drm/i915: Eliminate usage of plane_wm_parameters from ILK-style WM code (v2)
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE                        (1<<0)
52 #define INTEL_RC6p_ENABLE                       (1<<1)
53 #define INTEL_RC6pp_ENABLE                      (1<<2)
54
55 static void gen9_init_clock_gating(struct drm_device *dev)
56 {
57         struct drm_i915_private *dev_priv = dev->dev_private;
58
59         /* WaEnableLbsSlaRetryTimerDecrement:skl */
60         I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
61                    GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62
63         /* WaDisableKillLogic:bxt,skl */
64         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
65                    ECOCHK_DIS_TLB);
66 }
67
68 static void skl_init_clock_gating(struct drm_device *dev)
69 {
70         struct drm_i915_private *dev_priv = dev->dev_private;
71
72         gen9_init_clock_gating(dev);
73
74         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
75                 /* WaDisableHDCInvalidation:skl */
76                 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
77                            BDW_DISABLE_HDC_INVALIDATION);
78
79                 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
80                 I915_WRITE(FF_SLICE_CS_CHICKEN2,
81                            _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
82         }
83
84         /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
85          * involving this register should also be added to WA batch as required.
86          */
87         if (INTEL_REVID(dev) <= SKL_REVID_E0)
88                 /* WaDisableLSQCROPERFforOCL:skl */
89                 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
90                            GEN8_LQSC_RO_PERF_DIS);
91
92         /* WaEnableGapsTsvCreditFix:skl */
93         if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
94                 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
95                                            GEN9_GAPS_TSV_CREDIT_DISABLE));
96         }
97 }
98
99 static void bxt_init_clock_gating(struct drm_device *dev)
100 {
101         struct drm_i915_private *dev_priv = dev->dev_private;
102
103         gen9_init_clock_gating(dev);
104
105         /* WaDisableSDEUnitClockGating:bxt */
106         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
107                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
108
109         /*
110          * FIXME:
111          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
112          */
113         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
114                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
115
116         /* WaStoreMultiplePTEenable:bxt */
117         /* This is a requirement according to Hardware specification */
118         if (INTEL_REVID(dev) == BXT_REVID_A0)
119                 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
120
121         /* WaSetClckGatingDisableMedia:bxt */
122         if (INTEL_REVID(dev) == BXT_REVID_A0) {
123                 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
124                                             ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
125         }
126 }
127
128 static void i915_pineview_get_mem_freq(struct drm_device *dev)
129 {
130         struct drm_i915_private *dev_priv = dev->dev_private;
131         u32 tmp;
132
133         tmp = I915_READ(CLKCFG);
134
135         switch (tmp & CLKCFG_FSB_MASK) {
136         case CLKCFG_FSB_533:
137                 dev_priv->fsb_freq = 533; /* 133*4 */
138                 break;
139         case CLKCFG_FSB_800:
140                 dev_priv->fsb_freq = 800; /* 200*4 */
141                 break;
142         case CLKCFG_FSB_667:
143                 dev_priv->fsb_freq =  667; /* 167*4 */
144                 break;
145         case CLKCFG_FSB_400:
146                 dev_priv->fsb_freq = 400; /* 100*4 */
147                 break;
148         }
149
150         switch (tmp & CLKCFG_MEM_MASK) {
151         case CLKCFG_MEM_533:
152                 dev_priv->mem_freq = 533;
153                 break;
154         case CLKCFG_MEM_667:
155                 dev_priv->mem_freq = 667;
156                 break;
157         case CLKCFG_MEM_800:
158                 dev_priv->mem_freq = 800;
159                 break;
160         }
161
162         /* detect pineview DDR3 setting */
163         tmp = I915_READ(CSHRDDR3CTL);
164         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
165 }
166
167 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
168 {
169         struct drm_i915_private *dev_priv = dev->dev_private;
170         u16 ddrpll, csipll;
171
172         ddrpll = I915_READ16(DDRMPLL1);
173         csipll = I915_READ16(CSIPLL0);
174
175         switch (ddrpll & 0xff) {
176         case 0xc:
177                 dev_priv->mem_freq = 800;
178                 break;
179         case 0x10:
180                 dev_priv->mem_freq = 1066;
181                 break;
182         case 0x14:
183                 dev_priv->mem_freq = 1333;
184                 break;
185         case 0x18:
186                 dev_priv->mem_freq = 1600;
187                 break;
188         default:
189                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
190                                  ddrpll & 0xff);
191                 dev_priv->mem_freq = 0;
192                 break;
193         }
194
195         dev_priv->ips.r_t = dev_priv->mem_freq;
196
197         switch (csipll & 0x3ff) {
198         case 0x00c:
199                 dev_priv->fsb_freq = 3200;
200                 break;
201         case 0x00e:
202                 dev_priv->fsb_freq = 3733;
203                 break;
204         case 0x010:
205                 dev_priv->fsb_freq = 4266;
206                 break;
207         case 0x012:
208                 dev_priv->fsb_freq = 4800;
209                 break;
210         case 0x014:
211                 dev_priv->fsb_freq = 5333;
212                 break;
213         case 0x016:
214                 dev_priv->fsb_freq = 5866;
215                 break;
216         case 0x018:
217                 dev_priv->fsb_freq = 6400;
218                 break;
219         default:
220                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
221                                  csipll & 0x3ff);
222                 dev_priv->fsb_freq = 0;
223                 break;
224         }
225
226         if (dev_priv->fsb_freq == 3200) {
227                 dev_priv->ips.c_m = 0;
228         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
229                 dev_priv->ips.c_m = 1;
230         } else {
231                 dev_priv->ips.c_m = 2;
232         }
233 }
234
235 static const struct cxsr_latency cxsr_latency_table[] = {
236         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
237         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
238         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
239         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
240         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
241
242         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
243         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
244         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
245         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
246         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
247
248         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
249         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
250         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
251         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
252         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
253
254         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
255         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
256         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
257         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
258         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
259
260         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
261         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
262         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
263         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
264         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
265
266         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
267         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
268         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
269         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
270         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
271 };
272
273 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
274                                                          int is_ddr3,
275                                                          int fsb,
276                                                          int mem)
277 {
278         const struct cxsr_latency *latency;
279         int i;
280
281         if (fsb == 0 || mem == 0)
282                 return NULL;
283
284         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
285                 latency = &cxsr_latency_table[i];
286                 if (is_desktop == latency->is_desktop &&
287                     is_ddr3 == latency->is_ddr3 &&
288                     fsb == latency->fsb_freq && mem == latency->mem_freq)
289                         return latency;
290         }
291
292         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
293
294         return NULL;
295 }
296
297 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
298 {
299         u32 val;
300
301         mutex_lock(&dev_priv->rps.hw_lock);
302
303         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
304         if (enable)
305                 val &= ~FORCE_DDR_HIGH_FREQ;
306         else
307                 val |= FORCE_DDR_HIGH_FREQ;
308         val &= ~FORCE_DDR_LOW_FREQ;
309         val |= FORCE_DDR_FREQ_REQ_ACK;
310         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
311
312         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
313                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
314                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
315
316         mutex_unlock(&dev_priv->rps.hw_lock);
317 }
318
319 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
320 {
321         u32 val;
322
323         mutex_lock(&dev_priv->rps.hw_lock);
324
325         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
326         if (enable)
327                 val |= DSP_MAXFIFO_PM5_ENABLE;
328         else
329                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
330         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
331
332         mutex_unlock(&dev_priv->rps.hw_lock);
333 }
334
335 #define FW_WM(value, plane) \
336         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
337
338 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
339 {
340         struct drm_device *dev = dev_priv->dev;
341         u32 val;
342
343         if (IS_VALLEYVIEW(dev)) {
344                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
345                 POSTING_READ(FW_BLC_SELF_VLV);
346                 dev_priv->wm.vlv.cxsr = enable;
347         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
348                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
349                 POSTING_READ(FW_BLC_SELF);
350         } else if (IS_PINEVIEW(dev)) {
351                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
352                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
353                 I915_WRITE(DSPFW3, val);
354                 POSTING_READ(DSPFW3);
355         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
356                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
357                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
358                 I915_WRITE(FW_BLC_SELF, val);
359                 POSTING_READ(FW_BLC_SELF);
360         } else if (IS_I915GM(dev)) {
361                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
362                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
363                 I915_WRITE(INSTPM, val);
364                 POSTING_READ(INSTPM);
365         } else {
366                 return;
367         }
368
369         DRM_DEBUG_KMS("memory self-refresh is %s\n",
370                       enable ? "enabled" : "disabled");
371 }
372
373
374 /*
375  * Latency for FIFO fetches is dependent on several factors:
376  *   - memory configuration (speed, channels)
377  *   - chipset
378  *   - current MCH state
379  * It can be fairly high in some situations, so here we assume a fairly
380  * pessimal value.  It's a tradeoff between extra memory fetches (if we
381  * set this value too high, the FIFO will fetch frequently to stay full)
382  * and power consumption (set it too low to save power and we might see
383  * FIFO underruns and display "flicker").
384  *
385  * A value of 5us seems to be a good balance; safe for very low end
386  * platforms but not overly aggressive on lower latency configs.
387  */
388 static const int pessimal_latency_ns = 5000;
389
390 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
391         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
392
393 static int vlv_get_fifo_size(struct drm_device *dev,
394                               enum pipe pipe, int plane)
395 {
396         struct drm_i915_private *dev_priv = dev->dev_private;
397         int sprite0_start, sprite1_start, size;
398
399         switch (pipe) {
400                 uint32_t dsparb, dsparb2, dsparb3;
401         case PIPE_A:
402                 dsparb = I915_READ(DSPARB);
403                 dsparb2 = I915_READ(DSPARB2);
404                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
405                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
406                 break;
407         case PIPE_B:
408                 dsparb = I915_READ(DSPARB);
409                 dsparb2 = I915_READ(DSPARB2);
410                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
411                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
412                 break;
413         case PIPE_C:
414                 dsparb2 = I915_READ(DSPARB2);
415                 dsparb3 = I915_READ(DSPARB3);
416                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
417                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
418                 break;
419         default:
420                 return 0;
421         }
422
423         switch (plane) {
424         case 0:
425                 size = sprite0_start;
426                 break;
427         case 1:
428                 size = sprite1_start - sprite0_start;
429                 break;
430         case 2:
431                 size = 512 - 1 - sprite1_start;
432                 break;
433         default:
434                 return 0;
435         }
436
437         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
438                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
439                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
440                       size);
441
442         return size;
443 }
444
445 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
446 {
447         struct drm_i915_private *dev_priv = dev->dev_private;
448         uint32_t dsparb = I915_READ(DSPARB);
449         int size;
450
451         size = dsparb & 0x7f;
452         if (plane)
453                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
454
455         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
456                       plane ? "B" : "A", size);
457
458         return size;
459 }
460
461 static int i830_get_fifo_size(struct drm_device *dev, int plane)
462 {
463         struct drm_i915_private *dev_priv = dev->dev_private;
464         uint32_t dsparb = I915_READ(DSPARB);
465         int size;
466
467         size = dsparb & 0x1ff;
468         if (plane)
469                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
470         size >>= 1; /* Convert to cachelines */
471
472         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
473                       plane ? "B" : "A", size);
474
475         return size;
476 }
477
478 static int i845_get_fifo_size(struct drm_device *dev, int plane)
479 {
480         struct drm_i915_private *dev_priv = dev->dev_private;
481         uint32_t dsparb = I915_READ(DSPARB);
482         int size;
483
484         size = dsparb & 0x7f;
485         size >>= 2; /* Convert to cachelines */
486
487         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
488                       plane ? "B" : "A",
489                       size);
490
491         return size;
492 }
493
494 /* Pineview has different values for various configs */
495 static const struct intel_watermark_params pineview_display_wm = {
496         .fifo_size = PINEVIEW_DISPLAY_FIFO,
497         .max_wm = PINEVIEW_MAX_WM,
498         .default_wm = PINEVIEW_DFT_WM,
499         .guard_size = PINEVIEW_GUARD_WM,
500         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
501 };
502 static const struct intel_watermark_params pineview_display_hplloff_wm = {
503         .fifo_size = PINEVIEW_DISPLAY_FIFO,
504         .max_wm = PINEVIEW_MAX_WM,
505         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
506         .guard_size = PINEVIEW_GUARD_WM,
507         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
508 };
509 static const struct intel_watermark_params pineview_cursor_wm = {
510         .fifo_size = PINEVIEW_CURSOR_FIFO,
511         .max_wm = PINEVIEW_CURSOR_MAX_WM,
512         .default_wm = PINEVIEW_CURSOR_DFT_WM,
513         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
514         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
515 };
516 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
517         .fifo_size = PINEVIEW_CURSOR_FIFO,
518         .max_wm = PINEVIEW_CURSOR_MAX_WM,
519         .default_wm = PINEVIEW_CURSOR_DFT_WM,
520         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
521         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
522 };
523 static const struct intel_watermark_params g4x_wm_info = {
524         .fifo_size = G4X_FIFO_SIZE,
525         .max_wm = G4X_MAX_WM,
526         .default_wm = G4X_MAX_WM,
527         .guard_size = 2,
528         .cacheline_size = G4X_FIFO_LINE_SIZE,
529 };
530 static const struct intel_watermark_params g4x_cursor_wm_info = {
531         .fifo_size = I965_CURSOR_FIFO,
532         .max_wm = I965_CURSOR_MAX_WM,
533         .default_wm = I965_CURSOR_DFT_WM,
534         .guard_size = 2,
535         .cacheline_size = G4X_FIFO_LINE_SIZE,
536 };
537 static const struct intel_watermark_params valleyview_wm_info = {
538         .fifo_size = VALLEYVIEW_FIFO_SIZE,
539         .max_wm = VALLEYVIEW_MAX_WM,
540         .default_wm = VALLEYVIEW_MAX_WM,
541         .guard_size = 2,
542         .cacheline_size = G4X_FIFO_LINE_SIZE,
543 };
544 static const struct intel_watermark_params valleyview_cursor_wm_info = {
545         .fifo_size = I965_CURSOR_FIFO,
546         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
547         .default_wm = I965_CURSOR_DFT_WM,
548         .guard_size = 2,
549         .cacheline_size = G4X_FIFO_LINE_SIZE,
550 };
551 static const struct intel_watermark_params i965_cursor_wm_info = {
552         .fifo_size = I965_CURSOR_FIFO,
553         .max_wm = I965_CURSOR_MAX_WM,
554         .default_wm = I965_CURSOR_DFT_WM,
555         .guard_size = 2,
556         .cacheline_size = I915_FIFO_LINE_SIZE,
557 };
558 static const struct intel_watermark_params i945_wm_info = {
559         .fifo_size = I945_FIFO_SIZE,
560         .max_wm = I915_MAX_WM,
561         .default_wm = 1,
562         .guard_size = 2,
563         .cacheline_size = I915_FIFO_LINE_SIZE,
564 };
565 static const struct intel_watermark_params i915_wm_info = {
566         .fifo_size = I915_FIFO_SIZE,
567         .max_wm = I915_MAX_WM,
568         .default_wm = 1,
569         .guard_size = 2,
570         .cacheline_size = I915_FIFO_LINE_SIZE,
571 };
572 static const struct intel_watermark_params i830_a_wm_info = {
573         .fifo_size = I855GM_FIFO_SIZE,
574         .max_wm = I915_MAX_WM,
575         .default_wm = 1,
576         .guard_size = 2,
577         .cacheline_size = I830_FIFO_LINE_SIZE,
578 };
579 static const struct intel_watermark_params i830_bc_wm_info = {
580         .fifo_size = I855GM_FIFO_SIZE,
581         .max_wm = I915_MAX_WM/2,
582         .default_wm = 1,
583         .guard_size = 2,
584         .cacheline_size = I830_FIFO_LINE_SIZE,
585 };
586 static const struct intel_watermark_params i845_wm_info = {
587         .fifo_size = I830_FIFO_SIZE,
588         .max_wm = I915_MAX_WM,
589         .default_wm = 1,
590         .guard_size = 2,
591         .cacheline_size = I830_FIFO_LINE_SIZE,
592 };
593
594 /**
595  * intel_calculate_wm - calculate watermark level
596  * @clock_in_khz: pixel clock
597  * @wm: chip FIFO params
598  * @pixel_size: display pixel size
599  * @latency_ns: memory latency for the platform
600  *
601  * Calculate the watermark level (the level at which the display plane will
602  * start fetching from memory again).  Each chip has a different display
603  * FIFO size and allocation, so the caller needs to figure that out and pass
604  * in the correct intel_watermark_params structure.
605  *
606  * As the pixel clock runs, the FIFO will be drained at a rate that depends
607  * on the pixel size.  When it reaches the watermark level, it'll start
608  * fetching FIFO line sized based chunks from memory until the FIFO fills
609  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
610  * will occur, and a display engine hang could result.
611  */
612 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
613                                         const struct intel_watermark_params *wm,
614                                         int fifo_size,
615                                         int pixel_size,
616                                         unsigned long latency_ns)
617 {
618         long entries_required, wm_size;
619
620         /*
621          * Note: we need to make sure we don't overflow for various clock &
622          * latency values.
623          * clocks go from a few thousand to several hundred thousand.
624          * latency is usually a few thousand
625          */
626         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
627                 1000;
628         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
629
630         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
631
632         wm_size = fifo_size - (entries_required + wm->guard_size);
633
634         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
635
636         /* Don't promote wm_size to unsigned... */
637         if (wm_size > (long)wm->max_wm)
638                 wm_size = wm->max_wm;
639         if (wm_size <= 0)
640                 wm_size = wm->default_wm;
641
642         /*
643          * Bspec seems to indicate that the value shouldn't be lower than
644          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
645          * Lets go for 8 which is the burst size since certain platforms
646          * already use a hardcoded 8 (which is what the spec says should be
647          * done).
648          */
649         if (wm_size <= 8)
650                 wm_size = 8;
651
652         return wm_size;
653 }
654
655 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
656 {
657         struct drm_crtc *crtc, *enabled = NULL;
658
659         for_each_crtc(dev, crtc) {
660                 if (intel_crtc_active(crtc)) {
661                         if (enabled)
662                                 return NULL;
663                         enabled = crtc;
664                 }
665         }
666
667         return enabled;
668 }
669
670 static void pineview_update_wm(struct drm_crtc *unused_crtc)
671 {
672         struct drm_device *dev = unused_crtc->dev;
673         struct drm_i915_private *dev_priv = dev->dev_private;
674         struct drm_crtc *crtc;
675         const struct cxsr_latency *latency;
676         u32 reg;
677         unsigned long wm;
678
679         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
680                                          dev_priv->fsb_freq, dev_priv->mem_freq);
681         if (!latency) {
682                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
683                 intel_set_memory_cxsr(dev_priv, false);
684                 return;
685         }
686
687         crtc = single_enabled_crtc(dev);
688         if (crtc) {
689                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
690                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
691                 int clock = adjusted_mode->crtc_clock;
692
693                 /* Display SR */
694                 wm = intel_calculate_wm(clock, &pineview_display_wm,
695                                         pineview_display_wm.fifo_size,
696                                         pixel_size, latency->display_sr);
697                 reg = I915_READ(DSPFW1);
698                 reg &= ~DSPFW_SR_MASK;
699                 reg |= FW_WM(wm, SR);
700                 I915_WRITE(DSPFW1, reg);
701                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
702
703                 /* cursor SR */
704                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
705                                         pineview_display_wm.fifo_size,
706                                         pixel_size, latency->cursor_sr);
707                 reg = I915_READ(DSPFW3);
708                 reg &= ~DSPFW_CURSOR_SR_MASK;
709                 reg |= FW_WM(wm, CURSOR_SR);
710                 I915_WRITE(DSPFW3, reg);
711
712                 /* Display HPLL off SR */
713                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
714                                         pineview_display_hplloff_wm.fifo_size,
715                                         pixel_size, latency->display_hpll_disable);
716                 reg = I915_READ(DSPFW3);
717                 reg &= ~DSPFW_HPLL_SR_MASK;
718                 reg |= FW_WM(wm, HPLL_SR);
719                 I915_WRITE(DSPFW3, reg);
720
721                 /* cursor HPLL off SR */
722                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
723                                         pineview_display_hplloff_wm.fifo_size,
724                                         pixel_size, latency->cursor_hpll_disable);
725                 reg = I915_READ(DSPFW3);
726                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
727                 reg |= FW_WM(wm, HPLL_CURSOR);
728                 I915_WRITE(DSPFW3, reg);
729                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
730
731                 intel_set_memory_cxsr(dev_priv, true);
732         } else {
733                 intel_set_memory_cxsr(dev_priv, false);
734         }
735 }
736
737 static bool g4x_compute_wm0(struct drm_device *dev,
738                             int plane,
739                             const struct intel_watermark_params *display,
740                             int display_latency_ns,
741                             const struct intel_watermark_params *cursor,
742                             int cursor_latency_ns,
743                             int *plane_wm,
744                             int *cursor_wm)
745 {
746         struct drm_crtc *crtc;
747         const struct drm_display_mode *adjusted_mode;
748         int htotal, hdisplay, clock, pixel_size;
749         int line_time_us, line_count;
750         int entries, tlb_miss;
751
752         crtc = intel_get_crtc_for_plane(dev, plane);
753         if (!intel_crtc_active(crtc)) {
754                 *cursor_wm = cursor->guard_size;
755                 *plane_wm = display->guard_size;
756                 return false;
757         }
758
759         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
760         clock = adjusted_mode->crtc_clock;
761         htotal = adjusted_mode->crtc_htotal;
762         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
763         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
764
765         /* Use the small buffer method to calculate plane watermark */
766         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
767         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
768         if (tlb_miss > 0)
769                 entries += tlb_miss;
770         entries = DIV_ROUND_UP(entries, display->cacheline_size);
771         *plane_wm = entries + display->guard_size;
772         if (*plane_wm > (int)display->max_wm)
773                 *plane_wm = display->max_wm;
774
775         /* Use the large buffer method to calculate cursor watermark */
776         line_time_us = max(htotal * 1000 / clock, 1);
777         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
778         entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
779         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
780         if (tlb_miss > 0)
781                 entries += tlb_miss;
782         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
783         *cursor_wm = entries + cursor->guard_size;
784         if (*cursor_wm > (int)cursor->max_wm)
785                 *cursor_wm = (int)cursor->max_wm;
786
787         return true;
788 }
789
790 /*
791  * Check the wm result.
792  *
793  * If any calculated watermark values is larger than the maximum value that
794  * can be programmed into the associated watermark register, that watermark
795  * must be disabled.
796  */
797 static bool g4x_check_srwm(struct drm_device *dev,
798                            int display_wm, int cursor_wm,
799                            const struct intel_watermark_params *display,
800                            const struct intel_watermark_params *cursor)
801 {
802         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
803                       display_wm, cursor_wm);
804
805         if (display_wm > display->max_wm) {
806                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
807                               display_wm, display->max_wm);
808                 return false;
809         }
810
811         if (cursor_wm > cursor->max_wm) {
812                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
813                               cursor_wm, cursor->max_wm);
814                 return false;
815         }
816
817         if (!(display_wm || cursor_wm)) {
818                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
819                 return false;
820         }
821
822         return true;
823 }
824
825 static bool g4x_compute_srwm(struct drm_device *dev,
826                              int plane,
827                              int latency_ns,
828                              const struct intel_watermark_params *display,
829                              const struct intel_watermark_params *cursor,
830                              int *display_wm, int *cursor_wm)
831 {
832         struct drm_crtc *crtc;
833         const struct drm_display_mode *adjusted_mode;
834         int hdisplay, htotal, pixel_size, clock;
835         unsigned long line_time_us;
836         int line_count, line_size;
837         int small, large;
838         int entries;
839
840         if (!latency_ns) {
841                 *display_wm = *cursor_wm = 0;
842                 return false;
843         }
844
845         crtc = intel_get_crtc_for_plane(dev, plane);
846         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
847         clock = adjusted_mode->crtc_clock;
848         htotal = adjusted_mode->crtc_htotal;
849         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
850         pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
851
852         line_time_us = max(htotal * 1000 / clock, 1);
853         line_count = (latency_ns / line_time_us + 1000) / 1000;
854         line_size = hdisplay * pixel_size;
855
856         /* Use the minimum of the small and large buffer method for primary */
857         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
858         large = line_count * line_size;
859
860         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
861         *display_wm = entries + display->guard_size;
862
863         /* calculate the self-refresh watermark for display cursor */
864         entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
865         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
866         *cursor_wm = entries + cursor->guard_size;
867
868         return g4x_check_srwm(dev,
869                               *display_wm, *cursor_wm,
870                               display, cursor);
871 }
872
873 #define FW_WM_VLV(value, plane) \
874         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
875
876 static void vlv_write_wm_values(struct intel_crtc *crtc,
877                                 const struct vlv_wm_values *wm)
878 {
879         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
880         enum pipe pipe = crtc->pipe;
881
882         I915_WRITE(VLV_DDL(pipe),
883                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
884                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
885                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
886                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
887
888         I915_WRITE(DSPFW1,
889                    FW_WM(wm->sr.plane, SR) |
890                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
891                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
892                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
893         I915_WRITE(DSPFW2,
894                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
895                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
896                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
897         I915_WRITE(DSPFW3,
898                    FW_WM(wm->sr.cursor, CURSOR_SR));
899
900         if (IS_CHERRYVIEW(dev_priv)) {
901                 I915_WRITE(DSPFW7_CHV,
902                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
903                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
904                 I915_WRITE(DSPFW8_CHV,
905                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
906                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
907                 I915_WRITE(DSPFW9_CHV,
908                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
909                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
910                 I915_WRITE(DSPHOWM,
911                            FW_WM(wm->sr.plane >> 9, SR_HI) |
912                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
913                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
914                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
915                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
916                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
917                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
918                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
919                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
920                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
921         } else {
922                 I915_WRITE(DSPFW7,
923                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
924                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
925                 I915_WRITE(DSPHOWM,
926                            FW_WM(wm->sr.plane >> 9, SR_HI) |
927                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
928                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
929                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
930                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
931                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
932                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
933         }
934
935         /* zero (unused) WM1 watermarks */
936         I915_WRITE(DSPFW4, 0);
937         I915_WRITE(DSPFW5, 0);
938         I915_WRITE(DSPFW6, 0);
939         I915_WRITE(DSPHOWM1, 0);
940
941         POSTING_READ(DSPFW1);
942 }
943
944 #undef FW_WM_VLV
945
946 enum vlv_wm_level {
947         VLV_WM_LEVEL_PM2,
948         VLV_WM_LEVEL_PM5,
949         VLV_WM_LEVEL_DDR_DVFS,
950 };
951
952 /* latency must be in 0.1us units. */
953 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
954                                    unsigned int pipe_htotal,
955                                    unsigned int horiz_pixels,
956                                    unsigned int bytes_per_pixel,
957                                    unsigned int latency)
958 {
959         unsigned int ret;
960
961         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
962         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
963         ret = DIV_ROUND_UP(ret, 64);
964
965         return ret;
966 }
967
968 static void vlv_setup_wm_latency(struct drm_device *dev)
969 {
970         struct drm_i915_private *dev_priv = dev->dev_private;
971
972         /* all latencies in usec */
973         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
974
975         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
976
977         if (IS_CHERRYVIEW(dev_priv)) {
978                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
979                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
980
981                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
982         }
983 }
984
985 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
986                                      struct intel_crtc *crtc,
987                                      const struct intel_plane_state *state,
988                                      int level)
989 {
990         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
991         int clock, htotal, pixel_size, width, wm;
992
993         if (dev_priv->wm.pri_latency[level] == 0)
994                 return USHRT_MAX;
995
996         if (!state->visible)
997                 return 0;
998
999         pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1000         clock = crtc->config->base.adjusted_mode.crtc_clock;
1001         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
1002         width = crtc->config->pipe_src_w;
1003         if (WARN_ON(htotal == 0))
1004                 htotal = 1;
1005
1006         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1007                 /*
1008                  * FIXME the formula gives values that are
1009                  * too big for the cursor FIFO, and hence we
1010                  * would never be able to use cursors. For
1011                  * now just hardcode the watermark.
