = 1;
1474         int cursor_sr = 16;
1475         bool cxsr_enabled;
1476
1477         /* Calc sr entries for one plane configs */
1478         crtc = single_enabled_crtc(dev);
1479         if (crtc) {
1480                 /* self-refresh has much higher latency */
1481                 static const int sr_latency_ns = 12000;
1482                 const struct drm_display_mode *adjusted_mode =
1483                         &to_intel_crtc(crtc)->config.adjusted_mode;
1484                 int clock = adjusted_mode->crtc_clock;
1485                 int htotal = adjusted_mode->crtc_htotal;
1486                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1487                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1488                 unsigned long line_time_us;
1489                 int entries;
1490
1491                 line_time_us = max(htotal * 1000 / clock, 1);
1492
1493                 /* Use ns/us then divide to preserve precision */
1494                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1495                         pixel_size * hdisplay;
1496                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1497                 srwm = I965_FIFO_SIZE - entries;
1498                 if (srwm < 0)
1499                         srwm = 1;
1500                 srwm &= 0x1ff;
1501                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1502                               entries, srwm);
1503
1504                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1505                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1506                 entries = DIV_ROUND_UP(entries,
1507                                           i965_cursor_wm_info.cacheline_size);
1508                 cursor_sr = i965_cursor_wm_info.fifo_size -
1509                         (entries + i965_cursor_wm_info.guard_size);
1510
1511                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1512                         cursor_sr = i965_cursor_wm_info.max_wm;
1513
1514                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1515                               "cursor %d\n", srwm, cursor_sr);
1516
1517                 cxsr_enabled = true;
1518         } else {
1519                 cxsr_enabled = false;
1520                 /* Turn off self refresh if both pipes are enabled */
1521                 intel_set_memory_cxsr(dev_priv, false);
1522         }
1523
1524         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1525                       srwm);
1526
1527         /* 965 has limitations... */
1528         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1529                    (8 << 16) | (8 << 8) | (8 << 0));
1530         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1531         /* update cursor SR watermark */
1532         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1533
1534         if (cxsr_enabled)
1535                 intel_set_memory_cxsr(dev_priv, true);
1536 }
1537
1538 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1539 {
1540         struct drm_device *dev = unused_crtc->dev;
1541         struct drm_i915_private *dev_priv = dev->dev_private;
1542         const struct intel_watermark_params *wm_info;
1543         uint32_t fwater_lo;
1544         uint32_t fwater_hi;
1545         int cwm, srwm = 1;
1546         int fifo_size;
1547         int planea_wm, planeb_wm;
1548         struct drm_crtc *crtc, *enabled = NULL;
1549
1550         if (IS_I945GM(dev))
1551                 wm_info = &i945_wm_info;
1552         else if (!IS_GEN2(dev))
1553                 wm_info = &i915_wm_info;
1554         else
1555                 wm_info = &i830_wm_info;
1556
1557         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1558         crtc = intel_get_crtc_for_plane(dev, 0);
1559         if (intel_crtc_active(crtc)) {
1560                 const struct drm_display_mode *adjusted_mode;
1561                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1562                 if (IS_GEN2(dev))
1563                         cpp = 4;
1564
1565                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1566                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1567                                                wm_info, fifo_size, cpp,
1568                                                latency_ns);
1569                 enabled = crtc;
1570         } else
1571                 planea_wm = fifo_size - wm_info->guard_size;
1572
1573         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1574         crtc = intel_get_crtc_for_plane(dev, 1);
1575         if (intel_crtc_active(crtc)) {
1576                 const struct drm_display_mode *adjusted_mode;
1577                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1578                 if (IS_GEN2(dev))
1579                         cpp = 4;
1580
1581                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1582                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1583                                                wm_info, fifo_size, cpp,
1584                                                latency_ns);
1585                 if (enabled == NULL)
1586                         enabled = crtc;
1587                 else
1588                         enabled = NULL;
1589         } else
1590                 planeb_wm = fifo_size - wm_info->guard_size;
1591
1592         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1593
1594         if (IS_I915GM(dev) && enabled) {
1595                 struct drm_i915_gem_object *obj;
1596
1597                 obj = intel_fb_obj(enabled->primary->fb);
1598
1599                 /* self-refresh seems busted with untiled */
1600                 if (obj->tiling_mode == I915_TILING_NONE)
1601                         enabled = NULL;
1602         }
1603
1604         /*
1605          * Overlay gets an aggressive default since video jitter is bad.
1606          */
1607         cwm = 2;
1608
1609         /* Play safe and disable self-refresh before adjusting watermarks. */
1610         intel_set_memory_cxsr(dev_priv, false);
1611
1612         /* Calc sr entries for one plane configs */
1613         if (HAS_FW_BLC(dev) && enabled) {
1614                 /* self-refresh has much higher latency */
1615                 static const int sr_latency_ns = 6000;
1616                 const struct drm_display_mode *adjusted_mode =
1617                         &to_intel_crtc(enabled)->config.adjusted_mode;
1618                 int clock = adjusted_mode->crtc_clock;
1619                 int htotal = adjusted_mode->crtc_htotal;
1620                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1621                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1622                 unsigned long line_time_us;
1623                 int entries;
1624
1625                 line_time_us = max(htotal * 1000 / clock, 1);
1626
1627                 /* Use ns/us then divide to preserve precision */
1628                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1629                         pixel_size * hdisplay;
1630                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1631                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1632                 srwm = wm_info->fifo_size - entries;
1633                 if (srwm < 0)
1634                         srwm = 1;
1635
1636                 if (IS_I945G(dev) || IS_I945GM(dev))
1637                         I915_WRITE(FW_BLC_SELF,
1638                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1639                 else if (IS_I915GM(dev))
1640                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1641         }
1642
1643         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1644                       planea_wm, planeb_wm, cwm, srwm);
1645
1646         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1647         fwater_hi = (cwm & 0x1f);
1648
1649         /* Set request length to 8 cachelines per fetch */
1650         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1651         fwater_hi = fwater_hi | (1 << 8);
1652
1653         I915_WRITE(FW_BLC, fwater_lo);
1654         I915_WRITE(FW_BLC2, fwater_hi);
1655
1656         if (enabled)
1657                 intel_set_memory_cxsr(dev_priv, true);
1658 }
1659
1660 static void i845_update_wm(struct drm_crtc *unused_crtc)
1661 {
1662         struct drm_device *dev = unused_crtc->dev;
1663         struct drm_i915_private *dev_priv = dev->dev_private;
1664         struct drm_crtc *crtc;
1665         const struct drm_display_mode *adjusted_mode;
1666         uint32_t fwater_lo;
1667         int planea_wm;
1668
1669         crtc = single_enabled_crtc(dev);
1670         if (crtc == NULL)
1671                 return;
1672
1673         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1674         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1675                                        &i845_wm_info,
1676                                        dev_priv->display.get_fifo_size(dev, 0),
1677                                        4, latency_ns);
1678         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1679         fwater_lo |= (3<<8) | planea_wm;
1680
1681         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1682
1683         I915_WRITE(FW_BLC, fwater_lo);
1684 }
1685
1686 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1687                                     struct drm_crtc *crtc)
1688 {
1689         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1690         uint32_t pixel_rate;
1691
1692         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1693
1694         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1695          * adjust the pixel_rate here. */
1696
1697         if (intel_crtc->config.pch_pfit.enabled) {
1698                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1699                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1700
1701                 pipe_w = intel_crtc->config.pipe_src_w;
1702                 pipe_h = intel_crtc->config.pipe_src_h;
1703                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1704                 pfit_h = pfit_size & 0xFFFF;
1705                 if (pipe_w < pfit_w)
1706                         pipe_w = pfit_w;
1707                 if (pipe_h < pfit_h)
1708                         pipe_h = pfit_h;
1709
1710                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1711                                      pfit_w * pfit_h);
1712         }
1713
1714         return pixel_rate;
1715 }
1716
1717 /* latency must be in 0.1us units. */
1718 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1719                                uint32_t latency)
1720 {
1721         uint64_t ret;
1722
1723         if (WARN(latency == 0, "Latency value missing\n"))
1724                 return UINT_MAX;
1725
1726         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1727         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1728
1729         return ret;
1730 }
1731
1732 /* latency must be in 0.1us units. */
1733 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1734                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1735                                uint32_t latency)
1736 {
1737         uint32_t ret;
1738
1739         if (WARN(latency == 0, "Latency value missing\n"))
1740                 return UINT_MAX;
1741
1742         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1743         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1744         ret = DIV_ROUND_UP(ret, 64) + 2;
1745         return ret;
1746 }
1747
1748 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1749                            uint8_t bytes_per_pixel)
1750 {
1751         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1752 }
1753
1754 struct ilk_pipe_wm_parameters {
1755         bool active;
1756         uint32_t pipe_htotal;
1757         uint32_t pixel_rate;
1758         struct intel_plane_wm_parameters pri;
1759         struct intel_plane_wm_parameters spr;
1760         struct intel_plane_wm_parameters cur;
1761 };
1762
1763 struct ilk_wm_maximums {
1764         uint16_t pri;
1765         uint16_t spr;
1766         uint16_t cur;
1767         uint16_t fbc;
1768 };
1769
1770 /* used in computing the new watermarks state */
1771 struct intel_wm_config {
1772         unsigned int num_pipes_active;
1773         bool sprites_enabled;
1774         bool sprites_scaled;
1775 };
1776
1777 /*
1778  * For both WM_PIPE and WM_LP.
1779  * mem_value must be in 0.1us units.
1780  */
1781 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1782                                    uint32_t mem_value,
1783                                    bool is_lp)
1784 {
1785         uint32_t method1, method2;
1786
1787         if (!params->active || !params->pri.enabled)
1788                 return 0;
1789
1790         method1 = ilk_wm_method1(params->pixel_rate,
1791                                  params->pri.bytes_per_pixel,
1792                                  mem_value);
1793
1794         if (!is_lp)
1795                 return method1;
1796
1797         method2 = ilk_wm_method2(params->pixel_rate,
1798                                  params->pipe_htotal,
1799                                  params->pri.horiz_pixels,
1800                                  params->pri.bytes_per_pixel,
1801                                  mem_value);
1802
1803         return min(method1, method2);
1804 }
1805
1806 /*
1807  * For both WM_PIPE and WM_LP.
1808  * mem_value must be in 0.1us units.
1809  */
1810 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1811                                    uint32_t mem_value)
1812 {
1813         uint32_t method1, method2;
1814
1815         if (!params->active || !params->spr.enabled)
1816                 return 0;
1817
1818         method1 = ilk_wm_method1(params->pixel_rate,
1819                                  params->spr.bytes_per_pixel,
1820                                  mem_value);
1821         method2 = ilk_wm_method2(params->pixel_rate,
1822                                  params->pipe_htotal,
1823                                  params->spr.horiz_pixels,
1824                                  params->spr.bytes_per_pixel,
1825                                  mem_value);
1826         return min(method1, method2);
1827 }
1828
1829 /*
1830  * For both WM_PIPE and WM_LP.
1831  * mem_value must be in 0.1us units.
1832  */
1833 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1834                                    uint32_t mem_value)
1835 {
1836         if (!params->active || !params->cur.enabled)
1837                 return 0;
1838
1839         return ilk_wm_method2(params->pixel_rate,
1840                               params->pipe_htotal,
1841                               params->cur.horiz_pixels,
1842                               params->cur.bytes_per_pixel,
1843                               mem_value);
1844 }
1845
1846 /* Only for WM_LP. */
1847 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1848                                    uint32_t pri_val)
1849 {
1850         if (!params->active || !params->pri.enabled)
1851                 return 0;
1852
1853         return ilk_wm_fbc(pri_val,
1854                           params->pri.horiz_pixels,
1855                           params->pri.bytes_per_pixel);
1856 }
1857
1858 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1859 {
1860         if (INTEL_INFO(dev)->gen >= 8)
1861                 return 3072;
1862         else if (INTEL_INFO(dev)->gen >= 7)
1863                 return 768;
1864         else
1865                 return 512;
1866 }
1867
1868 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1869                                          int level, bool is_sprite)
1870 {
1871         if (INTEL_INFO(dev)->gen >= 8)
1872                 /* BDW primary/sprite plane watermarks */
1873                 return level == 0 ? 255 : 2047;
1874         else if (INTEL_INFO(dev)->gen >= 7)
1875                 /* IVB/HSW primary/sprite plane watermarks */
1876                 return level == 0 ? 127 : 1023;
1877         else if (!is_sprite)
1878                 /* ILK/SNB primary plane watermarks */
1879                 return level == 0 ? 127 : 511;
1880         else
1881                 /* ILK/SNB sprite plane watermarks */
1882                 return level == 0 ? 63 : 255;
1883 }
1884
1885 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1886                                           int level)
1887 {
1888         if (INTEL_INFO(dev)->gen >= 7)
1889                 return level == 0 ? 63 : 255;
1890         else
1891                 return level == 0 ? 31 : 63;
1892 }
1893
1894 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1895 {
1896         if (INTEL_INFO(dev)->gen >= 8)
1897                 return 31;
1898         else
1899                 return 15;
1900 }
1901
1902 /* Calculate the maximum primary/sprite plane watermark */
1903 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1904                                      int level,
1905                                      const struct intel_wm_config *config,
1906                                      enum intel_ddb_partitioning ddb_partitioning,
1907                                      bool is_sprite)
1908 {
1909         unsigned int fifo_size = ilk_display_fifo_size(dev);
1910
1911         /* if sprites aren't enabled, sprites get nothing */
1912         if (is_sprite && !config->sprites_enabled)
1913                 return 0;
1914
1915         /* HSW allows LP1+ watermarks even with multiple pipes */
1916         if (level == 0 || config->num_pipes_active > 1) {
1917                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1918
1919                 /*
1920                  * For some reason the non self refresh
1921                  * FIFO size is only half of the self
1922                  * refresh FIFO size on ILK/SNB.
1923                  */
1924                 if (INTEL_INFO(dev)->gen <= 6)
1925                         fifo_size /= 2;
1926         }
1927
1928         if (config->sprites_enabled) {
1929                 /* level 0 is always calculated with 1:1 split */
1930                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1931                         if (is_sprite)
1932                                 fifo_size *= 5;
1933                         fifo_size /= 6;
1934                 } else {
1935                         fifo_size /= 2;
1936                 }
1937         }
1938
1939         /* clamp to max that the registers can hold */
1940         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1941 }
1942
1943 /* Calculate the maximum cursor plane watermark */
1944 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1945                                       int level,
1946                                       const struct intel_wm_config *config)
1947 {
1948         /* HSW LP1+ watermarks w/ multiple pipes */
1949         if (level > 0 && config->num_pipes_active > 1)
1950                 return 64;
1951
1952         /* otherwise just report max that registers can hold */
1953         return ilk_cursor_wm_reg_max(dev, level);
1954 }
1955
1956 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1957                                     int level,
1958                                     const struct intel_wm_config *config,
1959                                     enum intel_ddb_partitioning ddb_partitioning,
1960                                     struct ilk_wm_maximums *max)
1961 {
1962         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1963         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1964         max->cur = ilk_cursor_wm_max(dev, level, config);
1965         max->fbc = ilk_fbc_wm_reg_max(dev);
1966 }
1967
1968 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1969                                         int level,
1970                                         struct ilk_wm_maximums *max)
1971 {
1972         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1973         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1974         max->cur = ilk_cursor_wm_reg_max(dev, level);
1975         max->fbc = ilk_fbc_wm_reg_max(dev);
1976 }
1977
1978 static bool ilk_validate_wm_level(int level,
1979                                   const struct ilk_wm_maximums *max,
1980                                   struct intel_wm_level *result)
1981 {
1982         bool ret;
1983
1984         /* already determined to be invalid? */
1985         if (!result->enable)
1986                 return false;
1987
1988         result->enable = result->pri_val <= max->pri &&
1989                          result->spr_val <= max->spr &&
1990                          result->cur_val <= max->cur;
1991
1992         ret = result->enable;
1993
1994         /*
1995          * HACK until we can pre-compute everything,
1996          * and thus fail gracefully if LP0 watermarks
1997          * are exceeded...
1998          */
1999         if (level == 0 && !result->enable) {
2000                 if (result->pri_val > max->pri)
2001                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2002                                       level, result->pri_val, max->pri);
2003                 if (result->spr_val > max->spr)
2004                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2005                                       level, result->spr_val, max->spr);
2006                 if (result->cur_val > max->cur)
2007                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2008                                       level, result->cur_val, max->cur);
2009
2010                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2011                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2012                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2013                 result->enable = true;
2014         }
2015
2016         return ret;
2017 }
2018
2019 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2020                                  int level,
2021                                  const struct ilk_pipe_wm_parameters *p,
2022                                  struct intel_wm_level *result)
2023 {
2024         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2025         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2026         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2027
2028         /* WM1+ latency values stored in 0.5us units */
2029         if (level > 0) {
2030                 pri_latency *= 5;
2031                 spr_latency *= 5;
2032                 cur_latency *= 5;
2033         }
2034
2035         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2036         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2037         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2038         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2039         result->enable = true;
2040 }
2041
2042 static uint32_t
2043 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2044 {
2045         struct drm_i915_private *dev_priv = dev->dev_private;
2046         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2047         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2048         u32 linetime, ips_linetime;
2049
2050         if (!intel_crtc_active(crtc))
2051                 return 0;
2052
2053         /* The WM are computed with base on how long it takes to fill a single
2054          * row at the given clock rate, multiplied by 8.
2055          * */
2056         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2057                                      mode->crtc_clock);
2058         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2059                                          intel_ddi_get_cdclk_freq(dev_priv));
2060
2061         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2062                PIPE_WM_LINETIME_TIME(linetime);
2063 }
2064
2065 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2066 {
2067         struct drm_i915_private *dev_priv = dev->dev_private;
2068
2069         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2070                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2071
2072                 wm[0] = (sskpd >> 56) & 0xFF;
2073                 if (wm[0] == 0)
2074                         wm[0] = sskpd & 0xF;
2075                 wm[1] = (sskpd >> 4) & 0xFF;
2076                 wm[2] = (sskpd >> 12) & 0xFF;
2077                 wm[3] = (sskpd >> 20) & 0x1FF;
2078                 wm[4] = (sskpd >> 32) & 0x1FF;
2079         } else if (INTEL_INFO(dev)->gen >= 6) {
2080                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2081
2082                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2083                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2084                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2085                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2086         } else if (INTEL_INFO(dev)->gen >= 5) {
2087                 uint32_t mltr = I915_READ(MLTR_ILK);
2088
2089                 /* ILK primary LP0 latency is 700 ns */
2090                 wm[0] = 7;
2091                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2092                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2093         }
2094 }
2095
2096 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2097 {
2098         /* ILK sprite LP0 latency is 1300 ns */
2099         if (INTEL_INFO(dev)->gen == 5)
2100                 wm[0] = 13;
2101 }
2102
2103 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2104 {
2105         /* ILK cursor LP0 latency is 1300 ns */
2106         if (INTEL_INFO(dev)->gen == 5)
2107                 wm[0] = 13;
2108
2109         /* WaDoubleCursorLP3Latency:ivb */
2110         if (IS_IVYBRIDGE(dev))
2111                 wm[3] *= 2;
2112 }
2113
2114 int ilk_wm_max_level(const struct drm_device *dev)
2115 {
2116         /* how many WM levels are we expecting */
2117         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2118                 return 4;
2119         else if (INTEL_INFO(dev)->gen >= 6)
2120                 return 3;
2121         else
2122                 return 2;
2123 }
2124
2125 static void intel_print_wm_latency(struct drm_device *dev,
2126                                    const char *name,
2127                                    const uint16_t wm[5])
2128 {
2129         int level, max_level = ilk_wm_max_level(dev);
2130
2131         for (level = 0; level <= max_level; level++) {
2132                 unsigned int latency = wm[level];
2133
2134                 if (latency == 0) {
2135                         DRM_ERROR("%s WM%d latency not provided\n",
2136                                   name, level);
2137                         continue;
2138                 }
2139
2140                 /* WM1+ latency values in 0.5us units */
2141                 if (level > 0)
2142                         latency *= 5;
2143
2144                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2145                               name, level, wm[level],
2146                               latency / 10, latency % 10);
2147         }
2148 }
2149
2150 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2151                                     uint16_t wm[5], uint16_t min)
2152 {
2153         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2154
2155         if (wm[0] >= min)
2156                 return false;
2157
2158         wm[0] = max(wm[0], min);
2159         for (level = 1; level <= max_level; level++)
2160                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2161
2162         return true;
2163 }
2164
2165 static void snb_wm_latency_quirk(struct drm_device *dev)
2166 {
2167         struct drm_i915_private *dev_priv = dev->dev_private;
2168         bool changed;
2169
2170         /*
2171          * The BIOS provided WM memory latency values are often
2172          * inadequate for high resolution displays. Adjust them.
