Merge branch 'drm/next/du' of git://linuxtv.org/pinchartl/fbdev into drm-next
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->primary->fb;
96         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
97         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
98         int cfb_pitch;
99         int i;
100         u32 fbc_ctl;
101
102         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
103         if (fb->pitches[0] < cfb_pitch)
104                 cfb_pitch = fb->pitches[0];
105
106         /* FBC_CTL wants 32B or 64B units */
107         if (IS_GEN2(dev))
108                 cfb_pitch = (cfb_pitch / 32) - 1;
109         else
110                 cfb_pitch = (cfb_pitch / 64) - 1;
111
112         /* Clear old tags */
113         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
114                 I915_WRITE(FBC_TAG + (i * 4), 0);
115
116         if (IS_GEN4(dev)) {
117                 u32 fbc_ctl2;
118
119                 /* Set it up... */
120                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
121                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
122                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
123                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
124         }
125
126         /* enable it... */
127         fbc_ctl = I915_READ(FBC_CONTROL);
128         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
129         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
130         if (IS_I945GM(dev))
131                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
132         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
133         fbc_ctl |= obj->fence_reg;
134         I915_WRITE(FBC_CONTROL, fbc_ctl);
135
136         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
137                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
138 }
139
140 static bool i8xx_fbc_enabled(struct drm_device *dev)
141 {
142         struct drm_i915_private *dev_priv = dev->dev_private;
143
144         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
145 }
146
147 static void g4x_enable_fbc(struct drm_crtc *crtc)
148 {
149         struct drm_device *dev = crtc->dev;
150         struct drm_i915_private *dev_priv = dev->dev_private;
151         struct drm_framebuffer *fb = crtc->primary->fb;
152         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
154         u32 dpfc_ctl;
155
156         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
157         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
158                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
159         else
160                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
161         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
162
163         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
164
165         /* enable it... */
166         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
167
168         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
169 }
170
171 static void g4x_disable_fbc(struct drm_device *dev)
172 {
173         struct drm_i915_private *dev_priv = dev->dev_private;
174         u32 dpfc_ctl;
175
176         /* Disable compression */
177         dpfc_ctl = I915_READ(DPFC_CONTROL);
178         if (dpfc_ctl & DPFC_CTL_EN) {
179                 dpfc_ctl &= ~DPFC_CTL_EN;
180                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
181
182                 DRM_DEBUG_KMS("disabled FBC\n");
183         }
184 }
185
186 static bool g4x_fbc_enabled(struct drm_device *dev)
187 {
188         struct drm_i915_private *dev_priv = dev->dev_private;
189
190         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
191 }
192
193 static void sandybridge_blit_fbc_update(struct drm_device *dev)
194 {
195         struct drm_i915_private *dev_priv = dev->dev_private;
196         u32 blt_ecoskpd;
197
198         /* Make sure blitter notifies FBC of writes */
199
200         /* Blitter is part of Media powerwell on VLV. No impact of
201          * his param in other platforms for now */
202         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
203
204         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
205         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
206                 GEN6_BLITTER_LOCK_SHIFT;
207         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
208         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
211                          GEN6_BLITTER_LOCK_SHIFT);
212         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
213         POSTING_READ(GEN6_BLITTER_ECOSKPD);
214
215         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
216 }
217
218 static void ironlake_enable_fbc(struct drm_crtc *crtc)
219 {
220         struct drm_device *dev = crtc->dev;
221         struct drm_i915_private *dev_priv = dev->dev_private;
222         struct drm_framebuffer *fb = crtc->primary->fb;
223         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
225         u32 dpfc_ctl;
226
227         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
228         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
229                 dev_priv->fbc.threshold++;
230
231         switch (dev_priv->fbc.threshold) {
232         case 4:
233         case 3:
234                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
235                 break;
236         case 2:
237                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
238                 break;
239         case 1:
240                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
241                 break;
242         }
243         dpfc_ctl |= DPFC_CTL_FENCE_EN;
244         if (IS_GEN5(dev))
245                 dpfc_ctl |= obj->fence_reg;
246
247         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
248         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
249         /* enable it... */
250         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
251
252         if (IS_GEN6(dev)) {
253                 I915_WRITE(SNB_DPFC_CTL_SA,
254                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
255                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
256                 sandybridge_blit_fbc_update(dev);
257         }
258
259         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
260 }
261
262 static void ironlake_disable_fbc(struct drm_device *dev)
263 {
264         struct drm_i915_private *dev_priv = dev->dev_private;
265         u32 dpfc_ctl;
266
267         /* Disable compression */
268         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
269         if (dpfc_ctl & DPFC_CTL_EN) {
270                 dpfc_ctl &= ~DPFC_CTL_EN;
271                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
272
273                 DRM_DEBUG_KMS("disabled FBC\n");
274         }
275 }
276
277 static bool ironlake_fbc_enabled(struct drm_device *dev)
278 {
279         struct drm_i915_private *dev_priv = dev->dev_private;
280
281         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
282 }
283
284 static void gen7_enable_fbc(struct drm_crtc *crtc)
285 {
286         struct drm_device *dev = crtc->dev;
287         struct drm_i915_private *dev_priv = dev->dev_private;
288         struct drm_framebuffer *fb = crtc->primary->fb;
289         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
291         u32 dpfc_ctl;
292
293         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
294         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
295                 dev_priv->fbc.threshold++;
296
297         switch (dev_priv->fbc.threshold) {
298         case 4:
299         case 3:
300                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
301                 break;
302         case 2:
303                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
304                 break;
305         case 1:
306                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
307                 break;
308         }
309
310         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
311
312         if (dev_priv->fbc.false_color)
313                 dpfc_ctl |= FBC_CTL_FALSE_COLOR;
314
315         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
316
317         if (IS_IVYBRIDGE(dev)) {
318                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
319                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
320                            I915_READ(ILK_DISPLAY_CHICKEN1) |
321                            ILK_FBCQ_DIS);
322         } else {
323                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
324                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
325                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
326                            HSW_FBCQ_DIS);
327         }
328
329         I915_WRITE(SNB_DPFC_CTL_SA,
330                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
331         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
332
333         sandybridge_blit_fbc_update(dev);
334
335         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
336 }
337
338 bool intel_fbc_enabled(struct drm_device *dev)
339 {
340         struct drm_i915_private *dev_priv = dev->dev_private;
341
342         if (!dev_priv->display.fbc_enabled)
343                 return false;
344
345         return dev_priv->display.fbc_enabled(dev);
346 }
347
348 void gen8_fbc_sw_flush(struct drm_device *dev, u32 value)
349 {
350         struct drm_i915_private *dev_priv = dev->dev_private;
351
352         if (!IS_GEN8(dev))
353                 return;
354
355         I915_WRITE(MSG_FBC_REND_STATE, value);
356 }
357
358 static void intel_fbc_work_fn(struct work_struct *__work)
359 {
360         struct intel_fbc_work *work =
361                 container_of(to_delayed_work(__work),
362                              struct intel_fbc_work, work);
363         struct drm_device *dev = work->crtc->dev;
364         struct drm_i915_private *dev_priv = dev->dev_private;
365
366         mutex_lock(&dev->struct_mutex);
367         if (work == dev_priv->fbc.fbc_work) {
368                 /* Double check that we haven't switched fb without cancelling
369                  * the prior work.
370                  */
371                 if (work->crtc->primary->fb == work->fb) {
372                         dev_priv->display.enable_fbc(work->crtc);
373
374                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
375                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
376                         dev_priv->fbc.y = work->crtc->y;
377                 }
378
379                 dev_priv->fbc.fbc_work = NULL;
380         }
381         mutex_unlock(&dev->struct_mutex);
382
383         kfree(work);
384 }
385
386 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
387 {
388         if (dev_priv->fbc.fbc_work == NULL)
389                 return;
390
391         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
392
393         /* Synchronisation is provided by struct_mutex and checking of
394          * dev_priv->fbc.fbc_work, so we can perform the cancellation
395          * entirely asynchronously.
396          */
397         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
398                 /* tasklet was killed before being run, clean up */
399                 kfree(dev_priv->fbc.fbc_work);
400
401         /* Mark the work as no longer wanted so that if it does
402          * wake-up (because the work was already running and waiting
403          * for our mutex), it will discover that is no longer
404          * necessary to run.
405          */
406         dev_priv->fbc.fbc_work = NULL;
407 }
408
409 static void intel_enable_fbc(struct drm_crtc *crtc)
410 {
411         struct intel_fbc_work *work;
412         struct drm_device *dev = crtc->dev;
413         struct drm_i915_private *dev_priv = dev->dev_private;
414
415         if (!dev_priv->display.enable_fbc)
416                 return;
417
418         intel_cancel_fbc_work(dev_priv);
419
420         work = kzalloc(sizeof(*work), GFP_KERNEL);
421         if (work == NULL) {
422                 DRM_ERROR("Failed to allocate FBC work structure\n");
423                 dev_priv->display.enable_fbc(crtc);
424                 return;
425         }
426
427         work->crtc = crtc;
428         work->fb = crtc->primary->fb;
429         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
430
431         dev_priv->fbc.fbc_work = work;
432
433         /* Delay the actual enabling to let pageflipping cease and the
434          * display to settle before starting the compression. Note that
435          * this delay also serves a second purpose: it allows for a
436          * vblank to pass after disabling the FBC before we attempt
437          * to modify the control registers.
438          *
439          * A more complicated solution would involve tracking vblanks
440          * following the termination of the page-flipping sequence
441          * and indeed performing the enable as a co-routine and not
442          * waiting synchronously upon the vblank.
443          *
444          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
445          */
446         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
447 }
448
449 void intel_disable_fbc(struct drm_device *dev)
450 {
451         struct drm_i915_private *dev_priv = dev->dev_private;
452
453         intel_cancel_fbc_work(dev_priv);
454
455         if (!dev_priv->display.disable_fbc)
456                 return;
457
458         dev_priv->display.disable_fbc(dev);
459         dev_priv->fbc.plane = -1;
460 }
461
462 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
463                               enum no_fbc_reason reason)
464 {
465         if (dev_priv->fbc.no_fbc_reason == reason)
466                 return false;
467
468         dev_priv->fbc.no_fbc_reason = reason;
469         return true;
470 }
471
472 /**
473  * intel_update_fbc - enable/disable FBC as needed
474  * @dev: the drm_device
475  *
476  * Set up the framebuffer compression hardware at mode set time.  We
477  * enable it if possible:
478  *   - plane A only (on pre-965)
479  *   - no pixel mulitply/line duplication
480  *   - no alpha buffer discard
481  *   - no dual wide
482  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
483  *
484  * We can't assume that any compression will take place (worst case),
485  * so the compressed buffer has to be the same size as the uncompressed
486  * one.  It also must reside (along with the line length buffer) in
487  * stolen memory.
488  *
489  * We need to enable/disable FBC on a global basis.
490  */
491 void intel_update_fbc(struct drm_device *dev)
492 {
493         struct drm_i915_private *dev_priv = dev->dev_private;
494         struct drm_crtc *crtc = NULL, *tmp_crtc;
495         struct intel_crtc *intel_crtc;
496         struct drm_framebuffer *fb;
497         struct drm_i915_gem_object *obj;
498         const struct drm_display_mode *adjusted_mode;
499         unsigned int max_width, max_height;
500
501         if (!HAS_FBC(dev)) {
502                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
503                 return;
504         }
505
506         if (!i915.powersave) {
507                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
508                         DRM_DEBUG_KMS("fbc disabled per module param\n");
509                 return;
510         }
511
512         /*
513          * If FBC is already on, we just have to verify that we can
514          * keep it that way...
515          * Need to disable if:
516          *   - more than one pipe is active
517          *   - changing FBC params (stride, fence, mode)
518          *   - new fb is too large to fit in compressed buffer
519          *   - going to an unsupported config (interlace, pixel multiply, etc.)
520          */
521         for_each_crtc(dev, tmp_crtc) {
522                 if (intel_crtc_active(tmp_crtc) &&
523                     to_intel_crtc(tmp_crtc)->primary_enabled) {
524                         if (crtc) {
525                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
526                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
527                                 goto out_disable;
528                         }
529                         crtc = tmp_crtc;
530                 }
531         }
532
533         if (!crtc || crtc->primary->fb == NULL) {
534                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
535                         DRM_DEBUG_KMS("no output, disabling\n");
536                 goto out_disable;
537         }
538
539         intel_crtc = to_intel_crtc(crtc);
540         fb = crtc->primary->fb;
541         obj = intel_fb_obj(fb);
542         adjusted_mode = &intel_crtc->config.adjusted_mode;
543
544         if (i915.enable_fbc < 0) {
545                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
546                         DRM_DEBUG_KMS("disabled per chip default\n");
547                 goto out_disable;
548         }
549         if (!i915.enable_fbc) {
550                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
551                         DRM_DEBUG_KMS("fbc disabled per module param\n");
552                 goto out_disable;
553         }
554         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
555             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
556                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
557                         DRM_DEBUG_KMS("mode incompatible with compression, "
558                                       "disabling\n");
559                 goto out_disable;
560         }
561
562         if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
563                 max_width = 4096;
564                 max_height = 4096;
565         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
566                 max_width = 4096;
567                 max_height = 2048;
568         } else {
569                 max_width = 2048;
570                 max_height = 1536;
571         }
572         if (intel_crtc->config.pipe_src_w > max_width ||
573             intel_crtc->config.pipe_src_h > max_height) {
574                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
575                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
576                 goto out_disable;
577         }
578         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
579             intel_crtc->plane != PLANE_A) {
580                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
581                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
582                 goto out_disable;
583         }
584
585         /* The use of a CPU fence is mandatory in order to detect writes
586          * by the CPU to the scanout and trigger updates to the FBC.
587          */
588         if (obj->tiling_mode != I915_TILING_X ||
589             obj->fence_reg == I915_FENCE_REG_NONE) {
590                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
591                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
592                 goto out_disable;
593         }
594         if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
595             to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
596                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
597                         DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
598                 goto out_disable;
599         }
600
601         /* If the kernel debugger is active, always disable compression */
602         if (in_dbg_master())
603                 goto out_disable;
604
605         if (i915_gem_stolen_setup_compression(dev, obj->base.size,
606                                               drm_format_plane_cpp(fb->pixel_format, 0))) {
607                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
608                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
609                 goto out_disable;
610         }
611
612         /* If the scanout has not changed, don't modify the FBC settings.
613          * Note that we make the fundamental assumption that the fb->obj
614          * cannot be unpinned (and have its GTT offset and fence revoked)
615          * without first being decoupled from the scanout and FBC disabled.
616          */
617         if (dev_priv->fbc.plane == intel_crtc->plane &&
618             dev_priv->fbc.fb_id == fb->base.id &&
619             dev_priv->fbc.y == crtc->y)
620                 return;
621
622         if (intel_fbc_enabled(dev)) {
623                 /* We update FBC along two paths, after changing fb/crtc
624                  * configuration (modeswitching) and after page-flipping
625                  * finishes. For the latter, we know that not only did
626                  * we disable the FBC at the start of the page-flip
627                  * sequence, but also more than one vblank has passed.
628                  *
629                  * For the former case of modeswitching, it is possible
630                  * to switch between two FBC valid configurations
631                  * instantaneously so we do need to disable the FBC
632                  * before we can modify its control registers. We also
633                  * have to wait for the next vblank for that to take
634                  * effect. However, since we delay enabling FBC we can
635                  * assume that a vblank has passed since disabling and
636                  * that we can safely alter the registers in the deferred
637                  * callback.
638                  *
639                  * In the scenario that we go from a valid to invalid
640                  * and then back to valid FBC configuration we have
641                  * no strict enforcement that a vblank occurred since
642                  * disabling the FBC. However, along all current pipe
643                  * disabling paths we do need to wait for a vblank at
644                  * some point. And we wait before enabling FBC anyway.
645                  */
646                 DRM_DEBUG_KMS("disabling active FBC for update\n");
647                 intel_disable_fbc(dev);
648         }
649
650         intel_enable_fbc(crtc);
651         dev_priv->fbc.no_fbc_reason = FBC_OK;
652         return;
653
654 out_disable:
655         /* Multiple disables should be harmless */
656         if (intel_fbc_enabled(dev)) {
657                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
658                 intel_disable_fbc(dev);
659         }
660         i915_gem_stolen_cleanup_compression(dev);
661 }
662
663 static void i915_pineview_get_mem_freq(struct drm_device *dev)
664 {
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         u32 tmp;
667
668         tmp = I915_READ(CLKCFG);
669
670         switch (tmp & CLKCFG_FSB_MASK) {
671         case CLKCFG_FSB_533:
672                 dev_priv->fsb_freq = 533; /* 133*4 */
673                 break;
674         case CLKCFG_FSB_800:
675                 dev_priv->fsb_freq = 800; /* 200*4 */
676                 break;
677         case CLKCFG_FSB_667:
678                 dev_priv->fsb_freq =  667; /* 167*4 */
679                 break;
680         case CLKCFG_FSB_400:
681                 dev_priv->fsb_freq = 400; /* 100*4 */
682                 break;
683         }
684
685         switch (tmp & CLKCFG_MEM_MASK) {
686         case CLKCFG_MEM_533:
687                 dev_priv->mem_freq = 533;
688                 break;
689         case CLKCFG_MEM_667:
690                 dev_priv->mem_freq = 667;
691                 break;
692         case CLKCFG_MEM_800:
693                 dev_priv->mem_freq = 800;
694                 break;
695         }
696
697         /* detect pineview DDR3 setting */
698         tmp = I915_READ(CSHRDDR3CTL);
699         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
700 }
701
702 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
703 {
704         struct drm_i915_private *dev_priv = dev->dev_private;
705         u16 ddrpll, csipll;
706
707         ddrpll = I915_READ16(DDRMPLL1);
708         csipll = I915_READ16(CSIPLL0);
709
710         switch (ddrpll & 0xff) {
711         case 0xc:
712                 dev_priv->mem_freq = 800;
713                 break;
714         case 0x10:
715                 dev_priv->mem_freq = 1066;
716                 break;
717         case 0x14:
718                 dev_priv->mem_freq = 1333;
719                 break;
720         case 0x18:
721                 dev_priv->mem_freq = 1600;
722                 break;
723         default:
724                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
725                                  ddrpll & 0xff);
726                 dev_priv->mem_freq = 0;
727                 break;
728         }
729
730         dev_priv->ips.r_t = dev_priv->mem_freq;
731
732         switch (csipll & 0x3ff) {
733         case 0x00c:
734                 dev_priv->fsb_freq = 3200;
735                 break;
736         case 0x00e:
737                 dev_priv->fsb_freq = 3733;
738                 break;
739         case 0x010:
740                 dev_priv->fsb_freq = 4266;
741                 break;
742         case 0x012:
743                 dev_priv->fsb_freq = 4800;
744                 break;
745         case 0x014:
746                 dev_priv->fsb_freq = 5333;
747                 break;
748         case 0x016:
749                 dev_priv->fsb_freq = 5866;
750                 break;
751         case 0x018:
752                 dev_priv->fsb_freq = 6400;
753                 break;
754         default:
755                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
756                                  csipll & 0x3ff);
757                 dev_priv->fsb_freq = 0;
758                 break;
759         }
760
761         if (dev_priv->fsb_freq == 3200) {
762                 dev_priv->ips.c_m = 0;
763         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
764                 dev_priv->ips.c_m = 1;
765         } else {
766                 dev_priv->ips.c_m = 2;
767         }
768 }
769
770 static const struct cxsr_latency cxsr_latency_table[] = {
771         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
772         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
773         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
774         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
775         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
776
777         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
778         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
779         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
780         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
781         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
782
783         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
784         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
785         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
786         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
787         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
788
789         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
790         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
791         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
792         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
793         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
794
795         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
796         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
797         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
798         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
799         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
800
801         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
802         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
803         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
804         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
805         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
806 };
807
808 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
809                                                          int is_ddr3,
810                                                          int fsb,
811                                                          int mem)
812 {
813         const struct cxsr_latency *latency;
814         int i;
815
816         if (fsb == 0 || mem == 0)
817                 return NULL;
818
819         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
820                 latency = &cxsr_latency_table[i];
821                 if (is_desktop == latency->is_desktop &&
822                     is_ddr3 == latency->is_ddr3 &&
823                     fsb == latency->fsb_freq && mem == latency->mem_freq)
824                         return latency;
825         }
826
827         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
828
829         return NULL;
830 }
831
832 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
833 {
834         struct drm_device *dev = dev_priv->dev;
835         u32 val;
836
837         if (IS_VALLEYVIEW(dev)) {
838                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
839         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
840                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
841         } else if (IS_PINEVIEW(dev)) {
842                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
843                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
844                 I915_WRITE(DSPFW3, val);
845         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
846                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
847                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
848                 I915_WRITE(FW_BLC_SELF, val);
849         } else if (IS_I915GM(dev)) {
850                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
851                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
852                 I915_WRITE(INSTPM, val);
853         } else {
854                 return;
855         }
856
857         DRM_DEBUG_KMS("memory self-refresh is %s\n",
858                       enable ? "enabled" : "disabled");
859 }
860
861 /*
862  * Latency for FIFO fetches is dependent on several factors:
863  *   - memory configuration (speed, channels)
864  *   - chipset
865  *   - current MCH state
866  * It can be fairly high in some situations, so here we assume a fairly
867  * pessimal value.  It's a tradeoff between extra memory fetches (if we
868  * set this value too high, the FIFO will fetch frequently to stay full)
869  * and power consumption (set it too low to save power and we might see
870  * FIFO underruns and display "flicker").
871  *
872  * A value of 5us seems to be a good balance; safe for very low end
873  * platforms but not overly aggressive on lower latency configs.
874  */
875 static const int pessimal_latency_ns = 5000;
876
877 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
878 {
879         struct drm_i915_private *dev_priv = dev->dev_private;
880         uint32_t dsparb = I915_READ(DSPARB);
881         int size;
882
883         size = dsparb & 0x7f;
884         if (plane)
885                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
886
887         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
888                       plane ? "B" : "A", size);
889
890         return size;
891 }
892
893 static int i830_get_fifo_size(struct drm_device *dev, int plane)
894 {
895         struct drm_i915_private *dev_priv = dev->dev_private;
896         uint32_t dsparb = I915_READ(DSPARB);
897         int size;
898
899         size = dsparb & 0x1ff;
900         if (plane)
901                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
902         size >>= 1; /* Convert to cachelines */
903
904         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
905                       plane ? "B" : "A", size);
906
907         return size;
908 }
909
910 static int i845_get_fifo_size(struct drm_device *dev, int plane)
911 {
912         struct drm_i915_private *dev_priv = dev->dev_private;
913         uint32_t dsparb = I915_READ(DSPARB);
914         int size;
915
916         size = dsparb & 0x7f;
917         size >>= 2; /* Convert to cachelines */
918
919         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
920                       plane ? "B" : "A",
921                       size);
922
923         return size;
924 }
925
926 /* Pineview has different values for various configs */
927 static const struct intel_watermark_params pineview_display_wm = {
928         .fifo_size = PINEVIEW_DISPLAY_FIFO,
929         .max_wm = PINEVIEW_MAX_WM,
930         .default_wm = PINEVIEW_DFT_WM,
931         .guard_size = PINEVIEW_GUARD_WM,
932         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
933 };
934 static const struct intel_watermark_params pineview_display_hplloff_wm = {
935         .fifo_size = PINEVIEW_DISPLAY_FIFO,
936         .max_wm = PINEVIEW_MAX_WM,
937         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
938         .guard_size = PINEVIEW_GUARD_WM,
939         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
940 };
941 static const struct intel_watermark_params pineview_cursor_wm = {
942         .fifo_size = PINEVIEW_CURSOR_FIFO,
943         .max_wm = PINEVIEW_CURSOR_MAX_WM,
944         .default_wm = PINEVIEW_CURSOR_DFT_WM,
945         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
946         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
947 };
948 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
949         .fifo_size = PINEVIEW_CURSOR_FIFO,
950         .max_wm = PINEVIEW_CURSOR_MAX_WM,
951         .default_wm = PINEVIEW_CURSOR_DFT_WM,
952         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
953         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
954 };
955 static const struct intel_watermark_params g4x_wm_info = {
956         .fifo_size = G4X_FIFO_SIZE,
957         .max_wm = G4X_MAX_WM,
958         .default_wm = G4X_MAX_WM,
959         .guard_size = 2,
960         .cacheline_size = G4X_FIFO_LINE_SIZE,
961 };
962 static const struct intel_watermark_params g4x_cursor_wm_info = {
963         .fifo_size = I965_CURSOR_FIFO,
964         .max_wm = I965_CURSOR_MAX_WM,
965         .default_wm = I965_CURSOR_DFT_WM,
966         .guard_size = 2,
967         .cacheline_size = G4X_FIFO_LINE_SIZE,
968 };
969 static const struct intel_watermark_params valleyview_wm_info = {
970         .fifo_size = VALLEYVIEW_FIFO_SIZE,
971         .max_wm = VALLEYVIEW_MAX_WM,
972         .default_wm = VALLEYVIEW_MAX_WM,
973         .guard_size = 2,
974         .cacheline_size = G4X_FIFO_LINE_SIZE,
975 };
976 static const struct intel_watermark_params valleyview_cursor_wm_info = {
977         .fifo_size = I965_CURSOR_FIFO,
978         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
979         .default_wm = I965_CURSOR_DFT_WM,
980         .guard_size = 2,
981         .cacheline_size = G4X_FIFO_LINE_SIZE,
982 };
983 static const struct intel_watermark_params i965_cursor_wm_info = {
984         .fifo_size = I965_CURSOR_FIFO,
985         .max_wm = I965_CURSOR_MAX_WM,
986         .default_wm = I965_CURSOR_DFT_WM,
987         .guard_size = 2,
988         .cacheline_size = I915_FIFO_LINE_SIZE,
989 };
990 static const struct intel_watermark_params i945_wm_info = {
991         .fifo_size = I945_FIFO_SIZE,
992         .max_wm = I915_MAX_WM,
993         .default_wm = 1,
994         .guard_size = 2,
995         .cacheline_size = I915_FIFO_LINE_SIZE,
996 };
997 static const struct intel_watermark_params i915_wm_info = {
998         .fifo_size = I915_FIFO_SIZE,
999         .max_wm = I915_MAX_WM,
1000         .default_wm = 1,
1001         .guard_size = 2,
1002         .cacheline_size = I915_FIFO_LINE_SIZE,
1003 };
1004 static const struct intel_watermark_params i830_a_wm_info = {
1005         .fifo_size = I855GM_FIFO_SIZE,
1006         .max_wm = I915_MAX_WM,
1007         .default_wm = 1,
1008         .guard_size = 2,
1009         .cacheline_size = I830_FIFO_LINE_SIZE,
1010 };
1011 static const struct intel_watermark_params i830_bc_wm_info = {
1012         .fifo_size = I855GM_FIFO_SIZE,
1013         .max_wm = I915_MAX_WM/2,
1014         .default_wm = 1,
1015         .guard_size = 2,
1016         .cacheline_size = I830_FIFO_LINE_SIZE,
1017 };
1018 static const struct intel_watermark_params i845_wm_info = {
1019         .fifo_size = I830_FIFO_SIZE,
1020         .max_wm = I915_MAX_WM,
1021         .default_wm = 1,
1022         .guard_size = 2,
1023         .cacheline_size = I830_FIFO_LINE_SIZE,
1024 };
1025
1026 /**
1027  * intel_calculate_wm - calculate watermark level
1028  * @clock_in_khz: pixel clock
1029  * @wm: chip FIFO params
1030  * @pixel_size: display pixel size
1031  * @latency_ns: memory latency for the platform
1032  *
1033  * Calculate the watermark level (the level at which the display plane will
1034  * start fetching from memory again).  Each chip has a different display
1035  * FIFO size and allocation, so the caller needs to figure that out and pass
1036  * in the correct intel_watermark_params structure.
1037  *
1038  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1039  * on the pixel size.  When it reaches the watermark level, it'll start
1040  * fetching FIFO line sized based chunks from memory until the FIFO fills
1041  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1042  * will occur, and a display engine hang could result.