1012                  */
1013                 wm = 63;
1014         } else {
1015                 wm = vlv_wm_method2(clock, htotal, width, pixel_size,
1016                                     dev_priv->wm.pri_latency[level] * 10);
1017         }
1018
1019         return min_t(int, wm, USHRT_MAX);
1020 }
1021
1022 static void vlv_compute_fifo(struct intel_crtc *crtc)
1023 {
1024         struct drm_device *dev = crtc->base.dev;
1025         struct vlv_wm_state *wm_state = &crtc->wm_state;
1026         struct intel_plane *plane;
1027         unsigned int total_rate = 0;
1028         const int fifo_size = 512 - 1;
1029         int fifo_extra, fifo_left = fifo_size;
1030
1031         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1032                 struct intel_plane_state *state =
1033                         to_intel_plane_state(plane->base.state);
1034
1035                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1036                         continue;
1037
1038                 if (state->visible) {
1039                         wm_state->num_active_planes++;
1040                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1041                 }
1042         }
1043
1044         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1045                 struct intel_plane_state *state =
1046                         to_intel_plane_state(plane->base.state);
1047                 unsigned int rate;
1048
1049                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1050                         plane->wm.fifo_size = 63;
1051                         continue;
1052                 }
1053
1054                 if (!state->visible) {
1055                         plane->wm.fifo_size = 0;
1056                         continue;
1057                 }
1058
1059                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1060                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1061                 fifo_left -= plane->wm.fifo_size;
1062         }
1063
1064         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1065
1066         /* spread the remainder evenly */
1067         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1068                 int plane_extra;
1069
1070                 if (fifo_left == 0)
1071                         break;
1072
1073                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1074                         continue;
1075
1076                 /* give it all to the first plane if none are active */
1077                 if (plane->wm.fifo_size == 0 &&
1078                     wm_state->num_active_planes)
1079                         continue;
1080
1081                 plane_extra = min(fifo_extra, fifo_left);
1082                 plane->wm.fifo_size += plane_extra;
1083                 fifo_left -= plane_extra;
1084         }
1085
1086         WARN_ON(fifo_left != 0);
1087 }
1088
1089 static void vlv_invert_wms(struct intel_crtc *crtc)
1090 {
1091         struct vlv_wm_state *wm_state = &crtc->wm_state;
1092         int level;
1093
1094         for (level = 0; level < wm_state->num_levels; level++) {
1095                 struct drm_device *dev = crtc->base.dev;
1096                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1097                 struct intel_plane *plane;
1098
1099                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1100                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1101
1102                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1103                         switch (plane->base.type) {
1104                                 int sprite;
1105                         case DRM_PLANE_TYPE_CURSOR:
1106                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1107                                         wm_state->wm[level].cursor;
1108                                 break;
1109                         case DRM_PLANE_TYPE_PRIMARY:
1110                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1111                                         wm_state->wm[level].primary;
1112                                 break;
1113                         case DRM_PLANE_TYPE_OVERLAY:
1114                                 sprite = plane->plane;
1115                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1116                                         wm_state->wm[level].sprite[sprite];
1117                                 break;
1118                         }
1119                 }
1120         }
1121 }
1122
1123 static void vlv_compute_wm(struct intel_crtc *crtc)
1124 {
1125         struct drm_device *dev = crtc->base.dev;
1126         struct vlv_wm_state *wm_state = &crtc->wm_state;
1127         struct intel_plane *plane;
1128         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1129         int level;
1130
1131         memset(wm_state, 0, sizeof(*wm_state));
1132
1133         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1134         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1135
1136         wm_state->num_active_planes = 0;
1137
1138         vlv_compute_fifo(crtc);
1139
1140         if (wm_state->num_active_planes != 1)
1141                 wm_state->cxsr = false;
1142
1143         if (wm_state->cxsr) {
1144                 for (level = 0; level < wm_state->num_levels; level++) {
1145                         wm_state->sr[level].plane = sr_fifo_size;
1146                         wm_state->sr[level].cursor = 63;
1147                 }
1148         }
1149
1150         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1151                 struct intel_plane_state *state =
1152                         to_intel_plane_state(plane->base.state);
1153
1154                 if (!state->visible)
1155                         continue;
1156
1157                 /* normal watermarks */
1158                 for (level = 0; level < wm_state->num_levels; level++) {
1159                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1160                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1161
1162                         /* hack */
1163                         if (WARN_ON(level == 0 && wm > max_wm))
1164                                 wm = max_wm;
1165
1166                         if (wm > plane->wm.fifo_size)
1167                                 break;
1168
1169                         switch (plane->base.type) {
1170                                 int sprite;
1171                         case DRM_PLANE_TYPE_CURSOR:
1172                                 wm_state->wm[level].cursor = wm;
1173                                 break;
1174                         case DRM_PLANE_TYPE_PRIMARY:
1175                                 wm_state->wm[level].primary = wm;
1176                                 break;
1177                         case DRM_PLANE_TYPE_OVERLAY:
1178                                 sprite = plane->plane;
1179                                 wm_state->wm[level].sprite[sprite] = wm;
1180                                 break;
1181                         }
1182                 }
1183
1184                 wm_state->num_levels = level;
1185
1186                 if (!wm_state->cxsr)
1187                         continue;
1188
1189                 /* maxfifo watermarks */
1190                 switch (plane->base.type) {
1191                         int sprite, level;
1192                 case DRM_PLANE_TYPE_CURSOR:
1193                         for (level = 0; level < wm_state->num_levels; level++)
1194                                 wm_state->sr[level].cursor =
1195                                         wm_state->sr[level].cursor;
1196                         break;
1197                 case DRM_PLANE_TYPE_PRIMARY:
1198                         for (level = 0; level < wm_state->num_levels; level++)
1199                                 wm_state->sr[level].plane =
1200                                         min(wm_state->sr[level].plane,
1201                                             wm_state->wm[level].primary);
1202                         break;
1203                 case DRM_PLANE_TYPE_OVERLAY:
1204                         sprite = plane->plane;
1205                         for (level = 0; level < wm_state->num_levels; level++)
1206                                 wm_state->sr[level].plane =
1207                                         min(wm_state->sr[level].plane,
1208                                             wm_state->wm[level].sprite[sprite]);
1209                         break;
1210                 }
1211         }
1212
1213         /* clear any (partially) filled invalid levels */
1214         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1215                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1216                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1217         }
1218
1219         vlv_invert_wms(crtc);
1220 }
1221
1222 #define VLV_FIFO(plane, value) \
1223         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1224
1225 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1226 {
1227         struct drm_device *dev = crtc->base.dev;
1228         struct drm_i915_private *dev_priv = to_i915(dev);
1229         struct intel_plane *plane;
1230         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1231
1232         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1233                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1234                         WARN_ON(plane->wm.fifo_size != 63);
1235                         continue;
1236                 }
1237
1238                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1239                         sprite0_start = plane->wm.fifo_size;
1240                 else if (plane->plane == 0)
1241                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1242                 else
1243                         fifo_size = sprite1_start + plane->wm.fifo_size;
1244         }
1245
1246         WARN_ON(fifo_size != 512 - 1);
1247
1248         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1249                       pipe_name(crtc->pipe), sprite0_start,
1250                       sprite1_start, fifo_size);
1251
1252         switch (crtc->pipe) {
1253                 uint32_t dsparb, dsparb2, dsparb3;
1254         case PIPE_A:
1255                 dsparb = I915_READ(DSPARB);
1256                 dsparb2 = I915_READ(DSPARB2);
1257
1258                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1259                             VLV_FIFO(SPRITEB, 0xff));
1260                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1261                            VLV_FIFO(SPRITEB, sprite1_start));
1262
1263                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1264                              VLV_FIFO(SPRITEB_HI, 0x1));
1265                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1266                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1267
1268                 I915_WRITE(DSPARB, dsparb);
1269                 I915_WRITE(DSPARB2, dsparb2);
1270                 break;
1271         case PIPE_B:
1272                 dsparb = I915_READ(DSPARB);
1273                 dsparb2 = I915_READ(DSPARB2);
1274
1275                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1276                             VLV_FIFO(SPRITED, 0xff));
1277                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1278                            VLV_FIFO(SPRITED, sprite1_start));
1279
1280                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1281                              VLV_FIFO(SPRITED_HI, 0xff));
1282                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1283                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1284
1285                 I915_WRITE(DSPARB, dsparb);
1286                 I915_WRITE(DSPARB2, dsparb2);
1287                 break;
1288         case PIPE_C:
1289                 dsparb3 = I915_READ(DSPARB3);
1290                 dsparb2 = I915_READ(DSPARB2);
1291
1292                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1293                              VLV_FIFO(SPRITEF, 0xff));
1294                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1295                             VLV_FIFO(SPRITEF, sprite1_start));
1296
1297                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1298                              VLV_FIFO(SPRITEF_HI, 0xff));
1299                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1300                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1301
1302                 I915_WRITE(DSPARB3, dsparb3);
1303                 I915_WRITE(DSPARB2, dsparb2);
1304                 break;
1305         default:
1306                 break;
1307         }
1308 }
1309
1310 #undef VLV_FIFO
1311
1312 static void vlv_merge_wm(struct drm_device *dev,
1313                          struct vlv_wm_values *wm)
1314 {
1315         struct intel_crtc *crtc;
1316         int num_active_crtcs = 0;
1317
1318         wm->level = to_i915(dev)->wm.max_level;
1319         wm->cxsr = true;
1320
1321         for_each_intel_crtc(dev, crtc) {
1322                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1323
1324                 if (!crtc->active)
1325                         continue;
1326
1327                 if (!wm_state->cxsr)
1328                         wm->cxsr = false;
1329
1330                 num_active_crtcs++;
1331                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1332         }
1333
1334         if (num_active_crtcs != 1)
1335                 wm->cxsr = false;
1336
1337         if (num_active_crtcs > 1)
1338                 wm->level = VLV_WM_LEVEL_PM2;
1339
1340         for_each_intel_crtc(dev, crtc) {
1341                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1342                 enum pipe pipe = crtc->pipe;
1343
1344                 if (!crtc->active)
1345                         continue;
1346
1347                 wm->pipe[pipe] = wm_state->wm[wm->level];
1348                 if (wm->cxsr)
1349                         wm->sr = wm_state->sr[wm->level];
1350
1351                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1352                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1353                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1354                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1355         }
1356 }
1357
1358 static void vlv_update_wm(struct drm_crtc *crtc)
1359 {
1360         struct drm_device *dev = crtc->dev;
1361         struct drm_i915_private *dev_priv = dev->dev_private;
1362         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1363         enum pipe pipe = intel_crtc->pipe;
1364         struct vlv_wm_values wm = {};
1365
1366         vlv_compute_wm(intel_crtc);
1367         vlv_merge_wm(dev, &wm);
1368
1369         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1370                 /* FIXME should be part of crtc atomic commit */
1371                 vlv_pipe_set_fifo_size(intel_crtc);
1372                 return;
1373         }
1374
1375         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1376             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1377                 chv_set_memory_dvfs(dev_priv, false);
1378
1379         if (wm.level < VLV_WM_LEVEL_PM5 &&
1380             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1381                 chv_set_memory_pm5(dev_priv, false);
1382
1383         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1384                 intel_set_memory_cxsr(dev_priv, false);
1385
1386         /* FIXME should be part of crtc atomic commit */
1387         vlv_pipe_set_fifo_size(intel_crtc);
1388
1389         vlv_write_wm_values(intel_crtc, &wm);
1390
1391         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1392                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1393                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1394                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1395                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1396
1397         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1398                 intel_set_memory_cxsr(dev_priv, true);
1399
1400         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1401             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1402                 chv_set_memory_pm5(dev_priv, true);
1403
1404         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1405             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1406                 chv_set_memory_dvfs(dev_priv, true);
1407
1408         dev_priv->wm.vlv = wm;
1409 }
1410
1411 #define single_plane_enabled(mask) is_power_of_2(mask)
1412
1413 static void g4x_update_wm(struct drm_crtc *crtc)
1414 {
1415         struct drm_device *dev = crtc->dev;
1416         static const int sr_latency_ns = 12000;
1417         struct drm_i915_private *dev_priv = dev->dev_private;
1418         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1419         int plane_sr, cursor_sr;
1420         unsigned int enabled = 0;
1421         bool cxsr_enabled;
1422
1423         if (g4x_compute_wm0(dev, PIPE_A,
1424                             &g4x_wm_info, pessimal_latency_ns,
1425                             &g4x_cursor_wm_info, pessimal_latency_ns,
1426                             &planea_wm, &cursora_wm))
1427                 enabled |= 1 << PIPE_A;
1428
1429         if (g4x_compute_wm0(dev, PIPE_B,
1430                             &g4x_wm_info, pessimal_latency_ns,
1431                             &g4x_cursor_wm_info, pessimal_latency_ns,
1432                             &planeb_wm, &cursorb_wm))
1433                 enabled |= 1 << PIPE_B;
1434
1435         if (single_plane_enabled(enabled) &&
1436             g4x_compute_srwm(dev, ffs(enabled) - 1,
1437                              sr_latency_ns,
1438                              &g4x_wm_info,
1439                              &g4x_cursor_wm_info,
1440                              &plane_sr, &cursor_sr)) {
1441                 cxsr_enabled = true;
1442         } else {
1443                 cxsr_enabled = false;
1444                 intel_set_memory_cxsr(dev_priv, false);
1445                 plane_sr = cursor_sr = 0;
1446         }
1447
1448         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1449                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1450                       planea_wm, cursora_wm,
1451                       planeb_wm, cursorb_wm,
1452                       plane_sr, cursor_sr);
1453
1454         I915_WRITE(DSPFW1,
1455                    FW_WM(plane_sr, SR) |
1456                    FW_WM(cursorb_wm, CURSORB) |
1457                    FW_WM(planeb_wm, PLANEB) |
1458                    FW_WM(planea_wm, PLANEA));
1459         I915_WRITE(DSPFW2,
1460                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1461                    FW_WM(cursora_wm, CURSORA));
1462         /* HPLL off in SR has some issues on G4x... disable it */
1463         I915_WRITE(DSPFW3,
1464                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1465                    FW_WM(cursor_sr, CURSOR_SR));
1466
1467         if (cxsr_enabled)
1468                 intel_set_memory_cxsr(dev_priv, true);
1469 }
1470
1471 static void i965_update_wm(struct drm_crtc *unused_crtc)
1472 {
1473         struct drm_device *dev = unused_crtc->dev;
1474         struct drm_i915_private *dev_priv = dev->dev_private;
1475         struct drm_crtc *crtc;
1476         int srwm = 1;
1477         int cursor_sr = 16;
1478         bool cxsr_enabled;
1479
1480         /* Calc sr entries for one plane configs */
1481         crtc = single_enabled_crtc(dev);
1482         if (crtc) {
1483                 /* self-refresh has much higher latency */
1484                 static const int sr_latency_ns = 12000;
1485                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1486                 int clock = adjusted_mode->crtc_clock;
1487                 int htotal = adjusted_mode->crtc_htotal;
1488                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1489                 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1490                 unsigned long line_time_us;
1491                 int entries;
1492
1493                 line_time_us = max(htotal * 1000 / clock, 1);
1494
1495                 /* Use ns/us then divide to preserve precision */
1496                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1497                         pixel_size * hdisplay;
1498                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1499                 srwm = I965_FIFO_SIZE - entries;
1500                 if (srwm < 0)
1501                         srwm = 1;
1502                 srwm &= 0x1ff;
1503                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1504                               entries, srwm);
1505
1506                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1507                         pixel_size * crtc->cursor->state->crtc_w;
1508                 entries = DIV_ROUND_UP(entries,
1509                                           i965_cursor_wm_info.cacheline_size);
1510                 cursor_sr = i965_cursor_wm_info.fifo_size -
1511                         (entries + i965_cursor_wm_info.guard_size);
1512
1513                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1514                         cursor_sr = i965_cursor_wm_info.max_wm;
1515
1516                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1517                               "cursor %d\n", srwm, cursor_sr);
1518
1519                 cxsr_enabled = true;
1520         } else {
1521                 cxsr_enabled = false;
1522                 /* Turn off self refresh if both pipes are enabled */
1523                 intel_set_memory_cxsr(dev_priv, false);
1524         }
1525
1526         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1527                       srwm);
1528
1529         /* 965 has limitations... */
1530         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1531                    FW_WM(8, CURSORB) |
1532                    FW_WM(8, PLANEB) |
1533                    FW_WM(8, PLANEA));
1534         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1535                    FW_WM(8, PLANEC_OLD));
1536         /* update cursor SR watermark */
1537         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1538
1539         if (cxsr_enabled)
1540                 intel_set_memory_cxsr(dev_priv, true);
1541 }
1542
1543 #undef FW_WM
1544
1545 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1546 {
1547         struct drm_device *dev = unused_crtc->dev;
1548         struct drm_i915_private *dev_priv = dev->dev_private;
1549         const struct intel_watermark_params *wm_info;
1550         uint32_t fwater_lo;
1551         uint32_t fwater_hi;
1552         int cwm, srwm = 1;
1553         int fifo_size;
1554         int planea_wm, planeb_wm;
1555         struct drm_crtc *crtc, *enabled = NULL;
1556
1557         if (IS_I945GM(dev))
1558                 wm_info = &i945_wm_info;
1559         else if (!IS_GEN2(dev))
1560                 wm_info = &i915_wm_info;
1561         else
1562                 wm_info = &i830_a_wm_info;
1563
1564         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1565         crtc = intel_get_crtc_for_plane(dev, 0);
1566         if (intel_crtc_active(crtc)) {
1567                 const struct drm_display_mode *adjusted_mode;
1568                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1569                 if (IS_GEN2(dev))
1570                         cpp = 4;
1571
1572                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1573                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1574                                                wm_info, fifo_size, cpp,
1575                                                pessimal_latency_ns);
1576                 enabled = crtc;
1577         } else {
1578                 planea_wm = fifo_size - wm_info->guard_size;
1579                 if (planea_wm > (long)wm_info->max_wm)
1580                         planea_wm = wm_info->max_wm;
1581         }
1582
1583         if (IS_GEN2(dev))
1584                 wm_info = &i830_bc_wm_info;
1585
1586         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1587         crtc = intel_get_crtc_for_plane(dev, 1);
1588         if (intel_crtc_active(crtc)) {
1589                 const struct drm_display_mode *adjusted_mode;
1590                 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1591                 if (IS_GEN2(dev))
1592                         cpp = 4;
1593
1594                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1595                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1596                                                wm_info, fifo_size, cpp,
1597                                                pessimal_latency_ns);
1598                 if (enabled == NULL)
1599                         enabled = crtc;
1600                 else
1601                         enabled = NULL;
1602         } else {
1603                 planeb_wm = fifo_size - wm_info->guard_size;
1604                 if (planeb_wm > (long)wm_info->max_wm)
1605                         planeb_wm = wm_info->max_wm;
1606         }
1607
1608         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1609
1610         if (IS_I915GM(dev) && enabled) {
1611                 struct drm_i915_gem_object *obj;
1612
1613                 obj = intel_fb_obj(enabled->primary->state->fb);
1614
1615                 /* self-refresh seems busted with untiled */
1616                 if (obj->tiling_mode == I915_TILING_NONE)
1617                         enabled = NULL;
1618         }
1619
1620         /*
1621          * Overlay gets an aggressive default since video jitter is bad.
1622          */
1623         cwm = 2;
1624
1625         /* Play safe and disable self-refresh before adjusting watermarks. */
1626         intel_set_memory_cxsr(dev_priv, false);
1627
1628         /* Calc sr entries for one plane configs */
1629         if (HAS_FW_BLC(dev) && enabled) {
1630                 /* self-refresh has much higher latency */
1631                 static const int sr_latency_ns = 6000;
1632                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1633                 int clock = adjusted_mode->crtc_clock;
1634                 int htotal = adjusted_mode->crtc_htotal;
1635                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1636                 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1637                 unsigned long line_time_us;
1638                 int entries;
1639
1640                 line_time_us = max(htotal * 1000 / clock, 1);
1641
1642                 /* Use ns/us then divide to preserve precision */
1643                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1644                         pixel_size * hdisplay;
1645                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1646                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1647                 srwm = wm_info->fifo_size - entries;
1648                 if (srwm < 0)
1649                         srwm = 1;
1650
1651                 if (IS_I945G(dev) || IS_I945GM(dev))
1652                         I915_WRITE(FW_BLC_SELF,
1653                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1654                 else if (IS_I915GM(dev))
1655                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1656         }
1657
1658         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1659                       planea_wm, planeb_wm, cwm, srwm);
1660
1661         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1662         fwater_hi = (cwm & 0x1f);
1663
1664         /* Set request length to 8 cachelines per fetch */
1665         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1666         fwater_hi = fwater_hi | (1 << 8);
1667
1668         I915_WRITE(FW_BLC, fwater_lo);
1669         I915_WRITE(FW_BLC2, fwater_hi);
1670
1671         if (enabled)
1672                 intel_set_memory_cxsr(dev_priv, true);
1673 }
1674
1675 static void i845_update_wm(struct drm_crtc *unused_crtc)
1676 {
1677         struct drm_device *dev = unused_crtc->dev;
1678         struct drm_i915_private *dev_priv = dev->dev_private;
1679         struct drm_crtc *crtc;
1680         const struct drm_display_mode *adjusted_mode;
1681         uint32_t fwater_lo;
1682         int planea_wm;
1683
1684         crtc = single_enabled_crtc(dev);
1685         if (crtc == NULL)
1686                 return;
1687
1688         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1689         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1690                                        &i845_wm_info,
1691                                        dev_priv->display.get_fifo_size(dev, 0),
1692                                        4, pessimal_latency_ns);
1693         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1694         fwater_lo |= (3<<8) | planea_wm;
1695
1696         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1697
1698         I915_WRITE(FW_BLC, fwater_lo);
1699 }
1700
1701 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1702 {
1703         uint32_t pixel_rate;
1704
1705         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1706
1707         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1708          * adjust the pixel_rate here. */
1709
1710         if (pipe_config->pch_pfit.enabled) {
1711                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1712                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1713
1714                 pipe_w = pipe_config->pipe_src_w;
1715                 pipe_h = pipe_config->pipe_src_h;
1716
1717                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1718                 pfit_h = pfit_size & 0xFFFF;
1719                 if (pipe_w < pfit_w)
1720                         pipe_w = pfit_w;
1721                 if (pipe_h < pfit_h)
1722                         pipe_h = pfit_h;
1723
1724                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1725                                      pfit_w * pfit_h);
1726         }
1727
1728         return pixel_rate;
1729 }
1730
1731 /* latency must be in 0.1us units. */
1732 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1733                                uint32_t latency)
1734 {
1735         uint64_t ret;
1736
1737         if (WARN(latency == 0, "Latency value missing\n"))
1738                 return UINT_MAX;
1739
1740         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1741         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1742
1743         return ret;
1744 }
1745
1746 /* latency must be in 0.1us units. */
1747 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1748                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1749                                uint32_t latency)
1750 {
1751         uint32_t ret;
1752
1753         if (WARN(latency == 0, "Latency value missing\n"))
1754                 return UINT_MAX;
1755
1756         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1757         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1758         ret = DIV_ROUND_UP(ret, 64) + 2;
1759         return ret;
1760 }
1761
1762 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1763                            uint8_t bytes_per_pixel)
1764 {
1765         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1766 }
1767
1768 struct skl_pipe_wm_parameters {
1769         bool active;
1770         uint32_t pipe_htotal;
1771         uint32_t pixel_rate; /* in KHz */
1772         struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1773         struct intel_plane_wm_parameters cursor;
1774 };
1775
1776 struct ilk_pipe_wm_parameters {
1777         bool active;
1778         uint32_t pipe_htotal;
1779         uint32_t pixel_rate;
1780 };
1781
1782 struct ilk_wm_maximums {
1783         uint16_t pri;
1784         uint16_t spr;
1785         uint16_t cur;
1786         uint16_t fbc;
1787 };
1788
1789 /* used in computing the new watermarks state */
1790 struct intel_wm_config {
1791         unsigned int num_pipes_active;
1792         bool sprites_enabled;
1793         bool sprites_scaled;
1794 };
1795
1796 /*
1797  * For both WM_PIPE and WM_LP.
1798  * mem_value must be in 0.1us units.
1799  */
1800 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1801                                    const struct intel_plane_state *pstate,
1802                                    uint32_t mem_value,
1803                                    bool is_lp)
1804 {
1805         int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1806         uint32_t method1, method2;
1807
1808         if (!params->active || !pstate->visible)
1809                 return 0;
1810
1811         method1 = ilk_wm_method1(params->pixel_rate, bpp, mem_value);
1812
1813         if (!is_lp)
1814                 return method1;
1815
1816         method2 = ilk_wm_method2(params->pixel_rate,
1817                                  params->pipe_htotal,
1818                                  drm_rect_width(&pstate->dst),
1819                                  bpp,
1820                                  mem_value);
1821
1822         return min(method1, method2);
1823 }
1824
1825 /*
1826  * For both WM_PIPE and WM_LP.
1827  * mem_value must be in 0.1us units.
1828  */
1829 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1830                                    const struct intel_plane_state *pstate,
1831                                    uint32_t mem_value)
1832 {
1833         int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1834         uint32_t method1, method2;
1835
1836         if (!params->active || !pstate->visible)
1837                 return 0;
1838
1839         method1 = ilk_wm_method1(params->pixel_rate, bpp, mem_value);
1840         method2 = ilk_wm_method2(params->pixel_rate,
1841                                  params->pipe_htotal,
1842                                  drm_rect_width(&pstate->dst),
1843                                  bpp,
1844                                  mem_value);
1845         return min(method1, method2);
1846 }
1847
1848 /*
1849  * For both WM_PIPE and WM_LP.
1850  * mem_value must be in 0.1us units.
