drm/i915: Read czclk from CCK on vlv/chv
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE                        (1<<0)
52 #define INTEL_RC6p_ENABLE                       (1<<1)
53 #define INTEL_RC6pp_ENABLE                      (1<<2)
54
55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57         struct drm_i915_private *dev_priv = dev->dev_private;
58
59         /* WaEnableLbsSlaRetryTimerDecrement:skl */
60         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
61                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62
63         /* WaDisableKillLogic:bxt,skl */
64         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
65                    ECOCHK_DIS_TLB);
66 }
67
68 static void skl_init_clock_gating(struct drm_device *dev)
69 {
70         struct drm_i915_private *dev_priv = dev->dev_private;
71
72         gen9_init_clock_gating(dev);
73
74         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
75                 /* WaDisableHDCInvalidation:skl */
76                 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
77                            BDW_DISABLE_HDC_INVALIDATION);
78
79                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
80                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
81                            _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
82         }
83
84         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
85          * involving this register should also be added to WA batch as required.
86          */
87         if (INTEL_REVID(dev) <= SKL_REVID_E0)
88                 /* WaDisableLSQCROPERFforOCL:skl */
89                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
90                            GEN8_LQSC_RO_PERF_DIS);
91
92         /* WaEnableGapsTsvCreditFix:skl */
93         if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
94                 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
95                                            GEN9_GAPS_TSV_CREDIT_DISABLE));
96         }
97 }
98
99 static void bxt_init_clock_gating(struct drm_device *dev)
100 {
101         struct drm_i915_private *dev_priv = dev->dev_private;
102
103         gen9_init_clock_gating(dev);
104
105         /* WaDisableSDEUnitClockGating:bxt */
106         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
107                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
108
109         /*
110          * FIXME:
111          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
112          */
113         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
114                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
115
116         /* WaStoreMultiplePTEenable:bxt */
117         /* This is a requirement according to Hardware specification */
118         if (INTEL_REVID(dev) == BXT_REVID_A0)
119                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
120
121         /* WaSetClckGatingDisableMedia:bxt */
122         if (INTEL_REVID(dev) == BXT_REVID_A0) {
123                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
124                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
125         }
126 }
127
128 static void i915_pineview_get_mem_freq(struct drm_device *dev)
129 {
130         struct drm_i915_private *dev_priv = dev->dev_private;
131         u32 tmp;
132
133         tmp = I915_READ(CLKCFG);
134
135         switch (tmp & CLKCFG_FSB_MASK) {
136         case CLKCFG_FSB_533:
137                 dev_priv->fsb_freq = 533; /* 133*4 */
138                 break;
139         case CLKCFG_FSB_800:
140                 dev_priv->fsb_freq = 800; /* 200*4 */
141                 break;
142         case CLKCFG_FSB_667:
143                 dev_priv->fsb_freq =  667; /* 167*4 */
144                 break;
145         case CLKCFG_FSB_400:
146                 dev_priv->fsb_freq = 400; /* 100*4 */
147                 break;
148         }
149
150         switch (tmp & CLKCFG_MEM_MASK) {
151         case CLKCFG_MEM_533:
152                 dev_priv->mem_freq = 533;
153                 break;
154         case CLKCFG_MEM_667:
155                 dev_priv->mem_freq = 667;
156                 break;
157         case CLKCFG_MEM_800:
158                 dev_priv->mem_freq = 800;
159                 break;
160         }
161
162         /* detect pineview DDR3 setting */
163         tmp = I915_READ(CSHRDDR3CTL);
164         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
165 }
166
167 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
168 {
169         struct drm_i915_private *dev_priv = dev->dev_private;
170         u16 ddrpll, csipll;
171
172         ddrpll = I915_READ16(DDRMPLL1);
173         csipll = I915_READ16(CSIPLL0);
174
175         switch (ddrpll & 0xff) {
176         case 0xc:
177                 dev_priv->mem_freq = 800;
178                 break;
179         case 0x10:
180                 dev_priv->mem_freq = 1066;
181                 break;
182         case 0x14:
183                 dev_priv->mem_freq = 1333;
184                 break;
185         case 0x18:
186                 dev_priv->mem_freq = 1600;
187                 break;
188         default:
189                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
190                                  ddrpll & 0xff);
191                 dev_priv->mem_freq = 0;
192                 break;
193         }
194
195         dev_priv->ips.r_t = dev_priv->mem_freq;
196
197         switch (csipll & 0x3ff) {
198         case 0x00c:
199                 dev_priv->fsb_freq = 3200;
200                 break;
201         case 0x00e:
202                 dev_priv->fsb_freq = 3733;
203                 break;
204         case 0x010:
205                 dev_priv->fsb_freq = 4266;
206                 break;
207         case 0x012:
208                 dev_priv->fsb_freq = 4800;
209                 break;
210         case 0x014:
211                 dev_priv->fsb_freq = 5333;
212                 break;
213         case 0x016:
214                 dev_priv->fsb_freq = 5866;
215                 break;
216         case 0x018:
217                 dev_priv->fsb_freq = 6400;
218                 break;
219         default:
220                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
221                                  csipll & 0x3ff);
222                 dev_priv->fsb_freq = 0;
223                 break;
224         }
225
226         if (dev_priv->fsb_freq == 3200) {
227                 dev_priv->ips.c_m = 0;
228         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
229                 dev_priv->ips.c_m = 1;
230         } else {
231                 dev_priv->ips.c_m = 2;
232         }
233 }
234
235 static const struct cxsr_latency cxsr_latency_table[] = {
236         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
237         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
238         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
239         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
240         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
241
242         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
243         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
244         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
245         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
246         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
247
248         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
249         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
250         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
251         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
252         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
253
254         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
255         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
256         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
257         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
258         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
259
260         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
261         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
262         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
263         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
264         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
265
266         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
267         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
268         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
269         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
270         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
271 };
272
273 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
274                                                          int is_ddr3,
275                                                          int fsb,
276                                                          int mem)
277 {
278         const struct cxsr_latency *latency;
279         int i;
280
281         if (fsb == 0 || mem == 0)
282                 return NULL;
283
284         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
285                 latency = &cxsr_latency_table[i];
286                 if (is_desktop == latency->is_desktop &&
287                     is_ddr3 == latency->is_ddr3 &&
288                     fsb == latency->fsb_freq && mem == latency->mem_freq)
289                         return latency;
290         }
291
292         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
293
294         return NULL;
295 }
296
297 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
298 {
299         u32 val;
300
301         mutex_lock(&dev_priv->rps.hw_lock);
302
303         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
304         if (enable)
305                 val &= ~FORCE_DDR_HIGH_FREQ;
306         else
307                 val |= FORCE_DDR_HIGH_FREQ;
308         val &= ~FORCE_DDR_LOW_FREQ;
309         val |= FORCE_DDR_FREQ_REQ_ACK;
310         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
311
312         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
313                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
314                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
315
316         mutex_unlock(&dev_priv->rps.hw_lock);
317 }
318
319 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
320 {
321         u32 val;
322
323         mutex_lock(&dev_priv->rps.hw_lock);
324
325         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
326         if (enable)
327                 val |= DSP_MAXFIFO_PM5_ENABLE;
328         else
329                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
330         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
331
332         mutex_unlock(&dev_priv->rps.hw_lock);
333 }
334
335 #define FW_WM(value, plane) \
336         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
337
338 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
339 {
340         struct drm_device *dev = dev_priv->dev;
341         u32 val;
342
343         if (IS_VALLEYVIEW(dev)) {
344                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345                 POSTING_READ(FW_BLC_SELF_VLV);
346                 dev_priv->wm.vlv.cxsr = enable;
347         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
348                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349                 POSTING_READ(FW_BLC_SELF);
350         } else if (IS_PINEVIEW(dev)) {
351                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
352                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
353                 I915_WRITE(DSPFW3, val);
354                 POSTING_READ(DSPFW3);
355         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
356                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
357                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
358                 I915_WRITE(FW_BLC_SELF, val);
359                 POSTING_READ(FW_BLC_SELF);
360         } else if (IS_I915GM(dev)) {
361                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
362                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
363                 I915_WRITE(INSTPM, val);
364                 POSTING_READ(INSTPM);
365         } else {
366                 return;
367         }
368
369         DRM_DEBUG_KMS("memory self-refresh is %s\n",
370                       enable ? "enabled" : "disabled");
371 }
372
373
374 /*
375  * Latency for FIFO fetches is dependent on several factors:
376  *   - memory configuration (speed, channels)
377  *   - chipset
378  *   - current MCH state
379  * It can be fairly high in some situations, so here we assume a fairly
380  * pessimal value.  It's a tradeoff between extra memory fetches (if we
381  * set this value too high, the FIFO will fetch frequently to stay full)
382  * and power consumption (set it too low to save power and we might see
383  * FIFO underruns and display "flicker").
384  *
385  * A value of 5us seems to be a good balance; safe for very low end
386  * platforms but not overly aggressive on lower latency configs.
387  */
388 static const int pessimal_latency_ns = 5000;
389
390 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
391         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
392
393 static int vlv_get_fifo_size(struct drm_device *dev,
394                               enum pipe pipe, int plane)
395 {
396         struct drm_i915_private *dev_priv = dev->dev_private;
397         int sprite0_start, sprite1_start, size;
398
399         switch (pipe) {
400                 uint32_t dsparb, dsparb2, dsparb3;
401         case PIPE_A:
402                 dsparb = I915_READ(DSPARB);
403                 dsparb2 = I915_READ(DSPARB2);
404                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
405                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
406                 break;
407         case PIPE_B:
408                 dsparb = I915_READ(DSPARB);
409                 dsparb2 = I915_READ(DSPARB2);
410                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
411                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
412                 break;
413         case PIPE_C:
414                 dsparb2 = I915_READ(DSPARB2);
415                 dsparb3 = I915_READ(DSPARB3);
416                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
417                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
418                 break;
419         default:
420                 return 0;
421         }
422
423         switch (plane) {
424         case 0:
425                 size = sprite0_start;
426                 break;
427         case 1:
428                 size = sprite1_start - sprite0_start;
429                 break;
430         case 2:
431                 size = 512 - 1 - sprite1_start;
432                 break;
433         default:
434                 return 0;
435         }
436
437         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
438                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
439                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
440                       size);
441
442         return size;
443 }
444
445 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
446 {
447         struct drm_i915_private *dev_priv = dev->dev_private;
448         uint32_t dsparb = I915_READ(DSPARB);
449         int size;
450
451         size = dsparb & 0x7f;
452         if (plane)
453                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
454
455         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
456                       plane ? "B" : "A", size);
457
458         return size;
459 }
460
461 static int i830_get_fifo_size(struct drm_device *dev, int plane)
462 {
463         struct drm_i915_private *dev_priv = dev->dev_private;
464         uint32_t dsparb = I915_READ(DSPARB);
465         int size;
466
467         size = dsparb & 0x1ff;
468         if (plane)
469                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
470         size >>= 1; /* Convert to cachelines */
471
472         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
473                       plane ? "B" : "A", size);
474
475         return size;
476 }
477
478 static int i845_get_fifo_size(struct drm_device *dev, int plane)
479 {
480         struct drm_i915_private *dev_priv = dev->dev_private;
481         uint32_t dsparb = I915_READ(DSPARB);
482         int size;
483
484         size = dsparb & 0x7f;
485         size >>= 2; /* Convert to cachelines */
486
487         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
488                       plane ? "B" : "A",
489                       size);
490
491         return size;
492 }
493
494 /* Pineview has different values for various configs */
495 static const struct intel_watermark_params pineview_display_wm = {
496         .fifo_size = PINEVIEW_DISPLAY_FIFO,
497         .max_wm = PINEVIEW_MAX_WM,
498         .default_wm = PINEVIEW_DFT_WM,
499         .guard_size = PINEVIEW_GUARD_WM,
500         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
501 };
502 static const struct intel_watermark_params pineview_display_hplloff_wm = {
503         .fifo_size = PINEVIEW_DISPLAY_FIFO,
504         .max_wm = PINEVIEW_MAX_WM,
505         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
506         .guard_size = PINEVIEW_GUARD_WM,
507         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
508 };
509 static const struct intel_watermark_params pineview_cursor_wm = {
510         .fifo_size = PINEVIEW_CURSOR_FIFO,
511         .max_wm = PINEVIEW_CURSOR_MAX_WM,
512         .default_wm = PINEVIEW_CURSOR_DFT_WM,
513         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
514         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
515 };
516 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
517         .fifo_size = PINEVIEW_CURSOR_FIFO,
518         .max_wm = PINEVIEW_CURSOR_MAX_WM,
519         .default_wm = PINEVIEW_CURSOR_DFT_WM,
520         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
521         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
522 };
523 static const struct intel_watermark_params g4x_wm_info = {
524         .fifo_size = G4X_FIFO_SIZE,
525         .max_wm = G4X_MAX_WM,
526         .default_wm = G4X_MAX_WM,
527         .guard_size = 2,
528         .cacheline_size = G4X_FIFO_LINE_SIZE,
529 };
530 static const struct intel_watermark_params g4x_cursor_wm_info = {
531         .fifo_size = I965_CURSOR_FIFO,
532         .max_wm = I965_CURSOR_MAX_WM,
533         .default_wm = I965_CURSOR_DFT_WM,
534         .guard_size = 2,
535         .cacheline_size = G4X_FIFO_LINE_SIZE,
536 };
537 static const struct intel_watermark_params valleyview_wm_info = {
538         .fifo_size = VALLEYVIEW_FIFO_SIZE,
539         .max_wm = VALLEYVIEW_MAX_WM,
540         .default_wm = VALLEYVIEW_MAX_WM,
541         .guard_size = 2,
542         .cacheline_size = G4X_FIFO_LINE_SIZE,
543 };
544 static const struct intel_watermark_params valleyview_cursor_wm_info = {
545         .fifo_size = I965_CURSOR_FIFO,
546         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
547         .default_wm = I965_CURSOR_DFT_WM,
548         .guard_size = 2,
549         .cacheline_size = G4X_FIFO_LINE_SIZE,
550 };
551 static const struct intel_watermark_params i965_cursor_wm_info = {
552         .fifo_size = I965_CURSOR_FIFO,
553         .max_wm = I965_CURSOR_MAX_WM,
554         .default_wm = I965_CURSOR_DFT_WM,
555         .guard_size = 2,
556         .cacheline_size = I915_FIFO_LINE_SIZE,
557 };
558 static const struct intel_watermark_params i945_wm_info = {
559         .fifo_size = I945_FIFO_SIZE,
560         .max_wm = I915_MAX_WM,
561         .default_wm = 1,
562         .guard_size = 2,
563         .cacheline_size = I915_FIFO_LINE_SIZE,
564 };
565 static const struct intel_watermark_params i915_wm_info = {
566         .fifo_size = I915_FIFO_SIZE,
567         .max_wm = I915_MAX_WM,
568         .default_wm = 1,
569         .guard_size = 2,
570         .cacheline_size = I915_FIFO_LINE_SIZE,
571 };
572 static const struct intel_watermark_params i830_a_wm_info = {
573         .fifo_size = I855GM_FIFO_SIZE,
574         .max_wm = I915_MAX_WM,
575         .default_wm = 1,
576         .guard_size = 2,
577         .cacheline_size = I830_FIFO_LINE_SIZE,
578 };
579 static const struct intel_watermark_params i830_bc_wm_info = {
580         .fifo_size = I855GM_FIFO_SIZE,
581         .max_wm = I915_MAX_WM/2,
582         .default_wm = 1,
583         .guard_size = 2,
584         .cacheline_size = I830_FIFO_LINE_SIZE,
585 };
586 static const struct intel_watermark_params i845_wm_info = {
587         .fifo_size = I830_FIFO_SIZE,
588         .max_wm = I915_MAX_WM,
589         .default_wm = 1,
590         .guard_size = 2,
591         .cacheline_size = I830_FIFO_LINE_SIZE,
592 };
593
594 /**
595  * intel_calculate_wm - calculate watermark level
596  * @clock_in_khz: pixel clock
597  * @wm: chip FIFO params
598  * @pixel_size: display pixel size
599  * @latency_ns: memory latency for the platform
600  *
601  * Calculate the watermark level (the level at which the display plane will
602  * start fetching from memory again).  Each chip has a different display
603  * FIFO size and allocation, so the caller needs to figure that out and pass
604  * in the correct intel_watermark_params structure.
605  *
606  * As the pixel clock runs, the FIFO will be drained at a rate that depends
607  * on the pixel size.  When it reaches the watermark level, it'll start
608  * fetching FIFO line sized based chunks from memory until the FIFO fills
609  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
610  * will occur, and a display engine hang could result.
611  */
612 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
613                                         const struct intel_watermark_params *wm,
614                                         int fifo_size,
615                                         int pixel_size,
616                                         unsigned long latency_ns)
617 {
618         long entries_required, wm_size;
619
620         /*
621          * Note: we need to make sure we don't overflow for various clock &
622          * latency values.
623          * clocks go from a few thousand to several hundred thousand.
624          * latency is usually a few thousand
625          */
626         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
627                 1000;
628         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
629
630         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
631
632         wm_size = fifo_size - (entries_required + wm->guard_size);
633
634         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
635
636         /* Don't promote wm_size to unsigned... */
637         if (wm_size > (long)wm->max_wm)
638                 wm_size = wm->max_wm;
639         if (wm_size <= 0)
640                 wm_size = wm->default_wm;
641
642         /*
643          * Bspec seems to indicate that the value shouldn't be lower than
644          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
645          * Lets go for 8 which is the burst size since certain platforms
646          * already use a hardcoded 8 (which is what the spec says should be
647          * done).
648          */
649         if (wm_size <= 8)
650                 wm_size = 8;
651
652         return wm_size;
653 }
654
655 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
656 {
657         struct drm_crtc *crtc, *enabled = NULL;
658
659         for_each_crtc(dev, crtc) {
660                 if (intel_crtc_active(crtc)) {
661                         if (enabled)
662                                 return NULL;
663                         enabled = crtc;
664                 }
665         }
666
667         return enabled;
668 }
669
670 static void pineview_update_wm(struct drm_crtc *unused_crtc)
671 {
672         struct drm_device *dev = unused_crtc->dev;
673         struct drm_i915_private *dev_priv = dev->dev_private;
674         struct drm_crtc *crtc;
675         const struct cxsr_latency *latency;
676         u32 reg;
677         unsigned long wm;
678
679         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
680                                          dev_priv->fsb_freq, dev_priv->mem_freq);
681         if (!latency) {
682                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
683                 intel_set_memory_cxsr(dev_priv, false);
684                 return;
685         }
686
687         crtc = single_enabled_crtc(dev);
688         if (crtc) {
689                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
690                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
691                 int clock = adjusted_mode->crtc_clock;
692
693                 /* Display SR */
694                 wm = intel_calculate_wm(clock, &pineview_display_wm,
695                                         pineview_display_wm.fifo_size,
696                                         pixel_size, latency->display_sr);
697                 reg = I915_READ(DSPFW1);
698                 reg &= ~DSPFW_SR_MASK;
699                 reg |= FW_WM(wm, SR);
700                 I915_WRITE(DSPFW1, reg);
701                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
702
703                 /* cursor SR */
704                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
705                                         pineview_display_wm.fifo_size,
706                                         pixel_size, latency->cursor_sr);
707                 reg = I915_READ(DSPFW3);
708                 reg &= ~DSPFW_CURSOR_SR_MASK;
709                 reg |= FW_WM(wm, CURSOR_SR);
710                 I915_WRITE(DSPFW3, reg);
711
712                 /* Display HPLL off SR */
713                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
714                                         pineview_display_hplloff_wm.fifo_size,
715                                         pixel_size, latency->display_hpll_disable);
716                 reg = I915_READ(DSPFW3);
717                 reg &= ~DSPFW_HPLL_SR_MASK;
718                 reg |= FW_WM(wm, HPLL_SR);
719                 I915_WRITE(DSPFW3, reg);
720
721                 /* cursor HPLL off SR */
722                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
723                                         pineview_display_hplloff_wm.fifo_size,
724                                         pixel_size, latency->cursor_hpll_disable);
725                 reg = I915_READ(DSPFW3);
726                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
727                 reg |= FW_WM(wm, HPLL_CURSOR);
728                 I915_WRITE(DSPFW3, reg);
729                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
730
731                 intel_set_memory_cxsr(dev_priv, true);
732         } else {
733                 intel_set_memory_cxsr(dev_priv, false);
734         }
735 }
736
737 static bool g4x_compute_wm0(struct drm_device *dev,
738                             int plane,
739                             const struct intel_watermark_params *display,
740                             int display_latency_ns,
741                             const struct intel_watermark_params *cursor,
742                             int cursor_latency_ns,
743                             int *plane_wm,
744                             int *cursor_wm)
745 {
746         struct drm_crtc *crtc;
747         const struct drm_display_mode *adjusted_mode;
748         int htotal, hdisplay, clock, pixel_size;
749         int line_time_us, line_count;
750         int entries, tlb_miss;
751
752         crtc = intel_get_crtc_for_plane(dev, plane);
753         if (!intel_crtc_active(crtc)) {
754                 *cursor_wm = cursor->guard_size;
755                 *plane_wm = display->guard_size;
756                 return false;
757         }
758
759         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
760         clock = adjusted_mode->crtc_clock;
761         htotal = adjusted_mode->crtc_htotal;
762         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
763         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
764
765         /* Use the small buffer method to calculate plane watermark */
766         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
767         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
768         if (tlb_miss > 0)
769                 entries += tlb_miss;
770         entries = DIV_ROUND_UP(entries, display->cacheline_size);
771         *plane_wm = entries + display->guard_size;
772         if (*plane_wm > (int)display->max_wm)
773                 *plane_wm = display->max_wm;
774
775         /* Use the large buffer method to calculate cursor watermark */
776         line_time_us = max(htotal * 1000 / clock, 1);
777         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
778         entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
779         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
780         if (tlb_miss > 0)
781                 entries += tlb_miss;
782         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
783         *cursor_wm = entries + cursor->guard_size;
784         if (*cursor_wm > (int)cursor->max_wm)
785                 *cursor_wm = (int)cursor->max_wm;
786
787         return true;
788 }
789
790 /*
791  * Check the wm result.
792  *
793  * If any calculated watermark values is larger than the maximum value that
794  * can be programmed into the associated watermark register, that watermark
795  * must be disabled.
796  */
797 static bool g4x_check_srwm(struct drm_device *dev,
798                            int display_wm, int cursor_wm,
799                            const struct intel_watermark_params *display,
800                            const struct intel_watermark_params *cursor)
801 {
802         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
803                       display_wm, cursor_wm);
804
805         if (display_wm > display->max_wm) {
806                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
807                               display_wm, display->max_wm);
808                 return false;
809         }
810
811         if (cursor_wm > cursor->max_wm) {
812                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
813                               cursor_wm, cursor->max_wm);
814                 return false;
815         }
816
817         if (!(display_wm || cursor_wm)) {
818                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
819                 return false;
820         }
821
822         return true;
823 }
824
825 static bool g4x_compute_srwm(struct drm_device *dev,
826                              int plane,
827                              int latency_ns,
828                              const struct intel_watermark_params *display,
829                              const struct intel_watermark_params *cursor,
830                              int *display_wm, int *cursor_wm)
831 {
832         struct drm_crtc *crtc;
833         const struct drm_display_mode *adjusted_mode;
834         int hdisplay, htotal, pixel_size, clock;
835         unsigned long line_time_us;
836         int line_count, line_size;
837         int small, large;
838         int entries;
839
840         if (!latency_ns) {
841                 *display_wm = *cursor_wm = 0;
842                 return false;
843         }
844
845         crtc = intel_get_crtc_for_plane(dev, plane);
846         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
847         clock = adjusted_mode->crtc_clock;
848         htotal = adjusted_mode->crtc_htotal;
849         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
850         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
851
852         line_time_us = max(htotal * 1000 / clock, 1);
853         line_count = (latency_ns / line_time_us + 1000) / 1000;
854         line_size = hdisplay * pixel_size;
855
856         /* Use the minimum of the small and large buffer method for primary */
857         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
858         large = line_count * line_size;
859
860         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
861         *display_wm = entries + display->guard_size;
862
863         /* calculate the self-refresh watermark for display cursor */
864         entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
865         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
866         *cursor_wm = entries + cursor->guard_size;
867
868         return g4x_check_srwm(dev,
869                               *display_wm, *cursor_wm,
870                               display, cursor);
871 }
872
873 #define FW_WM_VLV(value, plane) \
874         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
875
876 static void vlv_write_wm_values(struct intel_crtc *crtc,
877                                 const struct vlv_wm_values *wm)
878 {
879         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
880         enum pipe pipe = crtc->pipe;
881
882         I915_WRITE(VLV_DDL(pipe),
883                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
884                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
885                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
886                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
887
888         I915_WRITE(DSPFW1,
889                    FW_WM(wm->sr.plane, SR) |
890                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
891                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
892                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
893         I915_WRITE(DSPFW2,
894                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
895                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
896                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
897         I915_WRITE(DSPFW3,
898                    FW_WM(wm->sr.cursor, CURSOR_SR));
899
900         if (IS_CHERRYVIEW(dev_priv)) {
901                 I915_WRITE(DSPFW7_CHV,
902                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
903                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
904                 I915_WRITE(DSPFW8_CHV,
905                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
906                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
907                 I915_WRITE(DSPFW9_CHV,
908                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
909                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
910                 I915_WRITE(DSPHOWM,
911                            FW_WM(wm->sr.plane >> 9, SR_HI) |
912                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
913                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
914                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
915                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
916                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
917                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
918                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
919                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
920                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
921         } else {
922                 I915_WRITE(DSPFW7,
923                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
924                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
925                 I915_WRITE(DSPHOWM,
926                            FW_WM(wm->sr.plane >> 9, SR_HI) |
927                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
928                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
929                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
930                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
931                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
932                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
933         }
934
935         /* zero (unused) WM1 watermarks */
936         I915_WRITE(DSPFW4, 0);
937         I915_WRITE(DSPFW5, 0);
938         I915_WRITE(DSPFW6, 0);
939         I915_WRITE(DSPHOWM1, 0);
940
941         POSTING_READ(DSPFW1);
942 }
943
944 #undef FW_WM_VLV
945
946 enum vlv_wm_level {
947         VLV_WM_LEVEL_PM2,
948         VLV_WM_LEVEL_PM5,
949         VLV_WM_LEVEL_DDR_DVFS,
950 };
951
952 /* latency must be in 0.1us units. */
953 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
954                                    unsigned int pipe_htotal,
955                                    unsigned int horiz_pixels,
956                                    unsigned int bytes_per_pixel,
957                                    unsigned int latency)
958 {
959         unsigned int ret;
960
961         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
962         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
963         ret = DIV_ROUND_UP(ret, 64);
964
965         return ret;
966 }
967
968 static void vlv_setup_wm_latency(struct drm_device *dev)
969 {
970         struct drm_i915_private *dev_priv = dev->dev_private;
971
972         /* all latencies in usec */
973         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
974
975         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
976
977         if (IS_CHERRYVIEW(dev_priv)) {
978                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
979                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
980
981                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
982         }
983 }
984
985 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
986                                      struct intel_crtc *crtc,
987                                      const struct intel_plane_state *state,
988                                      int level)
989 {
990         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
991         int clock, htotal, pixel_size, width, wm;
992
993         if (dev_priv->wm.pri_latency[level] == 0)
994                 return USHRT_MAX;
995
996         if (!state->visible)
997                 return 0;
998
999         pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1000         clock = crtc->config->base.adjusted_mode.crtc_clock;
1001         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
1002         width = crtc->config->pipe_src_w;
1003         if (WARN_ON(htotal == 0))
1004                 htotal = 1;
1005
1006         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1007                 /*
1008                  * FIXME the formula gives values that are
1009                  * too big for the cursor FIFO, and hence we
1010                  * would never be able to use cursors. For
1011                  * now just hardcode the watermark.