1043  */
1044 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1045                                         const struct intel_watermark_params *wm,
1046                                         int fifo_size,
1047                                         int pixel_size,
1048                                         unsigned long latency_ns)
1049 {
1050         long entries_required, wm_size;
1051
1052         /*
1053          * Note: we need to make sure we don't overflow for various clock &
1054          * latency values.
1055          * clocks go from a few thousand to several hundred thousand.
1056          * latency is usually a few thousand
1057          */
1058         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1059                 1000;
1060         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1061
1062         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1063
1064         wm_size = fifo_size - (entries_required + wm->guard_size);
1065
1066         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1067
1068         /* Don't promote wm_size to unsigned... */
1069         if (wm_size > (long)wm->max_wm)
1070                 wm_size = wm->max_wm;
1071         if (wm_size <= 0)
1072                 wm_size = wm->default_wm;
1073         return wm_size;
1074 }
1075
1076 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1077 {
1078         struct drm_crtc *crtc, *enabled = NULL;
1079
1080         for_each_crtc(dev, crtc) {
1081                 if (intel_crtc_active(crtc)) {
1082                         if (enabled)
1083                                 return NULL;
1084                         enabled = crtc;
1085                 }
1086         }
1087
1088         return enabled;
1089 }
1090
1091 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1092 {
1093         struct drm_device *dev = unused_crtc->dev;
1094         struct drm_i915_private *dev_priv = dev->dev_private;
1095         struct drm_crtc *crtc;
1096         const struct cxsr_latency *latency;
1097         u32 reg;
1098         unsigned long wm;
1099
1100         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1101                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1102         if (!latency) {
1103                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1104                 intel_set_memory_cxsr(dev_priv, false);
1105                 return;
1106         }
1107
1108         crtc = single_enabled_crtc(dev);
1109         if (crtc) {
1110                 const struct drm_display_mode *adjusted_mode;
1111                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1112                 int clock;
1113
1114                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1115                 clock = adjusted_mode->crtc_clock;
1116
1117                 /* Display SR */
1118                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1119                                         pineview_display_wm.fifo_size,
1120                                         pixel_size, latency->display_sr);
1121                 reg = I915_READ(DSPFW1);
1122                 reg &= ~DSPFW_SR_MASK;
1123                 reg |= wm << DSPFW_SR_SHIFT;
1124                 I915_WRITE(DSPFW1, reg);
1125                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1126
1127                 /* cursor SR */
1128                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1129                                         pineview_display_wm.fifo_size,
1130                                         pixel_size, latency->cursor_sr);
1131                 reg = I915_READ(DSPFW3);
1132                 reg &= ~DSPFW_CURSOR_SR_MASK;
1133                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1134                 I915_WRITE(DSPFW3, reg);
1135
1136                 /* Display HPLL off SR */
1137                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1138                                         pineview_display_hplloff_wm.fifo_size,
1139                                         pixel_size, latency->display_hpll_disable);
1140                 reg = I915_READ(DSPFW3);
1141                 reg &= ~DSPFW_HPLL_SR_MASK;
1142                 reg |= wm & DSPFW_HPLL_SR_MASK;
1143                 I915_WRITE(DSPFW3, reg);
1144
1145                 /* cursor HPLL off SR */
1146                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1147                                         pineview_display_hplloff_wm.fifo_size,
1148                                         pixel_size, latency->cursor_hpll_disable);
1149                 reg = I915_READ(DSPFW3);
1150                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1151                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1152                 I915_WRITE(DSPFW3, reg);
1153                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1154
1155                 intel_set_memory_cxsr(dev_priv, true);
1156         } else {
1157                 intel_set_memory_cxsr(dev_priv, false);
1158         }
1159 }
1160
1161 static bool g4x_compute_wm0(struct drm_device *dev,
1162                             int plane,
1163                             const struct intel_watermark_params *display,
1164                             int display_latency_ns,
1165                             const struct intel_watermark_params *cursor,
1166                             int cursor_latency_ns,
1167                             int *plane_wm,
1168                             int *cursor_wm)
1169 {
1170         struct drm_crtc *crtc;
1171         const struct drm_display_mode *adjusted_mode;
1172         int htotal, hdisplay, clock, pixel_size;
1173         int line_time_us, line_count;
1174         int entries, tlb_miss;
1175
1176         crtc = intel_get_crtc_for_plane(dev, plane);
1177         if (!intel_crtc_active(crtc)) {
1178                 *cursor_wm = cursor->guard_size;
1179                 *plane_wm = display->guard_size;
1180                 return false;
1181         }
1182
1183         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1184         clock = adjusted_mode->crtc_clock;
1185         htotal = adjusted_mode->crtc_htotal;
1186         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1187         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1188
1189         /* Use the small buffer method to calculate plane watermark */
1190         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1191         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1192         if (tlb_miss > 0)
1193                 entries += tlb_miss;
1194         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1195         *plane_wm = entries + display->guard_size;
1196         if (*plane_wm > (int)display->max_wm)
1197                 *plane_wm = display->max_wm;
1198
1199         /* Use the large buffer method to calculate cursor watermark */
1200         line_time_us = max(htotal * 1000 / clock, 1);
1201         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1202         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1203         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1204         if (tlb_miss > 0)
1205                 entries += tlb_miss;
1206         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1207         *cursor_wm = entries + cursor->guard_size;
1208         if (*cursor_wm > (int)cursor->max_wm)
1209                 *cursor_wm = (int)cursor->max_wm;
1210
1211         return true;
1212 }
1213
1214 /*
1215  * Check the wm result.
1216  *
1217  * If any calculated watermark values is larger than the maximum value that
1218  * can be programmed into the associated watermark register, that watermark
1219  * must be disabled.
1220  */
1221 static bool g4x_check_srwm(struct drm_device *dev,
1222                            int display_wm, int cursor_wm,
1223                            const struct intel_watermark_params *display,
1224                            const struct intel_watermark_params *cursor)
1225 {
1226         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1227                       display_wm, cursor_wm);
1228
1229         if (display_wm > display->max_wm) {
1230                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1231                               display_wm, display->max_wm);
1232                 return false;
1233         }
1234
1235         if (cursor_wm > cursor->max_wm) {
1236                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1237                               cursor_wm, cursor->max_wm);
1238                 return false;
1239         }
1240
1241         if (!(display_wm || cursor_wm)) {
1242                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1243                 return false;
1244         }
1245
1246         return true;
1247 }
1248
1249 static bool g4x_compute_srwm(struct drm_device *dev,
1250                              int plane,
1251                              int latency_ns,
1252                              const struct intel_watermark_params *display,
1253                              const struct intel_watermark_params *cursor,
1254                              int *display_wm, int *cursor_wm)
1255 {
1256         struct drm_crtc *crtc;
1257         const struct drm_display_mode *adjusted_mode;
1258         int hdisplay, htotal, pixel_size, clock;
1259         unsigned long line_time_us;
1260         int line_count, line_size;
1261         int small, large;
1262         int entries;
1263
1264         if (!latency_ns) {
1265                 *display_wm = *cursor_wm = 0;
1266                 return false;
1267         }
1268
1269         crtc = intel_get_crtc_for_plane(dev, plane);
1270         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1271         clock = adjusted_mode->crtc_clock;
1272         htotal = adjusted_mode->crtc_htotal;
1273         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1274         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1275
1276         line_time_us = max(htotal * 1000 / clock, 1);
1277         line_count = (latency_ns / line_time_us + 1000) / 1000;
1278         line_size = hdisplay * pixel_size;
1279
1280         /* Use the minimum of the small and large buffer method for primary */
1281         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1282         large = line_count * line_size;
1283
1284         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1285         *display_wm = entries + display->guard_size;
1286
1287         /* calculate the self-refresh watermark for display cursor */
1288         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1289         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1290         *cursor_wm = entries + cursor->guard_size;
1291
1292         return g4x_check_srwm(dev,
1293                               *display_wm, *cursor_wm,
1294                               display, cursor);
1295 }
1296
1297 static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
1298                                       int pixel_size,
1299                                       int *prec_mult,
1300                                       int *drain_latency)
1301 {
1302         int entries;
1303         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1304
1305         if (WARN(clock == 0, "Pixel clock is zero!\n"))
1306                 return false;
1307
1308         if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
1309                 return false;
1310
1311         entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1312         *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
1313                                        DRAIN_LATENCY_PRECISION_32;
1314         *drain_latency = (64 * (*prec_mult) * 4) / entries;
1315
1316         if (*drain_latency > DRAIN_LATENCY_MASK)
1317                 *drain_latency = DRAIN_LATENCY_MASK;
1318
1319         return true;
1320 }
1321
1322 /*
1323  * Update drain latency registers of memory arbiter
1324  *
1325  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1326  * to be programmed. Each plane has a drain latency multiplier and a drain
1327  * latency value.
1328  */
1329
1330 static void vlv_update_drain_latency(struct drm_crtc *crtc)
1331 {
1332         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1333         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1334         int pixel_size;
1335         int drain_latency;
1336         enum pipe pipe = intel_crtc->pipe;
1337         int plane_prec, prec_mult, plane_dl;
1338
1339         plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
1340                    DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
1341                    (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
1342
1343         if (!intel_crtc_active(crtc)) {
1344                 I915_WRITE(VLV_DDL(pipe), plane_dl);
1345                 return;
1346         }
1347
1348         /* Primary plane Drain Latency */
1349         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1350         if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1351                 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1352                                            DDL_PLANE_PRECISION_64 :
1353                                            DDL_PLANE_PRECISION_32;
1354                 plane_dl |= plane_prec | drain_latency;
1355         }
1356
1357         /* Cursor Drain Latency
1358          * BPP is always 4 for cursor
1359          */
1360         pixel_size = 4;
1361
1362         /* Program cursor DL only if it is enabled */
1363         if (intel_crtc->cursor_base &&
1364             vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1365                 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1366                                            DDL_CURSOR_PRECISION_64 :
1367                                            DDL_CURSOR_PRECISION_32;
1368                 plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1369         }
1370
1371         I915_WRITE(VLV_DDL(pipe), plane_dl);
1372 }
1373
1374 #define single_plane_enabled(mask) is_power_of_2(mask)
1375
1376 static void valleyview_update_wm(struct drm_crtc *crtc)
1377 {
1378         struct drm_device *dev = crtc->dev;
1379         static const int sr_latency_ns = 12000;
1380         struct drm_i915_private *dev_priv = dev->dev_private;
1381         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1382         int plane_sr, cursor_sr;
1383         int ignore_plane_sr, ignore_cursor_sr;
1384         unsigned int enabled = 0;
1385         bool cxsr_enabled;
1386
1387         vlv_update_drain_latency(crtc);
1388
1389         if (g4x_compute_wm0(dev, PIPE_A,
1390                             &valleyview_wm_info, pessimal_latency_ns,
1391                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1392                             &planea_wm, &cursora_wm))
1393                 enabled |= 1 << PIPE_A;
1394
1395         if (g4x_compute_wm0(dev, PIPE_B,
1396                             &valleyview_wm_info, pessimal_latency_ns,
1397                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1398                             &planeb_wm, &cursorb_wm))
1399                 enabled |= 1 << PIPE_B;
1400
1401         if (single_plane_enabled(enabled) &&
1402             g4x_compute_srwm(dev, ffs(enabled) - 1,
1403                              sr_latency_ns,
1404                              &valleyview_wm_info,
1405                              &valleyview_cursor_wm_info,
1406                              &plane_sr, &ignore_cursor_sr) &&
1407             g4x_compute_srwm(dev, ffs(enabled) - 1,
1408                              2*sr_latency_ns,
1409                              &valleyview_wm_info,
1410                              &valleyview_cursor_wm_info,
1411                              &ignore_plane_sr, &cursor_sr)) {
1412                 cxsr_enabled = true;
1413         } else {
1414                 cxsr_enabled = false;
1415                 intel_set_memory_cxsr(dev_priv, false);
1416                 plane_sr = cursor_sr = 0;
1417         }
1418
1419         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1420                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1421                       planea_wm, cursora_wm,
1422                       planeb_wm, cursorb_wm,
1423                       plane_sr, cursor_sr);
1424
1425         I915_WRITE(DSPFW1,
1426                    (plane_sr << DSPFW_SR_SHIFT) |
1427                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1428                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1429                    (planea_wm << DSPFW_PLANEA_SHIFT));
1430         I915_WRITE(DSPFW2,
1431                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1432                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1433         I915_WRITE(DSPFW3,
1434                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1435                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1436
1437         if (cxsr_enabled)
1438                 intel_set_memory_cxsr(dev_priv, true);
1439 }
1440
1441 static void cherryview_update_wm(struct drm_crtc *crtc)
1442 {
1443         struct drm_device *dev = crtc->dev;
1444         static const int sr_latency_ns = 12000;
1445         struct drm_i915_private *dev_priv = dev->dev_private;
1446         int planea_wm, planeb_wm, planec_wm;
1447         int cursora_wm, cursorb_wm, cursorc_wm;
1448         int plane_sr, cursor_sr;
1449         int ignore_plane_sr, ignore_cursor_sr;
1450         unsigned int enabled = 0;
1451         bool cxsr_enabled;
1452
1453         vlv_update_drain_latency(crtc);
1454
1455         if (g4x_compute_wm0(dev, PIPE_A,
1456                             &valleyview_wm_info, pessimal_latency_ns,
1457                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1458                             &planea_wm, &cursora_wm))
1459                 enabled |= 1 << PIPE_A;
1460
1461         if (g4x_compute_wm0(dev, PIPE_B,
1462                             &valleyview_wm_info, pessimal_latency_ns,
1463                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1464                             &planeb_wm, &cursorb_wm))
1465                 enabled |= 1 << PIPE_B;
1466
1467         if (g4x_compute_wm0(dev, PIPE_C,
1468                             &valleyview_wm_info, pessimal_latency_ns,
1469                             &valleyview_cursor_wm_info, pessimal_latency_ns,
1470                             &planec_wm, &cursorc_wm))
1471                 enabled |= 1 << PIPE_C;
1472
1473         if (single_plane_enabled(enabled) &&
1474             g4x_compute_srwm(dev, ffs(enabled) - 1,
1475                              sr_latency_ns,
1476                              &valleyview_wm_info,
1477                              &valleyview_cursor_wm_info,
1478                              &plane_sr, &ignore_cursor_sr) &&
1479             g4x_compute_srwm(dev, ffs(enabled) - 1,
1480                              2*sr_latency_ns,
1481                              &valleyview_wm_info,
1482                              &valleyview_cursor_wm_info,
1483                              &ignore_plane_sr, &cursor_sr)) {
1484                 cxsr_enabled = true;
1485         } else {
1486                 cxsr_enabled = false;
1487                 intel_set_memory_cxsr(dev_priv, false);
1488                 plane_sr = cursor_sr = 0;
1489         }
1490
1491         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1492                       "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
1493                       "SR: plane=%d, cursor=%d\n",
1494                       planea_wm, cursora_wm,
1495                       planeb_wm, cursorb_wm,
1496                       planec_wm, cursorc_wm,
1497                       plane_sr, cursor_sr);
1498
1499         I915_WRITE(DSPFW1,
1500                    (plane_sr << DSPFW_SR_SHIFT) |
1501                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1502                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1503                    (planea_wm << DSPFW_PLANEA_SHIFT));
1504         I915_WRITE(DSPFW2,
1505                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1506                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1507         I915_WRITE(DSPFW3,
1508                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1509                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1510         I915_WRITE(DSPFW9_CHV,
1511                    (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
1512                                               DSPFW_CURSORC_MASK)) |
1513                    (planec_wm << DSPFW_PLANEC_SHIFT) |
1514                    (cursorc_wm << DSPFW_CURSORC_SHIFT));
1515
1516         if (cxsr_enabled)
1517                 intel_set_memory_cxsr(dev_priv, true);
1518 }
1519
1520 static void valleyview_update_sprite_wm(struct drm_plane *plane,
1521                                         struct drm_crtc *crtc,
1522                                         uint32_t sprite_width,
1523                                         uint32_t sprite_height,
1524                                         int pixel_size,
1525                                         bool enabled, bool scaled)
1526 {
1527         struct drm_device *dev = crtc->dev;
1528         struct drm_i915_private *dev_priv = dev->dev_private;
1529         int pipe = to_intel_plane(plane)->pipe;
1530         int sprite = to_intel_plane(plane)->plane;
1531         int drain_latency;
1532         int plane_prec;
1533         int sprite_dl;
1534         int prec_mult;
1535
1536         sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
1537                     (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
1538
1539         if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
1540                                                  &drain_latency)) {
1541                 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1542                                            DDL_SPRITE_PRECISION_64(sprite) :
1543                                            DDL_SPRITE_PRECISION_32(sprite);
1544                 sprite_dl |= plane_prec |
1545                              (drain_latency << DDL_SPRITE_SHIFT(sprite));
1546         }
1547
1548         I915_WRITE(VLV_DDL(pipe), sprite_dl);
1549 }
1550
1551 static void g4x_update_wm(struct drm_crtc *crtc)
1552 {
1553         struct drm_device *dev = crtc->dev;
1554         static const int sr_latency_ns = 12000;
1555         struct drm_i915_private *dev_priv = dev->dev_private;
1556         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1557         int plane_sr, cursor_sr;
1558         unsigned int enabled = 0;
1559         bool cxsr_enabled;
1560
1561         if (g4x_compute_wm0(dev, PIPE_A,
1562                             &g4x_wm_info, pessimal_latency_ns,
1563                             &g4x_cursor_wm_info, pessimal_latency_ns,
1564                             &planea_wm, &cursora_wm))
1565                 enabled |= 1 << PIPE_A;
1566
1567         if (g4x_compute_wm0(dev, PIPE_B,
1568                             &g4x_wm_info, pessimal_latency_ns,
1569                             &g4x_cursor_wm_info, pessimal_latency_ns,
1570                             &planeb_wm, &cursorb_wm))
1571                 enabled |= 1 << PIPE_B;
1572
1573         if (single_plane_enabled(enabled) &&
1574             g4x_compute_srwm(dev, ffs(enabled) - 1,
1575                              sr_latency_ns,
1576                              &g4x_wm_info,
1577                              &g4x_cursor_wm_info,
1578                              &plane_sr, &cursor_sr)) {
1579                 cxsr_enabled = true;
1580         } else {
1581                 cxsr_enabled = false;
1582                 intel_set_memory_cxsr(dev_priv, false);
1583                 plane_sr = cursor_sr = 0;
1584         }
1585
1586         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1587                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1588                       planea_wm, cursora_wm,
1589                       planeb_wm, cursorb_wm,
1590                       plane_sr, cursor_sr);
1591
1592         I915_WRITE(DSPFW1,
1593                    (plane_sr << DSPFW_SR_SHIFT) |
1594                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1595                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1596                    (planea_wm << DSPFW_PLANEA_SHIFT));
1597         I915_WRITE(DSPFW2,
1598                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1599                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1600         /* HPLL off in SR has some issues on G4x... disable it */
1601         I915_WRITE(DSPFW3,
1602                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1603                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1604
1605         if (cxsr_enabled)
1606                 intel_set_memory_cxsr(dev_priv, true);
1607 }
1608
1609 static void i965_update_wm(struct drm_crtc *unused_crtc)
1610 {
1611         struct drm_device *dev = unused_crtc->dev;
1612         struct drm_i915_private *dev_priv = dev->dev_private;
1613         struct drm_crtc *crtc;
1614         int srwm = 1;
1615         int cursor_sr = 16;
1616         bool cxsr_enabled;
1617
1618         /* Calc sr entries for one plane configs */
1619         crtc = single_enabled_crtc(dev);
1620         if (crtc) {
1621                 /* self-refresh has much higher latency */
1622                 static const int sr_latency_ns = 12000;
1623                 const struct drm_display_mode *adjusted_mode =
1624                         &to_intel_crtc(crtc)->config.adjusted_mode;
1625                 int clock = adjusted_mode->crtc_clock;
1626                 int htotal = adjusted_mode->crtc_htotal;
1627                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1628                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1629                 unsigned long line_time_us;
1630                 int entries;
1631
1632                 line_time_us = max(htotal * 1000 / clock, 1);
1633
1634                 /* Use ns/us then divide to preserve precision */
1635                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1636                         pixel_size * hdisplay;
1637                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1638                 srwm = I965_FIFO_SIZE - entries;
1639                 if (srwm < 0)
1640                         srwm = 1;
1641                 srwm &= 0x1ff;
1642                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1643                               entries, srwm);
1644
1645                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1646                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1647                 entries = DIV_ROUND_UP(entries,
1648                                           i965_cursor_wm_info.cacheline_size);
1649                 cursor_sr = i965_cursor_wm_info.fifo_size -
1650                         (entries + i965_cursor_wm_info.guard_size);
1651
1652                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1653                         cursor_sr = i965_cursor_wm_info.max_wm;
1654
1655                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1656                               "cursor %d\n", srwm, cursor_sr);
1657
1658                 cxsr_enabled = true;
1659         } else {
1660                 cxsr_enabled = false;
1661                 /* Turn off self refresh if both pipes are enabled */
1662                 intel_set_memory_cxsr(dev_priv, false);
1663         }
1664
1665         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1666                       srwm);
1667
1668         /* 965 has limitations... */
1669         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1670                    (8 << DSPFW_CURSORB_SHIFT) |
1671                    (8 << DSPFW_PLANEB_SHIFT) |
1672                    (8 << DSPFW_PLANEA_SHIFT));
1673         I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1674                    (8 << DSPFW_PLANEC_SHIFT_OLD));
1675         /* update cursor SR watermark */
1676         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1677
1678         if (cxsr_enabled)
1679                 intel_set_memory_cxsr(dev_priv, true);
1680 }
1681
1682 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1683 {
1684         struct drm_device *dev = unused_crtc->dev;
1685         struct drm_i915_private *dev_priv = dev->dev_private;
1686         const struct intel_watermark_params *wm_info;
1687         uint32_t fwater_lo;
1688         uint32_t fwater_hi;
1689         int cwm, srwm = 1;
1690         int fifo_size;
1691         int planea_wm, planeb_wm;
1692         struct drm_crtc *crtc, *enabled = NULL;
1693
1694         if (IS_I945GM(dev))
1695                 wm_info = &i945_wm_info;
1696         else if (!IS_GEN2(dev))
1697                 wm_info = &i915_wm_info;
1698         else
1699                 wm_info = &i830_a_wm_info;
1700
1701         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1702         crtc = intel_get_crtc_for_plane(dev, 0);
1703         if (intel_crtc_active(crtc)) {
1704                 const struct drm_display_mode *adjusted_mode;
1705                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1706                 if (IS_GEN2(dev))
1707                         cpp = 4;
1708
1709                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1710                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1711                                                wm_info, fifo_size, cpp,
1712                                                pessimal_latency_ns);
1713                 enabled = crtc;
1714         } else {
1715                 planea_wm = fifo_size - wm_info->guard_size;
1716                 if (planea_wm > (long)wm_info->max_wm)
1717                         planea_wm = wm_info->max_wm;
1718         }
1719
1720         if (IS_GEN2(dev))
1721                 wm_info = &i830_bc_wm_info;
1722
1723         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1724         crtc = intel_get_crtc_for_plane(dev, 1);
1725         if (intel_crtc_active(crtc)) {
1726                 const struct drm_display_mode *adjusted_mode;
1727                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1728                 if (IS_GEN2(dev))
1729                         cpp = 4;
1730
1731                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1732                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1733                                                wm_info, fifo_size, cpp,
1734                                                pessimal_latency_ns);
1735                 if (enabled == NULL)
1736                         enabled = crtc;
1737                 else
1738                         enabled = NULL;
1739         } else {
1740                 planeb_wm = fifo_size - wm_info->guard_size;
1741                 if (planeb_wm > (long)wm_info->max_wm)
1742                         planeb_wm = wm_info->max_wm;
1743         }
1744
1745         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1746
1747         if (IS_I915GM(dev) && enabled) {
1748                 struct drm_i915_gem_object *obj;
1749
1750                 obj = intel_fb_obj(enabled->primary->fb);
1751
1752                 /* self-refresh seems busted with untiled */
1753                 if (obj->tiling_mode == I915_TILING_NONE)
1754                         enabled = NULL;
1755         }
1756
1757         /*
1758          * Overlay gets an aggressive default since video jitter is bad.
1759          */
1760         cwm = 2;
1761
1762         /* Play safe and disable self-refresh before adjusting watermarks. */
1763         intel_set_memory_cxsr(dev_priv, false);
1764
1765         /* Calc sr entries for one plane configs */
1766         if (HAS_FW_BLC(dev) && enabled) {
1767                 /* self-refresh has much higher latency */
1768                 static const int sr_latency_ns = 6000;
1769                 const struct drm_display_mode *adjusted_mode =
1770                         &to_intel_crtc(enabled)->config.adjusted_mode;
1771                 int clock = adjusted_mode->crtc_clock;
1772                 int htotal = adjusted_mode->crtc_htotal;
1773                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1774                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1775                 unsigned long line_time_us;
1776                 int entries;
1777
1778                 line_time_us = max(htotal * 1000 / clock, 1);
1779
1780                 /* Use ns/us then divide to preserve precision */
1781                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1782                         pixel_size * hdisplay;
1783                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1784                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1785                 srwm = wm_info->fifo_size - entries;
1786                 if (srwm < 0)
1787                         srwm = 1;
1788
1789                 if (IS_I945G(dev) || IS_I945GM(dev))
1790                         I915_WRITE(FW_BLC_SELF,
1791                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1792                 else if (IS_I915GM(dev))
1793                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1794         }
1795
1796         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1797                       planea_wm, planeb_wm, cwm, srwm);
1798
1799         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1800         fwater_hi = (cwm & 0x1f);
1801
1802         /* Set request length to 8 cachelines per fetch */
1803         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1804         fwater_hi = fwater_hi | (1 << 8);
1805
1806         I915_WRITE(FW_BLC, fwater_lo);
1807         I915_WRITE(FW_BLC2, fwater_hi);
1808
1809         if (enabled)
1810                 intel_set_memory_cxsr(dev_priv, true);
1811 }
1812
1813 static void i845_update_wm(struct drm_crtc *unused_crtc)
1814 {
1815         struct drm_device *dev = unused_crtc->dev;
1816         struct drm_i915_private *dev_priv = dev->dev_private;
1817         struct drm_crtc *crtc;
1818         const struct drm_display_mode *adjusted_mode;
1819         uint32_t fwater_lo;
1820         int planea_wm;
1821
1822         crtc = single_enabled_crtc(dev);
1823         if (crtc == NULL)
1824                 return;
1825
1826         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1827         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1828                                        &i845_wm_info,
1829                                        dev_priv->display.get_fifo_size(dev, 0),
1830                                        4, pessimal_latency_ns);
1831         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1832         fwater_lo |= (3<<8) | planea_wm;
1833
1834         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1835
1836         I915_WRITE(FW_BLC, fwater_lo);
1837 }
1838
1839 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1840                                     struct drm_crtc *crtc)
1841 {
1842         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1843         uint32_t pixel_rate;
1844
1845         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1846
1847         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1848          * adjust the pixel_rate here. */
1849
1850         if (intel_crtc->config.pch_pfit.enabled) {
1851                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1852                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1853
1854                 pipe_w = intel_crtc->config.pipe_src_w;
1855                 pipe_h = intel_crtc->config.pipe_src_h;
1856                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1857                 pfit_h = pfit_size & 0xFFFF;
1858                 if (pipe_w < pfit_w)
1859                         pipe_w = pfit_w;
1860                 if (pipe_h < pfit_h)
1861                         pipe_h = pfit_h;
1862
1863                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1864                                      pfit_w * pfit_h);
1865         }
1866
1867         return pixel_rate;
1868 }
1869
1870 /* latency must be in 0.1us units. */
1871 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1872                                uint32_t latency)
1873 {
1874         uint64_t ret;
1875
1876         if (WARN(latency == 0, "Latency value missing\n"))
1877                 return UINT_MAX;
1878
1879         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1880         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1881
1882         return ret;
1883 }
1884
1885 /* latency must be in 0.1us units. */
1886 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1887                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1888                                uint32_t latency)
1889 {
1890         uint32_t ret;
1891
1892         if (WARN(latency == 0, "Latency value missing\n"))
1893                 return UINT_MAX;
1894
1895         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1896         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1897         ret = DIV_ROUND_UP(ret, 64) + 2;
1898         return ret;
1899 }
1900
1901 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1902                            uint8_t bytes_per_pixel)
1903 {
1904         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1905 }
1906
1907 struct ilk_pipe_wm_parameters {
1908         bool active;
1909         uint32_t pipe_htotal;
1910         uint32_t pixel_rate;
1911         struct intel_plane_wm_parameters pri;
1912         struct intel_plane_wm_parameters spr;
1913         struct intel_plane_wm_parameters cur;
1914 };
1915
1916 struct ilk_wm_maximums {
1917         uint16_t pri;
1918         uint16_t spr;
1919         uint16_t cur;
1920         uint16_t fbc;
1921 };
1922
1923 /* used in computing the new watermarks state */
1924 struct intel_wm_config {
1925         unsigned int num_pipes_active;
1926         bool sprites_enabled;
1927         bool sprites_scaled;
1928 };
1929
1930 /*
1931  * For both WM_PIPE and WM_LP.