1851  */
1852 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1853                                    const struct intel_plane_state *pstate,
1854                                    uint32_t mem_value)
1855 {
1856         int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1857
1858         if (!params->active || !pstate->visible)
1859                 return 0;
1860
1861         return ilk_wm_method2(params->pixel_rate,
1862                               params->pipe_htotal,
1863                               drm_rect_width(&pstate->dst),
1864                               bpp,
1865                               mem_value);
1866 }
1867
1868 /* Only for WM_LP. */
1869 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1870                                    const struct intel_plane_state *pstate,
1871                                    uint32_t pri_val)
1872 {
1873         int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1874
1875         if (!params->active || !pstate->visible)
1876                 return 0;
1877
1878         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1879 }
1880
1881 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1882 {
1883         if (INTEL_INFO(dev)->gen >= 8)
1884                 return 3072;
1885         else if (INTEL_INFO(dev)->gen >= 7)
1886                 return 768;
1887         else
1888                 return 512;
1889 }
1890
1891 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1892                                          int level, bool is_sprite)
1893 {
1894         if (INTEL_INFO(dev)->gen >= 8)
1895                 /* BDW primary/sprite plane watermarks */
1896                 return level == 0 ? 255 : 2047;
1897         else if (INTEL_INFO(dev)->gen >= 7)
1898                 /* IVB/HSW primary/sprite plane watermarks */
1899                 return level == 0 ? 127 : 1023;
1900         else if (!is_sprite)
1901                 /* ILK/SNB primary plane watermarks */
1902                 return level == 0 ? 127 : 511;
1903         else
1904                 /* ILK/SNB sprite plane watermarks */
1905                 return level == 0 ? 63 : 255;
1906 }
1907
1908 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1909                                           int level)
1910 {
1911         if (INTEL_INFO(dev)->gen >= 7)
1912                 return level == 0 ? 63 : 255;
1913         else
1914                 return level == 0 ? 31 : 63;
1915 }
1916
1917 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1918 {
1919         if (INTEL_INFO(dev)->gen >= 8)
1920                 return 31;
1921         else
1922                 return 15;
1923 }
1924
1925 /* Calculate the maximum primary/sprite plane watermark */
1926 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1927                                      int level,
1928                                      const struct intel_wm_config *config,
1929                                      enum intel_ddb_partitioning ddb_partitioning,
1930                                      bool is_sprite)
1931 {
1932         unsigned int fifo_size = ilk_display_fifo_size(dev);
1933
1934         /* if sprites aren't enabled, sprites get nothing */
1935         if (is_sprite && !config->sprites_enabled)
1936                 return 0;
1937
1938         /* HSW allows LP1+ watermarks even with multiple pipes */
1939         if (level == 0 || config->num_pipes_active > 1) {
1940                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1941
1942                 /*
1943                  * For some reason the non self refresh
1944                  * FIFO size is only half of the self
1945                  * refresh FIFO size on ILK/SNB.
1946                  */
1947                 if (INTEL_INFO(dev)->gen <= 6)
1948                         fifo_size /= 2;
1949         }
1950
1951         if (config->sprites_enabled) {
1952                 /* level 0 is always calculated with 1:1 split */
1953                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1954                         if (is_sprite)
1955                                 fifo_size *= 5;
1956                         fifo_size /= 6;
1957                 } else {
1958                         fifo_size /= 2;
1959                 }
1960         }
1961
1962         /* clamp to max that the registers can hold */
1963         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1964 }
1965
1966 /* Calculate the maximum cursor plane watermark */
1967 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1968                                       int level,
1969                                       const struct intel_wm_config *config)
1970 {
1971         /* HSW LP1+ watermarks w/ multiple pipes */
1972         if (level > 0 && config->num_pipes_active > 1)
1973                 return 64;
1974
1975         /* otherwise just report max that registers can hold */
1976         return ilk_cursor_wm_reg_max(dev, level);
1977 }
1978
1979 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1980                                     int level,
1981                                     const struct intel_wm_config *config,
1982                                     enum intel_ddb_partitioning ddb_partitioning,
1983                                     struct ilk_wm_maximums *max)
1984 {
1985         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1986         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1987         max->cur = ilk_cursor_wm_max(dev, level, config);
1988         max->fbc = ilk_fbc_wm_reg_max(dev);
1989 }
1990
1991 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1992                                         int level,
1993                                         struct ilk_wm_maximums *max)
1994 {
1995         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1996         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1997         max->cur = ilk_cursor_wm_reg_max(dev, level);
1998         max->fbc = ilk_fbc_wm_reg_max(dev);
1999 }
2000
2001 static bool ilk_validate_wm_level(int level,
2002                                   const struct ilk_wm_maximums *max,
2003                                   struct intel_wm_level *result)
2004 {
2005         bool ret;
2006
2007         /* already determined to be invalid? */
2008         if (!result->enable)
2009                 return false;
2010
2011         result->enable = result->pri_val <= max->pri &&
2012                          result->spr_val <= max->spr &&
2013                          result->cur_val <= max->cur;
2014
2015         ret = result->enable;
2016
2017         /*
2018          * HACK until we can pre-compute everything,
2019          * and thus fail gracefully if LP0 watermarks
2020          * are exceeded...
2021          */
2022         if (level == 0 && !result->enable) {
2023                 if (result->pri_val > max->pri)
2024                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2025                                       level, result->pri_val, max->pri);
2026                 if (result->spr_val > max->spr)
2027                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2028                                       level, result->spr_val, max->spr);
2029                 if (result->cur_val > max->cur)
2030                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2031                                       level, result->cur_val, max->cur);
2032
2033                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2034                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2035                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2036                 result->enable = true;
2037         }
2038
2039         return ret;
2040 }
2041
2042 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2043                                  const struct intel_crtc *intel_crtc,
2044                                  int level,
2045                                  const struct ilk_pipe_wm_parameters *p,
2046                                  struct intel_wm_level *result)
2047 {
2048         struct intel_plane *intel_plane;
2049         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2050         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2051         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2052
2053         /* WM1+ latency values stored in 0.5us units */
2054         if (level > 0) {
2055                 pri_latency *= 5;
2056                 spr_latency *= 5;
2057                 cur_latency *= 5;
2058         }
2059
2060         for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
2061                 struct intel_plane_state *pstate =
2062                         to_intel_plane_state(intel_plane->base.state);
2063
2064                 switch (intel_plane->base.type) {
2065                 case DRM_PLANE_TYPE_PRIMARY:
2066                         result->pri_val = ilk_compute_pri_wm(p, pstate,
2067                                                              pri_latency,
2068                                                              level);
2069                         result->fbc_val = ilk_compute_fbc_wm(p, pstate,
2070                                                              result->pri_val);
2071                         break;
2072                 case DRM_PLANE_TYPE_OVERLAY:
2073                         result->spr_val = ilk_compute_spr_wm(p, pstate,
2074                                                              spr_latency);
2075                         break;
2076                 case DRM_PLANE_TYPE_CURSOR:
2077                         result->cur_val = ilk_compute_cur_wm(p, pstate,
2078                                                              cur_latency);
2079                         break;
2080                 }
2081         }
2082
2083         result->enable = true;
2084 }
2085
2086 static uint32_t
2087 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2088 {
2089         struct drm_i915_private *dev_priv = dev->dev_private;
2090         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2091         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2092         u32 linetime, ips_linetime;
2093
2094         if (!intel_crtc->active)
2095                 return 0;
2096
2097         /* The WM are computed with base on how long it takes to fill a single
2098          * row at the given clock rate, multiplied by 8.
2099          * */
2100         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2101                                      adjusted_mode->crtc_clock);
2102         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2103                                          dev_priv->cdclk_freq);
2104
2105         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2106                PIPE_WM_LINETIME_TIME(linetime);
2107 }
2108
2109 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2110 {
2111         struct drm_i915_private *dev_priv = dev->dev_private;
2112
2113         if (IS_GEN9(dev)) {
2114                 uint32_t val;
2115                 int ret, i;
2116                 int level, max_level = ilk_wm_max_level(dev);
2117
2118                 /* read the first set of memory latencies[0:3] */
2119                 val = 0; /* data0 to be programmed to 0 for first set */
2120                 mutex_lock(&dev_priv->rps.hw_lock);
2121                 ret = sandybridge_pcode_read(dev_priv,
2122                                              GEN9_PCODE_READ_MEM_LATENCY,
2123                                              &val);
2124                 mutex_unlock(&dev_priv->rps.hw_lock);
2125
2126                 if (ret) {
2127                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2128                         return;
2129                 }
2130
2131                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2132                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2133                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2134                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2135                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2136                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2137                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2138
2139                 /* read the second set of memory latencies[4:7] */
2140                 val = 1; /* data0 to be programmed to 1 for second set */
2141                 mutex_lock(&dev_priv->rps.hw_lock);
2142                 ret = sandybridge_pcode_read(dev_priv,
2143                                              GEN9_PCODE_READ_MEM_LATENCY,
2144                                              &val);
2145                 mutex_unlock(&dev_priv->rps.hw_lock);
2146                 if (ret) {
2147                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2148                         return;
2149                 }
2150
2151                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2152                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2153                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2154                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2155                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2156                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2157                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2158
2159                 /*
2160                  * WaWmMemoryReadLatency:skl
2161                  *
2162                  * punit doesn't take into account the read latency so we need
2163                  * to add 2us to the various latency levels we retrieve from
2164                  * the punit.
2165                  *   - W0 is a bit special in that it's the only level that
2166                  *   can't be disabled if we want to have display working, so
2167                  *   we always add 2us there.
2168                  *   - For levels >=1, punit returns 0us latency when they are
2169                  *   disabled, so we respect that and don't add 2us then
2170                  *
2171                  * Additionally, if a level n (n > 1) has a 0us latency, all
2172                  * levels m (m >= n) need to be disabled. We make sure to
2173                  * sanitize the values out of the punit to satisfy this
2174                  * requirement.
2175                  */
2176                 wm[0] += 2;
2177                 for (level = 1; level <= max_level; level++)
2178                         if (wm[level] != 0)
2179                                 wm[level] += 2;
2180                         else {
2181                                 for (i = level + 1; i <= max_level; i++)
2182                                         wm[i] = 0;
2183
2184                                 break;
2185                         }
2186         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2187                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2188
2189                 wm[0] = (sskpd >> 56) & 0xFF;
2190                 if (wm[0] == 0)
2191                         wm[0] = sskpd & 0xF;
2192                 wm[1] = (sskpd >> 4) & 0xFF;
2193                 wm[2] = (sskpd >> 12) & 0xFF;
2194                 wm[3] = (sskpd >> 20) & 0x1FF;
2195                 wm[4] = (sskpd >> 32) & 0x1FF;
2196         } else if (INTEL_INFO(dev)->gen >= 6) {
2197                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2198
2199                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2200                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2201                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2202                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2203         } else if (INTEL_INFO(dev)->gen >= 5) {
2204                 uint32_t mltr = I915_READ(MLTR_ILK);
2205
2206                 /* ILK primary LP0 latency is 700 ns */
2207                 wm[0] = 7;
2208                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2209                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2210         }
2211 }
2212
2213 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2214 {
2215         /* ILK sprite LP0 latency is 1300 ns */
2216         if (INTEL_INFO(dev)->gen == 5)
2217                 wm[0] = 13;
2218 }
2219
2220 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2221 {
2222         /* ILK cursor LP0 latency is 1300 ns */
2223         if (INTEL_INFO(dev)->gen == 5)
2224                 wm[0] = 13;
2225
2226         /* WaDoubleCursorLP3Latency:ivb */
2227         if (IS_IVYBRIDGE(dev))
2228                 wm[3] *= 2;
2229 }
2230
2231 int ilk_wm_max_level(const struct drm_device *dev)
2232 {
2233         /* how many WM levels are we expecting */
2234         if (INTEL_INFO(dev)->gen >= 9)
2235                 return 7;
2236         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2237                 return 4;
2238         else if (INTEL_INFO(dev)->gen >= 6)
2239                 return 3;
2240         else
2241                 return 2;
2242 }
2243
2244 static void intel_print_wm_latency(struct drm_device *dev,
2245                                    const char *name,
2246                                    const uint16_t wm[8])
2247 {
2248         int level, max_level = ilk_wm_max_level(dev);
2249
2250         for (level = 0; level <= max_level; level++) {
2251                 unsigned int latency = wm[level];
2252
2253                 if (latency == 0) {
2254                         DRM_ERROR("%s WM%d latency not provided\n",
2255                                   name, level);
2256                         continue;
2257                 }
2258
2259                 /*
2260                  * - latencies are in us on gen9.
2261                  * - before then, WM1+ latency values are in 0.5us units
2262                  */
2263                 if (IS_GEN9(dev))
2264                         latency *= 10;
2265                 else if (level > 0)
2266                         latency *= 5;
2267
2268                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2269                               name, level, wm[level],
2270                               latency / 10, latency % 10);
2271         }
2272 }
2273
2274 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2275                                     uint16_t wm[5], uint16_t min)
2276 {
2277         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2278
2279         if (wm[0] >= min)
2280                 return false;
2281
2282         wm[0] = max(wm[0], min);
2283         for (level = 1; level <= max_level; level++)
2284                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2285
2286         return true;
2287 }
2288
2289 static void snb_wm_latency_quirk(struct drm_device *dev)
2290 {
2291         struct drm_i915_private *dev_priv = dev->dev_private;
2292         bool changed;
2293
2294         /*
2295          * The BIOS provided WM memory latency values are often
2296          * inadequate for high resolution displays. Adjust them.
2297          */
2298         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2299                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2300                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2301
2302         if (!changed)
2303                 return;
2304
2305         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2306         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2307         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2308         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2309 }
2310
2311 static void ilk_setup_wm_latency(struct drm_device *dev)
2312 {
2313         struct drm_i915_private *dev_priv = dev->dev_private;
2314
2315         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2316
2317         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2318                sizeof(dev_priv->wm.pri_latency));
2319         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2320                sizeof(dev_priv->wm.pri_latency));
2321
2322         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2323         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2324
2325         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2326         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2327         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2328
2329         if (IS_GEN6(dev))
2330                 snb_wm_latency_quirk(dev);
2331 }
2332
2333 static void skl_setup_wm_latency(struct drm_device *dev)
2334 {
2335         struct drm_i915_private *dev_priv = dev->dev_private;
2336
2337         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2338         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2339 }
2340
2341 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2342                                       struct ilk_pipe_wm_parameters *p)
2343 {
2344         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2345
2346         if (!intel_crtc->active)
2347                 return;
2348
2349         p->active = true;
2350         p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2351         p->pixel_rate = ilk_pipe_pixel_rate(intel_crtc->config);
2352 }
2353
2354 static void ilk_compute_wm_config(struct drm_device *dev,
2355                                   struct intel_wm_config *config)
2356 {
2357         struct intel_crtc *intel_crtc;
2358
2359         /* Compute the currently _active_ config */
2360         for_each_intel_crtc(dev, intel_crtc) {
2361                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2362
2363                 if (!wm->pipe_enabled)
2364                         continue;
2365
2366                 config->sprites_enabled |= wm->sprites_enabled;
2367                 config->sprites_scaled |= wm->sprites_scaled;
2368                 config->num_pipes_active++;
2369         }
2370 }
2371
2372 /* Compute new watermarks for the pipe */
2373 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2374                                   const struct ilk_pipe_wm_parameters *params,
2375                                   struct intel_pipe_wm *pipe_wm)
2376 {
2377         struct drm_device *dev = crtc->dev;
2378         const struct drm_i915_private *dev_priv = dev->dev_private;
2379         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2380         struct intel_plane *intel_plane;
2381         struct intel_plane_state *sprstate = NULL;
2382         int level, max_level = ilk_wm_max_level(dev);
2383         /* LP0 watermark maximums depend on this pipe alone */
2384         struct intel_wm_config config = {
2385                 .num_pipes_active = 1,
2386         };
2387         struct ilk_wm_maximums max;
2388
2389         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2390                 if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
2391                         sprstate = to_intel_plane_state(intel_plane->base.state);
2392                         break;
2393                 }
2394         }
2395
2396         config.sprites_enabled = sprstate->visible;
2397         config.sprites_scaled = sprstate->visible &&
2398                 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2399                 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2400
2401
2402         pipe_wm->pipe_enabled = params->active;
2403         pipe_wm->sprites_enabled = sprstate->visible;
2404         pipe_wm->sprites_scaled = config.sprites_scaled;
2405
2406         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2407         if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2408                 max_level = 1;
2409
2410         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2411         if (config.sprites_scaled)
2412                 max_level = 0;
2413
2414         ilk_compute_wm_level(dev_priv, intel_crtc, 0, params, &pipe_wm->wm[0]);
2415
2416         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2417                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2418
2419         /* LP0 watermarks always use 1/2 DDB partitioning */
2420         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2421
2422         /* At least LP0 must be valid */
2423         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2424                 return false;
2425
2426         ilk_compute_wm_reg_maximums(dev, 1, &max);
2427
2428         for (level = 1; level <= max_level; level++) {
2429                 struct intel_wm_level wm = {};
2430
2431                 ilk_compute_wm_level(dev_priv, intel_crtc, level, params, &wm);
2432
2433                 /*
2434                  * Disable any watermark level that exceeds the
2435                  * register maximums since such watermarks are
2436                  * always invalid.
2437                  */
2438                 if (!ilk_validate_wm_level(level, &max, &wm))
2439                         break;
2440
2441                 pipe_wm->wm[level] = wm;
2442         }
2443
2444         return true;
2445 }
2446
2447 /*
2448  * Merge the watermarks from all active pipes for a specific level.
2449  */
2450 static void ilk_merge_wm_level(struct drm_device *dev,
2451                                int level,
2452                                struct intel_wm_level *ret_wm)
2453 {
2454         const struct intel_crtc *intel_crtc;
2455
2456         ret_wm->enable = true;
2457
2458         for_each_intel_crtc(dev, intel_crtc) {
2459                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2460                 const struct intel_wm_level *wm = &active->wm[level];
2461
2462                 if (!active->pipe_enabled)
2463                         continue;
2464
2465                 /*
2466                  * The watermark values may have been used in the past,
2467                  * so we must maintain them in the registers for some
2468                  * time even if the level is now disabled.
2469                  */
2470                 if (!wm->enable)
2471                         ret_wm->enable = false;
2472
2473                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2474                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2475                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2476                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2477         }
2478 }
2479
2480 /*
2481  * Merge all low power watermarks for all active pipes.
2482  */
2483 static void ilk_wm_merge(struct drm_device *dev,
2484                          const struct intel_wm_config *config,
2485                          const struct ilk_wm_maximums *max,
2486                          struct intel_pipe_wm *merged)
2487 {
2488         struct drm_i915_private *dev_priv = dev->dev_private;
2489         int level, max_level = ilk_wm_max_level(dev);
2490         int last_enabled_level = max_level;
2491
2492         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2493         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2494             config->num_pipes_active > 1)
2495                 return;
2496
2497         /* ILK: FBC WM must be disabled always */
2498         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2499
2500         /* merge each WM1+ level */
2501         for (level = 1; level <= max_level; level++) {
2502                 struct intel_wm_level *wm = &merged->wm[level];
2503
2504                 ilk_merge_wm_level(dev, level, wm);
2505
2506                 if (level > last_enabled_level)
2507                         wm->enable = false;
2508                 else if (!ilk_validate_wm_level(level, max, wm))
2509                         /* make sure all following levels get disabled */
2510                         last_enabled_level = level - 1;
2511
2512                 /*
2513                  * The spec says it is preferred to disable
2514                  * FBC WMs instead of disabling a WM level.
2515                  */
2516                 if (wm->fbc_val > max->fbc) {
2517                         if (wm->enable)
2518                                 merged->fbc_wm_enabled = false;
2519                         wm->fbc_val = 0;
2520                 }
2521         }
2522
2523         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2524         /*
2525          * FIXME this is racy. FBC might get enabled later.
2526          * What we should check here is whether FBC can be
2527          * enabled sometime later.
2528          */
2529         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2530             intel_fbc_enabled(dev_priv)) {
2531                 for (level = 2; level <= max_level; level++) {
2532                         struct intel_wm_level *wm = &merged->wm[level];
2533
2534                         wm->enable = false;
2535                 }
2536         }
2537 }
2538
2539 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2540 {
2541         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2542         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2543 }
2544
2545 /* The value we need to program into the WM_LPx latency field */
2546 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2547 {
2548         struct drm_i915_private *dev_priv = dev->dev_private;
2549
2550         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2551                 return 2 * level;
2552         else
2553                 return dev_priv->wm.pri_latency[level];
2554 }
2555
2556 static void ilk_compute_wm_results(struct drm_device *dev,
2557                                    const struct intel_pipe_wm *merged,
2558                                    enum intel_ddb_partitioning partitioning,
2559                                    struct ilk_wm_values *results)
2560 {
2561         struct intel_crtc *intel_crtc;
2562         int level, wm_lp;
2563
2564         results->enable_fbc_wm = merged->fbc_wm_enabled;
2565         results->partitioning = partitioning;
2566
2567         /* LP1+ register values */
2568         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2569                 const struct intel_wm_level *r;
2570
2571                 level = ilk_wm_lp_to_level(wm_lp, merged);
2572
2573                 r = &merged->wm[level];
2574
2575                 /*
2576                  * Maintain the watermark values even if the level is
2577                  * disabled. Doing otherwise could cause underruns.
2578                  */
2579                 results->wm_lp[wm_lp - 1] =
2580                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2581                         (r->pri_val << WM1_LP_SR_SHIFT) |
2582                         r->cur_val;
2583
2584                 if (r->enable)
2585                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2586
2587                 if (INTEL_INFO(dev)->gen >= 8)
2588                         results->wm_lp[wm_lp - 1] |=
2589                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2590                 else
2591                         results->wm_lp[wm_lp - 1] |=
2592                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2593
2594                 /*
2595                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2596                  * level is disabled. Doing otherwise could cause underruns.
2597                  */
2598                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2599                         WARN_ON(wm_lp != 1);
2600                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2601                 } else
2602                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2603         }
2604
2605         /* LP0 register values */
2606         for_each_intel_crtc(dev, intel_crtc) {
2607                 enum pipe pipe = intel_crtc->pipe;
2608                 const struct intel_wm_level *r =
2609                         &intel_crtc->wm.active.wm[0];
2610
2611                 if (WARN_ON(!r->enable))
2612                         continue;
2613
2614                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2615
2616                 results->wm_pipe[pipe] =
2617                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2618                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2619                         r->cur_val;
2620         }
2621 }
2622
2623 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2624  * case both are at the same level. Prefer r1 in case they're the same. */
2625 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2626                                                   struct intel_pipe_wm *r1,
2627                                                   struct intel_pipe_wm *r2)
2628 {
2629         int level, max_level = ilk_wm_max_level(dev);
2630         int level1 = 0, level2 = 0;
2631
2632         for (level = 1; level <= max_level; level++) {
2633                 if (r1->wm[level].enable)
2634                         level1 = level;
2635                 if (r2->wm[level].enable)
2636                         level2 = level;
2637         }
2638
2639         if (level1 == level2) {
2640                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2641                         return r2;
2642                 else
2643                         return r1;
2644         } else if (level1 > level2) {
2645                 return r1;
2646         } else {
2647                 return r2;
2648         }
2649 }
2650
2651 /* dirty bits used to track which watermarks need changes */
2652 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2653 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2654 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2655 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2656 #define WM_DIRTY_FBC (1 << 24)
2657 #define WM_DIRTY_DDB (1 << 25)
2658
2659 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2660                                          const struct ilk_wm_values *old,
2661                                          const struct ilk_wm_values *new)
2662 {
2663         unsigned int dirty = 0;
2664         enum pipe pipe;
2665         int wm_lp;
2666
2667         for_each_pipe(dev_priv, pipe) {
2668                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2669                         dirty |= WM_DIRTY_LINETIME(pipe);
2670                         /* Must disable LP1+ watermarks too */
2671                         dirty |= WM_DIRTY_LP_ALL;
2672                 }
2673
2674                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2675                         dirty |= WM_DIRTY_PIPE(pipe);
2676                         /* Must disable LP1+ watermarks too */
2677                         dirty |= WM_DIRTY_LP_ALL;
2678                 }
2679         }
2680
2681         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2682                 dirty |= WM_DIRTY_FBC;
2683                 /* Must disable LP1+ watermarks too */
2684                 dirty |= WM_DIRTY_LP_ALL;
2685         }
2686
2687         if (old->partitioning != new->partitioning) {
2688                 dirty |= WM_DIRTY_DDB;
2689                 /* Must disable LP1+ watermarks too */
2690                 dirty |= WM_DIRTY_LP_ALL;
2691         }
2692
2693         /* LP1+ watermarks already deemed dirty, no need to continue */
2694         if (dirty & WM_DIRTY_LP_ALL)
2695                 return dirty;
2696
2697         /* Find the lowest numbered LP1+ watermark in need of an update... */
2698         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2699                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2700                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2701                         break;
2702         }
2703
2704         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2705         for (; wm_lp <= 3; wm_lp++)
2706                 dirty |= WM_DIRTY_LP(wm_lp);
2707
2708         return dirty;
2709 }
2710
2711 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2712                                unsigned int dirty)
2713 {
2714         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2715         bool changed = false;
2716
2717         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2718                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2719                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2720                 changed = true;
2721         }
2722         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2723                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2724                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2725                 changed = true;
2726         }
2727         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2728                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2729                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2730                 changed = true;
2731         }
2732
2733         /*
2734          * Don't touch WM1S_LP_EN here.
2735          * Doing so could cause underruns.
2736          */
2737
2738         return changed;
2739 }
2740
2741 /*
2742  * The spec says we shouldn't write when we don't need, because every write
2743  * causes WMs to be re-evaluated, expending some power.
2744  */
2745 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2746                                 struct ilk_wm_values *results)
2747 {
2748         struct drm_device *dev = dev_priv->dev;
2749         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2750         unsigned int dirty;
2751         uint32_t val;
2752
2753         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2754         if (!dirty)
2755                 return;
2756
2757         _ilk_disable_lp_wm(dev_priv, dirty);
2758
2759         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2760                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2761         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2762                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2763         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2764                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2765
2766         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2767                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2768         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2769                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2770         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2771                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2772
2773         if (dirty & WM_DIRTY_DDB) {
2774                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2775                         val = I915_READ(WM_MISC);
2776                         if (results->partitioning == INTEL_DDB_PART_1_2)
2777                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2778                         else
2779                                 val |= WM_MISC_DATA_PARTITION_5_6;
2780                         I915_WRITE(WM_MISC, val);
2781                 } else {
2782                         val = I915_READ(DISP_ARB_CTL2);
2783                         if (results->partitioning == INTEL_DDB_PART_1_2)
2784                                 val &= ~DISP_DATA_PARTITION_5_6;
2785                         else
2786                                 val |= DISP_DATA_PARTITION_5_6;
2787                         I915_WRITE(DISP_ARB_CTL2, val);
2788                 }
2789         }
2790
2791         if (dirty & WM_DIRTY_FBC) {
2792                 val = I915_READ(DISP_ARB_CTL);
2793                 if (results->enable_fbc_wm)
2794                         val &= ~DISP_FBC_WM_DIS;
2795                 else
2796                         val |= DISP_FBC_WM_DIS;
2797                 I915_WRITE(DISP_ARB_CTL, val);
2798         }
2799
2800         if (dirty & WM_DIRTY_LP(1) &&
2801             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2802                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2803
2804         if (INTEL_INFO(dev)->gen >= 7) {
2805                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2806                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2807                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2808                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2809         }
2810
2811         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2812                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2813         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2814                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2815         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2816                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2817
2818         dev_priv->wm.hw = *results;
2819 }
2820
2821 static bool ilk_disable_lp_wm(struct drm_device *dev)
2822 {
2823         struct drm_i915_private *dev_priv = dev->dev_private;
2824
2825         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2826 }
2827
2828 /*
2829  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2830  * different active planes.