1012                  */
1013                 wm = 63;
1014         } else {
1015                 wm = vlv_wm_method2(clock, htotal, width, pixel_size,
1016                                     dev_priv->wm.pri_latency[level] * 10);
1017         }
1018
1019         return min_t(int, wm, USHRT_MAX);
1020 }
1021
1022 static void vlv_compute_fifo(struct intel_crtc *crtc)
1023 {
1024         struct drm_device *dev = crtc->base.dev;
1025         struct vlv_wm_state *wm_state = &crtc->wm_state;
1026         struct intel_plane *plane;
1027         unsigned int total_rate = 0;
1028         const int fifo_size = 512 - 1;
1029         int fifo_extra, fifo_left = fifo_size;
1030
1031         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1032                 struct intel_plane_state *state =
1033                         to_intel_plane_state(plane->base.state);
1034
1035                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1036                         continue;
1037
1038                 if (state->visible) {
1039                         wm_state->num_active_planes++;
1040                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1041                 }
1042         }
1043
1044         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1045                 struct intel_plane_state *state =
1046                         to_intel_plane_state(plane->base.state);
1047                 unsigned int rate;
1048
1049                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1050                         plane->wm.fifo_size = 63;
1051                         continue;
1052                 }
1053
1054                 if (!state->visible) {
1055                         plane->wm.fifo_size = 0;
1056                         continue;
1057                 }
1058
1059                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1060                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1061                 fifo_left -= plane->wm.fifo_size;
1062         }
1063
1064         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1065
1066         /* spread the remainder evenly */
1067         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1068                 int plane_extra;
1069
1070                 if (fifo_left == 0)
1071                         break;
1072
1073                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1074                         continue;
1075
1076                 /* give it all to the first plane if none are active */
1077                 if (plane->wm.fifo_size == 0 &&
1078                     wm_state->num_active_planes)
1079                         continue;
1080
1081                 plane_extra = min(fifo_extra, fifo_left);
1082                 plane->wm.fifo_size += plane_extra;
1083                 fifo_left -= plane_extra;
1084         }
1085
1086         WARN_ON(fifo_left != 0);
1087 }
1088
1089 static void vlv_invert_wms(struct intel_crtc *crtc)
1090 {
1091         struct vlv_wm_state *wm_state = &crtc->wm_state;
1092         int level;
1093
1094         for (level = 0; level < wm_state->num_levels; level++) {
1095                 struct drm_device *dev = crtc->base.dev;
1096                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1097                 struct intel_plane *plane;
1098
1099                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1100                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1101
1102                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1103                         switch (plane->base.type) {
1104                                 int sprite;
1105                         case DRM_PLANE_TYPE_CURSOR:
1106                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1107                                         wm_state->wm[level].cursor;
1108                                 break;
1109                         case DRM_PLANE_TYPE_PRIMARY:
1110                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1111                                         wm_state->wm[level].primary;
1112                                 break;
1113                         case DRM_PLANE_TYPE_OVERLAY:
1114                                 sprite = plane->plane;
1115                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1116                                         wm_state->wm[level].sprite[sprite];
1117                                 break;
1118                         }
1119                 }
1120         }
1121 }
1122
1123 static void vlv_compute_wm(struct intel_crtc *crtc)
1124 {
1125         struct drm_device *dev = crtc->base.dev;
1126         struct vlv_wm_state *wm_state = &crtc->wm_state;
1127         struct intel_plane *plane;
1128         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1129         int level;
1130
1131         memset(wm_state, 0, sizeof(*wm_state));
1132
1133         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1134         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1135
1136         wm_state->num_active_planes = 0;
1137
1138         vlv_compute_fifo(crtc);
1139
1140         if (wm_state->num_active_planes != 1)
1141                 wm_state->cxsr = false;
1142
1143         if (wm_state->cxsr) {
1144                 for (level = 0; level < wm_state->num_levels; level++) {
1145                         wm_state->sr[level].plane = sr_fifo_size;
1146                         wm_state->sr[level].cursor = 63;
1147                 }
1148         }
1149
1150         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1151                 struct intel_plane_state *state =
1152                         to_intel_plane_state(plane->base.state);
1153
1154                 if (!state->visible)
1155                         continue;
1156
1157                 /* normal watermarks */
1158                 for (level = 0; level < wm_state->num_levels; level++) {
1159                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1160                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1161
1162                         /* hack */
1163                         if (WARN_ON(level == 0 && wm > max_wm))
1164                                 wm = max_wm;
1165
1166                         if (wm > plane->wm.fifo_size)
1167                                 break;
1168
1169                         switch (plane->base.type) {
1170                                 int sprite;
1171                         case DRM_PLANE_TYPE_CURSOR:
1172                                 wm_state->wm[level].cursor = wm;
1173                                 break;
1174                         case DRM_PLANE_TYPE_PRIMARY:
1175                                 wm_state->wm[level].primary = wm;
1176                                 break;
1177                         case DRM_PLANE_TYPE_OVERLAY:
1178                                 sprite = plane->plane;
1179                                 wm_state->wm[level].sprite[sprite] = wm;
1180                                 break;
1181                         }
1182                 }
1183
1184                 wm_state->num_levels = level;
1185
1186                 if (!wm_state->cxsr)
1187                         continue;
1188
1189                 /* maxfifo watermarks */
1190                 switch (plane->base.type) {
1191                         int sprite, level;
1192                 case DRM_PLANE_TYPE_CURSOR:
1193                         for (level = 0; level < wm_state->num_levels; level++)
1194                                 wm_state->sr[level].cursor =
1195                                         wm_state->sr[level].cursor;
1196                         break;
1197                 case DRM_PLANE_TYPE_PRIMARY:
1198                         for (level = 0; level < wm_state->num_levels; level++)
1199                                 wm_state->sr[level].plane =
1200                                         min(wm_state->sr[level].plane,
1201                                             wm_state->wm[level].primary);
1202                         break;
1203                 case DRM_PLANE_TYPE_OVERLAY:
1204                         sprite = plane->plane;
1205                         for (level = 0; level < wm_state->num_levels; level++)
1206                                 wm_state->sr[level].plane =
1207                                         min(wm_state->sr[level].plane,
1208                                             wm_state->wm[level].sprite[sprite]);
1209                         break;
1210                 }
1211         }
1212
1213         /* clear any (partially) filled invalid levels */
1214         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1215                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1216                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1217         }
1218
1219         vlv_invert_wms(crtc);
1220 }
1221
1222 #define VLV_FIFO(plane, value) \
1223         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1224
1225 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1226 {
1227         struct drm_device *dev = crtc->base.dev;
1228         struct drm_i915_private *dev_priv = to_i915(dev);
1229         struct intel_plane *plane;
1230         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1231
1232         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1233                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1234                         WARN_ON(plane->wm.fifo_size != 63);
1235                         continue;
1236                 }
1237
1238                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1239                         sprite0_start = plane->wm.fifo_size;
1240                 else if (plane->plane == 0)
1241                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1242                 else
1243                         fifo_size = sprite1_start + plane->wm.fifo_size;
1244         }
1245
1246         WARN_ON(fifo_size != 512 - 1);
1247
1248         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1249                       pipe_name(crtc->pipe), sprite0_start,
1250                       sprite1_start, fifo_size);
1251
1252         switch (crtc->pipe) {
1253                 uint32_t dsparb, dsparb2, dsparb3;
1254         case PIPE_A:
1255                 dsparb = I915_READ(DSPARB);
1256                 dsparb2 = I915_READ(DSPARB2);
1257
1258                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1259                             VLV_FIFO(SPRITEB, 0xff));
1260                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1261                            VLV_FIFO(SPRITEB, sprite1_start));
1262
1263                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1264                              VLV_FIFO(SPRITEB_HI, 0x1));
1265                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1266                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1267
1268                 I915_WRITE(DSPARB, dsparb);
1269                 I915_WRITE(DSPARB2, dsparb2);
1270                 break;
1271         case PIPE_B:
1272                 dsparb = I915_READ(DSPARB);
1273                 dsparb2 = I915_READ(DSPARB2);
1274
1275                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1276                             VLV_FIFO(SPRITED, 0xff));
1277                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1278                            VLV_FIFO(SPRITED, sprite1_start));
1279
1280                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1281                              VLV_FIFO(SPRITED_HI, 0xff));
1282                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1283                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1284
1285                 I915_WRITE(DSPARB, dsparb);
1286                 I915_WRITE(DSPARB2, dsparb2);
1287                 break;
1288         case PIPE_C:
1289                 dsparb3 = I915_READ(DSPARB3);
1290                 dsparb2 = I915_READ(DSPARB2);
1291
1292                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1293                              VLV_FIFO(SPRITEF, 0xff));
1294                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1295                             VLV_FIFO(SPRITEF, sprite1_start));
1296
1297                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1298                              VLV_FIFO(SPRITEF_HI, 0xff));
1299                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1300                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1301
1302                 I915_WRITE(DSPARB3, dsparb3);
1303                 I915_WRITE(DSPARB2, dsparb2);
1304                 break;
1305         default:
1306                 break;
1307         }
1308 }
1309
1310 #undef VLV_FIFO
1311
1312 static void vlv_merge_wm(struct drm_device *dev,
1313                          struct vlv_wm_values *wm)
1314 {
1315         struct intel_crtc *crtc;
1316         int num_active_crtcs = 0;
1317
1318         wm->level = to_i915(dev)->wm.max_level;
1319         wm->cxsr = true;
1320
1321         for_each_intel_crtc(dev, crtc) {
1322                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1323
1324                 if (!crtc->active)
1325                         continue;
1326
1327                 if (!wm_state->cxsr)
1328                         wm->cxsr = false;
1329
1330                 num_active_crtcs++;
1331                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1332         }
1333
1334         if (num_active_crtcs != 1)
1335                 wm->cxsr = false;
1336
1337         if (num_active_crtcs > 1)
1338                 wm->level = VLV_WM_LEVEL_PM2;
1339
1340         for_each_intel_crtc(dev, crtc) {
1341                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1342                 enum pipe pipe = crtc->pipe;
1343
1344                 if (!crtc->active)
1345                         continue;
1346
1347                 wm->pipe[pipe] = wm_state->wm[wm->level];
1348                 if (wm->cxsr)
1349                         wm->sr = wm_state->sr[wm->level];
1350
1351                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1352                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1353                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1354                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1355         }
1356 }
1357
1358 static void vlv_update_wm(struct drm_crtc *crtc)
1359 {
1360         struct drm_device *dev = crtc->dev;
1361         struct drm_i915_private *dev_priv = dev->dev_private;
1362         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1363         enum pipe pipe = intel_crtc->pipe;
1364         struct vlv_wm_values wm = {};
1365
1366         vlv_compute_wm(intel_crtc);
1367         vlv_merge_wm(dev, &wm);
1368
1369         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1370                 /* FIXME should be part of crtc atomic commit */
1371                 vlv_pipe_set_fifo_size(intel_crtc);
1372                 return;
1373         }
1374
1375         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1376             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1377                 chv_set_memory_dvfs(dev_priv, false);
1378
1379         if (wm.level < VLV_WM_LEVEL_PM5 &&
1380             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1381                 chv_set_memory_pm5(dev_priv, false);
1382
1383         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1384                 intel_set_memory_cxsr(dev_priv, false);
1385
1386         /* FIXME should be part of crtc atomic commit */
1387         vlv_pipe_set_fifo_size(intel_crtc);
1388
1389         vlv_write_wm_values(intel_crtc, &wm);
1390
1391         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1392                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1393                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1394                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1395                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1396
1397         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1398                 intel_set_memory_cxsr(dev_priv, true);
1399
1400         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1401             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1402                 chv_set_memory_pm5(dev_priv, true);
1403
1404         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1405             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1406                 chv_set_memory_dvfs(dev_priv, true);
1407
1408         dev_priv->wm.vlv = wm;
1409 }
1410
1411 #define single_plane_enabled(mask) is_power_of_2(mask)
1412
1413 static void g4x_update_wm(struct drm_crtc *crtc)
1414 {
1415         struct drm_device *dev = crtc->dev;
1416         static const int sr_latency_ns = 12000;
1417         struct drm_i915_private *dev_priv = dev->dev_private;
1418         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1419         int plane_sr, cursor_sr;
1420         unsigned int enabled = 0;
1421         bool cxsr_enabled;
1422
1423         if (g4x_compute_wm0(dev, PIPE_A,
1424                             &g4x_wm_info, pessimal_latency_ns,
1425                             &g4x_cursor_wm_info, pessimal_latency_ns,
1426                             &planea_wm, &cursora_wm))
1427                 enabled |= 1 << PIPE_A;
1428
1429         if (g4x_compute_wm0(dev, PIPE_B,
1430                             &g4x_wm_info, pessimal_latency_ns,
1431                             &g4x_cursor_wm_info, pessimal_latency_ns,
1432                             &planeb_wm, &cursorb_wm))
1433                 enabled |= 1 << PIPE_B;
1434
1435         if (single_plane_enabled(enabled) &&
1436             g4x_compute_srwm(dev, ffs(enabled) - 1,
1437                              sr_latency_ns,
1438                              &g4x_wm_info,
1439                              &g4x_cursor_wm_info,
1440                              &plane_sr, &cursor_sr)) {
1441                 cxsr_enabled = true;
1442         } else {
1443                 cxsr_enabled = false;
1444                 intel_set_memory_cxsr(dev_priv, false);
1445                 plane_sr = cursor_sr = 0;
1446         }
1447
1448         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1449                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1450                       planea_wm, cursora_wm,
1451                       planeb_wm, cursorb_wm,
1452                       plane_sr, cursor_sr);
1453
1454         I915_WRITE(DSPFW1,
1455                    FW_WM(plane_sr, SR) |
1456                    FW_WM(cursorb_wm, CURSORB) |
1457                    FW_WM(planeb_wm, PLANEB) |
1458                    FW_WM(planea_wm, PLANEA));
1459         I915_WRITE(DSPFW2,
1460                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1461                    FW_WM(cursora_wm, CURSORA));
1462         /* HPLL off in SR has some issues on G4x... disable it */
1463         I915_WRITE(DSPFW3,
1464                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1465                    FW_WM(cursor_sr, CURSOR_SR));
1466
1467         if (cxsr_enabled)
1468                 intel_set_memory_cxsr(dev_priv, true);
1469 }
1470
1471 static void i965_update_wm(struct drm_crtc *unused_crtc)
1472 {
1473         struct drm_device *dev = unused_crtc->dev;
1474         struct drm_i915_private *dev_priv = dev->dev_private;
1475         struct drm_crtc *crtc;
1476         int srwm = 1;
1477         int cursor_sr = 16;
1478         bool cxsr_enabled;
1479
1480         /* Calc sr entries for one plane configs */
1481         crtc = single_enabled_crtc(dev);
1482         if (crtc) {
1483                 /* self-refresh has much higher latency */
1484                 static const int sr_latency_ns = 12000;
1485                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1486                 int clock = adjusted_mode->crtc_clock;
1487                 int htotal = adjusted_mode->crtc_htotal;
1488                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1489                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1490                 unsigned long line_time_us;
1491                 int entries;
1492
1493                 line_time_us = max(htotal * 1000 / clock, 1);
1494
1495                 /* Use ns/us then divide to preserve precision */
1496                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1497                         pixel_size * hdisplay;
1498                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1499                 srwm = I965_FIFO_SIZE - entries;
1500                 if (srwm < 0)
1501                         srwm = 1;
1502                 srwm &= 0x1ff;
1503                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1504                               entries, srwm);
1505
1506                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1507                         pixel_size * crtc->cursor->state->crtc_w;
1508                 entries = DIV_ROUND_UP(entries,
1509                                           i965_cursor_wm_info.cacheline_size);
1510                 cursor_sr = i965_cursor_wm_info.fifo_size -
1511                         (entries + i965_cursor_wm_info.guard_size);
1512
1513                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1514                         cursor_sr = i965_cursor_wm_info.max_wm;
1515
1516                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1517                               "cursor %d\n", srwm, cursor_sr);
1518
1519                 cxsr_enabled = true;
1520         } else {
1521                 cxsr_enabled = false;
1522                 /* Turn off self refresh if both pipes are enabled */
1523                 intel_set_memory_cxsr(dev_priv, false);
1524         }
1525
1526         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1527                       srwm);
1528
1529         /* 965 has limitations... */
1530         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1531                    FW_WM(8, CURSORB) |
1532                    FW_WM(8, PLANEB) |
1533                    FW_WM(8, PLANEA));
1534         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1535                    FW_WM(8, PLANEC_OLD));
1536         /* update cursor SR watermark */
1537         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1538
1539         if (cxsr_enabled)
1540                 intel_set_memory_cxsr(dev_priv, true);
1541 }
1542
1543 #undef FW_WM
1544
1545 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1546 {
1547         struct drm_device *dev = unused_crtc->dev;
1548         struct drm_i915_private *dev_priv = dev->dev_private;
1549         const struct intel_watermark_params *wm_info;
1550         uint32_t fwater_lo;
1551         uint32_t fwater_hi;
1552         int cwm, srwm = 1;
1553         int fifo_size;
1554         int planea_wm, planeb_wm;
1555         struct drm_crtc *crtc, *enabled = NULL;
1556
1557         if (IS_I945GM(dev))
1558                 wm_info = &i945_wm_info;
1559         else if (!IS_GEN2(dev))
1560                 wm_info = &i915_wm_info;
1561         else
1562                 wm_info = &i830_a_wm_info;
1563
1564         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1565         crtc = intel_get_crtc_for_plane(dev, 0);
1566         if (intel_crtc_active(crtc)) {
1567                 const struct drm_display_mode *adjusted_mode;
1568                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1569                 if (IS_GEN2(dev))
1570                         cpp = 4;
1571
1572                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1573                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1574                                                wm_info, fifo_size, cpp,
1575                                                pessimal_latency_ns);
1576                 enabled = crtc;
1577         } else {
1578                 planea_wm = fifo_size - wm_info->guard_size;
1579                 if (planea_wm > (long)wm_info->max_wm)
1580                         planea_wm = wm_info->max_wm;
1581         }
1582
1583         if (IS_GEN2(dev))
1584                 wm_info = &i830_bc_wm_info;
1585
1586         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1587         crtc = intel_get_crtc_for_plane(dev, 1);
1588         if (intel_crtc_active(crtc)) {
1589                 const struct drm_display_mode *adjusted_mode;
1590                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1591                 if (IS_GEN2(dev))
1592                         cpp = 4;
1593
1594                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1595                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1596                                                wm_info, fifo_size, cpp,
1597                                                pessimal_latency_ns);
1598                 if (enabled == NULL)
1599                         enabled = crtc;
1600                 else
1601                         enabled = NULL;
1602         } else {
1603                 planeb_wm = fifo_size - wm_info->guard_size;
1604                 if (planeb_wm > (long)wm_info->max_wm)
1605                         planeb_wm = wm_info->max_wm;
1606         }
1607
1608         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1609
1610         if (IS_I915GM(dev) && enabled) {
1611                 struct drm_i915_gem_object *obj;
1612
1613                 obj = intel_fb_obj(enabled->primary->state->fb);
1614
1615                 /* self-refresh seems busted with untiled */
1616                 if (obj->tiling_mode == I915_TILING_NONE)
1617                         enabled = NULL;
1618         }
1619
1620         /*
1621          * Overlay gets an aggressive default since video jitter is bad.
1622          */
1623         cwm = 2;
1624
1625         /* Play safe and disable self-refresh before adjusting watermarks. */
1626         intel_set_memory_cxsr(dev_priv, false);
1627
1628         /* Calc sr entries for one plane configs */
1629         if (HAS_FW_BLC(dev) && enabled) {
1630                 /* self-refresh has much higher latency */
1631                 static const int sr_latency_ns = 6000;
1632                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1633                 int clock = adjusted_mode->crtc_clock;
1634                 int htotal = adjusted_mode->crtc_htotal;
1635                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1636                 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1637                 unsigned long line_time_us;
1638                 int entries;
1639
1640                 line_time_us = max(htotal * 1000 / clock, 1);
1641
1642                 /* Use ns/us then divide to preserve precision */
1643                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1644                         pixel_size * hdisplay;
1645                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1646                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1647                 srwm = wm_info->fifo_size - entries;
1648                 if (srwm < 0)
1649                         srwm = 1;
1650
1651                 if (IS_I945G(dev) || IS_I945GM(dev))
1652                         I915_WRITE(FW_BLC_SELF,
1653                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1654                 else if (IS_I915GM(dev))
1655                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1656         }
1657
1658         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1659                       planea_wm, planeb_wm, cwm, srwm);
1660
1661         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1662         fwater_hi = (cwm & 0x1f);
1663
1664         /* Set request length to 8 cachelines per fetch */
1665         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1666         fwater_hi = fwater_hi | (1 << 8);
1667
1668         I915_WRITE(FW_BLC, fwater_lo);
1669         I915_WRITE(FW_BLC2, fwater_hi);
1670
1671         if (enabled)
1672                 intel_set_memory_cxsr(dev_priv, true);
1673 }
1674
1675 static void i845_update_wm(struct drm_crtc *unused_crtc)
1676 {
1677         struct drm_device *dev = unused_crtc->dev;
1678         struct drm_i915_private *dev_priv = dev->dev_private;
1679         struct drm_crtc *crtc;
1680         const struct drm_display_mode *adjusted_mode;
1681         uint32_t fwater_lo;
1682         int planea_wm;
1683
1684         crtc = single_enabled_crtc(dev);
1685         if (crtc == NULL)
1686                 return;
1687
1688         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1689         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1690                                        &i845_wm_info,
1691                                        dev_priv->display.get_fifo_size(dev, 0),
1692                                        4, pessimal_latency_ns);
1693         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1694         fwater_lo |= (3<<8) | planea_wm;
1695
1696         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1697
1698         I915_WRITE(FW_BLC, fwater_lo);
1699 }
1700
1701 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1702 {
1703         uint32_t pixel_rate;
1704
1705         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1706
1707         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1708          * adjust the pixel_rate here. */
1709
1710         if (pipe_config->pch_pfit.enabled) {
1711                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1712                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1713
1714                 pipe_w = pipe_config->pipe_src_w;
1715                 pipe_h = pipe_config->pipe_src_h;
1716
1717                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1718                 pfit_h = pfit_size & 0xFFFF;
1719                 if (pipe_w < pfit_w)
1720                         pipe_w = pfit_w;
1721                 if (pipe_h < pfit_h)
1722                         pipe_h = pfit_h;
1723
1724                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1725                                      pfit_w * pfit_h);
1726         }
1727
1728         return pixel_rate;
1729 }
1730
1731 /* latency must be in 0.1us units. */
1732 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1733                                uint32_t latency)
1734 {
1735         uint64_t ret;
1736
1737         if (WARN(latency == 0, "Latency value missing\n"))
1738                 return UINT_MAX;
1739
1740         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1741         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1742
1743         return ret;
1744 }
1745
1746 /* latency must be in 0.1us units. */
1747 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1748                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1749                                uint32_t latency)
1750 {
1751         uint32_t ret;
1752
1753         if (WARN(latency == 0, "Latency value missing\n"))
1754                 return UINT_MAX;
1755
1756         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1757         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1758         ret = DIV_ROUND_UP(ret, 64) + 2;
1759         return ret;
1760 }
1761
1762 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1763                            uint8_t bytes_per_pixel)
1764 {
1765         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1766 }
1767
1768 struct skl_pipe_wm_parameters {
1769         bool active;
1770         uint32_t pipe_htotal;
1771         uint32_t pixel_rate; /* in KHz */
1772         struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1773         struct intel_plane_wm_parameters cursor;
1774 };
1775
1776 struct ilk_pipe_wm_parameters {
1777         bool active;
1778         uint32_t pipe_htotal;
1779         uint32_t pixel_rate;
1780         struct intel_plane_wm_parameters pri;
1781         struct intel_plane_wm_parameters spr;
1782         struct intel_plane_wm_parameters cur;
1783 };
1784
1785 struct ilk_wm_maximums {
1786         uint16_t pri;
1787         uint16_t spr;
1788         uint16_t cur;
1789         uint16_t fbc;
1790 };
1791
1792 /* used in computing the new watermarks state */
1793 struct intel_wm_config {
1794         unsigned int num_pipes_active;
1795         bool sprites_enabled;
1796         bool sprites_scaled;
1797 };
1798
1799 /*
1800  * For both WM_PIPE and WM_LP.
1801  * mem_value must be in 0.1us units.
1802  */
1803 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1804                                    uint32_t mem_value,
1805                                    bool is_lp)
1806 {
1807         uint32_t method1, method2;
1808
1809         if (!params->active || !params->pri.enabled)
1810                 return 0;
1811
1812         method1 = ilk_wm_method1(params->pixel_rate,
1813                                  params->pri.bytes_per_pixel,
1814                                  mem_value);
1815
1816         if (!is_lp)
1817                 return method1;
1818
1819         method2 = ilk_wm_method2(params->pixel_rate,
1820                                  params->pipe_htotal,
1821                                  params->pri.horiz_pixels,
1822                                  params->pri.bytes_per_pixel,
1823                                  mem_value);
1824
1825         return min(method1, method2);
1826 }
1827
1828 /*
1829  * For both WM_PIPE and WM_LP.
1830  * mem_value must be in 0.1us units.
1831  */
1832 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1833                                    uint32_t mem_value)
1834 {
1835         uint32_t method1, method2;
1836
1837         if (!params->active || !params->spr.enabled)
1838                 return 0;
1839
1840         method1 = ilk_wm_method1(params->pixel_rate,
1841                                  params->spr.bytes_per_pixel,
1842                                  mem_value);
1843         method2 = ilk_wm_method2(params->pixel_rate,
1844                                  params->pipe_htotal,
1845                                  params->spr.horiz_pixels,
1846                                  params->spr.bytes_per_pixel,
1847                                  mem_value);
1848         return min(method1, method2);
1849 }
1850
1851 /*
1852  * For both WM_PIPE and WM_LP.
1853  * mem_value must be in 0.1us units.
