drm/i915: Init some CHV workarounds via LRIs in ring->init_context()
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->primary->fb;
96         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
97         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
98         int cfb_pitch;
99         int i;
100         u32 fbc_ctl;
101
102         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
103         if (fb->pitches[0] < cfb_pitch)
104                 cfb_pitch = fb->pitches[0];
105
106         /* FBC_CTL wants 32B or 64B units */
107         if (IS_GEN2(dev))
108                 cfb_pitch = (cfb_pitch / 32) - 1;
109         else
110                 cfb_pitch = (cfb_pitch / 64) - 1;
111
112         /* Clear old tags */
113         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
114                 I915_WRITE(FBC_TAG + (i * 4), 0);
115
116         if (IS_GEN4(dev)) {
117                 u32 fbc_ctl2;
118
119                 /* Set it up... */
120                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
121                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
122                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
123                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
124         }
125
126         /* enable it... */
127         fbc_ctl = I915_READ(FBC_CONTROL);
128         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
129         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
130         if (IS_I945GM(dev))
131                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
132         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
133         fbc_ctl |= obj->fence_reg;
134         I915_WRITE(FBC_CONTROL, fbc_ctl);
135
136         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
137                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
138 }
139
140 static bool i8xx_fbc_enabled(struct drm_device *dev)
141 {
142         struct drm_i915_private *dev_priv = dev->dev_private;
143
144         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
145 }
146
147 static void g4x_enable_fbc(struct drm_crtc *crtc)
148 {
149         struct drm_device *dev = crtc->dev;
150         struct drm_i915_private *dev_priv = dev->dev_private;
151         struct drm_framebuffer *fb = crtc->primary->fb;
152         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
154         u32 dpfc_ctl;
155
156         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
157         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
158                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
159         else
160                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
161         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
162
163         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
164
165         /* enable it... */
166         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
167
168         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
169 }
170
171 static void g4x_disable_fbc(struct drm_device *dev)
172 {
173         struct drm_i915_private *dev_priv = dev->dev_private;
174         u32 dpfc_ctl;
175
176         /* Disable compression */
177         dpfc_ctl = I915_READ(DPFC_CONTROL);
178         if (dpfc_ctl & DPFC_CTL_EN) {
179                 dpfc_ctl &= ~DPFC_CTL_EN;
180                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
181
182                 DRM_DEBUG_KMS("disabled FBC\n");
183         }
184 }
185
186 static bool g4x_fbc_enabled(struct drm_device *dev)
187 {
188         struct drm_i915_private *dev_priv = dev->dev_private;
189
190         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
191 }
192
193 static void sandybridge_blit_fbc_update(struct drm_device *dev)
194 {
195         struct drm_i915_private *dev_priv = dev->dev_private;
196         u32 blt_ecoskpd;
197
198         /* Make sure blitter notifies FBC of writes */
199
200         /* Blitter is part of Media powerwell on VLV. No impact of
201          * his param in other platforms for now */
202         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
203
204         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
205         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
206                 GEN6_BLITTER_LOCK_SHIFT;
207         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
208         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
211                          GEN6_BLITTER_LOCK_SHIFT);
212         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
213         POSTING_READ(GEN6_BLITTER_ECOSKPD);
214
215         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
216 }
217
218 static void ironlake_enable_fbc(struct drm_crtc *crtc)
219 {
220         struct drm_device *dev = crtc->dev;
221         struct drm_i915_private *dev_priv = dev->dev_private;
222         struct drm_framebuffer *fb = crtc->primary->fb;
223         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
225         u32 dpfc_ctl;
226
227         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
228         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
229                 dev_priv->fbc.threshold++;
230
231         switch (dev_priv->fbc.threshold) {
232         case 4:
233         case 3:
234                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
235                 break;
236         case 2:
237                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
238                 break;
239         case 1:
240                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
241                 break;
242         }
243         dpfc_ctl |= DPFC_CTL_FENCE_EN;
244         if (IS_GEN5(dev))
245                 dpfc_ctl |= obj->fence_reg;
246
247         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
248         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
249         /* enable it... */
250         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
251
252         if (IS_GEN6(dev)) {
253                 I915_WRITE(SNB_DPFC_CTL_SA,
254                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
255                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
256                 sandybridge_blit_fbc_update(dev);
257         }
258
259         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
260 }
261
262 static void ironlake_disable_fbc(struct drm_device *dev)
263 {
264         struct drm_i915_private *dev_priv = dev->dev_private;
265         u32 dpfc_ctl;
266
267         /* Disable compression */
268         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
269         if (dpfc_ctl & DPFC_CTL_EN) {
270                 dpfc_ctl &= ~DPFC_CTL_EN;
271                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
272
273                 DRM_DEBUG_KMS("disabled FBC\n");
274         }
275 }
276
277 static bool ironlake_fbc_enabled(struct drm_device *dev)
278 {
279         struct drm_i915_private *dev_priv = dev->dev_private;
280
281         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
282 }
283
284 static void gen7_enable_fbc(struct drm_crtc *crtc)
285 {
286         struct drm_device *dev = crtc->dev;
287         struct drm_i915_private *dev_priv = dev->dev_private;
288         struct drm_framebuffer *fb = crtc->primary->fb;