2831  */
2832
2833 #define SKL_DDB_SIZE            896     /* in blocks */
2834 #define BXT_DDB_SIZE            512
2835
2836 static void
2837 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2838                                    struct drm_crtc *for_crtc,
2839                                    const struct intel_wm_config *config,
2840                                    const struct skl_pipe_wm_parameters *params,
2841                                    struct skl_ddb_entry *alloc /* out */)
2842 {
2843         struct drm_crtc *crtc;
2844         unsigned int pipe_size, ddb_size;
2845         int nth_active_pipe;
2846
2847         if (!params->active) {
2848                 alloc->start = 0;
2849                 alloc->end = 0;
2850                 return;
2851         }
2852
2853         if (IS_BROXTON(dev))
2854                 ddb_size = BXT_DDB_SIZE;
2855         else
2856                 ddb_size = SKL_DDB_SIZE;
2857
2858         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2859
2860         nth_active_pipe = 0;
2861         for_each_crtc(dev, crtc) {
2862                 if (!to_intel_crtc(crtc)->active)
2863                         continue;
2864
2865                 if (crtc == for_crtc)
2866                         break;
2867
2868                 nth_active_pipe++;
2869         }
2870
2871         pipe_size = ddb_size / config->num_pipes_active;
2872         alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2873         alloc->end = alloc->start + pipe_size;
2874 }
2875
2876 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2877 {
2878         if (config->num_pipes_active == 1)
2879                 return 32;
2880
2881         return 8;
2882 }
2883
2884 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2885 {
2886         entry->start = reg & 0x3ff;
2887         entry->end = (reg >> 16) & 0x3ff;
2888         if (entry->end)
2889                 entry->end += 1;
2890 }
2891
2892 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2893                           struct skl_ddb_allocation *ddb /* out */)
2894 {
2895         enum pipe pipe;
2896         int plane;
2897         u32 val;
2898
2899         for_each_pipe(dev_priv, pipe) {
2900                 for_each_plane(dev_priv, pipe, plane) {
2901                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2902                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2903                                                    val);
2904                 }
2905
2906                 val = I915_READ(CUR_BUF_CFG(pipe));
2907                 skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2908         }
2909 }
2910
2911 static unsigned int
2912 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2913 {
2914
2915         /* for planar format */
2916         if (p->y_bytes_per_pixel) {
2917                 if (y)  /* y-plane data rate */
2918                         return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2919                 else    /* uv-plane data rate */
2920                         return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2921         }
2922
2923         /* for packed formats */
2924         return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2925 }
2926
2927 /*
2928  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2929  * a 8192x4096@32bpp framebuffer:
2930  *   3 * 4096 * 8192  * 4 < 2^32
2931  */
2932 static unsigned int
2933 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2934                                  const struct skl_pipe_wm_parameters *params)
2935 {
2936         unsigned int total_data_rate = 0;
2937         int plane;
2938
2939         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2940                 const struct intel_plane_wm_parameters *p;
2941
2942                 p = &params->plane[plane];
2943                 if (!p->enabled)
2944                         continue;
2945
2946                 total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2947                 if (p->y_bytes_per_pixel) {
2948                         total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2949                 }
2950         }
2951
2952         return total_data_rate;
2953 }
2954
2955 static void
2956 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2957                       const struct intel_wm_config *config,
2958                       const struct skl_pipe_wm_parameters *params,
2959                       struct skl_ddb_allocation *ddb /* out */)
2960 {
2961         struct drm_device *dev = crtc->dev;
2962         struct drm_i915_private *dev_priv = dev->dev_private;
2963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2964         enum pipe pipe = intel_crtc->pipe;
2965         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2966         uint16_t alloc_size, start, cursor_blocks;
2967         uint16_t minimum[I915_MAX_PLANES];
2968         uint16_t y_minimum[I915_MAX_PLANES];
2969         unsigned int total_data_rate;
2970         int plane;
2971
2972         skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2973         alloc_size = skl_ddb_entry_size(alloc);
2974         if (alloc_size == 0) {
2975                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2976                 memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2977                 return;
2978         }
2979
2980         cursor_blocks = skl_cursor_allocation(config);
2981         ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2982         ddb->cursor[pipe].end = alloc->end;
2983
2984         alloc_size -= cursor_blocks;
2985         alloc->end -= cursor_blocks;
2986
2987         /* 1. Allocate the mininum required blocks for each active plane */
2988         for_each_plane(dev_priv, pipe, plane) {
2989                 const struct intel_plane_wm_parameters *p;
2990
2991                 p = &params->plane[plane];
2992                 if (!p->enabled)
2993                         continue;
2994
2995                 minimum[plane] = 8;
2996                 alloc_size -= minimum[plane];
2997                 y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2998                 alloc_size -= y_minimum[plane];
2999         }
3000
3001         /*
3002          * 2. Distribute the remaining space in proportion to the amount of
3003          * data each plane needs to fetch from memory.
3004          *
3005          * FIXME: we may not allocate every single block here.
3006          */
3007         total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
3008
3009         start = alloc->start;
3010         for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
3011                 const struct intel_plane_wm_parameters *p;
3012                 unsigned int data_rate, y_data_rate;
3013                 uint16_t plane_blocks, y_plane_blocks = 0;
3014
3015                 p = &params->plane[plane];
3016                 if (!p->enabled)
3017                         continue;
3018
3019                 data_rate = skl_plane_relative_data_rate(p, 0);
3020
3021                 /*
3022                  * allocation for (packed formats) or (uv-plane part of planar format):
3023                  * promote the expression to 64 bits to avoid overflowing, the
3024                  * result is < available as data_rate / total_data_rate < 1
3025                  */
3026                 plane_blocks = minimum[plane];
3027                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3028                                         total_data_rate);
3029
3030                 ddb->plane[pipe][plane].start = start;
3031                 ddb->plane[pipe][plane].end = start + plane_blocks;
3032
3033                 start += plane_blocks;
3034
3035                 /*
3036                  * allocation for y_plane part of planar format:
3037                  */
3038                 if (p->y_bytes_per_pixel) {
3039                         y_data_rate = skl_plane_relative_data_rate(p, 1);
3040                         y_plane_blocks = y_minimum[plane];
3041                         y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3042                                                 total_data_rate);
3043
3044                         ddb->y_plane[pipe][plane].start = start;
3045                         ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
3046
3047                         start += y_plane_blocks;
3048                 }
3049
3050         }
3051
3052 }
3053
3054 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3055 {
3056         /* TODO: Take into account the scalers once we support them */
3057         return config->base.adjusted_mode.crtc_clock;
3058 }
3059
3060 /*
3061  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3062  * for the read latency) and bytes_per_pixel should always be <= 8, so that
3063  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3064  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3065 */
3066 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3067                                uint32_t latency)
3068 {
3069         uint32_t wm_intermediate_val, ret;
3070
3071         if (latency == 0)
3072                 return UINT_MAX;
3073
3074         wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3075         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3076
3077         return ret;
3078 }
3079
3080 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3081                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3082                                uint64_t tiling, uint32_t latency)
3083 {
3084         uint32_t ret;
3085         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3086         uint32_t wm_intermediate_val;
3087
3088         if (latency == 0)
3089                 return UINT_MAX;
3090
3091         plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3092
3093         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3094             tiling == I915_FORMAT_MOD_Yf_TILED) {
3095                 plane_bytes_per_line *= 4;
3096                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3097                 plane_blocks_per_line /= 4;
3098         } else {
3099                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3100         }
3101
3102         wm_intermediate_val = latency * pixel_rate;
3103         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3104                                 plane_blocks_per_line;
3105
3106         return ret;
3107 }
3108
3109 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3110                                        const struct intel_crtc *intel_crtc)
3111 {
3112         struct drm_device *dev = intel_crtc->base.dev;
3113         struct drm_i915_private *dev_priv = dev->dev_private;
3114         const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3115         enum pipe pipe = intel_crtc->pipe;
3116
3117         if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3118                    sizeof(new_ddb->plane[pipe])))
3119                 return true;
3120
3121         if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
3122                     sizeof(new_ddb->cursor[pipe])))
3123                 return true;
3124
3125         return false;
3126 }
3127
3128 static void skl_compute_wm_global_parameters(struct drm_device *dev,
3129                                              struct intel_wm_config *config)
3130 {
3131         struct drm_crtc *crtc;
3132         struct drm_plane *plane;
3133
3134         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3135                 config->num_pipes_active += to_intel_crtc(crtc)->active;
3136
3137         /* FIXME: I don't think we need those two global parameters on SKL */
3138         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3139                 struct intel_plane *intel_plane = to_intel_plane(plane);
3140
3141                 config->sprites_enabled |= intel_plane->wm.enabled;
3142                 config->sprites_scaled |= intel_plane->wm.scaled;
3143         }
3144 }
3145
3146 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3147                                            struct skl_pipe_wm_parameters *p)
3148 {
3149         struct drm_device *dev = crtc->dev;
3150         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3151         enum pipe pipe = intel_crtc->pipe;
3152         struct drm_plane *plane;
3153         struct drm_framebuffer *fb;
3154         int i = 1; /* Index for sprite planes start */
3155
3156         p->active = intel_crtc->active;
3157         if (p->active) {
3158                 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3159                 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3160
3161                 fb = crtc->primary->state->fb;
3162                 /* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3163                 if (fb) {
3164                         p->plane[0].enabled = true;
3165                         p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3166                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3167                                 drm_format_plane_cpp(fb->pixel_format, 0);
3168                         p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3169                                 drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3170                         p->plane[0].tiling = fb->modifier[0];
3171                 } else {
3172                         p->plane[0].enabled = false;
3173                         p->plane[0].bytes_per_pixel = 0;
3174                         p->plane[0].y_bytes_per_pixel = 0;
3175                         p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3176                 }
3177                 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3178                 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3179                 p->plane[0].rotation = crtc->primary->state->rotation;
3180
3181                 fb = crtc->cursor->state->fb;
3182                 p->cursor.y_bytes_per_pixel = 0;
3183                 if (fb) {
3184                         p->cursor.enabled = true;
3185                         p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
3186                         p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
3187                         p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
3188                 } else {
3189                         p->cursor.enabled = false;
3190                         p->cursor.bytes_per_pixel = 0;
3191                         p->cursor.horiz_pixels = 64;
3192                         p->cursor.vert_pixels = 64;
3193                 }
3194         }
3195
3196         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3197                 struct intel_plane *intel_plane = to_intel_plane(plane);
3198
3199                 if (intel_plane->pipe == pipe &&
3200                         plane->type == DRM_PLANE_TYPE_OVERLAY)
3201                         p->plane[i++] = intel_plane->wm;
3202         }
3203 }
3204
3205 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3206                                  struct skl_pipe_wm_parameters *p,
3207                                  struct intel_plane_wm_parameters *p_params,
3208                                  uint16_t ddb_allocation,
3209                                  int level,
3210                                  uint16_t *out_blocks, /* out */
3211                                  uint8_t *out_lines /* out */)
3212 {
3213         uint32_t latency = dev_priv->wm.skl_latency[level];
3214         uint32_t method1, method2;
3215         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3216         uint32_t res_blocks, res_lines;
3217         uint32_t selected_result;
3218         uint8_t bytes_per_pixel;
3219
3220         if (latency == 0 || !p->active || !p_params->enabled)
3221                 return false;
3222
3223         bytes_per_pixel = p_params->y_bytes_per_pixel ?
3224                 p_params->y_bytes_per_pixel :
3225                 p_params->bytes_per_pixel;
3226         method1 = skl_wm_method1(p->pixel_rate,
3227                                  bytes_per_pixel,
3228                                  latency);
3229         method2 = skl_wm_method2(p->pixel_rate,
3230                                  p->pipe_htotal,
3231                                  p_params->horiz_pixels,
3232                                  bytes_per_pixel,
3233                                  p_params->tiling,
3234                                  latency);
3235
3236         plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3237         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3238
3239         if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3240             p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3241                 uint32_t min_scanlines = 4;
3242                 uint32_t y_tile_minimum;
3243                 if (intel_rotation_90_or_270(p_params->rotation)) {
3244                         switch (p_params->bytes_per_pixel) {
3245                         case 1:
3246                                 min_scanlines = 16;
3247                                 break;
3248                         case 2:
3249                                 min_scanlines = 8;
3250                                 break;
3251                         case 8:
3252                                 WARN(1, "Unsupported pixel depth for rotation");
3253                         }
3254                 }
3255                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3256                 selected_result = max(method2, y_tile_minimum);
3257         } else {
3258                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3259                         selected_result = min(method1, method2);
3260                 else
3261                         selected_result = method1;
3262         }
3263
3264         res_blocks = selected_result + 1;
3265         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3266
3267         if (level >= 1 && level <= 7) {
3268                 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3269                     p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3270                         res_lines += 4;
3271                 else
3272                         res_blocks++;
3273         }
3274
3275         if (res_blocks >= ddb_allocation || res_lines > 31)
3276                 return false;
3277
3278         *out_blocks = res_blocks;
3279         *out_lines = res_lines;
3280
3281         return true;
3282 }
3283
3284 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3285                                  struct skl_ddb_allocation *ddb,
3286                                  struct skl_pipe_wm_parameters *p,
3287                                  enum pipe pipe,
3288                                  int level,
3289                                  int num_planes,
3290                                  struct skl_wm_level *result)
3291 {
3292         uint16_t ddb_blocks;
3293         int i;
3294
3295         for (i = 0; i < num_planes; i++) {
3296                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3297
3298                 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3299                                                 p, &p->plane[i],
3300                                                 ddb_blocks,
3301                                                 level,
3302                                                 &result->plane_res_b[i],
3303                                                 &result->plane_res_l[i]);
3304         }
3305
3306         ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
3307         result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
3308                                                  ddb_blocks, level,
3309                                                  &result->cursor_res_b,
3310                                                  &result->cursor_res_l);
3311 }
3312
3313 static uint32_t
3314 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3315 {
3316         if (!to_intel_crtc(crtc)->active)
3317                 return 0;
3318
3319         if (WARN_ON(p->pixel_rate == 0))
3320                 return 0;
3321
3322         return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3323 }
3324
3325 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3326                                       struct skl_pipe_wm_parameters *params,
3327                                       struct skl_wm_level *trans_wm /* out */)
3328 {
3329         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3330         int i;
3331
3332         if (!params->active)
3333                 return;
3334
3335         /* Until we know more, just disable transition WMs */
3336         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3337                 trans_wm->plane_en[i] = false;
3338         trans_wm->cursor_en = false;
3339 }
3340
3341 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3342                                 struct skl_ddb_allocation *ddb,
3343                                 struct skl_pipe_wm_parameters *params,
3344                                 struct skl_pipe_wm *pipe_wm)
3345 {
3346         struct drm_device *dev = crtc->dev;
3347         const struct drm_i915_private *dev_priv = dev->dev_private;
3348         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3349         int level, max_level = ilk_wm_max_level(dev);
3350
3351         for (level = 0; level <= max_level; level++) {
3352                 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3353                                      level, intel_num_planes(intel_crtc),
3354                                      &pipe_wm->wm[level]);
3355         }
3356         pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3357
3358         skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3359 }
3360
3361 static void skl_compute_wm_results(struct drm_device *dev,
3362                                    struct skl_pipe_wm_parameters *p,
3363                                    struct skl_pipe_wm *p_wm,
3364                                    struct skl_wm_values *r,
3365                                    struct intel_crtc *intel_crtc)
3366 {
3367         int level, max_level = ilk_wm_max_level(dev);
3368         enum pipe pipe = intel_crtc->pipe;
3369         uint32_t temp;
3370         int i;
3371
3372         for (level = 0; level <= max_level; level++) {
3373                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3374                         temp = 0;
3375
3376                         temp |= p_wm->wm[level].plane_res_l[i] <<
3377                                         PLANE_WM_LINES_SHIFT;
3378                         temp |= p_wm->wm[level].plane_res_b[i];
3379                         if (p_wm->wm[level].plane_en[i])
3380                                 temp |= PLANE_WM_EN;
3381
3382                         r->plane[pipe][i][level] = temp;
3383                 }
3384
3385                 temp = 0;
3386
3387                 temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
3388                 temp |= p_wm->wm[level].cursor_res_b;
3389
3390                 if (p_wm->wm[level].cursor_en)
3391                         temp |= PLANE_WM_EN;
3392
3393                 r->cursor[pipe][level] = temp;
3394
3395         }
3396
3397         /* transition WMs */
3398         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3399                 temp = 0;
3400                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3401                 temp |= p_wm->trans_wm.plane_res_b[i];
3402                 if (p_wm->trans_wm.plane_en[i])
3403                         temp |= PLANE_WM_EN;
3404
3405                 r->plane_trans[pipe][i] = temp;
3406         }
3407
3408         temp = 0;
3409         temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
3410         temp |= p_wm->trans_wm.cursor_res_b;
3411         if (p_wm->trans_wm.cursor_en)
3412                 temp |= PLANE_WM_EN;
3413
3414         r->cursor_trans[pipe] = temp;
3415
3416         r->wm_linetime[pipe] = p_wm->linetime;
3417 }
3418
3419 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3420                                 const struct skl_ddb_entry *entry)
3421 {
3422         if (entry->end)
3423                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3424         else
3425                 I915_WRITE(reg, 0);
3426 }
3427
3428 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3429                                 const struct skl_wm_values *new)
3430 {
3431         struct drm_device *dev = dev_priv->dev;
3432         struct intel_crtc *crtc;
3433
3434         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3435                 int i, level, max_level = ilk_wm_max_level(dev);
3436                 enum pipe pipe = crtc->pipe;
3437
3438                 if (!new->dirty[pipe])
3439                         continue;
3440
3441                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3442
3443                 for (level = 0; level <= max_level; level++) {
3444                         for (i = 0; i < intel_num_planes(crtc); i++)
3445                                 I915_WRITE(PLANE_WM(pipe, i, level),
3446                                            new->plane[pipe][i][level]);
3447                         I915_WRITE(CUR_WM(pipe, level),
3448                                    new->cursor[pipe][level]);
3449                 }
3450                 for (i = 0; i < intel_num_planes(crtc); i++)
3451                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3452                                    new->plane_trans[pipe][i]);
3453                 I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3454
3455                 for (i = 0; i < intel_num_planes(crtc); i++) {
3456                         skl_ddb_entry_write(dev_priv,
3457                                             PLANE_BUF_CFG(pipe, i),
3458                                             &new->ddb.plane[pipe][i]);
3459                         skl_ddb_entry_write(dev_priv,
3460                                             PLANE_NV12_BUF_CFG(pipe, i),
3461                                             &new->ddb.y_plane[pipe][i]);
3462                 }
3463
3464                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3465                                     &new->ddb.cursor[pipe]);
3466         }
3467 }
3468
3469 /*
3470  * When setting up a new DDB allocation arrangement, we need to correctly
3471  * sequence the times at which the new allocations for the pipes are taken into
3472  * account or we'll have pipes fetching from space previously allocated to
3473  * another pipe.
3474  *
3475  * Roughly the sequence looks like:
3476  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3477  *     overlapping with a previous light-up pipe (another way to put it is:
3478  *     pipes with their new allocation strickly included into their old ones).
3479  *  2. re-allocate the other pipes that get their allocation reduced
3480  *  3. allocate the pipes having their allocation increased
3481  *
3482  * Steps 1. and 2. are here to take care of the following case:
3483  * - Initially DDB looks like this:
3484  *     |   B    |   C    |
3485  * - enable pipe A.
3486  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3487  *   allocation
3488  *     |  A  |  B  |  C  |
3489  *
3490  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3491  */
3492
3493 static void
3494 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3495 {
3496         int plane;
3497
3498         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3499
3500         for_each_plane(dev_priv, pipe, plane) {
3501                 I915_WRITE(PLANE_SURF(pipe, plane),
3502                            I915_READ(PLANE_SURF(pipe, plane)));
3503         }
3504         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3505 }
3506
3507 static bool
3508 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3509                             const struct skl_ddb_allocation *new,
3510                             enum pipe pipe)
3511 {
3512         uint16_t old_size, new_size;
3513
3514         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3515         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3516
3517         return old_size != new_size &&
3518                new->pipe[pipe].start >= old->pipe[pipe].start &&
3519                new->pipe[pipe].end <= old->pipe[pipe].end;
3520 }
3521
3522 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3523                                 struct skl_wm_values *new_values)
3524 {
3525         struct drm_device *dev = dev_priv->dev;
3526         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3527         bool reallocated[I915_MAX_PIPES] = {};
3528         struct intel_crtc *crtc;
3529         enum pipe pipe;
3530
3531         new_ddb = &new_values->ddb;
3532         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3533
3534         /*
3535          * First pass: flush the pipes with the new allocation contained into
3536          * the old space.
3537          *
3538          * We'll wait for the vblank on those pipes to ensure we can safely
3539          * re-allocate the freed space without this pipe fetching from it.
3540          */
3541         for_each_intel_crtc(dev, crtc) {
3542                 if (!crtc->active)
3543                         continue;
3544
3545                 pipe = crtc->pipe;
3546
3547                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3548                         continue;
3549
3550                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3551                 intel_wait_for_vblank(dev, pipe);
3552
3553                 reallocated[pipe] = true;
3554         }
3555
3556
3557         /*
3558          * Second pass: flush the pipes that are having their allocation
3559          * reduced, but overlapping with a previous allocation.
3560          *
3561          * Here as well we need to wait for the vblank to make sure the freed
3562          * space is not used anymore.
3563          */
3564         for_each_intel_crtc(dev, crtc) {
3565                 if (!crtc->active)
3566                         continue;
3567
3568                 pipe = crtc->pipe;
3569
3570                 if (reallocated[pipe])
3571                         continue;
3572
3573                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3574                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3575                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3576                         intel_wait_for_vblank(dev, pipe);
3577                         reallocated[pipe] = true;
3578                 }
3579         }
3580
3581         /*
3582          * Third pass: flush the pipes that got more space allocated.
3583          *
3584          * We don't need to actively wait for the update here, next vblank
3585          * will just get more DDB space with the correct WM values.
3586          */
3587         for_each_intel_crtc(dev, crtc) {
3588                 if (!crtc->active)
3589                         continue;
3590
3591                 pipe = crtc->pipe;
3592
3593                 /*
3594                  * At this point, only the pipes more space than before are
3595                  * left to re-allocate.
3596                  */
3597                 if (reallocated[pipe])
3598                         continue;
3599
3600                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3601         }
3602 }
3603
3604 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3605                                struct skl_pipe_wm_parameters *params,
3606                                struct intel_wm_config *config,
3607                                struct skl_ddb_allocation *ddb, /* out */
3608                                struct skl_pipe_wm *pipe_wm /* out */)
3609 {
3610         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3611
3612         skl_compute_wm_pipe_parameters(crtc, params);
3613         skl_allocate_pipe_ddb(crtc, config, params, ddb);
3614         skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3615
3616         if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3617                 return false;
3618
3619         intel_crtc->wm.skl_active = *pipe_wm;
3620
3621         return true;
3622 }
3623
3624 static void skl_update_other_pipe_wm(struct drm_device *dev,
3625                                      struct drm_crtc *crtc,
3626                                      struct intel_wm_config *config,
3627                                      struct skl_wm_values *r)
3628 {
3629         struct intel_crtc *intel_crtc;
3630         struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3631
3632         /*
3633          * If the WM update hasn't changed the allocation for this_crtc (the
3634          * crtc we are currently computing the new WM values for), other
3635          * enabled crtcs will keep the same allocation and we don't need to
3636          * recompute anything for them.
3637          */
3638         if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3639                 return;
3640
3641         /*
3642          * Otherwise, because of this_crtc being freshly enabled/disabled, the
3643          * other active pipes need new DDB allocation and WM values.
3644          */
3645         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3646                                 base.head) {
3647                 struct skl_pipe_wm_parameters params = {};
3648                 struct skl_pipe_wm pipe_wm = {};
3649                 bool wm_changed;
3650
3651                 if (this_crtc->pipe == intel_crtc->pipe)
3652                         continue;
3653
3654                 if (!intel_crtc->active)
3655                         continue;
3656
3657                 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3658                                                 &params, config,
3659                                                 &r->ddb, &pipe_wm);
3660
3661                 /*
3662                  * If we end up re-computing the other pipe WM values, it's
3663                  * because it was really needed, so we expect the WM values to
3664                  * be different.
3665                  */
3666                 WARN_ON(!wm_changed);
3667
3668                 skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3669                 r->dirty[intel_crtc->pipe] = true;
3670         }
3671 }
3672
3673 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3674 {
3675         watermarks->wm_linetime[pipe] = 0;
3676         memset(watermarks->plane[pipe], 0,
3677                sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3678         memset(watermarks->cursor[pipe], 0, sizeof(uint32_t) * 8);
3679         memset(watermarks->plane_trans[pipe],
3680                0, sizeof(uint32_t) * I915_MAX_PLANES);
3681         watermarks->cursor_trans[pipe] = 0;
3682
3683         /* Clear ddb entries for pipe */
3684         memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3685         memset(&watermarks->ddb.plane[pipe], 0,
3686                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3687         memset(&watermarks->ddb.y_plane[pipe], 0,
3688                sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3689         memset(&watermarks->ddb.cursor[pipe], 0, sizeof(struct skl_ddb_entry));
3690
3691 }
3692
3693 static void skl_update_wm(struct drm_crtc *crtc)
3694 {
3695         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3696         struct drm_device *dev = crtc->dev;
3697         struct drm_i915_private *dev_priv = dev->dev_private;
3698         struct skl_pipe_wm_parameters params = {};
3699         struct skl_wm_values *results = &dev_priv->wm.skl_results;
3700         struct skl_pipe_wm pipe_wm = {};
3701         struct intel_wm_config config = {};
3702
3703
3704         /* Clear all dirty flags */
3705         memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3706
3707         skl_clear_wm(results, intel_crtc->pipe);
3708
3709         skl_compute_wm_global_parameters(dev, &config);
3710
3711         if (!skl_update_pipe_wm(crtc, &params, &config,
3712                                 &results->ddb, &pipe_wm))
3713                 return;
3714
3715         skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3716         results->dirty[intel_crtc->pipe] = true;
3717
3718         skl_update_other_pipe_wm(dev, crtc, &config, results);
3719         skl_write_wm_values(dev_priv, results);
3720         skl_flush_wm_values(dev_priv, results);
3721
3722         /* store the new configuration */
3723         dev_priv->wm.skl_hw = *results;
3724 }
3725
3726 static void
3727 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3728                      uint32_t sprite_width, uint32_t sprite_height,
3729                      int pixel_size, bool enabled, bool scaled)
3730 {
3731         struct intel_plane *intel_plane = to_intel_plane(plane);
3732         struct drm_framebuffer *fb = plane->state->fb;
3733
3734         intel_plane->wm.enabled = enabled;
3735         intel_plane->wm.scaled = scaled;
3736         intel_plane->wm.horiz_pixels = sprite_width;
3737         intel_plane->wm.vert_pixels = sprite_height;
3738         intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3739
3740         /* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3741         intel_plane->wm.bytes_per_pixel =
3742                 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3743                 drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3744         intel_plane->wm.y_bytes_per_pixel =
3745                 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3746                 drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3747
3748         /*
3749          * Framebuffer can be NULL on plane disable, but it does not
3750          * matter for watermarks if we assume no tiling in that case.