1932  * mem_value must be in 0.1us units.
1933  */
1934 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1935                                    uint32_t mem_value,
1936                                    bool is_lp)
1937 {
1938         uint32_t method1, method2;
1939
1940         if (!params->active || !params->pri.enabled)
1941                 return 0;
1942
1943         method1 = ilk_wm_method1(params->pixel_rate,
1944                                  params->pri.bytes_per_pixel,
1945                                  mem_value);
1946
1947         if (!is_lp)
1948                 return method1;
1949
1950         method2 = ilk_wm_method2(params->pixel_rate,
1951                                  params->pipe_htotal,
1952                                  params->pri.horiz_pixels,
1953                                  params->pri.bytes_per_pixel,
1954                                  mem_value);
1955
1956         return min(method1, method2);
1957 }
1958
1959 /*
1960  * For both WM_PIPE and WM_LP.
1961  * mem_value must be in 0.1us units.
1962  */
1963 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1964                                    uint32_t mem_value)
1965 {
1966         uint32_t method1, method2;
1967
1968         if (!params->active || !params->spr.enabled)
1969                 return 0;
1970
1971         method1 = ilk_wm_method1(params->pixel_rate,
1972                                  params->spr.bytes_per_pixel,
1973                                  mem_value);
1974         method2 = ilk_wm_method2(params->pixel_rate,
1975                                  params->pipe_htotal,
1976                                  params->spr.horiz_pixels,
1977                                  params->spr.bytes_per_pixel,
1978                                  mem_value);
1979         return min(method1, method2);
1980 }
1981
1982 /*
1983  * For both WM_PIPE and WM_LP.
1984  * mem_value must be in 0.1us units.
1985  */
1986 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1987                                    uint32_t mem_value)
1988 {
1989         if (!params->active || !params->cur.enabled)
1990                 return 0;
1991
1992         return ilk_wm_method2(params->pixel_rate,
1993                               params->pipe_htotal,
1994                               params->cur.horiz_pixels,
1995                               params->cur.bytes_per_pixel,
1996                               mem_value);
1997 }
1998
1999 /* Only for WM_LP. */
2000 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
2001                                    uint32_t pri_val)
2002 {
2003         if (!params->active || !params->pri.enabled)
2004                 return 0;
2005
2006         return ilk_wm_fbc(pri_val,
2007                           params->pri.horiz_pixels,
2008                           params->pri.bytes_per_pixel);
2009 }
2010
2011 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2012 {
2013         if (INTEL_INFO(dev)->gen >= 8)
2014                 return 3072;
2015         else if (INTEL_INFO(dev)->gen >= 7)
2016                 return 768;
2017         else
2018                 return 512;
2019 }
2020
2021 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
2022                                          int level, bool is_sprite)
2023 {
2024         if (INTEL_INFO(dev)->gen >= 8)
2025                 /* BDW primary/sprite plane watermarks */
2026                 return level == 0 ? 255 : 2047;
2027         else if (INTEL_INFO(dev)->gen >= 7)
2028                 /* IVB/HSW primary/sprite plane watermarks */
2029                 return level == 0 ? 127 : 1023;
2030         else if (!is_sprite)
2031                 /* ILK/SNB primary plane watermarks */
2032                 return level == 0 ? 127 : 511;
2033         else
2034                 /* ILK/SNB sprite plane watermarks */
2035                 return level == 0 ? 63 : 255;
2036 }
2037
2038 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
2039                                           int level)
2040 {
2041         if (INTEL_INFO(dev)->gen >= 7)
2042                 return level == 0 ? 63 : 255;
2043         else
2044                 return level == 0 ? 31 : 63;
2045 }
2046
2047 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
2048 {
2049         if (INTEL_INFO(dev)->gen >= 8)
2050                 return 31;
2051         else
2052                 return 15;
2053 }
2054
2055 /* Calculate the maximum primary/sprite plane watermark */
2056 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2057                                      int level,
2058                                      const struct intel_wm_config *config,
2059                                      enum intel_ddb_partitioning ddb_partitioning,
2060                                      bool is_sprite)
2061 {
2062         unsigned int fifo_size = ilk_display_fifo_size(dev);
2063
2064         /* if sprites aren't enabled, sprites get nothing */
2065         if (is_sprite && !config->sprites_enabled)
2066                 return 0;
2067
2068         /* HSW allows LP1+ watermarks even with multiple pipes */
2069         if (level == 0 || config->num_pipes_active > 1) {
2070                 fifo_size /= INTEL_INFO(dev)->num_pipes;
2071
2072                 /*
2073                  * For some reason the non self refresh
2074                  * FIFO size is only half of the self
2075                  * refresh FIFO size on ILK/SNB.
2076                  */
2077                 if (INTEL_INFO(dev)->gen <= 6)
2078                         fifo_size /= 2;
2079         }
2080
2081         if (config->sprites_enabled) {
2082                 /* level 0 is always calculated with 1:1 split */
2083                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2084                         if (is_sprite)
2085                                 fifo_size *= 5;
2086                         fifo_size /= 6;
2087                 } else {
2088                         fifo_size /= 2;
2089                 }
2090         }
2091
2092         /* clamp to max that the registers can hold */
2093         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2094 }
2095
2096 /* Calculate the maximum cursor plane watermark */
2097 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2098                                       int level,
2099                                       const struct intel_wm_config *config)
2100 {
2101         /* HSW LP1+ watermarks w/ multiple pipes */
2102         if (level > 0 && config->num_pipes_active > 1)
2103                 return 64;
2104
2105         /* otherwise just report max that registers can hold */
2106         return ilk_cursor_wm_reg_max(dev, level);
2107 }
2108
2109 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2110                                     int level,
2111                                     const struct intel_wm_config *config,
2112                                     enum intel_ddb_partitioning ddb_partitioning,
2113                                     struct ilk_wm_maximums *max)
2114 {
2115         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2116         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2117         max->cur = ilk_cursor_wm_max(dev, level, config);
2118         max->fbc = ilk_fbc_wm_reg_max(dev);
2119 }
2120
2121 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
2122                                         int level,
2123                                         struct ilk_wm_maximums *max)
2124 {
2125         max->pri = ilk_plane_wm_reg_max(dev, level, false);
2126         max->spr = ilk_plane_wm_reg_max(dev, level, true);
2127         max->cur = ilk_cursor_wm_reg_max(dev, level);
2128         max->fbc = ilk_fbc_wm_reg_max(dev);
2129 }
2130
2131 static bool ilk_validate_wm_level(int level,
2132                                   const struct ilk_wm_maximums *max,
2133                                   struct intel_wm_level *result)
2134 {
2135         bool ret;
2136
2137         /* already determined to be invalid? */
2138         if (!result->enable)
2139                 return false;
2140
2141         result->enable = result->pri_val <= max->pri &&
2142                          result->spr_val <= max->spr &&
2143                          result->cur_val <= max->cur;
2144
2145         ret = result->enable;
2146
2147         /*
2148          * HACK until we can pre-compute everything,
2149          * and thus fail gracefully if LP0 watermarks
2150          * are exceeded...
2151          */
2152         if (level == 0 && !result->enable) {
2153                 if (result->pri_val > max->pri)
2154                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2155                                       level, result->pri_val, max->pri);
2156                 if (result->spr_val > max->spr)
2157                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2158                                       level, result->spr_val, max->spr);
2159                 if (result->cur_val > max->cur)
2160                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2161                                       level, result->cur_val, max->cur);
2162
2163                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2164                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2165                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2166                 result->enable = true;
2167         }
2168
2169         return ret;
2170 }
2171
2172 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2173                                  int level,
2174                                  const struct ilk_pipe_wm_parameters *p,
2175                                  struct intel_wm_level *result)
2176 {
2177         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2178         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2179         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2180
2181         /* WM1+ latency values stored in 0.5us units */
2182         if (level > 0) {
2183                 pri_latency *= 5;
2184                 spr_latency *= 5;
2185                 cur_latency *= 5;
2186         }
2187
2188         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2189         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2190         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2191         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2192         result->enable = true;
2193 }
2194
2195 static uint32_t
2196 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2197 {
2198         struct drm_i915_private *dev_priv = dev->dev_private;
2199         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2200         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2201         u32 linetime, ips_linetime;
2202
2203         if (!intel_crtc_active(crtc))
2204                 return 0;
2205
2206         /* The WM are computed with base on how long it takes to fill a single
2207          * row at the given clock rate, multiplied by 8.
2208          * */
2209         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2210                                      mode->crtc_clock);
2211         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2212                                          intel_ddi_get_cdclk_freq(dev_priv));
2213
2214         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2215                PIPE_WM_LINETIME_TIME(linetime);
2216 }
2217
2218 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2219 {
2220         struct drm_i915_private *dev_priv = dev->dev_private;
2221
2222         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2223                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2224
2225                 wm[0] = (sskpd >> 56) & 0xFF;
2226                 if (wm[0] == 0)
2227                         wm[0] = sskpd & 0xF;
2228                 wm[1] = (sskpd >> 4) & 0xFF;
2229                 wm[2] = (sskpd >> 12) & 0xFF;
2230                 wm[3] = (sskpd >> 20) & 0x1FF;
2231                 wm[4] = (sskpd >> 32) & 0x1FF;
2232         } else if (INTEL_INFO(dev)->gen >= 6) {
2233                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2234
2235                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2236                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2237                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2238                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2239         } else if (INTEL_INFO(dev)->gen >= 5) {
2240                 uint32_t mltr = I915_READ(MLTR_ILK);
2241
2242                 /* ILK primary LP0 latency is 700 ns */
2243                 wm[0] = 7;
2244                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2245                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2246         }
2247 }
2248
2249 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2250 {
2251         /* ILK sprite LP0 latency is 1300 ns */
2252         if (INTEL_INFO(dev)->gen == 5)
2253                 wm[0] = 13;
2254 }
2255
2256 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2257 {
2258         /* ILK cursor LP0 latency is 1300 ns */
2259         if (INTEL_INFO(dev)->gen == 5)
2260                 wm[0] = 13;
2261
2262         /* WaDoubleCursorLP3Latency:ivb */
2263         if (IS_IVYBRIDGE(dev))
2264                 wm[3] *= 2;
2265 }
2266
2267 int ilk_wm_max_level(const struct drm_device *dev)
2268 {
2269         /* how many WM levels are we expecting */
2270         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2271                 return 4;
2272         else if (INTEL_INFO(dev)->gen >= 6)
2273                 return 3;
2274         else
2275                 return 2;
2276 }
2277 static void intel_print_wm_latency(struct drm_device *dev,
2278                                    const char *name,
2279                                    const uint16_t wm[5])
2280 {
2281         int level, max_level = ilk_wm_max_level(dev);
2282
2283         for (level = 0; level <= max_level; level++) {
2284                 unsigned int latency = wm[level];
2285
2286                 if (latency == 0) {
2287                         DRM_ERROR("%s WM%d latency not provided\n",
2288                                   name, level);
2289                         continue;
2290                 }
2291
2292                 /* WM1+ latency values in 0.5us units */
2293                 if (level > 0)
2294                         latency *= 5;
2295
2296                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2297                               name, level, wm[level],
2298                               latency / 10, latency % 10);
2299         }
2300 }
2301
2302 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2303                                     uint16_t wm[5], uint16_t min)
2304 {
2305         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2306
2307         if (wm[0] >= min)
2308                 return false;
2309
2310         wm[0] = max(wm[0], min);
2311         for (level = 1; level <= max_level; level++)
2312                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2313
2314         return true;
2315 }
2316
2317 static void snb_wm_latency_quirk(struct drm_device *dev)
2318 {
2319         struct drm_i915_private *dev_priv = dev->dev_private;
2320         bool changed;
2321
2322         /*
2323          * The BIOS provided WM memory latency values are often
2324          * inadequate for high resolution displays. Adjust them.
2325          */
2326         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2327                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2328                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2329
2330         if (!changed)
2331                 return;
2332
2333         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2334         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2335         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2336         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2337 }
2338
2339 static void ilk_setup_wm_latency(struct drm_device *dev)
2340 {
2341         struct drm_i915_private *dev_priv = dev->dev_private;
2342
2343         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2344
2345         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2346                sizeof(dev_priv->wm.pri_latency));
2347         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2348                sizeof(dev_priv->wm.pri_latency));
2349
2350         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2351         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2352
2353         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2354         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2355         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2356
2357         if (IS_GEN6(dev))
2358                 snb_wm_latency_quirk(dev);
2359 }
2360
2361 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2362                                       struct ilk_pipe_wm_parameters *p)
2363 {
2364         struct drm_device *dev = crtc->dev;
2365         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2366         enum pipe pipe = intel_crtc->pipe;
2367         struct drm_plane *plane;
2368
2369         if (!intel_crtc_active(crtc))
2370                 return;
2371
2372         p->active = true;
2373         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2374         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2375         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2376         p->cur.bytes_per_pixel = 4;
2377         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2378         p->cur.horiz_pixels = intel_crtc->cursor_width;
2379         /* TODO: for now, assume primary and cursor planes are always enabled. */
2380         p->pri.enabled = true;
2381         p->cur.enabled = true;
2382
2383         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2384                 struct intel_plane *intel_plane = to_intel_plane(plane);
2385
2386                 if (intel_plane->pipe == pipe) {
2387                         p->spr = intel_plane->wm;
2388                         break;
2389                 }
2390         }
2391 }
2392
2393 static void ilk_compute_wm_config(struct drm_device *dev,
2394                                   struct intel_wm_config *config)
2395 {
2396         struct intel_crtc *intel_crtc;
2397
2398         /* Compute the currently _active_ config */
2399         for_each_intel_crtc(dev, intel_crtc) {
2400                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2401
2402                 if (!wm->pipe_enabled)
2403                         continue;
2404
2405                 config->sprites_enabled |= wm->sprites_enabled;
2406                 config->sprites_scaled |= wm->sprites_scaled;
2407                 config->num_pipes_active++;
2408         }
2409 }
2410
2411 /* Compute new watermarks for the pipe */
2412 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2413                                   const struct ilk_pipe_wm_parameters *params,
2414                                   struct intel_pipe_wm *pipe_wm)
2415 {
2416         struct drm_device *dev = crtc->dev;
2417         const struct drm_i915_private *dev_priv = dev->dev_private;
2418         int level, max_level = ilk_wm_max_level(dev);
2419         /* LP0 watermark maximums depend on this pipe alone */
2420         struct intel_wm_config config = {
2421                 .num_pipes_active = 1,
2422                 .sprites_enabled = params->spr.enabled,
2423                 .sprites_scaled = params->spr.scaled,
2424         };
2425         struct ilk_wm_maximums max;
2426
2427         pipe_wm->pipe_enabled = params->active;
2428         pipe_wm->sprites_enabled = params->spr.enabled;
2429         pipe_wm->sprites_scaled = params->spr.scaled;
2430
2431         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2432         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2433                 max_level = 1;
2434
2435         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2436         if (params->spr.scaled)
2437                 max_level = 0;
2438
2439         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2440
2441         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2442                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2443
2444         /* LP0 watermarks always use 1/2 DDB partitioning */
2445         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2446
2447         /* At least LP0 must be valid */
2448         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2449                 return false;
2450
2451         ilk_compute_wm_reg_maximums(dev, 1, &max);
2452
2453         for (level = 1; level <= max_level; level++) {
2454                 struct intel_wm_level wm = {};
2455
2456                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2457
2458                 /*
2459                  * Disable any watermark level that exceeds the
2460                  * register maximums since such watermarks are
2461                  * always invalid.
2462                  */
2463                 if (!ilk_validate_wm_level(level, &max, &wm))
2464                         break;
2465
2466                 pipe_wm->wm[level] = wm;
2467         }
2468
2469         return true;
2470 }
2471
2472 /*
2473  * Merge the watermarks from all active pipes for a specific level.
2474  */
2475 static void ilk_merge_wm_level(struct drm_device *dev,
2476                                int level,
2477                                struct intel_wm_level *ret_wm)
2478 {
2479         const struct intel_crtc *intel_crtc;
2480
2481         ret_wm->enable = true;
2482
2483         for_each_intel_crtc(dev, intel_crtc) {
2484                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2485                 const struct intel_wm_level *wm = &active->wm[level];
2486
2487                 if (!active->pipe_enabled)
2488                         continue;
2489
2490                 /*
2491                  * The watermark values may have been used in the past,
2492                  * so we must maintain them in the registers for some
2493                  * time even if the level is now disabled.
2494                  */
2495                 if (!wm->enable)
2496                         ret_wm->enable = false;
2497
2498                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2499                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2500                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2501                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2502         }
2503 }
2504
2505 /*
2506  * Merge all low power watermarks for all active pipes.
2507  */
2508 static void ilk_wm_merge(struct drm_device *dev,
2509                          const struct intel_wm_config *config,
2510                          const struct ilk_wm_maximums *max,
2511                          struct intel_pipe_wm *merged)
2512 {
2513         int level, max_level = ilk_wm_max_level(dev);
2514         int last_enabled_level = max_level;
2515
2516         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2517         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2518             config->num_pipes_active > 1)
2519                 return;
2520
2521         /* ILK: FBC WM must be disabled always */
2522         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2523
2524         /* merge each WM1+ level */
2525         for (level = 1; level <= max_level; level++) {
2526                 struct intel_wm_level *wm = &merged->wm[level];
2527
2528                 ilk_merge_wm_level(dev, level, wm);
2529
2530                 if (level > last_enabled_level)
2531                         wm->enable = false;
2532                 else if (!ilk_validate_wm_level(level, max, wm))
2533                         /* make sure all following levels get disabled */
2534                         last_enabled_level = level - 1;
2535
2536                 /*
2537                  * The spec says it is preferred to disable
2538                  * FBC WMs instead of disabling a WM level.
2539                  */
2540                 if (wm->fbc_val > max->fbc) {
2541                         if (wm->enable)
2542                                 merged->fbc_wm_enabled = false;
2543                         wm->fbc_val = 0;
2544                 }
2545         }
2546
2547         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2548         /*
2549          * FIXME this is racy. FBC might get enabled later.
2550          * What we should check here is whether FBC can be
2551          * enabled sometime later.
2552          */
2553         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2554                 for (level = 2; level <= max_level; level++) {
2555                         struct intel_wm_level *wm = &merged->wm[level];
2556
2557                         wm->enable = false;
2558                 }
2559         }
2560 }
2561
2562 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2563 {
2564         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2565         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2566 }
2567
2568 /* The value we need to program into the WM_LPx latency field */
2569 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2570 {
2571         struct drm_i915_private *dev_priv = dev->dev_private;
2572
2573         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2574                 return 2 * level;
2575         else
2576                 return dev_priv->wm.pri_latency[level];
2577 }
2578
2579 static void ilk_compute_wm_results(struct drm_device *dev,
2580                                    const struct intel_pipe_wm *merged,
2581                                    enum intel_ddb_partitioning partitioning,
2582                                    struct ilk_wm_values *results)
2583 {
2584         struct intel_crtc *intel_crtc;
2585         int level, wm_lp;
2586
2587         results->enable_fbc_wm = merged->fbc_wm_enabled;
2588         results->partitioning = partitioning;
2589
2590         /* LP1+ register values */
2591         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2592                 const struct intel_wm_level *r;
2593
2594                 level = ilk_wm_lp_to_level(wm_lp, merged);
2595
2596                 r = &merged->wm[level];
2597
2598                 /*
2599                  * Maintain the watermark values even if the level is
2600                  * disabled. Doing otherwise could cause underruns.
2601                  */
2602                 results->wm_lp[wm_lp - 1] =
2603                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2604                         (r->pri_val << WM1_LP_SR_SHIFT) |
2605                         r->cur_val;
2606
2607                 if (r->enable)
2608                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2609
2610                 if (INTEL_INFO(dev)->gen >= 8)
2611                         results->wm_lp[wm_lp - 1] |=
2612                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2613                 else
2614                         results->wm_lp[wm_lp - 1] |=
2615                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2616
2617                 /*
2618                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2619                  * level is disabled. Doing otherwise could cause underruns.
2620                  */
2621                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2622                         WARN_ON(wm_lp != 1);
2623                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2624                 } else
2625                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2626         }
2627
2628         /* LP0 register values */
2629         for_each_intel_crtc(dev, intel_crtc) {
2630                 enum pipe pipe = intel_crtc->pipe;
2631                 const struct intel_wm_level *r =
2632                         &intel_crtc->wm.active.wm[0];
2633
2634                 if (WARN_ON(!r->enable))
2635                         continue;
2636
2637                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2638
2639                 results->wm_pipe[pipe] =
2640                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2641                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2642                         r->cur_val;
2643         }
2644 }
2645
2646 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2647  * case both are at the same level. Prefer r1 in case they're the same. */
2648 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2649                                                   struct intel_pipe_wm *r1,
2650                                                   struct intel_pipe_wm *r2)
2651 {
2652         int level, max_level = ilk_wm_max_level(dev);
2653         int level1 = 0, level2 = 0;
2654
2655         for (level = 1; level <= max_level; level++) {
2656                 if (r1->wm[level].enable)
2657                         level1 = level;
2658                 if (r2->wm[level].enable)
2659                         level2 = level;
2660         }
2661
2662         if (level1 == level2) {
2663                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2664                         return r2;
2665                 else
2666                         return r1;
2667         } else if (level1 > level2) {
2668                 return r1;
2669         } else {
2670                 return r2;
2671         }
2672 }
2673
2674 /* dirty bits used to track which watermarks need changes */
2675 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2676 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2677 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2678 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2679 #define WM_DIRTY_FBC (1 << 24)
2680 #define WM_DIRTY_DDB (1 << 25)
2681
2682 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2683                                          const struct ilk_wm_values *old,
2684                                          const struct ilk_wm_values *new)
2685 {
2686         unsigned int dirty = 0;
2687         enum pipe pipe;
2688         int wm_lp;
2689
2690         for_each_pipe(dev_priv, pipe) {
2691                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2692                         dirty |= WM_DIRTY_LINETIME(pipe);
2693                         /* Must disable LP1+ watermarks too */
2694                         dirty |= WM_DIRTY_LP_ALL;
2695                 }
2696
2697                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2698                         dirty |= WM_DIRTY_PIPE(pipe);
2699                         /* Must disable LP1+ watermarks too */
2700                         dirty |= WM_DIRTY_LP_ALL;
2701                 }
2702         }
2703
2704         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2705                 dirty |= WM_DIRTY_FBC;
2706                 /* Must disable LP1+ watermarks too */
2707                 dirty |= WM_DIRTY_LP_ALL;
2708         }
2709
2710         if (old->partitioning != new->partitioning) {
2711                 dirty |= WM_DIRTY_DDB;
2712                 /* Must disable LP1+ watermarks too */
2713                 dirty |= WM_DIRTY_LP_ALL;
2714         }
2715
2716         /* LP1+ watermarks already deemed dirty, no need to continue */
2717         if (dirty & WM_DIRTY_LP_ALL)
2718                 return dirty;
2719
2720         /* Find the lowest numbered LP1+ watermark in need of an update... */
2721         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2722                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2723                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2724                         break;
2725         }
2726
2727         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2728         for (; wm_lp <= 3; wm_lp++)
2729                 dirty |= WM_DIRTY_LP(wm_lp);
2730
2731         return dirty;
2732 }
2733
2734 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2735                                unsigned int dirty)
2736 {
2737         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2738         bool changed = false;
2739
2740         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2741                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2742                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2743                 changed = true;
2744         }
2745         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2746                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2747                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2748                 changed = true;
2749         }
2750         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2751                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2752                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2753                 changed = true;
2754         }
2755
2756         /*
2757          * Don't touch WM1S_LP_EN here.
2758          * Doing so could cause underruns.
2759          */
2760
2761         return changed;
2762 }
2763
2764 /*
2765  * The spec says we shouldn't write when we don't need, because every write
2766  * causes WMs to be re-evaluated, expending some power.
2767  */
2768 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2769                                 struct ilk_wm_values *results)
2770 {
2771         struct drm_device *dev = dev_priv->dev;
2772         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2773         unsigned int dirty;
2774         uint32_t val;
2775
2776         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2777         if (!dirty)
2778                 return;
2779
2780         _ilk_disable_lp_wm(dev_priv, dirty);
2781
2782         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2783                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2784         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2785                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2786         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2787                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2788
2789         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2790                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2791         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2792                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2793         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2794                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2795
2796         if (dirty & WM_DIRTY_DDB) {
2797                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2798                         val = I915_READ(WM_MISC);
2799                         if (results->partitioning == INTEL_DDB_PART_1_2)
2800                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2801                         else
2802                                 val |= WM_MISC_DATA_PARTITION_5_6;
2803                         I915_WRITE(WM_MISC, val);
2804                 } else {
2805                         val = I915_READ(DISP_ARB_CTL2);
2806                         if (results->partitioning == INTEL_DDB_PART_1_2)
2807                                 val &= ~DISP_DATA_PARTITION_5_6;
2808                         else
2809                                 val |= DISP_DATA_PARTITION_5_6;
2810                         I915_WRITE(DISP_ARB_CTL2, val);
2811                 }
2812         }
2813
2814         if (dirty & WM_DIRTY_FBC) {
2815                 val = I915_READ(DISP_ARB_CTL);
2816                 if (results->enable_fbc_wm)
2817                         val &= ~DISP_FBC_WM_DIS;
2818                 else
2819                         val |= DISP_FBC_WM_DIS;
2820                 I915_WRITE(DISP_ARB_CTL, val);
2821         }
2822
2823         if (dirty & WM_DIRTY_LP(1) &&
2824             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2825                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2826
2827         if (INTEL_INFO(dev)->gen >= 7) {
2828                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2829                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2830                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2831                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2832         }
2833
2834         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2835                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2836         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2837                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2838         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2839                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2840
2841         dev_priv->wm.hw = *results;
2842 }
2843
2844 static bool ilk_disable_lp_wm(struct drm_device *dev)
2845 {
2846         struct drm_i915_private *dev_priv = dev->dev_private;
2847
2848         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2849 }
2850
2851 static void ilk_update_wm(struct drm_crtc *crtc)
2852 {
2853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2854         struct drm_device *dev = crtc->dev;
2855         struct drm_i915_private *dev_priv = dev->dev_private;
2856         struct ilk_wm_maximums max;
2857         struct ilk_pipe_wm_parameters params = {};
2858         struct ilk_wm_values results = {};
2859         enum intel_ddb_partitioning partitioning;
2860         struct intel_pipe_wm pipe_wm = {};
2861         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2862         struct intel_wm_config config = {};
2863
2864         ilk_compute_wm_parameters(crtc, &params);
2865
2866         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2867
2868         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2869                 return;
2870
2871         intel_crtc->wm.active = pipe_wm;
2872
2873         ilk_compute_wm_config(dev, &config);
2874
2875         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2876         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2877
2878         /* 5/6 split only in single pipe config on IVB+ */
2879         if (INTEL_INFO(dev)->gen >= 7 &&
2880             config.num_pipes_active == 1 && config.sprites_enabled) {
2881                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2882                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2883
2884                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2885         } else {
2886                 best_lp_wm = &lp_wm_1_2;
2887         }
2888
2889         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2890                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2891
2892         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2893
2894         ilk_write_wm_values(dev_priv, &results);
2895 }
2896
2897 static void
2898 ilk_update_sprite_wm(struct drm_plane *plane,
2899                      struct drm_crtc *crtc,
2900                      uint32_t sprite_width, uint32_t sprite_height,
2901                      int pixel_size, bool enabled, bool scaled)
2902 {
2903         struct drm_device *dev = plane->dev;
2904         struct intel_plane *intel_plane = to_intel_plane(plane);
2905
2906         intel_plane->wm.enabled = enabled;
2907         intel_plane->wm.scaled = scaled;
2908         intel_plane->wm.horiz_pixels = sprite_width;
2909         intel_plane->wm.vert_pixels = sprite_width;
2910         intel_plane->wm.bytes_per_pixel = pixel_size;
2911
2912         /*
2913          * IVB workaround: must disable low power watermarks for at least
2914          * one frame before enabling scaling.  LP watermarks can be re-enabled
2915          * when scaling is disabled.