289         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
291         u32 dpfc_ctl;
292
293         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
294         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
295                 dev_priv->fbc.threshold++;
296
297         switch (dev_priv->fbc.threshold) {
298         case 4:
299         case 3:
300                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
301                 break;
302         case 2:
303                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
304                 break;
305         case 1:
306                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
307                 break;
308         }
309
310         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
311
312         if (dev_priv->fbc.false_color)
313                 dpfc_ctl |= FBC_CTL_FALSE_COLOR;
314
315         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
316
317         if (IS_IVYBRIDGE(dev)) {
318                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
319                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
320                            I915_READ(ILK_DISPLAY_CHICKEN1) |
321                            ILK_FBCQ_DIS);
322         } else {
323                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
324                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
325                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
326                            HSW_FBCQ_DIS);
327         }
328
329         I915_WRITE(SNB_DPFC_CTL_SA,
330                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
331         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
332
333         sandybridge_blit_fbc_update(dev);
334
335         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
336 }
337
338 bool intel_fbc_enabled(struct drm_device *dev)
339 {
340         struct drm_i915_private *dev_priv = dev->dev_private;
341
342         if (!dev_priv->display.fbc_enabled)
343                 return false;
344
345         return dev_priv->display.fbc_enabled(dev);
346 }
347
348 void gen8_fbc_sw_flush(struct drm_device *dev, u32 value)
349 {
350         struct drm_i915_private *dev_priv = dev->dev_private;
351
352         if (!IS_GEN8(dev))
353                 return;
354
355         I915_WRITE(MSG_FBC_REND_STATE, value);
356 }
357
358 static void intel_fbc_work_fn(struct work_struct *__work)
359 {
360         struct intel_fbc_work *work =
361                 container_of(to_delayed_work(__work),
362                              struct intel_fbc_work, work);
363         struct drm_device *dev = work->crtc->dev;
364         struct drm_i915_private *dev_priv = dev->dev_private;
365
366         mutex_lock(&dev->struct_mutex);
367         if (work == dev_priv->fbc.fbc_work) {
368                 /* Double check that we haven't switched fb without cancelling
369                  * the prior work.
370                  */
371                 if (work->crtc->primary->fb == work->fb) {
372                         dev_priv->display.enable_fbc(work->crtc);
373
374                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
375                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
376                         dev_priv->fbc.y = work->crtc->y;
377                 }
378
379                 dev_priv->fbc.fbc_work = NULL;
380         }
381         mutex_unlock(&dev->struct_mutex);
382
383         kfree(work);
384 }
385
386 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
387 {
388         if (dev_priv->fbc.fbc_work == NULL)
389                 return;
390
391         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
392
393         /* Synchronisation is provided by struct_mutex and checking of
394          * dev_priv->fbc.fbc_work, so we can perform the cancellation
395          * entirely asynchronously.
396          */
397         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
398                 /* tasklet was killed before being run, clean up */
399                 kfree(dev_priv->fbc.fbc_work);
400
401         /* Mark the work as no longer wanted so that if it does
402          * wake-up (because the work was already running and waiting
403          * for our mutex), it will discover that is no longer
404          * necessary to run.
405          */
406         dev_priv->fbc.fbc_work = NULL;
407 }
408
409 static void intel_enable_fbc(struct drm_crtc *crtc)
410 {
411         struct intel_fbc_work *work;
412         struct drm_device *dev = crtc->dev;
413         struct drm_i915_private *dev_priv = dev->dev_private;
414
415         if (!dev_priv->display.enable_fbc)
416                 return;
417
418         intel_cancel_fbc_work(dev_priv);
419
420         work = kzalloc(sizeof(*work), GFP_KERNEL);
421         if (work == NULL) {
422                 DRM_ERROR("Failed to allocate FBC work structure\n");
423                 dev_priv->display.enable_fbc(crtc);
424                 return;
425         }
426
427         work->crtc = crtc;
428         work->fb = crtc->primary->fb;
429         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
430
431         dev_priv->fbc.fbc_work = work;
432
433         /* Delay the actual enabling to let pageflipping cease and the
434          * display to settle before starting the compression. Note that
435          * this delay also serves a second purpose: it allows for a
436          * vblank to pass after disabling the FBC before we attempt
437          * to modify the control registers.
438          *
439          * A more complicated solution would involve tracking vblanks
440          * following the termination of the page-flipping sequence
441          * and indeed performing the enable as a co-routine and not
442          * waiting synchronously upon the vblank.
443          *
444          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
445          */
446         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
447 }
448
449 void intel_disable_fbc(struct drm_device *dev)
450 {
451         struct drm_i915_private *dev_priv = dev->dev_private;
452
453         intel_cancel_fbc_work(dev_priv);
454
455         if (!dev_priv->display.disable_fbc)
456                 return;
457
458         dev_priv->display.disable_fbc(dev);
459         dev_priv->fbc.plane = -1;
460 }
461
462 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
463                               enum no_fbc_reason reason)
464 {
465         if (dev_priv->fbc.no_fbc_reason == reason)
466                 return false;
467
468         dev_priv->fbc.no_fbc_reason = reason;
469         return true;
470 }
471
472 /**
473  * intel_update_fbc - enable/disable FBC as needed
474  * @dev: the drm_device
475  *
476  * Set up the framebuffer compression hardware at mode set time.  We
477  * enable it if possible:
478  *   - plane A only (on pre-965)
479  *   - no pixel mulitply/line duplication
480  *   - no alpha buffer discard
481  *   - no dual wide
482  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
483  *
484  * We can't assume that any compression will take place (worst case),
485  * so the compressed buffer has to be the same size as the uncompressed
486  * one.  It also must reside (along with the line length buffer) in
487  * stolen memory.
488  *
489  * We need to enable/disable FBC on a global basis.