1854  */
1855 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1856                                    uint32_t mem_value)
1857 {
1858         if (!params->active || !params->cur.enabled)
1859                 return 0;
1860
1861         return ilk_wm_method2(params->pixel_rate,
1862                               params->pipe_htotal,
1863                               params->cur.horiz_pixels,
1864                               params->cur.bytes_per_pixel,
1865                               mem_value);
1866 }
1867
1868 /* Only for WM_LP. */
1869 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1870                                    uint32_t pri_val)
1871 {
1872         if (!params->active || !params->pri.enabled)
1873                 return 0;
1874
1875         return ilk_wm_fbc(pri_val,
1876                           params->pri.horiz_pixels,
1877                           params->pri.bytes_per_pixel);
1878 }
1879
1880 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1881 {
1882         if (INTEL_INFO(dev)->gen >= 8)
1883                 return 3072;
1884         else if (INTEL_INFO(dev)->gen >= 7)
1885                 return 768;
1886         else
1887                 return 512;
1888 }
1889
1890 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1891                                          int level, bool is_sprite)
1892 {
1893         if (INTEL_INFO(dev)->gen >= 8)
1894                 /* BDW primary/sprite plane watermarks */
1895                 return level == 0 ? 255 : 2047;
1896         else if (INTEL_INFO(dev)->gen >= 7)
1897                 /* IVB/HSW primary/sprite plane watermarks */
1898                 return level == 0 ? 127 : 1023;
1899         else if (!is_sprite)
1900                 /* ILK/SNB primary plane watermarks */
1901                 return level == 0 ? 127 : 511;
1902         else
1903                 /* ILK/SNB sprite plane watermarks */
1904                 return level == 0 ? 63 : 255;
1905 }
1906
1907 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1908                                           int level)
1909 {
1910         if (INTEL_INFO(dev)->gen >= 7)
1911                 return level == 0 ? 63 : 255;
1912         else
1913                 return level == 0 ? 31 : 63;
1914 }
1915
1916 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1917 {
1918         if (INTEL_INFO(dev)->gen >= 8)
1919                 return 31;
1920         else
1921                 return 15;
1922 }
1923
1924 /* Calculate the maximum primary/sprite plane watermark */
1925 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1926                                      int level,
1927                                      const struct intel_wm_config *config,
1928                                      enum intel_ddb_partitioning ddb_partitioning,
1929                                      bool is_sprite)
1930 {
1931         unsigned int fifo_size = ilk_display_fifo_size(dev);
1932
1933         /* if sprites aren't enabled, sprites get nothing */
1934         if (is_sprite && !config->sprites_enabled)
1935                 return 0;
1936
1937         /* HSW allows LP1+ watermarks even with multiple pipes */
1938         if (level == 0 || config->num_pipes_active > 1) {
1939                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1940
1941                 /*
1942                  * For some reason the non self refresh
1943                  * FIFO size is only half of the self
1944                  * refresh FIFO size on ILK/SNB.
1945                  */
1946                 if (INTEL_INFO(dev)->gen <= 6)
1947                         fifo_size /= 2;
1948         }
1949
1950         if (config->sprites_enabled) {
1951                 /* level 0 is always calculated with 1:1 split */
1952                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1953                         if (is_sprite)
1954                                 fifo_size *= 5;
1955                         fifo_size /= 6;
1956                 } else {
1957                         fifo_size /= 2;
1958                 }
1959         }
1960
1961         /* clamp to max that the registers can hold */
1962         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1963 }
1964
1965 /* Calculate the maximum cursor plane watermark */
1966 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1967                                       int level,
1968                                       const struct intel_wm_config *config)
1969 {
1970         /* HSW LP1+ watermarks w/ multiple pipes */
1971         if (level > 0 && config->num_pipes_active > 1)
1972                 return 64;
1973
1974         /* otherwise just report max that registers can hold */
1975         return ilk_cursor_wm_reg_max(dev, level);
1976 }
1977
1978 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1979                                     int level,
1980                                     const struct intel_wm_config *config,
1981                                     enum intel_ddb_partitioning ddb_partitioning,
1982                                     struct ilk_wm_maximums *max)
1983 {
1984         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1985         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1986         max->cur = ilk_cursor_wm_max(dev, level, config);
1987         max->fbc = ilk_fbc_wm_reg_max(dev);
1988 }
1989
1990 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1991                                         int level,
1992                                         struct ilk_wm_maximums *max)
1993 {
1994         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1995         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1996         max->cur = ilk_cursor_wm_reg_max(dev, level);
1997         max->fbc = ilk_fbc_wm_reg_max(dev);
1998 }
1999
2000 static bool ilk_validate_wm_level(int level,
2001                                   const struct ilk_wm_maximums *max,
2002                                   struct intel_wm_level *result)
2003 {
2004         bool ret;
2005
2006         /* already determined to be invalid? */
2007         if (!result->enable)
2008                 return false;
2009
2010         result->enable = result->pri_val <= max->pri &&
2011                          result->spr_val <= max->spr &&
2012                          result->cur_val <= max->cur;
2013
2014         ret = result->enable;
2015
2016         /*
2017          * HACK until we can pre-compute everything,
2018          * and thus fail gracefully if LP0 watermarks
2019          * are exceeded...
2020          */
2021         if (level == 0 && !result->enable) {
2022                 if (result->pri_val > max->pri)
2023                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2024                                       level, result->pri_val, max->pri);
2025                 if (result->spr_val > max->spr)
2026                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2027                                       level, result->spr_val, max->spr);
2028                 if (result->cur_val > max->cur)
2029                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2030                                       level, result->cur_val, max->cur);
2031
2032                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2033                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2034                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2035                 result->enable = true;
2036         }
2037
2038         return ret;
2039 }
2040
2041 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2042                                  int level,
2043                                  const struct ilk_pipe_wm_parameters *p,
2044                                  struct intel_wm_level *result)
2045 {
2046         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2047         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2048         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2049
2050         /* WM1+ latency values stored in 0.5us units */
2051         if (level > 0) {
2052                 pri_latency *= 5;
2053                 spr_latency *= 5;
2054                 cur_latency *= 5;
2055         }
2056
2057         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2058         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2059         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2060         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2061         result->enable = true;
2062 }
2063
2064 static uint32_t
2065 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2066 {
2067         struct drm_i915_private *dev_priv = dev->dev_private;
2068         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2069         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2070         u32 linetime, ips_linetime;
2071
2072         if (!intel_crtc->active)
2073                 return 0;
2074
2075         /* The WM are computed with base on how long it takes to fill a single
2076          * row at the given clock rate, multiplied by 8.
2077          * */
2078         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2079                                      adjusted_mode->crtc_clock);
2080         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2081                                          dev_priv->cdclk_freq);
2082
2083         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2084                PIPE_WM_LINETIME_TIME(linetime);
2085 }
2086
2087 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2088 {
2089         struct drm_i915_private *dev_priv = dev->dev_private;
2090
2091         if (IS_GEN9(dev)) {
2092                 uint32_t val;
2093                 int ret, i;
2094                 int level, max_level = ilk_wm_max_level(dev);
2095
2096                 /* read the first set of memory latencies[0:3] */
2097                 val = 0; /* data0 to be programmed to 0 for first set */
2098                 mutex_lock(&dev_priv->rps.hw_lock);
2099                 ret = sandybridge_pcode_read(dev_priv,
2100                                              GEN9_PCODE_READ_MEM_LATENCY,
2101                                              &val);
2102                 mutex_unlock(&dev_priv->rps.hw_lock);
2103
2104                 if (ret) {
2105                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2106                         return;
2107                 }
2108
2109                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2110                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2111                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2112                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2113                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2114                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2115                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2116
2117                 /* read the second set of memory latencies[4:7] */
2118                 val = 1; /* data0 to be programmed to 1 for second set */
2119                 mutex_lock(&dev_priv->rps.hw_lock);
2120                 ret = sandybridge_pcode_read(dev_priv,
2121                                              GEN9_PCODE_READ_MEM_LATENCY,
2122                                              &val);
2123                 mutex_unlock(&dev_priv->rps.hw_lock);
2124                 if (ret) {
2125                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2126                         return;
2127                 }
2128
2129                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2130                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2131                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2132                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2133                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2134                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2135                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2136
2137                 /*
2138                  * WaWmMemoryReadLatency:skl
2139                  *
2140                  * punit doesn't take into account the read latency so we need
2141                  * to add 2us to the various latency levels we retrieve from
2142                  * the punit.
2143                  *   - W0 is a bit special in that it's the only level that
2144                  *   can't be disabled if we want to have display working, so
2145                  *   we always add 2us there.
2146                  *   - For levels >=1, punit returns 0us latency when they are
2147                  *   disabled, so we respect that and don't add 2us then
2148                  *
2149                  * Additionally, if a level n (n > 1) has a 0us latency, all
2150                  * levels m (m >= n) need to be disabled. We make sure to
2151                  * sanitize the values out of the punit to satisfy this
2152                  * requirement.
2153                  */
2154                 wm[0] += 2;
2155                 for (level = 1; level <= max_level; level++)
2156                         if (wm[level] != 0)
2157                                 wm[level] += 2;
2158                         else {
2159                                 for (i = level + 1; i <= max_level; i++)
2160                                         wm[i] = 0;
2161
2162                                 break;
2163                         }
2164         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2165                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2166
2167                 wm[0] = (sskpd >> 56) & 0xFF;
2168                 if (wm[0] == 0)
2169                         wm[0] = sskpd & 0xF;
2170                 wm[1] = (sskpd >> 4) & 0xFF;
2171                 wm[2] = (sskpd >> 12) & 0xFF;
2172                 wm[3] = (sskpd >> 20) & 0x1FF;
2173                 wm[4] = (sskpd >> 32) & 0x1FF;
2174         } else if (INTEL_INFO(dev)->gen >= 6) {
2175                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2176
2177                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2178                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2179                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2180                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2181         } else if (INTEL_INFO(dev)->gen >= 5) {
2182                 uint32_t mltr = I915_READ(MLTR_ILK);
2183
2184                 /* ILK primary LP0 latency is 700 ns */
2185                 wm[0] = 7;
2186                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2187                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2188         }
2189 }
2190
2191 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2192 {
2193         /* ILK sprite LP0 latency is 1300 ns */
2194         if (INTEL_INFO(dev)->gen == 5)
2195                 wm[0] = 13;
2196 }
2197
2198 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2199 {
2200         /* ILK cursor LP0 latency is 1300 ns */
2201         if (INTEL_INFO(dev)->gen == 5)
2202                 wm[0] = 13;
2203
2204         /* WaDoubleCursorLP3Latency:ivb */
2205         if (IS_IVYBRIDGE(dev))
2206                 wm[3] *= 2;
2207 }
2208
2209 int ilk_wm_max_level(const struct drm_device *dev)
2210 {
2211         /* how many WM levels are we expecting */
2212         if (INTEL_INFO(dev)->gen >= 9)
2213                 return 7;
2214         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2215                 return 4;
2216         else if (INTEL_INFO(dev)->gen >= 6)
2217                 return 3;
2218         else
2219                 return 2;
2220 }
2221
2222 static void intel_print_wm_latency(struct drm_device *dev,
2223                                    const char *name,
2224                                    const uint16_t wm[8])
2225 {
2226         int level, max_level = ilk_wm_max_level(dev);
2227
2228         for (level = 0; level <= max_level; level++) {
2229                 unsigned int latency = wm[level];
2230
2231                 if (latency == 0) {
2232                         DRM_ERROR("%s WM%d latency not provided\n",
2233                                   name, level);
2234                         continue;
2235                 }
2236
2237                 /*
2238                  * - latencies are in us on gen9.
2239                  * - before then, WM1+ latency values are in 0.5us units
2240                  */
2241                 if (IS_GEN9(dev))
2242                         latency *= 10;
2243                 else if (level > 0)
2244                         latency *= 5;
2245
2246                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2247                               name, level, wm[level],
2248                               latency / 10, latency % 10);
2249         }
2250 }
2251
2252 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2253                                     uint16_t wm[5], uint16_t min)
2254 {
2255         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2256
2257         if (wm[0] >= min)
2258                 return false;
2259
2260         wm[0] = max(wm[0], min);
2261         for (level = 1; level <= max_level; level++)
2262                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2263
2264         return true;
2265 }
2266
2267 static void snb_wm_latency_quirk(struct drm_device *dev)
2268 {
2269         struct drm_i915_private *dev_priv = dev->dev_private;
2270         bool changed;
2271
2272         /*
2273          * The BIOS provided WM memory latency values are often
2274          * inadequate for high resolution displays. Adjust them.
2275          */
2276         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2277                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2278                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2279
2280         if (!changed)
2281                 return;
2282
2283         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2284         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2285         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2286         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2287 }
2288
2289 static void ilk_setup_wm_latency(struct drm_device *dev)
2290 {
2291         struct drm_i915_private *dev_priv = dev->dev_private;
2292
2293         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2294
2295         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2296                sizeof(dev_priv->wm.pri_latency));
2297         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2298                sizeof(dev_priv->wm.pri_latency));
2299
2300         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2301         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2302
2303         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2304         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2305         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2306
2307         if (IS_GEN6(dev))
2308                 snb_wm_latency_quirk(dev);
2309 }
2310
2311 static void skl_setup_wm_latency(struct drm_device *dev)
2312 {
2313         struct drm_i915_private *dev_priv = dev->dev_private;
2314
2315         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2316         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2317 }
2318
2319 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2320                                       struct ilk_pipe_wm_parameters *p)
2321 {
2322         struct drm_device *dev = crtc->dev;
2323         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2324         enum pipe pipe = intel_crtc->pipe;
2325         struct drm_plane *plane;
2326
2327         if (!intel_crtc->active)
2328                 return;
2329
2330         p->active = true;
2331         p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2332         p->pixel_rate = ilk_pipe_pixel_rate(intel_crtc->config);
2333
2334         if (crtc->primary->state->fb)
2335                 p->pri.bytes_per_pixel =
2336                         crtc->primary->state->fb->bits_per_pixel / 8;
2337         else
2338                 p->pri.bytes_per_pixel = 4;
2339
2340         p->cur.bytes_per_pixel = 4;
2341         /*
2342          * TODO: for now, assume primary and cursor planes are always enabled.
2343          * Setting them to false makes the screen flicker.
2344          */
2345         p->pri.enabled = true;
2346         p->cur.enabled = true;
2347
2348         p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2349         p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2350
2351         drm_for_each_legacy_plane(plane, dev) {
2352                 struct intel_plane *intel_plane = to_intel_plane(plane);
2353
2354                 if (intel_plane->pipe == pipe) {
2355                         p->spr = intel_plane->wm;
2356                         break;
2357                 }
2358         }
2359 }
2360
2361 static void ilk_compute_wm_config(struct drm_device *dev,
2362                                   struct intel_wm_config *config)
2363 {
2364         struct intel_crtc *intel_crtc;
2365
2366         /* Compute the currently _active_ config */
2367         for_each_intel_crtc(dev, intel_crtc) {
2368                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2369
2370                 if (!wm->pipe_enabled)
2371                         continue;
2372
2373                 config->sprites_enabled |= wm->sprites_enabled;
2374                 config->sprites_scaled |= wm->sprites_scaled;
2375                 config->num_pipes_active++;
2376         }
2377 }
2378
2379 /* Compute new watermarks for the pipe */
2380 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2381                                   const struct ilk_pipe_wm_parameters *params,
2382                                   struct intel_pipe_wm *pipe_wm)
2383 {
2384         struct drm_device *dev = crtc->dev;
2385         const struct drm_i915_private *dev_priv = dev->dev_private;
2386         int level, max_level = ilk_wm_max_level(dev);
2387         /* LP0 watermark maximums depend on this pipe alone */
2388         struct intel_wm_config config = {
2389                 .num_pipes_active = 1,
2390                 .sprites_enabled = params->spr.enabled,
2391                 .sprites_scaled = params->spr.scaled,
2392         };
2393         struct ilk_wm_maximums max;
2394
2395         pipe_wm->pipe_enabled = params->active;
2396         pipe_wm->sprites_enabled = params->spr.enabled;
2397         pipe_wm->sprites_scaled = params->spr.scaled;
2398
2399         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2400         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2401                 max_level = 1;
2402
2403         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2404         if (params->spr.scaled)
2405                 max_level = 0;
2406
2407         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2408
2409         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2410                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2411
2412         /* LP0 watermarks always use 1/2 DDB partitioning */
2413         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2414
2415         /* At least LP0 must be valid */
2416         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2417                 return false;
2418
2419         ilk_compute_wm_reg_maximums(dev, 1, &max);
2420
2421         for (level = 1; level <= max_level; level++) {
2422                 struct intel_wm_level wm = {};
2423
2424                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2425
2426                 /*
2427                  * Disable any watermark level that exceeds the
2428                  * register maximums since such watermarks are
2429                  * always invalid.
2430                  */
2431                 if (!ilk_validate_wm_level(level, &max, &wm))
2432                         break;
2433
2434                 pipe_wm->wm[level] = wm;
2435         }
2436
2437         return true;
2438 }
2439
2440 /*
2441  * Merge the watermarks from all active pipes for a specific level.
2442  */
2443 static void ilk_merge_wm_level(struct drm_device *dev,
2444                                int level,
2445                                struct intel_wm_level *ret_wm)
2446 {
2447         const struct intel_crtc *intel_crtc;
2448
2449         ret_wm->enable = true;
2450
2451         for_each_intel_crtc(dev, intel_crtc) {
2452                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2453                 const struct intel_wm_level *wm = &active->wm[level];
2454
2455                 if (!active->pipe_enabled)
2456                         continue;
2457
2458                 /*
2459                  * The watermark values may have been used in the past,
2460                  * so we must maintain them in the registers for some
2461                  * time even if the level is now disabled.
2462                  */
2463                 if (!wm->enable)
2464                         ret_wm->enable = false;
2465
2466                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2467                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2468                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2469                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2470         }
2471 }
2472
2473 /*
2474  * Merge all low power watermarks for all active pipes.
2475  */
2476 static void ilk_wm_merge(struct drm_device *dev,
2477                          const struct intel_wm_config *config,
2478                          const struct ilk_wm_maximums *max,
2479                          struct intel_pipe_wm *merged)
2480 {
2481         struct drm_i915_private *dev_priv = dev->dev_private;
2482         int level, max_level = ilk_wm_max_level(dev);
2483         int last_enabled_level = max_level;
2484
2485         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2486         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2487             config->num_pipes_active > 1)
2488                 return;
2489
2490         /* ILK: FBC WM must be disabled always */
2491         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2492
2493         /* merge each WM1+ level */
2494         for (level = 1; level <= max_level; level++) {
2495                 struct intel_wm_level *wm = &merged->wm[level];
2496
2497                 ilk_merge_wm_level(dev, level, wm);
2498
2499                 if (level > last_enabled_level)
2500                         wm->enable = false;
2501                 else if (!ilk_validate_wm_level(level, max, wm))
2502                         /* make sure all following levels get disabled */
2503                         last_enabled_level = level - 1;
2504
2505                 /*
2506                  * The spec says it is preferred to disable
2507                  * FBC WMs instead of disabling a WM level.
2508                  */
2509                 if (wm->fbc_val > max->fbc) {
2510                         if (wm->enable)
2511                                 merged->fbc_wm_enabled = false;
2512                         wm->fbc_val = 0;
2513                 }
2514         }
2515
2516         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2517         /*
2518          * FIXME this is racy. FBC might get enabled later.
2519          * What we should check here is whether FBC can be
2520          * enabled sometime later.
2521          */
2522         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2523             intel_fbc_enabled(dev_priv)) {
2524                 for (level = 2; level <= max_level; level++) {
2525                         struct intel_wm_level *wm = &merged->wm[level];
2526
2527                         wm->enable = false;
2528                 }
2529         }
2530 }
2531
2532 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2533 {
2534         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2535         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2536 }
2537
2538 /* The value we need to program into the WM_LPx latency field */
2539 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2540 {
2541         struct drm_i915_private *dev_priv = dev->dev_private;
2542
2543         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2544                 return 2 * level;
2545         else
2546                 return dev_priv->wm.pri_latency[level];
2547 }
2548
2549 static void ilk_compute_wm_results(struct drm_device *dev,
2550                                    const struct intel_pipe_wm *merged,
2551                                    enum intel_ddb_partitioning partitioning,
2552                                    struct ilk_wm_values *results)
2553 {
2554         struct intel_crtc *intel_crtc;
2555         int level, wm_lp;
2556
2557         results->enable_fbc_wm = merged->fbc_wm_enabled;
2558         results->partitioning = partitioning;
2559
2560         /* LP1+ register values */
2561         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2562                 const struct intel_wm_level *r;
2563
2564                 level = ilk_wm_lp_to_level(wm_lp, merged);
2565
2566                 r = &merged->wm[level];
2567
2568                 /*
2569                  * Maintain the watermark values even if the level is
2570                  * disabled. Doing otherwise could cause underruns.
2571                  */
2572                 results->wm_lp[wm_lp - 1] =
2573                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2574                         (r->pri_val << WM1_LP_SR_SHIFT) |
2575                         r->cur_val;
2576
2577                 if (r->enable)
2578                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2579
2580                 if (INTEL_INFO(dev)->gen >= 8)
2581                         results->wm_lp[wm_lp - 1] |=
2582                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2583                 else
2584                         results->wm_lp[wm_lp - 1] |=
2585                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2586
2587                 /*
2588                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2589                  * level is disabled. Doing otherwise could cause underruns.
2590                  */
2591                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2592                         WARN_ON(wm_lp != 1);
2593                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2594                 } else
2595                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2596         }
2597
2598         /* LP0 register values */
2599         for_each_intel_crtc(dev, intel_crtc) {
2600                 enum pipe pipe = intel_crtc->pipe;
2601                 const struct intel_wm_level *r =
2602                         &intel_crtc->wm.active.wm[0];
2603
2604                 if (WARN_ON(!r->enable))
2605                         continue;
2606
2607                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2608
2609                 results->wm_pipe[pipe] =
2610                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2611                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2612                         r->cur_val;
2613         }
2614 }
2615
2616 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2617  * case both are at the same level. Prefer r1 in case they're the same. */
2618 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2619                                                   struct intel_pipe_wm *r1,
2620                                                   struct intel_pipe_wm *r2)
2621 {
2622         int level, max_level = ilk_wm_max_level(dev);
2623         int level1 = 0, level2 = 0;
2624
2625         for (level = 1; level <= max_level; level++) {
2626                 if (r1->wm[level].enable)
2627                         level1 = level;
2628                 if (r2->wm[level].enable)
2629                         level2 = level;
2630         }
2631
2632         if (level1 == level2) {
2633                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2634                         return r2;
2635                 else
2636                         return r1;
2637         } else if (level1 > level2) {
2638                 return r1;
2639         } else {
2640                 return r2;
2641         }
2642 }
2643
2644 /* dirty bits used to track which watermarks need changes */
2645 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2646 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2647 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2648 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2649 #define WM_DIRTY_FBC (1 << 24)
2650 #define WM_DIRTY_DDB (1 << 25)
2651
2652 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2653                                          const struct ilk_wm_values *old,
2654                                          const struct ilk_wm_values *new)
2655 {
2656         unsigned int dirty = 0;
2657         enum pipe pipe;
2658         int wm_lp;
2659
2660         for_each_pipe(dev_priv, pipe) {
2661                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2662                         dirty |= WM_DIRTY_LINETIME(pipe);
2663                         /* Must disable LP1+ watermarks too */
2664                         dirty |= WM_DIRTY_LP_ALL;
2665                 }
2666
2667                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2668                         dirty |= WM_DIRTY_PIPE(pipe);
2669                         /* Must disable LP1+ watermarks too */
2670                         dirty |= WM_DIRTY_LP_ALL;
2671                 }
2672         }
2673
2674         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2675                 dirty |= WM_DIRTY_FBC;
2676                 /* Must disable LP1+ watermarks too */
2677                 dirty |= WM_DIRTY_LP_ALL;
2678         }
2679
2680         if (old->partitioning != new->partitioning) {
2681                 dirty |= WM_DIRTY_DDB;
2682                 /* Must disable LP1+ watermarks too */
2683                 dirty |= WM_DIRTY_LP_ALL;
2684         }
2685
2686         /* LP1+ watermarks already deemed dirty, no need to continue */
2687         if (dirty & WM_DIRTY_LP_ALL)
2688                 return dirty;
2689
2690         /* Find the lowest numbered LP1+ watermark in need of an update... */
2691         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2692                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2693                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2694                         break;
2695         }
2696
2697         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2698         for (; wm_lp <= 3; wm_lp++)
2699                 dirty |= WM_DIRTY_LP(wm_lp);
2700
2701         return dirty;
2702 }
2703
2704 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2705                                unsigned int dirty)
2706 {
2707         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2708         bool changed = false;
2709
2710         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2711                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2712                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2713                 changed = true;
2714         }
2715         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2716                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2717                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2718                 changed = true;
2719         }
2720         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2721                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2722                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2723                 changed = true;
2724         }
2725
2726         /*
2727          * Don't touch WM1S_LP_EN here.
2728          * Doing so could cause underruns.
2729          */
2730
2731         return changed;
2732 }
2733
2734 /*
2735  * The spec says we shouldn't write when we don't need, because every write
2736  * causes WMs to be re-evaluated, expending some power.
2737  */
2738 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2739                                 struct ilk_wm_values *results)
2740 {
2741         struct drm_device *dev = dev_priv->dev;
2742         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2743         unsigned int dirty;
2744         uint32_t val;
2745
2746         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2747         if (!dirty)
2748                 return;
2749
2750         _ilk_disable_lp_wm(dev_priv, dirty);
2751
2752         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2753                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2754         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2755                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2756         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2757                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2758
2759         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2760                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2761         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2762                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2763         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2764                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2765
2766         if (dirty & WM_DIRTY_DDB) {
2767                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2768                         val = I915_READ(WM_MISC);
2769                         if (results->partitioning == INTEL_DDB_PART_1_2)
2770                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2771                         else
2772                                 val |= WM_MISC_DATA_PARTITION_5_6;
2773                         I915_WRITE(WM_MISC, val);
2774                 } else {
2775                         val = I915_READ(DISP_ARB_CTL2);
2776                         if (results->partitioning == INTEL_DDB_PART_1_2)
2777                                 val &= ~DISP_DATA_PARTITION_5_6;
2778                         else
2779                                 val |= DISP_DATA_PARTITION_5_6;
2780                         I915_WRITE(DISP_ARB_CTL2, val);
2781                 }
2782         }
2783
2784         if (dirty & WM_DIRTY_FBC) {
2785                 val = I915_READ(DISP_ARB_CTL);
2786                 if (results->enable_fbc_wm)
2787                         val &= ~DISP_FBC_WM_DIS;
2788                 else
2789                         val |= DISP_FBC_WM_DIS;
2790                 I915_WRITE(DISP_ARB_CTL, val);
2791         }
2792
2793         if (dirty & WM_DIRTY_LP(1) &&
2794             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2795                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2796
2797         if (INTEL_INFO(dev)->gen >= 7) {
2798                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2799                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2800                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2801                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2802         }
2803
2804         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2805                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2806         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2807                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2808         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2809                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2810
2811         dev_priv->wm.hw = *results;
2812 }
2813
2814 static bool ilk_disable_lp_wm(struct drm_device *dev)
2815 {
2816         struct drm_i915_private *dev_priv = dev->dev_private;
2817
2818         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2819 }
2820
2821 /*
2822  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2823  * different active planes.