2916          *
2917          * WaCxSRDisabledForSpriteScaling:ivb
2918          */
2919         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2920                 intel_wait_for_vblank(dev, intel_plane->pipe);
2921
2922         ilk_update_wm(crtc);
2923 }
2924
2925 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2926 {
2927         struct drm_device *dev = crtc->dev;
2928         struct drm_i915_private *dev_priv = dev->dev_private;
2929         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2930         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2931         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2932         enum pipe pipe = intel_crtc->pipe;
2933         static const unsigned int wm0_pipe_reg[] = {
2934                 [PIPE_A] = WM0_PIPEA_ILK,
2935                 [PIPE_B] = WM0_PIPEB_ILK,
2936                 [PIPE_C] = WM0_PIPEC_IVB,
2937         };
2938
2939         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2940         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2941                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2942
2943         active->pipe_enabled = intel_crtc_active(crtc);
2944
2945         if (active->pipe_enabled) {
2946                 u32 tmp = hw->wm_pipe[pipe];
2947
2948                 /*
2949                  * For active pipes LP0 watermark is marked as
2950                  * enabled, and LP1+ watermaks as disabled since
2951                  * we can't really reverse compute them in case
2952                  * multiple pipes are active.
2953                  */
2954                 active->wm[0].enable = true;
2955                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2956                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2957                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2958                 active->linetime = hw->wm_linetime[pipe];
2959         } else {
2960                 int level, max_level = ilk_wm_max_level(dev);
2961
2962                 /*
2963                  * For inactive pipes, all watermark levels
2964                  * should be marked as enabled but zeroed,
2965                  * which is what we'd compute them to.
2966                  */
2967                 for (level = 0; level <= max_level; level++)
2968                         active->wm[level].enable = true;
2969         }
2970 }
2971
2972 void ilk_wm_get_hw_state(struct drm_device *dev)
2973 {
2974         struct drm_i915_private *dev_priv = dev->dev_private;
2975         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2976         struct drm_crtc *crtc;
2977
2978         for_each_crtc(dev, crtc)
2979                 ilk_pipe_wm_get_hw_state(crtc);
2980
2981         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2982         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2983         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2984
2985         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2986         if (INTEL_INFO(dev)->gen >= 7) {
2987                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2988                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2989         }
2990
2991         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2992                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2993                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2994         else if (IS_IVYBRIDGE(dev))
2995                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2996                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2997
2998         hw->enable_fbc_wm =
2999                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3000 }
3001
3002 /**
3003  * intel_update_watermarks - update FIFO watermark values based on current modes
3004  *
3005  * Calculate watermark values for the various WM regs based on current mode
3006  * and plane configuration.
3007  *
3008  * There are several cases to deal with here:
3009  *   - normal (i.e. non-self-refresh)
3010  *   - self-refresh (SR) mode
3011  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3012  *   - lines are small relative to FIFO size (buffer can hold more than 2
3013  *     lines), so need to account for TLB latency
3014  *
3015  *   The normal calculation is:
3016  *     watermark = dotclock * bytes per pixel * latency
3017  *   where latency is platform & configuration dependent (we assume pessimal
3018  *   values here).
3019  *
3020  *   The SR calculation is:
3021  *     watermark = (trunc(latency/line time)+1) * surface width *
3022  *       bytes per pixel
3023  *   where
3024  *     line time = htotal / dotclock
3025  *     surface width = hdisplay for normal plane and 64 for cursor
3026  *   and latency is assumed to be high, as above.
3027  *
3028  * The final value programmed to the register should always be rounded up,
3029  * and include an extra 2 entries to account for clock crossings.
3030  *
3031  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3032  * to set the non-SR watermarks to 8.
3033  */
3034 void intel_update_watermarks(struct drm_crtc *crtc)
3035 {
3036         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3037
3038         if (dev_priv->display.update_wm)
3039                 dev_priv->display.update_wm(crtc);
3040 }
3041
3042 void intel_update_sprite_watermarks(struct drm_plane *plane,
3043                                     struct drm_crtc *crtc,
3044                                     uint32_t sprite_width,
3045                                     uint32_t sprite_height,
3046                                     int pixel_size,
3047                                     bool enabled, bool scaled)
3048 {
3049         struct drm_i915_private *dev_priv = plane->dev->dev_private;
3050
3051         if (dev_priv->display.update_sprite_wm)
3052                 dev_priv->display.update_sprite_wm(plane, crtc,
3053                                                    sprite_width, sprite_height,
3054                                                    pixel_size, enabled, scaled);
3055 }
3056
3057 static struct drm_i915_gem_object *
3058 intel_alloc_context_page(struct drm_device *dev)
3059 {
3060         struct drm_i915_gem_object *ctx;
3061         int ret;
3062
3063         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3064
3065         ctx = i915_gem_alloc_object(dev, 4096);
3066         if (!ctx) {
3067                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3068                 return NULL;
3069         }
3070
3071         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3072         if (ret) {
3073                 DRM_ERROR("failed to pin power context: %d\n", ret);
3074                 goto err_unref;
3075         }
3076
3077         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3078         if (ret) {
3079                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3080                 goto err_unpin;
3081         }
3082
3083         return ctx;
3084
3085 err_unpin:
3086         i915_gem_object_ggtt_unpin(ctx);
3087 err_unref:
3088         drm_gem_object_unreference(&ctx->base);
3089         return NULL;
3090 }
3091
3092 /**
3093  * Lock protecting IPS related data structures
3094  */
3095 DEFINE_SPINLOCK(mchdev_lock);
3096
3097 /* Global for IPS driver to get at the current i915 device. Protected by
3098  * mchdev_lock. */
3099 static struct drm_i915_private *i915_mch_dev;
3100
3101 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3102 {
3103         struct drm_i915_private *dev_priv = dev->dev_private;
3104         u16 rgvswctl;
3105
3106         assert_spin_locked(&mchdev_lock);
3107
3108         rgvswctl = I915_READ16(MEMSWCTL);
3109         if (rgvswctl & MEMCTL_CMD_STS) {
3110                 DRM_DEBUG("gpu busy, RCS change rejected\n");
3111                 return false; /* still busy with another command */
3112         }
3113
3114         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3115                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3116         I915_WRITE16(MEMSWCTL, rgvswctl);
3117         POSTING_READ16(MEMSWCTL);
3118
3119         rgvswctl |= MEMCTL_CMD_STS;
3120         I915_WRITE16(MEMSWCTL, rgvswctl);
3121
3122         return true;
3123 }
3124
3125 static void ironlake_enable_drps(struct drm_device *dev)
3126 {
3127         struct drm_i915_private *dev_priv = dev->dev_private;
3128         u32 rgvmodectl = I915_READ(MEMMODECTL);
3129         u8 fmax, fmin, fstart, vstart;
3130
3131         spin_lock_irq(&mchdev_lock);
3132
3133         /* Enable temp reporting */
3134         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3135         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3136
3137         /* 100ms RC evaluation intervals */
3138         I915_WRITE(RCUPEI, 100000);
3139         I915_WRITE(RCDNEI, 100000);
3140
3141         /* Set max/min thresholds to 90ms and 80ms respectively */
3142         I915_WRITE(RCBMAXAVG, 90000);
3143         I915_WRITE(RCBMINAVG, 80000);
3144
3145         I915_WRITE(MEMIHYST, 1);
3146
3147         /* Set up min, max, and cur for interrupt handling */
3148         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3149         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3150         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3151                 MEMMODE_FSTART_SHIFT;
3152
3153         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3154                 PXVFREQ_PX_SHIFT;
3155
3156         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3157         dev_priv->ips.fstart = fstart;
3158
3159         dev_priv->ips.max_delay = fstart;
3160         dev_priv->ips.min_delay = fmin;
3161         dev_priv->ips.cur_delay = fstart;
3162
3163         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3164                          fmax, fmin, fstart);
3165
3166         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3167
3168         /*
3169          * Interrupts will be enabled in ironlake_irq_postinstall
3170          */
3171
3172         I915_WRITE(VIDSTART, vstart);
3173         POSTING_READ(VIDSTART);
3174
3175         rgvmodectl |= MEMMODE_SWMODE_EN;
3176         I915_WRITE(MEMMODECTL, rgvmodectl);
3177
3178         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3179                 DRM_ERROR("stuck trying to change perf mode\n");
3180         mdelay(1);
3181
3182         ironlake_set_drps(dev, fstart);
3183
3184         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3185                 I915_READ(0x112e0);
3186         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3187         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3188         dev_priv->ips.last_time2 = ktime_get_raw_ns();
3189
3190         spin_unlock_irq(&mchdev_lock);
3191 }
3192
3193 static void ironlake_disable_drps(struct drm_device *dev)
3194 {
3195         struct drm_i915_private *dev_priv = dev->dev_private;
3196         u16 rgvswctl;
3197
3198         spin_lock_irq(&mchdev_lock);
3199
3200         rgvswctl = I915_READ16(MEMSWCTL);
3201
3202         /* Ack interrupts, disable EFC interrupt */
3203         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3204         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3205         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3206         I915_WRITE(DEIIR, DE_PCU_EVENT);
3207         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3208
3209         /* Go back to the starting frequency */
3210         ironlake_set_drps(dev, dev_priv->ips.fstart);
3211         mdelay(1);
3212         rgvswctl |= MEMCTL_CMD_STS;
3213         I915_WRITE(MEMSWCTL, rgvswctl);
3214         mdelay(1);
3215
3216         spin_unlock_irq(&mchdev_lock);
3217 }
3218
3219 /* There's a funny hw issue where the hw returns all 0 when reading from
3220  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3221  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3222  * all limits and the gpu stuck at whatever frequency it is at atm).
3223  */
3224 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3225 {
3226         u32 limits;
3227
3228         /* Only set the down limit when we've reached the lowest level to avoid
3229          * getting more interrupts, otherwise leave this clear. This prevents a
3230          * race in the hw when coming out of rc6: There's a tiny window where
3231          * the hw runs at the minimal clock before selecting the desired
3232          * frequency, if the down threshold expires in that window we will not
3233          * receive a down interrupt. */
3234         limits = dev_priv->rps.max_freq_softlimit << 24;
3235         if (val <= dev_priv->rps.min_freq_softlimit)
3236                 limits |= dev_priv->rps.min_freq_softlimit << 16;
3237
3238         return limits;
3239 }
3240
3241 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3242 {
3243         int new_power;
3244
3245         if (dev_priv->rps.is_bdw_sw_turbo)
3246                 return;
3247
3248         new_power = dev_priv->rps.power;
3249         switch (dev_priv->rps.power) {
3250         case LOW_POWER:
3251                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3252                         new_power = BETWEEN;
3253                 break;
3254
3255         case BETWEEN:
3256                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3257                         new_power = LOW_POWER;
3258                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3259                         new_power = HIGH_POWER;
3260                 break;
3261
3262         case HIGH_POWER:
3263                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3264                         new_power = BETWEEN;
3265                 break;
3266         }
3267         /* Max/min bins are special */
3268         if (val == dev_priv->rps.min_freq_softlimit)
3269                 new_power = LOW_POWER;
3270         if (val == dev_priv->rps.max_freq_softlimit)
3271                 new_power = HIGH_POWER;
3272         if (new_power == dev_priv->rps.power)
3273                 return;
3274
3275         /* Note the units here are not exactly 1us, but 1280ns. */
3276         switch (new_power) {
3277         case LOW_POWER:
3278                 /* Upclock if more than 95% busy over 16ms */
3279                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3280                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3281
3282                 /* Downclock if less than 85% busy over 32ms */
3283                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3284                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3285
3286                 I915_WRITE(GEN6_RP_CONTROL,
3287                            GEN6_RP_MEDIA_TURBO |
3288                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3289                            GEN6_RP_MEDIA_IS_GFX |
3290                            GEN6_RP_ENABLE |
3291                            GEN6_RP_UP_BUSY_AVG |
3292                            GEN6_RP_DOWN_IDLE_AVG);
3293                 break;
3294
3295         case BETWEEN:
3296                 /* Upclock if more than 90% busy over 13ms */
3297                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3298                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3299
3300                 /* Downclock if less than 75% busy over 32ms */
3301                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3302                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3303
3304                 I915_WRITE(GEN6_RP_CONTROL,
3305                            GEN6_RP_MEDIA_TURBO |
3306                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3307                            GEN6_RP_MEDIA_IS_GFX |
3308                            GEN6_RP_ENABLE |
3309                            GEN6_RP_UP_BUSY_AVG |
3310                            GEN6_RP_DOWN_IDLE_AVG);
3311                 break;
3312
3313         case HIGH_POWER:
3314                 /* Upclock if more than 85% busy over 10ms */
3315                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3316                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3317
3318                 /* Downclock if less than 60% busy over 32ms */
3319                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3320                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3321
3322                 I915_WRITE(GEN6_RP_CONTROL,
3323                            GEN6_RP_MEDIA_TURBO |
3324                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3325                            GEN6_RP_MEDIA_IS_GFX |
3326                            GEN6_RP_ENABLE |
3327                            GEN6_RP_UP_BUSY_AVG |
3328                            GEN6_RP_DOWN_IDLE_AVG);
3329                 break;
3330         }
3331
3332         dev_priv->rps.power = new_power;
3333         dev_priv->rps.last_adj = 0;
3334 }
3335
3336 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3337 {
3338         u32 mask = 0;
3339
3340         if (val > dev_priv->rps.min_freq_softlimit)
3341                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3342         if (val < dev_priv->rps.max_freq_softlimit)
3343                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3344
3345         mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3346         mask &= dev_priv->pm_rps_events;
3347
3348         /* IVB and SNB hard hangs on looping batchbuffer
3349          * if GEN6_PM_UP_EI_EXPIRED is masked.
3350          */
3351         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3352                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3353
3354         if (IS_GEN8(dev_priv->dev))
3355                 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3356
3357         return ~mask;
3358 }
3359
3360 /* gen6_set_rps is called to update the frequency request, but should also be
3361  * called when the range (min_delay and max_delay) is modified so that we can
3362  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3363 void gen6_set_rps(struct drm_device *dev, u8 val)
3364 {
3365         struct drm_i915_private *dev_priv = dev->dev_private;
3366
3367         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3368         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3369         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3370
3371         /* min/max delay may still have been modified so be sure to
3372          * write the limits value.
3373          */
3374         if (val != dev_priv->rps.cur_freq) {
3375                 gen6_set_rps_thresholds(dev_priv, val);
3376
3377                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3378                         I915_WRITE(GEN6_RPNSWREQ,
3379                                    HSW_FREQUENCY(val));
3380                 else
3381                         I915_WRITE(GEN6_RPNSWREQ,
3382                                    GEN6_FREQUENCY(val) |
3383                                    GEN6_OFFSET(0) |
3384                                    GEN6_AGGRESSIVE_TURBO);
3385         }
3386
3387         /* Make sure we continue to get interrupts
3388          * until we hit the minimum or maximum frequencies.
3389          */
3390         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3391         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3392
3393         POSTING_READ(GEN6_RPNSWREQ);
3394
3395         dev_priv->rps.cur_freq = val;
3396         trace_intel_gpu_freq_change(val * 50);
3397 }
3398
3399 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3400  *
3401  * * If Gfx is Idle, then
3402  * 1. Mask Turbo interrupts
3403  * 2. Bring up Gfx clock
3404  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3405  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3406  * 5. Unmask Turbo interrupts
3407 */
3408 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3409 {
3410         struct drm_device *dev = dev_priv->dev;
3411
3412         /* Latest VLV doesn't need to force the gfx clock */
3413         if (dev->pdev->revision >= 0xd) {
3414                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3415                 return;
3416         }
3417
3418         /*
3419          * When we are idle.  Drop to min voltage state.
3420          */
3421
3422         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3423                 return;
3424
3425         /* Mask turbo interrupt so that they will not come in between */
3426         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3427
3428         vlv_force_gfx_clock(dev_priv, true);
3429
3430         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3431
3432         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3433                                         dev_priv->rps.min_freq_softlimit);
3434
3435         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3436                                 & GENFREQSTATUS) == 0, 5))
3437                 DRM_ERROR("timed out waiting for Punit\n");
3438
3439         vlv_force_gfx_clock(dev_priv, false);
3440
3441         I915_WRITE(GEN6_PMINTRMSK,
3442                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3443 }
3444
3445 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3446 {
3447         struct drm_device *dev = dev_priv->dev;
3448
3449         mutex_lock(&dev_priv->rps.hw_lock);
3450         if (dev_priv->rps.enabled) {
3451                 if (IS_CHERRYVIEW(dev))
3452                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3453                 else if (IS_VALLEYVIEW(dev))
3454                         vlv_set_rps_idle(dev_priv);
3455                 else if (!dev_priv->rps.is_bdw_sw_turbo
3456                                         || atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
3457                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3458                 }
3459
3460                 dev_priv->rps.last_adj = 0;
3461         }
3462         mutex_unlock(&dev_priv->rps.hw_lock);
3463 }
3464
3465 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3466 {
3467         struct drm_device *dev = dev_priv->dev;
3468
3469         mutex_lock(&dev_priv->rps.hw_lock);
3470         if (dev_priv->rps.enabled) {
3471                 if (IS_VALLEYVIEW(dev))
3472                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3473                 else if (!dev_priv->rps.is_bdw_sw_turbo
3474                                         || atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
3475                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3476                 }
3477
3478                 dev_priv->rps.last_adj = 0;
3479         }
3480         mutex_unlock(&dev_priv->rps.hw_lock);
3481 }
3482
3483 void valleyview_set_rps(struct drm_device *dev, u8 val)
3484 {
3485         struct drm_i915_private *dev_priv = dev->dev_private;
3486
3487         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3488         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3489         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3490
3491         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3492                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3493                          dev_priv->rps.cur_freq,
3494                          vlv_gpu_freq(dev_priv, val), val);
3495
3496         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
3497                       "Odd GPU freq value\n"))
3498                 val &= ~1;
3499
3500         if (val != dev_priv->rps.cur_freq)
3501                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3502
3503         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3504
3505         dev_priv->rps.cur_freq = val;
3506         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3507 }
3508
3509 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3510 {
3511         struct drm_i915_private *dev_priv = dev->dev_private;
3512         if (IS_BROADWELL(dev) && dev_priv->rps.is_bdw_sw_turbo){
3513                 if (atomic_read(&dev_priv->rps.sw_turbo.flip_received))
3514                         del_timer(&dev_priv->rps.sw_turbo.flip_timer);
3515                 dev_priv-> rps.is_bdw_sw_turbo = false;
3516         } else {
3517                 I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3518                 I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3519                                            ~dev_priv->pm_rps_events);
3520                 /* Complete PM interrupt masking here doesn't race with the rps work
3521                  * item again unmasking PM interrupts because that is using a different
3522                  * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3523                  * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3524                  * gen8_enable_rps will clean up. */
3525
3526                 spin_lock_irq(&dev_priv->irq_lock);
3527                 dev_priv->rps.pm_iir = 0;
3528                 spin_unlock_irq(&dev_priv->irq_lock);
3529
3530                 I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3531         }
3532 }
3533
3534 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3535 {
3536         struct drm_i915_private *dev_priv = dev->dev_private;
3537
3538         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3539         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3540                                 ~dev_priv->pm_rps_events);
3541         /* Complete PM interrupt masking here doesn't race with the rps work
3542          * item again unmasking PM interrupts because that is using a different
3543          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3544          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3545
3546         spin_lock_irq(&dev_priv->irq_lock);
3547         dev_priv->rps.pm_iir = 0;
3548         spin_unlock_irq(&dev_priv->irq_lock);
3549
3550         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3551 }
3552
3553 static void gen6_disable_rps(struct drm_device *dev)
3554 {
3555         struct drm_i915_private *dev_priv = dev->dev_private;
3556
3557         I915_WRITE(GEN6_RC_CONTROL, 0);
3558         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3559
3560         if (IS_BROADWELL(dev))
3561                 gen8_disable_rps_interrupts(dev);
3562         else
3563                 gen6_disable_rps_interrupts(dev);
3564 }
3565
3566 static void cherryview_disable_rps(struct drm_device *dev)
3567 {
3568         struct drm_i915_private *dev_priv = dev->dev_private;
3569
3570         I915_WRITE(GEN6_RC_CONTROL, 0);
3571
3572         gen8_disable_rps_interrupts(dev);
3573 }
3574
3575 static void valleyview_disable_rps(struct drm_device *dev)
3576 {
3577         struct drm_i915_private *dev_priv = dev->dev_private;
3578
3579         /* we're doing forcewake before Disabling RC6,
3580          * This what the BIOS expects when going into suspend */
3581         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3582
3583         I915_WRITE(GEN6_RC_CONTROL, 0);
3584
3585         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3586
3587         gen6_disable_rps_interrupts(dev);
3588 }
3589
3590 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3591 {
3592         if (IS_VALLEYVIEW(dev)) {
3593                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3594                         mode = GEN6_RC_CTL_RC6_ENABLE;
3595                 else
3596                         mode = 0;
3597         }
3598         DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3599                       (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3600                       (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3601                       (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3602 }
3603
3604 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3605 {
3606         /* No RC6 before Ironlake */
3607         if (INTEL_INFO(dev)->gen < 5)
3608                 return 0;
3609
3610         /* RC6 is only on Ironlake mobile not on desktop */
3611         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3612                 return 0;
3613
3614         /* Respect the kernel parameter if it is set */
3615         if (enable_rc6 >= 0) {
3616                 int mask;
3617
3618                 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3619                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3620                                INTEL_RC6pp_ENABLE;
3621                 else
3622                         mask = INTEL_RC6_ENABLE;
3623
3624                 if ((enable_rc6 & mask) != enable_rc6)
3625                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3626                                       enable_rc6 & mask, enable_rc6, mask);
3627
3628                 return enable_rc6 & mask;
3629         }
3630
3631         /* Disable RC6 on Ironlake */
3632         if (INTEL_INFO(dev)->gen == 5)
3633                 return 0;
3634
3635         if (IS_IVYBRIDGE(dev))
3636                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3637
3638         return INTEL_RC6_ENABLE;
3639 }
3640
3641 int intel_enable_rc6(const struct drm_device *dev)
3642 {
3643         return i915.enable_rc6;
3644 }
3645
3646 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3647 {
3648         struct drm_i915_private *dev_priv = dev->dev_private;
3649
3650         spin_lock_irq(&dev_priv->irq_lock);
3651         WARN_ON(dev_priv->rps.pm_iir);
3652         gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3653         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3654         spin_unlock_irq(&dev_priv->irq_lock);
3655 }
3656
3657 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3658 {
3659         struct drm_i915_private *dev_priv = dev->dev_private;
3660
3661         spin_lock_irq(&dev_priv->irq_lock);
3662         WARN_ON(dev_priv->rps.pm_iir);
3663         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3664         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3665         spin_unlock_irq(&dev_priv->irq_lock);
3666 }
3667
3668 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3669 {
3670         /* All of these values are in units of 50MHz */
3671         dev_priv->rps.cur_freq          = 0;
3672         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3673         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3674         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3675         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3676         /* XXX: only BYT has a special efficient freq */
3677         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3678         /* hw_max = RP0 until we check for overclocking */
3679         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3680
3681         /* Preserve min/max settings in case of re-init */
3682         if (dev_priv->rps.max_freq_softlimit == 0)
3683                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3684
3685         if (dev_priv->rps.min_freq_softlimit == 0)
3686                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3687 }
3688
3689 static void bdw_sw_calculate_freq(struct drm_device *dev,
3690                 struct intel_rps_bdw_cal *c, u32 *cur_time, u32 *c0)
3691 {
3692         struct drm_i915_private *dev_priv = dev->dev_private;
3693         u64 busy = 0;
3694         u32 busyness_pct = 0;
3695         u32 elapsed_time = 0;
3696         u16 new_freq = 0;
3697
3698         if (!c || !cur_time || !c0)
3699                 return;
3700
3701         if (0 == c->last_c0)
3702                 goto out;
3703
3704         /* Check Evaluation interval */
3705         elapsed_time = *cur_time - c->last_ts;
3706         if (elapsed_time < c->eval_interval)
3707                 return;
3708
3709         mutex_lock(&dev_priv->rps.hw_lock);
3710
3711         /*
3712          * c0 unit in 32*1.28 usec, elapsed_time unit in 1 usec.