490  */
491 void intel_update_fbc(struct drm_device *dev)
492 {
493         struct drm_i915_private *dev_priv = dev->dev_private;
494         struct drm_crtc *crtc = NULL, *tmp_crtc;
495         struct intel_crtc *intel_crtc;
496         struct drm_framebuffer *fb;
497         struct drm_i915_gem_object *obj;
498         const struct drm_display_mode *adjusted_mode;
499         unsigned int max_width, max_height;
500
501         if (!HAS_FBC(dev)) {
502                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
503                 return;
504         }
505
506         if (!i915.powersave) {
507                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
508                         DRM_DEBUG_KMS("fbc disabled per module param\n");
509                 return;
510         }
511
512         /*
513          * If FBC is already on, we just have to verify that we can
514          * keep it that way...
515          * Need to disable if:
516          *   - more than one pipe is active
517          *   - changing FBC params (stride, fence, mode)
518          *   - new fb is too large to fit in compressed buffer
519          *   - going to an unsupported config (interlace, pixel multiply, etc.)
520          */
521         for_each_crtc(dev, tmp_crtc) {
522                 if (intel_crtc_active(tmp_crtc) &&
523                     to_intel_crtc(tmp_crtc)->primary_enabled) {
524                         if (crtc) {
525                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
526                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
527                                 goto out_disable;
528                         }
529                         crtc = tmp_crtc;
530                 }
531         }
532
533         if (!crtc || crtc->primary->fb == NULL) {
534                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
535                         DRM_DEBUG_KMS("no output, disabling\n");
536                 goto out_disable;
537         }
538
539         intel_crtc = to_intel_crtc(crtc);
540         fb = crtc->primary->fb;
541         obj = intel_fb_obj(fb);
542         adjusted_mode = &intel_crtc->config.adjusted_mode;
543
544         if (i915.enable_fbc < 0) {
545                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
546                         DRM_DEBUG_KMS("disabled per chip default\n");
547                 goto out_disable;
548         }
549         if (!i915.enable_fbc) {
550                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
551                         DRM_DEBUG_KMS("fbc disabled per module param\n");
552                 goto out_disable;
553         }
554         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
555             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
556                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
557                         DRM_DEBUG_KMS("mode incompatible with compression, "
558                                       "disabling\n");
559                 goto out_disable;
560         }
561
562         if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
563                 max_width = 4096;
564                 max_height = 4096;
565         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
566                 max_width = 4096;
567                 max_height = 2048;
568         } else {
569                 max_width = 2048;
570                 max_height = 1536;
571         }
572         if (intel_crtc->config.pipe_src_w > max_width ||
573             intel_crtc->config.pipe_src_h > max_height) {
574                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
575                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
576                 goto out_disable;
577         }
578         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
579             intel_crtc->plane != PLANE_A) {
580                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
581                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
582                 goto out_disable;
583         }
584
585         /* The use of a CPU fence is mandatory in order to detect writes
586          * by the CPU to the scanout and trigger updates to the FBC.
587          */
588         if (obj->tiling_mode != I915_TILING_X ||
589             obj->fence_reg == I915_FENCE_REG_NONE) {
590                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
591                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
592                 goto out_disable;
593         }
594         if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
595             to_intel_plane(crtc->primary)->rotation != BIT(DRM_ROTATE_0)) {
596                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
597                         DRM_DEBUG_KMS("Rotation unsupported, disabling\n");
598                 goto out_disable;
599         }
600
601         /* If the kernel debugger is active, always disable compression */
602         if (in_dbg_master())
603                 goto out_disable;
604
605         if (i915_gem_stolen_setup_compression(dev, obj->base.size,
606                                               drm_format_plane_cpp(fb->pixel_format, 0))) {
607                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
608                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
609                 goto out_disable;
610         }
611
612         /* If the scanout has not changed, don't modify the FBC settings.
613          * Note that we make the fundamental assumption that the fb->obj
614          * cannot be unpinned (and have its GTT offset and fence revoked)
615          * without first being decoupled from the scanout and FBC disabled.
616          */
617         if (dev_priv->fbc.plane == intel_crtc->plane &&
618             dev_priv->fbc.fb_id == fb->base.id &&
619             dev_priv->fbc.y == crtc->y)
620                 return;
621
622         if (intel_fbc_enabled(dev)) {
623                 /* We update FBC along two paths, after changing fb/crtc
624                  * configuration (modeswitching) and after page-flipping
625                  * finishes. For the latter, we know that not only did
626                  * we disable the FBC at the start of the page-flip
627                  * sequence, but also more than one vblank has passed.
628                  *
629                  * For the former case of modeswitching, it is possible
630                  * to switch between two FBC valid configurations
631                  * instantaneously so we do need to disable the FBC
632                  * before we can modify its control registers. We also
633                  * have to wait for the next vblank for that to take
634                  * effect. However, since we delay enabling FBC we can
635                  * assume that a vblank has passed since disabling and
636                  * that we can safely alter the registers in the deferred
637                  * callback.
638                  *
639                  * In the scenario that we go from a valid to invalid
640                  * and then back to valid FBC configuration we have
641                  * no strict enforcement that a vblank occurred since
642                  * disabling the FBC. However, along all current pipe
643                  * disabling paths we do need to wait for a vblank at
644                  * some point. And we wait before enabling FBC anyway.