2173          */
2174         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2175                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2176                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2177
2178         if (!changed)
2179                 return;
2180
2181         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2182         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2183         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2184         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2185 }
2186
2187 static void ilk_setup_wm_latency(struct drm_device *dev)
2188 {
2189         struct drm_i915_private *dev_priv = dev->dev_private;
2190
2191         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2192
2193         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2194                sizeof(dev_priv->wm.pri_latency));
2195         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2196                sizeof(dev_priv->wm.pri_latency));
2197
2198         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2199         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2200
2201         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2202         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2203         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2204
2205         if (IS_GEN6(dev))
2206                 snb_wm_latency_quirk(dev);
2207 }
2208
2209 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2210                                       struct ilk_pipe_wm_parameters *p)
2211 {
2212         struct drm_device *dev = crtc->dev;
2213         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2214         enum pipe pipe = intel_crtc->pipe;
2215         struct drm_plane *plane;
2216
2217         if (!intel_crtc_active(crtc))
2218                 return;
2219
2220         p->active = true;
2221         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2222         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2223         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2224         p->cur.bytes_per_pixel = 4;
2225         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2226         p->cur.horiz_pixels = intel_crtc->cursor_width;
2227         /* TODO: for now, assume primary and cursor planes are always enabled. */
2228         p->pri.enabled = true;
2229         p->cur.enabled = true;
2230
2231         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2232                 struct intel_plane *intel_plane = to_intel_plane(plane);
2233
2234                 if (intel_plane->pipe == pipe) {
2235                         p->spr = intel_plane->wm;
2236                         break;
2237                 }
2238         }
2239 }
2240
2241 static void ilk_compute_wm_config(struct drm_device *dev,
2242                                   struct intel_wm_config *config)
2243 {
2244         struct intel_crtc *intel_crtc;
2245
2246         /* Compute the currently _active_ config */
2247         for_each_intel_crtc(dev, intel_crtc) {
2248                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2249
2250                 if (!wm->pipe_enabled)
2251                         continue;
2252
2253                 config->sprites_enabled |= wm->sprites_enabled;
2254                 config->sprites_scaled |= wm->sprites_scaled;
2255                 config->num_pipes_active++;
2256         }
2257 }
2258
2259 /* Compute new watermarks for the pipe */
2260 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2261                                   const struct ilk_pipe_wm_parameters *params,
2262                                   struct intel_pipe_wm *pipe_wm)
2263 {
2264         struct drm_device *dev = crtc->dev;
2265         const struct drm_i915_private *dev_priv = dev->dev_private;
2266         int level, max_level = ilk_wm_max_level(dev);
2267         /* LP0 watermark maximums depend on this pipe alone */
2268         struct intel_wm_config config = {
2269                 .num_pipes_active = 1,
2270                 .sprites_enabled = params->spr.enabled,
2271                 .sprites_scaled = params->spr.scaled,
2272         };
2273         struct ilk_wm_maximums max;
2274
2275         pipe_wm->pipe_enabled = params->active;
2276         pipe_wm->sprites_enabled = params->spr.enabled;
2277         pipe_wm->sprites_scaled = params->spr.scaled;
2278
2279         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2280         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2281                 max_level = 1;
2282
2283         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2284         if (params->spr.scaled)
2285                 max_level = 0;
2286
2287         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2288
2289         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2290                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2291
2292         /* LP0 watermarks always use 1/2 DDB partitioning */
2293         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2294
2295         /* At least LP0 must be valid */
2296         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2297                 return false;
2298
2299         ilk_compute_wm_reg_maximums(dev, 1, &max);
2300
2301         for (level = 1; level <= max_level; level++) {
2302                 struct intel_wm_level wm = {};
2303
2304                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2305
2306                 /*
2307                  * Disable any watermark level that exceeds the
2308                  * register maximums since such watermarks are
2309                  * always invalid.
2310                  */
2311                 if (!ilk_validate_wm_level(level, &max, &wm))
2312                         break;
2313
2314                 pipe_wm->wm[level] = wm;
2315         }
2316
2317         return true;
2318 }
2319
2320 /*
2321  * Merge the watermarks from all active pipes for a specific level.
2322  */
2323 static void ilk_merge_wm_level(struct drm_device *dev,
2324                                int level,
2325                                struct intel_wm_level *ret_wm)
2326 {
2327         const struct intel_crtc *intel_crtc;
2328
2329         ret_wm->enable = true;
2330
2331         for_each_intel_crtc(dev, intel_crtc) {
2332                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2333                 const struct intel_wm_level *wm = &active->wm[level];
2334
2335                 if (!active->pipe_enabled)
2336                         continue;
2337
2338                 /*
2339                  * The watermark values may have been used in the past,
2340                  * so we must maintain them in the registers for some
2341                  * time even if the level is now disabled.
2342                  */
2343                 if (!wm->enable)
2344                         ret_wm->enable = false;
2345
2346                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2347                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2348                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2349                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2350         }
2351 }
2352
2353 /*
2354  * Merge all low power watermarks for all active pipes.
2355  */
2356 static void ilk_wm_merge(struct drm_device *dev,
2357                          const struct intel_wm_config *config,
2358                          const struct ilk_wm_maximums *max,
2359                          struct intel_pipe_wm *merged)
2360 {
2361         int level, max_level = ilk_wm_max_level(dev);
2362         int last_enabled_level = max_level;
2363
2364         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2365         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2366             config->num_pipes_active > 1)
2367                 return;
2368
2369         /* ILK: FBC WM must be disabled always */
2370         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2371
2372         /* merge each WM1+ level */
2373         for (level = 1; level <= max_level; level++) {
2374                 struct intel_wm_level *wm = &merged->wm[level];
2375
2376                 ilk_merge_wm_level(dev, level, wm);
2377
2378                 if (level > last_enabled_level)
2379                         wm->enable = false;
2380                 else if (!ilk_validate_wm_level(level, max, wm))
2381                         /* make sure all following levels get disabled */
2382                         last_enabled_level = level - 1;
2383
2384                 /*
2385                  * The spec says it is preferred to disable
2386                  * FBC WMs instead of disabling a WM level.
2387                  */
2388                 if (wm->fbc_val > max->fbc) {
2389                         if (wm->enable)
2390                                 merged->fbc_wm_enabled = false;
2391                         wm->fbc_val = 0;
2392                 }
2393         }
2394
2395         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2396         /*
2397          * FIXME this is racy. FBC might get enabled later.
2398          * What we should check here is whether FBC can be
2399          * enabled sometime later.
2400          */
2401         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2402                 for (level = 2; level <= max_level; level++) {
2403                         struct intel_wm_level *wm = &merged->wm[level];
2404
2405                         wm->enable = false;
2406                 }
2407         }
2408 }
2409
2410 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2411 {
2412         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2413         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2414 }
2415
2416 /* The value we need to program into the WM_LPx latency field */
2417 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2418 {
2419         struct drm_i915_private *dev_priv = dev->dev_private;
2420
2421         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2422                 return 2 * level;
2423         else
2424                 return dev_priv->wm.pri_latency[level];
2425 }
2426
2427 static void ilk_compute_wm_results(struct drm_device *dev,
2428                                    const struct intel_pipe_wm *merged,
2429                                    enum intel_ddb_partitioning partitioning,
2430                                    struct ilk_wm_values *results)
2431 {
2432         struct intel_crtc *intel_crtc;
2433         int level, wm_lp;
2434
2435         results->enable_fbc_wm = merged->fbc_wm_enabled;
2436         results->partitioning = partitioning;
2437
2438         /* LP1+ register values */
2439         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2440                 const struct intel_wm_level *r;
2441
2442                 level = ilk_wm_lp_to_level(wm_lp, merged);
2443
2444                 r = &merged->wm[level];
2445
2446                 /*
2447                  * Maintain the watermark values even if the level is
2448                  * disabled. Doing otherwise could cause underruns.
2449                  */
2450                 results->wm_lp[wm_lp - 1] =
2451                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2452                         (r->pri_val << WM1_LP_SR_SHIFT) |
2453                         r->cur_val;
2454
2455                 if (r->enable)
2456                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2457
2458                 if (INTEL_INFO(dev)->gen >= 8)
2459                         results->wm_lp[wm_lp - 1] |=
2460                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2461                 else
2462                         results->wm_lp[wm_lp - 1] |=
2463                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2464
2465                 /*
2466                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2467                  * level is disabled. Doing otherwise could cause underruns.
2468                  */
2469                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2470                         WARN_ON(wm_lp != 1);
2471                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2472                 } else
2473                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2474         }
2475
2476         /* LP0 register values */
2477         for_each_intel_crtc(dev, intel_crtc) {
2478                 enum pipe pipe = intel_crtc->pipe;
2479                 const struct intel_wm_level *r =
2480                         &intel_crtc->wm.active.wm[0];
2481
2482                 if (WARN_ON(!r->enable))
2483                         continue;
2484
2485                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2486
2487                 results->wm_pipe[pipe] =
2488                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2489                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2490                         r->cur_val;
2491         }
2492 }
2493
2494 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2495  * case both are at the same level. Prefer r1 in case they're the same. */
2496 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2497                                                   struct intel_pipe_wm *r1,
2498                                                   struct intel_pipe_wm *r2)
2499 {
2500         int level, max_level = ilk_wm_max_level(dev);
2501         int level1 = 0, level2 = 0;
2502
2503         for (level = 1; level <= max_level; level++) {
2504                 if (r1->wm[level].enable)
2505                         level1 = level;
2506                 if (r2->wm[level].enable)
2507                         level2 = level;
2508         }
2509
2510         if (level1 == level2) {
2511                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2512                         return r2;
2513                 else
2514                         return r1;
2515         } else if (level1 > level2) {
2516                 return r1;
2517         } else {
2518                 return r2;
2519         }
2520 }
2521
2522 /* dirty bits used to track which watermarks need changes */
2523 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2524 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2525 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2526 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2527 #define WM_DIRTY_FBC (1 << 24)
2528 #define WM_DIRTY_DDB (1 << 25)
2529
2530 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2531                                          const struct ilk_wm_values *old,
2532                                          const struct ilk_wm_values *new)
2533 {
2534         unsigned int dirty = 0;
2535         enum pipe pipe;
2536         int wm_lp;
2537
2538         for_each_pipe(pipe) {
2539                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2540                         dirty |= WM_DIRTY_LINETIME(pipe);
2541                         /* Must disable LP1+ watermarks too */
2542                         dirty |= WM_DIRTY_LP_ALL;
2543                 }
2544
2545                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2546                         dirty |= WM_DIRTY_PIPE(pipe);
2547                         /* Must disable LP1+ watermarks too */
2548                         dirty |= WM_DIRTY_LP_ALL;
2549                 }
2550         }
2551
2552         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2553                 dirty |= WM_DIRTY_FBC;
2554                 /* Must disable LP1+ watermarks too */
2555                 dirty |= WM_DIRTY_LP_ALL;
2556         }
2557
2558         if (old->partitioning != new->partitioning) {
2559                 dirty |= WM_DIRTY_DDB;
2560                 /* Must disable LP1+ watermarks too */
2561                 dirty |= WM_DIRTY_LP_ALL;
2562         }
2563
2564         /* LP1+ watermarks already deemed dirty, no need to continue */
2565         if (dirty & WM_DIRTY_LP_ALL)
2566                 return dirty;
2567
2568         /* Find the lowest numbered LP1+ watermark in need of an update... */
2569         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2570                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2571                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2572                         break;
2573         }
2574
2575         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2576         for (; wm_lp <= 3; wm_lp++)
2577                 dirty |= WM_DIRTY_LP(wm_lp);
2578
2579         return dirty;
2580 }
2581
2582 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2583                                unsigned int dirty)
2584 {
2585         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2586         bool changed = false;
2587
2588         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2589                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2590                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2591                 changed = true;
2592         }
2593         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2594                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2595                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2596                 changed = true;
2597         }
2598         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2599                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2600                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2601                 changed = true;
2602         }
2603
2604         /*
2605          * Don't touch WM1S_LP_EN here.
2606          * Doing so could cause underruns.
2607          */
2608
2609         return changed;
2610 }
2611
2612 /*
2613  * The spec says we shouldn't write when we don't need, because every write
2614  * causes WMs to be re-evaluated, expending some power.
2615  */
2616 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2617                                 struct ilk_wm_values *results)
2618 {
2619         struct drm_device *dev = dev_priv->dev;
2620         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2621         unsigned int dirty;
2622         uint32_t val;
2623
2624         dirty = ilk_compute_wm_dirty(dev, previous, results);
2625         if (!dirty)
2626                 return;
2627
2628         _ilk_disable_lp_wm(dev_priv, dirty);
2629
2630         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2631                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2632         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2633                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2634         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2635                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2636
2637         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2638                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2639         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2640                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2641         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2642                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2643
2644         if (dirty & WM_DIRTY_DDB) {
2645                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2646                         val = I915_READ(WM_MISC);
2647                         if (results->partitioning == INTEL_DDB_PART_1_2)
2648                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2649                         else
2650                                 val |= WM_MISC_DATA_PARTITION_5_6;
2651                         I915_WRITE(WM_MISC, val);
2652                 } else {
2653                         val = I915_READ(DISP_ARB_CTL2);
2654                         if (results->partitioning == INTEL_DDB_PART_1_2)
2655                                 val &= ~DISP_DATA_PARTITION_5_6;
2656                         else
2657                                 val |= DISP_DATA_PARTITION_5_6;
2658                         I915_WRITE(DISP_ARB_CTL2, val);
2659                 }
2660         }
2661
2662         if (dirty & WM_DIRTY_FBC) {
2663                 val = I915_READ(DISP_ARB_CTL);
2664                 if (results->enable_fbc_wm)
2665                         val &= ~DISP_FBC_WM_DIS;
2666                 else
2667                         val |= DISP_FBC_WM_DIS;
2668                 I915_WRITE(DISP_ARB_CTL, val);
2669         }
2670
2671         if (dirty & WM_DIRTY_LP(1) &&
2672             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2673                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2674
2675         if (INTEL_INFO(dev)->gen >= 7) {
2676                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2677                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2678                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2679                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2680         }
2681
2682         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2683                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2684         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2685                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2686         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2687                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2688
2689         dev_priv->wm.hw = *results;
2690 }
2691
2692 static bool ilk_disable_lp_wm(struct drm_device *dev)
2693 {
2694         struct drm_i915_private *dev_priv = dev->dev_private;
2695
2696         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2697 }
2698
2699 static void ilk_update_wm(struct drm_crtc *crtc)
2700 {
2701         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2702         struct drm_device *dev = crtc->dev;
2703         struct drm_i915_private *dev_priv = dev->dev_private;
2704         struct ilk_wm_maximums max;
2705         struct ilk_pipe_wm_parameters params = {};
2706         struct ilk_wm_values results = {};
2707         enum intel_ddb_partitioning partitioning;
2708         struct intel_pipe_wm pipe_wm = {};
2709         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2710         struct intel_wm_config config = {};
2711
2712         ilk_compute_wm_parameters(crtc, &params);
2713
2714         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2715
2716         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2717                 return;
2718
2719         intel_crtc->wm.active = pipe_wm;
2720
2721         ilk_compute_wm_config(dev, &config);
2722
2723         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2724         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2725
2726         /* 5/6 split only in single pipe config on IVB+ */
2727         if (INTEL_INFO(dev)->gen >= 7 &&
2728             config.num_pipes_active == 1 && config.sprites_enabled) {
2729                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2730                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2731
2732                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2733         } else {
2734                 best_lp_wm = &lp_wm_1_2;
2735         }
2736
2737         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2738                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2739
2740         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2741
2742         ilk_write_wm_values(dev_priv, &results);
2743 }
2744
2745 static void
2746 ilk_update_sprite_wm(struct drm_plane *plane,
2747                      struct drm_crtc *crtc,
2748                      uint32_t sprite_width, uint32_t sprite_height,
2749                      int pixel_size, bool enabled, bool scaled)
2750 {
2751         struct drm_device *dev = plane->dev;
2752         struct intel_plane *intel_plane = to_intel_plane(plane);
2753
2754         intel_plane->wm.enabled = enabled;
2755         intel_plane->wm.scaled = scaled;
2756         intel_plane->wm.horiz_pixels = sprite_width;
2757         intel_plane->wm.vert_pixels = sprite_width;
2758         intel_plane->wm.bytes_per_pixel = pixel_size;
2759
2760         /*
2761          * IVB workaround: must disable low power watermarks for at least
2762          * one frame before enabling scaling.  LP watermarks can be re-enabled
2763          * when scaling is disabled.
2764          *
2765          * WaCxSRDisabledForSpriteScaling:ivb
2766          */
2767         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2768                 intel_wait_for_vblank(dev, intel_plane->pipe);
2769
2770         ilk_update_wm(crtc);
2771 }
2772
2773 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2774 {
2775         struct drm_device *dev = crtc->dev;
2776         struct drm_i915_private *dev_priv = dev->dev_private;
2777         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2778         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2779         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2780         enum pipe pipe = intel_crtc->pipe;
2781         static const unsigned int wm0_pipe_reg[] = {
2782                 [PIPE_A] = WM0_PIPEA_ILK,
2783                 [PIPE_B] = WM0_PIPEB_ILK,
2784                 [PIPE_C] = WM0_PIPEC_IVB,
2785         };
2786
2787         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2788         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2789                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2790
2791         active->pipe_enabled = intel_crtc_active(crtc);
2792
2793         if (active->pipe_enabled) {
2794                 u32 tmp = hw->wm_pipe[pipe];
2795
2796                 /*
2797                  * For active pipes LP0 watermark is marked as
2798                  * enabled, and LP1+ watermaks as disabled since
2799                  * we can't really reverse compute them in case
2800                  * multiple pipes are active.
2801                  */
2802                 active->wm[0].enable = true;
2803                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2804                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2805                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2806                 active->linetime = hw->wm_linetime[pipe];
2807         } else {
2808                 int level, max_level = ilk_wm_max_level(dev);
2809
2810                 /*
2811                  * For inactive pipes, all watermark levels
2812                  * should be marked as enabled but zeroed,
2813                  * which is what we'd compute them to.
2814                  */
2815                 for (level = 0; level <= max_level; level++)
2816                         active->wm[level].enable = true;
2817         }
2818 }
2819
2820 void ilk_wm_get_hw_state(struct drm_device *dev)
2821 {
2822         struct drm_i915_private *dev_priv = dev->dev_private;
2823         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2824         struct drm_crtc *crtc;
2825
2826         for_each_crtc(dev, crtc)
2827                 ilk_pipe_wm_get_hw_state(crtc);
2828
2829         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2830         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2831         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2832
2833         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2834         if (INTEL_INFO(dev)->gen >= 7) {
2835                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2836                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2837         }
2838
2839         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2840                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2841                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2842         else if (IS_IVYBRIDGE(dev))
2843                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2844                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2845
2846         hw->enable_fbc_wm =
2847                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2848 }
2849
2850 /**
2851  * intel_update_watermarks - update FIFO watermark values based on current modes
2852  *
2853  * Calculate watermark values for the various WM regs based on current mode
2854  * and plane configuration.
2855  *
2856  * There are several cases to deal with here:
2857  *   - normal (i.e. non-self-refresh)
2858  *   - self-refresh (SR) mode
2859  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2860  *   - lines are small relative to FIFO size (buffer can hold more than 2
2861  *     lines), so need to account for TLB latency
2862  *
2863  *   The normal calculation is:
2864  *     watermark = dotclock * bytes per pixel * latency
2865  *   where latency is platform & configuration dependent (we assume pessimal
2866  *   values here).