3713          * Whole busyness_pct calculation should be
3714          *     busy = ((u64)(*c0 - c->last_c0) << 5 << 7) / 100;
3715          *     busyness_pct = (u32)(busy * 100 / elapsed_time);
3716          * The final formula is to simplify CPU calculation
3717          */
3718         busy = (u64)(*c0 - c->last_c0) << 12;
3719         do_div(busy, elapsed_time);
3720         busyness_pct = (u32)busy;
3721
3722         if (c->is_up && busyness_pct >= c->it_threshold_pct)
3723                 new_freq = (u16)dev_priv->rps.cur_freq + 3;
3724         if (!c->is_up && busyness_pct <= c->it_threshold_pct)
3725                 new_freq = (u16)dev_priv->rps.cur_freq - 1;
3726
3727         /* Adjust to new frequency busyness and compare with threshold */
3728         if (0 != new_freq) {
3729                 if (new_freq > dev_priv->rps.max_freq_softlimit)
3730                         new_freq = dev_priv->rps.max_freq_softlimit;
3731                 else if (new_freq < dev_priv->rps.min_freq_softlimit)
3732                         new_freq = dev_priv->rps.min_freq_softlimit;
3733
3734                 gen6_set_rps(dev, new_freq);
3735         }
3736
3737         mutex_unlock(&dev_priv->rps.hw_lock);
3738
3739 out:
3740         c->last_c0 = *c0;
3741         c->last_ts = *cur_time;
3742 }
3743
3744 static void gen8_set_frequency_RP0(struct work_struct *work)
3745 {
3746         struct intel_rps_bdw_turbo *p_bdw_turbo =
3747                         container_of(work, struct intel_rps_bdw_turbo, work_max_freq);
3748         struct intel_gen6_power_mgmt *p_power_mgmt =
3749                         container_of(p_bdw_turbo, struct intel_gen6_power_mgmt, sw_turbo);
3750         struct drm_i915_private *dev_priv =
3751                         container_of(p_power_mgmt, struct drm_i915_private, rps);
3752
3753         mutex_lock(&dev_priv->rps.hw_lock);
3754         gen6_set_rps(dev_priv->dev, dev_priv->rps.rp0_freq);
3755         mutex_unlock(&dev_priv->rps.hw_lock);
3756 }
3757
3758 static void flip_active_timeout_handler(unsigned long var)
3759 {
3760         struct drm_i915_private *dev_priv = (struct drm_i915_private *) var;
3761
3762         del_timer(&dev_priv->rps.sw_turbo.flip_timer);
3763         atomic_set(&dev_priv->rps.sw_turbo.flip_received, false);
3764
3765         queue_work(dev_priv->wq, &dev_priv->rps.sw_turbo.work_max_freq);
3766 }
3767
3768 void bdw_software_turbo(struct drm_device *dev)
3769 {
3770         struct drm_i915_private *dev_priv = dev->dev_private;
3771
3772         u32 current_time = I915_READ(TIMESTAMP_CTR); /* unit in usec */
3773         u32 current_c0 = I915_READ(MCHBAR_PCU_C0); /* unit in 32*1.28 usec */
3774
3775         bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.up,
3776                         &current_time, &current_c0);
3777         bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.down,
3778                         &current_time, &current_c0);
3779 }
3780
3781 static void gen8_enable_rps(struct drm_device *dev)
3782 {
3783         struct drm_i915_private *dev_priv = dev->dev_private;
3784         struct intel_engine_cs *ring;
3785         uint32_t rc6_mask = 0, rp_state_cap;
3786         uint32_t threshold_up_pct, threshold_down_pct;
3787         uint32_t ei_up, ei_down; /* up and down evaluation interval */
3788         u32 rp_ctl_flag;
3789         int unused;
3790
3791         /* Use software Turbo for BDW */
3792         dev_priv->rps.is_bdw_sw_turbo = IS_BROADWELL(dev);
3793
3794         /* 1a: Software RC state - RC0 */
3795         I915_WRITE(GEN6_RC_STATE, 0);
3796
3797         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3798          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3799         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3800
3801         /* 2a: Disable RC states. */
3802         I915_WRITE(GEN6_RC_CONTROL, 0);
3803
3804         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3805         parse_rp_state_cap(dev_priv, rp_state_cap);
3806
3807         /* 2b: Program RC6 thresholds.*/
3808         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3809         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3810         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3811         for_each_ring(ring, dev_priv, unused)
3812                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3813         I915_WRITE(GEN6_RC_SLEEP, 0);
3814         if (IS_BROADWELL(dev))
3815                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
3816         else
3817                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3818
3819         /* 3: Enable RC6 */
3820         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3821                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3822         intel_print_rc6_info(dev, rc6_mask);
3823         if (IS_BROADWELL(dev))
3824                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3825                                 GEN7_RC_CTL_TO_MODE |
3826                                 rc6_mask);
3827         else
3828                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3829                                 GEN6_RC_CTL_EI_MODE(1) |
3830                                 rc6_mask);
3831
3832         /* 4 Program defaults and thresholds for RPS*/
3833         I915_WRITE(GEN6_RPNSWREQ,
3834                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3835         I915_WRITE(GEN6_RC_VIDEO_FREQ,
3836                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3837         ei_up = 84480; /* 84.48ms */
3838         ei_down = 448000;
3839         threshold_up_pct = 90; /* x percent busy */
3840         threshold_down_pct = 70;
3841
3842         if (dev_priv->rps.is_bdw_sw_turbo) {
3843                 dev_priv->rps.sw_turbo.up.it_threshold_pct = threshold_up_pct;
3844                 dev_priv->rps.sw_turbo.up.eval_interval = ei_up;
3845                 dev_priv->rps.sw_turbo.up.is_up = true;
3846                 dev_priv->rps.sw_turbo.up.last_ts = 0;
3847                 dev_priv->rps.sw_turbo.up.last_c0 = 0;
3848
3849                 dev_priv->rps.sw_turbo.down.it_threshold_pct = threshold_down_pct;
3850                 dev_priv->rps.sw_turbo.down.eval_interval = ei_down;
3851                 dev_priv->rps.sw_turbo.down.is_up = false;
3852                 dev_priv->rps.sw_turbo.down.last_ts = 0;
3853                 dev_priv->rps.sw_turbo.down.last_c0 = 0;
3854
3855                 /* Start the timer to track if flip comes*/
3856                 dev_priv->rps.sw_turbo.timeout = 200*1000; /* in us */
3857
3858                 init_timer(&dev_priv->rps.sw_turbo.flip_timer);
3859                 dev_priv->rps.sw_turbo.flip_timer.function = flip_active_timeout_handler;
3860                 dev_priv->rps.sw_turbo.flip_timer.data  = (unsigned long) dev_priv;
3861                 dev_priv->rps.sw_turbo.flip_timer.expires =
3862                         usecs_to_jiffies(dev_priv->rps.sw_turbo.timeout) + jiffies;
3863                 add_timer(&dev_priv->rps.sw_turbo.flip_timer);
3864                 INIT_WORK(&dev_priv->rps.sw_turbo.work_max_freq, gen8_set_frequency_RP0);
3865
3866                 atomic_set(&dev_priv->rps.sw_turbo.flip_received, true);
3867         } else {
3868                 /* NB: Docs say 1s, and 1000000 - which aren't equivalent
3869                  * 1 second timeout*/
3870                 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, FREQ_1_28_US(1000000));
3871
3872                 /* Docs recommend 900MHz, and 300 MHz respectively */
3873                 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3874                            dev_priv->rps.max_freq_softlimit << 24 |
3875                            dev_priv->rps.min_freq_softlimit << 16);
3876
3877                 I915_WRITE(GEN6_RP_UP_THRESHOLD,
3878                         FREQ_1_28_US(ei_up * threshold_up_pct / 100));
3879                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
3880                         FREQ_1_28_US(ei_down * threshold_down_pct / 100));
3881                 I915_WRITE(GEN6_RP_UP_EI,
3882                         FREQ_1_28_US(ei_up));
3883                 I915_WRITE(GEN6_RP_DOWN_EI,
3884                         FREQ_1_28_US(ei_down));
3885
3886                 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3887         }
3888
3889         /* 5: Enable RPS */
3890         rp_ctl_flag = GEN6_RP_MEDIA_TURBO |
3891                                         GEN6_RP_MEDIA_HW_NORMAL_MODE |
3892                                         GEN6_RP_MEDIA_IS_GFX |
3893                                         GEN6_RP_UP_BUSY_AVG |
3894                                         GEN6_RP_DOWN_IDLE_AVG;
3895         if (!dev_priv->rps.is_bdw_sw_turbo)
3896                 rp_ctl_flag |= GEN6_RP_ENABLE;
3897
3898         I915_WRITE(GEN6_RP_CONTROL, rp_ctl_flag);
3899
3900         /* 6: Ring frequency + overclocking
3901          * (our driver does this later */
3902         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3903         if (!dev_priv->rps.is_bdw_sw_turbo)
3904                 gen8_enable_rps_interrupts(dev);
3905
3906         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3907 }
3908
3909 static void gen6_enable_rps(struct drm_device *dev)
3910 {
3911         struct drm_i915_private *dev_priv = dev->dev_private;
3912         struct intel_engine_cs *ring;
3913         u32 rp_state_cap;
3914         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3915         u32 gtfifodbg;
3916         int rc6_mode;
3917         int i, ret;
3918
3919         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3920
3921         /* Here begins a magic sequence of register writes to enable
3922          * auto-downclocking.
3923          *
3924          * Perhaps there might be some value in exposing these to
3925          * userspace...
3926          */
3927         I915_WRITE(GEN6_RC_STATE, 0);
3928
3929         /* Clear the DBG now so we don't confuse earlier errors */
3930         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3931                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3932                 I915_WRITE(GTFIFODBG, gtfifodbg);
3933         }
3934
3935         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3936
3937         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3938
3939         parse_rp_state_cap(dev_priv, rp_state_cap);
3940
3941         /* disable the counters and set deterministic thresholds */
3942         I915_WRITE(GEN6_RC_CONTROL, 0);
3943
3944         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3945         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3946         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3947         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3948         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3949
3950         for_each_ring(ring, dev_priv, i)
3951                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3952
3953         I915_WRITE(GEN6_RC_SLEEP, 0);
3954         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3955         if (IS_IVYBRIDGE(dev))
3956                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3957         else
3958                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3959         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3960         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3961
3962         /* Check if we are enabling RC6 */
3963         rc6_mode = intel_enable_rc6(dev_priv->dev);
3964         if (rc6_mode & INTEL_RC6_ENABLE)
3965                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3966
3967         /* We don't use those on Haswell */
3968         if (!IS_HASWELL(dev)) {
3969                 if (rc6_mode & INTEL_RC6p_ENABLE)
3970                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3971
3972                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3973                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3974         }
3975
3976         intel_print_rc6_info(dev, rc6_mask);
3977
3978         I915_WRITE(GEN6_RC_CONTROL,
3979                    rc6_mask |
3980                    GEN6_RC_CTL_EI_MODE(1) |
3981                    GEN6_RC_CTL_HW_ENABLE);
3982
3983         /* Power down if completely idle for over 50ms */
3984         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3985         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3986
3987         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3988         if (ret)
3989                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3990
3991         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3992         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3993                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3994                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3995                                  (pcu_mbox & 0xff) * 50);
3996                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3997         }
3998
3999         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4000         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4001
4002         gen6_enable_rps_interrupts(dev);
4003
4004         rc6vids = 0;
4005         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4006         if (IS_GEN6(dev) && ret) {
4007                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4008         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4009                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4010                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4011                 rc6vids &= 0xffff00;
4012                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
4013                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4014                 if (ret)
4015                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4016         }
4017
4018         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4019 }
4020
4021 static void __gen6_update_ring_freq(struct drm_device *dev)
4022 {
4023         struct drm_i915_private *dev_priv = dev->dev_private;
4024         int min_freq = 15;
4025         unsigned int gpu_freq;
4026         unsigned int max_ia_freq, min_ring_freq;
4027         int scaling_factor = 180;
4028         struct cpufreq_policy *policy;
4029
4030         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4031
4032         policy = cpufreq_cpu_get(0);
4033         if (policy) {
4034                 max_ia_freq = policy->cpuinfo.max_freq;
4035                 cpufreq_cpu_put(policy);
4036         } else {
4037                 /*
4038                  * Default to measured freq if none found, PCU will ensure we
4039                  * don't go over
4040                  */
4041                 max_ia_freq = tsc_khz;
4042         }
4043
4044         /* Convert from kHz to MHz */
4045         max_ia_freq /= 1000;
4046
4047         min_ring_freq = I915_READ(DCLK) & 0xf;
4048         /* convert DDR frequency from units of 266.6MHz to bandwidth */
4049         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4050
4051         /*
4052          * For each potential GPU frequency, load a ring frequency we'd like
4053          * to use for memory access.  We do this by specifying the IA frequency
4054          * the PCU should use as a reference to determine the ring frequency.
4055          */
4056         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
4057              gpu_freq--) {
4058                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
4059                 unsigned int ia_freq = 0, ring_freq = 0;
4060
4061                 if (INTEL_INFO(dev)->gen >= 8) {
4062                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
4063                         ring_freq = max(min_ring_freq, gpu_freq);
4064                 } else if (IS_HASWELL(dev)) {
4065                         ring_freq = mult_frac(gpu_freq, 5, 4);
4066                         ring_freq = max(min_ring_freq, ring_freq);
4067                         /* leave ia_freq as the default, chosen by cpufreq */
4068                 } else {
4069                         /* On older processors, there is no separate ring
4070                          * clock domain, so in order to boost the bandwidth
4071                          * of the ring, we need to upclock the CPU (ia_freq).
4072                          *
4073                          * For GPU frequencies less than 750MHz,
4074                          * just use the lowest ring freq.
4075                          */
4076                         if (gpu_freq < min_freq)
4077                                 ia_freq = 800;
4078                         else
4079                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4080                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4081                 }
4082
4083                 sandybridge_pcode_write(dev_priv,
4084                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4085                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4086                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4087                                         gpu_freq);
4088         }
4089 }
4090
4091 void gen6_update_ring_freq(struct drm_device *dev)
4092 {
4093         struct drm_i915_private *dev_priv = dev->dev_private;
4094
4095         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4096                 return;
4097
4098         mutex_lock(&dev_priv->rps.hw_lock);
4099         __gen6_update_ring_freq(dev);
4100         mutex_unlock(&dev_priv->rps.hw_lock);
4101 }
4102
4103 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4104 {
4105         u32 val, rp0;
4106
4107         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4108         rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4109
4110         return rp0;
4111 }
4112
4113 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4114 {
4115         u32 val, rpe;
4116
4117         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4118         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4119
4120         return rpe;
4121 }
4122
4123 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4124 {
4125         u32 val, rp1;
4126
4127         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4128         rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4129
4130         return rp1;
4131 }
4132
4133 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4134 {
4135         u32 val, rpn;
4136
4137         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4138         rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
4139         return rpn;
4140 }
4141
4142 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4143 {
4144         u32 val, rp1;
4145
4146         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4147
4148         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4149
4150         return rp1;
4151 }
4152
4153 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4154 {
4155         u32 val, rp0;
4156
4157         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4158
4159         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4160         /* Clamp to max */
4161         rp0 = min_t(u32, rp0, 0xea);
4162
4163         return rp0;
4164 }
4165
4166 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4167 {
4168         u32 val, rpe;
4169
4170         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4171         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4172         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4173         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4174
4175         return rpe;
4176 }
4177
4178 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4179 {
4180         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4181 }
4182
4183 /* Check that the pctx buffer wasn't move under us. */
4184 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4185 {
4186         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4187
4188         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4189                              dev_priv->vlv_pctx->stolen->start);
4190 }
4191
4192
4193 /* Check that the pcbr address is not empty. */
4194 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4195 {
4196         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4197
4198         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4199 }
4200
4201 static void cherryview_setup_pctx(struct drm_device *dev)
4202 {
4203         struct drm_i915_private *dev_priv = dev->dev_private;
4204         unsigned long pctx_paddr, paddr;
4205         struct i915_gtt *gtt = &dev_priv->gtt;
4206         u32 pcbr;
4207         int pctx_size = 32*1024;
4208
4209         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4210
4211         pcbr = I915_READ(VLV_PCBR);
4212         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4213                 paddr = (dev_priv->mm.stolen_base +
4214                          (gtt->stolen_size - pctx_size));
4215
4216                 pctx_paddr = (paddr & (~4095));
4217                 I915_WRITE(VLV_PCBR, pctx_paddr);
4218         }
4219 }
4220
4221 static void valleyview_setup_pctx(struct drm_device *dev)
4222 {
4223         struct drm_i915_private *dev_priv = dev->dev_private;
4224         struct drm_i915_gem_object *pctx;
4225         unsigned long pctx_paddr;
4226         u32 pcbr;
4227         int pctx_size = 24*1024;
4228
4229         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4230
4231         pcbr = I915_READ(VLV_PCBR);
4232         if (pcbr) {
4233                 /* BIOS set it up already, grab the pre-alloc'd space */
4234                 int pcbr_offset;
4235
4236                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4237                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4238                                                                       pcbr_offset,
4239                                                                       I915_GTT_OFFSET_NONE,
4240                                                                       pctx_size);
4241                 goto out;
4242         }
4243
4244         /*
4245          * From the Gunit register HAS:
4246          * The Gfx driver is expected to program this register and ensure
4247          * proper allocation within Gfx stolen memory.  For example, this
4248          * register should be programmed such than the PCBR range does not
4249          * overlap with other ranges, such as the frame buffer, protected
4250          * memory, or any other relevant ranges.
4251          */
4252         pctx = i915_gem_object_create_stolen(dev, pctx_size);
4253         if (!pctx) {
4254                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4255                 return;
4256         }
4257
4258         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4259         I915_WRITE(VLV_PCBR, pctx_paddr);
4260
4261 out:
4262         dev_priv->vlv_pctx = pctx;
4263 }
4264
4265 static void valleyview_cleanup_pctx(struct drm_device *dev)
4266 {
4267         struct drm_i915_private *dev_priv = dev->dev_private;
4268
4269         if (WARN_ON(!dev_priv->vlv_pctx))
4270                 return;
4271
4272         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4273         dev_priv->vlv_pctx = NULL;
4274 }
4275
4276 static void valleyview_init_gt_powersave(struct drm_device *dev)
4277 {
4278         struct drm_i915_private *dev_priv = dev->dev_private;
4279         u32 val;
4280
4281         valleyview_setup_pctx(dev);
4282
4283         mutex_lock(&dev_priv->rps.hw_lock);
4284
4285         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4286         switch ((val >> 6) & 3) {
4287         case 0:
4288         case 1:
4289                 dev_priv->mem_freq = 800;
4290                 break;
4291         case 2:
4292                 dev_priv->mem_freq = 1066;
4293                 break;
4294         case 3:
4295                 dev_priv->mem_freq = 1333;
4296                 break;
4297         }
4298         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4299
4300         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4301         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4302         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4303                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4304                          dev_priv->rps.max_freq);
4305
4306         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4307         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4308                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4309                          dev_priv->rps.efficient_freq);
4310
4311         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4312         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4313                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4314                          dev_priv->rps.rp1_freq);
4315
4316         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4317         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4318                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4319                          dev_priv->rps.min_freq);
4320
4321         /* Preserve min/max settings in case of re-init */
4322         if (dev_priv->rps.max_freq_softlimit == 0)
4323                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4324
4325         if (dev_priv->rps.min_freq_softlimit == 0)
4326                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4327
4328         mutex_unlock(&dev_priv->rps.hw_lock);
4329 }
4330
4331 static void cherryview_init_gt_powersave(struct drm_device *dev)
4332 {
4333         struct drm_i915_private *dev_priv = dev->dev_private;
4334         u32 val;
4335
4336         cherryview_setup_pctx(dev);
4337
4338         mutex_lock(&dev_priv->rps.hw_lock);
4339
4340         val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
4341         switch ((val >> 2) & 0x7) {
4342         case 0:
4343         case 1:
4344                 dev_priv->rps.cz_freq = 200;
4345                 dev_priv->mem_freq = 1600;
4346                 break;
4347         case 2:
4348                 dev_priv->rps.cz_freq = 267;
4349                 dev_priv->mem_freq = 1600;
4350                 break;
4351         case 3:
4352                 dev_priv->rps.cz_freq = 333;
4353                 dev_priv->mem_freq = 2000;
4354                 break;
4355         case 4:
4356                 dev_priv->rps.cz_freq = 320;
4357                 dev_priv->mem_freq = 1600;
4358                 break;
4359         case 5:
4360                 dev_priv->rps.cz_freq = 400;
4361                 dev_priv->mem_freq = 1600;
4362                 break;
4363         }
4364         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4365
4366         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4367         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4368         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4369                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4370                          dev_priv->rps.max_freq);
4371
4372         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4373         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4374                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4375                          dev_priv->rps.efficient_freq);
4376
4377         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4378         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4379                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4380                          dev_priv->rps.rp1_freq);
4381
4382         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4383         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4384                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4385                          dev_priv->rps.min_freq);
4386
4387         WARN_ONCE((dev_priv->rps.max_freq |
4388                    dev_priv->rps.efficient_freq |
4389                    dev_priv->rps.rp1_freq |
4390                    dev_priv->rps.min_freq) & 1,
4391                   "Odd GPU freq values\n");
4392
4393         /* Preserve min/max settings in case of re-init */
4394         if (dev_priv->rps.max_freq_softlimit == 0)
4395                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4396
4397         if (dev_priv->rps.min_freq_softlimit == 0)
4398                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4399
4400         mutex_unlock(&dev_priv->rps.hw_lock);
4401 }
4402
4403 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4404 {
4405         valleyview_cleanup_pctx(dev);
4406 }
4407
4408 static void cherryview_enable_rps(struct drm_device *dev)
4409 {
4410         struct drm_i915_private *dev_priv = dev->dev_private;
4411         struct intel_engine_cs *ring;
4412         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4413         int i;
4414
4415         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4416
4417         gtfifodbg = I915_READ(GTFIFODBG);
4418         if (gtfifodbg) {
4419                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4420                                  gtfifodbg);
4421                 I915_WRITE(GTFIFODBG, gtfifodbg);
4422         }
4423
4424         cherryview_check_pctx(dev_priv);
4425
4426         /* 1a & 1b: Get forcewake during program sequence. Although the driver
4427          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4428         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4429
4430         /* 2a: Program RC6 thresholds.*/
4431         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4432         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4433         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4434
4435         for_each_ring(ring, dev_priv, i)
4436                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4437         I915_WRITE(GEN6_RC_SLEEP, 0);
4438
4439         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4440
4441         /* allows RC6 residency counter to work */
4442         I915_WRITE(VLV_COUNTER_CONTROL,
4443                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4444                                       VLV_MEDIA_RC6_COUNT_EN |
4445                                       VLV_RENDER_RC6_COUNT_EN));
4446
4447         /* For now we assume BIOS is allocating and populating the PCBR  */
4448         pcbr = I915_READ(VLV_PCBR);
4449
4450         DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4451
4452         /* 3: Enable RC6 */
4453         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4454                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4455                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4456
4457         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4458
4459         /* 4 Program defaults and thresholds for RPS*/
4460         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4461         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4462         I915_WRITE(GEN6_RP_UP_EI, 66000);
4463         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4464
4465         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4466
4467         /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4468         I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4469         I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4470
4471         /* 5: Enable RPS */
4472         I915_WRITE(GEN6_RP_CONTROL,
4473                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4474                    GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4475                    GEN6_RP_ENABLE |
4476                    GEN6_RP_UP_BUSY_AVG |
4477                    GEN6_RP_DOWN_IDLE_AVG);
4478
4479         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4480
4481         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4482         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4483
4484         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4485         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4486                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4487                          dev_priv->rps.cur_freq);
4488
4489         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4490                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4491                          dev_priv->rps.efficient_freq);
4492
4493         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4494
4495         gen8_enable_rps_interrupts(dev);
4496
4497         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4498 }
4499
4500 static void valleyview_enable_rps(struct drm_device *dev)
4501 {
4502         struct drm_i915_private *dev_priv = dev->dev_private;
4503         struct intel_engine_cs *ring;
4504         u32 gtfifodbg, val, rc6_mode = 0;
4505         int i;
4506
4507         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4508
4509         valleyview_check_pctx(dev_priv);
4510
4511         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4512                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4513                                  gtfifodbg);
4514                 I915_WRITE(GTFIFODBG, gtfifodbg);
4515         }
4516
4517         /* If VLV, Forcewake all wells, else re-direct to regular path */
4518         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4519
4520         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4521         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4522         I915_WRITE(GEN6_RP_UP_EI, 66000);
4523         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4524
4525         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4526         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4527
4528         I915_WRITE(GEN6_RP_CONTROL,
4529                    GEN6_RP_MEDIA_TURBO |
4530                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4531                    GEN6_RP_MEDIA_IS_GFX |
4532                    GEN6_RP_ENABLE |
4533                    GEN6_RP_UP_BUSY_AVG |
4534                    GEN6_RP_DOWN_IDLE_CONT);
4535
4536         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4537         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4538         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4539
4540         for_each_ring(ring, dev_priv, i)
4541                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4542
4543         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4544
4545         /* allows RC6 residency counter to work */
4546         I915_WRITE(VLV_COUNTER_CONTROL,
4547                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4548                                       VLV_RENDER_RC0_COUNT_EN |
4549                                       VLV_MEDIA_RC6_COUNT_EN |
4550                                       VLV_RENDER_RC6_COUNT_EN));
4551
4552         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4553                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4554
4555         intel_print_rc6_info(dev, rc6_mode);
4556
4557         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4558
4559         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4560
4561         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4562         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4563
4564         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4565         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4566                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4567                          dev_priv->rps.cur_freq);
4568
4569         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4570                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4571                          dev_priv->rps.efficient_freq);
4572
4573         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4574
4575         gen6_enable_rps_interrupts(dev);
4576
4577         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4578 }
4579
4580 void ironlake_teardown_rc6(struct drm_device *dev)
4581 {
4582         struct drm_i915_private *dev_priv = dev->dev_private;
4583
4584         if (dev_priv->ips.renderctx) {
4585                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4586                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4587                 dev_priv->ips.renderctx = NULL;
4588         }
4589
4590         if (dev_priv->ips.pwrctx) {
4591                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4592                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4593                 dev_priv->ips.pwrctx = NULL;
4594         }
4595 }
4596
4597 static void ironlake_disable_rc6(struct drm_device *dev)
4598 {
4599         struct drm_i915_private *dev_priv = dev->dev_private;
4600
4601         if (I915_READ(PWRCTXA)) {
4602                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4603                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4604                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4605                          50);
4606
4607                 I915_WRITE(PWRCTXA, 0);
4608                 POSTING_READ(PWRCTXA);
4609
4610                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4611                 POSTING_READ(RSTDBYCTL);
4612         }
4613 }
4614
4615 static int ironlake_setup_rc6(struct drm_device *dev)
4616 {
4617         struct drm_i915_private *dev_priv = dev->dev_private;
4618
4619         if (dev_priv->ips.renderctx == NULL)
4620                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4621         if (!dev_priv->ips.renderctx)
4622                 return -ENOMEM;
4623
4624         if (dev_priv->ips.pwrctx == NULL)
4625                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4626         if (!dev_priv->ips.pwrctx) {
4627                 ironlake_teardown_rc6(dev);
4628                 return -ENOMEM;
4629         }
4630
4631         return 0;
4632 }
4633
4634 static void ironlake_enable_rc6(struct drm_device *dev)
4635 {
4636         struct drm_i915_private *dev_priv = dev->dev_private;
4637         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4638         bool was_interruptible;
4639         int ret;
4640
4641         /* rc6 disabled by default due to repeated reports of hanging during
4642          * boot and resume.
4643          */
4644         if (!intel_enable_rc6(dev))
4645                 return;
4646
4647         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4648
4649         ret = ironlake_setup_rc6(dev);
4650         if (ret)
4651                 return;
4652
4653         was_interruptible = dev_priv->mm.interruptible;
4654         dev_priv->mm.interruptible = false;
4655
4656         /*
4657          * GPU can automatically power down the render unit if given a page
4658          * to save state.
4659          */
4660         ret = intel_ring_begin(ring, 6);
4661         if (ret) {
4662                 ironlake_teardown_rc6(dev);
4663                 dev_priv->mm.interruptible = was_interruptible;
4664                 return;
4665         }
4666
4667         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4668         intel_ring_emit(ring, MI_SET_CONTEXT);
4669         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4670                         MI_MM_SPACE_GTT |
4671                         MI_SAVE_EXT_STATE_EN |
4672                         MI_RESTORE_EXT_STATE_EN |
4673                         MI_RESTORE_INHIBIT);
4674         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4675         intel_ring_emit(ring, MI_NOOP);
4676         intel_ring_emit(ring, MI_FLUSH);
4677         intel_ring_advance(ring);
4678
4679         /*
4680          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4681          * does an implicit flush, combined with MI_FLUSH above, it should be
4682          * safe to assume that renderctx is valid
4683          */
4684         ret = intel_ring_idle(ring);
4685         dev_priv->mm.interruptible = was_interruptible;
4686         if (ret) {
4687                 DRM_ERROR("failed to enable ironlake power savings\n");
4688                 ironlake_teardown_rc6(dev);
4689                 return;
4690         }
4691
4692         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4693         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4694
4695         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4696 }
4697
4698 static unsigned long intel_pxfreq(u32 vidfreq)
4699 {
4700         unsigned long freq;
4701         int div = (vidfreq & 0x3f0000) >> 16;
4702         int post = (vidfreq & 0x3000) >> 12;
4703         int pre = (vidfreq & 0x7);
4704
4705         if (!pre)
4706                 return 0;
4707
4708         freq = ((div * 133333) / ((1<<post) * pre));
4709
4710         return freq;
4711 }
4712
4713 static const struct cparams {
4714         u16 i;
4715         u16 t;
4716         u16 m;
4717         u16 c;
4718 } cparams[] = {
4719         { 1, 1333, 301, 28664 },
4720         { 1, 1066, 294, 24460 },
4721         { 1, 800, 294, 25192 },
4722         { 0, 1333, 276, 27605 },
4723         { 0, 1066, 276, 27605 },
4724         { 0, 800, 231, 23784 },
4725 };
4726
4727 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4728 {
4729         u64 total_count, diff, ret;
4730         u32 count1, count2, count3, m = 0, c = 0;
4731         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4732         int i;
4733
4734         assert_spin_locked(&mchdev_lock);
4735
4736         diff1 = now - dev_priv->ips.last_time1;
4737
4738         /* Prevent division-by-zero if we are asking too fast.
4739          * Also, we don't get interesting results if we are polling
4740          * faster than once in 10ms, so just return the saved value
4741          * in such cases.