645                  */
646                 DRM_DEBUG_KMS("disabling active FBC for update\n");
647                 intel_disable_fbc(dev);
648         }
649
650         intel_enable_fbc(crtc);
651         dev_priv->fbc.no_fbc_reason = FBC_OK;
652         return;
653
654 out_disable:
655         /* Multiple disables should be harmless */
656         if (intel_fbc_enabled(dev)) {
657                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
658                 intel_disable_fbc(dev);
659         }
660         i915_gem_stolen_cleanup_compression(dev);
661 }
662
663 static void i915_pineview_get_mem_freq(struct drm_device *dev)
664 {
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         u32 tmp;
667
668         tmp = I915_READ(CLKCFG);
669
670         switch (tmp & CLKCFG_FSB_MASK) {
671         case CLKCFG_FSB_533:
672                 dev_priv->fsb_freq = 533; /* 133*4 */
673                 break;
674         case CLKCFG_FSB_800:
675                 dev_priv->fsb_freq = 800; /* 200*4 */
676                 break;
677         case CLKCFG_FSB_667:
678                 dev_priv->fsb_freq =  667; /* 167*4 */
679                 break;
680         case CLKCFG_FSB_400:
681                 dev_priv->fsb_freq = 400; /* 100*4 */
682                 break;
683         }
684
685         switch (tmp & CLKCFG_MEM_MASK) {
686         case CLKCFG_MEM_533:
687                 dev_priv->mem_freq = 533;
688                 break;
689         case CLKCFG_MEM_667:
690                 dev_priv->mem_freq = 667;
691                 break;
692         case CLKCFG_MEM_800:
693                 dev_priv->mem_freq = 800;
694                 break;
695         }
696
697         /* detect pineview DDR3 setting */
698         tmp = I915_READ(CSHRDDR3CTL);
699         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
700 }
701
702 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
703 {
704         struct drm_i915_private *dev_priv = dev->dev_private;
705         u16 ddrpll, csipll;
706
707         ddrpll = I915_READ16(DDRMPLL1);
708         csipll = I915_READ16(CSIPLL0);
709
710         switch (ddrpll & 0xff) {
711         case 0xc:
712                 dev_priv->mem_freq = 800;
713                 break;
714         case 0x10:
715                 dev_priv->mem_freq = 1066;
716                 break;
717         case 0x14:
718                 dev_priv->mem_freq = 1333;
719                 break;
720         case 0x18:
721                 dev_priv->mem_freq = 1600;
722                 break;
723         default:
724                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
725                                  ddrpll & 0xff);
726                 dev_priv->mem_freq = 0;
727                 break;
728         }
729
730         dev_priv->ips.r_t = dev_priv->mem_freq;
731
732         switch (csipll & 0x3ff) {
733         case 0x00c:
734                 dev_priv->fsb_freq = 3200;
735                 break;
736         case 0x00e:
737                 dev_priv->fsb_freq = 3733;
738                 break;
739         case 0x010:
740                 dev_priv->fsb_freq = 4266;
741                 break;
742         case 0x012:
743                 dev_priv->fsb_freq = 4800;
744                 break;
745         case 0x014:
746                 dev_priv->fsb_freq = 5333;
747                 break;
748         case 0x016:
749                 dev_priv->fsb_freq = 5866;
750                 break;
751         case 0x018:
752                 dev_priv->fsb_freq = 6400;
753                 break;
754         default:
755                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
756                                  csipll & 0x3ff);
757                 dev_priv->fsb_freq = 0;
758                 break;
759         }
760
761         if (dev_priv->fsb_freq == 3200) {
762                 dev_priv->ips.c_m = 0;
763         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
764                 dev_priv->ips.c_m = 1;
765         } else {
766                 dev_priv->ips.c_m = 2;
767         }
768 }
769
770 static const struct cxsr_latency cxsr_latency_table[] = {
771         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
772         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
773         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
774         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
775         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
776
777         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
778         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
779         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
780         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
781         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
782
783         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
784         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
785         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
786         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
787         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
788
789         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
790         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
791         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
792         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
793         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
794
795         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
796         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
797         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
798         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
799         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
800
801         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
802         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
803         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
804         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
805         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
806 };
807
808 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
809                                                          int is_ddr3,
810                                                          int fsb,
811                                                          int mem)
812 {
813         const struct cxsr_latency *latency;
814         int i;
815
816         if (fsb == 0 || mem == 0)
817                 return NULL;
818
819         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
820                 latency = &cxsr_latency_table[i];
821                 if (is_desktop == latency->is_desktop &&
822                     is_ddr3 == latency->is_ddr3 &&
823                     fsb == latency->fsb_freq && mem == latency->mem_freq)
824                         return latency;
825         }
826
827         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
828
829         return NULL;
830 }
831
832 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
833 {
834         struct drm_device *dev = dev_priv->dev;
835         u32 val;
836
837         if (IS_VALLEYVIEW(dev)) {
838                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
839         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
840                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
841         } else if (IS_PINEVIEW(dev)) {
842                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
843                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
844                 I915_WRITE(DSPFW3, val);
845         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
846                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
847                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
848                 I915_WRITE(FW_BLC_SELF, val);
849         } else if (IS_I915GM(dev)) {
850                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
851                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
852                 I915_WRITE(INSTPM, val);
853         } else {
854                 return;
855         }
856
857         DRM_DEBUG_KMS("memory self-refresh is %s\n",
858                       enable ? "enabled" : "disabled");
859 }
860
861 /*
862  * Latency for FIFO fetches is dependent on several factors:
863  *   - memory configuration (speed, channels)
864  *   - chipset
865  *   - current MCH state
866  * It can be fairly high in some situations, so here we assume a fairly
867  * pessimal value.  It's a tradeoff between extra memory fetches (if we
868  * set this value too high, the FIFO will fetch frequently to stay full)
869  * and power consumption (set it too low to save power and we might see
870  * FIFO underruns and display "flicker").