3751          */
3752         if (fb)
3753                 intel_plane->wm.tiling = fb->modifier[0];
3754         intel_plane->wm.rotation = plane->state->rotation;
3755
3756         skl_update_wm(crtc);
3757 }
3758
3759 static void ilk_update_wm(struct drm_crtc *crtc)
3760 {
3761         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3762         struct drm_device *dev = crtc->dev;
3763         struct drm_i915_private *dev_priv = dev->dev_private;
3764         struct ilk_wm_maximums max;
3765         struct ilk_pipe_wm_parameters params = {};
3766         struct ilk_wm_values results = {};
3767         enum intel_ddb_partitioning partitioning;
3768         struct intel_pipe_wm pipe_wm = {};
3769         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3770         struct intel_wm_config config = {};
3771
3772         ilk_compute_wm_parameters(crtc, &params);
3773
3774         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3775
3776         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3777                 return;
3778
3779         intel_crtc->wm.active = pipe_wm;
3780
3781         ilk_compute_wm_config(dev, &config);
3782
3783         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3784         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3785
3786         /* 5/6 split only in single pipe config on IVB+ */
3787         if (INTEL_INFO(dev)->gen >= 7 &&
3788             config.num_pipes_active == 1 && config.sprites_enabled) {
3789                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3790                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3791
3792                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3793         } else {
3794                 best_lp_wm = &lp_wm_1_2;
3795         }
3796
3797         partitioning = (best_lp_wm == &lp_wm_1_2) ?
3798                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3799
3800         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3801
3802         ilk_write_wm_values(dev_priv, &results);
3803 }
3804
3805 static void
3806 ilk_update_sprite_wm(struct drm_plane *plane,
3807                      struct drm_crtc *crtc,
3808                      uint32_t sprite_width, uint32_t sprite_height,
3809                      int pixel_size, bool enabled, bool scaled)
3810 {
3811         struct drm_device *dev = plane->dev;
3812         struct intel_plane *intel_plane = to_intel_plane(plane);
3813
3814         intel_plane->wm.enabled = enabled;
3815         intel_plane->wm.scaled = scaled;
3816         intel_plane->wm.horiz_pixels = sprite_width;
3817         intel_plane->wm.vert_pixels = sprite_width;
3818         intel_plane->wm.bytes_per_pixel = pixel_size;
3819
3820         /*
3821          * IVB workaround: must disable low power watermarks for at least
3822          * one frame before enabling scaling.  LP watermarks can be re-enabled
3823          * when scaling is disabled.
3824          *
3825          * WaCxSRDisabledForSpriteScaling:ivb
3826          */
3827         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3828                 intel_wait_for_vblank(dev, intel_plane->pipe);
3829
3830         ilk_update_wm(crtc);
3831 }
3832
3833 static void skl_pipe_wm_active_state(uint32_t val,
3834                                      struct skl_pipe_wm *active,
3835                                      bool is_transwm,
3836                                      bool is_cursor,
3837                                      int i,
3838                                      int level)
3839 {
3840         bool is_enabled = (val & PLANE_WM_EN) != 0;
3841
3842         if (!is_transwm) {
3843                 if (!is_cursor) {
3844                         active->wm[level].plane_en[i] = is_enabled;
3845                         active->wm[level].plane_res_b[i] =
3846                                         val & PLANE_WM_BLOCKS_MASK;
3847                         active->wm[level].plane_res_l[i] =
3848                                         (val >> PLANE_WM_LINES_SHIFT) &
3849                                                 PLANE_WM_LINES_MASK;
3850                 } else {
3851                         active->wm[level].cursor_en = is_enabled;
3852                         active->wm[level].cursor_res_b =
3853                                         val & PLANE_WM_BLOCKS_MASK;
3854                         active->wm[level].cursor_res_l =
3855                                         (val >> PLANE_WM_LINES_SHIFT) &
3856                                                 PLANE_WM_LINES_MASK;
3857                 }
3858         } else {
3859                 if (!is_cursor) {
3860                         active->trans_wm.plane_en[i] = is_enabled;
3861                         active->trans_wm.plane_res_b[i] =
3862                                         val & PLANE_WM_BLOCKS_MASK;
3863                         active->trans_wm.plane_res_l[i] =
3864                                         (val >> PLANE_WM_LINES_SHIFT) &
3865                                                 PLANE_WM_LINES_MASK;
3866                 } else {
3867                         active->trans_wm.cursor_en = is_enabled;
3868                         active->trans_wm.cursor_res_b =
3869                                         val & PLANE_WM_BLOCKS_MASK;
3870                         active->trans_wm.cursor_res_l =
3871                                         (val >> PLANE_WM_LINES_SHIFT) &
3872                                                 PLANE_WM_LINES_MASK;
3873                 }
3874         }
3875 }
3876
3877 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3878 {
3879         struct drm_device *dev = crtc->dev;
3880         struct drm_i915_private *dev_priv = dev->dev_private;
3881         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3882         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3883         struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3884         enum pipe pipe = intel_crtc->pipe;
3885         int level, i, max_level;
3886         uint32_t temp;
3887
3888         max_level = ilk_wm_max_level(dev);
3889
3890         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3891
3892         for (level = 0; level <= max_level; level++) {
3893                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3894                         hw->plane[pipe][i][level] =
3895                                         I915_READ(PLANE_WM(pipe, i, level));
3896                 hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3897         }
3898
3899         for (i = 0; i < intel_num_planes(intel_crtc); i++)
3900                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3901         hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3902
3903         if (!intel_crtc->active)
3904                 return;
3905
3906         hw->dirty[pipe] = true;
3907
3908         active->linetime = hw->wm_linetime[pipe];
3909
3910         for (level = 0; level <= max_level; level++) {
3911                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3912                         temp = hw->plane[pipe][i][level];
3913                         skl_pipe_wm_active_state(temp, active, false,
3914                                                 false, i, level);
3915                 }
3916                 temp = hw->cursor[pipe][level];
3917                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3918         }
3919
3920         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3921                 temp = hw->plane_trans[pipe][i];
3922                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3923         }
3924
3925         temp = hw->cursor_trans[pipe];
3926         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3927 }
3928
3929 void skl_wm_get_hw_state(struct drm_device *dev)
3930 {
3931         struct drm_i915_private *dev_priv = dev->dev_private;
3932         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3933         struct drm_crtc *crtc;
3934
3935         skl_ddb_get_hw_state(dev_priv, ddb);
3936         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3937                 skl_pipe_wm_get_hw_state(crtc);
3938 }
3939
3940 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3941 {
3942         struct drm_device *dev = crtc->dev;
3943         struct drm_i915_private *dev_priv = dev->dev_private;
3944         struct ilk_wm_values *hw = &dev_priv->wm.hw;
3945         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3946         struct intel_pipe_wm *active = &intel_crtc->wm.active;
3947         enum pipe pipe = intel_crtc->pipe;
3948         static const unsigned int wm0_pipe_reg[] = {
3949                 [PIPE_A] = WM0_PIPEA_ILK,
3950                 [PIPE_B] = WM0_PIPEB_ILK,
3951                 [PIPE_C] = WM0_PIPEC_IVB,
3952         };
3953
3954         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3955         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3956                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3957
3958         active->pipe_enabled = intel_crtc->active;
3959
3960         if (active->pipe_enabled) {
3961                 u32 tmp = hw->wm_pipe[pipe];
3962
3963                 /*
3964                  * For active pipes LP0 watermark is marked as
3965                  * enabled, and LP1+ watermaks as disabled since
3966                  * we can't really reverse compute them in case
3967                  * multiple pipes are active.
3968                  */
3969                 active->wm[0].enable = true;
3970                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3971                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3972                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3973                 active->linetime = hw->wm_linetime[pipe];
3974         } else {
3975                 int level, max_level = ilk_wm_max_level(dev);
3976
3977                 /*
3978                  * For inactive pipes, all watermark levels
3979                  * should be marked as enabled but zeroed,
3980                  * which is what we'd compute them to.
3981                  */
3982                 for (level = 0; level <= max_level; level++)
3983                         active->wm[level].enable = true;
3984         }
3985 }
3986
3987 #define _FW_WM(value, plane) \
3988         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3989 #define _FW_WM_VLV(value, plane) \
3990         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3991
3992 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3993                                struct vlv_wm_values *wm)
3994 {
3995         enum pipe pipe;
3996         uint32_t tmp;
3997
3998         for_each_pipe(dev_priv, pipe) {
3999                 tmp = I915_READ(VLV_DDL(pipe));
4000
4001                 wm->ddl[pipe].primary =
4002                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4003                 wm->ddl[pipe].cursor =
4004                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4005                 wm->ddl[pipe].sprite[0] =
4006                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4007                 wm->ddl[pipe].sprite[1] =
4008                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4009         }
4010
4011         tmp = I915_READ(DSPFW1);
4012         wm->sr.plane = _FW_WM(tmp, SR);
4013         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4014         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4015         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4016
4017         tmp = I915_READ(DSPFW2);
4018         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4019         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4020         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4021
4022         tmp = I915_READ(DSPFW3);
4023         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4024
4025         if (IS_CHERRYVIEW(dev_priv)) {
4026                 tmp = I915_READ(DSPFW7_CHV);
4027                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4028                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4029
4030                 tmp = I915_READ(DSPFW8_CHV);
4031                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4032                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4033
4034                 tmp = I915_READ(DSPFW9_CHV);
4035                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4036                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4037
4038                 tmp = I915_READ(DSPHOWM);
4039                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4040                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4041                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4042                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4043                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4044                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4045                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4046                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4047                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4048                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4049         } else {
4050                 tmp = I915_READ(DSPFW7);
4051                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4052                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4053
4054                 tmp = I915_READ(DSPHOWM);
4055                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4056                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4057                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4058                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4059                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4060                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4061                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4062         }
4063 }
4064
4065 #undef _FW_WM
4066 #undef _FW_WM_VLV
4067
4068 void vlv_wm_get_hw_state(struct drm_device *dev)
4069 {
4070         struct drm_i915_private *dev_priv = to_i915(dev);
4071         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4072         struct intel_plane *plane;
4073         enum pipe pipe;
4074         u32 val;
4075
4076         vlv_read_wm_values(dev_priv, wm);
4077
4078         for_each_intel_plane(dev, plane) {
4079                 switch (plane->base.type) {
4080                         int sprite;
4081                 case DRM_PLANE_TYPE_CURSOR:
4082                         plane->wm.fifo_size = 63;
4083                         break;
4084                 case DRM_PLANE_TYPE_PRIMARY:
4085                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4086                         break;
4087                 case DRM_PLANE_TYPE_OVERLAY:
4088                         sprite = plane->plane;
4089                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4090                         break;
4091                 }
4092         }
4093
4094         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4095         wm->level = VLV_WM_LEVEL_PM2;
4096
4097         if (IS_CHERRYVIEW(dev_priv)) {
4098                 mutex_lock(&dev_priv->rps.hw_lock);
4099
4100                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4101                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4102                         wm->level = VLV_WM_LEVEL_PM5;
4103
4104                 /*
4105                  * If DDR DVFS is disabled in the BIOS, Punit
4106                  * will never ack the request. So if that happens
4107                  * assume we don't have to enable/disable DDR DVFS
4108                  * dynamically. To test that just set the REQ_ACK
4109                  * bit to poke the Punit, but don't change the
4110                  * HIGH/LOW bits so that we don't actually change
4111                  * the current state.
4112                  */
4113                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4114                 val |= FORCE_DDR_FREQ_REQ_ACK;
4115                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4116
4117                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4118                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4119                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4120                                       "assuming DDR DVFS is disabled\n");
4121                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4122                 } else {
4123                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4124                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4125                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4126                 }
4127
4128                 mutex_unlock(&dev_priv->rps.hw_lock);
4129         }
4130
4131         for_each_pipe(dev_priv, pipe)
4132                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4133                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4134                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4135
4136         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4137                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4138 }
4139
4140 void ilk_wm_get_hw_state(struct drm_device *dev)
4141 {
4142         struct drm_i915_private *dev_priv = dev->dev_private;
4143         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4144         struct drm_crtc *crtc;
4145
4146         for_each_crtc(dev, crtc)
4147                 ilk_pipe_wm_get_hw_state(crtc);
4148
4149         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4150         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4151         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4152
4153         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4154         if (INTEL_INFO(dev)->gen >= 7) {
4155                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4156                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4157         }
4158
4159         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4160                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4161                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4162         else if (IS_IVYBRIDGE(dev))
4163                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4164                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4165
4166         hw->enable_fbc_wm =
4167                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4168 }
4169
4170 /**
4171  * intel_update_watermarks - update FIFO watermark values based on current modes
4172  *
4173  * Calculate watermark values for the various WM regs based on current mode
4174  * and plane configuration.
4175  *
4176  * There are several cases to deal with here:
4177  *   - normal (i.e. non-self-refresh)
4178  *   - self-refresh (SR) mode
4179  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4180  *   - lines are small relative to FIFO size (buffer can hold more than 2
4181  *     lines), so need to account for TLB latency
4182  *
4183  *   The normal calculation is:
4184  *     watermark = dotclock * bytes per pixel * latency
4185  *   where latency is platform & configuration dependent (we assume pessimal
4186  *   values here).
4187  *
4188  *   The SR calculation is:
4189  *     watermark = (trunc(latency/line time)+1) * surface width *
4190  *       bytes per pixel
4191  *   where
4192  *     line time = htotal / dotclock
4193  *     surface width = hdisplay for normal plane and 64 for cursor
4194  *   and latency is assumed to be high, as above.
4195  *
4196  * The final value programmed to the register should always be rounded up,
4197  * and include an extra 2 entries to account for clock crossings.
4198  *
4199  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4200  * to set the non-SR watermarks to 8.
4201  */
4202 void intel_update_watermarks(struct drm_crtc *crtc)
4203 {
4204         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4205
4206         if (dev_priv->display.update_wm)
4207                 dev_priv->display.update_wm(crtc);
4208 }
4209
4210 void intel_update_sprite_watermarks(struct drm_plane *plane,
4211                                     struct drm_crtc *crtc,
4212                                     uint32_t sprite_width,
4213                                     uint32_t sprite_height,
4214                                     int pixel_size,
4215                                     bool enabled, bool scaled)
4216 {
4217         struct drm_i915_private *dev_priv = plane->dev->dev_private;
4218
4219         if (dev_priv->display.update_sprite_wm)
4220                 dev_priv->display.update_sprite_wm(plane, crtc,
4221                                                    sprite_width, sprite_height,
4222                                                    pixel_size, enabled, scaled);
4223 }
4224
4225 /**
4226  * Lock protecting IPS related data structures
4227  */
4228 DEFINE_SPINLOCK(mchdev_lock);
4229
4230 /* Global for IPS driver to get at the current i915 device. Protected by
4231  * mchdev_lock. */
4232 static struct drm_i915_private *i915_mch_dev;
4233
4234 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4235 {
4236         struct drm_i915_private *dev_priv = dev->dev_private;
4237         u16 rgvswctl;
4238
4239         assert_spin_locked(&mchdev_lock);
4240
4241         rgvswctl = I915_READ16(MEMSWCTL);
4242         if (rgvswctl & MEMCTL_CMD_STS) {
4243                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4244                 return false; /* still busy with another command */
4245         }
4246
4247         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4248                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4249         I915_WRITE16(MEMSWCTL, rgvswctl);
4250         POSTING_READ16(MEMSWCTL);
4251
4252         rgvswctl |= MEMCTL_CMD_STS;
4253         I915_WRITE16(MEMSWCTL, rgvswctl);
4254
4255         return true;
4256 }
4257
4258 static void ironlake_enable_drps(struct drm_device *dev)
4259 {
4260         struct drm_i915_private *dev_priv = dev->dev_private;
4261         u32 rgvmodectl = I915_READ(MEMMODECTL);
4262         u8 fmax, fmin, fstart, vstart;
4263
4264         spin_lock_irq(&mchdev_lock);
4265
4266         /* Enable temp reporting */
4267         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4268         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4269
4270         /* 100ms RC evaluation intervals */
4271         I915_WRITE(RCUPEI, 100000);
4272         I915_WRITE(RCDNEI, 100000);
4273
4274         /* Set max/min thresholds to 90ms and 80ms respectively */
4275         I915_WRITE(RCBMAXAVG, 90000);
4276         I915_WRITE(RCBMINAVG, 80000);
4277
4278         I915_WRITE(MEMIHYST, 1);
4279
4280         /* Set up min, max, and cur for interrupt handling */
4281         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4282         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4283         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4284                 MEMMODE_FSTART_SHIFT;
4285
4286         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4287                 PXVFREQ_PX_SHIFT;
4288
4289         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4290         dev_priv->ips.fstart = fstart;
4291
4292         dev_priv->ips.max_delay = fstart;
4293         dev_priv->ips.min_delay = fmin;
4294         dev_priv->ips.cur_delay = fstart;
4295
4296         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4297                          fmax, fmin, fstart);
4298
4299         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4300
4301         /*
4302          * Interrupts will be enabled in ironlake_irq_postinstall
4303          */
4304
4305         I915_WRITE(VIDSTART, vstart);
4306         POSTING_READ(VIDSTART);
4307
4308         rgvmodectl |= MEMMODE_SWMODE_EN;
4309         I915_WRITE(MEMMODECTL, rgvmodectl);
4310
4311         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4312                 DRM_ERROR("stuck trying to change perf mode\n");
4313         mdelay(1);
4314
4315         ironlake_set_drps(dev, fstart);
4316
4317         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4318                 I915_READ(DDREC) + I915_READ(CSIEC);
4319         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4320         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4321         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4322
4323         spin_unlock_irq(&mchdev_lock);
4324 }
4325
4326 static void ironlake_disable_drps(struct drm_device *dev)
4327 {
4328         struct drm_i915_private *dev_priv = dev->dev_private;
4329         u16 rgvswctl;
4330
4331         spin_lock_irq(&mchdev_lock);
4332
4333         rgvswctl = I915_READ16(MEMSWCTL);
4334
4335         /* Ack interrupts, disable EFC interrupt */
4336         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4337         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4338         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4339         I915_WRITE(DEIIR, DE_PCU_EVENT);
4340         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4341
4342         /* Go back to the starting frequency */
4343         ironlake_set_drps(dev, dev_priv->ips.fstart);
4344         mdelay(1);
4345         rgvswctl |= MEMCTL_CMD_STS;
4346         I915_WRITE(MEMSWCTL, rgvswctl);
4347         mdelay(1);
4348
4349         spin_unlock_irq(&mchdev_lock);
4350 }
4351
4352 /* There's a funny hw issue where the hw returns all 0 when reading from
4353  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4354  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4355  * all limits and the gpu stuck at whatever frequency it is at atm).
4356  */
4357 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4358 {
4359         u32 limits;
4360
4361         /* Only set the down limit when we've reached the lowest level to avoid
4362          * getting more interrupts, otherwise leave this clear. This prevents a
4363          * race in the hw when coming out of rc6: There's a tiny window where
4364          * the hw runs at the minimal clock before selecting the desired
4365          * frequency, if the down threshold expires in that window we will not
4366          * receive a down interrupt. */
4367         if (IS_GEN9(dev_priv->dev)) {
4368                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4369                 if (val <= dev_priv->rps.min_freq_softlimit)
4370                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4371         } else {
4372                 limits = dev_priv->rps.max_freq_softlimit << 24;
4373                 if (val <= dev_priv->rps.min_freq_softlimit)
4374                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4375         }
4376
4377         return limits;
4378 }
4379
4380 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4381 {
4382         int new_power;
4383         u32 threshold_up = 0, threshold_down = 0; /* in % */
4384         u32 ei_up = 0, ei_down = 0;
4385
4386         new_power = dev_priv->rps.power;
4387         switch (dev_priv->rps.power) {
4388         case LOW_POWER:
4389                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4390                         new_power = BETWEEN;
4391                 break;
4392
4393         case BETWEEN:
4394                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4395                         new_power = LOW_POWER;
4396                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4397                         new_power = HIGH_POWER;
4398                 break;
4399
4400         case HIGH_POWER:
4401                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4402                         new_power = BETWEEN;
4403                 break;
4404         }
4405         /* Max/min bins are special */
4406         if (val <= dev_priv->rps.min_freq_softlimit)
4407                 new_power = LOW_POWER;
4408         if (val >= dev_priv->rps.max_freq_softlimit)
4409                 new_power = HIGH_POWER;
4410         if (new_power == dev_priv->rps.power)
4411                 return;
4412
4413         /* Note the units here are not exactly 1us, but 1280ns. */
4414         switch (new_power) {
4415         case LOW_POWER:
4416                 /* Upclock if more than 95% busy over 16ms */
4417                 ei_up = 16000;
4418                 threshold_up = 95;
4419
4420                 /* Downclock if less than 85% busy over 32ms */
4421                 ei_down = 32000;
4422                 threshold_down = 85;
4423                 break;
4424
4425         case BETWEEN:
4426                 /* Upclock if more than 90% busy over 13ms */
4427                 ei_up = 13000;
4428                 threshold_up = 90;
4429
4430                 /* Downclock if less than 75% busy over 32ms */
4431                 ei_down = 32000;
4432                 threshold_down = 75;
4433                 break;
4434
4435         case HIGH_POWER:
4436                 /* Upclock if more than 85% busy over 10ms */
4437                 ei_up = 10000;
4438                 threshold_up = 85;
4439
4440                 /* Downclock if less than 60% busy over 32ms */
4441                 ei_down = 32000;
4442                 threshold_down = 60;
4443                 break;
4444         }
4445
4446         I915_WRITE(GEN6_RP_UP_EI,
4447                 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4448         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4449                 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4450
4451         I915_WRITE(GEN6_RP_DOWN_EI,
4452                 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4453         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4454                 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4455
4456          I915_WRITE(GEN6_RP_CONTROL,
4457                     GEN6_RP_MEDIA_TURBO |
4458                     GEN6_RP_MEDIA_HW_NORMAL_MODE |
4459                     GEN6_RP_MEDIA_IS_GFX |
4460                     GEN6_RP_ENABLE |
4461                     GEN6_RP_UP_BUSY_AVG |
4462                     GEN6_RP_DOWN_IDLE_AVG);
4463
4464         dev_priv->rps.power = new_power;
4465         dev_priv->rps.up_threshold = threshold_up;
4466         dev_priv->rps.down_threshold = threshold_down;
4467         dev_priv->rps.last_adj = 0;
4468 }
4469
4470 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4471 {
4472         u32 mask = 0;
4473
4474         if (val > dev_priv->rps.min_freq_softlimit)
4475                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4476         if (val < dev_priv->rps.max_freq_softlimit)
4477                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4478
4479         mask &= dev_priv->pm_rps_events;
4480
4481         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4482 }
4483
4484 /* gen6_set_rps is called to update the frequency request, but should also be
4485  * called when the range (min_delay and max_delay) is modified so that we can
4486  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4487 static void gen6_set_rps(struct drm_device *dev, u8 val)
4488 {
4489         struct drm_i915_private *dev_priv = dev->dev_private;
4490
4491         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4492         if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4493                 return;
4494
4495         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4496         WARN_ON(val > dev_priv->rps.max_freq);
4497         WARN_ON(val < dev_priv->rps.min_freq);
4498
4499         /* min/max delay may still have been modified so be sure to
4500          * write the limits value.
4501          */
4502         if (val != dev_priv->rps.cur_freq) {
4503                 gen6_set_rps_thresholds(dev_priv, val);
4504
4505                 if (IS_GEN9(dev))
4506                         I915_WRITE(GEN6_RPNSWREQ,
4507                                    GEN9_FREQUENCY(val));
4508                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4509                         I915_WRITE(GEN6_RPNSWREQ,
4510                                    HSW_FREQUENCY(val));
4511                 else
4512                         I915_WRITE(GEN6_RPNSWREQ,
4513                                    GEN6_FREQUENCY(val) |
4514                                    GEN6_OFFSET(0) |
4515                                    GEN6_AGGRESSIVE_TURBO);
4516         }
4517
4518         /* Make sure we continue to get interrupts
4519          * until we hit the minimum or maximum frequencies.
4520          */
4521         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4522         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4523
4524         POSTING_READ(GEN6_RPNSWREQ);
4525
4526         dev_priv->rps.cur_freq = val;
4527         trace_intel_gpu_freq_change(val * 50);
4528 }
4529
4530 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4531 {
4532         struct drm_i915_private *dev_priv = dev->dev_private;
4533
4534         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4535         WARN_ON(val > dev_priv->rps.max_freq);
4536         WARN_ON(val < dev_priv->rps.min_freq);
4537
4538         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4539                       "Odd GPU freq value\n"))
4540                 val &= ~1;
4541
4542         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4543
4544         if (val != dev_priv->rps.cur_freq) {
4545                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4546                 if (!IS_CHERRYVIEW(dev_priv))
4547                         gen6_set_rps_thresholds(dev_priv, val);
4548         }
4549
4550         dev_priv->rps.cur_freq = val;
4551         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4552 }
4553
4554 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4555  *
4556  * * If Gfx is Idle, then
4557  * 1. Forcewake Media well.
4558  * 2. Request idle freq.
4559  * 3. Release Forcewake of Media well.
4560 */
4561 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4562 {
4563         u32 val = dev_priv->rps.idle_freq;
4564
4565         if (dev_priv->rps.cur_freq <= val)
4566                 return;
4567
4568         /* Wake up the media well, as that takes a lot less
4569          * power than the Render well. */
4570         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4571         valleyview_set_rps(dev_priv->dev, val);
4572         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4573 }
4574
4575 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4576 {
4577         mutex_lock(&dev_priv->rps.hw_lock);
4578         if (dev_priv->rps.enabled) {
4579                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4580                         gen6_rps_reset_ei(dev_priv);
4581                 I915_WRITE(GEN6_PMINTRMSK,
4582                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4583         }
4584         mutex_unlock(&dev_priv->rps.hw_lock);
4585 }
4586
4587 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4588 {
4589         struct drm_device *dev = dev_priv->dev;
4590
4591         mutex_lock(&dev_priv->rps.hw_lock);
4592         if (dev_priv->rps.enabled) {
4593                 if (IS_VALLEYVIEW(dev))
4594                         vlv_set_rps_idle(dev_priv);
4595                 else
4596                         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4597                 dev_priv->rps.last_adj = 0;
4598                 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4599         }
4600         mutex_unlock(&dev_priv->rps.hw_lock);
4601
4602         spin_lock(&dev_priv->rps.client_lock);
4603         while (!list_empty(&dev_priv->rps.clients))
4604                 list_del_init(dev_priv->rps.clients.next);
4605         spin_unlock(&dev_priv->rps.client_lock);
4606 }
4607
4608 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4609                     struct intel_rps_client *rps,
4610                     unsigned long submitted)
4611 {
4612         /* This is intentionally racy! We peek at the state here, then
4613          * validate inside the RPS worker.