2824  */
2825
2826 #define SKL_DDB_SIZE            896     /* in blocks */
2827 #define BXT_DDB_SIZE            512
2828
2829 static void
2830 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2831                                    struct drm_crtc *for_crtc,
2832                                    const struct intel_wm_config *config,
2833                                    const struct skl_pipe_wm_parameters *params,
2834                                    struct skl_ddb_entry *alloc /* out */)
2835 {
2836         struct drm_crtc *crtc;
2837         unsigned int pipe_size, ddb_size;
2838         int nth_active_pipe;
2839
2840         if (!params->active) {
2841                 alloc->start = 0;
2842                 alloc->end = 0;
2843                 return;
2844         }
2845
2846         if (IS_BROXTON(dev))
2847                 ddb_size = BXT_DDB_SIZE;
2848         else
2849                 ddb_size = SKL_DDB_SIZE;
2850
2851         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2852
2853         nth_active_pipe = 0;
2854         for_each_crtc(dev, crtc) {
2855                 if (!to_intel_crtc(crtc)->active)
2856                         continue;
2857
2858                 if (crtc == for_crtc)
2859                         break;
2860
2861                 nth_active_pipe++;
2862         }
2863
2864         pipe_size = ddb_size / config->num_pipes_active;
2865         alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2866         alloc->end = alloc->start + pipe_size;
2867 }
2868
2869 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2870 {
2871         if (config->num_pipes_active == 1)
2872                 return 32;
2873
2874         return 8;
2875 }
2876
2877 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2878 {
2879         entry->start = reg & 0x3ff;
2880         entry->end = (reg >> 16) & 0x3ff;
2881         if (entry->end)
2882                 entry->end += 1;
2883 }
2884
2885 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2886                           struct skl_ddb_allocation *ddb /* out */)
2887 {
2888         enum pipe pipe;
2889         int plane;
2890         u32 val;
2891
2892         for_each_pipe(dev_priv, pipe) {
2893                 for_each_plane(dev_priv, pipe, plane) {
2894                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2895                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2896                                                    val);
2897                 }
2898
2899                 val = I915_READ(CUR_BUF_CFG(pipe));
2900                 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2901         }
2902 }
2903
2904 static unsigned int
2905 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2906 {
2907
2908         /* for planar format */
2909         if (p->y_bytes_per_pixel) {
2910                 if (y)  /* y-plane data rate */
2911                         return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2912                 else    /* uv-plane data rate */
2913                         return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2914         }
2915
2916         /* for packed formats */
2917         return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2918 }
2919
2920 /*
2921  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2922  * a 8192x4096@32bpp framebuffer:
2923  *   3 * 4096 * 8192  * 4 < 2^32
2924  */
2925 static unsigned int
2926 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2927                                  const struct skl_pipe_wm_parameters *params)
2928 {
2929         unsigned int total_data_rate = 0;
2930         int plane;
2931
2932         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2933                 const struct intel_plane_wm_parameters *p;
2934
2935                 p = &params->plane[plane];
2936                 if (!p->enabled)
2937                         continue;
2938
2939                 total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2940                 if (p->y_bytes_per_pixel) {
2941                         total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2942                 }
2943         }
2944
2945         return total_data_rate;
2946 }
2947
2948 static void
2949 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2950                       const struct intel_wm_config *config,
2951                       const struct skl_pipe_wm_parameters *params,
2952                       struct skl_ddb_allocation *ddb /* out */)
2953 {
2954         struct drm_device *dev = crtc->dev;
2955         struct drm_i915_private *dev_priv = dev->dev_private;
2956         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2957         enum pipe pipe = intel_crtc->pipe;
2958         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2959         uint16_t alloc_size, start, cursor_blocks;
2960         uint16_t minimum[I915_MAX_PLANES];
2961         uint16_t y_minimum[I915_MAX_PLANES];
2962         unsigned int total_data_rate;
2963         int plane;
2964
2965         skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2966         alloc_size = skl_ddb_entry_size(alloc);
2967         if (alloc_size == 0) {
2968                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2969                 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2970                 return;
2971         }
2972
2973         cursor_blocks = skl_cursor_allocation(config);
2974         ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2975         ddb->cursor[pipe].end = alloc->end;
2976
2977         alloc_size -= cursor_blocks;
2978         alloc->end -= cursor_blocks;
2979
2980         /* 1. Allocate the mininum required blocks for each active plane */
2981         for_each_plane(dev_priv, pipe, plane) {
2982                 const struct intel_plane_wm_parameters *p;
2983
2984                 p = &params->plane[plane];
2985                 if (!p->enabled)
2986                         continue;
2987
2988                 minimum[plane] = 8;
2989                 alloc_size -= minimum[plane];
2990                 y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2991                 alloc_size -= y_minimum[plane];
2992         }
2993
2994         /*
2995          * 2. Distribute the remaining space in proportion to the amount of
2996          * data each plane needs to fetch from memory.
2997          *
2998          * FIXME: we may not allocate every single block here.
2999          */
3000         total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
3001
3002         start = alloc->start;
3003         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
3004                 const struct intel_plane_wm_parameters *p;
3005                 unsigned int data_rate, y_data_rate;
3006                 uint16_t plane_blocks, y_plane_blocks = 0;
3007
3008                 p = &params->plane[plane];
3009                 if (!p->enabled)
3010                         continue;
3011
3012                 data_rate = skl_plane_relative_data_rate(p, 0);
3013
3014                 /*
3015                  * allocation for (packed formats) or (uv-plane part of planar format):
3016                  * promote the expression to 64 bits to avoid overflowing, the
3017                  * result is < available as data_rate / total_data_rate < 1
3018                  */
3019                 plane_blocks = minimum[plane];
3020                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3021                                         total_data_rate);
3022
3023                 ddb->plane[pipe][plane].start = start;
3024                 ddb->plane[pipe][plane].end = start + plane_blocks;
3025
3026                 start += plane_blocks;
3027
3028                 /*
3029                  * allocation for y_plane part of planar format:
3030                  */
3031                 if (p->y_bytes_per_pixel) {
3032                         y_data_rate = skl_plane_relative_data_rate(p, 1);
3033                         y_plane_blocks = y_minimum[plane];
3034                         y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3035                                                 total_data_rate);
3036
3037                         ddb->y_plane[pipe][plane].start = start;
3038                         ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
3039
3040                         start += y_plane_blocks;
3041                 }
3042
3043         }
3044
3045 }
3046
3047 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3048 {
3049         /* TODO: Take into account the scalers once we support them */
3050         return config->base.adjusted_mode.crtc_clock;
3051 }
3052
3053 /*
3054  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3055  * for the read latency) and bytes_per_pixel should always be <= 8, so that
3056  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3057  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3058 */
3059 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3060                                uint32_t latency)
3061 {
3062         uint32_t wm_intermediate_val, ret;
3063
3064         if (latency == 0)
3065                 return UINT_MAX;
3066
3067         wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3068         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3069
3070         return ret;
3071 }
3072
3073 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3074                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3075                                uint64_t tiling, uint32_t latency)
3076 {
3077         uint32_t ret;
3078         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3079         uint32_t wm_intermediate_val;
3080
3081         if (latency == 0)
3082                 return UINT_MAX;
3083
3084         plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3085
3086         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3087             tiling == I915_FORMAT_MOD_Yf_TILED) {
3088                 plane_bytes_per_line *= 4;
3089                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3090                 plane_blocks_per_line /= 4;
3091         } else {
3092                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3093         }
3094
3095         wm_intermediate_val = latency * pixel_rate;
3096         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3097                                 plane_blocks_per_line;
3098
3099         return ret;
3100 }
3101
3102 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3103                                        const struct intel_crtc *intel_crtc)
3104 {
3105         struct drm_device *dev = intel_crtc->base.dev;
3106         struct drm_i915_private *dev_priv = dev->dev_private;
3107         const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3108         enum pipe pipe = intel_crtc->pipe;
3109
3110         if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3111                    sizeof(new_ddb->plane[pipe])))
3112                 return true;
3113
3114         if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
3115                     sizeof(new_ddb->cursor[pipe])))
3116                 return true;
3117
3118         return false;
3119 }
3120
3121 static void skl_compute_wm_global_parameters(struct drm_device *dev,
3122                                              struct intel_wm_config *config)
3123 {
3124         struct drm_crtc *crtc;
3125         struct drm_plane *plane;
3126
3127         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3128                 config->num_pipes_active += to_intel_crtc(crtc)->active;
3129
3130         /* FIXME: I don't think we need those two global parameters on SKL */
3131         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3132                 struct intel_plane *intel_plane = to_intel_plane(plane);
3133
3134                 config->sprites_enabled |= intel_plane->wm.enabled;
3135                 config->sprites_scaled |= intel_plane->wm.scaled;
3136         }
3137 }
3138
3139 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3140                                            struct skl_pipe_wm_parameters *p)
3141 {
3142         struct drm_device *dev = crtc->dev;
3143         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3144         enum pipe pipe = intel_crtc->pipe;
3145         struct drm_plane *plane;
3146         struct drm_framebuffer *fb;
3147         int i = 1; /* Index for sprite planes start */
3148
3149         p->active = intel_crtc->active;
3150         if (p->active) {
3151                 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3152                 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3153
3154                 fb = crtc->primary->state->fb;
3155                 /* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3156                 if (fb) {
3157                         p->plane[0].enabled = true;
3158                         p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3159                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3160                                 drm_format_plane_cpp(fb->pixel_format, 0);
3161                         p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3162                                 drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3163                         p->plane[0].tiling = fb->modifier[0];
3164                 } else {
3165                         p->plane[0].enabled = false;
3166                         p->plane[0].bytes_per_pixel = 0;
3167                         p->plane[0].y_bytes_per_pixel = 0;
3168                         p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3169                 }
3170                 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3171                 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3172                 p->plane[0].rotation = crtc->primary->state->rotation;
3173
3174                 fb = crtc->cursor->state->fb;
3175                 p->cursor.y_bytes_per_pixel = 0;
3176                 if (fb) {
3177                         p->cursor.enabled = true;
3178                         p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
3179                         p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
3180                         p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
3181                 } else {
3182                         p->cursor.enabled = false;
3183                         p->cursor.bytes_per_pixel = 0;
3184                         p->cursor.horiz_pixels = 64;
3185                         p->cursor.vert_pixels = 64;
3186                 }
3187         }
3188
3189         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3190                 struct intel_plane *intel_plane = to_intel_plane(plane);
3191
3192                 if (intel_plane->pipe == pipe &&
3193                         plane->type == DRM_PLANE_TYPE_OVERLAY)
3194                         p->plane[i++] = intel_plane->wm;
3195         }
3196 }
3197
3198 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3199                                  struct skl_pipe_wm_parameters *p,
3200                                  struct intel_plane_wm_parameters *p_params,
3201                                  uint16_t ddb_allocation,
3202                                  int level,
3203                                  uint16_t *out_blocks, /* out */
3204                                  uint8_t *out_lines /* out */)
3205 {
3206         uint32_t latency = dev_priv->wm.skl_latency[level];
3207         uint32_t method1, method2;
3208         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3209         uint32_t res_blocks, res_lines;
3210         uint32_t selected_result;
3211         uint8_t bytes_per_pixel;
3212
3213         if (latency == 0 || !p->active || !p_params->enabled)
3214                 return false;
3215
3216         bytes_per_pixel = p_params->y_bytes_per_pixel ?
3217                 p_params->y_bytes_per_pixel :
3218                 p_params->bytes_per_pixel;
3219         method1 = skl_wm_method1(p->pixel_rate,
3220                                  bytes_per_pixel,
3221                                  latency);
3222         method2 = skl_wm_method2(p->pixel_rate,
3223                                  p->pipe_htotal,
3224                                  p_params->horiz_pixels,
3225                                  bytes_per_pixel,
3226                                  p_params->tiling,
3227                                  latency);
3228
3229         plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3230         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3231
3232         if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3233             p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3234                 uint32_t min_scanlines = 4;
3235                 uint32_t y_tile_minimum;
3236                 if (intel_rotation_90_or_270(p_params->rotation)) {
3237                         switch (p_params->bytes_per_pixel) {
3238                         case 1:
3239                                 min_scanlines = 16;
3240                                 break;
3241                         case 2:
3242                                 min_scanlines = 8;
3243                                 break;
3244                         case 8:
3245                                 WARN(1, "Unsupported pixel depth for rotation");
3246                         }
3247                 }
3248                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3249                 selected_result = max(method2, y_tile_minimum);
3250         } else {
3251                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3252                         selected_result = min(method1, method2);
3253                 else
3254                         selected_result = method1;
3255         }
3256
3257         res_blocks = selected_result + 1;
3258         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3259
3260         if (level >= 1 && level <= 7) {
3261                 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3262                     p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3263                         res_lines += 4;
3264                 else
3265                         res_blocks++;
3266         }
3267
3268         if (res_blocks >= ddb_allocation || res_lines > 31)
3269                 return false;
3270
3271         *out_blocks = res_blocks;
3272         *out_lines = res_lines;
3273
3274         return true;
3275 }
3276
3277 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3278                                  struct skl_ddb_allocation *ddb,
3279                                  struct skl_pipe_wm_parameters *p,
3280                                  enum pipe pipe,
3281                                  int level,
3282                                  int num_planes,
3283                                  struct skl_wm_level *result)
3284 {
3285         uint16_t ddb_blocks;
3286         int i;
3287
3288         for (i = 0; i < num_planes; i++) {
3289                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3290
3291                 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3292                                                 p, &p->plane[i],
3293                                                 ddb_blocks,
3294                                                 level,
3295                                                 &result->plane_res_b[i],
3296                                                 &result->plane_res_l[i]);
3297         }
3298
3299         ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
3300         result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
3301                                                  ddb_blocks, level,
3302                                                  &result->cursor_res_b,
3303                                                  &result->cursor_res_l);
3304 }
3305
3306 static uint32_t
3307 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3308 {
3309         if (!to_intel_crtc(crtc)->active)
3310                 return 0;
3311
3312         if (WARN_ON(p->pixel_rate == 0))
3313                 return 0;
3314
3315         return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3316 }
3317
3318 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3319                                       struct skl_pipe_wm_parameters *params,
3320                                       struct skl_wm_level *trans_wm /* out */)
3321 {
3322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3323         int i;
3324
3325         if (!params->active)
3326                 return;
3327
3328         /* Until we know more, just disable transition WMs */
3329         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3330                 trans_wm->plane_en[i] = false;
3331         trans_wm->cursor_en = false;
3332 }
3333
3334 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3335                                 struct skl_ddb_allocation *ddb,
3336                                 struct skl_pipe_wm_parameters *params,
3337                                 struct skl_pipe_wm *pipe_wm)
3338 {
3339         struct drm_device *dev = crtc->dev;
3340         const struct drm_i915_private *dev_priv = dev->dev_private;
3341         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3342         int level, max_level = ilk_wm_max_level(dev);
3343
3344         for (level = 0; level <= max_level; level++) {
3345                 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3346                                      level, intel_num_planes(intel_crtc),
3347                                      &pipe_wm->wm[level]);
3348         }
3349         pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3350
3351         skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3352 }
3353
3354 static void skl_compute_wm_results(struct drm_device *dev,
3355                                    struct skl_pipe_wm_parameters *p,
3356                                    struct skl_pipe_wm *p_wm,
3357                                    struct skl_wm_values *r,
3358                                    struct intel_crtc *intel_crtc)
3359 {
3360         int level, max_level = ilk_wm_max_level(dev);
3361         enum pipe pipe = intel_crtc->pipe;
3362         uint32_t temp;
3363         int i;
3364
3365         for (level = 0; level <= max_level; level++) {
3366                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3367                         temp = 0;
3368
3369                         temp |= p_wm->wm[level].plane_res_l[i] <<
3370                                         PLANE_WM_LINES_SHIFT;
3371                         temp |= p_wm->wm[level].plane_res_b[i];
3372                         if (p_wm->wm[level].plane_en[i])
3373                                 temp |= PLANE_WM_EN;
3374
3375                         r->plane[pipe][i][level] = temp;
3376                 }
3377
3378                 temp = 0;
3379
3380                 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
3381                 temp |= p_wm->wm[level].cursor_res_b;
3382
3383                 if (p_wm->wm[level].cursor_en)
3384                         temp |= PLANE_WM_EN;
3385
3386                 r->cursor[pipe][level] = temp;
3387
3388         }
3389
3390         /* transition WMs */
3391         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3392                 temp = 0;
3393                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3394                 temp |= p_wm->trans_wm.plane_res_b[i];
3395                 if (p_wm->trans_wm.plane_en[i])
3396                         temp |= PLANE_WM_EN;
3397
3398                 r->plane_trans[pipe][i] = temp;
3399         }
3400
3401         temp = 0;
3402         temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
3403         temp |= p_wm->trans_wm.cursor_res_b;
3404         if (p_wm->trans_wm.cursor_en)
3405                 temp |= PLANE_WM_EN;
3406
3407         r->cursor_trans[pipe] = temp;
3408
3409         r->wm_linetime[pipe] = p_wm->linetime;
3410 }
3411
3412 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3413                                 const struct skl_ddb_entry *entry)
3414 {
3415         if (entry->end)
3416                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3417         else
3418                 I915_WRITE(reg, 0);
3419 }
3420
3421 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3422                                 const struct skl_wm_values *new)
3423 {
3424         struct drm_device *dev = dev_priv->dev;
3425         struct intel_crtc *crtc;
3426
3427         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3428                 int i, level, max_level = ilk_wm_max_level(dev);
3429                 enum pipe pipe = crtc->pipe;
3430
3431                 if (!new->dirty[pipe])
3432                         continue;
3433
3434                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3435
3436                 for (level = 0; level <= max_level; level++) {
3437                         for (i = 0; i < intel_num_planes(crtc); i++)
3438                                 I915_WRITE(PLANE_WM(pipe, i, level),
3439                                            new->plane[pipe][i][level]);
3440                         I915_WRITE(CUR_WM(pipe, level),
3441                                    new->cursor[pipe][level]);
3442                 }
3443                 for (i = 0; i < intel_num_planes(crtc); i++)
3444                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3445                                    new->plane_trans[pipe][i]);
3446                 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3447
3448                 for (i = 0; i < intel_num_planes(crtc); i++) {
3449                         skl_ddb_entry_write(dev_priv,
3450                                             PLANE_BUF_CFG(pipe, i),
3451                                             &new->ddb.plane[pipe][i]);
3452                         skl_ddb_entry_write(dev_priv,
3453                                             PLANE_NV12_BUF_CFG(pipe, i),
3454                                             &new->ddb.y_plane[pipe][i]);
3455                 }
3456
3457                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3458                                     &new->ddb.cursor[pipe]);
3459         }
3460 }
3461
3462 /*
3463  * When setting up a new DDB allocation arrangement, we need to correctly
3464  * sequence the times at which the new allocations for the pipes are taken into
3465  * account or we'll have pipes fetching from space previously allocated to
3466  * another pipe.
3467  *
3468  * Roughly the sequence looks like:
3469  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3470  *     overlapping with a previous light-up pipe (another way to put it is:
3471  *     pipes with their new allocation strickly included into their old ones).
3472  *  2. re-allocate the other pipes that get their allocation reduced
3473  *  3. allocate the pipes having their allocation increased
3474  *
3475  * Steps 1. and 2. are here to take care of the following case:
3476  * - Initially DDB looks like this:
3477  *     |   B    |   C    |
3478  * - enable pipe A.
3479  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3480  *   allocation
3481  *     |  A  |  B  |  C  |
3482  *
3483  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3484  */
3485
3486 static void
3487 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3488 {
3489         int plane;
3490
3491         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3492
3493         for_each_plane(dev_priv, pipe, plane) {
3494                 I915_WRITE(PLANE_SURF(pipe, plane),
3495                            I915_READ(PLANE_SURF(pipe, plane)));
3496         }
3497         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3498 }
3499
3500 static bool
3501 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3502                             const struct skl_ddb_allocation *new,
3503                             enum pipe pipe)
3504 {
3505         uint16_t old_size, new_size;
3506
3507         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3508         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3509
3510         return old_size != new_size &&
3511                new->pipe[pipe].start >= old->pipe[pipe].start &&
3512                new->pipe[pipe].end <= old->pipe[pipe].end;
3513 }
3514
3515 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3516                                 struct skl_wm_values *new_values)
3517 {
3518         struct drm_device *dev = dev_priv->dev;
3519         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3520         bool reallocated[I915_MAX_PIPES] = {};
3521         struct intel_crtc *crtc;
3522         enum pipe pipe;
3523
3524         new_ddb = &new_values->ddb;
3525         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3526
3527         /*
3528          * First pass: flush the pipes with the new allocation contained into
3529          * the old space.
3530          *
3531          * We'll wait for the vblank on those pipes to ensure we can safely
3532          * re-allocate the freed space without this pipe fetching from it.
3533          */
3534         for_each_intel_crtc(dev, crtc) {
3535                 if (!crtc->active)
3536                         continue;
3537
3538                 pipe = crtc->pipe;
3539
3540                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3541                         continue;
3542
3543                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3544                 intel_wait_for_vblank(dev, pipe);
3545
3546                 reallocated[pipe] = true;
3547         }
3548
3549
3550         /*
3551          * Second pass: flush the pipes that are having their allocation
3552          * reduced, but overlapping with a previous allocation.
3553          *
3554          * Here as well we need to wait for the vblank to make sure the freed
3555          * space is not used anymore.
3556          */
3557         for_each_intel_crtc(dev, crtc) {
3558                 if (!crtc->active)
3559                         continue;
3560
3561                 pipe = crtc->pipe;
3562
3563                 if (reallocated[pipe])
3564                         continue;
3565
3566                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3567                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3568                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3569                         intel_wait_for_vblank(dev, pipe);
3570                         reallocated[pipe] = true;
3571                 }
3572         }
3573
3574         /*
3575          * Third pass: flush the pipes that got more space allocated.
3576          *
3577          * We don't need to actively wait for the update here, next vblank
3578          * will just get more DDB space with the correct WM values.
3579          */
3580         for_each_intel_crtc(dev, crtc) {
3581                 if (!crtc->active)
3582                         continue;
3583
3584                 pipe = crtc->pipe;
3585
3586                 /*
3587                  * At this point, only the pipes more space than before are
3588                  * left to re-allocate.
3589                  */
3590                 if (reallocated[pipe])
3591                         continue;
3592
3593                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3594         }
3595 }
3596
3597 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3598                                struct skl_pipe_wm_parameters *params,
3599                                struct intel_wm_config *config,
3600                                struct skl_ddb_allocation *ddb, /* out */
3601                                struct skl_pipe_wm *pipe_wm /* out */)
3602 {
3603         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3604
3605         skl_compute_wm_pipe_parameters(crtc, params);
3606         skl_allocate_pipe_ddb(crtc, config, params, ddb);
3607         skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3608
3609         if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3610                 return false;
3611
3612         intel_crtc->wm.skl_active = *pipe_wm;
3613
3614         return true;
3615 }
3616
3617 static void skl_update_other_pipe_wm(struct drm_device *dev,
3618                                      struct drm_crtc *crtc,
3619                                      struct intel_wm_config *config,
3620                                      struct skl_wm_values *r)
3621 {
3622         struct intel_crtc *intel_crtc;
3623         struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3624
3625         /*
3626          * If the WM update hasn't changed the allocation for this_crtc (the
3627          * crtc we are currently computing the new WM values for), other
3628          * enabled crtcs will keep the same allocation and we don't need to
3629          * recompute anything for them.
3630          */
3631         if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3632                 return;
3633
3634         /*
3635          * Otherwise, because of this_crtc being freshly enabled/disabled, the
3636          * other active pipes need new DDB allocation and WM values.
3637          */
3638         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3639                                 base.head) {
3640                 struct skl_pipe_wm_parameters params = {};
3641                 struct skl_pipe_wm pipe_wm = {};
3642                 bool wm_changed;
3643
3644                 if (this_crtc->pipe == intel_crtc->pipe)
3645                         continue;
3646
3647                 if (!intel_crtc->active)
3648                         continue;
3649
3650                 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3651                                                 &params, config,
3652                                                 &r->ddb, &pipe_wm);
3653
3654                 /*
3655                  * If we end up re-computing the other pipe WM values, it's
3656                  * because it was really needed, so we expect the WM values to
3657                  * be different.
3658                  */
3659                 WARN_ON(!wm_changed);
3660
3661                 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3662                 r->dirty[intel_crtc->pipe] = true;
3663         }
3664 }
3665
3666 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3667 {
3668         watermarks->wm_linetime[pipe] = 0;
3669         memset(watermarks->plane[pipe], 0,
3670                sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3671         memset(watermarks->cursor[pipe], 0, sizeof(uint32_t) * 8);
3672         memset(watermarks->plane_trans[pipe],
3673                0, sizeof(uint32_t) * I915_MAX_PLANES);
3674         watermarks->cursor_trans[pipe] = 0;
3675
3676         /* Clear ddb entries for pipe */
3677         memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3678         memset(&watermarks->ddb.plane[pipe], 0,
3679                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3680         memset(&watermarks->ddb.y_plane[pipe], 0,
3681                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3682         memset(&watermarks->ddb.cursor[pipe], 0, sizeof(struct skl_ddb_entry));
3683
3684 }
3685
3686 static void skl_update_wm(struct drm_crtc *crtc)
3687 {
3688         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3689         struct drm_device *dev = crtc->dev;
3690         struct drm_i915_private *dev_priv = dev->dev_private;
3691         struct skl_pipe_wm_parameters params = {};
3692         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3693         struct skl_pipe_wm pipe_wm = {};
3694         struct intel_wm_config config = {};
3695
3696
3697         /* Clear all dirty flags */
3698         memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3699
3700         skl_clear_wm(results, intel_crtc->pipe);
3701
3702         skl_compute_wm_global_parameters(dev, &config);
3703
3704         if (!skl_update_pipe_wm(crtc, &params, &config,
3705                                 &results->ddb, &pipe_wm))
3706                 return;
3707
3708         skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3709         results->dirty[intel_crtc->pipe] = true;
3710
3711         skl_update_other_pipe_wm(dev, crtc, &config, results);
3712         skl_write_wm_values(dev_priv, results);
3713         skl_flush_wm_values(dev_priv, results);
3714
3715         /* store the new configuration */
3716         dev_priv->wm.skl_hw = *results;
3717 }
3718
3719 static void
3720 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3721                      uint32_t sprite_width, uint32_t sprite_height,
3722                      int pixel_size, bool enabled, bool scaled)
3723 {
3724         struct intel_plane *intel_plane = to_intel_plane(plane);
3725         struct drm_framebuffer *fb = plane->state->fb;
3726
3727         intel_plane->wm.enabled = enabled;
3728         intel_plane->wm.scaled = scaled;
3729         intel_plane->wm.horiz_pixels = sprite_width;
3730         intel_plane->wm.vert_pixels = sprite_height;
3731         intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3732
3733         /* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3734         intel_plane->wm.bytes_per_pixel =
3735                 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3736                 drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3737         intel_plane->wm.y_bytes_per_pixel =
3738                 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3739                 drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3740
3741         /*
3742          * Framebuffer can be NULL on plane disable, but it does not
3743          * matter for watermarks if we assume no tiling in that case.