871  *
872  * A value of 5us seems to be a good balance; safe for very low end
873  * platforms but not overly aggressive on lower latency configs.
874  */
875 static const int latency_ns = 5000;
876
877 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
878 {
879         struct drm_i915_private *dev_priv = dev->dev_private;
880         uint32_t dsparb = I915_READ(DSPARB);
881         int size;
882
883         size = dsparb & 0x7f;
884         if (plane)
885                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
886
887         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
888                       plane ? "B" : "A", size);
889
890         return size;
891 }
892
893 static int i830_get_fifo_size(struct drm_device *dev, int plane)
894 {
895         struct drm_i915_private *dev_priv = dev->dev_private;
896         uint32_t dsparb = I915_READ(DSPARB);
897         int size;
898
899         size = dsparb & 0x1ff;
900         if (plane)
901                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
902         size >>= 1; /* Convert to cachelines */
903
904         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
905                       plane ? "B" : "A", size);
906
907         return size;
908 }
909
910 static int i845_get_fifo_size(struct drm_device *dev, int plane)
911 {
912         struct drm_i915_private *dev_priv = dev->dev_private;
913         uint32_t dsparb = I915_READ(DSPARB);
914         int size;
915
916         size = dsparb & 0x7f;
917         size >>= 2; /* Convert to cachelines */
918
919         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
920                       plane ? "B" : "A",
921                       size);
922
923         return size;
924 }
925
926 /* Pineview has different values for various configs */
927 static const struct intel_watermark_params pineview_display_wm = {
928         .fifo_size = PINEVIEW_DISPLAY_FIFO,
929         .max_wm = PINEVIEW_MAX_WM,
930         .default_wm = PINEVIEW_DFT_WM,
931         .guard_size = PINEVIEW_GUARD_WM,
932         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
933 };
934 static const struct intel_watermark_params pineview_display_hplloff_wm = {
935         .fifo_size = PINEVIEW_DISPLAY_FIFO,
936         .max_wm = PINEVIEW_MAX_WM,
937         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
938         .guard_size = PINEVIEW_GUARD_WM,
939         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
940 };
941 static const struct intel_watermark_params pineview_cursor_wm = {
942         .fifo_size = PINEVIEW_CURSOR_FIFO,
943         .max_wm = PINEVIEW_CURSOR_MAX_WM,
944         .default_wm = PINEVIEW_CURSOR_DFT_WM,
945         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
946         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
947 };
948 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
949         .fifo_size = PINEVIEW_CURSOR_FIFO,
950         .max_wm = PINEVIEW_CURSOR_MAX_WM,
951         .default_wm = PINEVIEW_CURSOR_DFT_WM,
952         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
953         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
954 };
955 static const struct intel_watermark_params g4x_wm_info = {
956         .fifo_size = G4X_FIFO_SIZE,
957         .max_wm = G4X_MAX_WM,
958         .default_wm = G4X_MAX_WM,
959         .guard_size = 2,
960         .cacheline_size = G4X_FIFO_LINE_SIZE,
961 };
962 static const struct intel_watermark_params g4x_cursor_wm_info = {
963         .fifo_size = I965_CURSOR_FIFO,
964         .max_wm = I965_CURSOR_MAX_WM,
965         .default_wm = I965_CURSOR_DFT_WM,
966         .guard_size = 2,
967         .cacheline_size = G4X_FIFO_LINE_SIZE,
968 };
969 static const struct intel_watermark_params valleyview_wm_info = {
970         .fifo_size = VALLEYVIEW_FIFO_SIZE,
971         .max_wm = VALLEYVIEW_MAX_WM,
972         .default_wm = VALLEYVIEW_MAX_WM,
973         .guard_size = 2,
974         .cacheline_size = G4X_FIFO_LINE_SIZE,
975 };
976 static const struct intel_watermark_params valleyview_cursor_wm_info = {
977         .fifo_size = I965_CURSOR_FIFO,
978         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
979         .default_wm = I965_CURSOR_DFT_WM,
980         .guard_size = 2,
981         .cacheline_size = G4X_FIFO_LINE_SIZE,
982 };
983 static const struct intel_watermark_params i965_cursor_wm_info = {
984         .fifo_size = I965_CURSOR_FIFO,
985         .max_wm = I965_CURSOR_MAX_WM,
986         .default_wm = I965_CURSOR_DFT_WM,
987         .guard_size = 2,
988         .cacheline_size = I915_FIFO_LINE_SIZE,
989 };
990 static const struct intel_watermark_params i945_wm_info = {
991         .fifo_size = I945_FIFO_SIZE,
992         .max_wm = I915_MAX_WM,
993         .default_wm = 1,
994         .guard_size = 2,
995         .cacheline_size = I915_FIFO_LINE_SIZE,
996 };
997 static const struct intel_watermark_params i915_wm_info = {
998         .fifo_size = I915_FIFO_SIZE,
999         .max_wm = I915_MAX_WM,
1000         .default_wm = 1,
1001         .guard_size = 2,
1002         .cacheline_size = I915_FIFO_LINE_SIZE,
1003 };
1004 static const struct intel_watermark_params i830_wm_info = {
1005         .fifo_size = I855GM_FIFO_SIZE,
1006         .max_wm = I915_MAX_WM,
1007         .default_wm = 1,
1008         .guard_size = 2,
1009         .cacheline_size = I830_FIFO_LINE_SIZE,
1010 };
1011 static const struct intel_watermark_params i845_wm_info = {
1012         .fifo_size = I830_FIFO_SIZE,
1013         .max_wm = I915_MAX_WM,
1014         .default_wm = 1,
1015         .guard_size = 2,
1016         .cacheline_size = I830_FIFO_LINE_SIZE,
1017 };
1018
1019 /**
1020  * intel_calculate_wm - calculate watermark level
1021  * @clock_in_khz: pixel clock
1022  * @wm: chip FIFO params
1023  * @pixel_size: display pixel size
1024  * @latency_ns: memory latency for the platform
1025  *
1026  * Calculate the watermark level (the level at which the display plane will
1027  * start fetching from memory again).  Each chip has a different display
1028  * FIFO size and allocation, so the caller needs to figure that out and pass
1029  * in the correct intel_watermark_params structure.