4742          */
4743         if (diff1 <= 10)
4744                 return dev_priv->ips.chipset_power;
4745
4746         count1 = I915_READ(DMIEC);
4747         count2 = I915_READ(DDREC);
4748         count3 = I915_READ(CSIEC);
4749
4750         total_count = count1 + count2 + count3;
4751
4752         /* FIXME: handle per-counter overflow */
4753         if (total_count < dev_priv->ips.last_count1) {
4754                 diff = ~0UL - dev_priv->ips.last_count1;
4755                 diff += total_count;
4756         } else {
4757                 diff = total_count - dev_priv->ips.last_count1;
4758         }
4759
4760         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4761                 if (cparams[i].i == dev_priv->ips.c_m &&
4762                     cparams[i].t == dev_priv->ips.r_t) {
4763                         m = cparams[i].m;
4764                         c = cparams[i].c;
4765                         break;
4766                 }
4767         }
4768
4769         diff = div_u64(diff, diff1);
4770         ret = ((m * diff) + c);
4771         ret = div_u64(ret, 10);
4772
4773         dev_priv->ips.last_count1 = total_count;
4774         dev_priv->ips.last_time1 = now;
4775
4776         dev_priv->ips.chipset_power = ret;
4777
4778         return ret;
4779 }
4780
4781 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4782 {
4783         struct drm_device *dev = dev_priv->dev;
4784         unsigned long val;
4785
4786         if (INTEL_INFO(dev)->gen != 5)
4787                 return 0;
4788
4789         spin_lock_irq(&mchdev_lock);
4790
4791         val = __i915_chipset_val(dev_priv);
4792
4793         spin_unlock_irq(&mchdev_lock);
4794
4795         return val;
4796 }
4797
4798 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4799 {
4800         unsigned long m, x, b;
4801         u32 tsfs;
4802
4803         tsfs = I915_READ(TSFS);
4804
4805         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4806         x = I915_READ8(TR1);
4807
4808         b = tsfs & TSFS_INTR_MASK;
4809
4810         return ((m * x) / 127) - b;
4811 }
4812
4813 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4814 {
4815         struct drm_device *dev = dev_priv->dev;
4816         static const struct v_table {
4817                 u16 vd; /* in .1 mil */
4818                 u16 vm; /* in .1 mil */
4819         } v_table[] = {
4820                 { 0, 0, },
4821                 { 375, 0, },
4822                 { 500, 0, },
4823                 { 625, 0, },
4824                 { 750, 0, },
4825                 { 875, 0, },
4826                 { 1000, 0, },
4827                 { 1125, 0, },
4828                 { 4125, 3000, },
4829                 { 4125, 3000, },
4830                 { 4125, 3000, },
4831                 { 4125, 3000, },
4832                 { 4125, 3000, },
4833                 { 4125, 3000, },
4834                 { 4125, 3000, },
4835                 { 4125, 3000, },
4836                 { 4125, 3000, },
4837                 { 4125, 3000, },
4838                 { 4125, 3000, },
4839                 { 4125, 3000, },
4840                 { 4125, 3000, },
4841                 { 4125, 3000, },
4842                 { 4125, 3000, },
4843                 { 4125, 3000, },
4844                 { 4125, 3000, },
4845                 { 4125, 3000, },
4846                 { 4125, 3000, },
4847                 { 4125, 3000, },
4848                 { 4125, 3000, },
4849                 { 4125, 3000, },
4850                 { 4125, 3000, },
4851                 { 4125, 3000, },
4852                 { 4250, 3125, },
4853                 { 4375, 3250, },
4854                 { 4500, 3375, },
4855                 { 4625, 3500, },
4856                 { 4750, 3625, },
4857                 { 4875, 3750, },
4858                 { 5000, 3875, },
4859                 { 5125, 4000, },
4860                 { 5250, 4125, },
4861                 { 5375, 4250, },
4862                 { 5500, 4375, },
4863                 { 5625, 4500, },
4864                 { 5750, 4625, },
4865                 { 5875, 4750, },
4866                 { 6000, 4875, },
4867                 { 6125, 5000, },
4868                 { 6250, 5125, },
4869                 { 6375, 5250, },
4870                 { 6500, 5375, },
4871                 { 6625, 5500, },
4872                 { 6750, 5625, },
4873                 { 6875, 5750, },
4874                 { 7000, 5875, },
4875                 { 7125, 6000, },
4876                 { 7250, 6125, },
4877                 { 7375, 6250, },
4878                 { 7500, 6375, },
4879                 { 7625, 6500, },
4880                 { 7750, 6625, },
4881                 { 7875, 6750, },
4882                 { 8000, 6875, },
4883                 { 8125, 7000, },
4884                 { 8250, 7125, },
4885                 { 8375, 7250, },
4886                 { 8500, 7375, },
4887                 { 8625, 7500, },
4888                 { 8750, 7625, },
4889                 { 8875, 7750, },
4890                 { 9000, 7875, },
4891                 { 9125, 8000, },
4892                 { 9250, 8125, },
4893                 { 9375, 8250, },
4894                 { 9500, 8375, },
4895                 { 9625, 8500, },
4896                 { 9750, 8625, },
4897                 { 9875, 8750, },
4898                 { 10000, 8875, },
4899                 { 10125, 9000, },
4900                 { 10250, 9125, },
4901                 { 10375, 9250, },
4902                 { 10500, 9375, },
4903                 { 10625, 9500, },
4904                 { 10750, 9625, },
4905                 { 10875, 9750, },
4906                 { 11000, 9875, },
4907                 { 11125, 10000, },
4908                 { 11250, 10125, },
4909                 { 11375, 10250, },
4910                 { 11500, 10375, },
4911                 { 11625, 10500, },
4912                 { 11750, 10625, },
4913                 { 11875, 10750, },
4914                 { 12000, 10875, },
4915                 { 12125, 11000, },
4916                 { 12250, 11125, },
4917                 { 12375, 11250, },
4918                 { 12500, 11375, },
4919                 { 12625, 11500, },
4920                 { 12750, 11625, },
4921                 { 12875, 11750, },
4922                 { 13000, 11875, },
4923                 { 13125, 12000, },
4924                 { 13250, 12125, },
4925                 { 13375, 12250, },
4926                 { 13500, 12375, },
4927                 { 13625, 12500, },
4928                 { 13750, 12625, },
4929                 { 13875, 12750, },
4930                 { 14000, 12875, },
4931                 { 14125, 13000, },
4932                 { 14250, 13125, },
4933                 { 14375, 13250, },
4934                 { 14500, 13375, },
4935                 { 14625, 13500, },
4936                 { 14750, 13625, },
4937                 { 14875, 13750, },
4938                 { 15000, 13875, },
4939                 { 15125, 14000, },
4940                 { 15250, 14125, },
4941                 { 15375, 14250, },
4942                 { 15500, 14375, },
4943                 { 15625, 14500, },
4944                 { 15750, 14625, },
4945                 { 15875, 14750, },
4946                 { 16000, 14875, },
4947                 { 16125, 15000, },
4948         };
4949         if (INTEL_INFO(dev)->is_mobile)
4950                 return v_table[pxvid].vm;
4951         else
4952                 return v_table[pxvid].vd;
4953 }
4954
4955 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4956 {
4957         u64 now, diff, diffms;
4958         u32 count;
4959
4960         assert_spin_locked(&mchdev_lock);
4961
4962         now = ktime_get_raw_ns();
4963         diffms = now - dev_priv->ips.last_time2;
4964         do_div(diffms, NSEC_PER_MSEC);
4965
4966         /* Don't divide by 0 */
4967         if (!diffms)
4968                 return;
4969
4970         count = I915_READ(GFXEC);
4971
4972         if (count < dev_priv->ips.last_count2) {
4973                 diff = ~0UL - dev_priv->ips.last_count2;
4974                 diff += count;
4975         } else {
4976                 diff = count - dev_priv->ips.last_count2;
4977         }
4978
4979         dev_priv->ips.last_count2 = count;
4980         dev_priv->ips.last_time2 = now;
4981
4982         /* More magic constants... */
4983         diff = diff * 1181;
4984         diff = div_u64(diff, diffms * 10);
4985         dev_priv->ips.gfx_power = diff;
4986 }
4987
4988 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4989 {
4990         struct drm_device *dev = dev_priv->dev;
4991
4992         if (INTEL_INFO(dev)->gen != 5)
4993                 return;
4994
4995         spin_lock_irq(&mchdev_lock);
4996
4997         __i915_update_gfx_val(dev_priv);
4998
4999         spin_unlock_irq(&mchdev_lock);
5000 }
5001
5002 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5003 {
5004         unsigned long t, corr, state1, corr2, state2;
5005         u32 pxvid, ext_v;
5006
5007         assert_spin_locked(&mchdev_lock);
5008
5009         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5010         pxvid = (pxvid >> 24) & 0x7f;
5011         ext_v = pvid_to_extvid(dev_priv, pxvid);
5012
5013         state1 = ext_v;
5014
5015         t = i915_mch_val(dev_priv);
5016
5017         /* Revel in the empirically derived constants */
5018
5019         /* Correction factor in 1/100000 units */
5020         if (t > 80)
5021                 corr = ((t * 2349) + 135940);
5022         else if (t >= 50)
5023                 corr = ((t * 964) + 29317);
5024         else /* < 50 */
5025                 corr = ((t * 301) + 1004);
5026
5027         corr = corr * ((150142 * state1) / 10000 - 78642);
5028         corr /= 100000;
5029         corr2 = (corr * dev_priv->ips.corr);
5030
5031         state2 = (corr2 * state1) / 10000;
5032         state2 /= 100; /* convert to mW */
5033
5034         __i915_update_gfx_val(dev_priv);
5035
5036         return dev_priv->ips.gfx_power + state2;
5037 }
5038
5039 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5040 {
5041         struct drm_device *dev = dev_priv->dev;
5042         unsigned long val;
5043
5044         if (INTEL_INFO(dev)->gen != 5)
5045                 return 0;
5046
5047         spin_lock_irq(&mchdev_lock);
5048
5049         val = __i915_gfx_val(dev_priv);
5050
5051         spin_unlock_irq(&mchdev_lock);
5052
5053         return val;
5054 }
5055
5056 /**
5057  * i915_read_mch_val - return value for IPS use
5058  *
5059  * Calculate and return a value for the IPS driver to use when deciding whether
5060  * we have thermal and power headroom to increase CPU or GPU power budget.
5061  */
5062 unsigned long i915_read_mch_val(void)
5063 {
5064         struct drm_i915_private *dev_priv;
5065         unsigned long chipset_val, graphics_val, ret = 0;
5066
5067         spin_lock_irq(&mchdev_lock);
5068         if (!i915_mch_dev)
5069                 goto out_unlock;
5070         dev_priv = i915_mch_dev;
5071
5072         chipset_val = __i915_chipset_val(dev_priv);
5073         graphics_val = __i915_gfx_val(dev_priv);
5074
5075         ret = chipset_val + graphics_val;
5076
5077 out_unlock:
5078         spin_unlock_irq(&mchdev_lock);
5079
5080         return ret;
5081 }
5082 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5083
5084 /**
5085  * i915_gpu_raise - raise GPU frequency limit
5086  *
5087  * Raise the limit; IPS indicates we have thermal headroom.
5088  */
5089 bool i915_gpu_raise(void)
5090 {
5091         struct drm_i915_private *dev_priv;
5092         bool ret = true;
5093
5094         spin_lock_irq(&mchdev_lock);
5095         if (!i915_mch_dev) {
5096                 ret = false;
5097                 goto out_unlock;
5098         }
5099         dev_priv = i915_mch_dev;
5100
5101         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5102                 dev_priv->ips.max_delay--;
5103
5104 out_unlock:
5105         spin_unlock_irq(&mchdev_lock);
5106
5107         return ret;
5108 }
5109 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5110
5111 /**
5112  * i915_gpu_lower - lower GPU frequency limit
5113  *
5114  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5115  * frequency maximum.
5116  */
5117 bool i915_gpu_lower(void)
5118 {
5119         struct drm_i915_private *dev_priv;
5120         bool ret = true;
5121
5122         spin_lock_irq(&mchdev_lock);
5123         if (!i915_mch_dev) {
5124                 ret = false;
5125                 goto out_unlock;
5126         }
5127         dev_priv = i915_mch_dev;
5128
5129         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5130                 dev_priv->ips.max_delay++;
5131
5132 out_unlock:
5133         spin_unlock_irq(&mchdev_lock);
5134
5135         return ret;
5136 }
5137 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5138
5139 /**
5140  * i915_gpu_busy - indicate GPU business to IPS
5141  *
5142  * Tell the IPS driver whether or not the GPU is busy.
5143  */
5144 bool i915_gpu_busy(void)
5145 {
5146         struct drm_i915_private *dev_priv;
5147         struct intel_engine_cs *ring;
5148         bool ret = false;
5149         int i;
5150
5151         spin_lock_irq(&mchdev_lock);
5152         if (!i915_mch_dev)
5153                 goto out_unlock;
5154         dev_priv = i915_mch_dev;
5155
5156         for_each_ring(ring, dev_priv, i)
5157                 ret |= !list_empty(&ring->request_list);
5158
5159 out_unlock:
5160         spin_unlock_irq(&mchdev_lock);
5161
5162         return ret;
5163 }
5164 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5165
5166 /**
5167  * i915_gpu_turbo_disable - disable graphics turbo
5168  *
5169  * Disable graphics turbo by resetting the max frequency and setting the
5170  * current frequency to the default.
5171  */
5172 bool i915_gpu_turbo_disable(void)
5173 {
5174         struct drm_i915_private *dev_priv;
5175         bool ret = true;
5176
5177         spin_lock_irq(&mchdev_lock);
5178         if (!i915_mch_dev) {
5179                 ret = false;
5180                 goto out_unlock;
5181         }
5182         dev_priv = i915_mch_dev;
5183
5184         dev_priv->ips.max_delay = dev_priv->ips.fstart;
5185
5186         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5187                 ret = false;
5188
5189 out_unlock:
5190         spin_unlock_irq(&mchdev_lock);
5191
5192         return ret;
5193 }
5194 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5195
5196 /**
5197  * Tells the intel_ips driver that the i915 driver is now loaded, if
5198  * IPS got loaded first.
5199  *
5200  * This awkward dance is so that neither module has to depend on the
5201  * other in order for IPS to do the appropriate communication of
5202  * GPU turbo limits to i915.
5203  */
5204 static void
5205 ips_ping_for_i915_load(void)
5206 {
5207         void (*link)(void);
5208
5209         link = symbol_get(ips_link_to_i915_driver);
5210         if (link) {
5211                 link();
5212                 symbol_put(ips_link_to_i915_driver);
5213         }
5214 }
5215
5216 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5217 {
5218         /* We only register the i915 ips part with intel-ips once everything is
5219          * set up, to avoid intel-ips sneaking in and reading bogus values. */
5220         spin_lock_irq(&mchdev_lock);
5221         i915_mch_dev = dev_priv;
5222         spin_unlock_irq(&mchdev_lock);
5223
5224         ips_ping_for_i915_load();
5225 }
5226
5227 void intel_gpu_ips_teardown(void)
5228 {
5229         spin_lock_irq(&mchdev_lock);
5230         i915_mch_dev = NULL;
5231         spin_unlock_irq(&mchdev_lock);
5232 }
5233
5234 static void intel_init_emon(struct drm_device *dev)
5235 {
5236         struct drm_i915_private *dev_priv = dev->dev_private;
5237         u32 lcfuse;
5238         u8 pxw[16];
5239         int i;
5240
5241         /* Disable to program */
5242         I915_WRITE(ECR, 0);
5243         POSTING_READ(ECR);
5244
5245         /* Program energy weights for various events */
5246         I915_WRITE(SDEW, 0x15040d00);
5247         I915_WRITE(CSIEW0, 0x007f0000);
5248         I915_WRITE(CSIEW1, 0x1e220004);
5249         I915_WRITE(CSIEW2, 0x04000004);
5250
5251         for (i = 0; i < 5; i++)
5252                 I915_WRITE(PEW + (i * 4), 0);
5253         for (i = 0; i < 3; i++)
5254                 I915_WRITE(DEW + (i * 4), 0);
5255
5256         /* Program P-state weights to account for frequency power adjustment */
5257         for (i = 0; i < 16; i++) {
5258                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5259                 unsigned long freq = intel_pxfreq(pxvidfreq);
5260                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5261                         PXVFREQ_PX_SHIFT;
5262                 unsigned long val;
5263
5264                 val = vid * vid;
5265                 val *= (freq / 1000);
5266                 val *= 255;
5267                 val /= (127*127*900);
5268                 if (val > 0xff)
5269                         DRM_ERROR("bad pxval: %ld\n", val);
5270                 pxw[i] = val;
5271         }
5272         /* Render standby states get 0 weight */
5273         pxw[14] = 0;
5274         pxw[15] = 0;
5275
5276         for (i = 0; i < 4; i++) {
5277                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5278                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5279                 I915_WRITE(PXW + (i * 4), val);
5280         }
5281
5282         /* Adjust magic regs to magic values (more experimental results) */
5283         I915_WRITE(OGW0, 0);
5284         I915_WRITE(OGW1, 0);
5285         I915_WRITE(EG0, 0x00007f00);
5286         I915_WRITE(EG1, 0x0000000e);
5287         I915_WRITE(EG2, 0x000e0000);
5288         I915_WRITE(EG3, 0x68000300);
5289         I915_WRITE(EG4, 0x42000000);
5290         I915_WRITE(EG5, 0x00140031);
5291         I915_WRITE(EG6, 0);
5292         I915_WRITE(EG7, 0);
5293
5294         for (i = 0; i < 8; i++)
5295                 I915_WRITE(PXWL + (i * 4), 0);
5296
5297         /* Enable PMON + select events */
5298         I915_WRITE(ECR, 0x80000019);
5299
5300         lcfuse = I915_READ(LCFUSE02);
5301
5302         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5303 }
5304
5305 void intel_init_gt_powersave(struct drm_device *dev)
5306 {
5307         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5308
5309         if (IS_CHERRYVIEW(dev))
5310                 cherryview_init_gt_powersave(dev);
5311         else if (IS_VALLEYVIEW(dev))
5312                 valleyview_init_gt_powersave(dev);
5313 }
5314
5315 void intel_cleanup_gt_powersave(struct drm_device *dev)
5316 {
5317         if (IS_CHERRYVIEW(dev))
5318                 return;
5319         else if (IS_VALLEYVIEW(dev))
5320                 valleyview_cleanup_gt_powersave(dev);
5321 }
5322
5323 /**
5324  * intel_suspend_gt_powersave - suspend PM work and helper threads
5325  * @dev: drm device
5326  *
5327  * We don't want to disable RC6 or other features here, we just want
5328  * to make sure any work we've queued has finished and won't bother
5329  * us while we're suspended.
5330  */
5331 void intel_suspend_gt_powersave(struct drm_device *dev)
5332 {
5333         struct drm_i915_private *dev_priv = dev->dev_private;
5334
5335         /* Interrupts should be disabled already to avoid re-arming. */
5336         WARN_ON(intel_irqs_enabled(dev_priv));
5337
5338         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5339
5340         cancel_work_sync(&dev_priv->rps.work);
5341
5342         /* Force GPU to min freq during suspend */
5343         gen6_rps_idle(dev_priv);
5344 }
5345
5346 void intel_disable_gt_powersave(struct drm_device *dev)
5347 {
5348         struct drm_i915_private *dev_priv = dev->dev_private;
5349
5350         /* Interrupts should be disabled already to avoid re-arming. */
5351         WARN_ON(intel_irqs_enabled(dev_priv));
5352
5353         if (IS_IRONLAKE_M(dev)) {
5354                 ironlake_disable_drps(dev);
5355                 ironlake_disable_rc6(dev);
5356         } else if (INTEL_INFO(dev)->gen >= 6) {
5357                 intel_suspend_gt_powersave(dev);
5358
5359                 mutex_lock(&dev_priv->rps.hw_lock);
5360                 if (IS_CHERRYVIEW(dev))
5361                         cherryview_disable_rps(dev);
5362                 else if (IS_VALLEYVIEW(dev))
5363                         valleyview_disable_rps(dev);
5364                 else
5365                         gen6_disable_rps(dev);
5366                 dev_priv->rps.enabled = false;
5367                 mutex_unlock(&dev_priv->rps.hw_lock);
5368         }
5369 }
5370
5371 static void intel_gen6_powersave_work(struct work_struct *work)
5372 {
5373         struct drm_i915_private *dev_priv =
5374                 container_of(work, struct drm_i915_private,
5375                              rps.delayed_resume_work.work);
5376         struct drm_device *dev = dev_priv->dev;
5377
5378         dev_priv->rps.is_bdw_sw_turbo = false;
5379
5380         mutex_lock(&dev_priv->rps.hw_lock);
5381
5382         if (IS_CHERRYVIEW(dev)) {
5383                 cherryview_enable_rps(dev);
5384         } else if (IS_VALLEYVIEW(dev)) {
5385                 valleyview_enable_rps(dev);
5386         } else if (IS_BROADWELL(dev)) {
5387                 gen8_enable_rps(dev);
5388                 __gen6_update_ring_freq(dev);
5389         } else {
5390                 gen6_enable_rps(dev);
5391                 __gen6_update_ring_freq(dev);
5392         }
5393         dev_priv->rps.enabled = true;
5394         mutex_unlock(&dev_priv->rps.hw_lock);
5395
5396         intel_runtime_pm_put(dev_priv);
5397 }
5398
5399 void intel_enable_gt_powersave(struct drm_device *dev)
5400 {
5401         struct drm_i915_private *dev_priv = dev->dev_private;
5402
5403         if (IS_IRONLAKE_M(dev)) {
5404                 mutex_lock(&dev->struct_mutex);
5405                 ironlake_enable_drps(dev);
5406                 ironlake_enable_rc6(dev);
5407                 intel_init_emon(dev);
5408                 mutex_unlock(&dev->struct_mutex);
5409         } else if (INTEL_INFO(dev)->gen >= 6) {
5410                 /*
5411                  * PCU communication is slow and this doesn't need to be
5412                  * done at any specific time, so do this out of our fast path
5413                  * to make resume and init faster.
5414                  *
5415                  * We depend on the HW RC6 power context save/restore
5416                  * mechanism when entering D3 through runtime PM suspend. So
5417                  * disable RPM until RPS/RC6 is properly setup. We can only
5418                  * get here via the driver load/system resume/runtime resume
5419                  * paths, so the _noresume version is enough (and in case of
5420                  * runtime resume it's necessary).
5421                  */
5422                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5423                                            round_jiffies_up_relative(HZ)))
5424                         intel_runtime_pm_get_noresume(dev_priv);
5425         }
5426 }
5427
5428 void intel_reset_gt_powersave(struct drm_device *dev)
5429 {
5430         struct drm_i915_private *dev_priv = dev->dev_private;
5431
5432         dev_priv->rps.enabled = false;
5433         intel_enable_gt_powersave(dev);
5434 }
5435
5436 static void ibx_init_clock_gating(struct drm_device *dev)
5437 {
5438         struct drm_i915_private *dev_priv = dev->dev_private;
5439
5440         /*
5441          * On Ibex Peak and Cougar Point, we need to disable clock
5442          * gating for the panel power sequencer or it will fail to
5443          * start up when no ports are active.
5444          */
5445         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5446 }
5447
5448 static void g4x_disable_trickle_feed(struct drm_device *dev)
5449 {
5450         struct drm_i915_private *dev_priv = dev->dev_private;
5451         int pipe;
5452
5453         for_each_pipe(dev_priv, pipe) {
5454                 I915_WRITE(DSPCNTR(pipe),
5455                            I915_READ(DSPCNTR(pipe)) |
5456                            DISPPLANE_TRICKLE_FEED_DISABLE);
5457                 intel_flush_primary_plane(dev_priv, pipe);
5458         }
5459 }
5460
5461 static void ilk_init_lp_watermarks(struct drm_device *dev)
5462 {
5463         struct drm_i915_private *dev_priv = dev->dev_private;
5464
5465         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5466         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5467         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5468
5469         /*
5470          * Don't touch WM1S_LP_EN here.
5471          * Doing so could cause underruns.
5472          */
5473 }
5474
5475 static void ironlake_init_clock_gating(struct drm_device *dev)
5476 {
5477         struct drm_i915_private *dev_priv = dev->dev_private;
5478         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5479
5480         /*
5481          * Required for FBC
5482          * WaFbcDisableDpfcClockGating:ilk
5483          */
5484         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5485                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5486                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5487
5488         I915_WRITE(PCH_3DCGDIS0,
5489                    MARIUNIT_CLOCK_GATE_DISABLE |
5490                    SVSMUNIT_CLOCK_GATE_DISABLE);
5491         I915_WRITE(PCH_3DCGDIS1,
5492                    VFMUNIT_CLOCK_GATE_DISABLE);
5493
5494         /*
5495          * According to the spec the following bits should be set in
5496          * order to enable memory self-refresh
5497          * The bit 22/21 of 0x42004
5498          * The bit 5 of 0x42020
5499          * The bit 15 of 0x45000
5500          */
5501         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5502                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
5503                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5504         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5505         I915_WRITE(DISP_ARB_CTL,
5506                    (I915_READ(DISP_ARB_CTL) |
5507                     DISP_FBC_WM_DIS));
5508
5509         ilk_init_lp_watermarks(dev);
5510
5511         /*
5512          * Based on the document from hardware guys the following bits
5513          * should be set unconditionally in order to enable FBC.
5514          * The bit 22 of 0x42000
5515          * The bit 22 of 0x42004
5516          * The bit 7,8,9 of 0x42020.
5517          */
5518         if (IS_IRONLAKE_M(dev)) {
5519                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5520                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5521                            I915_READ(ILK_DISPLAY_CHICKEN1) |
5522                            ILK_FBCQ_DIS);
5523                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5524                            I915_READ(ILK_DISPLAY_CHICKEN2) |
5525                            ILK_DPARB_GATE);
5526         }
5527
5528         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5529
5530         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5531                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5532                    ILK_ELPIN_409_SELECT);
5533         I915_WRITE(_3D_CHICKEN2,
5534                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5535                    _3D_CHICKEN2_WM_READ_PIPELINED);
5536
5537         /* WaDisableRenderCachePipelinedFlush:ilk */
5538         I915_WRITE(CACHE_MODE_0,
5539                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5540
5541         /* WaDisable_RenderCache_OperationalFlush:ilk */
5542         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5543
5544         g4x_disable_trickle_feed(dev);
5545
5546         ibx_init_clock_gating(dev);
5547 }
5548
5549 static void cpt_init_clock_gating(struct drm_device *dev)
5550 {
5551         struct drm_i915_private *dev_priv = dev->dev_private;
5552         int pipe;
5553         uint32_t val;
5554
5555         /*
5556          * On Ibex Peak and Cougar Point, we need to disable clock
5557          * gating for the panel power sequencer or it will fail to
5558          * start up when no ports are active.
5559          */
5560         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5561                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5562                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
5563         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5564                    DPLS_EDP_PPS_FIX_DIS);
5565         /* The below fixes the weird display corruption, a few pixels shifted
5566          * downward, on (only) LVDS of some HP laptops with IVY.
5567          */
5568         for_each_pipe(dev_priv, pipe) {
5569                 val = I915_READ(TRANS_CHICKEN2(pipe));
5570                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5571                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5572                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5573                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5574                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5575                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5576                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5577                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5578         }
5579         /* WADP0ClockGatingDisable */
5580         for_each_pipe(dev_priv, pipe) {
5581                 I915_WRITE(TRANS_CHICKEN1(pipe),
5582                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5583         }
5584 }
5585
5586 static void gen6_check_mch_setup(struct drm_device *dev)
5587 {
5588         struct drm_i915_private *dev_priv = dev->dev_private;
5589         uint32_t tmp;
5590
5591         tmp = I915_READ(MCH_SSKPD);
5592         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5593                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5594                               tmp);
5595 }
5596
5597 static void gen6_init_clock_gating(struct drm_device *dev)
5598 {
5599         struct drm_i915_private *dev_priv = dev->dev_private;
5600         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5601
5602         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5603
5604         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5605                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5606                    ILK_ELPIN_409_SELECT);
5607
5608         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5609         I915_WRITE(_3D_CHICKEN,
5610                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5611
5612         /* WaSetupGtModeTdRowDispatch:snb */
5613         if (IS_SNB_GT1(dev))
5614                 I915_WRITE(GEN6_GT_MODE,
5615                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5616
5617         /* WaDisable_RenderCache_OperationalFlush:snb */
5618         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5619
5620         /*
5621          * BSpec recoomends 8x4 when MSAA is used,
5622          * however in practice 16x4 seems fastest.