2867  *
2868  *   The SR calculation is:
2869  *     watermark = (trunc(latency/line time)+1) * surface width *
2870  *       bytes per pixel
2871  *   where
2872  *     line time = htotal / dotclock
2873  *     surface width = hdisplay for normal plane and 64 for cursor
2874  *   and latency is assumed to be high, as above.
2875  *
2876  * The final value programmed to the register should always be rounded up,
2877  * and include an extra 2 entries to account for clock crossings.
2878  *
2879  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2880  * to set the non-SR watermarks to 8.
2881  */
2882 void intel_update_watermarks(struct drm_crtc *crtc)
2883 {
2884         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2885
2886         if (dev_priv->display.update_wm)
2887                 dev_priv->display.update_wm(crtc);
2888 }
2889
2890 void intel_update_sprite_watermarks(struct drm_plane *plane,
2891                                     struct drm_crtc *crtc,
2892                                     uint32_t sprite_width,
2893                                     uint32_t sprite_height,
2894                                     int pixel_size,
2895                                     bool enabled, bool scaled)
2896 {
2897         struct drm_i915_private *dev_priv = plane->dev->dev_private;
2898
2899         if (dev_priv->display.update_sprite_wm)
2900                 dev_priv->display.update_sprite_wm(plane, crtc,
2901                                                    sprite_width, sprite_height,
2902                                                    pixel_size, enabled, scaled);
2903 }
2904
2905 static struct drm_i915_gem_object *
2906 intel_alloc_context_page(struct drm_device *dev)
2907 {
2908         struct drm_i915_gem_object *ctx;
2909         int ret;
2910
2911         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2912
2913         ctx = i915_gem_alloc_object(dev, 4096);
2914         if (!ctx) {
2915                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2916                 return NULL;
2917         }
2918
2919         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2920         if (ret) {
2921                 DRM_ERROR("failed to pin power context: %d\n", ret);
2922                 goto err_unref;
2923         }
2924
2925         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2926         if (ret) {
2927                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2928                 goto err_unpin;
2929         }
2930
2931         return ctx;
2932
2933 err_unpin:
2934         i915_gem_object_ggtt_unpin(ctx);
2935 err_unref:
2936         drm_gem_object_unreference(&ctx->base);
2937         return NULL;
2938 }
2939
2940 /**
2941  * Lock protecting IPS related data structures
2942  */
2943 DEFINE_SPINLOCK(mchdev_lock);
2944
2945 /* Global for IPS driver to get at the current i915 device. Protected by
2946  * mchdev_lock. */
2947 static struct drm_i915_private *i915_mch_dev;
2948
2949 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2950 {
2951         struct drm_i915_private *dev_priv = dev->dev_private;
2952         u16 rgvswctl;
2953
2954         assert_spin_locked(&mchdev_lock);
2955
2956         rgvswctl = I915_READ16(MEMSWCTL);
2957         if (rgvswctl & MEMCTL_CMD_STS) {
2958                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2959                 return false; /* still busy with another command */
2960         }
2961
2962         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2963                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2964         I915_WRITE16(MEMSWCTL, rgvswctl);
2965         POSTING_READ16(MEMSWCTL);
2966
2967         rgvswctl |= MEMCTL_CMD_STS;
2968         I915_WRITE16(MEMSWCTL, rgvswctl);
2969
2970         return true;
2971 }
2972
2973 static void ironlake_enable_drps(struct drm_device *dev)
2974 {
2975         struct drm_i915_private *dev_priv = dev->dev_private;
2976         u32 rgvmodectl = I915_READ(MEMMODECTL);
2977         u8 fmax, fmin, fstart, vstart;
2978
2979         spin_lock_irq(&mchdev_lock);
2980
2981         /* Enable temp reporting */
2982         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2983         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2984
2985         /* 100ms RC evaluation intervals */
2986         I915_WRITE(RCUPEI, 100000);
2987         I915_WRITE(RCDNEI, 100000);
2988
2989         /* Set max/min thresholds to 90ms and 80ms respectively */
2990         I915_WRITE(RCBMAXAVG, 90000);
2991         I915_WRITE(RCBMINAVG, 80000);
2992
2993         I915_WRITE(MEMIHYST, 1);
2994
2995         /* Set up min, max, and cur for interrupt handling */
2996         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2997         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2998         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2999                 MEMMODE_FSTART_SHIFT;
3000
3001         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3002                 PXVFREQ_PX_SHIFT;
3003
3004         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3005         dev_priv->ips.fstart = fstart;
3006
3007         dev_priv->ips.max_delay = fstart;
3008         dev_priv->ips.min_delay = fmin;
3009         dev_priv->ips.cur_delay = fstart;
3010
3011         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3012                          fmax, fmin, fstart);
3013
3014         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3015
3016         /*
3017          * Interrupts will be enabled in ironlake_irq_postinstall
3018          */
3019
3020         I915_WRITE(VIDSTART, vstart);
3021         POSTING_READ(VIDSTART);
3022
3023         rgvmodectl |= MEMMODE_SWMODE_EN;
3024         I915_WRITE(MEMMODECTL, rgvmodectl);
3025
3026         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3027                 DRM_ERROR("stuck trying to change perf mode\n");
3028         mdelay(1);
3029
3030         ironlake_set_drps(dev, fstart);
3031
3032         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3033                 I915_READ(0x112e0);
3034         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3035         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3036         dev_priv->ips.last_time2 = ktime_get_raw_ns();
3037
3038         spin_unlock_irq(&mchdev_lock);
3039 }
3040
3041 static void ironlake_disable_drps(struct drm_device *dev)
3042 {
3043         struct drm_i915_private *dev_priv = dev->dev_private;
3044         u16 rgvswctl;
3045
3046         spin_lock_irq(&mchdev_lock);
3047
3048         rgvswctl = I915_READ16(MEMSWCTL);
3049
3050         /* Ack interrupts, disable EFC interrupt */
3051         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3052         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3053         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3054         I915_WRITE(DEIIR, DE_PCU_EVENT);
3055         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3056
3057         /* Go back to the starting frequency */
3058         ironlake_set_drps(dev, dev_priv->ips.fstart);
3059         mdelay(1);
3060         rgvswctl |= MEMCTL_CMD_STS;
3061         I915_WRITE(MEMSWCTL, rgvswctl);
3062         mdelay(1);
3063
3064         spin_unlock_irq(&mchdev_lock);
3065 }
3066
3067 /* There's a funny hw issue where the hw returns all 0 when reading from
3068  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3069  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3070  * all limits and the gpu stuck at whatever frequency it is at atm).
3071  */
3072 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3073 {
3074         u32 limits;
3075
3076         /* Only set the down limit when we've reached the lowest level to avoid
3077          * getting more interrupts, otherwise leave this clear. This prevents a
3078          * race in the hw when coming out of rc6: There's a tiny window where
3079          * the hw runs at the minimal clock before selecting the desired
3080          * frequency, if the down threshold expires in that window we will not
3081          * receive a down interrupt. */
3082         limits = dev_priv->rps.max_freq_softlimit << 24;
3083         if (val <= dev_priv->rps.min_freq_softlimit)
3084                 limits |= dev_priv->rps.min_freq_softlimit << 16;
3085
3086         return limits;
3087 }
3088
3089 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3090 {
3091         int new_power;
3092
3093         new_power = dev_priv->rps.power;
3094         switch (dev_priv->rps.power) {
3095         case LOW_POWER:
3096                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3097                         new_power = BETWEEN;
3098                 break;
3099
3100         case BETWEEN:
3101                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3102                         new_power = LOW_POWER;
3103                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3104                         new_power = HIGH_POWER;
3105                 break;
3106
3107         case HIGH_POWER:
3108                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3109                         new_power = BETWEEN;
3110                 break;
3111         }
3112         /* Max/min bins are special */
3113         if (val == dev_priv->rps.min_freq_softlimit)
3114                 new_power = LOW_POWER;
3115         if (val == dev_priv->rps.max_freq_softlimit)
3116                 new_power = HIGH_POWER;
3117         if (new_power == dev_priv->rps.power)
3118                 return;
3119
3120         /* Note the units here are not exactly 1us, but 1280ns. */
3121         switch (new_power) {
3122         case LOW_POWER:
3123                 /* Upclock if more than 95% busy over 16ms */
3124                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3125                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3126
3127                 /* Downclock if less than 85% busy over 32ms */
3128                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3129                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3130
3131                 I915_WRITE(GEN6_RP_CONTROL,
3132                            GEN6_RP_MEDIA_TURBO |
3133                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3134                            GEN6_RP_MEDIA_IS_GFX |
3135                            GEN6_RP_ENABLE |
3136                            GEN6_RP_UP_BUSY_AVG |
3137                            GEN6_RP_DOWN_IDLE_AVG);
3138                 break;
3139
3140         case BETWEEN:
3141                 /* Upclock if more than 90% busy over 13ms */
3142                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3143                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3144
3145                 /* Downclock if less than 75% busy over 32ms */
3146                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3147                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3148
3149                 I915_WRITE(GEN6_RP_CONTROL,
3150                            GEN6_RP_MEDIA_TURBO |
3151                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3152                            GEN6_RP_MEDIA_IS_GFX |
3153                            GEN6_RP_ENABLE |
3154                            GEN6_RP_UP_BUSY_AVG |
3155                            GEN6_RP_DOWN_IDLE_AVG);
3156                 break;
3157
3158         case HIGH_POWER:
3159                 /* Upclock if more than 85% busy over 10ms */
3160                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3161                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3162
3163                 /* Downclock if less than 60% busy over 32ms */
3164                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3165                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3166
3167                 I915_WRITE(GEN6_RP_CONTROL,
3168                            GEN6_RP_MEDIA_TURBO |
3169                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3170                            GEN6_RP_MEDIA_IS_GFX |
3171                            GEN6_RP_ENABLE |
3172                            GEN6_RP_UP_BUSY_AVG |
3173                            GEN6_RP_DOWN_IDLE_AVG);
3174                 break;
3175         }
3176
3177         dev_priv->rps.power = new_power;
3178         dev_priv->rps.last_adj = 0;
3179 }
3180
3181 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3182 {
3183         u32 mask = 0;
3184
3185         if (val > dev_priv->rps.min_freq_softlimit)
3186                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3187         if (val < dev_priv->rps.max_freq_softlimit)
3188                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3189
3190         mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3191         mask &= dev_priv->pm_rps_events;
3192
3193         /* IVB and SNB hard hangs on looping batchbuffer
3194          * if GEN6_PM_UP_EI_EXPIRED is masked.
3195          */
3196         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3197                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3198
3199         if (IS_GEN8(dev_priv->dev))
3200                 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3201
3202         return ~mask;
3203 }
3204
3205 /* gen6_set_rps is called to update the frequency request, but should also be
3206  * called when the range (min_delay and max_delay) is modified so that we can
3207  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3208 void gen6_set_rps(struct drm_device *dev, u8 val)
3209 {
3210         struct drm_i915_private *dev_priv = dev->dev_private;
3211
3212         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3213         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3214         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3215
3216         /* min/max delay may still have been modified so be sure to
3217          * write the limits value.
3218          */
3219         if (val != dev_priv->rps.cur_freq) {
3220                 gen6_set_rps_thresholds(dev_priv, val);
3221
3222                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3223                         I915_WRITE(GEN6_RPNSWREQ,
3224                                    HSW_FREQUENCY(val));
3225                 else
3226                         I915_WRITE(GEN6_RPNSWREQ,
3227                                    GEN6_FREQUENCY(val) |
3228                                    GEN6_OFFSET(0) |
3229                                    GEN6_AGGRESSIVE_TURBO);
3230         }
3231
3232         /* Make sure we continue to get interrupts
3233          * until we hit the minimum or maximum frequencies.
3234          */
3235         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3236         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3237
3238         POSTING_READ(GEN6_RPNSWREQ);
3239
3240         dev_priv->rps.cur_freq = val;
3241         trace_intel_gpu_freq_change(val * 50);
3242 }
3243
3244 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3245  *
3246  * * If Gfx is Idle, then
3247  * 1. Mask Turbo interrupts
3248  * 2. Bring up Gfx clock
3249  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3250  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3251  * 5. Unmask Turbo interrupts
3252 */
3253 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3254 {
3255         struct drm_device *dev = dev_priv->dev;
3256
3257         /* Latest VLV doesn't need to force the gfx clock */
3258         if (dev->pdev->revision >= 0xd) {
3259                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3260                 return;
3261         }
3262
3263         /*
3264          * When we are idle.  Drop to min voltage state.
3265          */
3266
3267         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3268                 return;
3269
3270         /* Mask turbo interrupt so that they will not come in between */
3271         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3272
3273         vlv_force_gfx_clock(dev_priv, true);
3274
3275         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3276
3277         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3278                                         dev_priv->rps.min_freq_softlimit);
3279
3280         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3281                                 & GENFREQSTATUS) == 0, 5))
3282                 DRM_ERROR("timed out waiting for Punit\n");
3283
3284         vlv_force_gfx_clock(dev_priv, false);
3285
3286         I915_WRITE(GEN6_PMINTRMSK,
3287                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3288 }
3289
3290 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3291 {
3292         struct drm_device *dev = dev_priv->dev;
3293
3294         mutex_lock(&dev_priv->rps.hw_lock);
3295         if (dev_priv->rps.enabled) {
3296                 if (IS_CHERRYVIEW(dev))
3297                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3298                 else if (IS_VALLEYVIEW(dev))
3299                         vlv_set_rps_idle(dev_priv);
3300                 else
3301                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3302                 dev_priv->rps.last_adj = 0;
3303         }
3304         mutex_unlock(&dev_priv->rps.hw_lock);
3305 }
3306
3307 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3308 {
3309         struct drm_device *dev = dev_priv->dev;
3310
3311         mutex_lock(&dev_priv->rps.hw_lock);
3312         if (dev_priv->rps.enabled) {
3313                 if (IS_VALLEYVIEW(dev))
3314                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3315                 else
3316                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3317                 dev_priv->rps.last_adj = 0;
3318         }
3319         mutex_unlock(&dev_priv->rps.hw_lock);
3320 }
3321
3322 void valleyview_set_rps(struct drm_device *dev, u8 val)
3323 {
3324         struct drm_i915_private *dev_priv = dev->dev_private;
3325
3326         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3327         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3328         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3329
3330         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3331                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3332                          dev_priv->rps.cur_freq,
3333                          vlv_gpu_freq(dev_priv, val), val);
3334
3335         if (val != dev_priv->rps.cur_freq)
3336                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3337
3338         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3339
3340         dev_priv->rps.cur_freq = val;
3341         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3342 }
3343
3344 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3345 {
3346         struct drm_i915_private *dev_priv = dev->dev_private;
3347
3348         I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3349         I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3350                                    ~dev_priv->pm_rps_events);
3351         /* Complete PM interrupt masking here doesn't race with the rps work
3352          * item again unmasking PM interrupts because that is using a different
3353          * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3354          * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3355          * gen8_enable_rps will clean up. */
3356
3357         spin_lock_irq(&dev_priv->irq_lock);
3358         dev_priv->rps.pm_iir = 0;
3359         spin_unlock_irq(&dev_priv->irq_lock);
3360
3361         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3362 }
3363
3364 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3365 {
3366         struct drm_i915_private *dev_priv = dev->dev_private;
3367
3368         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3369         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3370                                 ~dev_priv->pm_rps_events);
3371         /* Complete PM interrupt masking here doesn't race with the rps work
3372          * item again unmasking PM interrupts because that is using a different
3373          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3374          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3375
3376         spin_lock_irq(&dev_priv->irq_lock);
3377         dev_priv->rps.pm_iir = 0;
3378         spin_unlock_irq(&dev_priv->irq_lock);
3379
3380         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3381 }
3382
3383 static void gen6_disable_rps(struct drm_device *dev)
3384 {
3385         struct drm_i915_private *dev_priv = dev->dev_private;
3386
3387         I915_WRITE(GEN6_RC_CONTROL, 0);
3388         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3389
3390         if (IS_BROADWELL(dev))
3391                 gen8_disable_rps_interrupts(dev);
3392         else
3393                 gen6_disable_rps_interrupts(dev);
3394 }
3395
3396 static void cherryview_disable_rps(struct drm_device *dev)
3397 {
3398         struct drm_i915_private *dev_priv = dev->dev_private;
3399
3400         I915_WRITE(GEN6_RC_CONTROL, 0);
3401
3402         gen8_disable_rps_interrupts(dev);
3403 }
3404
3405 static void valleyview_disable_rps(struct drm_device *dev)
3406 {
3407         struct drm_i915_private *dev_priv = dev->dev_private;
3408
3409         I915_WRITE(GEN6_RC_CONTROL, 0);
3410
3411         gen6_disable_rps_interrupts(dev);
3412 }
3413
3414 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3415 {
3416         if (IS_VALLEYVIEW(dev)) {
3417                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3418                         mode = GEN6_RC_CTL_RC6_ENABLE;
3419                 else
3420                         mode = 0;
3421         }
3422         DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3423                       (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3424                       (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3425                       (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3426 }
3427
3428 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3429 {
3430         /* No RC6 before Ironlake */
3431         if (INTEL_INFO(dev)->gen < 5)
3432                 return 0;
3433
3434         /* RC6 is only on Ironlake mobile not on desktop */
3435         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3436                 return 0;
3437
3438         /* Respect the kernel parameter if it is set */
3439         if (enable_rc6 >= 0) {
3440                 int mask;
3441
3442                 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3443                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3444                                INTEL_RC6pp_ENABLE;
3445                 else
3446                         mask = INTEL_RC6_ENABLE;
3447
3448                 if ((enable_rc6 & mask) != enable_rc6)
3449                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3450                                       enable_rc6 & mask, enable_rc6, mask);
3451
3452                 return enable_rc6 & mask;
3453         }
3454
3455         /* Disable RC6 on Ironlake */
3456         if (INTEL_INFO(dev)->gen == 5)
3457                 return 0;
3458
3459         if (IS_IVYBRIDGE(dev))
3460                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3461
3462         return INTEL_RC6_ENABLE;
3463 }
3464
3465 int intel_enable_rc6(const struct drm_device *dev)
3466 {
3467         return i915.enable_rc6;
3468 }
3469
3470 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3471 {
3472         struct drm_i915_private *dev_priv = dev->dev_private;
3473
3474         spin_lock_irq(&dev_priv->irq_lock);
3475         WARN_ON(dev_priv->rps.pm_iir);
3476         gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3477         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3478         spin_unlock_irq(&dev_priv->irq_lock);
3479 }
3480
3481 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3482 {
3483         struct drm_i915_private *dev_priv = dev->dev_private;
3484
3485         spin_lock_irq(&dev_priv->irq_lock);
3486         WARN_ON(dev_priv->rps.pm_iir);
3487         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3488         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3489         spin_unlock_irq(&dev_priv->irq_lock);
3490 }
3491
3492 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3493 {
3494         /* All of these values are in units of 50MHz */
3495         dev_priv->rps.cur_freq          = 0;
3496         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3497         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3498         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3499         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3500         /* XXX: only BYT has a special efficient freq */
3501         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3502         /* hw_max = RP0 until we check for overclocking */
3503         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3504
3505         /* Preserve min/max settings in case of re-init */
3506         if (dev_priv->rps.max_freq_softlimit == 0)
3507                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3508
3509         if (dev_priv->rps.min_freq_softlimit == 0)
3510                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3511 }
3512
3513 static void gen8_enable_rps(struct drm_device *dev)
3514 {
3515         struct drm_i915_private *dev_priv = dev->dev_private;
3516         struct intel_engine_cs *ring;
3517         uint32_t rc6_mask = 0, rp_state_cap;
3518         int unused;
3519
3520         /* 1a: Software RC state - RC0 */
3521         I915_WRITE(GEN6_RC_STATE, 0);
3522
3523         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3524          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3525         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3526
3527         /* 2a: Disable RC states. */
3528         I915_WRITE(GEN6_RC_CONTROL, 0);
3529
3530         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3531         parse_rp_state_cap(dev_priv, rp_state_cap);
3532
3533         /* 2b: Program RC6 thresholds.*/
3534         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3535         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3536         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3537         for_each_ring(ring, dev_priv, unused)
3538                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3539         I915_WRITE(GEN6_RC_SLEEP, 0);
3540         if (IS_BROADWELL(dev))
3541                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
3542         else
3543                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3544
3545         /* 3: Enable RC6 */
3546         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3547                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3548         intel_print_rc6_info(dev, rc6_mask);
3549         if (IS_BROADWELL(dev))
3550                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3551                                 GEN7_RC_CTL_TO_MODE |
3552                                 rc6_mask);
3553         else
3554                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3555                                 GEN6_RC_CTL_EI_MODE(1) |
3556                                 rc6_mask);
3557
3558         /* 4 Program defaults and thresholds for RPS*/
3559         I915_WRITE(GEN6_RPNSWREQ,
3560                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3561         I915_WRITE(GEN6_RC_VIDEO_FREQ,
3562                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3563         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3564         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3565
3566         /* Docs recommend 900MHz, and 300 MHz respectively */
3567         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3568                    dev_priv->rps.max_freq_softlimit << 24 |
3569                    dev_priv->rps.min_freq_softlimit << 16);
3570
3571         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3572         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3573         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3574         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3575
3576         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3577
3578         /* 5: Enable RPS */
3579         I915_WRITE(GEN6_RP_CONTROL,
3580                    GEN6_RP_MEDIA_TURBO |
3581                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3582                    GEN6_RP_MEDIA_IS_GFX |
3583                    GEN6_RP_ENABLE |
3584                    GEN6_RP_UP_BUSY_AVG |
3585                    GEN6_RP_DOWN_IDLE_AVG);
3586
3587         /* 6: Ring frequency + overclocking (our driver does this later */
3588
3589         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3590
3591         gen8_enable_rps_interrupts(dev);
3592
3593         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3594 }
3595
3596 static void gen6_enable_rps(struct drm_device *dev)
3597 {
3598         struct drm_i915_private *dev_priv = dev->dev_private;
3599         struct intel_engine_cs *ring;
3600         u32 rp_state_cap;
3601         u32 gt_perf_status;
3602         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3603         u32 gtfifodbg;
3604         int rc6_mode;
3605         int i, ret;
3606
3607         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3608
3609         /* Here begins a magic sequence of register writes to enable
3610          * auto-downclocking.