1030  *
1031  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1032  * on the pixel size.  When it reaches the watermark level, it'll start
1033  * fetching FIFO line sized based chunks from memory until the FIFO fills
1034  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1035  * will occur, and a display engine hang could result.
1036  */
1037 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1038                                         const struct intel_watermark_params *wm,
1039                                         int fifo_size,
1040                                         int pixel_size,
1041                                         unsigned long latency_ns)
1042 {
1043         long entries_required, wm_size;
1044
1045         /*
1046          * Note: we need to make sure we don't overflow for various clock &
1047          * latency values.
1048          * clocks go from a few thousand to several hundred thousand.
1049          * latency is usually a few thousand
1050          */
1051         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1052                 1000;
1053         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1054
1055         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1056
1057         wm_size = fifo_size - (entries_required + wm->guard_size);
1058
1059         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1060
1061         /* Don't promote wm_size to unsigned... */
1062         if (wm_size > (long)wm->max_wm)
1063                 wm_size = wm->max_wm;
1064         if (wm_size <= 0)
1065                 wm_size = wm->default_wm;
1066         return wm_size;
1067 }
1068
1069 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1070 {
1071         struct drm_crtc *crtc, *enabled = NULL;
1072
1073         for_each_crtc(dev, crtc) {
1074                 if (intel_crtc_active(crtc)) {
1075                         if (enabled)
1076                                 return NULL;
1077                         enabled = crtc;
1078                 }
1079         }
1080
1081         return enabled;
1082 }
1083
1084 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1085 {
1086         struct drm_device *dev = unused_crtc->dev;
1087         struct drm_i915_private *dev_priv = dev->dev_private;
1088         struct drm_crtc *crtc;
1089         const struct cxsr_latency *latency;
1090         u32 reg;
1091         unsigned long wm;
1092
1093         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1094                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1095         if (!latency) {
1096                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1097                 intel_set_memory_cxsr(dev_priv, false);
1098                 return;
1099         }
1100
1101         crtc = single_enabled_crtc(dev);
1102         if (crtc) {
1103                 const struct drm_display_mode *adjusted_mode;
1104                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1105                 int clock;
1106
1107                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1108                 clock = adjusted_mode->crtc_clock;
1109
1110                 /* Display SR */
1111                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1112                                         pineview_display_wm.fifo_size,
1113                                         pixel_size, latency->display_sr);
1114                 reg = I915_READ(DSPFW1);
1115                 reg &= ~DSPFW_SR_MASK;
1116                 reg |= wm << DSPFW_SR_SHIFT;
1117                 I915_WRITE(DSPFW1, reg);
1118                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1119
1120                 /* cursor SR */
1121                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1122                                         pineview_display_wm.fifo_size,
1123                                         pixel_size, latency->cursor_sr);
1124                 reg = I915_READ(DSPFW3);
1125                 reg &= ~DSPFW_CURSOR_SR_MASK;
1126                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1127                 I915_WRITE(DSPFW3, reg);
1128
1129                 /* Display HPLL off SR */
1130                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1131                                         pineview_display_hplloff_wm.fifo_size,
1132                                         pixel_size, latency->display_hpll_disable);
1133                 reg = I915_READ(DSPFW3);
1134                 reg &= ~DSPFW_HPLL_SR_MASK;
1135                 reg |= wm & DSPFW_HPLL_SR_MASK;
1136                 I915_WRITE(DSPFW3, reg);
1137
1138                 /* cursor HPLL off SR */
1139                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1140                                         pineview_display_hplloff_wm.fifo_size,
1141                                         pixel_size, latency->cursor_hpll_disable);
1142                 reg = I915_READ(DSPFW3);
1143                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1144                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1145                 I915_WRITE(DSPFW3, reg);
1146                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1147
1148                 intel_set_memory_cxsr(dev_priv, true);
1149         } else {
1150                 intel_set_memory_cxsr(dev_priv, false);
1151         }
1152 }
1153
1154 static bool g4x_compute_wm0(struct drm_device *dev,
1155                             int plane,
1156                             const struct intel_watermark_params *display,
1157                             int display_latency_ns,
1158                             const struct intel_watermark_params *cursor,
1159                             int cursor_latency_ns,
1160                             int *plane_wm,
1161                             int *cursor_wm)
1162 {
1163         struct drm_crtc *crtc;
1164         const struct drm_display_mode *adjusted_mode;
1165         int htotal, hdisplay, clock, pixel_size;
1166         int line_time_us, line_count;
1167         int entries, tlb_miss;
1168
1169         crtc = intel_get_crtc_for_plane(dev, plane);
1170         if (!intel_crtc_active(crtc)) {
1171                 *cursor_wm = cursor->guard_size;
1172                 *plane_wm = display->guard_size;
1173                 return false;
1174         }
1175
1176         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1177         clock = adjusted_mode->crtc_clock;
1178         htotal = adjusted_mode->crtc_htotal;
1179         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1180         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1181
1182         /* Use the small buffer method to calculate plane watermark */
1183         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1184         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1185         if (tlb_miss > 0)
1186                 entries += tlb_miss;
1187         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1188         *plane_wm = entries + display->guard_size;
1189         if (*plane_wm > (int)display->max_wm)
1190                 *plane_wm = display->max_wm;
1191
1192         /* Use the large buffer method to calculate cursor watermark */
1193         line_time_us = max(htotal * 1000 / clock, 1);
1194         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1195         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1196         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1197         if (tlb_miss > 0)
1198                 entries += tlb_miss;
1199         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1200         *cursor_wm = entries + cursor->guard_size;
1201         if (*cursor_wm > (int)cursor->max_wm)
1202                 *cursor_wm = (int)cursor->max_wm;
1203
1204         return true;
1205 }
1206
1207 /*
1208  * Check the wm result.