4614          */
4615         if (!(dev_priv->mm.busy &&
4616               dev_priv->rps.enabled &&
4617               dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4618                 return;
4619
4620         /* Force a RPS boost (and don't count it against the client) if
4621          * the GPU is severely congested.
4622          */
4623         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4624                 rps = NULL;
4625
4626         spin_lock(&dev_priv->rps.client_lock);
4627         if (rps == NULL || list_empty(&rps->link)) {
4628                 spin_lock_irq(&dev_priv->irq_lock);
4629                 if (dev_priv->rps.interrupts_enabled) {
4630                         dev_priv->rps.client_boost = true;
4631                         queue_work(dev_priv->wq, &dev_priv->rps.work);
4632                 }
4633                 spin_unlock_irq(&dev_priv->irq_lock);
4634
4635                 if (rps != NULL) {
4636                         list_add(&rps->link, &dev_priv->rps.clients);
4637                         rps->boosts++;
4638                 } else
4639                         dev_priv->rps.boosts++;
4640         }
4641         spin_unlock(&dev_priv->rps.client_lock);
4642 }
4643
4644 void intel_set_rps(struct drm_device *dev, u8 val)
4645 {
4646         if (IS_VALLEYVIEW(dev))
4647                 valleyview_set_rps(dev, val);
4648         else
4649                 gen6_set_rps(dev, val);
4650 }
4651
4652 static void gen9_disable_rps(struct drm_device *dev)
4653 {
4654         struct drm_i915_private *dev_priv = dev->dev_private;
4655
4656         I915_WRITE(GEN6_RC_CONTROL, 0);
4657         I915_WRITE(GEN9_PG_ENABLE, 0);
4658 }
4659
4660 static void gen6_disable_rps(struct drm_device *dev)
4661 {
4662         struct drm_i915_private *dev_priv = dev->dev_private;
4663
4664         I915_WRITE(GEN6_RC_CONTROL, 0);
4665         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4666 }
4667
4668 static void cherryview_disable_rps(struct drm_device *dev)
4669 {
4670         struct drm_i915_private *dev_priv = dev->dev_private;
4671
4672         I915_WRITE(GEN6_RC_CONTROL, 0);
4673 }
4674
4675 static void valleyview_disable_rps(struct drm_device *dev)
4676 {
4677         struct drm_i915_private *dev_priv = dev->dev_private;
4678
4679         /* we're doing forcewake before Disabling RC6,
4680          * This what the BIOS expects when going into suspend */
4681         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4682
4683         I915_WRITE(GEN6_RC_CONTROL, 0);
4684
4685         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4686 }
4687
4688 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4689 {
4690         if (IS_VALLEYVIEW(dev)) {
4691                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4692                         mode = GEN6_RC_CTL_RC6_ENABLE;
4693                 else
4694                         mode = 0;
4695         }
4696         if (HAS_RC6p(dev))
4697                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4698                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4699                               (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4700                               (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4701
4702         else
4703                 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4704                               (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4705 }
4706
4707 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4708 {
4709         /* No RC6 before Ironlake and code is gone for ilk. */
4710         if (INTEL_INFO(dev)->gen < 6)
4711                 return 0;
4712
4713         /* Respect the kernel parameter if it is set */
4714         if (enable_rc6 >= 0) {
4715                 int mask;
4716
4717                 if (HAS_RC6p(dev))
4718                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4719                                INTEL_RC6pp_ENABLE;
4720                 else
4721                         mask = INTEL_RC6_ENABLE;
4722
4723                 if ((enable_rc6 & mask) != enable_rc6)
4724                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4725                                       enable_rc6 & mask, enable_rc6, mask);
4726
4727                 return enable_rc6 & mask;
4728         }
4729
4730         if (IS_IVYBRIDGE(dev))
4731                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4732
4733         return INTEL_RC6_ENABLE;
4734 }
4735
4736 int intel_enable_rc6(const struct drm_device *dev)
4737 {
4738         return i915.enable_rc6;
4739 }
4740
4741 static void gen6_init_rps_frequencies(struct drm_device *dev)
4742 {
4743         struct drm_i915_private *dev_priv = dev->dev_private;
4744         uint32_t rp_state_cap;
4745         u32 ddcc_status = 0;
4746         int ret;
4747
4748         /* All of these values are in units of 50MHz */
4749         dev_priv->rps.cur_freq          = 0;
4750         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4751         if (IS_BROXTON(dev)) {
4752                 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4753                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4754                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4755                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4756         } else {
4757                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4758                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4759                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4760                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4761         }
4762
4763         /* hw_max = RP0 until we check for overclocking */
4764         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
4765
4766         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4767         if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4768                 ret = sandybridge_pcode_read(dev_priv,
4769                                         HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4770                                         &ddcc_status);
4771                 if (0 == ret)
4772                         dev_priv->rps.efficient_freq =
4773                                 clamp_t(u8,
4774                                         ((ddcc_status >> 8) & 0xff),
4775                                         dev_priv->rps.min_freq,
4776                                         dev_priv->rps.max_freq);
4777         }
4778
4779         if (IS_SKYLAKE(dev)) {
4780                 /* Store the frequency values in 16.66 MHZ units, which is
4781                    the natural hardware unit for SKL */
4782                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4783                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4784                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4785                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4786                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4787         }
4788
4789         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4790
4791         /* Preserve min/max settings in case of re-init */
4792         if (dev_priv->rps.max_freq_softlimit == 0)
4793                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4794
4795         if (dev_priv->rps.min_freq_softlimit == 0) {
4796                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4797                         dev_priv->rps.min_freq_softlimit =
4798                                 max_t(int, dev_priv->rps.efficient_freq,
4799                                       intel_freq_opcode(dev_priv, 450));
4800                 else
4801                         dev_priv->rps.min_freq_softlimit =
4802                                 dev_priv->rps.min_freq;
4803         }
4804 }
4805
4806 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4807 static void gen9_enable_rps(struct drm_device *dev)
4808 {
4809         struct drm_i915_private *dev_priv = dev->dev_private;
4810
4811         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4812
4813         gen6_init_rps_frequencies(dev);
4814
4815         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4816         if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4817                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4818                 return;
4819         }
4820
4821         /* Program defaults and thresholds for RPS*/
4822         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4823                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4824
4825         /* 1 second timeout*/
4826         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4827                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4828
4829         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4830
4831         /* Leaning on the below call to gen6_set_rps to program/setup the
4832          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4833          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4834         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4835         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4836
4837         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4838 }
4839
4840 static void gen9_enable_rc6(struct drm_device *dev)
4841 {
4842         struct drm_i915_private *dev_priv = dev->dev_private;
4843         struct intel_engine_cs *ring;
4844         uint32_t rc6_mask = 0;
4845         int unused;
4846
4847         /* 1a: Software RC state - RC0 */
4848         I915_WRITE(GEN6_RC_STATE, 0);
4849
4850         /* 1b: Get forcewake during program sequence. Although the driver
4851          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4852         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4853
4854         /* 2a: Disable RC states. */
4855         I915_WRITE(GEN6_RC_CONTROL, 0);
4856
4857         /* 2b: Program RC6 thresholds.*/
4858
4859         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4860         if (IS_SKYLAKE(dev) && !((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) &&
4861                                  (INTEL_REVID(dev) <= SKL_REVID_E0)))
4862                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4863         else
4864                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4865         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4866         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4867         for_each_ring(ring, dev_priv, unused)
4868                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4869
4870         if (HAS_GUC_UCODE(dev))
4871                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4872
4873         I915_WRITE(GEN6_RC_SLEEP, 0);
4874         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4875
4876         /* 2c: Program Coarse Power Gating Policies. */
4877         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4878         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4879
4880         /* 3a: Enable RC6 */
4881         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4882                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4883         DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4884                         "on" : "off");
4885
4886         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4887             (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0))
4888                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4889                            GEN7_RC_CTL_TO_MODE |
4890                            rc6_mask);
4891         else
4892                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4893                            GEN6_RC_CTL_EI_MODE(1) |
4894                            rc6_mask);
4895
4896         /*
4897          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4898          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4899          */
4900         if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4901             ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_E0)))
4902                 I915_WRITE(GEN9_PG_ENABLE, 0);
4903         else
4904                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4905                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4906
4907         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4908
4909 }
4910
4911 static void gen8_enable_rps(struct drm_device *dev)
4912 {
4913         struct drm_i915_private *dev_priv = dev->dev_private;
4914         struct intel_engine_cs *ring;
4915         uint32_t rc6_mask = 0;
4916         int unused;
4917
4918         /* 1a: Software RC state - RC0 */
4919         I915_WRITE(GEN6_RC_STATE, 0);
4920
4921         /* 1c & 1d: Get forcewake during program sequence. Although the driver
4922          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4923         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4924
4925         /* 2a: Disable RC states. */
4926         I915_WRITE(GEN6_RC_CONTROL, 0);
4927
4928         /* Initialize rps frequencies */
4929         gen6_init_rps_frequencies(dev);
4930
4931         /* 2b: Program RC6 thresholds.*/
4932         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4933         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4934         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4935         for_each_ring(ring, dev_priv, unused)
4936                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4937         I915_WRITE(GEN6_RC_SLEEP, 0);
4938         if (IS_BROADWELL(dev))
4939                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4940         else
4941                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4942
4943         /* 3: Enable RC6 */
4944         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4945                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4946         intel_print_rc6_info(dev, rc6_mask);
4947         if (IS_BROADWELL(dev))
4948                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4949                                 GEN7_RC_CTL_TO_MODE |
4950                                 rc6_mask);
4951         else
4952                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4953                                 GEN6_RC_CTL_EI_MODE(1) |
4954                                 rc6_mask);
4955
4956         /* 4 Program defaults and thresholds for RPS*/
4957         I915_WRITE(GEN6_RPNSWREQ,
4958                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4959         I915_WRITE(GEN6_RC_VIDEO_FREQ,
4960                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4961         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4962         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4963
4964         /* Docs recommend 900MHz, and 300 MHz respectively */
4965         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4966                    dev_priv->rps.max_freq_softlimit << 24 |
4967                    dev_priv->rps.min_freq_softlimit << 16);
4968
4969         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4970         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4971         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4972         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4973
4974         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4975
4976         /* 5: Enable RPS */
4977         I915_WRITE(GEN6_RP_CONTROL,
4978                    GEN6_RP_MEDIA_TURBO |
4979                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4980                    GEN6_RP_MEDIA_IS_GFX |
4981                    GEN6_RP_ENABLE |
4982                    GEN6_RP_UP_BUSY_AVG |
4983                    GEN6_RP_DOWN_IDLE_AVG);
4984
4985         /* 6: Ring frequency + overclocking (our driver does this later */
4986
4987         dev_priv->rps.power = HIGH_POWER; /* force a reset */
4988         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4989
4990         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4991 }
4992
4993 static void gen6_enable_rps(struct drm_device *dev)
4994 {
4995         struct drm_i915_private *dev_priv = dev->dev_private;
4996         struct intel_engine_cs *ring;
4997         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4998         u32 gtfifodbg;
4999         int rc6_mode;
5000         int i, ret;
5001
5002         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5003
5004         /* Here begins a magic sequence of register writes to enable
5005          * auto-downclocking.
5006          *
5007          * Perhaps there might be some value in exposing these to
5008          * userspace...
5009          */
5010         I915_WRITE(GEN6_RC_STATE, 0);
5011
5012         /* Clear the DBG now so we don't confuse earlier errors */
5013         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5014                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5015                 I915_WRITE(GTFIFODBG, gtfifodbg);
5016         }
5017
5018         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5019
5020         /* Initialize rps frequencies */
5021         gen6_init_rps_frequencies(dev);
5022
5023         /* disable the counters and set deterministic thresholds */
5024         I915_WRITE(GEN6_RC_CONTROL, 0);
5025
5026         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5027         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5028         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5029         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5030         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5031
5032         for_each_ring(ring, dev_priv, i)
5033                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5034
5035         I915_WRITE(GEN6_RC_SLEEP, 0);
5036         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5037         if (IS_IVYBRIDGE(dev))
5038                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5039         else
5040                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5041         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5042         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5043
5044         /* Check if we are enabling RC6 */
5045         rc6_mode = intel_enable_rc6(dev_priv->dev);
5046         if (rc6_mode & INTEL_RC6_ENABLE)
5047                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5048
5049         /* We don't use those on Haswell */
5050         if (!IS_HASWELL(dev)) {
5051                 if (rc6_mode & INTEL_RC6p_ENABLE)
5052                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5053
5054                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5055                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5056         }
5057
5058         intel_print_rc6_info(dev, rc6_mask);
5059
5060         I915_WRITE(GEN6_RC_CONTROL,
5061                    rc6_mask |
5062                    GEN6_RC_CTL_EI_MODE(1) |
5063                    GEN6_RC_CTL_HW_ENABLE);
5064
5065         /* Power down if completely idle for over 50ms */
5066         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5067         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5068
5069         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5070         if (ret)
5071                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5072
5073         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5074         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5075                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5076                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5077                                  (pcu_mbox & 0xff) * 50);
5078                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5079         }
5080
5081         dev_priv->rps.power = HIGH_POWER; /* force a reset */
5082         gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5083
5084         rc6vids = 0;
5085         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5086         if (IS_GEN6(dev) && ret) {
5087                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5088         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5089                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5090                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5091                 rc6vids &= 0xffff00;
5092                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5093                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5094                 if (ret)
5095                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5096         }
5097
5098         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5099 }
5100
5101 static void __gen6_update_ring_freq(struct drm_device *dev)
5102 {
5103         struct drm_i915_private *dev_priv = dev->dev_private;
5104         int min_freq = 15;
5105         unsigned int gpu_freq;
5106         unsigned int max_ia_freq, min_ring_freq;
5107         unsigned int max_gpu_freq, min_gpu_freq;
5108         int scaling_factor = 180;
5109         struct cpufreq_policy *policy;
5110
5111         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5112
5113         policy = cpufreq_cpu_get(0);
5114         if (policy) {
5115                 max_ia_freq = policy->cpuinfo.max_freq;
5116                 cpufreq_cpu_put(policy);
5117         } else {
5118                 /*
5119                  * Default to measured freq if none found, PCU will ensure we
5120                  * don't go over
5121                  */
5122                 max_ia_freq = tsc_khz;
5123         }
5124
5125         /* Convert from kHz to MHz */
5126         max_ia_freq /= 1000;
5127
5128         min_ring_freq = I915_READ(DCLK) & 0xf;
5129         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5130         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5131
5132         if (IS_SKYLAKE(dev)) {
5133                 /* Convert GT frequency to 50 HZ units */
5134                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5135                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5136         } else {
5137                 min_gpu_freq = dev_priv->rps.min_freq;
5138                 max_gpu_freq = dev_priv->rps.max_freq;
5139         }
5140
5141         /*
5142          * For each potential GPU frequency, load a ring frequency we'd like
5143          * to use for memory access.  We do this by specifying the IA frequency
5144          * the PCU should use as a reference to determine the ring frequency.
5145          */
5146         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5147                 int diff = max_gpu_freq - gpu_freq;
5148                 unsigned int ia_freq = 0, ring_freq = 0;
5149
5150                 if (IS_SKYLAKE(dev)) {
5151                         /*
5152                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5153                          * No floor required for ring frequency on SKL.
5154                          */
5155                         ring_freq = gpu_freq;
5156                 } else if (INTEL_INFO(dev)->gen >= 8) {
5157                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5158                         ring_freq = max(min_ring_freq, gpu_freq);
5159                 } else if (IS_HASWELL(dev)) {
5160                         ring_freq = mult_frac(gpu_freq, 5, 4);
5161                         ring_freq = max(min_ring_freq, ring_freq);
5162                         /* leave ia_freq as the default, chosen by cpufreq */
5163                 } else {
5164                         /* On older processors, there is no separate ring
5165                          * clock domain, so in order to boost the bandwidth
5166                          * of the ring, we need to upclock the CPU (ia_freq).
5167                          *
5168                          * For GPU frequencies less than 750MHz,
5169                          * just use the lowest ring freq.
5170                          */
5171                         if (gpu_freq < min_freq)
5172                                 ia_freq = 800;
5173                         else
5174                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5175                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5176                 }
5177
5178                 sandybridge_pcode_write(dev_priv,
5179                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5180                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5181                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5182                                         gpu_freq);
5183         }
5184 }
5185
5186 void gen6_update_ring_freq(struct drm_device *dev)
5187 {
5188         struct drm_i915_private *dev_priv = dev->dev_private;
5189
5190         if (!HAS_CORE_RING_FREQ(dev))
5191                 return;
5192
5193         mutex_lock(&dev_priv->rps.hw_lock);
5194         __gen6_update_ring_freq(dev);
5195         mutex_unlock(&dev_priv->rps.hw_lock);
5196 }
5197
5198 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5199 {
5200         struct drm_device *dev = dev_priv->dev;
5201         u32 val, rp0;
5202
5203         if (dev->pdev->revision >= 0x20) {
5204                 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5205
5206                 switch (INTEL_INFO(dev)->eu_total) {
5207                 case 8:
5208                                 /* (2 * 4) config */
5209                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5210                                 break;
5211                 case 12:
5212                                 /* (2 * 6) config */
5213                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5214                                 break;
5215                 case 16:
5216                                 /* (2 * 8) config */
5217                 default:
5218                                 /* Setting (2 * 8) Min RP0 for any other combination */
5219                                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5220                                 break;
5221                 }
5222                 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5223         } else {
5224                 /* For pre-production hardware */
5225                 val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
5226                 rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
5227                        PUNIT_GPU_STATUS_MAX_FREQ_MASK;
5228         }
5229         return rp0;
5230 }
5231
5232 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5233 {
5234         u32 val, rpe;
5235
5236         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5237         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5238
5239         return rpe;
5240 }
5241
5242 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5243 {
5244         struct drm_device *dev = dev_priv->dev;
5245         u32 val, rp1;
5246
5247         if (dev->pdev->revision >= 0x20) {
5248                 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5249                 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5250         } else {
5251                 /* For pre-production hardware */
5252                 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5253                 rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
5254                        PUNIT_GPU_STATUS_MAX_FREQ_MASK);
5255         }
5256         return rp1;
5257 }
5258
5259 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5260 {
5261         u32 val, rp1;
5262
5263         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5264
5265         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5266
5267         return rp1;
5268 }
5269
5270 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5271 {
5272         u32 val, rp0;
5273
5274         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5275
5276         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5277         /* Clamp to max */
5278         rp0 = min_t(u32, rp0, 0xea);
5279
5280         return rp0;
5281 }
5282
5283 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5284 {
5285         u32 val, rpe;
5286
5287         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5288         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5289         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5290         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5291
5292         return rpe;
5293 }
5294
5295 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5296 {
5297         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5298 }
5299
5300 /* Check that the pctx buffer wasn't move under us. */
5301 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5302 {
5303         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5304
5305         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5306                              dev_priv->vlv_pctx->stolen->start);
5307 }
5308
5309
5310 /* Check that the pcbr address is not empty. */
5311 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5312 {
5313         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5314
5315         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5316 }
5317
5318 static void cherryview_setup_pctx(struct drm_device *dev)
5319 {
5320         struct drm_i915_private *dev_priv = dev->dev_private;
5321         unsigned long pctx_paddr, paddr;
5322         struct i915_gtt *gtt = &dev_priv->gtt;
5323         u32 pcbr;
5324         int pctx_size = 32*1024;
5325
5326         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5327
5328         pcbr = I915_READ(VLV_PCBR);
5329         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5330                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5331                 paddr = (dev_priv->mm.stolen_base +
5332                          (gtt->stolen_size - pctx_size));
5333
5334                 pctx_paddr = (paddr & (~4095));
5335                 I915_WRITE(VLV_PCBR, pctx_paddr);
5336         }
5337
5338         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5339 }
5340
5341 static void valleyview_setup_pctx(struct drm_device *dev)
5342 {
5343         struct drm_i915_private *dev_priv = dev->dev_private;
5344         struct drm_i915_gem_object *pctx;
5345         unsigned long pctx_paddr;
5346         u32 pcbr;
5347         int pctx_size = 24*1024;
5348
5349         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5350
5351         pcbr = I915_READ(VLV_PCBR);
5352         if (pcbr) {
5353                 /* BIOS set it up already, grab the pre-alloc'd space */
5354                 int pcbr_offset;
5355
5356                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5357                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5358                                                                       pcbr_offset,
5359                                                                       I915_GTT_OFFSET_NONE,
5360                                                                       pctx_size);
5361                 goto out;
5362         }
5363
5364         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5365
5366         /*
5367          * From the Gunit register HAS:
5368          * The Gfx driver is expected to program this register and ensure
5369          * proper allocation within Gfx stolen memory.  For example, this
5370          * register should be programmed such than the PCBR range does not
5371          * overlap with other ranges, such as the frame buffer, protected
5372          * memory, or any other relevant ranges.
5373          */
5374         pctx = i915_gem_object_create_stolen(dev, pctx_size);
5375         if (!pctx) {
5376                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5377                 return;
5378         }
5379
5380         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5381         I915_WRITE(VLV_PCBR, pctx_paddr);
5382
5383 out:
5384         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5385         dev_priv->vlv_pctx = pctx;
5386 }
5387
5388 static void valleyview_cleanup_pctx(struct drm_device *dev)
5389 {
5390         struct drm_i915_private *dev_priv = dev->dev_private;
5391
5392         if (WARN_ON(!dev_priv->vlv_pctx))
5393                 return;
5394
5395         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5396         dev_priv->vlv_pctx = NULL;
5397 }
5398
5399 static void valleyview_init_gt_powersave(struct drm_device *dev)
5400 {
5401         struct drm_i915_private *dev_priv = dev->dev_private;
5402         u32 val;
5403
5404         valleyview_setup_pctx(dev);
5405
5406         mutex_lock(&dev_priv->rps.hw_lock);
5407
5408         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5409         switch ((val >> 6) & 3) {
5410         case 0:
5411         case 1:
5412                 dev_priv->mem_freq = 800;
5413                 break;
5414         case 2:
5415                 dev_priv->mem_freq = 1066;
5416                 break;
5417         case 3:
5418                 dev_priv->mem_freq = 1333;
5419                 break;
5420         }
5421         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5422
5423         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5424         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5425         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5426                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5427                          dev_priv->rps.max_freq);
5428
5429         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5430         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5431                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5432                          dev_priv->rps.efficient_freq);
5433
5434         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5435         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5436                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5437                          dev_priv->rps.rp1_freq);
5438
5439         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5440         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5441                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5442                          dev_priv->rps.min_freq);
5443
5444         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5445
5446         /* Preserve min/max settings in case of re-init */
5447         if (dev_priv->rps.max_freq_softlimit == 0)
5448                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5449
5450         if (dev_priv->rps.min_freq_softlimit == 0)
5451                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5452
5453         mutex_unlock(&dev_priv->rps.hw_lock);
5454 }
5455
5456 static void cherryview_init_gt_powersave(struct drm_device *dev)
5457 {
5458         struct drm_i915_private *dev_priv = dev->dev_private;
5459         u32 val;
5460
5461         cherryview_setup_pctx(dev);
5462
5463         mutex_lock(&dev_priv->rps.hw_lock);
5464
5465         mutex_lock(&dev_priv->sb_lock);
5466         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5467         mutex_unlock(&dev_priv->sb_lock);
5468
5469         switch ((val >> 2) & 0x7) {
5470         case 3:
5471                 dev_priv->mem_freq = 2000;
5472                 break;
5473         default:
5474                 dev_priv->mem_freq = 1600;
5475                 break;
5476         }
5477         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5478
5479         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5480         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5481         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5482                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5483                          dev_priv->rps.max_freq);
5484
5485         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5486         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5487                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5488                          dev_priv->rps.efficient_freq);
5489
5490         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5491         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5492                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5493                          dev_priv->rps.rp1_freq);
5494
5495         /* PUnit validated range is only [RPe, RP0] */
5496         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5497         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5498                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5499                          dev_priv->rps.min_freq);
5500
5501         WARN_ONCE((dev_priv->rps.max_freq |
5502                    dev_priv->rps.efficient_freq |
5503                    dev_priv->rps.rp1_freq |
5504                    dev_priv->rps.min_freq) & 1,
5505                   "Odd GPU freq values\n");
5506
5507         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5508
5509         /* Preserve min/max settings in case of re-init */
5510         if (dev_priv->rps.max_freq_softlimit == 0)
5511                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5512
5513         if (dev_priv->rps.min_freq_softlimit == 0)
5514                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5515
5516         mutex_unlock(&dev_priv->rps.hw_lock);
5517 }
5518
5519 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5520 {
5521         valleyview_cleanup_pctx(dev);
5522 }
5523
5524 static void cherryview_enable_rps(struct drm_device *dev)
5525 {
5526         struct drm_i915_private *dev_priv = dev->dev_private;
5527         struct intel_engine_cs *ring;
5528         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5529         int i;
5530
5531         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5532
5533         gtfifodbg = I915_READ(GTFIFODBG);
5534         if (gtfifodbg) {
5535                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5536                                  gtfifodbg);
5537                 I915_WRITE(GTFIFODBG, gtfifodbg);
5538         }
5539
5540         cherryview_check_pctx(dev_priv);
5541
5542         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5543          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5544         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5545
5546         /*  Disable RC states. */
5547         I915_WRITE(GEN6_RC_CONTROL, 0);
5548
5549         /* 2a: Program RC6 thresholds.*/
5550         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5551         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5552         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5553
5554         for_each_ring(ring, dev_priv, i)
5555                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5556         I915_WRITE(GEN6_RC_SLEEP, 0);
5557
5558         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5559         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5560
5561         /* allows RC6 residency counter to work */
5562         I915_WRITE(VLV_COUNTER_CONTROL,
5563                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5564                                       VLV_MEDIA_RC6_COUNT_EN |
5565                                       VLV_RENDER_RC6_COUNT_EN));
5566
5567         /* For now we assume BIOS is allocating and populating the PCBR  */
5568         pcbr = I915_READ(VLV_PCBR);
5569
5570         /* 3: Enable RC6 */
5571         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5572                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5573                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5574
5575         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5576
5577         /* 4 Program defaults and thresholds for RPS*/
5578         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5579         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5580         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5581         I915_WRITE(GEN6_RP_UP_EI, 66000);
5582         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5583
5584         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5585
5586         /* 5: Enable RPS */
5587         I915_WRITE(GEN6_RP_CONTROL,
5588                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5589                    GEN6_RP_MEDIA_IS_GFX |
5590                    GEN6_RP_ENABLE |
5591                    GEN6_RP_UP_BUSY_AVG |
5592                    GEN6_RP_DOWN_IDLE_AVG);
5593
5594         /* Setting Fixed Bias */
5595         val = VLV_OVERRIDE_EN |
5596                   VLV_SOC_TDP_EN |
5597                   CHV_BIAS_CPU_50_SOC_50;
5598         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5599
5600         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5601
5602         /* RPS code assumes GPLL is used */
5603         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5604
5605         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5606         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5607
5608         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5609         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5610                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5611                          dev_priv->rps.cur_freq);
5612
5613         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5614                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5615                          dev_priv->rps.efficient_freq);
5616
5617         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5618
5619         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5620 }
5621
5622 static void valleyview_enable_rps(struct drm_device *dev)
5623 {
5624         struct drm_i915_private *dev_priv = dev->dev_private;
5625         struct intel_engine_cs *ring;
5626         u32 gtfifodbg, val, rc6_mode = 0;
5627         int i;
5628
5629         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5630
5631         valleyview_check_pctx(dev_priv);
5632
5633         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5634                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5635                                  gtfifodbg);
5636                 I915_WRITE(GTFIFODBG, gtfifodbg);
5637         }
5638
5639         /* If VLV, Forcewake all wells, else re-direct to regular path */
5640         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5641
5642         /*  Disable RC states. */
5643         I915_WRITE(GEN6_RC_CONTROL, 0);
5644
5645         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5646         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5647         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5648         I915_WRITE(GEN6_RP_UP_EI, 66000);
5649         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5650
5651         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5652
5653         I915_WRITE(GEN6_RP_CONTROL,
5654                    GEN6_RP_MEDIA_TURBO |
5655                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5656                    GEN6_RP_MEDIA_IS_GFX |
5657                    GEN6_RP_ENABLE |
5658                    GEN6_RP_UP_BUSY_AVG |
5659                    GEN6_RP_DOWN_IDLE_CONT);
5660
5661         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5662         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5663         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5664
5665         for_each_ring(ring, dev_priv, i)
5666                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5667
5668         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5669
5670         /* allows RC6 residency counter to work */
5671         I915_WRITE(VLV_COUNTER_CONTROL,
5672                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5673                                       VLV_RENDER_RC0_COUNT_EN |
5674                                       VLV_MEDIA_RC6_COUNT_EN |
5675                                       VLV_RENDER_RC6_COUNT_EN));
5676
5677         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5678                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5679
5680         intel_print_rc6_info(dev, rc6_mode);
5681
5682         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5683
5684         /* Setting Fixed Bias */
5685         val = VLV_OVERRIDE_EN |
5686                   VLV_SOC_TDP_EN |
5687                   VLV_BIAS_CPU_125_SOC_875;
5688         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5689
5690         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5691
5692         /* RPS code assumes GPLL is used */
5693         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5694
5695         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5696         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5697
5698         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5699         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5700                          intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5701                          dev_priv->rps.cur_freq);
5702
5703         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5704                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5705                          dev_priv->rps.efficient_freq);
5706
5707         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5708
5709         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5710 }
5711
5712 static unsigned long intel_pxfreq(u32 vidfreq)
5713 {
5714         unsigned long freq;
5715         int div = (vidfreq & 0x3f0000) >> 16;
5716         int post = (vidfreq & 0x3000) >> 12;
5717         int pre = (vidfreq & 0x7);
5718
5719         if (!pre)
5720                 return 0;
5721
5722         freq = ((div * 133333) / ((1<<post) * pre));
5723
5724         return freq;
5725 }
5726
5727 static const struct cparams {
5728         u16 i;
5729         u16 t;
5730         u16 m;
5731         u16 c;
5732 } cparams[] = {
5733         { 1, 1333, 301, 28664 },
5734         { 1, 1066, 294, 24460 },
5735         { 1, 800, 294, 25192 },
5736         { 0, 1333, 276, 27605 },
5737         { 0, 1066, 276, 27605 },
5738         { 0, 800, 231, 23784 },
5739 };
5740
5741 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5742 {
5743         u64 total_count, diff, ret;
5744         u32 count1, count2, count3, m = 0, c = 0;
5745         unsigned long now = jiffies_to_msecs(jiffies), diff1;
5746         int i;
5747
5748         assert_spin_locked(&mchdev_lock);
5749
5750         diff1 = now - dev_priv->ips.last_time1;
5751
5752         /* Prevent division-by-zero if we are asking too fast.