3611          *
3612          * Perhaps there might be some value in exposing these to
3613          * userspace...
3614          */
3615         I915_WRITE(GEN6_RC_STATE, 0);
3616
3617         /* Clear the DBG now so we don't confuse earlier errors */
3618         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3619                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3620                 I915_WRITE(GTFIFODBG, gtfifodbg);
3621         }
3622
3623         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3624
3625         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3626         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3627
3628         parse_rp_state_cap(dev_priv, rp_state_cap);
3629
3630         /* disable the counters and set deterministic thresholds */
3631         I915_WRITE(GEN6_RC_CONTROL, 0);
3632
3633         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3634         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3635         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3636         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3637         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3638
3639         for_each_ring(ring, dev_priv, i)
3640                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3641
3642         I915_WRITE(GEN6_RC_SLEEP, 0);
3643         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3644         if (IS_IVYBRIDGE(dev))
3645                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3646         else
3647                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3648         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3649         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3650
3651         /* Check if we are enabling RC6 */
3652         rc6_mode = intel_enable_rc6(dev_priv->dev);
3653         if (rc6_mode & INTEL_RC6_ENABLE)
3654                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3655
3656         /* We don't use those on Haswell */
3657         if (!IS_HASWELL(dev)) {
3658                 if (rc6_mode & INTEL_RC6p_ENABLE)
3659                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3660
3661                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3662                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3663         }
3664
3665         intel_print_rc6_info(dev, rc6_mask);
3666
3667         I915_WRITE(GEN6_RC_CONTROL,
3668                    rc6_mask |
3669                    GEN6_RC_CTL_EI_MODE(1) |
3670                    GEN6_RC_CTL_HW_ENABLE);
3671
3672         /* Power down if completely idle for over 50ms */
3673         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3674         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3675
3676         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3677         if (ret)
3678                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3679
3680         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3681         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3682                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3683                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3684                                  (pcu_mbox & 0xff) * 50);
3685                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3686         }
3687
3688         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3689         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3690
3691         gen6_enable_rps_interrupts(dev);
3692
3693         rc6vids = 0;
3694         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3695         if (IS_GEN6(dev) && ret) {
3696                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3697         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3698                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3699                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3700                 rc6vids &= 0xffff00;
3701                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3702                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3703                 if (ret)
3704                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3705         }
3706
3707         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3708 }
3709
3710 static void __gen6_update_ring_freq(struct drm_device *dev)
3711 {
3712         struct drm_i915_private *dev_priv = dev->dev_private;
3713         int min_freq = 15;
3714         unsigned int gpu_freq;
3715         unsigned int max_ia_freq, min_ring_freq;
3716         int scaling_factor = 180;
3717         struct cpufreq_policy *policy;
3718
3719         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3720
3721         policy = cpufreq_cpu_get(0);
3722         if (policy) {
3723                 max_ia_freq = policy->cpuinfo.max_freq;
3724                 cpufreq_cpu_put(policy);
3725         } else {
3726                 /*
3727                  * Default to measured freq if none found, PCU will ensure we
3728                  * don't go over
3729                  */
3730                 max_ia_freq = tsc_khz;
3731         }
3732
3733         /* Convert from kHz to MHz */
3734         max_ia_freq /= 1000;
3735
3736         min_ring_freq = I915_READ(DCLK) & 0xf;
3737         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3738         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3739
3740         /*
3741          * For each potential GPU frequency, load a ring frequency we'd like
3742          * to use for memory access.  We do this by specifying the IA frequency
3743          * the PCU should use as a reference to determine the ring frequency.
3744          */
3745         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3746              gpu_freq--) {
3747                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3748                 unsigned int ia_freq = 0, ring_freq = 0;
3749
3750                 if (INTEL_INFO(dev)->gen >= 8) {
3751                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3752                         ring_freq = max(min_ring_freq, gpu_freq);
3753                 } else if (IS_HASWELL(dev)) {
3754                         ring_freq = mult_frac(gpu_freq, 5, 4);
3755                         ring_freq = max(min_ring_freq, ring_freq);
3756                         /* leave ia_freq as the default, chosen by cpufreq */
3757                 } else {
3758                         /* On older processors, there is no separate ring
3759                          * clock domain, so in order to boost the bandwidth
3760                          * of the ring, we need to upclock the CPU (ia_freq).
3761                          *
3762                          * For GPU frequencies less than 750MHz,
3763                          * just use the lowest ring freq.
3764                          */
3765                         if (gpu_freq < min_freq)
3766                                 ia_freq = 800;
3767                         else
3768                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3769                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3770                 }
3771
3772                 sandybridge_pcode_write(dev_priv,
3773                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3774                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3775                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3776                                         gpu_freq);
3777         }
3778 }
3779
3780 void gen6_update_ring_freq(struct drm_device *dev)
3781 {
3782         struct drm_i915_private *dev_priv = dev->dev_private;
3783
3784         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3785                 return;
3786
3787         mutex_lock(&dev_priv->rps.hw_lock);
3788         __gen6_update_ring_freq(dev);
3789         mutex_unlock(&dev_priv->rps.hw_lock);
3790 }
3791
3792 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
3793 {
3794         u32 val, rp0;
3795
3796         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3797         rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3798
3799         return rp0;
3800 }
3801
3802 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3803 {
3804         u32 val, rpe;
3805
3806         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
3807         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
3808
3809         return rpe;
3810 }
3811
3812 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
3813 {
3814         u32 val, rp1;
3815
3816         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3817         rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3818
3819         return rp1;
3820 }
3821
3822 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
3823 {
3824         u32 val, rpn;
3825
3826         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3827         rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
3828         return rpn;
3829 }
3830
3831 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
3832 {
3833         u32 val, rp1;
3834
3835         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3836
3837         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
3838
3839         return rp1;
3840 }
3841
3842 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3843 {
3844         u32 val, rp0;
3845
3846         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3847
3848         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3849         /* Clamp to max */
3850         rp0 = min_t(u32, rp0, 0xea);
3851
3852         return rp0;
3853 }
3854
3855 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3856 {
3857         u32 val, rpe;
3858
3859         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3860         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3861         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3862         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3863
3864         return rpe;
3865 }
3866
3867 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3868 {
3869         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3870 }
3871
3872 /* Check that the pctx buffer wasn't move under us. */
3873 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3874 {
3875         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3876
3877         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3878                              dev_priv->vlv_pctx->stolen->start);
3879 }
3880
3881
3882 /* Check that the pcbr address is not empty. */
3883 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
3884 {
3885         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3886
3887         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
3888 }
3889
3890 static void cherryview_setup_pctx(struct drm_device *dev)
3891 {
3892         struct drm_i915_private *dev_priv = dev->dev_private;
3893         unsigned long pctx_paddr, paddr;
3894         struct i915_gtt *gtt = &dev_priv->gtt;
3895         u32 pcbr;
3896         int pctx_size = 32*1024;
3897
3898         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3899
3900         pcbr = I915_READ(VLV_PCBR);
3901         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
3902                 paddr = (dev_priv->mm.stolen_base +
3903                          (gtt->stolen_size - pctx_size));
3904
3905                 pctx_paddr = (paddr & (~4095));
3906                 I915_WRITE(VLV_PCBR, pctx_paddr);
3907         }
3908 }
3909
3910 static void valleyview_setup_pctx(struct drm_device *dev)
3911 {
3912         struct drm_i915_private *dev_priv = dev->dev_private;
3913         struct drm_i915_gem_object *pctx;
3914         unsigned long pctx_paddr;
3915         u32 pcbr;
3916         int pctx_size = 24*1024;
3917
3918         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3919
3920         pcbr = I915_READ(VLV_PCBR);
3921         if (pcbr) {
3922                 /* BIOS set it up already, grab the pre-alloc'd space */
3923                 int pcbr_offset;
3924
3925                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3926                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3927                                                                       pcbr_offset,
3928                                                                       I915_GTT_OFFSET_NONE,
3929                                                                       pctx_size);
3930                 goto out;
3931         }
3932
3933         /*
3934          * From the Gunit register HAS:
3935          * The Gfx driver is expected to program this register and ensure
3936          * proper allocation within Gfx stolen memory.  For example, this
3937          * register should be programmed such than the PCBR range does not
3938          * overlap with other ranges, such as the frame buffer, protected
3939          * memory, or any other relevant ranges.
3940          */
3941         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3942         if (!pctx) {
3943                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3944                 return;
3945         }
3946
3947         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3948         I915_WRITE(VLV_PCBR, pctx_paddr);
3949
3950 out:
3951         dev_priv->vlv_pctx = pctx;
3952 }
3953
3954 static void valleyview_cleanup_pctx(struct drm_device *dev)
3955 {
3956         struct drm_i915_private *dev_priv = dev->dev_private;
3957
3958         if (WARN_ON(!dev_priv->vlv_pctx))
3959                 return;
3960
3961         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3962         dev_priv->vlv_pctx = NULL;
3963 }
3964
3965 static void valleyview_init_gt_powersave(struct drm_device *dev)
3966 {
3967         struct drm_i915_private *dev_priv = dev->dev_private;
3968
3969         valleyview_setup_pctx(dev);
3970
3971         mutex_lock(&dev_priv->rps.hw_lock);
3972
3973         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3974         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3975         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3976                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3977                          dev_priv->rps.max_freq);
3978
3979         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3980         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3981                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3982                          dev_priv->rps.efficient_freq);
3983
3984         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
3985         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
3986                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
3987                          dev_priv->rps.rp1_freq);
3988
3989         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3990         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3991                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3992                          dev_priv->rps.min_freq);
3993
3994         /* Preserve min/max settings in case of re-init */
3995         if (dev_priv->rps.max_freq_softlimit == 0)
3996                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3997
3998         if (dev_priv->rps.min_freq_softlimit == 0)
3999                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4000
4001         mutex_unlock(&dev_priv->rps.hw_lock);
4002 }
4003
4004 static void cherryview_init_gt_powersave(struct drm_device *dev)
4005 {
4006         struct drm_i915_private *dev_priv = dev->dev_private;
4007
4008         cherryview_setup_pctx(dev);
4009
4010         mutex_lock(&dev_priv->rps.hw_lock);
4011
4012         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4013         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4014         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4015                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4016                          dev_priv->rps.max_freq);
4017
4018         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4019         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4020                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4021                          dev_priv->rps.efficient_freq);
4022
4023         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4024         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4025                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4026                          dev_priv->rps.rp1_freq);
4027
4028         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4029         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4030                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4031                          dev_priv->rps.min_freq);
4032
4033         /* Preserve min/max settings in case of re-init */
4034         if (dev_priv->rps.max_freq_softlimit == 0)
4035                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4036
4037         if (dev_priv->rps.min_freq_softlimit == 0)
4038                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4039
4040         mutex_unlock(&dev_priv->rps.hw_lock);
4041 }
4042
4043 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4044 {
4045         valleyview_cleanup_pctx(dev);
4046 }
4047
4048 static void cherryview_enable_rps(struct drm_device *dev)
4049 {
4050         struct drm_i915_private *dev_priv = dev->dev_private;
4051         struct intel_engine_cs *ring;
4052         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4053         int i;
4054
4055         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4056
4057         gtfifodbg = I915_READ(GTFIFODBG);
4058         if (gtfifodbg) {
4059                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4060                                  gtfifodbg);
4061                 I915_WRITE(GTFIFODBG, gtfifodbg);
4062         }
4063
4064         cherryview_check_pctx(dev_priv);
4065
4066         /* 1a & 1b: Get forcewake during program sequence. Although the driver
4067          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4068         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4069
4070         /* 2a: Program RC6 thresholds.*/
4071         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4072         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4073         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4074
4075         for_each_ring(ring, dev_priv, i)
4076                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4077         I915_WRITE(GEN6_RC_SLEEP, 0);
4078
4079         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4080
4081         /* allows RC6 residency counter to work */
4082         I915_WRITE(VLV_COUNTER_CONTROL,
4083                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4084                                       VLV_MEDIA_RC6_COUNT_EN |
4085                                       VLV_RENDER_RC6_COUNT_EN));
4086
4087         /* For now we assume BIOS is allocating and populating the PCBR  */
4088         pcbr = I915_READ(VLV_PCBR);
4089
4090         DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4091
4092         /* 3: Enable RC6 */
4093         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4094                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4095                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4096
4097         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4098
4099         /* 4 Program defaults and thresholds for RPS*/
4100         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4101         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4102         I915_WRITE(GEN6_RP_UP_EI, 66000);
4103         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4104
4105         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4106
4107         /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4108         I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4109         I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4110
4111         /* 5: Enable RPS */
4112         I915_WRITE(GEN6_RP_CONTROL,
4113                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4114                    GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4115                    GEN6_RP_ENABLE |
4116                    GEN6_RP_UP_BUSY_AVG |
4117                    GEN6_RP_DOWN_IDLE_AVG);
4118
4119         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4120
4121         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4122         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4123
4124         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4125         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4126                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4127                          dev_priv->rps.cur_freq);
4128
4129         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4130                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4131                          dev_priv->rps.efficient_freq);
4132
4133         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4134
4135         gen8_enable_rps_interrupts(dev);
4136
4137         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4138 }
4139
4140 static void valleyview_enable_rps(struct drm_device *dev)
4141 {
4142         struct drm_i915_private *dev_priv = dev->dev_private;
4143         struct intel_engine_cs *ring;
4144         u32 gtfifodbg, val, rc6_mode = 0;
4145         int i;
4146
4147         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4148
4149         valleyview_check_pctx(dev_priv);
4150
4151         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4152                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4153                                  gtfifodbg);
4154                 I915_WRITE(GTFIFODBG, gtfifodbg);
4155         }
4156
4157         /* If VLV, Forcewake all wells, else re-direct to regular path */
4158         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4159
4160         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4161         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4162         I915_WRITE(GEN6_RP_UP_EI, 66000);
4163         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4164
4165         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4166         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4167
4168         I915_WRITE(GEN6_RP_CONTROL,
4169                    GEN6_RP_MEDIA_TURBO |
4170                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4171                    GEN6_RP_MEDIA_IS_GFX |
4172                    GEN6_RP_ENABLE |
4173                    GEN6_RP_UP_BUSY_AVG |
4174                    GEN6_RP_DOWN_IDLE_CONT);
4175
4176         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4177         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4178         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4179
4180         for_each_ring(ring, dev_priv, i)
4181                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4182
4183         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4184
4185         /* allows RC6 residency counter to work */
4186         I915_WRITE(VLV_COUNTER_CONTROL,
4187                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4188                                       VLV_RENDER_RC0_COUNT_EN |
4189                                       VLV_MEDIA_RC6_COUNT_EN |
4190                                       VLV_RENDER_RC6_COUNT_EN));
4191
4192         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4193                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4194
4195         intel_print_rc6_info(dev, rc6_mode);
4196
4197         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4198
4199         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4200
4201         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4202         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4203
4204         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4205         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4206                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4207                          dev_priv->rps.cur_freq);
4208
4209         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4210                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4211                          dev_priv->rps.efficient_freq);
4212
4213         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4214
4215         gen6_enable_rps_interrupts(dev);
4216
4217         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4218 }
4219
4220 void ironlake_teardown_rc6(struct drm_device *dev)
4221 {
4222         struct drm_i915_private *dev_priv = dev->dev_private;
4223
4224         if (dev_priv->ips.renderctx) {
4225                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4226                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4227                 dev_priv->ips.renderctx = NULL;
4228         }
4229
4230         if (dev_priv->ips.pwrctx) {
4231                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4232                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4233                 dev_priv->ips.pwrctx = NULL;
4234         }
4235 }
4236
4237 static void ironlake_disable_rc6(struct drm_device *dev)
4238 {
4239         struct drm_i915_private *dev_priv = dev->dev_private;
4240
4241         if (I915_READ(PWRCTXA)) {
4242                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4243                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4244                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4245                          50);
4246
4247                 I915_WRITE(PWRCTXA, 0);
4248                 POSTING_READ(PWRCTXA);
4249
4250                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4251                 POSTING_READ(RSTDBYCTL);
4252         }
4253 }
4254
4255 static int ironlake_setup_rc6(struct drm_device *dev)
4256 {
4257         struct drm_i915_private *dev_priv = dev->dev_private;
4258
4259         if (dev_priv->ips.renderctx == NULL)
4260                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4261         if (!dev_priv->ips.renderctx)
4262                 return -ENOMEM;
4263
4264         if (dev_priv->ips.pwrctx == NULL)
4265                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4266         if (!dev_priv->ips.pwrctx) {
4267                 ironlake_teardown_rc6(dev);
4268                 return -ENOMEM;
4269         }
4270
4271         return 0;
4272 }
4273
4274 static void ironlake_enable_rc6(struct drm_device *dev)
4275 {
4276         struct drm_i915_private *dev_priv = dev->dev_private;
4277         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4278         bool was_interruptible;
4279         int ret;
4280
4281         /* rc6 disabled by default due to repeated reports of hanging during
4282          * boot and resume.
4283          */
4284         if (!intel_enable_rc6(dev))
4285                 return;
4286
4287         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4288
4289         ret = ironlake_setup_rc6(dev);
4290         if (ret)
4291                 return;
4292
4293         was_interruptible = dev_priv->mm.interruptible;
4294         dev_priv->mm.interruptible = false;
4295
4296         /*
4297          * GPU can automatically power down the render unit if given a page
4298          * to save state.