1209  *
1210  * If any calculated watermark values is larger than the maximum value that
1211  * can be programmed into the associated watermark register, that watermark
1212  * must be disabled.
1213  */
1214 static bool g4x_check_srwm(struct drm_device *dev,
1215                            int display_wm, int cursor_wm,
1216                            const struct intel_watermark_params *display,
1217                            const struct intel_watermark_params *cursor)
1218 {
1219         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1220                       display_wm, cursor_wm);
1221
1222         if (display_wm > display->max_wm) {
1223                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1224                               display_wm, display->max_wm);
1225                 return false;
1226         }
1227
1228         if (cursor_wm > cursor->max_wm) {
1229                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1230                               cursor_wm, cursor->max_wm);
1231                 return false;
1232         }
1233
1234         if (!(display_wm || cursor_wm)) {
1235                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1236                 return false;
1237         }
1238
1239         return true;
1240 }
1241
1242 static bool g4x_compute_srwm(struct drm_device *dev,
1243                              int plane,
1244                              int latency_ns,
1245                              const struct intel_watermark_params *display,
1246                              const struct intel_watermark_params *cursor,
1247                              int *display_wm, int *cursor_wm)
1248 {
1249         struct drm_crtc *crtc;
1250         const struct drm_display_mode *adjusted_mode;
1251         int hdisplay, htotal, pixel_size, clock;
1252         unsigned long line_time_us;
1253         int line_count, line_size;
1254         int small, large;
1255         int entries;
1256
1257         if (!latency_ns) {
1258                 *display_wm = *cursor_wm = 0;
1259                 return false;
1260         }
1261
1262         crtc = intel_get_crtc_for_plane(dev, plane);
1263         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1264         clock = adjusted_mode->crtc_clock;
1265         htotal = adjusted_mode->crtc_htotal;
1266         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1267         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1268
1269         line_time_us = max(htotal * 1000 / clock, 1);
1270         line_count = (latency_ns / line_time_us + 1000) / 1000;
1271         line_size = hdisplay * pixel_size;
1272
1273         /* Use the minimum of the small and large buffer method for primary */
1274         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1275         large = line_count * line_size;
1276
1277         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1278         *display_wm = entries + display->guard_size;
1279
1280         /* calculate the self-refresh watermark for display cursor */
1281         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1282         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1283         *cursor_wm = entries + cursor->guard_size;
1284
1285         return g4x_check_srwm(dev,
1286                               *display_wm, *cursor_wm,
1287                               display, cursor);
1288 }
1289
1290 static bool vlv_compute_drain_latency(struct drm_crtc *crtc,
1291                                       int pixel_size,
1292                                       int *prec_mult,
1293                                       int *drain_latency)
1294 {
1295         int entries;
1296         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1297
1298         if (WARN(clock == 0, "Pixel clock is zero!\n"))
1299                 return false;
1300
1301         if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
1302                 return false;
1303
1304         entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
1305         *prec_mult = (entries > 128) ? DRAIN_LATENCY_PRECISION_64 :
1306                                        DRAIN_LATENCY_PRECISION_32;
1307         *drain_latency = (64 * (*prec_mult) * 4) / entries;
1308
1309         if (*drain_latency > DRAIN_LATENCY_MASK)
1310                 *drain_latency = DRAIN_LATENCY_MASK;
1311
1312         return true;
1313 }
1314
1315 /*
1316  * Update drain latency registers of memory arbiter
1317  *
1318  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1319  * to be programmed. Each plane has a drain latency multiplier and a drain
1320  * latency value.