3744          */
3745         if (fb)
3746                 intel_plane->wm.tiling = fb->modifier[0];
3747         intel_plane->wm.rotation = plane->state->rotation;
3748
3749         skl_update_wm(crtc);
3750 }
3751
3752 static void ilk_update_wm(struct drm_crtc *crtc)
3753 {
3754         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3755         struct drm_device *dev = crtc->dev;
3756         struct drm_i915_private *dev_priv = dev->dev_private;
3757         struct ilk_wm_maximums max;
3758         struct ilk_pipe_wm_parameters params = {};
3759         struct ilk_wm_values results = {};
3760         enum intel_ddb_partitioning partitioning;
3761         struct intel_pipe_wm pipe_wm = {};
3762         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3763         struct intel_wm_config config = {};
3764
3765         ilk_compute_wm_parameters(crtc, &params);
3766
3767         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3768
3769         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3770                 return;
3771
3772         intel_crtc->wm.active = pipe_wm;
3773
3774         ilk_compute_wm_config(dev, &config);
3775
3776         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3777         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3778
3779         /* 5/6 split only in single pipe config on IVB+ */
3780         if (INTEL_INFO(dev)->gen >= 7 &&
3781             config.num_pipes_active == 1 && config.sprites_enabled) {
3782                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3783                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3784
3785                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3786         } else {
3787                 best_lp_wm = &lp_wm_1_2;
3788         }
3789
3790         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3791                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3792
3793         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3794
3795         ilk_write_wm_values(dev_priv, &results);
3796 }
3797
3798 static void
3799 ilk_update_sprite_wm(struct drm_plane *plane,
3800                      struct drm_crtc *crtc,
3801                      uint32_t sprite_width, uint32_t sprite_height,
3802                      int pixel_size, bool enabled, bool scaled)
3803 {
3804         struct drm_device *dev = plane->dev;
3805         struct intel_plane *intel_plane = to_intel_plane(plane);
3806
3807         intel_plane->wm.enabled = enabled;
3808         intel_plane->wm.scaled = scaled;
3809         intel_plane->wm.horiz_pixels = sprite_width;
3810         intel_plane->wm.vert_pixels = sprite_width;
3811         intel_plane->wm.bytes_per_pixel = pixel_size;
3812
3813         /*
3814          * IVB workaround: must disable low power watermarks for at least
3815          * one frame before enabling scaling.  LP watermarks can be re-enabled
3816          * when scaling is disabled.
3817          *
3818          * WaCxSRDisabledForSpriteScaling:ivb
3819          */
3820         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3821                 intel_wait_for_vblank(dev, intel_plane->pipe);
3822
3823         ilk_update_wm(crtc);
3824 }
3825
3826 static void skl_pipe_wm_active_state(uint32_t val,
3827                                      struct skl_pipe_wm *active,
3828                                      bool is_transwm,
3829                                      bool is_cursor,
3830                                      int i,
3831                                      int level)
3832 {
3833         bool is_enabled = (val & PLANE_WM_EN) != 0;
3834
3835         if (!is_transwm) {
3836                 if (!is_cursor) {
3837                         active->wm[level].plane_en[i] = is_enabled;
3838                         active->wm[level].plane_res_b[i] =
3839                                         val & PLANE_WM_BLOCKS_MASK;
3840                         active->wm[level].plane_res_l[i] =
3841                                         (val >> PLANE_WM_LINES_SHIFT) &
3842                                                 PLANE_WM_LINES_MASK;
3843                 } else {
3844                         active->wm[level].cursor_en = is_enabled;
3845                         active->wm[level].cursor_res_b =
3846                                         val & PLANE_WM_BLOCKS_MASK;
3847                         active->wm[level].cursor_res_l =
3848                                         (val >> PLANE_WM_LINES_SHIFT) &
3849                                                 PLANE_WM_LINES_MASK;
3850                 }
3851         } else {
3852                 if (!is_cursor) {
3853                         active->trans_wm.plane_en[i] = is_enabled;
3854                         active->trans_wm.plane_res_b[i] =
3855                                         val & PLANE_WM_BLOCKS_MASK;
3856                         active->trans_wm.plane_res_l[i] =
3857                                         (val >> PLANE_WM_LINES_SHIFT) &
3858                                                 PLANE_WM_LINES_MASK;
3859                 } else {
3860                         active->trans_wm.cursor_en = is_enabled;
3861                         active->trans_wm.cursor_res_b =
3862                                         val & PLANE_WM_BLOCKS_MASK;
3863                         active->trans_wm.cursor_res_l =
3864                                         (val >> PLANE_WM_LINES_SHIFT) &
3865                                                 PLANE_WM_LINES_MASK;
3866                 }
3867         }
3868 }
3869
3870 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3871 {
3872         struct drm_device *dev = crtc->dev;
3873         struct drm_i915_private *dev_priv = dev->dev_private;
3874         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3875         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3876         struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3877         enum pipe pipe = intel_crtc->pipe;
3878         int level, i, max_level;
3879         uint32_t temp;
3880
3881         max_level = ilk_wm_max_level(dev);
3882
3883         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3884
3885         for (level = 0; level <= max_level; level++) {
3886                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3887                         hw->plane[pipe][i][level] =
3888                                         I915_READ(PLANE_WM(pipe, i, level));
3889                 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3890         }
3891
3892         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3893                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3894         hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3895
3896         if (!intel_crtc->active)
3897                 return;
3898
3899         hw->dirty[pipe] = true;
3900
3901         active->linetime = hw->wm_linetime[pipe];
3902
3903         for (level = 0; level <= max_level; level++) {
3904                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3905                         temp = hw->plane[pipe][i][level];
3906                         skl_pipe_wm_active_state(temp, active, false,
3907                                                 false, i, level);
3908                 }
3909                 temp = hw->cursor[pipe][level];
3910                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3911         }
3912
3913         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3914                 temp = hw->plane_trans[pipe][i];
3915                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3916         }
3917
3918         temp = hw->cursor_trans[pipe];
3919         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3920 }
3921
3922 void skl_wm_get_hw_state(struct drm_device *dev)
3923 {
3924         struct drm_i915_private *dev_priv = dev->dev_private;
3925         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3926         struct drm_crtc *crtc;
3927
3928         skl_ddb_get_hw_state(dev_priv, ddb);
3929         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3930                 skl_pipe_wm_get_hw_state(crtc);
3931 }
3932
3933 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3934 {
3935         struct drm_device *dev = crtc->dev;
3936         struct drm_i915_private *dev_priv = dev->dev_private;
3937         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3938         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3939         struct intel_pipe_wm *active = &intel_crtc->wm.active;
3940         enum pipe pipe = intel_crtc->pipe;
3941         static const unsigned int wm0_pipe_reg[] = {
3942                 [PIPE_A] = WM0_PIPEA_ILK,
3943                 [PIPE_B] = WM0_PIPEB_ILK,
3944                 [PIPE_C] = WM0_PIPEC_IVB,
3945         };
3946
3947         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3948         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3949                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3950
3951         active->pipe_enabled = intel_crtc->active;
3952
3953         if (active->pipe_enabled) {
3954                 u32 tmp = hw->wm_pipe[pipe];
3955
3956                 /*
3957                  * For active pipes LP0 watermark is marked as
3958                  * enabled, and LP1+ watermaks as disabled since
3959                  * we can't really reverse compute them in case
3960                  * multiple pipes are active.
3961                  */
3962                 active->wm[0].enable = true;
3963                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3964                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3965                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3966                 active->linetime = hw->wm_linetime[pipe];
3967         } else {
3968                 int level, max_level = ilk_wm_max_level(dev);
3969
3970                 /*
3971                  * For inactive pipes, all watermark levels
3972                  * should be marked as enabled but zeroed,
3973                  * which is what we'd compute them to.
3974                  */
3975                 for (level = 0; level <= max_level; level++)
3976                         active->wm[level].enable = true;
3977         }
3978 }
3979
3980 #define _FW_WM(value, plane) \
3981         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3982 #define _FW_WM_VLV(value, plane) \
3983         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3984
3985 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3986                                struct vlv_wm_values *wm)
3987 {
3988         enum pipe pipe;
3989         uint32_t tmp;
3990
3991         for_each_pipe(dev_priv, pipe) {
3992                 tmp = I915_READ(VLV_DDL(pipe));
3993
3994                 wm->ddl[pipe].primary =
3995                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3996                 wm->ddl[pipe].cursor =
3997                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3998                 wm->ddl[pipe].sprite[0] =
3999                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4000                 wm->ddl[pipe].sprite[1] =
4001                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4002         }
4003
4004         tmp = I915_READ(DSPFW1);
4005         wm->sr.plane = _FW_WM(tmp, SR);
4006         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4007         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4008         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4009
4010         tmp = I915_READ(DSPFW2);
4011         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4012         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4013         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4014
4015         tmp = I915_READ(DSPFW3);
4016         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4017
4018         if (IS_CHERRYVIEW(dev_priv)) {
4019                 tmp = I915_READ(DSPFW7_CHV);
4020                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4021                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4022
4023                 tmp = I915_READ(DSPFW8_CHV);
4024                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4025                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4026
4027                 tmp = I915_READ(DSPFW9_CHV);
4028                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4029                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4030
4031                 tmp = I915_READ(DSPHOWM);
4032                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4033                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4034                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4035                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4036                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4037                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4038                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4039                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4040                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4041                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4042         } else {
4043                 tmp = I915_READ(DSPFW7);
4044                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4045                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4046
4047                 tmp = I915_READ(DSPHOWM);
4048                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4049                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4050                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4051                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4052                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4053                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4054                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4055         }
4056 }
4057
4058 #undef _FW_WM
4059 #undef _FW_WM_VLV
4060
4061 void vlv_wm_get_hw_state(struct drm_device *dev)
4062 {
4063         struct drm_i915_private *dev_priv = to_i915(dev);
4064         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4065         struct intel_plane *plane;
4066         enum pipe pipe;
4067         u32 val;
4068
4069         vlv_read_wm_values(dev_priv, wm);
4070
4071         for_each_intel_plane(dev, plane) {
4072                 switch (plane->base.type) {
4073                         int sprite;
4074                 case DRM_PLANE_TYPE_CURSOR:
4075                         plane->wm.fifo_size = 63;
4076                         break;
4077                 case DRM_PLANE_TYPE_PRIMARY:
4078                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4079                         break;
4080                 case DRM_PLANE_TYPE_OVERLAY:
4081                         sprite = plane->plane;
4082                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4083                         break;
4084                 }
4085         }
4086
4087         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4088         wm->level = VLV_WM_LEVEL_PM2;
4089
4090         if (IS_CHERRYVIEW(dev_priv)) {
4091                 mutex_lock(&dev_priv->rps.hw_lock);
4092
4093                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4094                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4095                         wm->level = VLV_WM_LEVEL_PM5;
4096
4097                 /*
4098                  * If DDR DVFS is disabled in the BIOS, Punit
4099                  * will never ack the request. So if that happens
4100                  * assume we don't have to enable/disable DDR DVFS
4101                  * dynamically. To test that just set the REQ_ACK
4102                  * bit to poke the Punit, but don't change the
4103                  * HIGH/LOW bits so that we don't actually change
4104                  * the current state.
4105                  */
4106                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4107                 val |= FORCE_DDR_FREQ_REQ_ACK;
4108                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4109
4110                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4111                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4112                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4113                                       "assuming DDR DVFS is disabled\n");
4114                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4115                 } else {
4116                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4117                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4118                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4119                 }
4120
4121                 mutex_unlock(&dev_priv->rps.hw_lock);
4122         }
4123
4124         for_each_pipe(dev_priv, pipe)
4125                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4126                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4127                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4128
4129         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4130                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4131 }
4132
4133 void ilk_wm_get_hw_state(struct drm_device *dev)
4134 {
4135         struct drm_i915_private *dev_priv = dev->dev_private;
4136         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4137         struct drm_crtc *crtc;
4138
4139         for_each_crtc(dev, crtc)
4140                 ilk_pipe_wm_get_hw_state(crtc);
4141
4142         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4143         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4144         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4145
4146         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4147         if (INTEL_INFO(dev)->gen >= 7) {
4148                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4149                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4150         }
4151
4152         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4153                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4154                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4155         else if (IS_IVYBRIDGE(dev))
4156                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4157                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4158
4159         hw->enable_fbc_wm =
4160                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4161 }
4162
4163 /**
4164  * intel_update_watermarks - update FIFO watermark values based on current modes
4165  *
4166  * Calculate watermark values for the various WM regs based on current mode
4167  * and plane configuration.
4168  *
4169  * There are several cases to deal with here:
4170  *   - normal (i.e. non-self-refresh)
4171  *   - self-refresh (SR) mode
4172  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4173  *   - lines are small relative to FIFO size (buffer can hold more than 2
4174  *     lines), so need to account for TLB latency
4175  *
4176  *   The normal calculation is:
4177  *     watermark = dotclock * bytes per pixel * latency
4178  *   where latency is platform & configuration dependent (we assume pessimal
4179  *   values here).
4180  *
4181  *   The SR calculation is:
4182  *     watermark = (trunc(latency/line time)+1) * surface width *
4183  *       bytes per pixel
4184  *   where
4185  *     line time = htotal / dotclock
4186  *     surface width = hdisplay for normal plane and 64 for cursor
4187  *   and latency is assumed to be high, as above.
4188  *
4189  * The final value programmed to the register should always be rounded up,
4190  * and include an extra 2 entries to account for clock crossings.
4191  *
4192  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4193  * to set the non-SR watermarks to 8.
4194  */
4195 void intel_update_watermarks(struct drm_crtc *crtc)
4196 {
4197         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4198
4199         if (dev_priv->display.update_wm)
4200                 dev_priv->display.update_wm(crtc);
4201 }
4202
4203 void intel_update_sprite_watermarks(struct drm_plane *plane,
4204                                     struct drm_crtc *crtc,
4205                                     uint32_t sprite_width,
4206                                     uint32_t sprite_height,
4207                                     int pixel_size,
4208                                     bool enabled, bool scaled)
4209 {
4210         struct drm_i915_private *dev_priv = plane->dev->dev_private;
4211
4212         if (dev_priv->display.update_sprite_wm)
4213                 dev_priv->display.update_sprite_wm(plane, crtc,
4214                                                    sprite_width, sprite_height,
4215                                                    pixel_size, enabled, scaled);
4216 }
4217
4218 /**
4219  * Lock protecting IPS related data structures
4220  */
4221 DEFINE_SPINLOCK(mchdev_lock);
4222
4223 /* Global for IPS driver to get at the current i915 device. Protected by
4224  * mchdev_lock. */
4225 static struct drm_i915_private *i915_mch_dev;
4226
4227 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4228 {
4229         struct drm_i915_private *dev_priv = dev->dev_private;
4230         u16 rgvswctl;
4231
4232         assert_spin_locked(&mchdev_lock);
4233
4234         rgvswctl = I915_READ16(MEMSWCTL);
4235         if (rgvswctl & MEMCTL_CMD_STS) {
4236                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4237                 return false; /* still busy with another command */
4238         }
4239
4240         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4241                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4242         I915_WRITE16(MEMSWCTL, rgvswctl);
4243         POSTING_READ16(MEMSWCTL);
4244
4245         rgvswctl |= MEMCTL_CMD_STS;
4246         I915_WRITE16(MEMSWCTL, rgvswctl);
4247
4248         return true;
4249 }
4250
4251 static void ironlake_enable_drps(struct drm_device *dev)
4252 {
4253         struct drm_i915_private *dev_priv = dev->dev_private;
4254         u32 rgvmodectl = I915_READ(MEMMODECTL);
4255         u8 fmax, fmin, fstart, vstart;
4256
4257         spin_lock_irq(&mchdev_lock);
4258
4259         /* Enable temp reporting */
4260         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4261         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4262
4263         /* 100ms RC evaluation intervals */
4264         I915_WRITE(RCUPEI, 100000);
4265         I915_WRITE(RCDNEI, 100000);
4266
4267         /* Set max/min thresholds to 90ms and 80ms respectively */
4268         I915_WRITE(RCBMAXAVG, 90000);
4269         I915_WRITE(RCBMINAVG, 80000);
4270
4271         I915_WRITE(MEMIHYST, 1);
4272
4273         /* Set up min, max, and cur for interrupt handling */
4274         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4275         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4276         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4277                 MEMMODE_FSTART_SHIFT;
4278
4279         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4280                 PXVFREQ_PX_SHIFT;
4281
4282         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4283         dev_priv->ips.fstart = fstart;
4284
4285         dev_priv->ips.max_delay = fstart;
4286         dev_priv->ips.min_delay = fmin;
4287         dev_priv->ips.cur_delay = fstart;
4288
4289         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4290                          fmax, fmin, fstart);
4291
4292         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4293
4294         /*
4295          * Interrupts will be enabled in ironlake_irq_postinstall
4296          */
4297
4298         I915_WRITE(VIDSTART, vstart);
4299         POSTING_READ(VIDSTART);
4300
4301         rgvmodectl |= MEMMODE_SWMODE_EN;
4302         I915_WRITE(MEMMODECTL, rgvmodectl);
4303
4304         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4305                 DRM_ERROR("stuck trying to change perf mode\n");
4306         mdelay(1);
4307
4308         ironlake_set_drps(dev, fstart);
4309
4310         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4311                 I915_READ(DDREC) + I915_READ(CSIEC);
4312         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4313         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4314         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4315
4316         spin_unlock_irq(&mchdev_lock);
4317 }
4318
4319 static void ironlake_disable_drps(struct drm_device *dev)
4320 {
4321         struct drm_i915_private *dev_priv = dev->dev_private;
4322         u16 rgvswctl;
4323
4324         spin_lock_irq(&mchdev_lock);
4325
4326         rgvswctl = I915_READ16(MEMSWCTL);
4327
4328         /* Ack interrupts, disable EFC interrupt */
4329         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4330         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4331         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4332         I915_WRITE(DEIIR, DE_PCU_EVENT);
4333         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4334
4335         /* Go back to the starting frequency */
4336         ironlake_set_drps(dev, dev_priv->ips.fstart);
4337         mdelay(1);
4338         rgvswctl |= MEMCTL_CMD_STS;
4339         I915_WRITE(MEMSWCTL, rgvswctl);
4340         mdelay(1);
4341
4342         spin_unlock_irq(&mchdev_lock);
4343 }
4344
4345 /* There's a funny hw issue where the hw returns all 0 when reading from
4346  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4347  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4348  * all limits and the gpu stuck at whatever frequency it is at atm).
4349  */
4350 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4351 {
4352         u32 limits;
4353
4354         /* Only set the down limit when we've reached the lowest level to avoid
4355          * getting more interrupts, otherwise leave this clear. This prevents a
4356          * race in the hw when coming out of rc6: There's a tiny window where
4357          * the hw runs at the minimal clock before selecting the desired
4358          * frequency, if the down threshold expires in that window we will not
4359          * receive a down interrupt. */
4360         if (IS_GEN9(dev_priv->dev)) {
4361                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4362                 if (val <= dev_priv->rps.min_freq_softlimit)
4363                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4364         } else {
4365                 limits = dev_priv->rps.max_freq_softlimit << 24;
4366                 if (val <= dev_priv->rps.min_freq_softlimit)
4367                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4368         }
4369
4370         return limits;
4371 }
4372
4373 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4374 {
4375         int new_power;
4376         u32 threshold_up = 0, threshold_down = 0; /* in % */
4377         u32 ei_up = 0, ei_down = 0;
4378
4379         new_power = dev_priv->rps.power;
4380         switch (dev_priv->rps.power) {
4381         case LOW_POWER:
4382                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4383                         new_power = BETWEEN;
4384                 break;
4385
4386         case BETWEEN:
4387                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4388                         new_power = LOW_POWER;
4389                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4390                         new_power = HIGH_POWER;
4391                 break;
4392
4393         case HIGH_POWER:
4394                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4395                         new_power = BETWEEN;
4396                 break;
4397         }
4398         /* Max/min bins are special */
4399         if (val <= dev_priv->rps.min_freq_softlimit)
4400                 new_power = LOW_POWER;
4401         if (val >= dev_priv->rps.max_freq_softlimit)
4402                 new_power = HIGH_POWER;
4403         if (new_power == dev_priv->rps.power)
4404                 return;
4405
4406         /* Note the units here are not exactly 1us, but 1280ns. */
4407         switch (new_power) {
4408         case LOW_POWER:
4409                 /* Upclock if more than 95% busy over 16ms */
4410                 ei_up = 16000;
4411                 threshold_up = 95;
4412
4413                 /* Downclock if less than 85% busy over 32ms */
4414                 ei_down = 32000;
4415                 threshold_down = 85;
4416                 break;
4417
4418         case BETWEEN:
4419                 /* Upclock if more than 90% busy over 13ms */
4420                 ei_up = 13000;
4421                 threshold_up = 90;
4422
4423                 /* Downclock if less than 75% busy over 32ms */
4424                 ei_down = 32000;
4425                 threshold_down = 75;
4426                 break;
4427
4428         case HIGH_POWER:
4429                 /* Upclock if more than 85% busy over 10ms */
4430                 ei_up = 10000;
4431                 threshold_up = 85;
4432
4433                 /* Downclock if less than 60% busy over 32ms */
4434                 ei_down = 32000;
4435                 threshold_down = 60;
4436                 break;
4437         }
4438
4439         I915_WRITE(GEN6_RP_UP_EI,
4440                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4441         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4442                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4443
4444         I915_WRITE(GEN6_RP_DOWN_EI,
4445                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4446         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4447                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4448
4449          I915_WRITE(GEN6_RP_CONTROL,
4450                     GEN6_RP_MEDIA_TURBO |
4451                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4452                     GEN6_RP_MEDIA_IS_GFX |
4453                     GEN6_RP_ENABLE |
4454                     GEN6_RP_UP_BUSY_AVG |
4455                     GEN6_RP_DOWN_IDLE_AVG);
4456
4457         dev_priv->rps.power = new_power;
4458         dev_priv->rps.up_threshold = threshold_up;
4459         dev_priv->rps.down_threshold = threshold_down;
4460         dev_priv->rps.last_adj = 0;
4461 }
4462
4463 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4464 {
4465         u32 mask = 0;
4466
4467         if (val > dev_priv->rps.min_freq_softlimit)
4468                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4469         if (val < dev_priv->rps.max_freq_softlimit)
4470                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4471
4472         mask &= dev_priv->pm_rps_events;
4473
4474         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4475 }
4476
4477 /* gen6_set_rps is called to update the frequency request, but should also be
4478  * called when the range (min_delay and max_delay) is modified so that we can
4479  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4480 static void gen6_set_rps(struct drm_device *dev, u8 val)
4481 {
4482         struct drm_i915_private *dev_priv = dev->dev_private;
4483
4484         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4485         if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4486                 return;
4487
4488         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4489         WARN_ON(val > dev_priv->rps.max_freq);
4490         WARN_ON(val < dev_priv->rps.min_freq);
4491
4492         /* min/max delay may still have been modified so be sure to
4493          * write the limits value.
4494          */
4495         if (val != dev_priv->rps.cur_freq) {
4496                 gen6_set_rps_thresholds(dev_priv, val);
4497
4498                 if (IS_GEN9(dev))
4499                         I915_WRITE(GEN6_RPNSWREQ,
4500                                    GEN9_FREQUENCY(val));
4501                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4502                         I915_WRITE(GEN6_RPNSWREQ,
4503                                    HSW_FREQUENCY(val));
4504                 else
4505                         I915_WRITE(GEN6_RPNSWREQ,
4506                                    GEN6_FREQUENCY(val) |
4507                                    GEN6_OFFSET(0) |
4508                                    GEN6_AGGRESSIVE_TURBO);
4509         }
4510
4511         /* Make sure we continue to get interrupts
4512          * until we hit the minimum or maximum frequencies.
4513          */
4514         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4515         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4516
4517         POSTING_READ(GEN6_RPNSWREQ);
4518
4519         dev_priv->rps.cur_freq = val;
4520         trace_intel_gpu_freq_change(val * 50);
4521 }
4522
4523 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4524 {
4525         struct drm_i915_private *dev_priv = dev->dev_private;
4526
4527         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4528         WARN_ON(val > dev_priv->rps.max_freq);
4529         WARN_ON(val < dev_priv->rps.min_freq);
4530
4531         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4532                       "Odd GPU freq value\n"))
4533                 val &= ~1;
4534
4535         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4536
4537         if (val != dev_priv->rps.cur_freq) {
4538                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4539                 if (!IS_CHERRYVIEW(dev_priv))
4540                         gen6_set_rps_thresholds(dev_priv, val);
4541         }
4542
4543         dev_priv->rps.cur_freq = val;
4544         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4545 }
4546
4547 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4548  *
4549  * * If Gfx is Idle, then
4550  * 1. Forcewake Media well.
4551  * 2. Request idle freq.
4552  * 3. Release Forcewake of Media well.
4553 */
4554 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4555 {
4556         u32 val = dev_priv->rps.idle_freq;
4557
4558         if (dev_priv->rps.cur_freq <= val)
4559                 return;
4560
4561         /* Wake up the media well, as that takes a lot less
4562          * power than the Render well. */
4563         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4564         valleyview_set_rps(dev_priv->dev, val);
4565         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4566 }
4567
4568 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4569 {
4570         mutex_lock(&dev_priv->rps.hw_lock);
4571         if (dev_priv->rps.enabled) {
4572                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4573                         gen6_rps_reset_ei(dev_priv);
4574                 I915_WRITE(GEN6_PMINTRMSK,
4575                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4576         }
4577         mutex_unlock(&dev_priv->rps.hw_lock);
4578 }
4579
4580 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4581 {
4582         struct drm_device *dev = dev_priv->dev;
4583
4584         mutex_lock(&dev_priv->rps.hw_lock);
4585         if (dev_priv->rps.enabled) {
4586                 if (IS_VALLEYVIEW(dev))
4587                         vlv_set_rps_idle(dev_priv);
4588                 else
4589                         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4590                 dev_priv->rps.last_adj = 0;
4591                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4592         }
4593         mutex_unlock(&dev_priv->rps.hw_lock);
4594
4595         spin_lock(&dev_priv->rps.client_lock);
4596         while (!list_empty(&dev_priv->rps.clients))
4597                 list_del_init(dev_priv->rps.clients.next);
4598         spin_unlock(&dev_priv->rps.client_lock);
4599 }
4600
4601 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4602                     struct intel_rps_client *rps,
4603                     unsigned long submitted)
4604 {
4605         /* This is intentionally racy! We peek at the state here, then
4606          * validate inside the RPS worker.