4299          */
4300         ret = intel_ring_begin(ring, 6);
4301         if (ret) {
4302                 ironlake_teardown_rc6(dev);
4303                 dev_priv->mm.interruptible = was_interruptible;
4304                 return;
4305         }
4306
4307         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4308         intel_ring_emit(ring, MI_SET_CONTEXT);
4309         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4310                         MI_MM_SPACE_GTT |
4311                         MI_SAVE_EXT_STATE_EN |
4312                         MI_RESTORE_EXT_STATE_EN |
4313                         MI_RESTORE_INHIBIT);
4314         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4315         intel_ring_emit(ring, MI_NOOP);
4316         intel_ring_emit(ring, MI_FLUSH);
4317         intel_ring_advance(ring);
4318
4319         /*
4320          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4321          * does an implicit flush, combined with MI_FLUSH above, it should be
4322          * safe to assume that renderctx is valid
4323          */
4324         ret = intel_ring_idle(ring);
4325         dev_priv->mm.interruptible = was_interruptible;
4326         if (ret) {
4327                 DRM_ERROR("failed to enable ironlake power savings\n");
4328                 ironlake_teardown_rc6(dev);
4329                 return;
4330         }
4331
4332         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4333         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4334
4335         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4336 }
4337
4338 static unsigned long intel_pxfreq(u32 vidfreq)
4339 {
4340         unsigned long freq;
4341         int div = (vidfreq & 0x3f0000) >> 16;
4342         int post = (vidfreq & 0x3000) >> 12;
4343         int pre = (vidfreq & 0x7);
4344
4345         if (!pre)
4346                 return 0;
4347
4348         freq = ((div * 133333) / ((1<<post) * pre));
4349
4350         return freq;
4351 }
4352
4353 static const struct cparams {
4354         u16 i;
4355         u16 t;
4356         u16 m;
4357         u16 c;
4358 } cparams[] = {
4359         { 1, 1333, 301, 28664 },
4360         { 1, 1066, 294, 24460 },
4361         { 1, 800, 294, 25192 },
4362         { 0, 1333, 276, 27605 },
4363         { 0, 1066, 276, 27605 },
4364         { 0, 800, 231, 23784 },
4365 };
4366
4367 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4368 {
4369         u64 total_count, diff, ret;
4370         u32 count1, count2, count3, m = 0, c = 0;
4371         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4372         int i;
4373
4374         assert_spin_locked(&mchdev_lock);
4375
4376         diff1 = now - dev_priv->ips.last_time1;
4377
4378         /* Prevent division-by-zero if we are asking too fast.
4379          * Also, we don't get interesting results if we are polling
4380          * faster than once in 10ms, so just return the saved value
4381          * in such cases.
4382          */
4383         if (diff1 <= 10)
4384                 return dev_priv->ips.chipset_power;
4385
4386         count1 = I915_READ(DMIEC);
4387         count2 = I915_READ(DDREC);
4388         count3 = I915_READ(CSIEC);
4389
4390         total_count = count1 + count2 + count3;
4391
4392         /* FIXME: handle per-counter overflow */
4393         if (total_count < dev_priv->ips.last_count1) {
4394                 diff = ~0UL - dev_priv->ips.last_count1;
4395                 diff += total_count;
4396         } else {
4397                 diff = total_count - dev_priv->ips.last_count1;
4398         }
4399
4400         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4401                 if (cparams[i].i == dev_priv->ips.c_m &&
4402                     cparams[i].t == dev_priv->ips.r_t) {
4403                         m = cparams[i].m;
4404                         c = cparams[i].c;
4405                         break;
4406                 }
4407         }
4408
4409         diff = div_u64(diff, diff1);
4410         ret = ((m * diff) + c);
4411         ret = div_u64(ret, 10);
4412
4413         dev_priv->ips.last_count1 = total_count;
4414         dev_priv->ips.last_time1 = now;
4415
4416         dev_priv->ips.chipset_power = ret;
4417
4418         return ret;
4419 }
4420
4421 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4422 {
4423         struct drm_device *dev = dev_priv->dev;
4424         unsigned long val;
4425
4426         if (INTEL_INFO(dev)->gen != 5)
4427                 return 0;
4428
4429         spin_lock_irq(&mchdev_lock);
4430
4431         val = __i915_chipset_val(dev_priv);
4432
4433         spin_unlock_irq(&mchdev_lock);
4434
4435         return val;
4436 }
4437
4438 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4439 {
4440         unsigned long m, x, b;
4441         u32 tsfs;
4442
4443         tsfs = I915_READ(TSFS);
4444
4445         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4446         x = I915_READ8(TR1);
4447
4448         b = tsfs & TSFS_INTR_MASK;
4449
4450         return ((m * x) / 127) - b;
4451 }
4452
4453 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4454 {
4455         struct drm_device *dev = dev_priv->dev;
4456         static const struct v_table {
4457                 u16 vd; /* in .1 mil */
4458                 u16 vm; /* in .1 mil */
4459         } v_table[] = {
4460                 { 0, 0, },
4461                 { 375, 0, },
4462                 { 500, 0, },
4463                 { 625, 0, },
4464                 { 750, 0, },
4465                 { 875, 0, },
4466                 { 1000, 0, },
4467                 { 1125, 0, },
4468                 { 4125, 3000, },
4469                 { 4125, 3000, },
4470                 { 4125, 3000, },
4471                 { 4125, 3000, },
4472                 { 4125, 3000, },
4473                 { 4125, 3000, },
4474                 { 4125, 3000, },
4475                 { 4125, 3000, },
4476                 { 4125, 3000, },
4477                 { 4125, 3000, },
4478                 { 4125, 3000, },
4479                 { 4125, 3000, },
4480                 { 4125, 3000, },
4481                 { 4125, 3000, },
4482                 { 4125, 3000, },
4483                 { 4125, 3000, },
4484                 { 4125, 3000, },
4485                 { 4125, 3000, },
4486                 { 4125, 3000, },
4487                 { 4125, 3000, },
4488                 { 4125, 3000, },
4489                 { 4125, 3000, },
4490                 { 4125, 3000, },
4491                 { 4125, 3000, },
4492                 { 4250, 3125, },
4493                 { 4375, 3250, },
4494                 { 4500, 3375, },
4495                 { 4625, 3500, },
4496                 { 4750, 3625, },
4497                 { 4875, 3750, },
4498                 { 5000, 3875, },
4499                 { 5125, 4000, },
4500                 { 5250, 4125, },
4501                 { 5375, 4250, },
4502                 { 5500, 4375, },
4503                 { 5625, 4500, },
4504                 { 5750, 4625, },
4505                 { 5875, 4750, },
4506                 { 6000, 4875, },
4507                 { 6125, 5000, },
4508                 { 6250, 5125, },
4509                 { 6375, 5250, },
4510                 { 6500, 5375, },
4511                 { 6625, 5500, },
4512                 { 6750, 5625, },
4513                 { 6875, 5750, },
4514                 { 7000, 5875, },
4515                 { 7125, 6000, },
4516                 { 7250, 6125, },
4517                 { 7375, 6250, },
4518                 { 7500, 6375, },
4519                 { 7625, 6500, },
4520                 { 7750, 6625, },
4521                 { 7875, 6750, },
4522                 { 8000, 6875, },
4523                 { 8125, 7000, },
4524                 { 8250, 7125, },
4525                 { 8375, 7250, },
4526                 { 8500, 7375, },
4527                 { 8625, 7500, },
4528                 { 8750, 7625, },
4529                 { 8875, 7750, },
4530                 { 9000, 7875, },
4531                 { 9125, 8000, },
4532                 { 9250, 8125, },
4533                 { 9375, 8250, },
4534                 { 9500, 8375, },
4535                 { 9625, 8500, },
4536                 { 9750, 8625, },
4537                 { 9875, 8750, },
4538                 { 10000, 8875, },
4539                 { 10125, 9000, },
4540                 { 10250, 9125, },
4541                 { 10375, 9250, },
4542                 { 10500, 9375, },
4543                 { 10625, 9500, },
4544                 { 10750, 9625, },
4545                 { 10875, 9750, },
4546                 { 11000, 9875, },
4547                 { 11125, 10000, },
4548                 { 11250, 10125, },
4549                 { 11375, 10250, },
4550                 { 11500, 10375, },
4551                 { 11625, 10500, },
4552                 { 11750, 10625, },
4553                 { 11875, 10750, },
4554                 { 12000, 10875, },
4555                 { 12125, 11000, },
4556                 { 12250, 11125, },
4557                 { 12375, 11250, },
4558                 { 12500, 11375, },
4559                 { 12625, 11500, },
4560                 { 12750, 11625, },
4561                 { 12875, 11750, },
4562                 { 13000, 11875, },
4563                 { 13125, 12000, },
4564                 { 13250, 12125, },
4565                 { 13375, 12250, },
4566                 { 13500, 12375, },
4567                 { 13625, 12500, },
4568                 { 13750, 12625, },
4569                 { 13875, 12750, },
4570                 { 14000, 12875, },
4571                 { 14125, 13000, },
4572                 { 14250, 13125, },
4573                 { 14375, 13250, },
4574                 { 14500, 13375, },
4575                 { 14625, 13500, },
4576                 { 14750, 13625, },
4577                 { 14875, 13750, },
4578                 { 15000, 13875, },
4579                 { 15125, 14000, },
4580                 { 15250, 14125, },
4581                 { 15375, 14250, },
4582                 { 15500, 14375, },
4583                 { 15625, 14500, },
4584                 { 15750, 14625, },
4585                 { 15875, 14750, },
4586                 { 16000, 14875, },
4587                 { 16125, 15000, },
4588         };
4589         if (INTEL_INFO(dev)->is_mobile)
4590                 return v_table[pxvid].vm;
4591         else
4592                 return v_table[pxvid].vd;
4593 }
4594
4595 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4596 {
4597         u64 now, diff, diffms;
4598         u32 count;
4599
4600         assert_spin_locked(&mchdev_lock);
4601
4602         now = ktime_get_raw_ns();
4603         diffms = now - dev_priv->ips.last_time2;
4604         do_div(diffms, NSEC_PER_MSEC);
4605
4606         /* Don't divide by 0 */
4607         if (!diffms)
4608                 return;
4609
4610         count = I915_READ(GFXEC);
4611
4612         if (count < dev_priv->ips.last_count2) {
4613                 diff = ~0UL - dev_priv->ips.last_count2;
4614                 diff += count;
4615         } else {
4616                 diff = count - dev_priv->ips.last_count2;
4617         }
4618
4619         dev_priv->ips.last_count2 = count;
4620         dev_priv->ips.last_time2 = now;
4621
4622         /* More magic constants... */
4623         diff = diff * 1181;
4624         diff = div_u64(diff, diffms * 10);
4625         dev_priv->ips.gfx_power = diff;
4626 }
4627
4628 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4629 {
4630         struct drm_device *dev = dev_priv->dev;
4631
4632         if (INTEL_INFO(dev)->gen != 5)
4633                 return;
4634
4635         spin_lock_irq(&mchdev_lock);
4636
4637         __i915_update_gfx_val(dev_priv);
4638
4639         spin_unlock_irq(&mchdev_lock);
4640 }
4641
4642 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4643 {
4644         unsigned long t, corr, state1, corr2, state2;
4645         u32 pxvid, ext_v;
4646
4647         assert_spin_locked(&mchdev_lock);
4648
4649         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4650         pxvid = (pxvid >> 24) & 0x7f;
4651         ext_v = pvid_to_extvid(dev_priv, pxvid);
4652
4653         state1 = ext_v;
4654
4655         t = i915_mch_val(dev_priv);
4656
4657         /* Revel in the empirically derived constants */
4658
4659         /* Correction factor in 1/100000 units */
4660         if (t > 80)
4661                 corr = ((t * 2349) + 135940);
4662         else if (t >= 50)
4663                 corr = ((t * 964) + 29317);
4664         else /* < 50 */
4665                 corr = ((t * 301) + 1004);
4666
4667         corr = corr * ((150142 * state1) / 10000 - 78642);
4668         corr /= 100000;
4669         corr2 = (corr * dev_priv->ips.corr);
4670
4671         state2 = (corr2 * state1) / 10000;
4672         state2 /= 100; /* convert to mW */
4673
4674         __i915_update_gfx_val(dev_priv);
4675
4676         return dev_priv->ips.gfx_power + state2;
4677 }
4678
4679 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4680 {
4681         struct drm_device *dev = dev_priv->dev;
4682         unsigned long val;
4683
4684         if (INTEL_INFO(dev)->gen != 5)
4685                 return 0;
4686
4687         spin_lock_irq(&mchdev_lock);
4688
4689         val = __i915_gfx_val(dev_priv);
4690
4691         spin_unlock_irq(&mchdev_lock);
4692
4693         return val;
4694 }
4695
4696 /**
4697  * i915_read_mch_val - return value for IPS use
4698  *
4699  * Calculate and return a value for the IPS driver to use when deciding whether
4700  * we have thermal and power headroom to increase CPU or GPU power budget.
4701  */
4702 unsigned long i915_read_mch_val(void)
4703 {
4704         struct drm_i915_private *dev_priv;
4705         unsigned long chipset_val, graphics_val, ret = 0;
4706
4707         spin_lock_irq(&mchdev_lock);
4708         if (!i915_mch_dev)
4709                 goto out_unlock;
4710         dev_priv = i915_mch_dev;
4711
4712         chipset_val = __i915_chipset_val(dev_priv);
4713         graphics_val = __i915_gfx_val(dev_priv);
4714
4715         ret = chipset_val + graphics_val;
4716
4717 out_unlock:
4718         spin_unlock_irq(&mchdev_lock);
4719
4720         return ret;
4721 }
4722 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4723
4724 /**
4725  * i915_gpu_raise - raise GPU frequency limit
4726  *
4727  * Raise the limit; IPS indicates we have thermal headroom.
4728  */
4729 bool i915_gpu_raise(void)
4730 {
4731         struct drm_i915_private *dev_priv;
4732         bool ret = true;
4733
4734         spin_lock_irq(&mchdev_lock);
4735         if (!i915_mch_dev) {
4736                 ret = false;
4737                 goto out_unlock;
4738         }
4739         dev_priv = i915_mch_dev;
4740
4741         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4742                 dev_priv->ips.max_delay--;
4743
4744 out_unlock:
4745         spin_unlock_irq(&mchdev_lock);
4746
4747         return ret;
4748 }
4749 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4750
4751 /**
4752  * i915_gpu_lower - lower GPU frequency limit
4753  *
4754  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4755  * frequency maximum.
4756  */
4757 bool i915_gpu_lower(void)
4758 {
4759         struct drm_i915_private *dev_priv;
4760         bool ret = true;
4761
4762         spin_lock_irq(&mchdev_lock);
4763         if (!i915_mch_dev) {
4764                 ret = false;
4765                 goto out_unlock;
4766         }
4767         dev_priv = i915_mch_dev;
4768
4769         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4770                 dev_priv->ips.max_delay++;
4771
4772 out_unlock:
4773         spin_unlock_irq(&mchdev_lock);
4774
4775         return ret;
4776 }
4777 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4778
4779 /**
4780  * i915_gpu_busy - indicate GPU business to IPS
4781  *
4782  * Tell the IPS driver whether or not the GPU is busy.
4783  */
4784 bool i915_gpu_busy(void)
4785 {
4786         struct drm_i915_private *dev_priv;
4787         struct intel_engine_cs *ring;
4788         bool ret = false;
4789         int i;
4790
4791         spin_lock_irq(&mchdev_lock);
4792         if (!i915_mch_dev)
4793                 goto out_unlock;
4794         dev_priv = i915_mch_dev;
4795
4796         for_each_ring(ring, dev_priv, i)
4797                 ret |= !list_empty(&ring->request_list);
4798
4799 out_unlock:
4800         spin_unlock_irq(&mchdev_lock);
4801
4802         return ret;
4803 }
4804 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4805
4806 /**
4807  * i915_gpu_turbo_disable - disable graphics turbo
4808  *
4809  * Disable graphics turbo by resetting the max frequency and setting the
4810  * current frequency to the default.
4811  */
4812 bool i915_gpu_turbo_disable(void)
4813 {
4814         struct drm_i915_private *dev_priv;
4815         bool ret = true;
4816
4817         spin_lock_irq(&mchdev_lock);
4818         if (!i915_mch_dev) {
4819                 ret = false;
4820                 goto out_unlock;
4821         }
4822         dev_priv = i915_mch_dev;
4823
4824         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4825
4826         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4827                 ret = false;
4828
4829 out_unlock:
4830         spin_unlock_irq(&mchdev_lock);
4831
4832         return ret;
4833 }
4834 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4835
4836 /**
4837  * Tells the intel_ips driver that the i915 driver is now loaded, if
4838  * IPS got loaded first.
4839  *
4840  * This awkward dance is so that neither module has to depend on the
4841  * other in order for IPS to do the appropriate communication of
4842  * GPU turbo limits to i915.
4843  */
4844 static void
4845 ips_ping_for_i915_load(void)
4846 {
4847         void (*link)(void);
4848
4849         link = symbol_get(ips_link_to_i915_driver);
4850         if (link) {
4851                 link();
4852                 symbol_put(ips_link_to_i915_driver);
4853         }
4854 }
4855
4856 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4857 {
4858         /* We only register the i915 ips part with intel-ips once everything is
4859          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4860         spin_lock_irq(&mchdev_lock);
4861         i915_mch_dev = dev_priv;
4862         spin_unlock_irq(&mchdev_lock);
4863
4864         ips_ping_for_i915_load();
4865 }
4866
4867 void intel_gpu_ips_teardown(void)
4868 {
4869         spin_lock_irq(&mchdev_lock);
4870         i915_mch_dev = NULL;
4871         spin_unlock_irq(&mchdev_lock);
4872 }
4873
4874 static void intel_init_emon(struct drm_device *dev)
4875 {
4876         struct drm_i915_private *dev_priv = dev->dev_private;
4877         u32 lcfuse;
4878         u8 pxw[16];
4879         int i;
4880
4881         /* Disable to program */
4882         I915_WRITE(ECR, 0);
4883         POSTING_READ(ECR);
4884
4885         /* Program energy weights for various events */
4886         I915_WRITE(SDEW, 0x15040d00);
4887         I915_WRITE(CSIEW0, 0x007f0000);
4888         I915_WRITE(CSIEW1, 0x1e220004);
4889         I915_WRITE(CSIEW2, 0x04000004);
4890
4891         for (i = 0; i < 5; i++)
4892                 I915_WRITE(PEW + (i * 4), 0);
4893         for (i = 0; i < 3; i++)
4894                 I915_WRITE(DEW + (i * 4), 0);
4895
4896         /* Program P-state weights to account for frequency power adjustment */
4897         for (i = 0; i < 16; i++) {
4898                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4899                 unsigned long freq = intel_pxfreq(pxvidfreq);
4900                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4901                         PXVFREQ_PX_SHIFT;
4902                 unsigned long val;
4903
4904                 val = vid * vid;
4905                 val *= (freq / 1000);
4906                 val *= 255;
4907                 val /= (127*127*900);
4908                 if (val > 0xff)
4909                         DRM_ERROR("bad pxval: %ld\n", val);
4910                 pxw[i] = val;
4911         }
4912         /* Render standby states get 0 weight */
4913         pxw[14] = 0;
4914         pxw[15] = 0;
4915
4916         for (i = 0; i < 4; i++) {
4917                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4918                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4919                 I915_WRITE(PXW + (i * 4), val);
4920         }
4921
4922         /* Adjust magic regs to magic values (more experimental results) */
4923         I915_WRITE(OGW0, 0);
4924         I915_WRITE(OGW1, 0);
4925         I915_WRITE(EG0, 0x00007f00);
4926         I915_WRITE(EG1, 0x0000000e);
4927         I915_WRITE(EG2, 0x000e0000);
4928         I915_WRITE(EG3, 0x68000300);
4929         I915_WRITE(EG4, 0x42000000);
4930         I915_WRITE(EG5, 0x00140031);
4931         I915_WRITE(EG6, 0);
4932         I915_WRITE(EG7, 0);
4933
4934         for (i = 0; i < 8; i++)
4935                 I915_WRITE(PXWL + (i * 4), 0);
4936
4937         /* Enable PMON + select events */
4938         I915_WRITE(ECR, 0x80000019);
4939
4940         lcfuse = I915_READ(LCFUSE02);
4941
4942         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4943 }
4944
4945 void intel_init_gt_powersave(struct drm_device *dev)
4946 {
4947         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
4948
4949         if (IS_CHERRYVIEW(dev))
4950                 cherryview_init_gt_powersave(dev);
4951         else if (IS_VALLEYVIEW(dev))
4952                 valleyview_init_gt_powersave(dev);
4953 }
4954
4955 void intel_cleanup_gt_powersave(struct drm_device *dev)
4956 {
4957         if (IS_CHERRYVIEW(dev))
4958                 return;
4959         else if (IS_VALLEYVIEW(dev))
4960                 valleyview_cleanup_gt_powersave(dev);
4961 }
4962
4963 /**
4964  * intel_suspend_gt_powersave - suspend PM work and helper threads
4965  * @dev: drm device
4966  *
4967  * We don't want to disable RC6 or other features here, we just want
4968  * to make sure any work we've queued has finished and won't bother
4969  * us while we're suspended.