5753          * Also, we don't get interesting results if we are polling
5754          * faster than once in 10ms, so just return the saved value
5755          * in such cases.
5756          */
5757         if (diff1 <= 10)
5758                 return dev_priv->ips.chipset_power;
5759
5760         count1 = I915_READ(DMIEC);
5761         count2 = I915_READ(DDREC);
5762         count3 = I915_READ(CSIEC);
5763
5764         total_count = count1 + count2 + count3;
5765
5766         /* FIXME: handle per-counter overflow */
5767         if (total_count < dev_priv->ips.last_count1) {
5768                 diff = ~0UL - dev_priv->ips.last_count1;
5769                 diff += total_count;
5770         } else {
5771                 diff = total_count - dev_priv->ips.last_count1;
5772         }
5773
5774         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5775                 if (cparams[i].i == dev_priv->ips.c_m &&
5776                     cparams[i].t == dev_priv->ips.r_t) {
5777                         m = cparams[i].m;
5778                         c = cparams[i].c;
5779                         break;
5780                 }
5781         }
5782
5783         diff = div_u64(diff, diff1);
5784         ret = ((m * diff) + c);
5785         ret = div_u64(ret, 10);
5786
5787         dev_priv->ips.last_count1 = total_count;
5788         dev_priv->ips.last_time1 = now;
5789
5790         dev_priv->ips.chipset_power = ret;
5791
5792         return ret;
5793 }
5794
5795 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5796 {
5797         struct drm_device *dev = dev_priv->dev;
5798         unsigned long val;
5799
5800         if (INTEL_INFO(dev)->gen != 5)
5801                 return 0;
5802
5803         spin_lock_irq(&mchdev_lock);
5804
5805         val = __i915_chipset_val(dev_priv);
5806
5807         spin_unlock_irq(&mchdev_lock);
5808
5809         return val;
5810 }
5811
5812 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5813 {
5814         unsigned long m, x, b;
5815         u32 tsfs;
5816
5817         tsfs = I915_READ(TSFS);
5818
5819         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5820         x = I915_READ8(TR1);
5821
5822         b = tsfs & TSFS_INTR_MASK;
5823
5824         return ((m * x) / 127) - b;
5825 }
5826
5827 static int _pxvid_to_vd(u8 pxvid)
5828 {
5829         if (pxvid == 0)
5830                 return 0;
5831
5832         if (pxvid >= 8 && pxvid < 31)
5833                 pxvid = 31;
5834
5835         return (pxvid + 2) * 125;
5836 }
5837
5838 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5839 {
5840         struct drm_device *dev = dev_priv->dev;
5841         const int vd = _pxvid_to_vd(pxvid);
5842         const int vm = vd - 1125;
5843
5844         if (INTEL_INFO(dev)->is_mobile)
5845                 return vm > 0 ? vm : 0;
5846
5847         return vd;
5848 }
5849
5850 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5851 {
5852         u64 now, diff, diffms;
5853         u32 count;
5854
5855         assert_spin_locked(&mchdev_lock);
5856
5857         now = ktime_get_raw_ns();
5858         diffms = now - dev_priv->ips.last_time2;
5859         do_div(diffms, NSEC_PER_MSEC);
5860
5861         /* Don't divide by 0 */
5862         if (!diffms)
5863                 return;
5864
5865         count = I915_READ(GFXEC);
5866
5867         if (count < dev_priv->ips.last_count2) {
5868                 diff = ~0UL - dev_priv->ips.last_count2;
5869                 diff += count;
5870         } else {
5871                 diff = count - dev_priv->ips.last_count2;
5872         }
5873
5874         dev_priv->ips.last_count2 = count;
5875         dev_priv->ips.last_time2 = now;
5876
5877         /* More magic constants... */
5878         diff = diff * 1181;
5879         diff = div_u64(diff, diffms * 10);
5880         dev_priv->ips.gfx_power = diff;
5881 }
5882
5883 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5884 {
5885         struct drm_device *dev = dev_priv->dev;
5886
5887         if (INTEL_INFO(dev)->gen != 5)
5888                 return;
5889
5890         spin_lock_irq(&mchdev_lock);
5891
5892         __i915_update_gfx_val(dev_priv);
5893
5894         spin_unlock_irq(&mchdev_lock);
5895 }
5896
5897 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5898 {
5899         unsigned long t, corr, state1, corr2, state2;
5900         u32 pxvid, ext_v;
5901
5902         assert_spin_locked(&mchdev_lock);
5903
5904         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5905         pxvid = (pxvid >> 24) & 0x7f;
5906         ext_v = pvid_to_extvid(dev_priv, pxvid);
5907
5908         state1 = ext_v;
5909
5910         t = i915_mch_val(dev_priv);
5911
5912         /* Revel in the empirically derived constants */
5913
5914         /* Correction factor in 1/100000 units */
5915         if (t > 80)
5916                 corr = ((t * 2349) + 135940);
5917         else if (t >= 50)
5918                 corr = ((t * 964) + 29317);
5919         else /* < 50 */
5920                 corr = ((t * 301) + 1004);
5921
5922         corr = corr * ((150142 * state1) / 10000 - 78642);
5923         corr /= 100000;
5924         corr2 = (corr * dev_priv->ips.corr);
5925
5926         state2 = (corr2 * state1) / 10000;
5927         state2 /= 100; /* convert to mW */
5928
5929         __i915_update_gfx_val(dev_priv);
5930
5931         return dev_priv->ips.gfx_power + state2;
5932 }
5933
5934 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5935 {
5936         struct drm_device *dev = dev_priv->dev;
5937         unsigned long val;
5938
5939         if (INTEL_INFO(dev)->gen != 5)
5940                 return 0;
5941
5942         spin_lock_irq(&mchdev_lock);
5943
5944         val = __i915_gfx_val(dev_priv);
5945
5946         spin_unlock_irq(&mchdev_lock);
5947
5948         return val;
5949 }
5950
5951 /**
5952  * i915_read_mch_val - return value for IPS use
5953  *
5954  * Calculate and return a value for the IPS driver to use when deciding whether
5955  * we have thermal and power headroom to increase CPU or GPU power budget.
5956  */
5957 unsigned long i915_read_mch_val(void)
5958 {
5959         struct drm_i915_private *dev_priv;
5960         unsigned long chipset_val, graphics_val, ret = 0;
5961
5962         spin_lock_irq(&mchdev_lock);
5963         if (!i915_mch_dev)
5964                 goto out_unlock;
5965         dev_priv = i915_mch_dev;
5966
5967         chipset_val = __i915_chipset_val(dev_priv);
5968         graphics_val = __i915_gfx_val(dev_priv);
5969
5970         ret = chipset_val + graphics_val;
5971
5972 out_unlock:
5973         spin_unlock_irq(&mchdev_lock);
5974
5975         return ret;
5976 }
5977 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5978
5979 /**
5980  * i915_gpu_raise - raise GPU frequency limit
5981  *
5982  * Raise the limit; IPS indicates we have thermal headroom.
5983  */
5984 bool i915_gpu_raise(void)
5985 {
5986         struct drm_i915_private *dev_priv;
5987         bool ret = true;
5988
5989         spin_lock_irq(&mchdev_lock);
5990         if (!i915_mch_dev) {
5991                 ret = false;
5992                 goto out_unlock;
5993         }
5994         dev_priv = i915_mch_dev;
5995
5996         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5997                 dev_priv->ips.max_delay--;
5998
5999 out_unlock:
6000         spin_unlock_irq(&mchdev_lock);
6001
6002         return ret;
6003 }
6004 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6005
6006 /**
6007  * i915_gpu_lower - lower GPU frequency limit
6008  *
6009  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6010  * frequency maximum.
6011  */
6012 bool i915_gpu_lower(void)
6013 {
6014         struct drm_i915_private *dev_priv;
6015         bool ret = true;
6016
6017         spin_lock_irq(&mchdev_lock);
6018         if (!i915_mch_dev) {
6019                 ret = false;
6020                 goto out_unlock;
6021         }
6022         dev_priv = i915_mch_dev;
6023
6024         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6025                 dev_priv->ips.max_delay++;
6026
6027 out_unlock:
6028         spin_unlock_irq(&mchdev_lock);
6029
6030         return ret;
6031 }
6032 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6033
6034 /**
6035  * i915_gpu_busy - indicate GPU business to IPS
6036  *
6037  * Tell the IPS driver whether or not the GPU is busy.
6038  */
6039 bool i915_gpu_busy(void)
6040 {
6041         struct drm_i915_private *dev_priv;
6042         struct intel_engine_cs *ring;
6043         bool ret = false;
6044         int i;
6045
6046         spin_lock_irq(&mchdev_lock);
6047         if (!i915_mch_dev)
6048                 goto out_unlock;
6049         dev_priv = i915_mch_dev;
6050
6051         for_each_ring(ring, dev_priv, i)
6052                 ret |= !list_empty(&ring->request_list);
6053
6054 out_unlock:
6055         spin_unlock_irq(&mchdev_lock);
6056
6057         return ret;
6058 }
6059 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6060
6061 /**
6062  * i915_gpu_turbo_disable - disable graphics turbo
6063  *
6064  * Disable graphics turbo by resetting the max frequency and setting the
6065  * current frequency to the default.
6066  */
6067 bool i915_gpu_turbo_disable(void)
6068 {
6069         struct drm_i915_private *dev_priv;
6070         bool ret = true;
6071
6072         spin_lock_irq(&mchdev_lock);
6073         if (!i915_mch_dev) {
6074                 ret = false;
6075                 goto out_unlock;
6076         }
6077         dev_priv = i915_mch_dev;
6078
6079         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6080
6081         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6082                 ret = false;
6083
6084 out_unlock:
6085         spin_unlock_irq(&mchdev_lock);
6086
6087         return ret;
6088 }
6089 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6090
6091 /**
6092  * Tells the intel_ips driver that the i915 driver is now loaded, if
6093  * IPS got loaded first.
6094  *
6095  * This awkward dance is so that neither module has to depend on the
6096  * other in order for IPS to do the appropriate communication of
6097  * GPU turbo limits to i915.
6098  */
6099 static void
6100 ips_ping_for_i915_load(void)
6101 {
6102         void (*link)(void);
6103
6104         link = symbol_get(ips_link_to_i915_driver);
6105         if (link) {
6106                 link();
6107                 symbol_put(ips_link_to_i915_driver);
6108         }
6109 }
6110
6111 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6112 {
6113         /* We only register the i915 ips part with intel-ips once everything is
6114          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6115         spin_lock_irq(&mchdev_lock);
6116         i915_mch_dev = dev_priv;
6117         spin_unlock_irq(&mchdev_lock);
6118
6119         ips_ping_for_i915_load();
6120 }
6121
6122 void intel_gpu_ips_teardown(void)
6123 {
6124         spin_lock_irq(&mchdev_lock);
6125         i915_mch_dev = NULL;
6126         spin_unlock_irq(&mchdev_lock);
6127 }
6128
6129 static void intel_init_emon(struct drm_device *dev)
6130 {
6131         struct drm_i915_private *dev_priv = dev->dev_private;
6132         u32 lcfuse;
6133         u8 pxw[16];
6134         int i;
6135
6136         /* Disable to program */
6137         I915_WRITE(ECR, 0);
6138         POSTING_READ(ECR);
6139
6140         /* Program energy weights for various events */
6141         I915_WRITE(SDEW, 0x15040d00);
6142         I915_WRITE(CSIEW0, 0x007f0000);
6143         I915_WRITE(CSIEW1, 0x1e220004);
6144         I915_WRITE(CSIEW2, 0x04000004);
6145
6146         for (i = 0; i < 5; i++)
6147                 I915_WRITE(PEW(i), 0);
6148         for (i = 0; i < 3; i++)
6149                 I915_WRITE(DEW(i), 0);
6150
6151         /* Program P-state weights to account for frequency power adjustment */
6152         for (i = 0; i < 16; i++) {
6153                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6154                 unsigned long freq = intel_pxfreq(pxvidfreq);
6155                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6156                         PXVFREQ_PX_SHIFT;
6157                 unsigned long val;
6158
6159                 val = vid * vid;
6160                 val *= (freq / 1000);
6161                 val *= 255;
6162                 val /= (127*127*900);
6163                 if (val > 0xff)
6164                         DRM_ERROR("bad pxval: %ld\n", val);
6165                 pxw[i] = val;
6166         }
6167         /* Render standby states get 0 weight */
6168         pxw[14] = 0;
6169         pxw[15] = 0;
6170
6171         for (i = 0; i < 4; i++) {
6172                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6173                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6174                 I915_WRITE(PXW(i), val);
6175         }
6176
6177         /* Adjust magic regs to magic values (more experimental results) */
6178         I915_WRITE(OGW0, 0);
6179         I915_WRITE(OGW1, 0);
6180         I915_WRITE(EG0, 0x00007f00);
6181         I915_WRITE(EG1, 0x0000000e);
6182         I915_WRITE(EG2, 0x000e0000);
6183         I915_WRITE(EG3, 0x68000300);
6184         I915_WRITE(EG4, 0x42000000);
6185         I915_WRITE(EG5, 0x00140031);
6186         I915_WRITE(EG6, 0);
6187         I915_WRITE(EG7, 0);
6188
6189         for (i = 0; i < 8; i++)
6190                 I915_WRITE(PXWL(i), 0);
6191
6192         /* Enable PMON + select events */
6193         I915_WRITE(ECR, 0x80000019);
6194
6195         lcfuse = I915_READ(LCFUSE02);
6196
6197         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6198 }
6199
6200 void intel_init_gt_powersave(struct drm_device *dev)
6201 {
6202         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6203
6204         if (IS_CHERRYVIEW(dev))
6205                 cherryview_init_gt_powersave(dev);
6206         else if (IS_VALLEYVIEW(dev))
6207                 valleyview_init_gt_powersave(dev);
6208 }
6209
6210 void intel_cleanup_gt_powersave(struct drm_device *dev)
6211 {
6212         if (IS_CHERRYVIEW(dev))
6213                 return;
6214         else if (IS_VALLEYVIEW(dev))
6215                 valleyview_cleanup_gt_powersave(dev);
6216 }
6217
6218 static void gen6_suspend_rps(struct drm_device *dev)
6219 {
6220         struct drm_i915_private *dev_priv = dev->dev_private;
6221
6222         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6223
6224         gen6_disable_rps_interrupts(dev);
6225 }
6226
6227 /**
6228  * intel_suspend_gt_powersave - suspend PM work and helper threads
6229  * @dev: drm device
6230  *
6231  * We don't want to disable RC6 or other features here, we just want
6232  * to make sure any work we've queued has finished and won't bother
6233  * us while we're suspended.
6234  */
6235 void intel_suspend_gt_powersave(struct drm_device *dev)
6236 {
6237         struct drm_i915_private *dev_priv = dev->dev_private;
6238
6239         if (INTEL_INFO(dev)->gen < 6)
6240                 return;
6241
6242         gen6_suspend_rps(dev);
6243
6244         /* Force GPU to min freq during suspend */
6245         gen6_rps_idle(dev_priv);
6246 }
6247
6248 void intel_disable_gt_powersave(struct drm_device *dev)
6249 {
6250         struct drm_i915_private *dev_priv = dev->dev_private;
6251
6252         if (IS_IRONLAKE_M(dev)) {
6253                 ironlake_disable_drps(dev);
6254         } else if (INTEL_INFO(dev)->gen >= 6) {
6255                 intel_suspend_gt_powersave(dev);
6256
6257                 mutex_lock(&dev_priv->rps.hw_lock);
6258                 if (INTEL_INFO(dev)->gen >= 9)
6259                         gen9_disable_rps(dev);
6260                 else if (IS_CHERRYVIEW(dev))
6261                         cherryview_disable_rps(dev);
6262                 else if (IS_VALLEYVIEW(dev))
6263                         valleyview_disable_rps(dev);
6264                 else
6265                         gen6_disable_rps(dev);
6266
6267                 dev_priv->rps.enabled = false;
6268                 mutex_unlock(&dev_priv->rps.hw_lock);
6269         }
6270 }
6271
6272 static void intel_gen6_powersave_work(struct work_struct *work)
6273 {
6274         struct drm_i915_private *dev_priv =
6275                 container_of(work, struct drm_i915_private,
6276                              rps.delayed_resume_work.work);
6277         struct drm_device *dev = dev_priv->dev;
6278
6279         mutex_lock(&dev_priv->rps.hw_lock);
6280
6281         gen6_reset_rps_interrupts(dev);
6282
6283         if (IS_CHERRYVIEW(dev)) {
6284                 cherryview_enable_rps(dev);
6285         } else if (IS_VALLEYVIEW(dev)) {
6286                 valleyview_enable_rps(dev);
6287         } else if (INTEL_INFO(dev)->gen >= 9) {
6288                 gen9_enable_rc6(dev);
6289                 gen9_enable_rps(dev);
6290                 if (IS_SKYLAKE(dev))
6291                         __gen6_update_ring_freq(dev);
6292         } else if (IS_BROADWELL(dev)) {
6293                 gen8_enable_rps(dev);
6294                 __gen6_update_ring_freq(dev);
6295         } else {
6296                 gen6_enable_rps(dev);
6297                 __gen6_update_ring_freq(dev);
6298         }
6299
6300         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6301         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6302
6303         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6304         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6305
6306         dev_priv->rps.enabled = true;
6307
6308         gen6_enable_rps_interrupts(dev);
6309
6310         mutex_unlock(&dev_priv->rps.hw_lock);
6311
6312         intel_runtime_pm_put(dev_priv);
6313 }
6314
6315 void intel_enable_gt_powersave(struct drm_device *dev)
6316 {
6317         struct drm_i915_private *dev_priv = dev->dev_private;
6318
6319         /* Powersaving is controlled by the host when inside a VM */
6320         if (intel_vgpu_active(dev))
6321                 return;
6322
6323         if (IS_IRONLAKE_M(dev)) {
6324                 mutex_lock(&dev->struct_mutex);
6325                 ironlake_enable_drps(dev);
6326                 intel_init_emon(dev);
6327                 mutex_unlock(&dev->struct_mutex);
6328         } else if (INTEL_INFO(dev)->gen >= 6) {
6329                 /*
6330                  * PCU communication is slow and this doesn't need to be
6331                  * done at any specific time, so do this out of our fast path
6332                  * to make resume and init faster.
6333                  *
6334                  * We depend on the HW RC6 power context save/restore
6335                  * mechanism when entering D3 through runtime PM suspend. So
6336                  * disable RPM until RPS/RC6 is properly setup. We can only
6337                  * get here via the driver load/system resume/runtime resume
6338                  * paths, so the _noresume version is enough (and in case of
6339                  * runtime resume it's necessary).
6340                  */
6341                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6342                                            round_jiffies_up_relative(HZ)))
6343                         intel_runtime_pm_get_noresume(dev_priv);
6344         }
6345 }
6346
6347 void intel_reset_gt_powersave(struct drm_device *dev)
6348 {
6349         struct drm_i915_private *dev_priv = dev->dev_private;
6350
6351         if (INTEL_INFO(dev)->gen < 6)
6352                 return;
6353
6354         gen6_suspend_rps(dev);
6355         dev_priv->rps.enabled = false;
6356 }
6357
6358 static void ibx_init_clock_gating(struct drm_device *dev)
6359 {
6360         struct drm_i915_private *dev_priv = dev->dev_private;
6361
6362         /*
6363          * On Ibex Peak and Cougar Point, we need to disable clock
6364          * gating for the panel power sequencer or it will fail to
6365          * start up when no ports are active.
6366          */
6367         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6368 }
6369
6370 static void g4x_disable_trickle_feed(struct drm_device *dev)
6371 {
6372         struct drm_i915_private *dev_priv = dev->dev_private;
6373         enum pipe pipe;
6374
6375         for_each_pipe(dev_priv, pipe) {
6376                 I915_WRITE(DSPCNTR(pipe),
6377                            I915_READ(DSPCNTR(pipe)) |
6378                            DISPPLANE_TRICKLE_FEED_DISABLE);
6379
6380                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6381                 POSTING_READ(DSPSURF(pipe));
6382         }
6383 }
6384
6385 static void ilk_init_lp_watermarks(struct drm_device *dev)
6386 {
6387         struct drm_i915_private *dev_priv = dev->dev_private;
6388
6389         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6390         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6391         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6392
6393         /*
6394          * Don't touch WM1S_LP_EN here.
6395          * Doing so could cause underruns.
6396          */
6397 }
6398
6399 static void ironlake_init_clock_gating(struct drm_device *dev)
6400 {
6401         struct drm_i915_private *dev_priv = dev->dev_private;
6402         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6403
6404         /*
6405          * Required for FBC
6406          * WaFbcDisableDpfcClockGating:ilk
6407          */
6408         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6409                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6410                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6411
6412         I915_WRITE(PCH_3DCGDIS0,
6413                    MARIUNIT_CLOCK_GATE_DISABLE |
6414                    SVSMUNIT_CLOCK_GATE_DISABLE);
6415         I915_WRITE(PCH_3DCGDIS1,
6416                    VFMUNIT_CLOCK_GATE_DISABLE);
6417
6418         /*
6419          * According to the spec the following bits should be set in
6420          * order to enable memory self-refresh
6421          * The bit 22/21 of 0x42004
6422          * The bit 5 of 0x42020
6423          * The bit 15 of 0x45000
6424          */
6425         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6426                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6427                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6428         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6429         I915_WRITE(DISP_ARB_CTL,
6430                    (I915_READ(DISP_ARB_CTL) |
6431                     DISP_FBC_WM_DIS));
6432
6433         ilk_init_lp_watermarks(dev);
6434
6435         /*
6436          * Based on the document from hardware guys the following bits
6437          * should be set unconditionally in order to enable FBC.
6438          * The bit 22 of 0x42000
6439          * The bit 22 of 0x42004
6440          * The bit 7,8,9 of 0x42020.
6441          */
6442         if (IS_IRONLAKE_M(dev)) {
6443                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6444                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6445                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6446                            ILK_FBCQ_DIS);
6447                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6448                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6449                            ILK_DPARB_GATE);
6450         }
6451
6452         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6453
6454         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6455                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6456                    ILK_ELPIN_409_SELECT);
6457         I915_WRITE(_3D_CHICKEN2,
6458                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6459                    _3D_CHICKEN2_WM_READ_PIPELINED);
6460
6461         /* WaDisableRenderCachePipelinedFlush:ilk */
6462         I915_WRITE(CACHE_MODE_0,
6463                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6464
6465         /* WaDisable_RenderCache_OperationalFlush:ilk */
6466         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6467
6468         g4x_disable_trickle_feed(dev);
6469
6470         ibx_init_clock_gating(dev);
6471 }
6472
6473 static void cpt_init_clock_gating(struct drm_device *dev)
6474 {
6475         struct drm_i915_private *dev_priv = dev->dev_private;
6476         int pipe;
6477         uint32_t val;
6478
6479         /*
6480          * On Ibex Peak and Cougar Point, we need to disable clock
6481          * gating for the panel power sequencer or it will fail to
6482          * start up when no ports are active.
6483          */
6484         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6485                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6486                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6487         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6488                    DPLS_EDP_PPS_FIX_DIS);
6489         /* The below fixes the weird display corruption, a few pixels shifted
6490          * downward, on (only) LVDS of some HP laptops with IVY.