4607          */
4608         if (!(dev_priv->mm.busy &&
4609               dev_priv->rps.enabled &&
4610               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4611                 return;
4612
4613         /* Force a RPS boost (and don't count it against the client) if
4614          * the GPU is severely congested.
4615          */
4616         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4617                 rps = NULL;
4618
4619         spin_lock(&dev_priv->rps.client_lock);
4620         if (rps == NULL || list_empty(&rps->link)) {
4621                 spin_lock_irq(&dev_priv->irq_lock);
4622                 if (dev_priv->rps.interrupts_enabled) {
4623                         dev_priv->rps.client_boost = true;
4624                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4625                 }
4626                 spin_unlock_irq(&dev_priv->irq_lock);
4627
4628                 if (rps != NULL) {
4629                         list_add(&rps->link, &dev_priv->rps.clients);
4630                         rps->boosts++;
4631                 } else
4632                         dev_priv->rps.boosts++;
4633         }
4634         spin_unlock(&dev_priv->rps.client_lock);
4635 }
4636
4637 void intel_set_rps(struct drm_device *dev, u8 val)
4638 {
4639         if (IS_VALLEYVIEW(dev))
4640                 valleyview_set_rps(dev, val);
4641         else
4642                 gen6_set_rps(dev, val);
4643 }
4644
4645 static void gen9_disable_rps(struct drm_device *dev)
4646 {
4647         struct drm_i915_private *dev_priv = dev->dev_private;
4648
4649         I915_WRITE(GEN6_RC_CONTROL, 0);
4650         I915_WRITE(GEN9_PG_ENABLE, 0);
4651 }
4652
4653 static void gen6_disable_rps(struct drm_device *dev)
4654 {
4655         struct drm_i915_private *dev_priv = dev->dev_private;
4656
4657         I915_WRITE(GEN6_RC_CONTROL, 0);
4658         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4659 }
4660
4661 static void cherryview_disable_rps(struct drm_device *dev)
4662 {
4663         struct drm_i915_private *dev_priv = dev->dev_private;
4664
4665         I915_WRITE(GEN6_RC_CONTROL, 0);
4666 }
4667
4668 static void valleyview_disable_rps(struct drm_device *dev)
4669 {
4670         struct drm_i915_private *dev_priv = dev->dev_private;
4671
4672         /* we're doing forcewake before Disabling RC6,
4673          * This what the BIOS expects when going into suspend */
4674         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4675
4676         I915_WRITE(GEN6_RC_CONTROL, 0);
4677
4678         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4679 }
4680
4681 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4682 {
4683         if (IS_VALLEYVIEW(dev)) {
4684                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4685                         mode = GEN6_RC_CTL_RC6_ENABLE;
4686                 else
4687                         mode = 0;
4688         }
4689         if (HAS_RC6p(dev))
4690                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4691                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4692                               (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4693                               (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4694
4695         else
4696                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4697                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4698 }
4699
4700 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4701 {
4702         /* No RC6 before Ironlake and code is gone for ilk. */
4703         if (INTEL_INFO(dev)->gen < 6)
4704                 return 0;
4705
4706         /* Respect the kernel parameter if it is set */
4707         if (enable_rc6 >= 0) {
4708                 int mask;
4709
4710                 if (HAS_RC6p(dev))
4711                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4712                                INTEL_RC6pp_ENABLE;
4713                 else
4714                         mask = INTEL_RC6_ENABLE;
4715
4716                 if ((enable_rc6 & mask) != enable_rc6)
4717                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4718                                       enable_rc6 & mask, enable_rc6, mask);
4719
4720                 return enable_rc6 & mask;
4721         }
4722
4723         if (IS_IVYBRIDGE(dev))
4724                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4725
4726         return INTEL_RC6_ENABLE;
4727 }
4728
4729 int intel_enable_rc6(const struct drm_device *dev)
4730 {
4731         return i915.enable_rc6;
4732 }
4733
4734 static void gen6_init_rps_frequencies(struct drm_device *dev)
4735 {
4736         struct drm_i915_private *dev_priv = dev->dev_private;
4737         uint32_t rp_state_cap;
4738         u32 ddcc_status = 0;
4739         int ret;
4740
4741         /* All of these values are in units of 50MHz */
4742         dev_priv->rps.cur_freq          = 0;
4743         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4744         if (IS_BROXTON(dev)) {
4745                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4746                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4747                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4748                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4749         } else {
4750                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4751                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4752                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4753                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4754         }
4755
4756         /* hw_max = RP0 until we check for overclocking */
4757         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4758
4759         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4760         if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4761                 ret = sandybridge_pcode_read(dev_priv,
4762                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4763                                         &ddcc_status);
4764                 if (0 == ret)
4765                         dev_priv->rps.efficient_freq =
4766                                 clamp_t(u8,
4767                                         ((ddcc_status >> 8) & 0xff),
4768                                         dev_priv->rps.min_freq,
4769                                         dev_priv->rps.max_freq);
4770         }
4771
4772         if (IS_SKYLAKE(dev)) {
4773                 /* Store the frequency values in 16.66 MHZ units, which is
4774                    the natural hardware unit for SKL */
4775                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4776                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4777                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4778                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4779                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4780         }
4781
4782         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4783
4784         /* Preserve min/max settings in case of re-init */
4785         if (dev_priv->rps.max_freq_softlimit == 0)
4786                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4787
4788         if (dev_priv->rps.min_freq_softlimit == 0) {
4789                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4790                         dev_priv->rps.min_freq_softlimit =
4791                                 max_t(int, dev_priv->rps.efficient_freq,
4792                                       intel_freq_opcode(dev_priv, 450));
4793                 else
4794                         dev_priv->rps.min_freq_softlimit =
4795                                 dev_priv->rps.min_freq;
4796         }
4797 }
4798
4799 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4800 static void gen9_enable_rps(struct drm_device *dev)
4801 {
4802         struct drm_i915_private *dev_priv = dev->dev_private;
4803
4804         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4805
4806         gen6_init_rps_frequencies(dev);
4807
4808         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4809         if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4810                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4811                 return;
4812         }
4813
4814         /* Program defaults and thresholds for RPS*/
4815         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4816                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4817
4818         /* 1 second timeout*/
4819         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4820                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4821
4822         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4823
4824         /* Leaning on the below call to gen6_set_rps to program/setup the
4825          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4826          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4827         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4828         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4829
4830         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4831 }
4832
4833 static void gen9_enable_rc6(struct drm_device *dev)
4834 {
4835         struct drm_i915_private *dev_priv = dev->dev_private;
4836         struct intel_engine_cs *ring;
4837         uint32_t rc6_mask = 0;
4838         int unused;
4839
4840         /* 1a: Software RC state - RC0 */
4841         I915_WRITE(GEN6_RC_STATE, 0);
4842
4843         /* 1b: Get forcewake during program sequence. Although the driver
4844          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4845         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4846
4847         /* 2a: Disable RC states. */
4848         I915_WRITE(GEN6_RC_CONTROL, 0);
4849
4850         /* 2b: Program RC6 thresholds.*/
4851
4852         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4853         if (IS_SKYLAKE(dev) && !((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) &&
4854                                  (INTEL_REVID(dev) <= SKL_REVID_E0)))
4855                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4856         else
4857                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4858         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4859         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4860         for_each_ring(ring, dev_priv, unused)
4861                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4862
4863         if (HAS_GUC_UCODE(dev))
4864                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4865
4866         I915_WRITE(GEN6_RC_SLEEP, 0);
4867         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4868
4869         /* 2c: Program Coarse Power Gating Policies. */
4870         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4871         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4872
4873         /* 3a: Enable RC6 */
4874         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4875                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4876         DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4877                         "on" : "off");
4878
4879         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4880             (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0))
4881                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4882                            GEN7_RC_CTL_TO_MODE |
4883                            rc6_mask);
4884         else
4885                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4886                            GEN6_RC_CTL_EI_MODE(1) |
4887                            rc6_mask);
4888
4889         /*
4890          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4891          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4892          */
4893         if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4894             ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_E0)))
4895                 I915_WRITE(GEN9_PG_ENABLE, 0);
4896         else
4897                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4898                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4899
4900         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4901
4902 }
4903
4904 static void gen8_enable_rps(struct drm_device *dev)
4905 {
4906         struct drm_i915_private *dev_priv = dev->dev_private;
4907         struct intel_engine_cs *ring;
4908         uint32_t rc6_mask = 0;
4909         int unused;
4910
4911         /* 1a: Software RC state - RC0 */
4912         I915_WRITE(GEN6_RC_STATE, 0);
4913
4914         /* 1c & 1d: Get forcewake during program sequence. Although the driver
4915          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4916         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4917
4918         /* 2a: Disable RC states. */
4919         I915_WRITE(GEN6_RC_CONTROL, 0);
4920
4921         /* Initialize rps frequencies */
4922         gen6_init_rps_frequencies(dev);
4923
4924         /* 2b: Program RC6 thresholds.*/
4925         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4926         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4927         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4928         for_each_ring(ring, dev_priv, unused)
4929                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4930         I915_WRITE(GEN6_RC_SLEEP, 0);
4931         if (IS_BROADWELL(dev))
4932                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4933         else
4934                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4935
4936         /* 3: Enable RC6 */
4937         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4938                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4939         intel_print_rc6_info(dev, rc6_mask);
4940         if (IS_BROADWELL(dev))
4941                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4942                                 GEN7_RC_CTL_TO_MODE |
4943                                 rc6_mask);
4944         else
4945                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4946                                 GEN6_RC_CTL_EI_MODE(1) |
4947                                 rc6_mask);
4948
4949         /* 4 Program defaults and thresholds for RPS*/
4950         I915_WRITE(GEN6_RPNSWREQ,
4951                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4952         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4953                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4954         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4955         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4956
4957         /* Docs recommend 900MHz, and 300 MHz respectively */
4958         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4959                    dev_priv->rps.max_freq_softlimit << 24 |
4960                    dev_priv->rps.min_freq_softlimit << 16);
4961
4962         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4963         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4964         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4965         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4966
4967         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4968
4969         /* 5: Enable RPS */
4970         I915_WRITE(GEN6_RP_CONTROL,
4971                    GEN6_RP_MEDIA_TURBO |
4972                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4973                    GEN6_RP_MEDIA_IS_GFX |
4974                    GEN6_RP_ENABLE |
4975                    GEN6_RP_UP_BUSY_AVG |
4976                    GEN6_RP_DOWN_IDLE_AVG);
4977
4978         /* 6: Ring frequency + overclocking (our driver does this later */
4979
4980         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4981         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4982
4983         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4984 }
4985
4986 static void gen6_enable_rps(struct drm_device *dev)
4987 {
4988         struct drm_i915_private *dev_priv = dev->dev_private;
4989         struct intel_engine_cs *ring;
4990         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4991         u32 gtfifodbg;
4992         int rc6_mode;
4993         int i, ret;
4994
4995         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4996
4997         /* Here begins a magic sequence of register writes to enable
4998          * auto-downclocking.
4999          *
5000          * Perhaps there might be some value in exposing these to
5001          * userspace...
5002          */
5003         I915_WRITE(GEN6_RC_STATE, 0);
5004
5005         /* Clear the DBG now so we don't confuse earlier errors */
5006         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5007                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5008                 I915_WRITE(GTFIFODBG, gtfifodbg);
5009         }
5010
5011         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5012
5013         /* Initialize rps frequencies */
5014         gen6_init_rps_frequencies(dev);
5015
5016         /* disable the counters and set deterministic thresholds */
5017         I915_WRITE(GEN6_RC_CONTROL, 0);
5018
5019         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5020         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5021         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5022         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5023         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5024
5025         for_each_ring(ring, dev_priv, i)
5026                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5027
5028         I915_WRITE(GEN6_RC_SLEEP, 0);
5029         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5030         if (IS_IVYBRIDGE(dev))
5031                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5032         else
5033                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5034         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5035         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5036
5037         /* Check if we are enabling RC6 */
5038         rc6_mode = intel_enable_rc6(dev_priv->dev);
5039         if (rc6_mode & INTEL_RC6_ENABLE)
5040                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5041
5042         /* We don't use those on Haswell */
5043         if (!IS_HASWELL(dev)) {
5044                 if (rc6_mode & INTEL_RC6p_ENABLE)
5045                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5046
5047                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5048                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5049         }
5050
5051         intel_print_rc6_info(dev, rc6_mask);
5052
5053         I915_WRITE(GEN6_RC_CONTROL,
5054                    rc6_mask |
5055                    GEN6_RC_CTL_EI_MODE(1) |
5056                    GEN6_RC_CTL_HW_ENABLE);
5057
5058         /* Power down if completely idle for over 50ms */
5059         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5060         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5061
5062         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5063         if (ret)
5064                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5065
5066         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5067         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5068                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5069                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5070                                  (pcu_mbox & 0xff) * 50);
5071                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5072         }
5073
5074         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5075         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5076
5077         rc6vids = 0;
5078         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5079         if (IS_GEN6(dev) && ret) {
5080                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5081         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5082                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5083                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5084                 rc6vids &= 0xffff00;
5085                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5086                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5087                 if (ret)
5088                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5089         }
5090
5091         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5092 }
5093
5094 static void __gen6_update_ring_freq(struct drm_device *dev)
5095 {
5096         struct drm_i915_private *dev_priv = dev->dev_private;
5097         int min_freq = 15;
5098         unsigned int gpu_freq;
5099         unsigned int max_ia_freq, min_ring_freq;
5100         unsigned int max_gpu_freq, min_gpu_freq;
5101         int scaling_factor = 180;
5102         struct cpufreq_policy *policy;
5103
5104         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5105
5106         policy = cpufreq_cpu_get(0);
5107         if (policy) {
5108                 max_ia_freq = policy->cpuinfo.max_freq;
5109                 cpufreq_cpu_put(policy);
5110         } else {
5111                 /*
5112                  * Default to measured freq if none found, PCU will ensure we
5113                  * don't go over
5114                  */
5115                 max_ia_freq = tsc_khz;
5116         }
5117
5118         /* Convert from kHz to MHz */
5119         max_ia_freq /= 1000;
5120
5121         min_ring_freq = I915_READ(DCLK) & 0xf;
5122         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5123         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5124
5125         if (IS_SKYLAKE(dev)) {
5126                 /* Convert GT frequency to 50 HZ units */
5127                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5128                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5129         } else {
5130                 min_gpu_freq = dev_priv->rps.min_freq;
5131                 max_gpu_freq = dev_priv->rps.max_freq;
5132         }
5133
5134         /*
5135          * For each potential GPU frequency, load a ring frequency we'd like
5136          * to use for memory access.  We do this by specifying the IA frequency
5137          * the PCU should use as a reference to determine the ring frequency.
5138          */
5139         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5140                 int diff = max_gpu_freq - gpu_freq;
5141                 unsigned int ia_freq = 0, ring_freq = 0;
5142
5143                 if (IS_SKYLAKE(dev)) {
5144                         /*
5145                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5146                          * No floor required for ring frequency on SKL.
5147                          */
5148                         ring_freq = gpu_freq;
5149                 } else if (INTEL_INFO(dev)->gen >= 8) {
5150                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5151                         ring_freq = max(min_ring_freq, gpu_freq);
5152                 } else if (IS_HASWELL(dev)) {
5153                         ring_freq = mult_frac(gpu_freq, 5, 4);
5154                         ring_freq = max(min_ring_freq, ring_freq);
5155                         /* leave ia_freq as the default, chosen by cpufreq */
5156                 } else {
5157                         /* On older processors, there is no separate ring
5158                          * clock domain, so in order to boost the bandwidth
5159                          * of the ring, we need to upclock the CPU (ia_freq).
5160                          *
5161                          * For GPU frequencies less than 750MHz,
5162                          * just use the lowest ring freq.
5163                          */
5164                         if (gpu_freq < min_freq)
5165                                 ia_freq = 800;
5166                         else
5167                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5168                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5169                 }
5170
5171                 sandybridge_pcode_write(dev_priv,
5172                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5173                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5174                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5175                                         gpu_freq);
5176         }
5177 }
5178
5179 void gen6_update_ring_freq(struct drm_device *dev)
5180 {
5181         struct drm_i915_private *dev_priv = dev->dev_private;
5182
5183         if (!HAS_CORE_RING_FREQ(dev))
5184                 return;
5185
5186         mutex_lock(&dev_priv->rps.hw_lock);
5187         __gen6_update_ring_freq(dev);
5188         mutex_unlock(&dev_priv->rps.hw_lock);
5189 }
5190
5191 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5192 {
5193         struct drm_device *dev = dev_priv->dev;
5194         u32 val, rp0;
5195
5196         if (dev->pdev->revision >= 0x20) {
5197                 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5198
5199                 switch (INTEL_INFO(dev)->eu_total) {
5200                 case 8:
5201                                 /* (2 * 4) config */
5202                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5203                                 break;
5204                 case 12:
5205                                 /* (2 * 6) config */
5206                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5207                                 break;
5208                 case 16:
5209                                 /* (2 * 8) config */
5210                 default:
5211                                 /* Setting (2 * 8) Min RP0 for any other combination */
5212                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5213                                 break;
5214                 }
5215                 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5216         } else {
5217                 /* For pre-production hardware */
5218                 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
5219                 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
5220                        PUNIT_GPU_STATUS_MAX_FREQ_MASK;
5221         }
5222         return rp0;
5223 }
5224
5225 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5226 {
5227         u32 val, rpe;
5228
5229         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5230         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5231
5232         return rpe;
5233 }
5234
5235 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5236 {
5237         struct drm_device *dev = dev_priv->dev;
5238         u32 val, rp1;
5239
5240         if (dev->pdev->revision >= 0x20) {
5241                 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5242                 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5243         } else {
5244                 /* For pre-production hardware */
5245                 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5246                 rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
5247                        PUNIT_GPU_STATUS_MAX_FREQ_MASK);
5248         }
5249         return rp1;
5250 }
5251
5252 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5253 {
5254         u32 val, rp1;
5255
5256         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5257
5258         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5259
5260         return rp1;
5261 }
5262
5263 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5264 {
5265         u32 val, rp0;
5266
5267         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5268
5269         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5270         /* Clamp to max */
5271         rp0 = min_t(u32, rp0, 0xea);
5272
5273         return rp0;
5274 }
5275
5276 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5277 {
5278         u32 val, rpe;
5279
5280         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5281         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5282         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5283         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5284
5285         return rpe;
5286 }
5287
5288 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5289 {
5290         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5291 }
5292
5293 /* Check that the pctx buffer wasn't move under us. */
5294 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5295 {
5296         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5297
5298         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5299                              dev_priv->vlv_pctx->stolen->start);
5300 }
5301
5302
5303 /* Check that the pcbr address is not empty. */
5304 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5305 {
5306         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5307
5308         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5309 }
5310
5311 static void cherryview_setup_pctx(struct drm_device *dev)
5312 {
5313         struct drm_i915_private *dev_priv = dev->dev_private;
5314         unsigned long pctx_paddr, paddr;
5315         struct i915_gtt *gtt = &dev_priv->gtt;
5316         u32 pcbr;
5317         int pctx_size = 32*1024;
5318
5319         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5320
5321         pcbr = I915_READ(VLV_PCBR);
5322         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5323                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5324                 paddr = (dev_priv->mm.stolen_base +
5325                          (gtt->stolen_size - pctx_size));
5326
5327                 pctx_paddr = (paddr & (~4095));
5328                 I915_WRITE(VLV_PCBR, pctx_paddr);
5329         }
5330
5331         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5332 }
5333
5334 static void valleyview_setup_pctx(struct drm_device *dev)
5335 {
5336         struct drm_i915_private *dev_priv = dev->dev_private;
5337         struct drm_i915_gem_object *pctx;
5338         unsigned long pctx_paddr;
5339         u32 pcbr;
5340         int pctx_size = 24*1024;
5341
5342         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5343
5344         pcbr = I915_READ(VLV_PCBR);
5345         if (pcbr) {
5346                 /* BIOS set it up already, grab the pre-alloc'd space */
5347                 int pcbr_offset;
5348
5349                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5350                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5351                                                                       pcbr_offset,
5352                                                                       I915_GTT_OFFSET_NONE,
5353                                                                       pctx_size);
5354                 goto out;
5355         }
5356
5357         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5358
5359         /*
5360          * From the Gunit register HAS:
5361          * The Gfx driver is expected to program this register and ensure
5362          * proper allocation within Gfx stolen memory.  For example, this
5363          * register should be programmed such than the PCBR range does not
5364          * overlap with other ranges, such as the frame buffer, protected
5365          * memory, or any other relevant ranges.
5366          */
5367         pctx = i915_gem_object_create_stolen(dev, pctx_size);
5368         if (!pctx) {
5369                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5370                 return;
5371         }
5372
5373         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5374         I915_WRITE(VLV_PCBR, pctx_paddr);
5375
5376 out:
5377         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5378         dev_priv->vlv_pctx = pctx;
5379 }
5380
5381 static void valleyview_cleanup_pctx(struct drm_device *dev)
5382 {
5383         struct drm_i915_private *dev_priv = dev->dev_private;
5384
5385         if (WARN_ON(!dev_priv->vlv_pctx))
5386                 return;
5387
5388         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5389         dev_priv->vlv_pctx = NULL;
5390 }
5391
5392 static void valleyview_init_gt_powersave(struct drm_device *dev)
5393 {
5394         struct drm_i915_private *dev_priv = dev->dev_private;
5395         u32 val;
5396
5397         valleyview_setup_pctx(dev);
5398
5399         mutex_lock(&dev_priv->rps.hw_lock);
5400
5401         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5402         switch ((val >> 6) & 3) {
5403         case 0:
5404         case 1:
5405                 dev_priv->mem_freq = 800;
5406                 break;
5407         case 2:
5408                 dev_priv->mem_freq = 1066;
5409                 break;
5410         case 3:
5411                 dev_priv->mem_freq = 1333;
5412                 break;
5413         }
5414         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5415
5416         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5417         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5418         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5419                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5420                          dev_priv->rps.max_freq);
5421
5422         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5423         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5424                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5425                          dev_priv->rps.efficient_freq);
5426
5427         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5428         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5429                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5430                          dev_priv->rps.rp1_freq);
5431
5432         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5433         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5434                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5435                          dev_priv->rps.min_freq);
5436
5437         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5438
5439         /* Preserve min/max settings in case of re-init */
5440         if (dev_priv->rps.max_freq_softlimit == 0)
5441                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5442
5443         if (dev_priv->rps.min_freq_softlimit == 0)
5444                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5445
5446         mutex_unlock(&dev_priv->rps.hw_lock);
5447 }
5448
5449 static void cherryview_init_gt_powersave(struct drm_device *dev)
5450 {
5451         struct drm_i915_private *dev_priv = dev->dev_private;
5452         u32 val;
5453
5454         cherryview_setup_pctx(dev);
5455
5456         mutex_lock(&dev_priv->rps.hw_lock);
5457
5458         mutex_lock(&dev_priv->sb_lock);
5459         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5460         mutex_unlock(&dev_priv->sb_lock);
5461
5462         switch ((val >> 2) & 0x7) {
5463         case 3:
5464                 dev_priv->mem_freq = 2000;
5465                 break;
5466         default:
5467                 dev_priv->mem_freq = 1600;
5468                 break;
5469         }
5470         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5471
5472         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5473         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5474         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5475                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5476                          dev_priv->rps.max_freq);
5477
5478         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5479         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5480                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5481                          dev_priv->rps.efficient_freq);
5482
5483         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5484         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5485                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5486                          dev_priv->rps.rp1_freq);
5487
5488         /* PUnit validated range is only [RPe, RP0] */
5489         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5490         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5491                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5492                          dev_priv->rps.min_freq);
5493
5494         WARN_ONCE((dev_priv->rps.max_freq |
5495                    dev_priv->rps.efficient_freq |
5496                    dev_priv->rps.rp1_freq |
5497                    dev_priv->rps.min_freq) & 1,
5498                   "Odd GPU freq values\n");
5499
5500         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5501
5502         /* Preserve min/max settings in case of re-init */
5503         if (dev_priv->rps.max_freq_softlimit == 0)
5504                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5505
5506         if (dev_priv->rps.min_freq_softlimit == 0)
5507                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5508
5509         mutex_unlock(&dev_priv->rps.hw_lock);
5510 }
5511
5512 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5513 {
5514         valleyview_cleanup_pctx(dev);
5515 }
5516
5517 static void cherryview_enable_rps(struct drm_device *dev)
5518 {
5519         struct drm_i915_private *dev_priv = dev->dev_private;
5520         struct intel_engine_cs *ring;
5521         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5522         int i;
5523
5524         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5525
5526         gtfifodbg = I915_READ(GTFIFODBG);
5527         if (gtfifodbg) {
5528                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5529                                  gtfifodbg);
5530                 I915_WRITE(GTFIFODBG, gtfifodbg);
5531         }
5532
5533         cherryview_check_pctx(dev_priv);
5534
5535         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5536          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5537         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5538
5539         /*  Disable RC states. */
5540         I915_WRITE(GEN6_RC_CONTROL, 0);
5541
5542         /* 2a: Program RC6 thresholds.*/
5543         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5544         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5545         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5546
5547         for_each_ring(ring, dev_priv, i)
5548                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5549         I915_WRITE(GEN6_RC_SLEEP, 0);
5550
5551         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5552         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5553
5554         /* allows RC6 residency counter to work */
5555         I915_WRITE(VLV_COUNTER_CONTROL,
5556                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5557                                       VLV_MEDIA_RC6_COUNT_EN |
5558                                       VLV_RENDER_RC6_COUNT_EN));
5559
5560         /* For now we assume BIOS is allocating and populating the PCBR  */
5561         pcbr = I915_READ(VLV_PCBR);
5562
5563         /* 3: Enable RC6 */
5564         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5565                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5566                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5567
5568         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5569
5570         /* 4 Program defaults and thresholds for RPS*/
5571         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5572         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5573         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5574         I915_WRITE(GEN6_RP_UP_EI, 66000);
5575         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5576
5577         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5578
5579         /* 5: Enable RPS */
5580         I915_WRITE(GEN6_RP_CONTROL,
5581                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5582                    GEN6_RP_MEDIA_IS_GFX |
5583                    GEN6_RP_ENABLE |
5584                    GEN6_RP_UP_BUSY_AVG |
5585                    GEN6_RP_DOWN_IDLE_AVG);
5586
5587         /* Setting Fixed Bias */
5588         val = VLV_OVERRIDE_EN |
5589                   VLV_SOC_TDP_EN |
5590                   CHV_BIAS_CPU_50_SOC_50;
5591         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5592
5593         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5594
5595         /* RPS code assumes GPLL is used */
5596         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5597
5598         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5599         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5600
5601         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5602         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5603                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5604                          dev_priv->rps.cur_freq);
5605
5606         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5607                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5608                          dev_priv->rps.efficient_freq);
5609
5610         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5611
5612         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5613 }
5614
5615 static void valleyview_enable_rps(struct drm_device *dev)
5616 {
5617         struct drm_i915_private *dev_priv = dev->dev_private;
5618         struct intel_engine_cs *ring;
5619         u32 gtfifodbg, val, rc6_mode = 0;
5620         int i;
5621
5622         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5623
5624         valleyview_check_pctx(dev_priv);
5625
5626         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5627                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5628                                  gtfifodbg);
5629                 I915_WRITE(GTFIFODBG, gtfifodbg);
5630         }
5631
5632         /* If VLV, Forcewake all wells, else re-direct to regular path */
5633         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5634
5635         /*  Disable RC states. */
5636         I915_WRITE(GEN6_RC_CONTROL, 0);
5637
5638         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5639         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5640         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5641         I915_WRITE(GEN6_RP_UP_EI, 66000);
5642         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5643
5644         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5645
5646         I915_WRITE(GEN6_RP_CONTROL,
5647                    GEN6_RP_MEDIA_TURBO |
5648                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5649                    GEN6_RP_MEDIA_IS_GFX |
5650                    GEN6_RP_ENABLE |
5651                    GEN6_RP_UP_BUSY_AVG |
5652                    GEN6_RP_DOWN_IDLE_CONT);
5653
5654         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5655         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5656         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5657
5658         for_each_ring(ring, dev_priv, i)
5659                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5660
5661         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5662
5663         /* allows RC6 residency counter to work */
5664         I915_WRITE(VLV_COUNTER_CONTROL,
5665                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5666                                       VLV_RENDER_RC0_COUNT_EN |
5667                                       VLV_MEDIA_RC6_COUNT_EN |
5668                                       VLV_RENDER_RC6_COUNT_EN));
5669
5670         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5671                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5672
5673         intel_print_rc6_info(dev, rc6_mode);
5674
5675         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5676
5677         /* Setting Fixed Bias */
5678         val = VLV_OVERRIDE_EN |
5679                   VLV_SOC_TDP_EN |
5680                   VLV_BIAS_CPU_125_SOC_875;
5681         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5682
5683         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5684
5685         /* RPS code assumes GPLL is used */
5686         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5687
5688         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5689         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5690
5691         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5692         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5693                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5694                          dev_priv->rps.cur_freq);
5695
5696         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5697                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5698                          dev_priv->rps.efficient_freq);
5699
5700         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5701
5702         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5703 }
5704
5705 static unsigned long intel_pxfreq(u32 vidfreq)
5706 {
5707         unsigned long freq;
5708         int div = (vidfreq & 0x3f0000) >> 16;
5709         int post = (vidfreq & 0x3000) >> 12;
5710         int pre = (vidfreq & 0x7);
5711
5712         if (!pre)
5713                 return 0;
5714
5715         freq = ((div * 133333) / ((1<<post) * pre));
5716
5717         return freq;
5718 }
5719
5720 static const struct cparams {
5721         u16 i;
5722         u16 t;
5723         u16 m;
5724         u16 c;
5725 } cparams[] = {
5726         { 1, 1333, 301, 28664 },
5727         { 1, 1066, 294, 24460 },
5728         { 1, 800, 294, 25192 },
5729         { 0, 1333, 276, 27605 },
5730         { 0, 1066, 276, 27605 },
5731         { 0, 800, 231, 23784 },
5732 };
5733
5734 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5735 {
5736         u64 total_count, diff, ret;
5737         u32 count1, count2, count3, m = 0, c = 0;
5738         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5739         int i;
5740
5741         assert_spin_locked(&mchdev_lock);
5742
5743         diff1 = now - dev_priv->ips.last_time1;
5744
5745         /* Prevent division-by-zero if we are asking too fast.