4970  */
4971 void intel_suspend_gt_powersave(struct drm_device *dev)
4972 {
4973         struct drm_i915_private *dev_priv = dev->dev_private;
4974
4975         /* Interrupts should be disabled already to avoid re-arming. */
4976         WARN_ON(intel_irqs_enabled(dev_priv));
4977
4978         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4979
4980         cancel_work_sync(&dev_priv->rps.work);
4981
4982         /* Force GPU to min freq during suspend */
4983         gen6_rps_idle(dev_priv);
4984 }
4985
4986 void intel_disable_gt_powersave(struct drm_device *dev)
4987 {
4988         struct drm_i915_private *dev_priv = dev->dev_private;
4989
4990         /* Interrupts should be disabled already to avoid re-arming. */
4991         WARN_ON(intel_irqs_enabled(dev_priv));
4992
4993         if (IS_IRONLAKE_M(dev)) {
4994                 ironlake_disable_drps(dev);
4995                 ironlake_disable_rc6(dev);
4996         } else if (INTEL_INFO(dev)->gen >= 6) {
4997                 intel_suspend_gt_powersave(dev);
4998
4999                 mutex_lock(&dev_priv->rps.hw_lock);
5000                 if (IS_CHERRYVIEW(dev))
5001                         cherryview_disable_rps(dev);
5002                 else if (IS_VALLEYVIEW(dev))
5003                         valleyview_disable_rps(dev);
5004                 else
5005                         gen6_disable_rps(dev);
5006                 dev_priv->rps.enabled = false;
5007                 mutex_unlock(&dev_priv->rps.hw_lock);
5008         }
5009 }
5010
5011 static void intel_gen6_powersave_work(struct work_struct *work)
5012 {
5013         struct drm_i915_private *dev_priv =
5014                 container_of(work, struct drm_i915_private,
5015                              rps.delayed_resume_work.work);
5016         struct drm_device *dev = dev_priv->dev;
5017
5018         mutex_lock(&dev_priv->rps.hw_lock);
5019
5020         if (IS_CHERRYVIEW(dev)) {
5021                 cherryview_enable_rps(dev);
5022         } else if (IS_VALLEYVIEW(dev)) {
5023                 valleyview_enable_rps(dev);
5024         } else if (IS_BROADWELL(dev)) {
5025                 gen8_enable_rps(dev);
5026                 __gen6_update_ring_freq(dev);
5027         } else {
5028                 gen6_enable_rps(dev);
5029                 __gen6_update_ring_freq(dev);
5030         }
5031         dev_priv->rps.enabled = true;
5032         mutex_unlock(&dev_priv->rps.hw_lock);
5033
5034         intel_runtime_pm_put(dev_priv);
5035 }
5036
5037 void intel_enable_gt_powersave(struct drm_device *dev)
5038 {
5039         struct drm_i915_private *dev_priv = dev->dev_private;
5040
5041         if (IS_IRONLAKE_M(dev)) {
5042                 mutex_lock(&dev->struct_mutex);
5043                 ironlake_enable_drps(dev);
5044                 ironlake_enable_rc6(dev);
5045                 intel_init_emon(dev);
5046                 mutex_unlock(&dev->struct_mutex);
5047         } else if (INTEL_INFO(dev)->gen >= 6) {
5048                 /*
5049                  * PCU communication is slow and this doesn't need to be
5050                  * done at any specific time, so do this out of our fast path
5051                  * to make resume and init faster.
5052                  *
5053                  * We depend on the HW RC6 power context save/restore
5054                  * mechanism when entering D3 through runtime PM suspend. So
5055                  * disable RPM until RPS/RC6 is properly setup. We can only
5056                  * get here via the driver load/system resume/runtime resume
5057                  * paths, so the _noresume version is enough (and in case of
5058                  * runtime resume it's necessary).
5059                  */
5060                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5061                                            round_jiffies_up_relative(HZ)))
5062                         intel_runtime_pm_get_noresume(dev_priv);
5063         }
5064 }
5065
5066 void intel_reset_gt_powersave(struct drm_device *dev)
5067 {
5068         struct drm_i915_private *dev_priv = dev->dev_private;
5069
5070         dev_priv->rps.enabled = false;
5071         intel_enable_gt_powersave(dev);
5072 }
5073
5074 static void ibx_init_clock_gating(struct drm_device *dev)
5075 {
5076         struct drm_i915_private *dev_priv = dev->dev_private;
5077
5078         /*
5079          * On Ibex Peak and Cougar Point, we need to disable clock
5080          * gating for the panel power sequencer or it will fail to
5081          * start up when no ports are active.
5082          */
5083         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5084 }
5085
5086 static void g4x_disable_trickle_feed(struct drm_device *dev)
5087 {
5088         struct drm_i915_private *dev_priv = dev->dev_private;
5089         int pipe;
5090
5091         for_each_pipe(pipe) {
5092                 I915_WRITE(DSPCNTR(pipe),
5093                            I915_READ(DSPCNTR(pipe)) |
5094                            DISPPLANE_TRICKLE_FEED_DISABLE);
5095                 intel_flush_primary_plane(dev_priv, pipe);
5096         }
5097 }
5098
5099 static void ilk_init_lp_watermarks(struct drm_device *dev)
5100 {
5101         struct drm_i915_private *dev_priv = dev->dev_private;
5102
5103         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5104         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5105         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5106
5107         /*
5108          * Don't touch WM1S_LP_EN here.
5109          * Doing so could cause underruns.
5110          */
5111 }
5112
5113 static void ironlake_init_clock_gating(struct drm_device *dev)
5114 {
5115         struct drm_i915_private *dev_priv = dev->dev_private;
5116         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5117
5118         /*
5119          * Required for FBC
5120          * WaFbcDisableDpfcClockGating:ilk
5121          */
5122         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5123                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5124                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5125
5126         I915_WRITE(PCH_3DCGDIS0,
5127                    MARIUNIT_CLOCK_GATE_DISABLE |
5128                    SVSMUNIT_CLOCK_GATE_DISABLE);
5129         I915_WRITE(PCH_3DCGDIS1,
5130                    VFMUNIT_CLOCK_GATE_DISABLE);
5131
5132         /*
5133          * According to the spec the following bits should be set in
5134          * order to enable memory self-refresh
5135          * The bit 22/21 of 0x42004
5136          * The bit 5 of 0x42020
5137          * The bit 15 of 0x45000
5138          */
5139         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5140                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
5141                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5142         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5143         I915_WRITE(DISP_ARB_CTL,
5144                    (I915_READ(DISP_ARB_CTL) |
5145                     DISP_FBC_WM_DIS));
5146
5147         ilk_init_lp_watermarks(dev);
5148
5149         /*
5150          * Based on the document from hardware guys the following bits
5151          * should be set unconditionally in order to enable FBC.
5152          * The bit 22 of 0x42000
5153          * The bit 22 of 0x42004
5154          * The bit 7,8,9 of 0x42020.
5155          */
5156         if (IS_IRONLAKE_M(dev)) {
5157                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5158                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5159                            I915_READ(ILK_DISPLAY_CHICKEN1) |
5160                            ILK_FBCQ_DIS);
5161                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5162                            I915_READ(ILK_DISPLAY_CHICKEN2) |
5163                            ILK_DPARB_GATE);
5164         }
5165
5166         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5167
5168         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5169                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5170                    ILK_ELPIN_409_SELECT);
5171         I915_WRITE(_3D_CHICKEN2,
5172                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5173                    _3D_CHICKEN2_WM_READ_PIPELINED);
5174
5175         /* WaDisableRenderCachePipelinedFlush:ilk */
5176         I915_WRITE(CACHE_MODE_0,
5177                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5178
5179         /* WaDisable_RenderCache_OperationalFlush:ilk */
5180         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5181
5182         g4x_disable_trickle_feed(dev);
5183
5184         ibx_init_clock_gating(dev);
5185 }
5186
5187 static void cpt_init_clock_gating(struct drm_device *dev)
5188 {
5189         struct drm_i915_private *dev_priv = dev->dev_private;
5190         int pipe;
5191         uint32_t val;
5192
5193         /*
5194          * On Ibex Peak and Cougar Point, we need to disable clock
5195          * gating for the panel power sequencer or it will fail to
5196          * start up when no ports are active.
5197          */
5198         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5199                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5200                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
5201         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5202                    DPLS_EDP_PPS_FIX_DIS);
5203         /* The below fixes the weird display corruption, a few pixels shifted
5204          * downward, on (only) LVDS of some HP laptops with IVY.
5205          */
5206         for_each_pipe(pipe) {
5207                 val = I915_READ(TRANS_CHICKEN2(pipe));
5208                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5209                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5210                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5211                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5212                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5213                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5214                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5215                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5216         }
5217         /* WADP0ClockGatingDisable */
5218         for_each_pipe(pipe) {
5219                 I915_WRITE(TRANS_CHICKEN1(pipe),
5220                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5221         }
5222 }
5223
5224 static void gen6_check_mch_setup(struct drm_device *dev)
5225 {
5226         struct drm_i915_private *dev_priv = dev->dev_private;
5227         uint32_t tmp;
5228
5229         tmp = I915_READ(MCH_SSKPD);
5230         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5231                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5232                               tmp);
5233 }
5234
5235 static void gen6_init_clock_gating(struct drm_device *dev)
5236 {
5237         struct drm_i915_private *dev_priv = dev->dev_private;
5238         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5239
5240         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5241
5242         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5243                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5244                    ILK_ELPIN_409_SELECT);
5245
5246         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5247         I915_WRITE(_3D_CHICKEN,
5248                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5249
5250         /* WaSetupGtModeTdRowDispatch:snb */
5251         if (IS_SNB_GT1(dev))
5252                 I915_WRITE(GEN6_GT_MODE,
5253                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5254
5255         /* WaDisable_RenderCache_OperationalFlush:snb */
5256         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5257
5258         /*
5259          * BSpec recoomends 8x4 when MSAA is used,
5260          * however in practice 16x4 seems fastest.
5261          *
5262          * Note that PS/WM thread counts depend on the WIZ hashing
5263          * disable bit, which we don't touch here, but it's good
5264          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5265          */
5266         I915_WRITE(GEN6_GT_MODE,
5267                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5268
5269         ilk_init_lp_watermarks(dev);
5270
5271         I915_WRITE(CACHE_MODE_0,
5272                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5273
5274         I915_WRITE(GEN6_UCGCTL1,
5275                    I915_READ(GEN6_UCGCTL1) |
5276                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5277                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5278
5279         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5280          * gating disable must be set.  Failure to set it results in
5281          * flickering pixels due to Z write ordering failures after
5282          * some amount of runtime in the Mesa "fire" demo, and Unigine
5283          * Sanctuary and Tropics, and apparently anything else with
5284          * alpha test or pixel discard.
5285          *
5286          * According to the spec, bit 11 (RCCUNIT) must also be set,
5287          * but we didn't debug actual testcases to find it out.
5288          *
5289          * WaDisableRCCUnitClockGating:snb
5290          * WaDisableRCPBUnitClockGating:snb
5291          */
5292         I915_WRITE(GEN6_UCGCTL2,
5293                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5294                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5295
5296         /* WaStripsFansDisableFastClipPerformanceFix:snb */
5297         I915_WRITE(_3D_CHICKEN3,
5298                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5299
5300         /*
5301          * Bspec says:
5302          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5303          * 3DSTATE_SF number of SF output attributes is more than 16."
5304          */
5305         I915_WRITE(_3D_CHICKEN3,
5306                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5307
5308         /*
5309          * According to the spec the following bits should be
5310          * set in order to enable memory self-refresh and fbc:
5311          * The bit21 and bit22 of 0x42000
5312          * The bit21 and bit22 of 0x42004
5313          * The bit5 and bit7 of 0x42020
5314          * The bit14 of 0x70180
5315          * The bit14 of 0x71180
5316          *
5317          * WaFbcAsynchFlipDisableFbcQueue:snb
5318          */
5319         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5320                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5321                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5322         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5323                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5324                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5325         I915_WRITE(ILK_DSPCLK_GATE_D,
5326                    I915_READ(ILK_DSPCLK_GATE_D) |
5327                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5328                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5329
5330         g4x_disable_trickle_feed(dev);
5331
5332         cpt_init_clock_gating(dev);
5333
5334         gen6_check_mch_setup(dev);
5335 }
5336
5337 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5338 {
5339         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5340
5341         /*
5342          * WaVSThreadDispatchOverride:ivb,vlv
5343          *
5344          * This actually overrides the dispatch
5345          * mode for all thread types.
5346          */
5347         reg &= ~GEN7_FF_SCHED_MASK;
5348         reg |= GEN7_FF_TS_SCHED_HW;
5349         reg |= GEN7_FF_VS_SCHED_HW;
5350         reg |= GEN7_FF_DS_SCHED_HW;
5351
5352         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5353 }
5354
5355 static void lpt_init_clock_gating(struct drm_device *dev)
5356 {
5357         struct drm_i915_private *dev_priv = dev->dev_private;
5358
5359         /*
5360          * TODO: this bit should only be enabled when really needed, then
5361          * disabled when not needed anymore in order to save power.
5362          */
5363         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5364                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5365                            I915_READ(SOUTH_DSPCLK_GATE_D) |
5366                            PCH_LP_PARTITION_LEVEL_DISABLE);
5367
5368         /* WADPOClockGatingDisable:hsw */
5369         I915_WRITE(_TRANSA_CHICKEN1,
5370                    I915_READ(_TRANSA_CHICKEN1) |
5371                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5372 }
5373
5374 static void lpt_suspend_hw(struct drm_device *dev)
5375 {
5376         struct drm_i915_private *dev_priv = dev->dev_private;
5377
5378         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5379                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5380
5381                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5382                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5383         }
5384 }
5385
5386 static void gen8_init_clock_gating(struct drm_device *dev)
5387 {
5388         struct drm_i915_private *dev_priv = dev->dev_private;
5389         enum pipe pipe;
5390
5391         I915_WRITE(WM3_LP_ILK, 0);
5392         I915_WRITE(WM2_LP_ILK, 0);
5393         I915_WRITE(WM1_LP_ILK, 0);
5394
5395         /* FIXME(BDW): Check all the w/a, some might only apply to
5396          * pre-production hw. */
5397
5398         /* WaDisablePartialInstShootdown:bdw */
5399         I915_WRITE(GEN8_ROW_CHICKEN,
5400                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5401
5402         /* WaDisableThreadStallDopClockGating:bdw */
5403         /* FIXME: Unclear whether we really need this on production bdw. */
5404         I915_WRITE(GEN8_ROW_CHICKEN,
5405                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5406
5407         /*
5408          * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
5409          * pre-production hardware
5410          */
5411         I915_WRITE(HALF_SLICE_CHICKEN3,
5412                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5413         I915_WRITE(HALF_SLICE_CHICKEN3,
5414                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5415         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5416
5417         I915_WRITE(_3D_CHICKEN3,
5418                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5419
5420         I915_WRITE(COMMON_SLICE_CHICKEN2,
5421                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5422
5423         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5424                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5425
5426         /* WaDisableDopClockGating:bdw May not be needed for production */
5427         I915_WRITE(GEN7_ROW_CHICKEN2,
5428                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5429
5430         /* WaSwitchSolVfFArbitrationPriority:bdw */
5431         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5432
5433         /* WaPsrDPAMaskVBlankInSRD:bdw */
5434         I915_WRITE(CHICKEN_PAR1_1,
5435                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5436
5437         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5438         for_each_pipe(pipe) {
5439                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5440                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
5441                            BDW_DPRS_MASK_VBLANK_SRD);
5442         }
5443
5444         /* Use Force Non-Coherent whenever executing a 3D context. This is a
5445          * workaround for for a possible hang in the unlikely event a TLB
5446          * invalidation occurs during a PSD flush.
5447          */
5448         I915_WRITE(HDC_CHICKEN0,
5449                    I915_READ(HDC_CHICKEN0) |
5450                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
5451
5452         /* WaVSRefCountFullforceMissDisable:bdw */
5453         /* WaDSRefCountFullforceMissDisable:bdw */
5454         I915_WRITE(GEN7_FF_THREAD_MODE,
5455                    I915_READ(GEN7_FF_THREAD_MODE) &
5456                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5457
5458         /*
5459          * BSpec recommends 8x4 when MSAA is used,
5460          * however in practice 16x4 seems fastest.
5461          *
5462          * Note that PS/WM thread counts depend on the WIZ hashing
5463          * disable bit, which we don't touch here, but it's good
5464          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5465          */
5466         I915_WRITE(GEN7_GT_MODE,
5467                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5468
5469         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5470                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5471
5472         /* WaDisableSDEUnitClockGating:bdw */
5473         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5474                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5475
5476         /* Wa4x4STCOptimizationDisable:bdw */
5477         I915_WRITE(CACHE_MODE_1,
5478                    _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
5479 }
5480
5481 static void haswell_init_clock_gating(struct drm_device *dev)
5482 {
5483         struct drm_i915_private *dev_priv = dev->dev_private;
5484
5485         ilk_init_lp_watermarks(dev);
5486
5487         /* L3 caching of data atomics doesn't work -- disable it. */
5488         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5489         I915_WRITE(HSW_ROW_CHICKEN3,
5490                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5491
5492         /* This is required by WaCatErrorRejectionIssue:hsw */
5493         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5494                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5495                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5496
5497         /* WaVSRefCountFullforceMissDisable:hsw */
5498         I915_WRITE(GEN7_FF_THREAD_MODE,
5499                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5500
5501         /* WaDisable_RenderCache_OperationalFlush:hsw */
5502         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5503
5504         /* enable HiZ Raw Stall Optimization */
5505         I915_WRITE(CACHE_MODE_0_GEN7,
5506                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5507
5508         /* WaDisable4x2SubspanOptimization:hsw */
5509         I915_WRITE(CACHE_MODE_1,
5510                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5511
5512         /*
5513          * BSpec recommends 8x4 when MSAA is used,
5514          * however in practice 16x4 seems fastest.
5515          *
5516          * Note that PS/WM thread counts depend on the WIZ hashing
5517          * disable bit, which we don't touch here, but it's good
5518          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5519          */
5520         I915_WRITE(GEN7_GT_MODE,
5521                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5522
5523         /* WaSwitchSolVfFArbitrationPriority:hsw */
5524         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5525
5526         /* WaRsPkgCStateDisplayPMReq:hsw */
5527         I915_WRITE(CHICKEN_PAR1_1,
5528                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5529
5530         lpt_init_clock_gating(dev);
5531 }
5532
5533 static void ivybridge_init_clock_gating(struct drm_device *dev)
5534 {
5535         struct drm_i915_private *dev_priv = dev->dev_private;
5536         uint32_t snpcr;
5537
5538         ilk_init_lp_watermarks(dev);
5539
5540         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5541
5542         /* WaDisableEarlyCull:ivb */
5543         I915_WRITE(_3D_CHICKEN3,
5544                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5545
5546         /* WaDisableBackToBackFlipFix:ivb */
5547         I915_WRITE(IVB_CHICKEN3,
5548                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5549                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5550
5551         /* WaDisablePSDDualDispatchEnable:ivb */
5552         if (IS_IVB_GT1(dev))
5553                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5554                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5555
5556         /* WaDisable_RenderCache_OperationalFlush:ivb */
5557         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5558
5559         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5560         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5561                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5562
5563         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5564         I915_WRITE(GEN7_L3CNTLREG1,
5565                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5566         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5567                    GEN7_WA_L3_CHICKEN_MODE);
5568         if (IS_IVB_GT1(dev))
5569                 I915_WRITE(GEN7_ROW_CHICKEN2,
5570                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5571         else {
5572                 /* must write both registers */
5573                 I915_WRITE(GEN7_ROW_CHICKEN2,
5574                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5575                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5576                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5577         }
5578
5579         /* WaForceL3Serialization:ivb */
5580         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5581                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5582
5583         /*
5584          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5585          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5586          */
5587         I915_WRITE(GEN6_UCGCTL2,
5588                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5589
5590         /* This is required by WaCatErrorRejectionIssue:ivb */
5591         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5592                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5593                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5594
5595         g4x_disable_trickle_feed(dev);
5596
5597         gen7_setup_fixed_func_scheduler(dev_priv);
5598
5599         if (0) { /* causes HiZ corruption on ivb:gt1 */
5600                 /* enable HiZ Raw Stall Optimization */
5601                 I915_WRITE(CACHE_MODE_0_GEN7,
5602                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5603         }
5604
5605         /* WaDisable4x2SubspanOptimization:ivb */
5606         I915_WRITE(CACHE_MODE_1,
5607                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5608
5609         /*
5610          * BSpec recommends 8x4 when MSAA is used,
5611          * however in practice 16x4 seems fastest.