5623          *
5624          * Note that PS/WM thread counts depend on the WIZ hashing
5625          * disable bit, which we don't touch here, but it's good
5626          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5627          */
5628         I915_WRITE(GEN6_GT_MODE,
5629                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5630
5631         ilk_init_lp_watermarks(dev);
5632
5633         I915_WRITE(CACHE_MODE_0,
5634                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5635
5636         I915_WRITE(GEN6_UCGCTL1,
5637                    I915_READ(GEN6_UCGCTL1) |
5638                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5639                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5640
5641         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5642          * gating disable must be set.  Failure to set it results in
5643          * flickering pixels due to Z write ordering failures after
5644          * some amount of runtime in the Mesa "fire" demo, and Unigine
5645          * Sanctuary and Tropics, and apparently anything else with
5646          * alpha test or pixel discard.
5647          *
5648          * According to the spec, bit 11 (RCCUNIT) must also be set,
5649          * but we didn't debug actual testcases to find it out.
5650          *
5651          * WaDisableRCCUnitClockGating:snb
5652          * WaDisableRCPBUnitClockGating:snb
5653          */
5654         I915_WRITE(GEN6_UCGCTL2,
5655                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5656                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5657
5658         /* WaStripsFansDisableFastClipPerformanceFix:snb */
5659         I915_WRITE(_3D_CHICKEN3,
5660                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5661
5662         /*
5663          * Bspec says:
5664          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5665          * 3DSTATE_SF number of SF output attributes is more than 16."
5666          */
5667         I915_WRITE(_3D_CHICKEN3,
5668                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5669
5670         /*
5671          * According to the spec the following bits should be
5672          * set in order to enable memory self-refresh and fbc:
5673          * The bit21 and bit22 of 0x42000
5674          * The bit21 and bit22 of 0x42004
5675          * The bit5 and bit7 of 0x42020
5676          * The bit14 of 0x70180
5677          * The bit14 of 0x71180
5678          *
5679          * WaFbcAsynchFlipDisableFbcQueue:snb
5680          */
5681         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5682                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5683                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5684         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5685                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5686                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5687         I915_WRITE(ILK_DSPCLK_GATE_D,
5688                    I915_READ(ILK_DSPCLK_GATE_D) |
5689                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5690                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5691
5692         g4x_disable_trickle_feed(dev);
5693
5694         cpt_init_clock_gating(dev);
5695
5696         gen6_check_mch_setup(dev);
5697 }
5698
5699 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5700 {
5701         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5702
5703         /*
5704          * WaVSThreadDispatchOverride:ivb,vlv
5705          *
5706          * This actually overrides the dispatch
5707          * mode for all thread types.
5708          */
5709         reg &= ~GEN7_FF_SCHED_MASK;
5710         reg |= GEN7_FF_TS_SCHED_HW;
5711         reg |= GEN7_FF_VS_SCHED_HW;
5712         reg |= GEN7_FF_DS_SCHED_HW;
5713
5714         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5715 }
5716
5717 static void lpt_init_clock_gating(struct drm_device *dev)
5718 {
5719         struct drm_i915_private *dev_priv = dev->dev_private;
5720
5721         /*
5722          * TODO: this bit should only be enabled when really needed, then
5723          * disabled when not needed anymore in order to save power.
5724          */
5725         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5726                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5727                            I915_READ(SOUTH_DSPCLK_GATE_D) |
5728                            PCH_LP_PARTITION_LEVEL_DISABLE);
5729
5730         /* WADPOClockGatingDisable:hsw */
5731         I915_WRITE(_TRANSA_CHICKEN1,
5732                    I915_READ(_TRANSA_CHICKEN1) |
5733                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5734 }
5735
5736 static void lpt_suspend_hw(struct drm_device *dev)
5737 {
5738         struct drm_i915_private *dev_priv = dev->dev_private;
5739
5740         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5741                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5742
5743                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5744                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5745         }
5746 }
5747
5748 static void broadwell_init_clock_gating(struct drm_device *dev)
5749 {
5750         struct drm_i915_private *dev_priv = dev->dev_private;
5751         enum pipe pipe;
5752
5753         I915_WRITE(WM3_LP_ILK, 0);
5754         I915_WRITE(WM2_LP_ILK, 0);
5755         I915_WRITE(WM1_LP_ILK, 0);
5756
5757         /* FIXME(BDW): Check all the w/a, some might only apply to
5758          * pre-production hw. */
5759
5760
5761         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5762
5763         I915_WRITE(_3D_CHICKEN3,
5764                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5765
5766
5767         /* WaSwitchSolVfFArbitrationPriority:bdw */
5768         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5769
5770         /* WaPsrDPAMaskVBlankInSRD:bdw */
5771         I915_WRITE(CHICKEN_PAR1_1,
5772                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5773
5774         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5775         for_each_pipe(dev_priv, pipe) {
5776                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5777                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
5778                            BDW_DPRS_MASK_VBLANK_SRD);
5779         }
5780
5781         /* WaVSRefCountFullforceMissDisable:bdw */
5782         /* WaDSRefCountFullforceMissDisable:bdw */
5783         I915_WRITE(GEN7_FF_THREAD_MODE,
5784                    I915_READ(GEN7_FF_THREAD_MODE) &
5785                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5786
5787         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5788                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5789
5790         /* WaDisableSDEUnitClockGating:bdw */
5791         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5792                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5793
5794         lpt_init_clock_gating(dev);
5795 }
5796
5797 static void haswell_init_clock_gating(struct drm_device *dev)
5798 {
5799         struct drm_i915_private *dev_priv = dev->dev_private;
5800
5801         ilk_init_lp_watermarks(dev);
5802
5803         /* L3 caching of data atomics doesn't work -- disable it. */
5804         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5805         I915_WRITE(HSW_ROW_CHICKEN3,
5806                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5807
5808         /* This is required by WaCatErrorRejectionIssue:hsw */
5809         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5810                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5811                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5812
5813         /* WaVSRefCountFullforceMissDisable:hsw */
5814         I915_WRITE(GEN7_FF_THREAD_MODE,
5815                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5816
5817         /* WaDisable_RenderCache_OperationalFlush:hsw */
5818         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5819
5820         /* enable HiZ Raw Stall Optimization */
5821         I915_WRITE(CACHE_MODE_0_GEN7,
5822                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5823
5824         /* WaDisable4x2SubspanOptimization:hsw */
5825         I915_WRITE(CACHE_MODE_1,
5826                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5827
5828         /*
5829          * BSpec recommends 8x4 when MSAA is used,
5830          * however in practice 16x4 seems fastest.
5831          *
5832          * Note that PS/WM thread counts depend on the WIZ hashing
5833          * disable bit, which we don't touch here, but it's good
5834          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5835          */
5836         I915_WRITE(GEN7_GT_MODE,
5837                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5838
5839         /* WaSwitchSolVfFArbitrationPriority:hsw */
5840         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5841
5842         /* WaRsPkgCStateDisplayPMReq:hsw */
5843         I915_WRITE(CHICKEN_PAR1_1,
5844                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5845
5846         lpt_init_clock_gating(dev);
5847 }
5848
5849 static void ivybridge_init_clock_gating(struct drm_device *dev)
5850 {
5851         struct drm_i915_private *dev_priv = dev->dev_private;
5852         uint32_t snpcr;
5853
5854         ilk_init_lp_watermarks(dev);
5855
5856         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5857
5858         /* WaDisableEarlyCull:ivb */
5859         I915_WRITE(_3D_CHICKEN3,
5860                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5861
5862         /* WaDisableBackToBackFlipFix:ivb */
5863         I915_WRITE(IVB_CHICKEN3,
5864                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5865                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5866
5867         /* WaDisablePSDDualDispatchEnable:ivb */
5868         if (IS_IVB_GT1(dev))
5869                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5870                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5871
5872         /* WaDisable_RenderCache_OperationalFlush:ivb */
5873         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5874
5875         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5876         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5877                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5878
5879         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5880         I915_WRITE(GEN7_L3CNTLREG1,
5881                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5882         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5883                    GEN7_WA_L3_CHICKEN_MODE);
5884         if (IS_IVB_GT1(dev))
5885                 I915_WRITE(GEN7_ROW_CHICKEN2,
5886                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5887         else {
5888                 /* must write both registers */
5889                 I915_WRITE(GEN7_ROW_CHICKEN2,
5890                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5891                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5892                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5893         }
5894
5895         /* WaForceL3Serialization:ivb */
5896         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5897                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5898
5899         /*
5900          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5901          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5902          */
5903         I915_WRITE(GEN6_UCGCTL2,
5904                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5905
5906         /* This is required by WaCatErrorRejectionIssue:ivb */
5907         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5908                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5909                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5910
5911         g4x_disable_trickle_feed(dev);
5912
5913         gen7_setup_fixed_func_scheduler(dev_priv);
5914
5915         if (0) { /* causes HiZ corruption on ivb:gt1 */
5916                 /* enable HiZ Raw Stall Optimization */
5917                 I915_WRITE(CACHE_MODE_0_GEN7,
5918                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5919         }
5920
5921         /* WaDisable4x2SubspanOptimization:ivb */
5922         I915_WRITE(CACHE_MODE_1,
5923                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5924
5925         /*
5926          * BSpec recommends 8x4 when MSAA is used,
5927          * however in practice 16x4 seems fastest.
5928          *
5929          * Note that PS/WM thread counts depend on the WIZ hashing
5930          * disable bit, which we don't touch here, but it's good
5931          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5932          */
5933         I915_WRITE(GEN7_GT_MODE,
5934                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5935
5936         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5937         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5938         snpcr |= GEN6_MBC_SNPCR_MED;
5939         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5940
5941         if (!HAS_PCH_NOP(dev))
5942                 cpt_init_clock_gating(dev);
5943
5944         gen6_check_mch_setup(dev);
5945 }
5946
5947 static void valleyview_init_clock_gating(struct drm_device *dev)
5948 {
5949         struct drm_i915_private *dev_priv = dev->dev_private;
5950
5951         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5952
5953         /* WaDisableEarlyCull:vlv */
5954         I915_WRITE(_3D_CHICKEN3,
5955                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5956
5957         /* WaDisableBackToBackFlipFix:vlv */
5958         I915_WRITE(IVB_CHICKEN3,
5959                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5960                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5961
5962         /* WaPsdDispatchEnable:vlv */
5963         /* WaDisablePSDDualDispatchEnable:vlv */
5964         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5965                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5966                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5967
5968         /* WaDisable_RenderCache_OperationalFlush:vlv */
5969         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5970
5971         /* WaForceL3Serialization:vlv */
5972         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5973                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5974
5975         /* WaDisableDopClockGating:vlv */
5976         I915_WRITE(GEN7_ROW_CHICKEN2,
5977                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5978
5979         /* This is required by WaCatErrorRejectionIssue:vlv */
5980         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5981                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5982                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5983
5984         gen7_setup_fixed_func_scheduler(dev_priv);
5985
5986         /*
5987          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5988          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5989          */
5990         I915_WRITE(GEN6_UCGCTL2,
5991                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5992
5993         /* WaDisableL3Bank2xClockGate:vlv
5994          * Disabling L3 clock gating- MMIO 940c[25] = 1
5995          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5996         I915_WRITE(GEN7_UCGCTL4,
5997                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5998
5999         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6000
6001         /*
6002          * BSpec says this must be set, even though
6003          * WaDisable4x2SubspanOptimization isn't listed for VLV.
6004          */
6005         I915_WRITE(CACHE_MODE_1,
6006                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6007
6008         /*
6009          * WaIncreaseL3CreditsForVLVB0:vlv
6010          * This is the hardware default actually.
6011          */
6012         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6013
6014         /*
6015          * WaDisableVLVClockGating_VBIIssue:vlv
6016          * Disable clock gating on th GCFG unit to prevent a delay
6017          * in the reporting of vblank events.
6018          */
6019         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6020 }
6021
6022 static void cherryview_init_clock_gating(struct drm_device *dev)
6023 {
6024         struct drm_i915_private *dev_priv = dev->dev_private;
6025
6026         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6027
6028         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6029
6030         /* WaVSRefCountFullforceMissDisable:chv */
6031         /* WaDSRefCountFullforceMissDisable:chv */
6032         I915_WRITE(GEN7_FF_THREAD_MODE,
6033                    I915_READ(GEN7_FF_THREAD_MODE) &
6034                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6035
6036         /* WaDisableSemaphoreAndSyncFlipWait:chv */
6037         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6038                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6039
6040         /* WaDisableCSUnitClockGating:chv */
6041         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6042                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6043
6044         /* WaDisableSDEUnitClockGating:chv */
6045         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6046                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6047
6048         /* WaDisableGunitClockGating:chv (pre-production hw) */
6049         I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
6050                    GINT_DIS);
6051
6052         /* WaDisableFfDopClockGating:chv (pre-production hw) */
6053         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6054                    _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
6055
6056         /* WaDisableDopClockGating:chv (pre-production hw) */
6057         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6058                    GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
6059 }
6060
6061 static void g4x_init_clock_gating(struct drm_device *dev)
6062 {
6063         struct drm_i915_private *dev_priv = dev->dev_private;
6064         uint32_t dspclk_gate;
6065
6066         I915_WRITE(RENCLK_GATE_D1, 0);
6067         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6068                    GS_UNIT_CLOCK_GATE_DISABLE |
6069                    CL_UNIT_CLOCK_GATE_DISABLE);
6070         I915_WRITE(RAMCLK_GATE_D, 0);
6071         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6072                 OVRUNIT_CLOCK_GATE_DISABLE |
6073                 OVCUNIT_CLOCK_GATE_DISABLE;
6074         if (IS_GM45(dev))
6075                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6076         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6077
6078         /* WaDisableRenderCachePipelinedFlush */
6079         I915_WRITE(CACHE_MODE_0,
6080                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6081
6082         /* WaDisable_RenderCache_OperationalFlush:g4x */
6083         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6084
6085         g4x_disable_trickle_feed(dev);
6086 }
6087
6088 static void crestline_init_clock_gating(struct drm_device *dev)
6089 {
6090         struct drm_i915_private *dev_priv = dev->dev_private;
6091
6092         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6093         I915_WRITE(RENCLK_GATE_D2, 0);
6094         I915_WRITE(DSPCLK_GATE_D, 0);
6095         I915_WRITE(RAMCLK_GATE_D, 0);
6096         I915_WRITE16(DEUC, 0);
6097         I915_WRITE(MI_ARB_STATE,
6098                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6099
6100         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6101         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6102 }
6103
6104 static void broadwater_init_clock_gating(struct drm_device *dev)
6105 {
6106         struct drm_i915_private *dev_priv = dev->dev_private;
6107
6108         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6109                    I965_RCC_CLOCK_GATE_DISABLE |
6110                    I965_RCPB_CLOCK_GATE_DISABLE |
6111                    I965_ISC_CLOCK_GATE_DISABLE |
6112                    I965_FBC_CLOCK_GATE_DISABLE);
6113         I915_WRITE(RENCLK_GATE_D2, 0);
6114         I915_WRITE(MI_ARB_STATE,
6115                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6116
6117         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6118         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6119 }
6120
6121 static void gen3_init_clock_gating(struct drm_device *dev)
6122 {
6123         struct drm_i915_private *dev_priv = dev->dev_private;
6124         u32 dstate = I915_READ(D_STATE);
6125
6126         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6127                 DSTATE_DOT_CLOCK_GATING;
6128         I915_WRITE(D_STATE, dstate);
6129
6130         if (IS_PINEVIEW(dev))
6131                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6132
6133         /* IIR "flip pending" means done if this bit is set */
6134         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6135
6136         /* interrupts should cause a wake up from C3 */
6137         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6138
6139         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6140         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6141
6142         I915_WRITE(MI_ARB_STATE,
6143                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6144 }
6145
6146 static void i85x_init_clock_gating(struct drm_device *dev)
6147 {
6148         struct drm_i915_private *dev_priv = dev->dev_private;
6149
6150         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6151
6152         /* interrupts should cause a wake up from C3 */
6153         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6154                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6155
6156         I915_WRITE(MEM_MODE,
6157                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6158 }
6159
6160 static void i830_init_clock_gating(struct drm_device *dev)
6161 {
6162         struct drm_i915_private *dev_priv = dev->dev_private;
6163
6164         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6165
6166         I915_WRITE(MEM_MODE,
6167                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6168                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6169 }
6170
6171 void intel_init_clock_gating(struct drm_device *dev)
6172 {
6173         struct drm_i915_private *dev_priv = dev->dev_private;
6174
6175         dev_priv->display.init_clock_gating(dev);
6176 }
6177
6178 void intel_suspend_hw(struct drm_device *dev)
6179 {
6180         if (HAS_PCH_LPT(dev))
6181                 lpt_suspend_hw(dev);
6182 }
6183
6184 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
6185         for (i = 0;                                                     \
6186              i < (power_domains)->power_well_count &&                   \
6187                  ((power_well) = &(power_domains)->power_wells[i]);     \
6188              i++)                                                       \
6189                 if ((power_well)->domains & (domain_mask))
6190
6191 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
6192         for (i = (power_domains)->power_well_count - 1;                  \
6193              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
6194              i--)                                                        \
6195                 if ((power_well)->domains & (domain_mask))
6196
6197 /**
6198  * We should only use the power well if we explicitly asked the hardware to
6199  * enable it, so check if it's enabled and also check if we've requested it to
6200  * be enabled.
6201  */
6202 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
6203                                    struct i915_power_well *power_well)
6204 {
6205         return I915_READ(HSW_PWR_WELL_DRIVER) ==
6206                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
6207 }
6208
6209 bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
6210                                           enum intel_display_power_domain domain)
6211 {
6212         struct i915_power_domains *power_domains;
6213         struct i915_power_well *power_well;
6214         bool is_enabled;
6215         int i;
6216
6217         if (dev_priv->pm.suspended)
6218                 return false;
6219
6220         power_domains = &dev_priv->power_domains;
6221
6222         is_enabled = true;
6223
6224         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6225                 if (power_well->always_on)
6226                         continue;
6227
6228                 if (!power_well->hw_enabled) {
6229                         is_enabled = false;
6230                         break;
6231                 }
6232         }
6233
6234         return is_enabled;
6235 }
6236
6237 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
6238                                  enum intel_display_power_domain domain)
6239 {
6240         struct i915_power_domains *power_domains;
6241         bool ret;
6242
6243         power_domains = &dev_priv->power_domains;
6244
6245         mutex_lock(&power_domains->lock);
6246         ret = intel_display_power_enabled_unlocked(dev_priv, domain);
6247         mutex_unlock(&power_domains->lock);
6248
6249         return ret;
6250 }
6251
6252 /*
6253  * Starting with Haswell, we have a "Power Down Well" that can be turned off
6254  * when not needed anymore. We have 4 registers that can request the power well
6255  * to be enabled, and it will only be disabled if none of the registers is
6256  * requesting it to be enabled.
6257  */
6258 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
6259 {
6260         struct drm_device *dev = dev_priv->dev;
6261
6262         /*
6263          * After we re-enable the power well, if we touch VGA register 0x3d5
6264          * we'll get unclaimed register interrupts. This stops after we write
6265          * anything to the VGA MSR register. The vgacon module uses this
6266          * register all the time, so if we unbind our driver and, as a
6267          * consequence, bind vgacon, we'll get stuck in an infinite loop at
6268          * console_unlock(). So make here we touch the VGA MSR register, making
6269          * sure vgacon can keep working normally without triggering interrupts
6270          * and error messages.
6271          */
6272         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6273         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
6274         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6275
6276         if (IS_BROADWELL(dev))
6277                 gen8_irq_power_well_post_enable(dev_priv);
6278 }
6279
6280 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6281                                struct i915_power_well *power_well, bool enable)
6282 {
6283         bool is_enabled, enable_requested;
6284         uint32_t tmp;
6285
6286         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6287         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
6288         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6289
6290         if (enable) {
6291                 if (!enable_requested)
6292                         I915_WRITE(HSW_PWR_WELL_DRIVER,
6293                                    HSW_PWR_WELL_ENABLE_REQUEST);
6294
6295                 if (!is_enabled) {
6296                         DRM_DEBUG_KMS("Enabling power well\n");
6297                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6298                                       HSW_PWR_WELL_STATE_ENABLED), 20))
6299                                 DRM_ERROR("Timeout enabling power well\n");
6300                 }
6301
6302                 hsw_power_well_post_enable(dev_priv);
6303         } else {
6304                 if (enable_requested) {
6305                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6306                         POSTING_READ(HSW_PWR_WELL_DRIVER);
6307                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
6308                 }
6309         }
6310 }
6311
6312 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
6313                                    struct i915_power_well *power_well)
6314 {
6315         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
6316
6317         /*
6318          * We're taking over the BIOS, so clear any requests made by it since
6319          * the driver is in charge now.
6320          */
6321         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
6322                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
6323 }
6324
6325 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
6326                                   struct i915_power_well *power_well)
6327 {
6328         hsw_set_power_well(dev_priv, power_well, true);
6329 }
6330
6331 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
6332                                    struct i915_power_well *power_well)
6333 {
6334         hsw_set_power_well(dev_priv, power_well, false);
6335 }
6336
6337 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
6338                                            struct i915_power_well *power_well)
6339 {
6340 }
6341
6342 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
6343                                              struct i915_power_well *power_well)
6344 {
6345         return true;
6346 }
6347
6348 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6349                                struct i915_power_well *power_well, bool enable)
6350 {
6351         enum punit_power_well power_well_id = power_well->data;
6352         u32 mask;
6353         u32 state;
6354         u32 ctrl;
6355
6356         mask = PUNIT_PWRGT_MASK(power_well_id);
6357         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6358                          PUNIT_PWRGT_PWR_GATE(power_well_id);
6359
6360         mutex_lock(&dev_priv->rps.hw_lock);
6361
6362 #define COND \
6363         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6364
6365         if (COND)
6366                 goto out;
6367
6368         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6369         ctrl &= ~mask;
6370         ctrl |= state;
6371         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6372
6373         if (wait_for(COND, 100))
6374                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6375                           state,
6376                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6377
6378 #undef COND
6379
6380 out:
6381         mutex_unlock(&dev_priv->rps.hw_lock);
6382 }
6383
6384 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6385                                    struct i915_power_well *power_well)
6386 {
6387         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6388 }
6389
6390 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6391                                   struct i915_power_well *power_well)
6392 {
6393         vlv_set_power_well(dev_priv, power_well, true);
6394 }
6395
6396 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6397                                    struct i915_power_well *power_well)
6398 {
6399         vlv_set_power_well(dev_priv, power_well, false);
6400 }
6401
6402 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6403                                    struct i915_power_well *power_well)
6404 {
6405         int power_well_id = power_well->data;
6406         bool enabled = false;
6407         u32 mask;
6408         u32 state;
6409         u32 ctrl;
6410
6411         mask = PUNIT_PWRGT_MASK(power_well_id);
6412         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6413
6414         mutex_lock(&dev_priv->rps.hw_lock);
6415
6416         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6417         /*
6418          * We only ever set the power-on and power-gate states, anything
6419          * else is unexpected.
6420          */
6421         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6422                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6423         if (state == ctrl)
6424                 enabled = true;
6425
6426         /*
6427          * A transient state at this point would mean some unexpected party
6428          * is poking at the power controls too.
6429          */
6430         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6431         WARN_ON(ctrl != state);
6432
6433         mutex_unlock(&dev_priv->rps.hw_lock);
6434
6435         return enabled;
6436 }
6437
6438 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6439                                           struct i915_power_well *power_well)
6440 {
6441         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6442
6443         vlv_set_power_well(dev_priv, power_well, true);
6444
6445         spin_lock_irq(&dev_priv->irq_lock);
6446         valleyview_enable_display_irqs(dev_priv);
6447         spin_unlock_irq(&dev_priv->irq_lock);
6448
6449         /*
6450          * During driver initialization/resume we can avoid restoring the
6451          * part of the HW/SW state that will be inited anyway explicitly.
6452          */
6453         if (dev_priv->power_domains.initializing)
6454                 return;
6455
6456         intel_hpd_init(dev_priv->dev);
6457
6458         i915_redisable_vga_power_on(dev_priv->dev);
6459 }
6460
6461 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6462                                            struct i915_power_well *power_well)
6463 {
6464         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6465
6466         spin_lock_irq(&dev_priv->irq_lock);
6467         valleyview_disable_display_irqs(dev_priv);
6468         spin_unlock_irq(&dev_priv->irq_lock);
6469
6470         vlv_set_power_well(dev_priv, power_well, false);
6471
6472         vlv_power_sequencer_reset(dev_priv);
6473 }
6474
6475 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6476                                            struct i915_power_well *power_well)
6477 {
6478         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6479
6480         /*
6481          * Enable the CRI clock source so we can get at the
6482          * display and the reference clock for VGA
6483          * hotplug / manual detection.
6484          */
6485         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6486                    DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6487         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6488
6489         vlv_set_power_well(dev_priv, power_well, true);
6490
6491         /*
6492          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6493          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
6494          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
6495          *   b. The other bits such as sfr settings / modesel may all
6496          *      be set to 0.
6497          *
6498          * This should only be done on init and resume from S3 with
6499          * both PLLs disabled, or we risk losing DPIO and PLL
6500          * synchronization.
6501          */
6502         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6503 }
6504
6505 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6506                                             struct i915_power_well *power_well)
6507 {
6508         enum pipe pipe;
6509
6510         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6511
6512         for_each_pipe(dev_priv, pipe)
6513                 assert_pll_disabled(dev_priv, pipe);
6514
6515         /* Assert common reset */
6516         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
6517
6518         vlv_set_power_well(dev_priv, power_well, false);
6519 }
6520
6521 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6522                                            struct i915_power_well *power_well)
6523 {
6524         enum dpio_phy phy;
6525
6526         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6527                      power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6528
6529         /*
6530          * Enable the CRI clock source so we can get at the
6531          * display and the reference clock for VGA
6532          * hotplug / manual detection.
6533          */
6534         if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6535                 phy = DPIO_PHY0;
6536                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6537                            DPLL_REFA_CLK_ENABLE_VLV);
6538                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6539                            DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6540         } else {
6541                 phy = DPIO_PHY1;
6542                 I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
6543                            DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6544         }
6545         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6546         vlv_set_power_well(dev_priv, power_well, true);
6547
6548         /* Poll for phypwrgood signal */
6549         if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
6550                 DRM_ERROR("Display PHY %d is not power up\n", phy);
6551
6552         I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
6553                    PHY_COM_LANE_RESET_DEASSERT(phy));
6554 }
6555
6556 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6557                                             struct i915_power_well *power_well)
6558 {
6559         enum dpio_phy phy;
6560
6561         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6562                      power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6563
6564         if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6565                 phy = DPIO_PHY0;
6566                 assert_pll_disabled(dev_priv, PIPE_A);
6567                 assert_pll_disabled(dev_priv, PIPE_B);
6568         } else {
6569                 phy = DPIO_PHY1;
6570                 assert_pll_disabled(dev_priv, PIPE_C);
6571         }
6572
6573         I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
6574                    ~PHY_COM_LANE_RESET_DEASSERT(phy));
6575
6576         vlv_set_power_well(dev_priv, power_well, false);
6577 }
6578
6579 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
6580                                         struct i915_power_well *power_well)
6581 {
6582         enum pipe pipe = power_well->data;
6583         bool enabled;
6584         u32 state, ctrl;
6585
6586         mutex_lock(&dev_priv->rps.hw_lock);
6587
6588         state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
6589         /*
6590          * We only ever set the power-on and power-gate states, anything
6591          * else is unexpected.
6592          */
6593         WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
6594         enabled = state == DP_SSS_PWR_ON(pipe);
6595
6596         /*
6597          * A transient state at this point would mean some unexpected party
6598          * is poking at the power controls too.