5746          * Also, we don't get interesting results if we are polling
5747          * faster than once in 10ms, so just return the saved value
5748          * in such cases.
5749          */
5750         if (diff1 <= 10)
5751                 return dev_priv->ips.chipset_power;
5752
5753         count1 = I915_READ(DMIEC);
5754         count2 = I915_READ(DDREC);
5755         count3 = I915_READ(CSIEC);
5756
5757         total_count = count1 + count2 + count3;
5758
5759         /* FIXME: handle per-counter overflow */
5760         if (total_count < dev_priv->ips.last_count1) {
5761                 diff = ~0UL - dev_priv->ips.last_count1;
5762                 diff += total_count;
5763         } else {
5764                 diff = total_count - dev_priv->ips.last_count1;
5765         }
5766
5767         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5768                 if (cparams[i].i == dev_priv->ips.c_m &&
5769                     cparams[i].t == dev_priv->ips.r_t) {
5770                         m = cparams[i].m;
5771                         c = cparams[i].c;
5772                         break;
5773                 }
5774         }
5775
5776         diff = div_u64(diff, diff1);
5777         ret = ((m * diff) + c);
5778         ret = div_u64(ret, 10);
5779
5780         dev_priv->ips.last_count1 = total_count;
5781         dev_priv->ips.last_time1 = now;
5782
5783         dev_priv->ips.chipset_power = ret;
5784
5785         return ret;
5786 }
5787
5788 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5789 {
5790         struct drm_device *dev = dev_priv->dev;
5791         unsigned long val;
5792
5793         if (INTEL_INFO(dev)->gen != 5)
5794                 return 0;
5795
5796         spin_lock_irq(&mchdev_lock);
5797
5798         val = __i915_chipset_val(dev_priv);
5799
5800         spin_unlock_irq(&mchdev_lock);
5801
5802         return val;
5803 }
5804
5805 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5806 {
5807         unsigned long m, x, b;
5808         u32 tsfs;
5809
5810         tsfs = I915_READ(TSFS);
5811
5812         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5813         x = I915_READ8(TR1);
5814
5815         b = tsfs & TSFS_INTR_MASK;
5816
5817         return ((m * x) / 127) - b;
5818 }
5819
5820 static int _pxvid_to_vd(u8 pxvid)
5821 {
5822         if (pxvid == 0)
5823                 return 0;
5824
5825         if (pxvid >= 8 && pxvid < 31)
5826                 pxvid = 31;
5827
5828         return (pxvid + 2) * 125;
5829 }
5830
5831 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5832 {
5833         struct drm_device *dev = dev_priv->dev;
5834         const int vd = _pxvid_to_vd(pxvid);
5835         const int vm = vd - 1125;
5836
5837         if (INTEL_INFO(dev)->is_mobile)
5838                 return vm > 0 ? vm : 0;
5839
5840         return vd;
5841 }
5842
5843 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5844 {
5845         u64 now, diff, diffms;
5846         u32 count;
5847
5848         assert_spin_locked(&mchdev_lock);
5849
5850         now = ktime_get_raw_ns();
5851         diffms = now - dev_priv->ips.last_time2;
5852         do_div(diffms, NSEC_PER_MSEC);
5853
5854         /* Don't divide by 0 */
5855         if (!diffms)
5856                 return;
5857
5858         count = I915_READ(GFXEC);
5859
5860         if (count < dev_priv->ips.last_count2) {
5861                 diff = ~0UL - dev_priv->ips.last_count2;
5862                 diff += count;
5863         } else {
5864                 diff = count - dev_priv->ips.last_count2;
5865         }
5866
5867         dev_priv->ips.last_count2 = count;
5868         dev_priv->ips.last_time2 = now;
5869
5870         /* More magic constants... */
5871         diff = diff * 1181;
5872         diff = div_u64(diff, diffms * 10);
5873         dev_priv->ips.gfx_power = diff;
5874 }
5875
5876 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5877 {
5878         struct drm_device *dev = dev_priv->dev;
5879
5880         if (INTEL_INFO(dev)->gen != 5)
5881                 return;
5882
5883         spin_lock_irq(&mchdev_lock);
5884
5885         __i915_update_gfx_val(dev_priv);
5886
5887         spin_unlock_irq(&mchdev_lock);
5888 }
5889
5890 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5891 {
5892         unsigned long t, corr, state1, corr2, state2;
5893         u32 pxvid, ext_v;
5894
5895         assert_spin_locked(&mchdev_lock);
5896
5897         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5898         pxvid = (pxvid >> 24) & 0x7f;
5899         ext_v = pvid_to_extvid(dev_priv, pxvid);
5900
5901         state1 = ext_v;
5902
5903         t = i915_mch_val(dev_priv);
5904
5905         /* Revel in the empirically derived constants */
5906
5907         /* Correction factor in 1/100000 units */
5908         if (t > 80)
5909                 corr = ((t * 2349) + 135940);
5910         else if (t >= 50)
5911                 corr = ((t * 964) + 29317);
5912         else /* < 50 */
5913                 corr = ((t * 301) + 1004);
5914
5915         corr = corr * ((150142 * state1) / 10000 - 78642);
5916         corr /= 100000;
5917         corr2 = (corr * dev_priv->ips.corr);
5918
5919         state2 = (corr2 * state1) / 10000;
5920         state2 /= 100; /* convert to mW */
5921
5922         __i915_update_gfx_val(dev_priv);
5923
5924         return dev_priv->ips.gfx_power + state2;
5925 }
5926
5927 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5928 {
5929         struct drm_device *dev = dev_priv->dev;
5930         unsigned long val;
5931
5932         if (INTEL_INFO(dev)->gen != 5)
5933                 return 0;
5934
5935         spin_lock_irq(&mchdev_lock);
5936
5937         val = __i915_gfx_val(dev_priv);
5938
5939         spin_unlock_irq(&mchdev_lock);
5940
5941         return val;
5942 }
5943
5944 /**
5945  * i915_read_mch_val - return value for IPS use
5946  *
5947  * Calculate and return a value for the IPS driver to use when deciding whether
5948  * we have thermal and power headroom to increase CPU or GPU power budget.
5949  */
5950 unsigned long i915_read_mch_val(void)
5951 {
5952         struct drm_i915_private *dev_priv;
5953         unsigned long chipset_val, graphics_val, ret = 0;
5954
5955         spin_lock_irq(&mchdev_lock);
5956         if (!i915_mch_dev)
5957                 goto out_unlock;
5958         dev_priv = i915_mch_dev;
5959
5960         chipset_val = __i915_chipset_val(dev_priv);
5961         graphics_val = __i915_gfx_val(dev_priv);
5962
5963         ret = chipset_val + graphics_val;
5964
5965 out_unlock:
5966         spin_unlock_irq(&mchdev_lock);
5967
5968         return ret;
5969 }
5970 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5971
5972 /**
5973  * i915_gpu_raise - raise GPU frequency limit
5974  *
5975  * Raise the limit; IPS indicates we have thermal headroom.
5976  */
5977 bool i915_gpu_raise(void)
5978 {
5979         struct drm_i915_private *dev_priv;
5980         bool ret = true;
5981
5982         spin_lock_irq(&mchdev_lock);
5983         if (!i915_mch_dev) {
5984                 ret = false;
5985                 goto out_unlock;
5986         }
5987         dev_priv = i915_mch_dev;
5988
5989         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5990                 dev_priv->ips.max_delay--;
5991
5992 out_unlock:
5993         spin_unlock_irq(&mchdev_lock);
5994
5995         return ret;
5996 }
5997 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5998
5999 /**
6000  * i915_gpu_lower - lower GPU frequency limit
6001  *
6002  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6003  * frequency maximum.
6004  */
6005 bool i915_gpu_lower(void)
6006 {
6007         struct drm_i915_private *dev_priv;
6008         bool ret = true;
6009
6010         spin_lock_irq(&mchdev_lock);
6011         if (!i915_mch_dev) {
6012                 ret = false;
6013                 goto out_unlock;
6014         }
6015         dev_priv = i915_mch_dev;
6016
6017         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6018                 dev_priv->ips.max_delay++;
6019
6020 out_unlock:
6021         spin_unlock_irq(&mchdev_lock);
6022
6023         return ret;
6024 }
6025 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6026
6027 /**
6028  * i915_gpu_busy - indicate GPU business to IPS
6029  *
6030  * Tell the IPS driver whether or not the GPU is busy.
6031  */
6032 bool i915_gpu_busy(void)
6033 {
6034         struct drm_i915_private *dev_priv;
6035         struct intel_engine_cs *ring;
6036         bool ret = false;
6037         int i;
6038
6039         spin_lock_irq(&mchdev_lock);
6040         if (!i915_mch_dev)
6041                 goto out_unlock;
6042         dev_priv = i915_mch_dev;
6043
6044         for_each_ring(ring, dev_priv, i)
6045                 ret |= !list_empty(&ring->request_list);
6046
6047 out_unlock:
6048         spin_unlock_irq(&mchdev_lock);
6049
6050         return ret;
6051 }
6052 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6053
6054 /**
6055  * i915_gpu_turbo_disable - disable graphics turbo
6056  *
6057  * Disable graphics turbo by resetting the max frequency and setting the
6058  * current frequency to the default.
6059  */
6060 bool i915_gpu_turbo_disable(void)
6061 {
6062         struct drm_i915_private *dev_priv;
6063         bool ret = true;
6064
6065         spin_lock_irq(&mchdev_lock);
6066         if (!i915_mch_dev) {
6067                 ret = false;
6068                 goto out_unlock;
6069         }
6070         dev_priv = i915_mch_dev;
6071
6072         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6073
6074         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6075                 ret = false;
6076
6077 out_unlock:
6078         spin_unlock_irq(&mchdev_lock);
6079
6080         return ret;
6081 }
6082 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6083
6084 /**
6085  * Tells the intel_ips driver that the i915 driver is now loaded, if
6086  * IPS got loaded first.
6087  *
6088  * This awkward dance is so that neither module has to depend on the
6089  * other in order for IPS to do the appropriate communication of
6090  * GPU turbo limits to i915.
6091  */
6092 static void
6093 ips_ping_for_i915_load(void)
6094 {
6095         void (*link)(void);
6096
6097         link = symbol_get(ips_link_to_i915_driver);
6098         if (link) {
6099                 link();
6100                 symbol_put(ips_link_to_i915_driver);
6101         }
6102 }
6103
6104 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6105 {
6106         /* We only register the i915 ips part with intel-ips once everything is
6107          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6108         spin_lock_irq(&mchdev_lock);
6109         i915_mch_dev = dev_priv;
6110         spin_unlock_irq(&mchdev_lock);
6111
6112         ips_ping_for_i915_load();
6113 }
6114
6115 void intel_gpu_ips_teardown(void)
6116 {
6117         spin_lock_irq(&mchdev_lock);
6118         i915_mch_dev = NULL;
6119         spin_unlock_irq(&mchdev_lock);
6120 }
6121
6122 static void intel_init_emon(struct drm_device *dev)
6123 {
6124         struct drm_i915_private *dev_priv = dev->dev_private;
6125         u32 lcfuse;
6126         u8 pxw[16];
6127         int i;
6128
6129         /* Disable to program */
6130         I915_WRITE(ECR, 0);
6131         POSTING_READ(ECR);
6132
6133         /* Program energy weights for various events */
6134         I915_WRITE(SDEW, 0x15040d00);
6135         I915_WRITE(CSIEW0, 0x007f0000);
6136         I915_WRITE(CSIEW1, 0x1e220004);
6137         I915_WRITE(CSIEW2, 0x04000004);
6138
6139         for (i = 0; i < 5; i++)
6140                 I915_WRITE(PEW(i), 0);
6141         for (i = 0; i < 3; i++)
6142                 I915_WRITE(DEW(i), 0);
6143
6144         /* Program P-state weights to account for frequency power adjustment */
6145         for (i = 0; i < 16; i++) {
6146                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6147                 unsigned long freq = intel_pxfreq(pxvidfreq);
6148                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6149                         PXVFREQ_PX_SHIFT;
6150                 unsigned long val;
6151
6152                 val = vid * vid;
6153                 val *= (freq / 1000);
6154                 val *= 255;
6155                 val /= (127*127*900);
6156                 if (val > 0xff)
6157                         DRM_ERROR("bad pxval: %ld\n", val);
6158                 pxw[i] = val;
6159         }
6160         /* Render standby states get 0 weight */
6161         pxw[14] = 0;
6162         pxw[15] = 0;
6163
6164         for (i = 0; i < 4; i++) {
6165                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6166                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6167                 I915_WRITE(PXW(i), val);
6168         }
6169
6170         /* Adjust magic regs to magic values (more experimental results) */
6171         I915_WRITE(OGW0, 0);
6172         I915_WRITE(OGW1, 0);
6173         I915_WRITE(EG0, 0x00007f00);
6174         I915_WRITE(EG1, 0x0000000e);
6175         I915_WRITE(EG2, 0x000e0000);
6176         I915_WRITE(EG3, 0x68000300);
6177         I915_WRITE(EG4, 0x42000000);
6178         I915_WRITE(EG5, 0x00140031);
6179         I915_WRITE(EG6, 0);
6180         I915_WRITE(EG7, 0);
6181
6182         for (i = 0; i < 8; i++)
6183                 I915_WRITE(PXWL(i), 0);
6184
6185         /* Enable PMON + select events */
6186         I915_WRITE(ECR, 0x80000019);
6187
6188         lcfuse = I915_READ(LCFUSE02);
6189
6190         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6191 }
6192
6193 void intel_init_gt_powersave(struct drm_device *dev)
6194 {
6195         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6196
6197         if (IS_CHERRYVIEW(dev))
6198                 cherryview_init_gt_powersave(dev);
6199         else if (IS_VALLEYVIEW(dev))
6200                 valleyview_init_gt_powersave(dev);
6201 }
6202
6203 void intel_cleanup_gt_powersave(struct drm_device *dev)
6204 {
6205         if (IS_CHERRYVIEW(dev))
6206                 return;
6207         else if (IS_VALLEYVIEW(dev))
6208                 valleyview_cleanup_gt_powersave(dev);
6209 }
6210
6211 static void gen6_suspend_rps(struct drm_device *dev)
6212 {
6213         struct drm_i915_private *dev_priv = dev->dev_private;
6214
6215         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6216
6217         gen6_disable_rps_interrupts(dev);
6218 }
6219
6220 /**
6221  * intel_suspend_gt_powersave - suspend PM work and helper threads
6222  * @dev: drm device
6223  *
6224  * We don't want to disable RC6 or other features here, we just want
6225  * to make sure any work we've queued has finished and won't bother
6226  * us while we're suspended.
6227  */
6228 void intel_suspend_gt_powersave(struct drm_device *dev)
6229 {
6230         struct drm_i915_private *dev_priv = dev->dev_private;
6231
6232         if (INTEL_INFO(dev)->gen < 6)
6233                 return;
6234
6235         gen6_suspend_rps(dev);
6236
6237         /* Force GPU to min freq during suspend */
6238         gen6_rps_idle(dev_priv);
6239 }
6240
6241 void intel_disable_gt_powersave(struct drm_device *dev)
6242 {
6243         struct drm_i915_private *dev_priv = dev->dev_private;
6244
6245         if (IS_IRONLAKE_M(dev)) {
6246                 ironlake_disable_drps(dev);
6247         } else if (INTEL_INFO(dev)->gen >= 6) {
6248                 intel_suspend_gt_powersave(dev);
6249
6250                 mutex_lock(&dev_priv->rps.hw_lock);
6251                 if (INTEL_INFO(dev)->gen >= 9)
6252                         gen9_disable_rps(dev);
6253                 else if (IS_CHERRYVIEW(dev))
6254                         cherryview_disable_rps(dev);
6255                 else if (IS_VALLEYVIEW(dev))
6256                         valleyview_disable_rps(dev);
6257                 else
6258                         gen6_disable_rps(dev);
6259
6260                 dev_priv->rps.enabled = false;
6261                 mutex_unlock(&dev_priv->rps.hw_lock);
6262         }
6263 }
6264
6265 static void intel_gen6_powersave_work(struct work_struct *work)
6266 {
6267         struct drm_i915_private *dev_priv =
6268                 container_of(work, struct drm_i915_private,
6269                              rps.delayed_resume_work.work);
6270         struct drm_device *dev = dev_priv->dev;
6271
6272         mutex_lock(&dev_priv->rps.hw_lock);
6273
6274         gen6_reset_rps_interrupts(dev);
6275
6276         if (IS_CHERRYVIEW(dev)) {
6277                 cherryview_enable_rps(dev);
6278         } else if (IS_VALLEYVIEW(dev)) {
6279                 valleyview_enable_rps(dev);
6280         } else if (INTEL_INFO(dev)->gen >= 9) {
6281                 gen9_enable_rc6(dev);
6282                 gen9_enable_rps(dev);
6283                 if (IS_SKYLAKE(dev))
6284                         __gen6_update_ring_freq(dev);
6285         } else if (IS_BROADWELL(dev)) {
6286                 gen8_enable_rps(dev);
6287                 __gen6_update_ring_freq(dev);
6288         } else {
6289                 gen6_enable_rps(dev);
6290                 __gen6_update_ring_freq(dev);
6291         }
6292
6293         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6294         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6295
6296         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6297         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6298
6299         dev_priv->rps.enabled = true;
6300
6301         gen6_enable_rps_interrupts(dev);
6302
6303         mutex_unlock(&dev_priv->rps.hw_lock);
6304
6305         intel_runtime_pm_put(dev_priv);
6306 }
6307
6308 void intel_enable_gt_powersave(struct drm_device *dev)
6309 {
6310         struct drm_i915_private *dev_priv = dev->dev_private;
6311
6312         /* Powersaving is controlled by the host when inside a VM */
6313         if (intel_vgpu_active(dev))
6314                 return;
6315
6316         if (IS_IRONLAKE_M(dev)) {
6317                 mutex_lock(&dev->struct_mutex);
6318                 ironlake_enable_drps(dev);
6319                 intel_init_emon(dev);
6320                 mutex_unlock(&dev->struct_mutex);
6321         } else if (INTEL_INFO(dev)->gen >= 6) {
6322                 /*
6323                  * PCU communication is slow and this doesn't need to be
6324                  * done at any specific time, so do this out of our fast path
6325                  * to make resume and init faster.
6326                  *
6327                  * We depend on the HW RC6 power context save/restore
6328                  * mechanism when entering D3 through runtime PM suspend. So
6329                  * disable RPM until RPS/RC6 is properly setup. We can only
6330                  * get here via the driver load/system resume/runtime resume
6331                  * paths, so the _noresume version is enough (and in case of
6332                  * runtime resume it's necessary).
6333                  */
6334                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6335                                            round_jiffies_up_relative(HZ)))
6336                         intel_runtime_pm_get_noresume(dev_priv);
6337         }
6338 }
6339
6340 void intel_reset_gt_powersave(struct drm_device *dev)
6341 {
6342         struct drm_i915_private *dev_priv = dev->dev_private;
6343
6344         if (INTEL_INFO(dev)->gen < 6)
6345                 return;
6346
6347         gen6_suspend_rps(dev);
6348         dev_priv->rps.enabled = false;
6349 }
6350
6351 static void ibx_init_clock_gating(struct drm_device *dev)
6352 {
6353         struct drm_i915_private *dev_priv = dev->dev_private;
6354
6355         /*
6356          * On Ibex Peak and Cougar Point, we need to disable clock
6357          * gating for the panel power sequencer or it will fail to
6358          * start up when no ports are active.
6359          */
6360         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6361 }
6362
6363 static void g4x_disable_trickle_feed(struct drm_device *dev)
6364 {
6365         struct drm_i915_private *dev_priv = dev->dev_private;
6366         enum pipe pipe;
6367
6368         for_each_pipe(dev_priv, pipe) {
6369                 I915_WRITE(DSPCNTR(pipe),
6370                            I915_READ(DSPCNTR(pipe)) |
6371                            DISPPLANE_TRICKLE_FEED_DISABLE);
6372
6373                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6374                 POSTING_READ(DSPSURF(pipe));
6375         }
6376 }
6377
6378 static void ilk_init_lp_watermarks(struct drm_device *dev)
6379 {
6380         struct drm_i915_private *dev_priv = dev->dev_private;
6381
6382         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6383         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6384         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6385
6386         /*
6387          * Don't touch WM1S_LP_EN here.
6388          * Doing so could cause underruns.
6389          */
6390 }
6391
6392 static void ironlake_init_clock_gating(struct drm_device *dev)
6393 {
6394         struct drm_i915_private *dev_priv = dev->dev_private;
6395         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6396
6397         /*
6398          * Required for FBC
6399          * WaFbcDisableDpfcClockGating:ilk
6400          */
6401         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6402                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6403                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6404
6405         I915_WRITE(PCH_3DCGDIS0,
6406                    MARIUNIT_CLOCK_GATE_DISABLE |
6407                    SVSMUNIT_CLOCK_GATE_DISABLE);
6408         I915_WRITE(PCH_3DCGDIS1,
6409                    VFMUNIT_CLOCK_GATE_DISABLE);
6410
6411         /*
6412          * According to the spec the following bits should be set in
6413          * order to enable memory self-refresh
6414          * The bit 22/21 of 0x42004
6415          * The bit 5 of 0x42020
6416          * The bit 15 of 0x45000
6417          */
6418         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6419                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6420                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6421         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6422         I915_WRITE(DISP_ARB_CTL,
6423                    (I915_READ(DISP_ARB_CTL) |
6424                     DISP_FBC_WM_DIS));
6425
6426         ilk_init_lp_watermarks(dev);
6427
6428         /*
6429          * Based on the document from hardware guys the following bits
6430          * should be set unconditionally in order to enable FBC.
6431          * The bit 22 of 0x42000
6432          * The bit 22 of 0x42004
6433          * The bit 7,8,9 of 0x42020.
6434          */
6435         if (IS_IRONLAKE_M(dev)) {
6436                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6437                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6438                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6439                            ILK_FBCQ_DIS);
6440                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6441                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6442                            ILK_DPARB_GATE);
6443         }
6444
6445         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6446
6447         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6448                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6449                    ILK_ELPIN_409_SELECT);
6450         I915_WRITE(_3D_CHICKEN2,
6451                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6452                    _3D_CHICKEN2_WM_READ_PIPELINED);
6453
6454         /* WaDisableRenderCachePipelinedFlush:ilk */
6455         I915_WRITE(CACHE_MODE_0,
6456                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6457
6458         /* WaDisable_RenderCache_OperationalFlush:ilk */
6459         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6460
6461         g4x_disable_trickle_feed(dev);
6462
6463         ibx_init_clock_gating(dev);
6464 }
6465
6466 static void cpt_init_clock_gating(struct drm_device *dev)
6467 {
6468         struct drm_i915_private *dev_priv = dev->dev_private;
6469         int pipe;
6470         uint32_t val;
6471
6472         /*
6473          * On Ibex Peak and Cougar Point, we need to disable clock
6474          * gating for the panel power sequencer or it will fail to
6475          * start up when no ports are active.
6476          */
6477         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6478                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6479                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6480         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6481                    DPLS_EDP_PPS_FIX_DIS);
6482         /* The below fixes the weird display corruption, a few pixels shifted
6483          * downward, on (only) LVDS of some HP laptops with IVY.