5612          *
5613          * Note that PS/WM thread counts depend on the WIZ hashing
5614          * disable bit, which we don't touch here, but it's good
5615          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5616          */
5617         I915_WRITE(GEN7_GT_MODE,
5618                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5619
5620         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5621         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5622         snpcr |= GEN6_MBC_SNPCR_MED;
5623         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5624
5625         if (!HAS_PCH_NOP(dev))
5626                 cpt_init_clock_gating(dev);
5627
5628         gen6_check_mch_setup(dev);
5629 }
5630
5631 static void valleyview_init_clock_gating(struct drm_device *dev)
5632 {
5633         struct drm_i915_private *dev_priv = dev->dev_private;
5634         u32 val;
5635
5636         mutex_lock(&dev_priv->rps.hw_lock);
5637         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5638         mutex_unlock(&dev_priv->rps.hw_lock);
5639         switch ((val >> 6) & 3) {
5640         case 0:
5641         case 1:
5642                 dev_priv->mem_freq = 800;
5643                 break;
5644         case 2:
5645                 dev_priv->mem_freq = 1066;
5646                 break;
5647         case 3:
5648                 dev_priv->mem_freq = 1333;
5649                 break;
5650         }
5651         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5652
5653         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5654
5655         /* WaDisableEarlyCull:vlv */
5656         I915_WRITE(_3D_CHICKEN3,
5657                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5658
5659         /* WaDisableBackToBackFlipFix:vlv */
5660         I915_WRITE(IVB_CHICKEN3,
5661                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5662                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5663
5664         /* WaPsdDispatchEnable:vlv */
5665         /* WaDisablePSDDualDispatchEnable:vlv */
5666         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5667                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5668                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5669
5670         /* WaDisable_RenderCache_OperationalFlush:vlv */
5671         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5672
5673         /* WaForceL3Serialization:vlv */
5674         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5675                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5676
5677         /* WaDisableDopClockGating:vlv */
5678         I915_WRITE(GEN7_ROW_CHICKEN2,
5679                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5680
5681         /* This is required by WaCatErrorRejectionIssue:vlv */
5682         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5683                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5684                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5685
5686         gen7_setup_fixed_func_scheduler(dev_priv);
5687
5688         /*
5689          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5690          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5691          */
5692         I915_WRITE(GEN6_UCGCTL2,
5693                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5694
5695         /* WaDisableL3Bank2xClockGate:vlv
5696          * Disabling L3 clock gating- MMIO 940c[25] = 1
5697          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5698         I915_WRITE(GEN7_UCGCTL4,
5699                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5700
5701         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5702
5703         /*
5704          * BSpec says this must be set, even though
5705          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5706          */
5707         I915_WRITE(CACHE_MODE_1,
5708                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5709
5710         /*
5711          * WaIncreaseL3CreditsForVLVB0:vlv
5712          * This is the hardware default actually.
5713          */
5714         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5715
5716         /*
5717          * WaDisableVLVClockGating_VBIIssue:vlv
5718          * Disable clock gating on th GCFG unit to prevent a delay
5719          * in the reporting of vblank events.
5720          */
5721         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5722 }
5723
5724 static void cherryview_init_clock_gating(struct drm_device *dev)
5725 {
5726         struct drm_i915_private *dev_priv = dev->dev_private;
5727         u32 val;
5728
5729         mutex_lock(&dev_priv->rps.hw_lock);
5730         val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
5731         mutex_unlock(&dev_priv->rps.hw_lock);
5732         switch ((val >> 2) & 0x7) {
5733         case 0:
5734         case 1:
5735                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_200;
5736                         dev_priv->mem_freq = 1600;
5737                         break;
5738         case 2:
5739                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_267;
5740                         dev_priv->mem_freq = 1600;
5741                         break;
5742         case 3:
5743                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_333;
5744                         dev_priv->mem_freq = 2000;
5745                         break;
5746         case 4:
5747                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_320;
5748                         dev_priv->mem_freq = 1600;
5749                         break;
5750         case 5:
5751                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_400;
5752                         dev_priv->mem_freq = 1600;
5753                         break;
5754         }
5755         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5756
5757         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5758
5759         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5760
5761         /* WaDisablePartialInstShootdown:chv */
5762         I915_WRITE(GEN8_ROW_CHICKEN,
5763                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5764
5765         /* WaDisableThreadStallDopClockGating:chv */
5766         I915_WRITE(GEN8_ROW_CHICKEN,
5767                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5768
5769         /* WaVSRefCountFullforceMissDisable:chv */
5770         /* WaDSRefCountFullforceMissDisable:chv */
5771         I915_WRITE(GEN7_FF_THREAD_MODE,
5772                    I915_READ(GEN7_FF_THREAD_MODE) &
5773                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5774
5775         /* WaDisableSemaphoreAndSyncFlipWait:chv */
5776         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5777                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5778
5779         /* WaDisableCSUnitClockGating:chv */
5780         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5781                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5782
5783         /* WaDisableSDEUnitClockGating:chv */
5784         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5785                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5786
5787         /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
5788         I915_WRITE(HALF_SLICE_CHICKEN3,
5789                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5790
5791         /* WaDisableGunitClockGating:chv (pre-production hw) */
5792         I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
5793                    GINT_DIS);
5794
5795         /* WaDisableFfDopClockGating:chv (pre-production hw) */
5796         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5797                    _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
5798
5799         /* WaDisableDopClockGating:chv (pre-production hw) */
5800         I915_WRITE(GEN7_ROW_CHICKEN2,
5801                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5802         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5803                    GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5804 }
5805
5806 static void g4x_init_clock_gating(struct drm_device *dev)
5807 {
5808         struct drm_i915_private *dev_priv = dev->dev_private;
5809         uint32_t dspclk_gate;
5810
5811         I915_WRITE(RENCLK_GATE_D1, 0);
5812         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5813                    GS_UNIT_CLOCK_GATE_DISABLE |
5814                    CL_UNIT_CLOCK_GATE_DISABLE);
5815         I915_WRITE(RAMCLK_GATE_D, 0);
5816         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5817                 OVRUNIT_CLOCK_GATE_DISABLE |
5818                 OVCUNIT_CLOCK_GATE_DISABLE;
5819         if (IS_GM45(dev))
5820                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5821         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5822
5823         /* WaDisableRenderCachePipelinedFlush */
5824         I915_WRITE(CACHE_MODE_0,
5825                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5826
5827         /* WaDisable_RenderCache_OperationalFlush:g4x */
5828         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5829
5830         g4x_disable_trickle_feed(dev);
5831 }
5832
5833 static void crestline_init_clock_gating(struct drm_device *dev)
5834 {
5835         struct drm_i915_private *dev_priv = dev->dev_private;
5836
5837         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5838         I915_WRITE(RENCLK_GATE_D2, 0);
5839         I915_WRITE(DSPCLK_GATE_D, 0);
5840         I915_WRITE(RAMCLK_GATE_D, 0);
5841         I915_WRITE16(DEUC, 0);
5842         I915_WRITE(MI_ARB_STATE,
5843                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5844
5845         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5846         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5847 }
5848
5849 static void broadwater_init_clock_gating(struct drm_device *dev)
5850 {
5851         struct drm_i915_private *dev_priv = dev->dev_private;
5852
5853         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5854                    I965_RCC_CLOCK_GATE_DISABLE |
5855                    I965_RCPB_CLOCK_GATE_DISABLE |
5856                    I965_ISC_CLOCK_GATE_DISABLE |
5857                    I965_FBC_CLOCK_GATE_DISABLE);
5858         I915_WRITE(RENCLK_GATE_D2, 0);
5859         I915_WRITE(MI_ARB_STATE,
5860                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5861
5862         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5863         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5864 }
5865
5866 static void gen3_init_clock_gating(struct drm_device *dev)
5867 {
5868         struct drm_i915_private *dev_priv = dev->dev_private;
5869         u32 dstate = I915_READ(D_STATE);
5870
5871         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5872                 DSTATE_DOT_CLOCK_GATING;
5873         I915_WRITE(D_STATE, dstate);
5874
5875         if (IS_PINEVIEW(dev))
5876                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5877
5878         /* IIR "flip pending" means done if this bit is set */
5879         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5880
5881         /* interrupts should cause a wake up from C3 */
5882         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
5883
5884         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5885         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5886 }
5887
5888 static void i85x_init_clock_gating(struct drm_device *dev)
5889 {
5890         struct drm_i915_private *dev_priv = dev->dev_private;
5891
5892         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5893
5894         /* interrupts should cause a wake up from C3 */
5895         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
5896                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
5897 }
5898
5899 static void i830_init_clock_gating(struct drm_device *dev)
5900 {
5901         struct drm_i915_private *dev_priv = dev->dev_private;
5902
5903         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5904 }
5905
5906 void intel_init_clock_gating(struct drm_device *dev)
5907 {
5908         struct drm_i915_private *dev_priv = dev->dev_private;
5909
5910         dev_priv->display.init_clock_gating(dev);
5911 }
5912
5913 void intel_suspend_hw(struct drm_device *dev)
5914 {
5915         if (HAS_PCH_LPT(dev))
5916                 lpt_suspend_hw(dev);
5917 }
5918
5919 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5920         for (i = 0;                                                     \
5921              i < (power_domains)->power_well_count &&                   \
5922                  ((power_well) = &(power_domains)->power_wells[i]);     \
5923              i++)                                                       \
5924                 if ((power_well)->domains & (domain_mask))
5925
5926 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5927         for (i = (power_domains)->power_well_count - 1;                  \
5928              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5929              i--)                                                        \
5930                 if ((power_well)->domains & (domain_mask))
5931
5932 /**
5933  * We should only use the power well if we explicitly asked the hardware to
5934  * enable it, so check if it's enabled and also check if we've requested it to
5935  * be enabled.
5936  */
5937 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5938                                    struct i915_power_well *power_well)
5939 {
5940         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5941                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5942 }
5943
5944 bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
5945                                           enum intel_display_power_domain domain)
5946 {
5947         struct i915_power_domains *power_domains;
5948         struct i915_power_well *power_well;
5949         bool is_enabled;
5950         int i;
5951
5952         if (dev_priv->pm.suspended)
5953                 return false;
5954
5955         power_domains = &dev_priv->power_domains;
5956
5957         is_enabled = true;
5958
5959         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5960                 if (power_well->always_on)
5961                         continue;
5962
5963                 if (!power_well->hw_enabled) {
5964                         is_enabled = false;
5965                         break;
5966                 }
5967         }
5968
5969         return is_enabled;
5970 }
5971
5972 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5973                                  enum intel_display_power_domain domain)
5974 {
5975         struct i915_power_domains *power_domains;
5976         bool ret;
5977
5978         power_domains = &dev_priv->power_domains;
5979
5980         mutex_lock(&power_domains->lock);
5981         ret = intel_display_power_enabled_unlocked(dev_priv, domain);
5982         mutex_unlock(&power_domains->lock);
5983
5984         return ret;
5985 }
5986
5987 /*
5988  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5989  * when not needed anymore. We have 4 registers that can request the power well
5990  * to be enabled, and it will only be disabled if none of the registers is
5991  * requesting it to be enabled.
5992  */
5993 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5994 {
5995         struct drm_device *dev = dev_priv->dev;
5996
5997         /*
5998          * After we re-enable the power well, if we touch VGA register 0x3d5
5999          * we'll get unclaimed register interrupts. This stops after we write
6000          * anything to the VGA MSR register. The vgacon module uses this
6001          * register all the time, so if we unbind our driver and, as a
6002          * consequence, bind vgacon, we'll get stuck in an infinite loop at
6003          * console_unlock(). So make here we touch the VGA MSR register, making
6004          * sure vgacon can keep working normally without triggering interrupts
6005          * and error messages.
6006          */
6007         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6008         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
6009         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6010
6011         if (IS_BROADWELL(dev))
6012                 gen8_irq_power_well_post_enable(dev_priv);
6013 }
6014
6015 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6016                                struct i915_power_well *power_well, bool enable)
6017 {
6018         bool is_enabled, enable_requested;
6019         uint32_t tmp;
6020
6021         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6022         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
6023         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6024
6025         if (enable) {
6026                 if (!enable_requested)
6027                         I915_WRITE(HSW_PWR_WELL_DRIVER,
6028                                    HSW_PWR_WELL_ENABLE_REQUEST);
6029
6030                 if (!is_enabled) {
6031                         DRM_DEBUG_KMS("Enabling power well\n");
6032                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6033                                       HSW_PWR_WELL_STATE_ENABLED), 20))
6034                                 DRM_ERROR("Timeout enabling power well\n");
6035                 }
6036
6037                 hsw_power_well_post_enable(dev_priv);
6038         } else {
6039                 if (enable_requested) {
6040                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6041                         POSTING_READ(HSW_PWR_WELL_DRIVER);
6042                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
6043                 }
6044         }
6045 }
6046
6047 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
6048                                    struct i915_power_well *power_well)
6049 {
6050         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
6051
6052         /*
6053          * We're taking over the BIOS, so clear any requests made by it since
6054          * the driver is in charge now.
6055          */
6056         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
6057                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
6058 }
6059
6060 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
6061                                   struct i915_power_well *power_well)
6062 {
6063         hsw_set_power_well(dev_priv, power_well, true);
6064 }
6065
6066 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
6067                                    struct i915_power_well *power_well)
6068 {
6069         hsw_set_power_well(dev_priv, power_well, false);
6070 }
6071
6072 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
6073                                            struct i915_power_well *power_well)
6074 {
6075 }
6076
6077 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
6078                                              struct i915_power_well *power_well)
6079 {
6080         return true;
6081 }
6082
6083 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6084                                struct i915_power_well *power_well, bool enable)
6085 {
6086         enum punit_power_well power_well_id = power_well->data;
6087         u32 mask;
6088         u32 state;
6089         u32 ctrl;
6090
6091         mask = PUNIT_PWRGT_MASK(power_well_id);
6092         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6093                          PUNIT_PWRGT_PWR_GATE(power_well_id);
6094
6095         mutex_lock(&dev_priv->rps.hw_lock);
6096
6097 #define COND \
6098         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6099
6100         if (COND)
6101                 goto out;
6102
6103         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6104         ctrl &= ~mask;
6105         ctrl |= state;
6106         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6107
6108         if (wait_for(COND, 100))
6109                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6110                           state,
6111                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6112
6113 #undef COND
6114
6115 out:
6116         mutex_unlock(&dev_priv->rps.hw_lock);
6117 }
6118
6119 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6120                                    struct i915_power_well *power_well)
6121 {
6122         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6123 }
6124
6125 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6126                                   struct i915_power_well *power_well)
6127 {
6128         vlv_set_power_well(dev_priv, power_well, true);
6129 }
6130
6131 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6132                                    struct i915_power_well *power_well)
6133 {
6134         vlv_set_power_well(dev_priv, power_well, false);
6135 }
6136
6137 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6138                                    struct i915_power_well *power_well)
6139 {
6140         int power_well_id = power_well->data;
6141         bool enabled = false;
6142         u32 mask;
6143         u32 state;
6144         u32 ctrl;
6145
6146         mask = PUNIT_PWRGT_MASK(power_well_id);
6147         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6148
6149         mutex_lock(&dev_priv->rps.hw_lock);
6150
6151         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6152         /*
6153          * We only ever set the power-on and power-gate states, anything
6154          * else is unexpected.
6155          */
6156         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6157                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6158         if (state == ctrl)
6159                 enabled = true;
6160
6161         /*
6162          * A transient state at this point would mean some unexpected party
6163          * is poking at the power controls too.
6164          */
6165         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6166         WARN_ON(ctrl != state);
6167
6168         mutex_unlock(&dev_priv->rps.hw_lock);
6169
6170         return enabled;
6171 }
6172
6173 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6174                                           struct i915_power_well *power_well)
6175 {
6176         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6177
6178         vlv_set_power_well(dev_priv, power_well, true);
6179
6180         spin_lock_irq(&dev_priv->irq_lock);
6181         valleyview_enable_display_irqs(dev_priv);
6182         spin_unlock_irq(&dev_priv->irq_lock);
6183
6184         /*
6185          * During driver initialization/resume we can avoid restoring the
6186          * part of the HW/SW state that will be inited anyway explicitly.
6187          */
6188         if (dev_priv->power_domains.initializing)
6189                 return;
6190
6191         intel_hpd_init(dev_priv->dev);
6192
6193         i915_redisable_vga_power_on(dev_priv->dev);
6194 }
6195
6196 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6197                                            struct i915_power_well *power_well)
6198 {
6199         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6200
6201         spin_lock_irq(&dev_priv->irq_lock);
6202         valleyview_disable_display_irqs(dev_priv);
6203         spin_unlock_irq(&dev_priv->irq_lock);
6204
6205         vlv_set_power_well(dev_priv, power_well, false);
6206 }
6207
6208 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6209                                            struct i915_power_well *power_well)
6210 {
6211         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6212
6213         /*
6214          * Enable the CRI clock source so we can get at the
6215          * display and the reference clock for VGA
6216          * hotplug / manual detection.
6217          */
6218         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6219                    DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6220         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6221
6222         vlv_set_power_well(dev_priv, power_well, true);
6223
6224         /*
6225          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6226          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
6227          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
6228          *   b. The other bits such as sfr settings / modesel may all
6229          *      be set to 0.
6230          *
6231          * This should only be done on init and resume from S3 with
6232          * both PLLs disabled, or we risk losing DPIO and PLL
6233          * synchronization.
6234          */
6235         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6236 }
6237
6238 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6239                                             struct i915_power_well *power_well)
6240 {
6241         struct drm_device *dev = dev_priv->dev;
6242         enum pipe pipe;
6243
6244         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6245
6246         for_each_pipe(pipe)
6247                 assert_pll_disabled(dev_priv, pipe);
6248
6249         /* Assert common reset */
6250         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
6251
6252         vlv_set_power_well(dev_priv, power_well, false);
6253 }
6254
6255 static void check_power_well_state(struct drm_i915_private *dev_priv,
6256                                    struct i915_power_well *power_well)
6257 {
6258         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6259
6260         if (power_well->always_on || !i915.disable_power_well) {
6261                 if (!enabled)
6262                         goto mismatch;
6263
6264                 return;
6265         }
6266
6267         if (enabled != (power_well->count > 0))
6268                 goto mismatch;
6269
6270         return;
6271
6272 mismatch:
6273         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6274                   power_well->name, power_well->always_on, enabled,
6275                   power_well->count, i915.disable_power_well);
6276 }
6277
6278 void intel_display_power_get(struct drm_i915_private *dev_priv,
6279                              enum intel_display_power_domain domain)
6280 {
6281         struct i915_power_domains *power_domains;
6282         struct i915_power_well *power_well;
6283         int i;
6284
6285         intel_runtime_pm_get(dev_priv);
6286
6287         power_domains = &dev_priv->power_domains;
6288
6289         mutex_lock(&power_domains->lock);
6290
6291         for_each_power_well(i, power_well, BIT(domain), power_domains) {
6292                 if (!power_well->count++) {
6293                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6294                         power_well->ops->enable(dev_priv, power_well);
6295                         power_well->hw_enabled = true;
6296                 }
6297
6298                 check_power_well_state(dev_priv, power_well);
6299         }
6300
6301         power_domains->domain_use_count[domain]++;
6302
6303         mutex_unlock(&power_domains->lock);
6304 }
6305
6306 void intel_display_power_put(struct drm_i915_private *dev_priv,
6307                              enum intel_display_power_domain domain)
6308 {
6309         struct i915_power_domains *power_domains;
6310         struct i915_power_well *power_well;
6311         int i;
6312
6313         power_domains = &dev_priv->power_domains;
6314
6315         mutex_lock(&power_domains->lock);
6316
6317         WARN_ON(!power_domains->domain_use_count[domain]);
6318         power_domains->domain_use_count[domain]--;
6319
6320         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6321                 WARN_ON(!power_well->count);
6322
6323                 if (!--power_well->count && i915.disable_power_well) {
6324                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6325                         power_well->hw_enabled = false;
6326                         power_well->ops->disable(dev_priv, power_well);
6327                 }
6328
6329                 check_power_well_state(dev_priv, power_well);
6330         }
6331
6332         mutex_unlock(&power_domains->lock);
6333
6334         intel_runtime_pm_put(dev_priv);
6335 }
6336
6337 static struct i915_power_domains *hsw_pwr;
6338
6339 /* Display audio driver power well request */
6340 int i915_request_power_well(void)
6341 {
6342         struct drm_i915_private *dev_priv;
6343
6344         if (!hsw_pwr)
6345                 return -ENODEV;
6346
6347         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6348                                 power_domains);
6349         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6350         return 0;
6351 }
6352 EXPORT_SYMBOL_GPL(i915_request_power_well);
6353
6354 /* Display audio driver power well release */
6355 int i915_release_power_well(void)
6356 {
6357         struct drm_i915_private *dev_priv;
6358
6359         if (!hsw_pwr)
6360                 return -ENODEV;
6361
6362         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6363                                 power_domains);
6364         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6365         return 0;
6366 }
6367 EXPORT_SYMBOL_GPL(i915_release_power_well);
6368
6369 /*
6370  * Private interface for the audio driver to get CDCLK in kHz.