6599          */
6600         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
6601         WARN_ON(ctrl << 16 != state);
6602
6603         mutex_unlock(&dev_priv->rps.hw_lock);
6604
6605         return enabled;
6606 }
6607
6608 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
6609                                     struct i915_power_well *power_well,
6610                                     bool enable)
6611 {
6612         enum pipe pipe = power_well->data;
6613         u32 state;
6614         u32 ctrl;
6615
6616         state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
6617
6618         mutex_lock(&dev_priv->rps.hw_lock);
6619
6620 #define COND \
6621         ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
6622
6623         if (COND)
6624                 goto out;
6625
6626         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6627         ctrl &= ~DP_SSC_MASK(pipe);
6628         ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
6629         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
6630
6631         if (wait_for(COND, 100))
6632                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6633                           state,
6634                           vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
6635
6636 #undef COND
6637
6638 out:
6639         mutex_unlock(&dev_priv->rps.hw_lock);
6640 }
6641
6642 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
6643                                         struct i915_power_well *power_well)
6644 {
6645         chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
6646 }
6647
6648 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
6649                                        struct i915_power_well *power_well)
6650 {
6651         WARN_ON_ONCE(power_well->data != PIPE_A &&
6652                      power_well->data != PIPE_B &&
6653                      power_well->data != PIPE_C);
6654
6655         chv_set_pipe_power_well(dev_priv, power_well, true);
6656 }
6657
6658 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
6659                                         struct i915_power_well *power_well)
6660 {
6661         WARN_ON_ONCE(power_well->data != PIPE_A &&
6662                      power_well->data != PIPE_B &&
6663                      power_well->data != PIPE_C);
6664
6665         chv_set_pipe_power_well(dev_priv, power_well, false);
6666 }
6667
6668 static void check_power_well_state(struct drm_i915_private *dev_priv,
6669                                    struct i915_power_well *power_well)
6670 {
6671         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6672
6673         if (power_well->always_on || !i915.disable_power_well) {
6674                 if (!enabled)
6675                         goto mismatch;
6676
6677                 return;
6678         }
6679
6680         if (enabled != (power_well->count > 0))
6681                 goto mismatch;
6682
6683         return;
6684
6685 mismatch:
6686         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6687                   power_well->name, power_well->always_on, enabled,
6688                   power_well->count, i915.disable_power_well);
6689 }
6690
6691 void intel_display_power_get(struct drm_i915_private *dev_priv,
6692                              enum intel_display_power_domain domain)
6693 {
6694         struct i915_power_domains *power_domains;
6695         struct i915_power_well *power_well;
6696         int i;
6697
6698         intel_runtime_pm_get(dev_priv);
6699
6700         power_domains = &dev_priv->power_domains;
6701
6702         mutex_lock(&power_domains->lock);
6703
6704         for_each_power_well(i, power_well, BIT(domain), power_domains) {
6705                 if (!power_well->count++) {
6706                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6707                         power_well->ops->enable(dev_priv, power_well);
6708                         power_well->hw_enabled = true;
6709                 }
6710
6711                 check_power_well_state(dev_priv, power_well);
6712         }
6713
6714         power_domains->domain_use_count[domain]++;
6715
6716         mutex_unlock(&power_domains->lock);
6717 }
6718
6719 void intel_display_power_put(struct drm_i915_private *dev_priv,
6720                              enum intel_display_power_domain domain)
6721 {
6722         struct i915_power_domains *power_domains;
6723         struct i915_power_well *power_well;
6724         int i;
6725
6726         power_domains = &dev_priv->power_domains;
6727
6728         mutex_lock(&power_domains->lock);
6729
6730         WARN_ON(!power_domains->domain_use_count[domain]);
6731         power_domains->domain_use_count[domain]--;
6732
6733         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6734                 WARN_ON(!power_well->count);
6735
6736                 if (!--power_well->count && i915.disable_power_well) {
6737                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6738                         power_well->hw_enabled = false;
6739                         power_well->ops->disable(dev_priv, power_well);
6740                 }
6741
6742                 check_power_well_state(dev_priv, power_well);
6743         }
6744
6745         mutex_unlock(&power_domains->lock);
6746
6747         intel_runtime_pm_put(dev_priv);
6748 }
6749
6750 static struct i915_power_domains *hsw_pwr;
6751
6752 /* Display audio driver power well request */
6753 int i915_request_power_well(void)
6754 {
6755         struct drm_i915_private *dev_priv;
6756
6757         if (!hsw_pwr)
6758                 return -ENODEV;
6759
6760         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6761                                 power_domains);
6762         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6763         return 0;
6764 }
6765 EXPORT_SYMBOL_GPL(i915_request_power_well);
6766
6767 /* Display audio driver power well release */
6768 int i915_release_power_well(void)
6769 {
6770         struct drm_i915_private *dev_priv;
6771
6772         if (!hsw_pwr)
6773                 return -ENODEV;
6774
6775         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6776                                 power_domains);
6777         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6778         return 0;
6779 }
6780 EXPORT_SYMBOL_GPL(i915_release_power_well);
6781
6782 /*
6783  * Private interface for the audio driver to get CDCLK in kHz.
6784  *
6785  * Caller must request power well using i915_request_power_well() prior to
6786  * making the call.
6787  */
6788 int i915_get_cdclk_freq(void)
6789 {
6790         struct drm_i915_private *dev_priv;
6791
6792         if (!hsw_pwr)
6793                 return -ENODEV;
6794
6795         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6796                                 power_domains);
6797
6798         return intel_ddi_get_cdclk_freq(dev_priv);
6799 }
6800 EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
6801
6802
6803 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6804
6805 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
6806         BIT(POWER_DOMAIN_PIPE_A) |                      \
6807         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
6808         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
6809         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
6810         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
6811         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
6812         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
6813         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
6814         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
6815         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
6816         BIT(POWER_DOMAIN_PORT_CRT) |                    \
6817         BIT(POWER_DOMAIN_PLLS) |                        \
6818         BIT(POWER_DOMAIN_INIT))
6819 #define HSW_DISPLAY_POWER_DOMAINS (                             \
6820         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
6821         BIT(POWER_DOMAIN_INIT))
6822
6823 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
6824         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
6825         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6826 #define BDW_DISPLAY_POWER_DOMAINS (                             \
6827         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
6828         BIT(POWER_DOMAIN_INIT))
6829
6830 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
6831 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
6832
6833 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
6834         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6835         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6836         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6837         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6838         BIT(POWER_DOMAIN_PORT_CRT) |            \
6839         BIT(POWER_DOMAIN_INIT))
6840
6841 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
6842         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6843         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6844         BIT(POWER_DOMAIN_INIT))
6845
6846 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
6847         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6848         BIT(POWER_DOMAIN_INIT))
6849
6850 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
6851         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6852         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6853         BIT(POWER_DOMAIN_INIT))
6854
6855 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
6856         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6857         BIT(POWER_DOMAIN_INIT))
6858
6859 #define CHV_PIPE_A_POWER_DOMAINS (      \
6860         BIT(POWER_DOMAIN_PIPE_A) |      \
6861         BIT(POWER_DOMAIN_INIT))
6862
6863 #define CHV_PIPE_B_POWER_DOMAINS (      \
6864         BIT(POWER_DOMAIN_PIPE_B) |      \
6865         BIT(POWER_DOMAIN_INIT))
6866
6867 #define CHV_PIPE_C_POWER_DOMAINS (      \
6868         BIT(POWER_DOMAIN_PIPE_C) |      \
6869         BIT(POWER_DOMAIN_INIT))
6870
6871 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (         \
6872         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6873         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6874         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6875         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6876         BIT(POWER_DOMAIN_INIT))
6877
6878 #define CHV_DPIO_CMN_D_POWER_DOMAINS (          \
6879         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |  \
6880         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |  \
6881         BIT(POWER_DOMAIN_INIT))
6882
6883 #define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS (  \
6884         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |  \
6885         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |  \
6886         BIT(POWER_DOMAIN_INIT))
6887
6888 #define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS (  \
6889         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |  \
6890         BIT(POWER_DOMAIN_INIT))
6891
6892 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6893         .sync_hw = i9xx_always_on_power_well_noop,
6894         .enable = i9xx_always_on_power_well_noop,
6895         .disable = i9xx_always_on_power_well_noop,
6896         .is_enabled = i9xx_always_on_power_well_enabled,
6897 };
6898
6899 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
6900         .sync_hw = chv_pipe_power_well_sync_hw,
6901         .enable = chv_pipe_power_well_enable,
6902         .disable = chv_pipe_power_well_disable,
6903         .is_enabled = chv_pipe_power_well_enabled,
6904 };
6905
6906 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
6907         .sync_hw = vlv_power_well_sync_hw,
6908         .enable = chv_dpio_cmn_power_well_enable,
6909         .disable = chv_dpio_cmn_power_well_disable,
6910         .is_enabled = vlv_power_well_enabled,
6911 };
6912
6913 static struct i915_power_well i9xx_always_on_power_well[] = {
6914         {
6915                 .name = "always-on",
6916                 .always_on = 1,
6917                 .domains = POWER_DOMAIN_MASK,
6918                 .ops = &i9xx_always_on_power_well_ops,
6919         },
6920 };
6921
6922 static const struct i915_power_well_ops hsw_power_well_ops = {
6923         .sync_hw = hsw_power_well_sync_hw,
6924         .enable = hsw_power_well_enable,
6925         .disable = hsw_power_well_disable,
6926         .is_enabled = hsw_power_well_enabled,
6927 };
6928
6929 static struct i915_power_well hsw_power_wells[] = {
6930         {
6931                 .name = "always-on",
6932                 .always_on = 1,
6933                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6934                 .ops = &i9xx_always_on_power_well_ops,
6935         },
6936         {
6937                 .name = "display",
6938                 .domains = HSW_DISPLAY_POWER_DOMAINS,
6939                 .ops = &hsw_power_well_ops,
6940         },
6941 };
6942
6943 static struct i915_power_well bdw_power_wells[] = {
6944         {
6945                 .name = "always-on",
6946                 .always_on = 1,
6947                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6948                 .ops = &i9xx_always_on_power_well_ops,
6949         },
6950         {
6951                 .name = "display",
6952                 .domains = BDW_DISPLAY_POWER_DOMAINS,
6953                 .ops = &hsw_power_well_ops,
6954         },
6955 };
6956
6957 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6958         .sync_hw = vlv_power_well_sync_hw,
6959         .enable = vlv_display_power_well_enable,
6960         .disable = vlv_display_power_well_disable,
6961         .is_enabled = vlv_power_well_enabled,
6962 };
6963
6964 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
6965         .sync_hw = vlv_power_well_sync_hw,
6966         .enable = vlv_dpio_cmn_power_well_enable,
6967         .disable = vlv_dpio_cmn_power_well_disable,
6968         .is_enabled = vlv_power_well_enabled,
6969 };
6970
6971 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6972         .sync_hw = vlv_power_well_sync_hw,
6973         .enable = vlv_power_well_enable,
6974         .disable = vlv_power_well_disable,
6975         .is_enabled = vlv_power_well_enabled,
6976 };
6977
6978 static struct i915_power_well vlv_power_wells[] = {
6979         {
6980                 .name = "always-on",
6981                 .always_on = 1,
6982                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6983                 .ops = &i9xx_always_on_power_well_ops,
6984         },
6985         {
6986                 .name = "display",
6987                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6988                 .data = PUNIT_POWER_WELL_DISP2D,
6989                 .ops = &vlv_display_power_well_ops,
6990         },
6991         {
6992                 .name = "dpio-tx-b-01",
6993                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6994                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6995                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6996                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6997                 .ops = &vlv_dpio_power_well_ops,
6998                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6999         },
7000         {
7001                 .name = "dpio-tx-b-23",
7002                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
7003                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
7004                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
7005                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7006                 .ops = &vlv_dpio_power_well_ops,
7007                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
7008         },
7009         {
7010                 .name = "dpio-tx-c-01",
7011                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
7012                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
7013                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
7014                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7015                 .ops = &vlv_dpio_power_well_ops,
7016                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
7017         },
7018         {
7019                 .name = "dpio-tx-c-23",
7020                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
7021                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
7022                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
7023                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7024                 .ops = &vlv_dpio_power_well_ops,
7025                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
7026         },
7027         {
7028                 .name = "dpio-common",
7029                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
7030                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
7031                 .ops = &vlv_dpio_cmn_power_well_ops,
7032         },
7033 };
7034
7035 static struct i915_power_well chv_power_wells[] = {
7036         {
7037                 .name = "always-on",
7038                 .always_on = 1,
7039                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
7040                 .ops = &i9xx_always_on_power_well_ops,
7041         },
7042 #if 0
7043         {
7044                 .name = "display",
7045                 .domains = VLV_DISPLAY_POWER_DOMAINS,
7046                 .data = PUNIT_POWER_WELL_DISP2D,
7047                 .ops = &vlv_display_power_well_ops,
7048         },
7049         {
7050                 .name = "pipe-a",
7051                 .domains = CHV_PIPE_A_POWER_DOMAINS,
7052                 .data = PIPE_A,
7053                 .ops = &chv_pipe_power_well_ops,
7054         },
7055         {
7056                 .name = "pipe-b",
7057                 .domains = CHV_PIPE_B_POWER_DOMAINS,
7058                 .data = PIPE_B,
7059                 .ops = &chv_pipe_power_well_ops,
7060         },
7061         {
7062                 .name = "pipe-c",
7063                 .domains = CHV_PIPE_C_POWER_DOMAINS,
7064                 .data = PIPE_C,
7065                 .ops = &chv_pipe_power_well_ops,
7066         },
7067 #endif
7068         {
7069                 .name = "dpio-common-bc",
7070                 /*
7071                  * XXX: cmnreset for one PHY seems to disturb the other.
7072                  * As a workaround keep both powered on at the same
7073                  * time for now.
7074                  */
7075                 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
7076                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
7077                 .ops = &chv_dpio_cmn_power_well_ops,
7078         },
7079         {
7080                 .name = "dpio-common-d",
7081                 /*
7082                  * XXX: cmnreset for one PHY seems to disturb the other.
7083                  * As a workaround keep both powered on at the same
7084                  * time for now.
7085                  */
7086                 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
7087                 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
7088                 .ops = &chv_dpio_cmn_power_well_ops,
7089         },
7090 #if 0
7091         {
7092                 .name = "dpio-tx-b-01",
7093                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
7094                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
7095                 .ops = &vlv_dpio_power_well_ops,
7096                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
7097         },
7098         {
7099                 .name = "dpio-tx-b-23",
7100                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
7101                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
7102                 .ops = &vlv_dpio_power_well_ops,
7103                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
7104         },
7105         {
7106                 .name = "dpio-tx-c-01",
7107                 .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
7108                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7109                 .ops = &vlv_dpio_power_well_ops,
7110                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
7111         },
7112         {
7113                 .name = "dpio-tx-c-23",
7114                 .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
7115                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7116                 .ops = &vlv_dpio_power_well_ops,
7117                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
7118         },
7119         {
7120                 .name = "dpio-tx-d-01",
7121                 .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
7122                            CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
7123                 .ops = &vlv_dpio_power_well_ops,
7124                 .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
7125         },
7126         {
7127                 .name = "dpio-tx-d-23",
7128                 .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
7129                            CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
7130                 .ops = &vlv_dpio_power_well_ops,
7131                 .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
7132         },
7133 #endif
7134 };
7135
7136 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
7137                                                  enum punit_power_well power_well_id)
7138 {
7139         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7140         struct i915_power_well *power_well;
7141         int i;
7142
7143         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7144                 if (power_well->data == power_well_id)
7145                         return power_well;
7146         }
7147
7148         return NULL;
7149 }
7150
7151 #define set_power_wells(power_domains, __power_wells) ({                \
7152         (power_domains)->power_wells = (__power_wells);                 \
7153         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
7154 })
7155
7156 int intel_power_domains_init(struct drm_i915_private *dev_priv)
7157 {
7158         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7159
7160         mutex_init(&power_domains->lock);
7161
7162         /*
7163          * The enabling order will be from lower to higher indexed wells,
7164          * the disabling order is reversed.
7165          */
7166         if (IS_HASWELL(dev_priv->dev)) {
7167                 set_power_wells(power_domains, hsw_power_wells);
7168                 hsw_pwr = power_domains;
7169         } else if (IS_BROADWELL(dev_priv->dev)) {
7170                 set_power_wells(power_domains, bdw_power_wells);
7171                 hsw_pwr = power_domains;
7172         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
7173                 set_power_wells(power_domains, chv_power_wells);
7174         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
7175                 set_power_wells(power_domains, vlv_power_wells);
7176         } else {
7177                 set_power_wells(power_domains, i9xx_always_on_power_well);
7178         }
7179
7180         return 0;
7181 }
7182
7183 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
7184 {
7185         hsw_pwr = NULL;
7186 }
7187
7188 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
7189 {
7190         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7191         struct i915_power_well *power_well;
7192         int i;
7193
7194         mutex_lock(&power_domains->lock);
7195         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7196                 power_well->ops->sync_hw(dev_priv, power_well);
7197                 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
7198                                                                      power_well);
7199         }
7200         mutex_unlock(&power_domains->lock);
7201 }
7202
7203 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
7204 {
7205         struct i915_power_well *cmn =
7206                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
7207         struct i915_power_well *disp2d =
7208                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
7209
7210         /* nothing to do if common lane is already off */
7211         if (!cmn->ops->is_enabled(dev_priv, cmn))
7212                 return;
7213
7214         /* If the display might be already active skip this */
7215         if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
7216             I915_READ(DPIO_CTL) & DPIO_CMNRST)
7217                 return;
7218
7219         DRM_DEBUG_KMS("toggling display PHY side reset\n");
7220
7221         /* cmnlane needs DPLL registers */
7222         disp2d->ops->enable(dev_priv, disp2d);
7223
7224         /*
7225          * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
7226          * Need to assert and de-assert PHY SB reset by gating the
7227          * common lane power, then un-gating it.
7228          * Simply ungating isn't enough to reset the PHY enough to get
7229          * ports and lanes running.
7230          */
7231         cmn->ops->disable(dev_priv, cmn);
7232 }
7233
7234 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
7235 {
7236         struct drm_device *dev = dev_priv->dev;
7237         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7238
7239         power_domains->initializing = true;
7240
7241         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
7242                 mutex_lock(&power_domains->lock);
7243                 vlv_cmnlane_wa(dev_priv);
7244                 mutex_unlock(&power_domains->lock);
7245         }
7246
7247         /* For now, we need the power well to be always enabled. */
7248         intel_display_set_init_power(dev_priv, true);
7249         intel_power_domains_resume(dev_priv);
7250         power_domains->initializing = false;
7251 }
7252
7253 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
7254 {
7255         intel_runtime_pm_get(dev_priv);
7256 }
7257
7258 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
7259 {
7260         intel_runtime_pm_put(dev_priv);
7261 }
7262
7263 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
7264 {
7265         struct drm_device *dev = dev_priv->dev;
7266         struct device *device = &dev->pdev->dev;
7267
7268         if (!HAS_RUNTIME_PM(dev))
7269                 return;
7270
7271         pm_runtime_get_sync(device);
7272         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
7273 }
7274
7275 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
7276 {
7277         struct drm_device *dev = dev_priv->dev;
7278         struct device *device = &dev->pdev->dev;
7279
7280         if (!HAS_RUNTIME_PM(dev))
7281                 return;
7282
7283         WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
7284         pm_runtime_get_noresume(device);
7285 }
7286
7287 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
7288 {
7289         struct drm_device *dev = dev_priv->dev;
7290         struct device *device = &dev->pdev->dev;
7291
7292         if (!HAS_RUNTIME_PM(dev))
7293                 return;
7294
7295         pm_runtime_mark_last_busy(device);
7296         pm_runtime_put_autosuspend(device);
7297 }
7298
7299 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
7300 {
7301         struct drm_device *dev = dev_priv->dev;
7302         struct device *device = &dev->pdev->dev;
7303
7304         if (!HAS_RUNTIME_PM(dev))
7305                 return;
7306
7307         pm_runtime_set_active(device);
7308
7309         /*
7310          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7311          * requirement.
7312          */
7313         if (!intel_enable_rc6(dev)) {
7314                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7315                 return;
7316         }
7317
7318         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
7319         pm_runtime_mark_last_busy(device);
7320         pm_runtime_use_autosuspend(device);
7321
7322         pm_runtime_put_autosuspend(device);
7323 }
7324
7325 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
7326 {
7327         struct drm_device *dev = dev_priv->dev;
7328         struct device *device = &dev->pdev->dev;
7329
7330         if (!HAS_RUNTIME_PM(dev))
7331                 return;
7332
7333         if (!intel_enable_rc6(dev))
7334                 return;
7335
7336         /* Make sure we're not suspended first. */
7337         pm_runtime_get_sync(device);
7338         pm_runtime_disable(device);
7339 }
7340
7341 /* Set up chip specific power management-related functions */
7342 void intel_init_pm(struct drm_device *dev)
7343 {
7344         struct drm_i915_private *dev_priv = dev->dev_private;
7345
7346         if (HAS_FBC(dev)) {
7347                 if (INTEL_INFO(dev)->gen >= 7) {
7348                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7349                         dev_priv->display.enable_fbc = gen7_enable_fbc;
7350                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7351                 } else if (INTEL_INFO(dev)->gen >= 5) {
7352                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7353                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
7354                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7355                 } else if (IS_GM45(dev)) {
7356                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7357                         dev_priv->display.enable_fbc = g4x_enable_fbc;
7358                         dev_priv->display.disable_fbc = g4x_disable_fbc;
7359                 } else {
7360                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7361                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
7362                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
7363
7364                         /* This value was pulled out of someone's hat */
7365                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
7366                 }
7367         }
7368
7369         /* For cxsr */
7370         if (IS_PINEVIEW(dev))
7371                 i915_pineview_get_mem_freq(dev);
7372         else if (IS_GEN5(dev))
7373                 i915_ironlake_get_mem_freq(dev);
7374
7375         /* For FIFO watermark updates */
7376         if (HAS_PCH_SPLIT(dev)) {
7377                 ilk_setup_wm_latency(dev);
7378
7379                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7380                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7381                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7382                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7383                         dev_priv->display.update_wm = ilk_update_wm;
7384                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7385                 } else {
7386                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7387                                       "Disable CxSR\n");
7388                 }
7389
7390                 if (IS_GEN5(dev))
7391                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7392                 else if (IS_GEN6(dev))
7393                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7394                 else if (IS_IVYBRIDGE(dev))
7395                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7396                 else if (IS_HASWELL(dev))
7397                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7398                 else if (INTEL_INFO(dev)->gen == 8)
7399                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7400         } else if (IS_CHERRYVIEW(dev)) {
7401                 dev_priv->display.update_wm = cherryview_update_wm;
7402                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7403                 dev_priv->display.init_clock_gating =
7404                         cherryview_init_clock_gating;
7405         } else if (IS_VALLEYVIEW(dev)) {
7406                 dev_priv->display.update_wm = valleyview_update_wm;
7407                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7408                 dev_priv->display.init_clock_gating =
7409                         valleyview_init_clock_gating;
7410         } else if (IS_PINEVIEW(dev)) {
7411                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7412                                             dev_priv->is_ddr3,
7413                                             dev_priv->fsb_freq,
7414                                             dev_priv->mem_freq)) {
7415                         DRM_INFO("failed to find known CxSR latency "
7416                                  "(found ddr%s fsb freq %d, mem freq %d), "
7417                                  "disabling CxSR\n",
7418                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7419                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7420                         /* Disable CxSR and never update its watermark again */
7421                         intel_set_memory_cxsr(dev_priv, false);
7422                         dev_priv->display.update_wm = NULL;
7423                 } else
7424                         dev_priv->display.update_wm = pineview_update_wm;
7425                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7426         } else if (IS_G4X(dev)) {
7427                 dev_priv->display.update_wm = g4x_update_wm;
7428                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7429         } else if (IS_GEN4(dev)) {
7430                 dev_priv->display.update_wm = i965_update_wm;
7431                 if (IS_CRESTLINE(dev))
7432                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7433                 else if (IS_BROADWATER(dev))
7434                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7435         } else if (IS_GEN3(dev)) {
7436                 dev_priv->display.update_wm = i9xx_update_wm;
7437                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7438                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7439         } else if (IS_GEN2(dev)) {
7440                 if (INTEL_INFO(dev)->num_pipes == 1) {
7441                         dev_priv->display.update_wm = i845_update_wm;
7442                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7443                 } else {
7444                         dev_priv->display.update_wm = i9xx_update_wm;
7445                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7446                 }
7447
7448                 if (IS_I85X(dev) || IS_I865G(dev))
7449                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7450                 else
7451                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
7452         } else {
7453                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7454         }
7455 }
7456
7457 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
7458 {
7459         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7460
7461         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7462                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7463                 return -EAGAIN;
7464         }
7465
7466         I915_WRITE(GEN6_PCODE_DATA, *val);
7467         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7468
7469         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7470                      500)) {
7471                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7472                 return -ETIMEDOUT;
7473         }
7474
7475         *val = I915_READ(GEN6_PCODE_DATA);
7476         I915_WRITE(GEN6_PCODE_DATA, 0);
7477
7478         return 0;
7479 }
7480
7481 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
7482 {
7483         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7484
7485         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7486                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7487                 return -EAGAIN;
7488         }
7489
7490         I915_WRITE(GEN6_PCODE_DATA, val);
7491         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7492
7493         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7494                      500)) {
7495                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7496                 return -ETIMEDOUT;
7497         }
7498
7499         I915_WRITE(GEN6_PCODE_DATA, 0);
7500
7501         return 0;
7502 }
7503
7504 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7505 {
7506         int div;
7507
7508         /* 4 x czclk */
7509         switch (dev_priv->mem_freq) {
7510         case 800:
7511                 div = 10;
7512                 break;
7513         case 1066:
7514                 div = 12;
7515                 break;
7516         case 1333:
7517                 div = 16;
7518                 break;
7519         default:
7520                 return -1;
7521         }
7522
7523         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
7524 }
7525
7526 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7527 {
7528         int mul;
7529
7530         /* 4 x czclk */
7531         switch (dev_priv->mem_freq) {
7532         case 800:
7533                 mul = 10;
7534                 break;
7535         case 1066:
7536                 mul = 12;
7537                 break;
7538         case 1333:
7539                 mul = 16;
7540                 break;
7541         default:
7542                 return -1;
7543         }
7544
7545         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7546 }
7547
7548 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7549 {
7550         int div, freq;
7551
7552         switch (dev_priv->rps.cz_freq) {
7553         case 200:
7554                 div = 5;
7555                 break;
7556         case 267:
7557                 div = 6;
7558                 break;
7559         case 320:
7560         case 333:
7561         case 400:
7562                 div = 8;
7563                 break;
7564         default:
7565                 return -1;
7566         }
7567
7568         freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
7569
7570         return freq;
7571 }
7572
7573 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7574 {
7575         int mul, opcode;
7576
7577         switch (dev_priv->rps.cz_freq) {
7578         case 200:
7579                 mul = 5;
7580                 break;
7581         case 267:
7582                 mul = 6;
7583                 break;
7584         case 320:
7585         case 333:
7586         case 400:
7587                 mul = 8;
7588                 break;
7589         default:
7590                 return -1;
7591         }
7592
7593         /* CHV needs even values */
7594         opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
7595
7596         return opcode;
7597 }
7598
7599 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7600 {
7601         int ret = -1;
7602
7603         if (IS_CHERRYVIEW(dev_priv->dev))
7604                 ret = chv_gpu_freq(dev_priv, val);
7605         else if (IS_VALLEYVIEW(dev_priv->dev))
7606                 ret = byt_gpu_freq(dev_priv, val);
7607
7608         return ret;
7609 }
7610
7611 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7612 {
7613         int ret = -1;
7614
7615         if (IS_CHERRYVIEW(dev_priv->dev))
7616                 ret = chv_freq_opcode(dev_priv, val);
7617         else if (IS_VALLEYVIEW(dev_priv->dev))
7618                 ret = byt_freq_opcode(dev_priv, val);
7619
7620         return ret;
7621 }
7622
7623 void intel_pm_setup(struct drm_device *dev)
7624 {
7625         struct drm_i915_private *dev_priv = dev->dev_private;
7626
7627         mutex_init(&dev_priv->rps.hw_lock);
7628
7629         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7630                           intel_gen6_powersave_work);
7631
7632         dev_priv->pm.suspended = false;
7633         dev_priv->pm._irqs_disabled = false;
7634 }