6484          */
6485         for_each_pipe(dev_priv, pipe) {
6486                 val = I915_READ(TRANS_CHICKEN2(pipe));
6487                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6488                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6489                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6490                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6491                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6492                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6493                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6494                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6495         }
6496         /* WADP0ClockGatingDisable */
6497         for_each_pipe(dev_priv, pipe) {
6498                 I915_WRITE(TRANS_CHICKEN1(pipe),
6499                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6500         }
6501 }
6502
6503 static void gen6_check_mch_setup(struct drm_device *dev)
6504 {
6505         struct drm_i915_private *dev_priv = dev->dev_private;
6506         uint32_t tmp;
6507
6508         tmp = I915_READ(MCH_SSKPD);
6509         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6510                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6511                               tmp);
6512 }
6513
6514 static void gen6_init_clock_gating(struct drm_device *dev)
6515 {
6516         struct drm_i915_private *dev_priv = dev->dev_private;
6517         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6518
6519         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6520
6521         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6522                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6523                    ILK_ELPIN_409_SELECT);
6524
6525         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6526         I915_WRITE(_3D_CHICKEN,
6527                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6528
6529         /* WaDisable_RenderCache_OperationalFlush:snb */
6530         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6531
6532         /*
6533          * BSpec recoomends 8x4 when MSAA is used,
6534          * however in practice 16x4 seems fastest.
6535          *
6536          * Note that PS/WM thread counts depend on the WIZ hashing
6537          * disable bit, which we don't touch here, but it's good
6538          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6539          */
6540         I915_WRITE(GEN6_GT_MODE,
6541                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6542
6543         ilk_init_lp_watermarks(dev);
6544
6545         I915_WRITE(CACHE_MODE_0,
6546                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6547
6548         I915_WRITE(GEN6_UCGCTL1,
6549                    I915_READ(GEN6_UCGCTL1) |
6550                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6551                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6552
6553         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6554          * gating disable must be set.  Failure to set it results in
6555          * flickering pixels due to Z write ordering failures after
6556          * some amount of runtime in the Mesa "fire" demo, and Unigine
6557          * Sanctuary and Tropics, and apparently anything else with
6558          * alpha test or pixel discard.
6559          *
6560          * According to the spec, bit 11 (RCCUNIT) must also be set,
6561          * but we didn't debug actual testcases to find it out.
6562          *
6563          * WaDisableRCCUnitClockGating:snb
6564          * WaDisableRCPBUnitClockGating:snb
6565          */
6566         I915_WRITE(GEN6_UCGCTL2,
6567                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6568                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6569
6570         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6571         I915_WRITE(_3D_CHICKEN3,
6572                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6573
6574         /*
6575          * Bspec says:
6576          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6577          * 3DSTATE_SF number of SF output attributes is more than 16."
6578          */
6579         I915_WRITE(_3D_CHICKEN3,
6580                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6581
6582         /*
6583          * According to the spec the following bits should be
6584          * set in order to enable memory self-refresh and fbc:
6585          * The bit21 and bit22 of 0x42000
6586          * The bit21 and bit22 of 0x42004
6587          * The bit5 and bit7 of 0x42020
6588          * The bit14 of 0x70180
6589          * The bit14 of 0x71180
6590          *
6591          * WaFbcAsynchFlipDisableFbcQueue:snb
6592          */
6593         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6594                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6595                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6596         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6597                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6598                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6599         I915_WRITE(ILK_DSPCLK_GATE_D,
6600                    I915_READ(ILK_DSPCLK_GATE_D) |
6601                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6602                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6603
6604         g4x_disable_trickle_feed(dev);
6605
6606         cpt_init_clock_gating(dev);
6607
6608         gen6_check_mch_setup(dev);
6609 }
6610
6611 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6612 {
6613         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6614
6615         /*
6616          * WaVSThreadDispatchOverride:ivb,vlv
6617          *
6618          * This actually overrides the dispatch
6619          * mode for all thread types.
6620          */
6621         reg &= ~GEN7_FF_SCHED_MASK;
6622         reg |= GEN7_FF_TS_SCHED_HW;
6623         reg |= GEN7_FF_VS_SCHED_HW;
6624         reg |= GEN7_FF_DS_SCHED_HW;
6625
6626         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6627 }
6628
6629 static void lpt_init_clock_gating(struct drm_device *dev)
6630 {
6631         struct drm_i915_private *dev_priv = dev->dev_private;
6632
6633         /*
6634          * TODO: this bit should only be enabled when really needed, then
6635          * disabled when not needed anymore in order to save power.
6636          */
6637         if (HAS_PCH_LPT_LP(dev))
6638                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6639                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6640                            PCH_LP_PARTITION_LEVEL_DISABLE);
6641
6642         /* WADPOClockGatingDisable:hsw */
6643         I915_WRITE(_TRANSA_CHICKEN1,
6644                    I915_READ(_TRANSA_CHICKEN1) |
6645                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6646 }
6647
6648 static void lpt_suspend_hw(struct drm_device *dev)
6649 {
6650         struct drm_i915_private *dev_priv = dev->dev_private;
6651
6652         if (HAS_PCH_LPT_LP(dev)) {
6653                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6654
6655                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6656                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6657         }
6658 }
6659
6660 static void broadwell_init_clock_gating(struct drm_device *dev)
6661 {
6662         struct drm_i915_private *dev_priv = dev->dev_private;
6663         enum pipe pipe;
6664         uint32_t misccpctl;
6665
6666         ilk_init_lp_watermarks(dev);
6667
6668         /* WaSwitchSolVfFArbitrationPriority:bdw */
6669         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6670
6671         /* WaPsrDPAMaskVBlankInSRD:bdw */
6672         I915_WRITE(CHICKEN_PAR1_1,
6673                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6674
6675         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6676         for_each_pipe(dev_priv, pipe) {
6677                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6678                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6679                            BDW_DPRS_MASK_VBLANK_SRD);
6680         }
6681
6682         /* WaVSRefCountFullforceMissDisable:bdw */
6683         /* WaDSRefCountFullforceMissDisable:bdw */
6684         I915_WRITE(GEN7_FF_THREAD_MODE,
6685                    I915_READ(GEN7_FF_THREAD_MODE) &
6686                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6687
6688         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6689                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6690
6691         /* WaDisableSDEUnitClockGating:bdw */
6692         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6693                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6694
6695         /*
6696          * WaProgramL3SqcReg1Default:bdw
6697          * WaTempDisableDOPClkGating:bdw
6698          */
6699         misccpctl = I915_READ(GEN7_MISCCPCTL);
6700         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6701         I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6702         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6703
6704         /*
6705          * WaGttCachingOffByDefault:bdw
6706          * GTT cache may not work with big pages, so if those
6707          * are ever enabled GTT cache may need to be disabled.
6708          */
6709         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6710
6711         lpt_init_clock_gating(dev);
6712 }
6713
6714 static void haswell_init_clock_gating(struct drm_device *dev)
6715 {
6716         struct drm_i915_private *dev_priv = dev->dev_private;
6717
6718         ilk_init_lp_watermarks(dev);
6719
6720         /* L3 caching of data atomics doesn't work -- disable it. */
6721         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6722         I915_WRITE(HSW_ROW_CHICKEN3,
6723                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6724
6725         /* This is required by WaCatErrorRejectionIssue:hsw */
6726         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6727                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6728                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6729
6730         /* WaVSRefCountFullforceMissDisable:hsw */
6731         I915_WRITE(GEN7_FF_THREAD_MODE,
6732                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6733
6734         /* WaDisable_RenderCache_OperationalFlush:hsw */
6735         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6736
6737         /* enable HiZ Raw Stall Optimization */
6738         I915_WRITE(CACHE_MODE_0_GEN7,
6739                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6740
6741         /* WaDisable4x2SubspanOptimization:hsw */
6742         I915_WRITE(CACHE_MODE_1,
6743                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6744
6745         /*
6746          * BSpec recommends 8x4 when MSAA is used,
6747          * however in practice 16x4 seems fastest.
6748          *
6749          * Note that PS/WM thread counts depend on the WIZ hashing
6750          * disable bit, which we don't touch here, but it's good
6751          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6752          */
6753         I915_WRITE(GEN7_GT_MODE,
6754                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6755
6756         /* WaSampleCChickenBitEnable:hsw */
6757         I915_WRITE(HALF_SLICE_CHICKEN3,
6758                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6759
6760         /* WaSwitchSolVfFArbitrationPriority:hsw */
6761         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6762
6763         /* WaRsPkgCStateDisplayPMReq:hsw */
6764         I915_WRITE(CHICKEN_PAR1_1,
6765                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6766
6767         lpt_init_clock_gating(dev);
6768 }
6769
6770 static void ivybridge_init_clock_gating(struct drm_device *dev)
6771 {
6772         struct drm_i915_private *dev_priv = dev->dev_private;
6773         uint32_t snpcr;
6774
6775         ilk_init_lp_watermarks(dev);
6776
6777         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6778
6779         /* WaDisableEarlyCull:ivb */
6780         I915_WRITE(_3D_CHICKEN3,
6781                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6782
6783         /* WaDisableBackToBackFlipFix:ivb */
6784         I915_WRITE(IVB_CHICKEN3,
6785                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6786                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6787
6788         /* WaDisablePSDDualDispatchEnable:ivb */
6789         if (IS_IVB_GT1(dev))
6790                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6791                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6792
6793         /* WaDisable_RenderCache_OperationalFlush:ivb */
6794         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6795
6796         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6797         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6798                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6799
6800         /* WaApplyL3ControlAndL3ChickenMode:ivb */
6801         I915_WRITE(GEN7_L3CNTLREG1,
6802                         GEN7_WA_FOR_GEN7_L3_CONTROL);
6803         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6804                    GEN7_WA_L3_CHICKEN_MODE);
6805         if (IS_IVB_GT1(dev))
6806                 I915_WRITE(GEN7_ROW_CHICKEN2,
6807                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6808         else {
6809                 /* must write both registers */
6810                 I915_WRITE(GEN7_ROW_CHICKEN2,
6811                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6812                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6813                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6814         }
6815
6816         /* WaForceL3Serialization:ivb */
6817         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6818                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6819
6820         /*
6821          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6822          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6823          */
6824         I915_WRITE(GEN6_UCGCTL2,
6825                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6826
6827         /* This is required by WaCatErrorRejectionIssue:ivb */
6828         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6829                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6830                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6831
6832         g4x_disable_trickle_feed(dev);
6833
6834         gen7_setup_fixed_func_scheduler(dev_priv);
6835
6836         if (0) { /* causes HiZ corruption on ivb:gt1 */
6837                 /* enable HiZ Raw Stall Optimization */
6838                 I915_WRITE(CACHE_MODE_0_GEN7,
6839                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6840         }
6841
6842         /* WaDisable4x2SubspanOptimization:ivb */
6843         I915_WRITE(CACHE_MODE_1,
6844                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6845
6846         /*
6847          * BSpec recommends 8x4 when MSAA is used,
6848          * however in practice 16x4 seems fastest.
6849          *
6850          * Note that PS/WM thread counts depend on the WIZ hashing
6851          * disable bit, which we don't touch here, but it's good
6852          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6853          */
6854         I915_WRITE(GEN7_GT_MODE,
6855                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6856
6857         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6858         snpcr &= ~GEN6_MBC_SNPCR_MASK;
6859         snpcr |= GEN6_MBC_SNPCR_MED;
6860         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6861
6862         if (!HAS_PCH_NOP(dev))
6863                 cpt_init_clock_gating(dev);
6864
6865         gen6_check_mch_setup(dev);
6866 }
6867
6868 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6869 {
6870         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6871
6872         /*
6873          * Disable trickle feed and enable pnd deadline calculation
6874          */
6875         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6876         I915_WRITE(CBR1_VLV, 0);
6877 }
6878
6879 static void valleyview_init_clock_gating(struct drm_device *dev)
6880 {
6881         struct drm_i915_private *dev_priv = dev->dev_private;
6882
6883         vlv_init_display_clock_gating(dev_priv);
6884
6885         /* WaDisableEarlyCull:vlv */
6886         I915_WRITE(_3D_CHICKEN3,
6887                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6888
6889         /* WaDisableBackToBackFlipFix:vlv */
6890         I915_WRITE(IVB_CHICKEN3,
6891                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6892                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6893
6894         /* WaPsdDispatchEnable:vlv */
6895         /* WaDisablePSDDualDispatchEnable:vlv */
6896         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6897                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6898                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6899
6900         /* WaDisable_RenderCache_OperationalFlush:vlv */
6901         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6902
6903         /* WaForceL3Serialization:vlv */
6904         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6905                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6906
6907         /* WaDisableDopClockGating:vlv */
6908         I915_WRITE(GEN7_ROW_CHICKEN2,
6909                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6910
6911         /* This is required by WaCatErrorRejectionIssue:vlv */
6912         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6913                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6914                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6915
6916         gen7_setup_fixed_func_scheduler(dev_priv);
6917
6918         /*
6919          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6920          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6921          */
6922         I915_WRITE(GEN6_UCGCTL2,
6923                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6924
6925         /* WaDisableL3Bank2xClockGate:vlv
6926          * Disabling L3 clock gating- MMIO 940c[25] = 1
6927          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6928         I915_WRITE(GEN7_UCGCTL4,
6929                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6930
6931         /*
6932          * BSpec says this must be set, even though
6933          * WaDisable4x2SubspanOptimization isn't listed for VLV.
6934          */
6935         I915_WRITE(CACHE_MODE_1,
6936                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6937
6938         /*
6939          * BSpec recommends 8x4 when MSAA is used,
6940          * however in practice 16x4 seems fastest.
6941          *
6942          * Note that PS/WM thread counts depend on the WIZ hashing
6943          * disable bit, which we don't touch here, but it's good
6944          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6945          */
6946         I915_WRITE(GEN7_GT_MODE,
6947                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6948
6949         /*
6950          * WaIncreaseL3CreditsForVLVB0:vlv
6951          * This is the hardware default actually.
6952          */
6953         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6954
6955         /*
6956          * WaDisableVLVClockGating_VBIIssue:vlv
6957          * Disable clock gating on th GCFG unit to prevent a delay
6958          * in the reporting of vblank events.
6959          */
6960         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6961 }
6962
6963 static void cherryview_init_clock_gating(struct drm_device *dev)
6964 {
6965         struct drm_i915_private *dev_priv = dev->dev_private;
6966
6967         vlv_init_display_clock_gating(dev_priv);
6968
6969         /* WaVSRefCountFullforceMissDisable:chv */
6970         /* WaDSRefCountFullforceMissDisable:chv */
6971         I915_WRITE(GEN7_FF_THREAD_MODE,
6972                    I915_READ(GEN7_FF_THREAD_MODE) &
6973                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6974
6975         /* WaDisableSemaphoreAndSyncFlipWait:chv */
6976         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6977                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6978
6979         /* WaDisableCSUnitClockGating:chv */
6980         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6981                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6982
6983         /* WaDisableSDEUnitClockGating:chv */
6984         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6985                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6986
6987         /*
6988          * GTT cache may not work with big pages, so if those
6989          * are ever enabled GTT cache may need to be disabled.
6990          */
6991         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6992 }
6993
6994 static void g4x_init_clock_gating(struct drm_device *dev)
6995 {
6996         struct drm_i915_private *dev_priv = dev->dev_private;
6997         uint32_t dspclk_gate;
6998
6999         I915_WRITE(RENCLK_GATE_D1, 0);
7000         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7001                    GS_UNIT_CLOCK_GATE_DISABLE |
7002                    CL_UNIT_CLOCK_GATE_DISABLE);
7003         I915_WRITE(RAMCLK_GATE_D, 0);
7004         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7005                 OVRUNIT_CLOCK_GATE_DISABLE |
7006                 OVCUNIT_CLOCK_GATE_DISABLE;
7007         if (IS_GM45(dev))
7008                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7009         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7010
7011         /* WaDisableRenderCachePipelinedFlush */
7012         I915_WRITE(CACHE_MODE_0,
7013                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7014
7015         /* WaDisable_RenderCache_OperationalFlush:g4x */
7016         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7017
7018         g4x_disable_trickle_feed(dev);
7019 }
7020
7021 static void crestline_init_clock_gating(struct drm_device *dev)
7022 {
7023         struct drm_i915_private *dev_priv = dev->dev_private;
7024
7025         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7026         I915_WRITE(RENCLK_GATE_D2, 0);
7027         I915_WRITE(DSPCLK_GATE_D, 0);
7028         I915_WRITE(RAMCLK_GATE_D, 0);
7029         I915_WRITE16(DEUC, 0);
7030         I915_WRITE(MI_ARB_STATE,
7031                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7032
7033         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7034         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7035 }
7036
7037 static void broadwater_init_clock_gating(struct drm_device *dev)
7038 {
7039         struct drm_i915_private *dev_priv = dev->dev_private;
7040
7041         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7042                    I965_RCC_CLOCK_GATE_DISABLE |
7043                    I965_RCPB_CLOCK_GATE_DISABLE |
7044                    I965_ISC_CLOCK_GATE_DISABLE |
7045                    I965_FBC_CLOCK_GATE_DISABLE);
7046         I915_WRITE(RENCLK_GATE_D2, 0);
7047         I915_WRITE(MI_ARB_STATE,
7048                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7049
7050         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7051         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7052 }
7053
7054 static void gen3_init_clock_gating(struct drm_device *dev)
7055 {
7056         struct drm_i915_private *dev_priv = dev->dev_private;
7057         u32 dstate = I915_READ(D_STATE);
7058
7059         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7060                 DSTATE_DOT_CLOCK_GATING;
7061         I915_WRITE(D_STATE, dstate);
7062
7063         if (IS_PINEVIEW(dev))
7064                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7065
7066         /* IIR "flip pending" means done if this bit is set */
7067         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7068
7069         /* interrupts should cause a wake up from C3 */
7070         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7071
7072         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7073         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7074
7075         I915_WRITE(MI_ARB_STATE,
7076                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7077 }
7078
7079 static void i85x_init_clock_gating(struct drm_device *dev)
7080 {
7081         struct drm_i915_private *dev_priv = dev->dev_private;
7082
7083         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7084
7085         /* interrupts should cause a wake up from C3 */
7086         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7087                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7088
7089         I915_WRITE(MEM_MODE,
7090                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7091 }
7092
7093 static void i830_init_clock_gating(struct drm_device *dev)
7094 {
7095         struct drm_i915_private *dev_priv = dev->dev_private;
7096
7097         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7098
7099         I915_WRITE(MEM_MODE,
7100                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7101                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7102 }
7103
7104 void intel_init_clock_gating(struct drm_device *dev)
7105 {
7106         struct drm_i915_private *dev_priv = dev->dev_private;
7107
7108         if (dev_priv->display.init_clock_gating)
7109                 dev_priv->display.init_clock_gating(dev);
7110 }
7111
7112 void intel_suspend_hw(struct drm_device *dev)
7113 {
7114         if (HAS_PCH_LPT(dev))
7115                 lpt_suspend_hw(dev);
7116 }
7117
7118 /* Set up chip specific power management-related functions */
7119 void intel_init_pm(struct drm_device *dev)
7120 {
7121         struct drm_i915_private *dev_priv = dev->dev_private;
7122
7123         intel_fbc_init(dev_priv);
7124
7125         /* For cxsr */
7126         if (IS_PINEVIEW(dev))
7127                 i915_pineview_get_mem_freq(dev);
7128         else if (IS_GEN5(dev))
7129                 i915_ironlake_get_mem_freq(dev);
7130
7131         /* For FIFO watermark updates */
7132         if (INTEL_INFO(dev)->gen >= 9) {
7133                 skl_setup_wm_latency(dev);
7134
7135                 if (IS_BROXTON(dev))
7136                         dev_priv->display.init_clock_gating =
7137                                 bxt_init_clock_gating;
7138                 else if (IS_SKYLAKE(dev))
7139                         dev_priv->display.init_clock_gating =
7140                                 skl_init_clock_gating;
7141                 dev_priv->display.update_wm = skl_update_wm;
7142                 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7143         } else if (HAS_PCH_SPLIT(dev)) {
7144                 ilk_setup_wm_latency(dev);
7145
7146                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7147                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7148                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7149                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7150                         dev_priv->display.update_wm = ilk_update_wm;
7151                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7152                 } else {
7153                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7154                                       "Disable CxSR\n");
7155                 }
7156
7157                 if (IS_GEN5(dev))
7158                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7159                 else if (IS_GEN6(dev))
7160                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7161                 else if (IS_IVYBRIDGE(dev))
7162                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7163                 else if (IS_HASWELL(dev))
7164                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7165                 else if (INTEL_INFO(dev)->gen == 8)
7166                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7167         } else if (IS_CHERRYVIEW(dev)) {
7168                 vlv_setup_wm_latency(dev);
7169
7170                 dev_priv->display.update_wm = vlv_update_wm;
7171                 dev_priv->display.init_clock_gating =
7172                         cherryview_init_clock_gating;
7173         } else if (IS_VALLEYVIEW(dev)) {
7174                 vlv_setup_wm_latency(dev);
7175
7176                 dev_priv->display.update_wm = vlv_update_wm;
7177                 dev_priv->display.init_clock_gating =
7178                         valleyview_init_clock_gating;
7179         } else if (IS_PINEVIEW(dev)) {
7180                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7181                                             dev_priv->is_ddr3,
7182                                             dev_priv->fsb_freq,
7183                                             dev_priv->mem_freq)) {
7184                         DRM_INFO("failed to find known CxSR latency "
7185                                  "(found ddr%s fsb freq %d, mem freq %d), "
7186                                  "disabling CxSR\n",
7187                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7188                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7189                         /* Disable CxSR and never update its watermark again */
7190                         intel_set_memory_cxsr(dev_priv, false);
7191                         dev_priv->display.update_wm = NULL;
7192                 } else
7193                         dev_priv->display.update_wm = pineview_update_wm;
7194                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7195         } else if (IS_G4X(dev)) {
7196                 dev_priv->display.update_wm = g4x_update_wm;
7197                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7198         } else if (IS_GEN4(dev)) {
7199                 dev_priv->display.update_wm = i965_update_wm;
7200                 if (IS_CRESTLINE(dev))
7201                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7202                 else if (IS_BROADWATER(dev))
7203                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7204         } else if (IS_GEN3(dev)) {
7205                 dev_priv->display.update_wm = i9xx_update_wm;
7206                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7207                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7208         } else if (IS_GEN2(dev)) {
7209                 if (INTEL_INFO(dev)->num_pipes == 1) {
7210                         dev_priv->display.update_wm = i845_update_wm;
7211                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7212                 } else {
7213                         dev_priv->display.update_wm = i9xx_update_wm;
7214                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7215                 }
7216
7217                 if (IS_I85X(dev) || IS_I865G(dev))
7218                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7219                 else
7220                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
7221         } else {
7222                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7223         }
7224 }
7225
7226 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7227 {
7228         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7229
7230         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7231                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7232                 return -EAGAIN;
7233         }
7234
7235         I915_WRITE(GEN6_PCODE_DATA, *val);
7236         I915_WRITE(GEN6_PCODE_DATA1, 0);
7237         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7238
7239         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7240                      500)) {
7241                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7242                 return -ETIMEDOUT;
7243         }
7244
7245         *val = I915_READ(GEN6_PCODE_DATA);
7246         I915_WRITE(GEN6_PCODE_DATA, 0);
7247
7248         return 0;
7249 }
7250
7251 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7252 {
7253         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7254
7255         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7256                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7257                 return -EAGAIN;
7258         }
7259
7260         I915_WRITE(GEN6_PCODE_DATA, val);
7261         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7262
7263         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7264                      500)) {
7265                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7266                 return -ETIMEDOUT;
7267         }
7268
7269         I915_WRITE(GEN6_PCODE_DATA, 0);
7270
7271         return 0;
7272 }
7273
7274 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7275 {
7276         switch (czclk_freq) {
7277         case 200:
7278                 return 10;
7279         case 267:
7280                 return 12;
7281         case 320:
7282         case 333:
7283                 return 16;
7284         case 400:
7285                 return 20;
7286         default:
7287                 return -1;
7288         }
7289 }
7290
7291 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7292 {
7293         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7294
7295         div = vlv_gpu_freq_div(czclk_freq);
7296         if (div < 0)
7297                 return div;
7298
7299         return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7300 }
7301
7302 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7303 {
7304         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7305
7306         mul = vlv_gpu_freq_div(czclk_freq);
7307         if (mul < 0)
7308                 return mul;
7309
7310         return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7311 }
7312
7313 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7314 {
7315         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7316
7317         div = vlv_gpu_freq_div(czclk_freq) / 2;
7318         if (div < 0)
7319                 return div;
7320
7321         return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7322 }
7323
7324 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7325 {
7326         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7327
7328         mul = vlv_gpu_freq_div(czclk_freq) / 2;
7329         if (mul < 0)
7330                 return mul;
7331
7332         /* CHV needs even values */
7333         return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7334 }
7335
7336 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7337 {
7338         if (IS_GEN9(dev_priv->dev))
7339                 return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
7340         else if (IS_CHERRYVIEW(dev_priv->dev))
7341                 return chv_gpu_freq(dev_priv, val);
7342         else if (IS_VALLEYVIEW(dev_priv->dev))
7343                 return byt_gpu_freq(dev_priv, val);
7344         else
7345                 return val * GT_FREQUENCY_MULTIPLIER;
7346 }
7347
7348 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7349 {
7350         if (IS_GEN9(dev_priv->dev))
7351                 return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
7352         else if (IS_CHERRYVIEW(dev_priv->dev))
7353                 return chv_freq_opcode(dev_priv, val);
7354         else if (IS_VALLEYVIEW(dev_priv->dev))
7355                 return byt_freq_opcode(dev_priv, val);
7356         else
7357                 return val / GT_FREQUENCY_MULTIPLIER;
7358 }
7359
7360 struct request_boost {
7361         struct work_struct work;
7362         struct drm_i915_gem_request *req;
7363 };
7364
7365 static void __intel_rps_boost_work(struct work_struct *work)
7366 {
7367         struct request_boost *boost = container_of(work, struct request_boost, work);
7368         struct drm_i915_gem_request *req = boost->req;
7369
7370         if (!i915_gem_request_completed(req, true))
7371                 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7372                                req->emitted_jiffies);
7373
7374         i915_gem_request_unreference__unlocked(req);
7375         kfree(boost);
7376 }
7377
7378 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7379                                        struct drm_i915_gem_request *req)
7380 {
7381         struct request_boost *boost;
7382
7383         if (req == NULL || INTEL_INFO(dev)->gen < 6)
7384                 return;
7385
7386         if (i915_gem_request_completed(req, true))
7387                 return;
7388
7389         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7390         if (boost == NULL)
7391                 return;
7392
7393         i915_gem_request_reference(req);
7394         boost->req = req;
7395
7396         INIT_WORK(&boost->work, __intel_rps_boost_work);
7397         queue_work(to_i915(dev)->wq, &boost->work);
7398 }
7399
7400 void intel_pm_setup(struct drm_device *dev)
7401 {
7402         struct drm_i915_private *dev_priv = dev->dev_private;
7403
7404         mutex_init(&dev_priv->rps.hw_lock);
7405         spin_lock_init(&dev_priv->rps.client_lock);
7406
7407         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7408                           intel_gen6_powersave_work);
7409         INIT_LIST_HEAD(&dev_priv->rps.clients);
7410         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7411         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7412
7413         dev_priv->pm.suspended = false;
7414 }