6371  *
6372  * Caller must request power well using i915_request_power_well() prior to
6373  * making the call.
6374  */
6375 int i915_get_cdclk_freq(void)
6376 {
6377         struct drm_i915_private *dev_priv;
6378
6379         if (!hsw_pwr)
6380                 return -ENODEV;
6381
6382         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6383                                 power_domains);
6384
6385         return intel_ddi_get_cdclk_freq(dev_priv);
6386 }
6387 EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
6388
6389
6390 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6391
6392 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
6393         BIT(POWER_DOMAIN_PIPE_A) |                      \
6394         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
6395         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
6396         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
6397         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
6398         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
6399         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
6400         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
6401         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
6402         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
6403         BIT(POWER_DOMAIN_PORT_CRT) |                    \
6404         BIT(POWER_DOMAIN_PLLS) |                        \
6405         BIT(POWER_DOMAIN_INIT))
6406 #define HSW_DISPLAY_POWER_DOMAINS (                             \
6407         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
6408         BIT(POWER_DOMAIN_INIT))
6409
6410 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
6411         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
6412         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6413 #define BDW_DISPLAY_POWER_DOMAINS (                             \
6414         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
6415         BIT(POWER_DOMAIN_INIT))
6416
6417 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
6418 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
6419
6420 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
6421         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6422         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6423         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6424         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6425         BIT(POWER_DOMAIN_PORT_CRT) |            \
6426         BIT(POWER_DOMAIN_INIT))
6427
6428 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
6429         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6430         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6431         BIT(POWER_DOMAIN_INIT))
6432
6433 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
6434         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6435         BIT(POWER_DOMAIN_INIT))
6436
6437 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
6438         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6439         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6440         BIT(POWER_DOMAIN_INIT))
6441
6442 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
6443         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6444         BIT(POWER_DOMAIN_INIT))
6445
6446 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6447         .sync_hw = i9xx_always_on_power_well_noop,
6448         .enable = i9xx_always_on_power_well_noop,
6449         .disable = i9xx_always_on_power_well_noop,
6450         .is_enabled = i9xx_always_on_power_well_enabled,
6451 };
6452
6453 static struct i915_power_well i9xx_always_on_power_well[] = {
6454         {
6455                 .name = "always-on",
6456                 .always_on = 1,
6457                 .domains = POWER_DOMAIN_MASK,
6458                 .ops = &i9xx_always_on_power_well_ops,
6459         },
6460 };
6461
6462 static const struct i915_power_well_ops hsw_power_well_ops = {
6463         .sync_hw = hsw_power_well_sync_hw,
6464         .enable = hsw_power_well_enable,
6465         .disable = hsw_power_well_disable,
6466         .is_enabled = hsw_power_well_enabled,
6467 };
6468
6469 static struct i915_power_well hsw_power_wells[] = {
6470         {
6471                 .name = "always-on",
6472                 .always_on = 1,
6473                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6474                 .ops = &i9xx_always_on_power_well_ops,
6475         },
6476         {
6477                 .name = "display",
6478                 .domains = HSW_DISPLAY_POWER_DOMAINS,
6479                 .ops = &hsw_power_well_ops,
6480         },
6481 };
6482
6483 static struct i915_power_well bdw_power_wells[] = {
6484         {
6485                 .name = "always-on",
6486                 .always_on = 1,
6487                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6488                 .ops = &i9xx_always_on_power_well_ops,
6489         },
6490         {
6491                 .name = "display",
6492                 .domains = BDW_DISPLAY_POWER_DOMAINS,
6493                 .ops = &hsw_power_well_ops,
6494         },
6495 };
6496
6497 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6498         .sync_hw = vlv_power_well_sync_hw,
6499         .enable = vlv_display_power_well_enable,
6500         .disable = vlv_display_power_well_disable,
6501         .is_enabled = vlv_power_well_enabled,
6502 };
6503
6504 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
6505         .sync_hw = vlv_power_well_sync_hw,
6506         .enable = vlv_dpio_cmn_power_well_enable,
6507         .disable = vlv_dpio_cmn_power_well_disable,
6508         .is_enabled = vlv_power_well_enabled,
6509 };
6510
6511 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6512         .sync_hw = vlv_power_well_sync_hw,
6513         .enable = vlv_power_well_enable,
6514         .disable = vlv_power_well_disable,
6515         .is_enabled = vlv_power_well_enabled,
6516 };
6517
6518 static struct i915_power_well vlv_power_wells[] = {
6519         {
6520                 .name = "always-on",
6521                 .always_on = 1,
6522                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6523                 .ops = &i9xx_always_on_power_well_ops,
6524         },
6525         {
6526                 .name = "display",
6527                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6528                 .data = PUNIT_POWER_WELL_DISP2D,
6529                 .ops = &vlv_display_power_well_ops,
6530         },
6531         {
6532                 .name = "dpio-tx-b-01",
6533                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6534                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6535                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6536                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6537                 .ops = &vlv_dpio_power_well_ops,
6538                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6539         },
6540         {
6541                 .name = "dpio-tx-b-23",
6542                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6543                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6544                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6545                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6546                 .ops = &vlv_dpio_power_well_ops,
6547                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6548         },
6549         {
6550                 .name = "dpio-tx-c-01",
6551                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6552                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6553                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6554                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6555                 .ops = &vlv_dpio_power_well_ops,
6556                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6557         },
6558         {
6559                 .name = "dpio-tx-c-23",
6560                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6561                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6562                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6563                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6564                 .ops = &vlv_dpio_power_well_ops,
6565                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6566         },
6567         {
6568                 .name = "dpio-common",
6569                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
6570                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6571                 .ops = &vlv_dpio_cmn_power_well_ops,
6572         },
6573 };
6574
6575 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
6576                                                  enum punit_power_well power_well_id)
6577 {
6578         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6579         struct i915_power_well *power_well;
6580         int i;
6581
6582         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
6583                 if (power_well->data == power_well_id)
6584                         return power_well;
6585         }
6586
6587         return NULL;
6588 }
6589
6590 #define set_power_wells(power_domains, __power_wells) ({                \
6591         (power_domains)->power_wells = (__power_wells);                 \
6592         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
6593 })
6594
6595 int intel_power_domains_init(struct drm_i915_private *dev_priv)
6596 {
6597         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6598
6599         mutex_init(&power_domains->lock);
6600
6601         /*
6602          * The enabling order will be from lower to higher indexed wells,
6603          * the disabling order is reversed.
6604          */
6605         if (IS_HASWELL(dev_priv->dev)) {
6606                 set_power_wells(power_domains, hsw_power_wells);
6607                 hsw_pwr = power_domains;
6608         } else if (IS_BROADWELL(dev_priv->dev)) {
6609                 set_power_wells(power_domains, bdw_power_wells);
6610                 hsw_pwr = power_domains;
6611         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
6612                 set_power_wells(power_domains, vlv_power_wells);
6613         } else {
6614                 set_power_wells(power_domains, i9xx_always_on_power_well);
6615         }
6616
6617         return 0;
6618 }
6619
6620 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
6621 {
6622         hsw_pwr = NULL;
6623 }
6624
6625 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
6626 {
6627         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6628         struct i915_power_well *power_well;
6629         int i;
6630
6631         mutex_lock(&power_domains->lock);
6632         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
6633                 power_well->ops->sync_hw(dev_priv, power_well);
6634                 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
6635                                                                      power_well);
6636         }
6637         mutex_unlock(&power_domains->lock);
6638 }
6639
6640 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
6641 {
6642         struct i915_power_well *cmn =
6643                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
6644         struct i915_power_well *disp2d =
6645                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
6646
6647         /* nothing to do if common lane is already off */
6648         if (!cmn->ops->is_enabled(dev_priv, cmn))
6649                 return;
6650
6651         /* If the display might be already active skip this */
6652         if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
6653             I915_READ(DPIO_CTL) & DPIO_CMNRST)
6654                 return;
6655
6656         DRM_DEBUG_KMS("toggling display PHY side reset\n");
6657
6658         /* cmnlane needs DPLL registers */
6659         disp2d->ops->enable(dev_priv, disp2d);
6660
6661         /*
6662          * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
6663          * Need to assert and de-assert PHY SB reset by gating the
6664          * common lane power, then un-gating it.
6665          * Simply ungating isn't enough to reset the PHY enough to get
6666          * ports and lanes running.
6667          */
6668         cmn->ops->disable(dev_priv, cmn);
6669 }
6670
6671 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
6672 {
6673         struct drm_device *dev = dev_priv->dev;
6674         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6675
6676         power_domains->initializing = true;
6677
6678         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
6679                 mutex_lock(&power_domains->lock);
6680                 vlv_cmnlane_wa(dev_priv);
6681                 mutex_unlock(&power_domains->lock);
6682         }
6683
6684         /* For now, we need the power well to be always enabled. */
6685         intel_display_set_init_power(dev_priv, true);
6686         intel_power_domains_resume(dev_priv);
6687         power_domains->initializing = false;
6688 }
6689
6690 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
6691 {
6692         intel_runtime_pm_get(dev_priv);
6693 }
6694
6695 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
6696 {
6697         intel_runtime_pm_put(dev_priv);
6698 }
6699
6700 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
6701 {
6702         struct drm_device *dev = dev_priv->dev;
6703         struct device *device = &dev->pdev->dev;
6704
6705         if (!HAS_RUNTIME_PM(dev))
6706                 return;
6707
6708         pm_runtime_get_sync(device);
6709         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
6710 }
6711
6712 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
6713 {
6714         struct drm_device *dev = dev_priv->dev;
6715         struct device *device = &dev->pdev->dev;
6716
6717         if (!HAS_RUNTIME_PM(dev))
6718                 return;
6719
6720         WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
6721         pm_runtime_get_noresume(device);
6722 }
6723
6724 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
6725 {
6726         struct drm_device *dev = dev_priv->dev;
6727         struct device *device = &dev->pdev->dev;
6728
6729         if (!HAS_RUNTIME_PM(dev))
6730                 return;
6731
6732         pm_runtime_mark_last_busy(device);
6733         pm_runtime_put_autosuspend(device);
6734 }
6735
6736 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6737 {
6738         struct drm_device *dev = dev_priv->dev;
6739         struct device *device = &dev->pdev->dev;
6740
6741         if (!HAS_RUNTIME_PM(dev))
6742                 return;
6743
6744         pm_runtime_set_active(device);
6745
6746         /*
6747          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6748          * requirement.
6749          */
6750         if (!intel_enable_rc6(dev)) {
6751                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6752                 return;
6753         }
6754
6755         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6756         pm_runtime_mark_last_busy(device);
6757         pm_runtime_use_autosuspend(device);
6758
6759         pm_runtime_put_autosuspend(device);
6760 }
6761
6762 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6763 {
6764         struct drm_device *dev = dev_priv->dev;
6765         struct device *device = &dev->pdev->dev;
6766
6767         if (!HAS_RUNTIME_PM(dev))
6768                 return;
6769
6770         if (!intel_enable_rc6(dev))
6771                 return;
6772
6773         /* Make sure we're not suspended first. */
6774         pm_runtime_get_sync(device);
6775         pm_runtime_disable(device);
6776 }
6777
6778 /* Set up chip specific power management-related functions */
6779 void intel_init_pm(struct drm_device *dev)
6780 {
6781         struct drm_i915_private *dev_priv = dev->dev_private;
6782
6783         if (HAS_FBC(dev)) {
6784                 if (INTEL_INFO(dev)->gen >= 7) {
6785                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6786                         dev_priv->display.enable_fbc = gen7_enable_fbc;
6787                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6788                 } else if (INTEL_INFO(dev)->gen >= 5) {
6789                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6790                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
6791                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6792                 } else if (IS_GM45(dev)) {
6793                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6794                         dev_priv->display.enable_fbc = g4x_enable_fbc;
6795                         dev_priv->display.disable_fbc = g4x_disable_fbc;
6796                 } else {
6797                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6798                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
6799                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
6800
6801                         /* This value was pulled out of someone's hat */
6802                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6803                 }
6804         }
6805
6806         /* For cxsr */
6807         if (IS_PINEVIEW(dev))
6808                 i915_pineview_get_mem_freq(dev);
6809         else if (IS_GEN5(dev))
6810                 i915_ironlake_get_mem_freq(dev);
6811
6812         /* For FIFO watermark updates */
6813         if (HAS_PCH_SPLIT(dev)) {
6814                 ilk_setup_wm_latency(dev);
6815
6816                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6817                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6818                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6819                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6820                         dev_priv->display.update_wm = ilk_update_wm;
6821                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6822                 } else {
6823                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6824                                       "Disable CxSR\n");
6825                 }
6826
6827                 if (IS_GEN5(dev))
6828                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6829                 else if (IS_GEN6(dev))
6830                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6831                 else if (IS_IVYBRIDGE(dev))
6832                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6833                 else if (IS_HASWELL(dev))
6834                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6835                 else if (INTEL_INFO(dev)->gen == 8)
6836                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6837         } else if (IS_CHERRYVIEW(dev)) {
6838                 dev_priv->display.update_wm = valleyview_update_wm;
6839                 dev_priv->display.init_clock_gating =
6840                         cherryview_init_clock_gating;
6841         } else if (IS_VALLEYVIEW(dev)) {
6842                 dev_priv->display.update_wm = valleyview_update_wm;
6843                 dev_priv->display.init_clock_gating =
6844                         valleyview_init_clock_gating;
6845         } else if (IS_PINEVIEW(dev)) {
6846                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6847                                             dev_priv->is_ddr3,
6848                                             dev_priv->fsb_freq,
6849                                             dev_priv->mem_freq)) {
6850                         DRM_INFO("failed to find known CxSR latency "
6851                                  "(found ddr%s fsb freq %d, mem freq %d), "
6852                                  "disabling CxSR\n",
6853                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6854                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6855                         /* Disable CxSR and never update its watermark again */
6856                         intel_set_memory_cxsr(dev_priv, false);
6857                         dev_priv->display.update_wm = NULL;
6858                 } else
6859                         dev_priv->display.update_wm = pineview_update_wm;
6860                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6861         } else if (IS_G4X(dev)) {
6862                 dev_priv->display.update_wm = g4x_update_wm;
6863                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6864         } else if (IS_GEN4(dev)) {
6865                 dev_priv->display.update_wm = i965_update_wm;
6866                 if (IS_CRESTLINE(dev))
6867                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6868                 else if (IS_BROADWATER(dev))
6869                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6870         } else if (IS_GEN3(dev)) {
6871                 dev_priv->display.update_wm = i9xx_update_wm;
6872                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6873                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6874         } else if (IS_GEN2(dev)) {
6875                 if (INTEL_INFO(dev)->num_pipes == 1) {
6876                         dev_priv->display.update_wm = i845_update_wm;
6877                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6878                 } else {
6879                         dev_priv->display.update_wm = i9xx_update_wm;
6880                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6881                 }
6882
6883                 if (IS_I85X(dev) || IS_I865G(dev))
6884                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6885                 else
6886                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6887         } else {
6888                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6889         }
6890 }
6891
6892 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6893 {
6894         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6895
6896         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6897                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6898                 return -EAGAIN;
6899         }
6900
6901         I915_WRITE(GEN6_PCODE_DATA, *val);
6902         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6903
6904         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6905                      500)) {
6906                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6907                 return -ETIMEDOUT;
6908         }
6909
6910         *val = I915_READ(GEN6_PCODE_DATA);
6911         I915_WRITE(GEN6_PCODE_DATA, 0);
6912
6913         return 0;
6914 }
6915
6916 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6917 {
6918         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6919
6920         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6921                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6922                 return -EAGAIN;
6923         }
6924
6925         I915_WRITE(GEN6_PCODE_DATA, val);
6926         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6927
6928         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6929                      500)) {
6930                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6931                 return -ETIMEDOUT;
6932         }
6933
6934         I915_WRITE(GEN6_PCODE_DATA, 0);
6935
6936         return 0;
6937 }
6938
6939 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6940 {
6941         int div;
6942
6943         /* 4 x czclk */
6944         switch (dev_priv->mem_freq) {
6945         case 800:
6946                 div = 10;
6947                 break;
6948         case 1066:
6949                 div = 12;
6950                 break;
6951         case 1333:
6952                 div = 16;
6953                 break;
6954         default:
6955                 return -1;
6956         }
6957
6958         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6959 }
6960
6961 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6962 {
6963         int mul;
6964
6965         /* 4 x czclk */
6966         switch (dev_priv->mem_freq) {
6967         case 800:
6968                 mul = 10;
6969                 break;
6970         case 1066:
6971                 mul = 12;
6972                 break;
6973         case 1333:
6974                 mul = 16;
6975                 break;
6976         default:
6977                 return -1;
6978         }
6979
6980         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6981 }
6982
6983 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6984 {
6985         int div, freq;
6986
6987         switch (dev_priv->rps.cz_freq) {
6988         case 200:
6989                 div = 5;
6990                 break;
6991         case 267:
6992                 div = 6;
6993                 break;
6994         case 320:
6995         case 333:
6996         case 400:
6997                 div = 8;
6998                 break;
6999         default:
7000                 return -1;
7001         }
7002
7003         freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
7004
7005         return freq;
7006 }
7007
7008 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7009 {
7010         int mul, opcode;
7011
7012         switch (dev_priv->rps.cz_freq) {
7013         case 200:
7014                 mul = 5;
7015                 break;
7016         case 267:
7017                 mul = 6;
7018                 break;
7019         case 320:
7020         case 333:
7021         case 400:
7022                 mul = 8;
7023                 break;
7024         default:
7025                 return -1;
7026         }
7027
7028         opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
7029
7030         return opcode;
7031 }
7032
7033 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7034 {
7035         int ret = -1;
7036
7037         if (IS_CHERRYVIEW(dev_priv->dev))
7038                 ret = chv_gpu_freq(dev_priv, val);
7039         else if (IS_VALLEYVIEW(dev_priv->dev))
7040                 ret = byt_gpu_freq(dev_priv, val);
7041
7042         return ret;
7043 }
7044
7045 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7046 {
7047         int ret = -1;
7048
7049         if (IS_CHERRYVIEW(dev_priv->dev))
7050                 ret = chv_freq_opcode(dev_priv, val);
7051         else if (IS_VALLEYVIEW(dev_priv->dev))
7052                 ret = byt_freq_opcode(dev_priv, val);
7053
7054         return ret;
7055 }
7056
7057 void intel_pm_setup(struct drm_device *dev)
7058 {
7059         struct drm_i915_private *dev_priv = dev->dev_private;
7060
7061         mutex_init(&dev_priv->rps.hw_lock);
7062
7063         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7064                           intel_gen6_powersave_work);
7065
7066         dev_priv->pm.suspended = false;
7067         dev_priv->pm._irqs_disabled = false;
7068 }