6491          */
6492         for_each_pipe(dev_priv, pipe) {
6493                 val = I915_READ(TRANS_CHICKEN2(pipe));
6494                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6495                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6496                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6497                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6498                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6499                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6500                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6501                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6502         }
6503         /* WADP0ClockGatingDisable */
6504         for_each_pipe(dev_priv, pipe) {
6505                 I915_WRITE(TRANS_CHICKEN1(pipe),
6506                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6507         }
6508 }
6509
6510 static void gen6_check_mch_setup(struct drm_device *dev)
6511 {
6512         struct drm_i915_private *dev_priv = dev->dev_private;
6513         uint32_t tmp;
6514
6515         tmp = I915_READ(MCH_SSKPD);
6516         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6517                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6518                               tmp);
6519 }
6520
6521 static void gen6_init_clock_gating(struct drm_device *dev)
6522 {
6523         struct drm_i915_private *dev_priv = dev->dev_private;
6524         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6525
6526         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6527
6528         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6529                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6530                    ILK_ELPIN_409_SELECT);
6531
6532         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6533         I915_WRITE(_3D_CHICKEN,
6534                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6535
6536         /* WaDisable_RenderCache_OperationalFlush:snb */
6537         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6538
6539         /*
6540          * BSpec recoomends 8x4 when MSAA is used,
6541          * however in practice 16x4 seems fastest.
6542          *
6543          * Note that PS/WM thread counts depend on the WIZ hashing
6544          * disable bit, which we don't touch here, but it's good
6545          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6546          */
6547         I915_WRITE(GEN6_GT_MODE,
6548                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6549
6550         ilk_init_lp_watermarks(dev);
6551
6552         I915_WRITE(CACHE_MODE_0,
6553                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6554
6555         I915_WRITE(GEN6_UCGCTL1,
6556                    I915_READ(GEN6_UCGCTL1) |
6557                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6558                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6559
6560         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6561          * gating disable must be set.  Failure to set it results in
6562          * flickering pixels due to Z write ordering failures after
6563          * some amount of runtime in the Mesa "fire" demo, and Unigine
6564          * Sanctuary and Tropics, and apparently anything else with
6565          * alpha test or pixel discard.
6566          *
6567          * According to the spec, bit 11 (RCCUNIT) must also be set,
6568          * but we didn't debug actual testcases to find it out.
6569          *
6570          * WaDisableRCCUnitClockGating:snb
6571          * WaDisableRCPBUnitClockGating:snb
6572          */
6573         I915_WRITE(GEN6_UCGCTL2,
6574                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6575                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6576
6577         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6578         I915_WRITE(_3D_CHICKEN3,
6579                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6580
6581         /*
6582          * Bspec says:
6583          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6584          * 3DSTATE_SF number of SF output attributes is more than 16."
6585          */
6586         I915_WRITE(_3D_CHICKEN3,
6587                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6588
6589         /*
6590          * According to the spec the following bits should be
6591          * set in order to enable memory self-refresh and fbc:
6592          * The bit21 and bit22 of 0x42000
6593          * The bit21 and bit22 of 0x42004
6594          * The bit5 and bit7 of 0x42020
6595          * The bit14 of 0x70180
6596          * The bit14 of 0x71180
6597          *
6598          * WaFbcAsynchFlipDisableFbcQueue:snb
6599          */
6600         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6601                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6602                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6603         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6604                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6605                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6606         I915_WRITE(ILK_DSPCLK_GATE_D,
6607                    I915_READ(ILK_DSPCLK_GATE_D) |
6608                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6609                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6610
6611         g4x_disable_trickle_feed(dev);
6612
6613         cpt_init_clock_gating(dev);
6614
6615         gen6_check_mch_setup(dev);
6616 }
6617
6618 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6619 {
6620         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6621
6622         /*
6623          * WaVSThreadDispatchOverride:ivb,vlv
6624          *
6625          * This actually overrides the dispatch
6626          * mode for all thread types.
6627          */
6628         reg &= ~GEN7_FF_SCHED_MASK;
6629         reg |= GEN7_FF_TS_SCHED_HW;
6630         reg |= GEN7_FF_VS_SCHED_HW;
6631         reg |= GEN7_FF_DS_SCHED_HW;
6632
6633         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6634 }
6635
6636 static void lpt_init_clock_gating(struct drm_device *dev)
6637 {
6638         struct drm_i915_private *dev_priv = dev->dev_private;
6639
6640         /*
6641          * TODO: this bit should only be enabled when really needed, then
6642          * disabled when not needed anymore in order to save power.
6643          */
6644         if (HAS_PCH_LPT_LP(dev))
6645                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6646                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6647                            PCH_LP_PARTITION_LEVEL_DISABLE);
6648
6649         /* WADPOClockGatingDisable:hsw */
6650         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6651                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6652                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6653 }
6654
6655 static void lpt_suspend_hw(struct drm_device *dev)
6656 {
6657         struct drm_i915_private *dev_priv = dev->dev_private;
6658
6659         if (HAS_PCH_LPT_LP(dev)) {
6660                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6661
6662                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6663                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6664         }
6665 }
6666
6667 static void broadwell_init_clock_gating(struct drm_device *dev)
6668 {
6669         struct drm_i915_private *dev_priv = dev->dev_private;
6670         enum pipe pipe;
6671         uint32_t misccpctl;
6672
6673         ilk_init_lp_watermarks(dev);
6674
6675         /* WaSwitchSolVfFArbitrationPriority:bdw */
6676         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6677
6678         /* WaPsrDPAMaskVBlankInSRD:bdw */
6679         I915_WRITE(CHICKEN_PAR1_1,
6680                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6681
6682         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6683         for_each_pipe(dev_priv, pipe) {
6684                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6685                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
6686                            BDW_DPRS_MASK_VBLANK_SRD);
6687         }
6688
6689         /* WaVSRefCountFullforceMissDisable:bdw */
6690         /* WaDSRefCountFullforceMissDisable:bdw */
6691         I915_WRITE(GEN7_FF_THREAD_MODE,
6692                    I915_READ(GEN7_FF_THREAD_MODE) &
6693                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6694
6695         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6696                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6697
6698         /* WaDisableSDEUnitClockGating:bdw */
6699         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6700                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6701
6702         /*
6703          * WaProgramL3SqcReg1Default:bdw
6704          * WaTempDisableDOPClkGating:bdw
6705          */
6706         misccpctl = I915_READ(GEN7_MISCCPCTL);
6707         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6708         I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6709         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6710
6711         /*
6712          * WaGttCachingOffByDefault:bdw
6713          * GTT cache may not work with big pages, so if those
6714          * are ever enabled GTT cache may need to be disabled.
6715          */
6716         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6717
6718         lpt_init_clock_gating(dev);
6719 }
6720
6721 static void haswell_init_clock_gating(struct drm_device *dev)
6722 {
6723         struct drm_i915_private *dev_priv = dev->dev_private;
6724
6725         ilk_init_lp_watermarks(dev);
6726
6727         /* L3 caching of data atomics doesn't work -- disable it. */
6728         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6729         I915_WRITE(HSW_ROW_CHICKEN3,
6730                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6731
6732         /* This is required by WaCatErrorRejectionIssue:hsw */
6733         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6734                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6735                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6736
6737         /* WaVSRefCountFullforceMissDisable:hsw */
6738         I915_WRITE(GEN7_FF_THREAD_MODE,
6739                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6740
6741         /* WaDisable_RenderCache_OperationalFlush:hsw */
6742         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6743
6744         /* enable HiZ Raw Stall Optimization */
6745         I915_WRITE(CACHE_MODE_0_GEN7,
6746                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6747
6748         /* WaDisable4x2SubspanOptimization:hsw */
6749         I915_WRITE(CACHE_MODE_1,
6750                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6751
6752         /*
6753          * BSpec recommends 8x4 when MSAA is used,
6754          * however in practice 16x4 seems fastest.
6755          *
6756          * Note that PS/WM thread counts depend on the WIZ hashing
6757          * disable bit, which we don't touch here, but it's good
6758          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6759          */
6760         I915_WRITE(GEN7_GT_MODE,
6761                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6762
6763         /* WaSampleCChickenBitEnable:hsw */
6764         I915_WRITE(HALF_SLICE_CHICKEN3,
6765                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6766
6767         /* WaSwitchSolVfFArbitrationPriority:hsw */
6768         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6769
6770         /* WaRsPkgCStateDisplayPMReq:hsw */
6771         I915_WRITE(CHICKEN_PAR1_1,
6772                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6773
6774         lpt_init_clock_gating(dev);
6775 }
6776
6777 static void ivybridge_init_clock_gating(struct drm_device *dev)
6778 {
6779         struct drm_i915_private *dev_priv = dev->dev_private;
6780         uint32_t snpcr;
6781
6782         ilk_init_lp_watermarks(dev);
6783
6784         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6785
6786         /* WaDisableEarlyCull:ivb */
6787         I915_WRITE(_3D_CHICKEN3,
6788                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6789
6790         /* WaDisableBackToBackFlipFix:ivb */
6791         I915_WRITE(IVB_CHICKEN3,
6792                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6793                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6794
6795         /* WaDisablePSDDualDispatchEnable:ivb */
6796         if (IS_IVB_GT1(dev))
6797                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6798                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6799
6800         /* WaDisable_RenderCache_OperationalFlush:ivb */
6801         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6802
6803         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6804         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6805                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6806
6807         /* WaApplyL3ControlAndL3ChickenMode:ivb */
6808         I915_WRITE(GEN7_L3CNTLREG1,
6809                         GEN7_WA_FOR_GEN7_L3_CONTROL);
6810         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6811                    GEN7_WA_L3_CHICKEN_MODE);
6812         if (IS_IVB_GT1(dev))
6813                 I915_WRITE(GEN7_ROW_CHICKEN2,
6814                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6815         else {
6816                 /* must write both registers */
6817                 I915_WRITE(GEN7_ROW_CHICKEN2,
6818                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6819                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6820                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6821         }
6822
6823         /* WaForceL3Serialization:ivb */
6824         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6825                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6826
6827         /*
6828          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6829          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6830          */
6831         I915_WRITE(GEN6_UCGCTL2,
6832                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6833
6834         /* This is required by WaCatErrorRejectionIssue:ivb */
6835         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6836                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6837                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6838
6839         g4x_disable_trickle_feed(dev);
6840
6841         gen7_setup_fixed_func_scheduler(dev_priv);
6842
6843         if (0) { /* causes HiZ corruption on ivb:gt1 */
6844                 /* enable HiZ Raw Stall Optimization */
6845                 I915_WRITE(CACHE_MODE_0_GEN7,
6846                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6847         }
6848
6849         /* WaDisable4x2SubspanOptimization:ivb */
6850         I915_WRITE(CACHE_MODE_1,
6851                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6852
6853         /*
6854          * BSpec recommends 8x4 when MSAA is used,
6855          * however in practice 16x4 seems fastest.
6856          *
6857          * Note that PS/WM thread counts depend on the WIZ hashing
6858          * disable bit, which we don't touch here, but it's good
6859          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6860          */
6861         I915_WRITE(GEN7_GT_MODE,
6862                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6863
6864         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6865         snpcr &= ~GEN6_MBC_SNPCR_MASK;
6866         snpcr |= GEN6_MBC_SNPCR_MED;
6867         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6868
6869         if (!HAS_PCH_NOP(dev))
6870                 cpt_init_clock_gating(dev);
6871
6872         gen6_check_mch_setup(dev);
6873 }
6874
6875 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6876 {
6877         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6878
6879         /*
6880          * Disable trickle feed and enable pnd deadline calculation
6881          */
6882         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6883         I915_WRITE(CBR1_VLV, 0);
6884 }
6885
6886 static void valleyview_init_clock_gating(struct drm_device *dev)
6887 {
6888         struct drm_i915_private *dev_priv = dev->dev_private;
6889
6890         vlv_init_display_clock_gating(dev_priv);
6891
6892         /* WaDisableEarlyCull:vlv */
6893         I915_WRITE(_3D_CHICKEN3,
6894                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6895
6896         /* WaDisableBackToBackFlipFix:vlv */
6897         I915_WRITE(IVB_CHICKEN3,
6898                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6899                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
6900
6901         /* WaPsdDispatchEnable:vlv */
6902         /* WaDisablePSDDualDispatchEnable:vlv */
6903         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6904                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6905                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6906
6907         /* WaDisable_RenderCache_OperationalFlush:vlv */
6908         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6909
6910         /* WaForceL3Serialization:vlv */
6911         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6912                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6913
6914         /* WaDisableDopClockGating:vlv */
6915         I915_WRITE(GEN7_ROW_CHICKEN2,
6916                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6917
6918         /* This is required by WaCatErrorRejectionIssue:vlv */
6919         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6920                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6921                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6922
6923         gen7_setup_fixed_func_scheduler(dev_priv);
6924
6925         /*
6926          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6927          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6928          */
6929         I915_WRITE(GEN6_UCGCTL2,
6930                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6931
6932         /* WaDisableL3Bank2xClockGate:vlv
6933          * Disabling L3 clock gating- MMIO 940c[25] = 1
6934          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6935         I915_WRITE(GEN7_UCGCTL4,
6936                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6937
6938         /*
6939          * BSpec says this must be set, even though
6940          * WaDisable4x2SubspanOptimization isn't listed for VLV.
6941          */
6942         I915_WRITE(CACHE_MODE_1,
6943                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6944
6945         /*
6946          * BSpec recommends 8x4 when MSAA is used,
6947          * however in practice 16x4 seems fastest.
6948          *
6949          * Note that PS/WM thread counts depend on the WIZ hashing
6950          * disable bit, which we don't touch here, but it's good
6951          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6952          */
6953         I915_WRITE(GEN7_GT_MODE,
6954                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6955
6956         /*
6957          * WaIncreaseL3CreditsForVLVB0:vlv
6958          * This is the hardware default actually.
6959          */
6960         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6961
6962         /*
6963          * WaDisableVLVClockGating_VBIIssue:vlv
6964          * Disable clock gating on th GCFG unit to prevent a delay
6965          * in the reporting of vblank events.
6966          */
6967         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6968 }
6969
6970 static void cherryview_init_clock_gating(struct drm_device *dev)
6971 {
6972         struct drm_i915_private *dev_priv = dev->dev_private;
6973
6974         vlv_init_display_clock_gating(dev_priv);
6975
6976         /* WaVSRefCountFullforceMissDisable:chv */
6977         /* WaDSRefCountFullforceMissDisable:chv */
6978         I915_WRITE(GEN7_FF_THREAD_MODE,
6979                    I915_READ(GEN7_FF_THREAD_MODE) &
6980                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6981
6982         /* WaDisableSemaphoreAndSyncFlipWait:chv */
6983         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6984                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6985
6986         /* WaDisableCSUnitClockGating:chv */
6987         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6988                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6989
6990         /* WaDisableSDEUnitClockGating:chv */
6991         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6992                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6993
6994         /*
6995          * GTT cache may not work with big pages, so if those
6996          * are ever enabled GTT cache may need to be disabled.
6997          */
6998         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6999 }
7000
7001 static void g4x_init_clock_gating(struct drm_device *dev)
7002 {
7003         struct drm_i915_private *dev_priv = dev->dev_private;
7004         uint32_t dspclk_gate;
7005
7006         I915_WRITE(RENCLK_GATE_D1, 0);
7007         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7008                    GS_UNIT_CLOCK_GATE_DISABLE |
7009                    CL_UNIT_CLOCK_GATE_DISABLE);
7010         I915_WRITE(RAMCLK_GATE_D, 0);
7011         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7012                 OVRUNIT_CLOCK_GATE_DISABLE |
7013                 OVCUNIT_CLOCK_GATE_DISABLE;
7014         if (IS_GM45(dev))
7015                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7016         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7017
7018         /* WaDisableRenderCachePipelinedFlush */
7019         I915_WRITE(CACHE_MODE_0,
7020                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7021
7022         /* WaDisable_RenderCache_OperationalFlush:g4x */
7023         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7024
7025         g4x_disable_trickle_feed(dev);
7026 }
7027
7028 static void crestline_init_clock_gating(struct drm_device *dev)
7029 {
7030         struct drm_i915_private *dev_priv = dev->dev_private;
7031
7032         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7033         I915_WRITE(RENCLK_GATE_D2, 0);
7034         I915_WRITE(DSPCLK_GATE_D, 0);
7035         I915_WRITE(RAMCLK_GATE_D, 0);
7036         I915_WRITE16(DEUC, 0);
7037         I915_WRITE(MI_ARB_STATE,
7038                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7039
7040         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7041         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7042 }
7043
7044 static void broadwater_init_clock_gating(struct drm_device *dev)
7045 {
7046         struct drm_i915_private *dev_priv = dev->dev_private;
7047
7048         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7049                    I965_RCC_CLOCK_GATE_DISABLE |
7050                    I965_RCPB_CLOCK_GATE_DISABLE |
7051                    I965_ISC_CLOCK_GATE_DISABLE |
7052                    I965_FBC_CLOCK_GATE_DISABLE);
7053         I915_WRITE(RENCLK_GATE_D2, 0);
7054         I915_WRITE(MI_ARB_STATE,
7055                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7056
7057         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7058         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7059 }
7060
7061 static void gen3_init_clock_gating(struct drm_device *dev)
7062 {
7063         struct drm_i915_private *dev_priv = dev->dev_private;
7064         u32 dstate = I915_READ(D_STATE);
7065
7066         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7067                 DSTATE_DOT_CLOCK_GATING;
7068         I915_WRITE(D_STATE, dstate);
7069
7070         if (IS_PINEVIEW(dev))
7071                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7072
7073         /* IIR "flip pending" means done if this bit is set */
7074         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7075
7076         /* interrupts should cause a wake up from C3 */
7077         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7078
7079         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7080         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7081
7082         I915_WRITE(MI_ARB_STATE,
7083                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7084 }
7085
7086 static void i85x_init_clock_gating(struct drm_device *dev)
7087 {
7088         struct drm_i915_private *dev_priv = dev->dev_private;
7089
7090         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7091
7092         /* interrupts should cause a wake up from C3 */
7093         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7094                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7095
7096         I915_WRITE(MEM_MODE,
7097                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7098 }
7099
7100 static void i830_init_clock_gating(struct drm_device *dev)
7101 {
7102         struct drm_i915_private *dev_priv = dev->dev_private;
7103
7104         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7105
7106         I915_WRITE(MEM_MODE,
7107                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7108                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7109 }
7110
7111 void intel_init_clock_gating(struct drm_device *dev)
7112 {
7113         struct drm_i915_private *dev_priv = dev->dev_private;
7114
7115         if (dev_priv->display.init_clock_gating)
7116                 dev_priv->display.init_clock_gating(dev);
7117 }
7118
7119 void intel_suspend_hw(struct drm_device *dev)
7120 {
7121         if (HAS_PCH_LPT(dev))
7122                 lpt_suspend_hw(dev);
7123 }
7124
7125 /* Set up chip specific power management-related functions */
7126 void intel_init_pm(struct drm_device *dev)
7127 {
7128         struct drm_i915_private *dev_priv = dev->dev_private;
7129
7130         intel_fbc_init(dev_priv);
7131
7132         /* For cxsr */
7133         if (IS_PINEVIEW(dev))
7134                 i915_pineview_get_mem_freq(dev);
7135         else if (IS_GEN5(dev))
7136                 i915_ironlake_get_mem_freq(dev);
7137
7138         /* For FIFO watermark updates */
7139         if (INTEL_INFO(dev)->gen >= 9) {
7140                 skl_setup_wm_latency(dev);
7141
7142                 if (IS_BROXTON(dev))
7143                         dev_priv->display.init_clock_gating =
7144                                 bxt_init_clock_gating;
7145                 else if (IS_SKYLAKE(dev))
7146                         dev_priv->display.init_clock_gating =
7147                                 skl_init_clock_gating;
7148                 dev_priv->display.update_wm = skl_update_wm;
7149                 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7150         } else if (HAS_PCH_SPLIT(dev)) {
7151                 ilk_setup_wm_latency(dev);
7152
7153                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7154                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7155                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7156                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7157                         dev_priv->display.update_wm = ilk_update_wm;
7158                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7159                 } else {
7160                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7161                                       "Disable CxSR\n");
7162                 }
7163
7164                 if (IS_GEN5(dev))
7165                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7166                 else if (IS_GEN6(dev))
7167                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7168                 else if (IS_IVYBRIDGE(dev))
7169                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7170                 else if (IS_HASWELL(dev))
7171                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7172                 else if (INTEL_INFO(dev)->gen == 8)
7173                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7174         } else if (IS_CHERRYVIEW(dev)) {
7175                 vlv_setup_wm_latency(dev);
7176
7177                 dev_priv->display.update_wm = vlv_update_wm;
7178                 dev_priv->display.init_clock_gating =
7179                         cherryview_init_clock_gating;
7180         } else if (IS_VALLEYVIEW(dev)) {
7181                 vlv_setup_wm_latency(dev);
7182
7183                 dev_priv->display.update_wm = vlv_update_wm;
7184                 dev_priv->display.init_clock_gating =
7185                         valleyview_init_clock_gating;
7186         } else if (IS_PINEVIEW(dev)) {
7187                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7188                                             dev_priv->is_ddr3,
7189                                             dev_priv->fsb_freq,
7190                                             dev_priv->mem_freq)) {
7191                         DRM_INFO("failed to find known CxSR latency "
7192                                  "(found ddr%s fsb freq %d, mem freq %d), "
7193                                  "disabling CxSR\n",
7194                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7195                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7196                         /* Disable CxSR and never update its watermark again */
7197                         intel_set_memory_cxsr(dev_priv, false);
7198                         dev_priv->display.update_wm = NULL;
7199                 } else
7200                         dev_priv->display.update_wm = pineview_update_wm;
7201                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7202         } else if (IS_G4X(dev)) {
7203                 dev_priv->display.update_wm = g4x_update_wm;
7204                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7205         } else if (IS_GEN4(dev)) {
7206                 dev_priv->display.update_wm = i965_update_wm;
7207                 if (IS_CRESTLINE(dev))
7208                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7209                 else if (IS_BROADWATER(dev))
7210                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7211         } else if (IS_GEN3(dev)) {
7212                 dev_priv->display.update_wm = i9xx_update_wm;
7213                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7214                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7215         } else if (IS_GEN2(dev)) {
7216                 if (INTEL_INFO(dev)->num_pipes == 1) {
7217                         dev_priv->display.update_wm = i845_update_wm;
7218                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7219                 } else {
7220                         dev_priv->display.update_wm = i9xx_update_wm;
7221                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7222                 }
7223
7224                 if (IS_I85X(dev) || IS_I865G(dev))
7225                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7226                 else
7227                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
7228         } else {
7229                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7230         }
7231 }
7232
7233 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7234 {
7235         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7236
7237         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7238                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7239                 return -EAGAIN;
7240         }
7241
7242         I915_WRITE(GEN6_PCODE_DATA, *val);
7243         I915_WRITE(GEN6_PCODE_DATA1, 0);
7244         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7245
7246         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7247                      500)) {
7248                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7249                 return -ETIMEDOUT;
7250         }
7251
7252         *val = I915_READ(GEN6_PCODE_DATA);
7253         I915_WRITE(GEN6_PCODE_DATA, 0);
7254
7255         return 0;
7256 }
7257
7258 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7259 {
7260         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7261
7262         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7263                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7264                 return -EAGAIN;
7265         }
7266
7267         I915_WRITE(GEN6_PCODE_DATA, val);
7268         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7269
7270         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7271                      500)) {
7272                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7273                 return -ETIMEDOUT;
7274         }
7275
7276         I915_WRITE(GEN6_PCODE_DATA, 0);
7277
7278         return 0;
7279 }
7280
7281 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7282 {
7283         switch (czclk_freq) {
7284         case 200:
7285                 return 10;
7286         case 267:
7287                 return 12;
7288         case 320:
7289         case 333:
7290                 return 16;
7291         case 400:
7292                 return 20;
7293         default:
7294                 return -1;
7295         }
7296 }
7297
7298 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7299 {
7300         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7301
7302         div = vlv_gpu_freq_div(czclk_freq);
7303         if (div < 0)
7304                 return div;
7305
7306         return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7307 }
7308
7309 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7310 {
7311         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7312
7313         mul = vlv_gpu_freq_div(czclk_freq);
7314         if (mul < 0)
7315                 return mul;
7316
7317         return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7318 }
7319
7320 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7321 {
7322         int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7323
7324         div = vlv_gpu_freq_div(czclk_freq) / 2;
7325         if (div < 0)
7326                 return div;
7327
7328         return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7329 }
7330
7331 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7332 {
7333         int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7334
7335         mul = vlv_gpu_freq_div(czclk_freq) / 2;
7336         if (mul < 0)
7337                 return mul;
7338
7339         /* CHV needs even values */
7340         return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7341 }
7342
7343 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7344 {
7345         if (IS_GEN9(dev_priv->dev))
7346                 return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
7347         else if (IS_CHERRYVIEW(dev_priv->dev))
7348                 return chv_gpu_freq(dev_priv, val);
7349         else if (IS_VALLEYVIEW(dev_priv->dev))
7350                 return byt_gpu_freq(dev_priv, val);
7351         else
7352                 return val * GT_FREQUENCY_MULTIPLIER;
7353 }
7354
7355 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7356 {
7357         if (IS_GEN9(dev_priv->dev))
7358                 return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
7359         else if (IS_CHERRYVIEW(dev_priv->dev))
7360                 return chv_freq_opcode(dev_priv, val);
7361         else if (IS_VALLEYVIEW(dev_priv->dev))
7362                 return byt_freq_opcode(dev_priv, val);
7363         else
7364                 return val / GT_FREQUENCY_MULTIPLIER;
7365 }
7366
7367 struct request_boost {
7368         struct work_struct work;
7369         struct drm_i915_gem_request *req;
7370 };
7371
7372 static void __intel_rps_boost_work(struct work_struct *work)
7373 {
7374         struct request_boost *boost = container_of(work, struct request_boost, work);
7375         struct drm_i915_gem_request *req = boost->req;
7376
7377         if (!i915_gem_request_completed(req, true))
7378                 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7379                                req->emitted_jiffies);
7380
7381         i915_gem_request_unreference__unlocked(req);
7382         kfree(boost);
7383 }
7384
7385 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7386                                        struct drm_i915_gem_request *req)
7387 {
7388         struct request_boost *boost;
7389
7390         if (req == NULL || INTEL_INFO(dev)->gen < 6)
7391                 return;
7392
7393         if (i915_gem_request_completed(req, true))
7394                 return;
7395
7396         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7397         if (boost == NULL)
7398                 return;
7399
7400         i915_gem_request_reference(req);
7401         boost->req = req;
7402
7403         INIT_WORK(&boost->work, __intel_rps_boost_work);
7404         queue_work(to_i915(dev)->wq, &boost->work);
7405 }
7406
7407 void intel_pm_setup(struct drm_device *dev)
7408 {
7409         struct drm_i915_private *dev_priv = dev->dev_private;
7410
7411         mutex_init(&dev_priv->rps.hw_lock);
7412         spin_lock_init(&dev_priv->rps.client_lock);
7413
7414         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7415                           intel_gen6_powersave_work);
7416         INIT_LIST_HEAD(&dev_priv->rps.clients);
7417         INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7418         INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7419
7420         dev_priv->pm.suspended = false;
7421 }