1321  */
1322
1323 static void vlv_update_drain_latency(struct drm_crtc *crtc)
1324 {
1325         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1326         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1327         int pixel_size;
1328         int drain_latency;
1329         enum pipe pipe = intel_crtc->pipe;
1330         int plane_prec, prec_mult, plane_dl;
1331
1332         plane_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_PLANE_PRECISION_64 |
1333                    DRAIN_LATENCY_MASK | DDL_CURSOR_PRECISION_64 |
1334                    (DRAIN_LATENCY_MASK << DDL_CURSOR_SHIFT));
1335
1336         if (!intel_crtc_active(crtc)) {
1337                 I915_WRITE(VLV_DDL(pipe), plane_dl);
1338                 return;
1339         }
1340
1341         /* Primary plane Drain Latency */
1342         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1343         if (vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1344                 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1345                                            DDL_PLANE_PRECISION_64 :
1346                                            DDL_PLANE_PRECISION_32;
1347                 plane_dl |= plane_prec | drain_latency;
1348         }
1349
1350         /* Cursor Drain Latency
1351          * BPP is always 4 for cursor
1352          */
1353         pixel_size = 4;
1354
1355         /* Program cursor DL only if it is enabled */
1356         if (intel_crtc->cursor_base &&
1357             vlv_compute_drain_latency(crtc, pixel_size, &prec_mult, &drain_latency)) {
1358                 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1359                                            DDL_CURSOR_PRECISION_64 :
1360                                            DDL_CURSOR_PRECISION_32;
1361                 plane_dl |= plane_prec | (drain_latency << DDL_CURSOR_SHIFT);
1362         }
1363
1364         I915_WRITE(VLV_DDL(pipe), plane_dl);
1365 }
1366
1367 #define single_plane_enabled(mask) is_power_of_2(mask)
1368
1369 static void valleyview_update_wm(struct drm_crtc *crtc)
1370 {
1371         struct drm_device *dev = crtc->dev;
1372         static const int sr_latency_ns = 12000;
1373         struct drm_i915_private *dev_priv = dev->dev_private;
1374         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1375         int plane_sr, cursor_sr;
1376         int ignore_plane_sr, ignore_cursor_sr;
1377         unsigned int enabled = 0;
1378         bool cxsr_enabled;
1379
1380         vlv_update_drain_latency(crtc);
1381
1382         if (g4x_compute_wm0(dev, PIPE_A,
1383                             &valleyview_wm_info, latency_ns,
1384                             &valleyview_cursor_wm_info, latency_ns,
1385                             &planea_wm, &cursora_wm))
1386                 enabled |= 1 << PIPE_A;
1387
1388         if (g4x_compute_wm0(dev, PIPE_B,
1389                             &valleyview_wm_info, latency_ns,
1390                             &valleyview_cursor_wm_info, latency_ns,
1391                             &planeb_wm, &cursorb_wm))
1392                 enabled |= 1 << PIPE_B;
1393
1394         if (single_plane_enabled(enabled) &&
1395             g4x_compute_srwm(dev, ffs(enabled) - 1,
1396                              sr_latency_ns,
1397                              &valleyview_wm_info,
1398                              &valleyview_cursor_wm_info,
1399                              &plane_sr, &ignore_cursor_sr) &&
1400             g4x_compute_srwm(dev, ffs(enabled) - 1,
1401                              2*sr_latency_ns,
1402                              &valleyview_wm_info,
1403                              &valleyview_cursor_wm_info,
1404                              &ignore_plane_sr, &cursor_sr)) {
1405                 cxsr_enabled = true;
1406         } else {
1407                 cxsr_enabled = false;
1408                 intel_set_memory_cxsr(dev_priv, false);
1409                 plane_sr = cursor_sr = 0;
1410         }
1411
1412         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1413                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1414                       planea_wm, cursora_wm,
1415                       planeb_wm, cursorb_wm,
1416                       plane_sr, cursor_sr);
1417
1418         I915_WRITE(DSPFW1,
1419                    (plane_sr << DSPFW_SR_SHIFT) |
1420                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1421                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1422                    (planea_wm << DSPFW_PLANEA_SHIFT));
1423         I915_WRITE(DSPFW2,
1424                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1425                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1426         I915_WRITE(DSPFW3,
1427                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1428                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1429
1430         if (cxsr_enabled)
1431                 intel_set_memory_cxsr(dev_priv, true);
1432 }
1433
1434 static void cherryview_update_wm(struct drm_crtc *crtc)
1435 {
1436         struct drm_device *dev = crtc->dev;
1437         static const int sr_latency_ns = 12000;
1438         struct drm_i915_private *dev_priv = dev->dev_private;
1439         int planea_wm, planeb_wm, planec_wm;
1440         int cursora_wm, cursorb_wm, cursorc_wm;
1441         int plane_sr, cursor_sr;
1442         int ignore_plane_sr, ignore_cursor_sr;
1443         unsigned int enabled = 0;
1444         bool cxsr_enabled;
1445
1446         vlv_update_drain_latency(crtc);
1447
1448         if (g4x_compute_wm0(dev, PIPE_A,
1449                             &valleyview_wm_info, latency_ns,
1450                             &valleyview_cursor_wm_info, latency_ns,
1451                             &planea_wm, &cursora_wm))
1452                 enabled |= 1 << PIPE_A;
1453
1454         if (g4x_compute_wm0(dev, PIPE_B,
1455                             &valleyview_wm_info, latency_ns,
1456                             &valleyview_cursor_wm_info, latency_ns,
1457                             &planeb_wm, &cursorb_wm))
1458                 enabled |= 1 << PIPE_B;
1459
1460         if (g4x_compute_wm0(dev, PIPE_C,
1461                             &valleyview_wm_info, latency_ns,
1462                             &valleyview_cursor_wm_info, latency_ns,
1463                             &planec_wm, &cursorc_wm))
1464                 enabled |= 1 << PIPE_C;
1465
1466         if (single_plane_enabled(enabled) &&
1467             g4x_compute_srwm(dev, ffs(enabled) - 1,
1468                              sr_latency_ns,
1469                              &valleyview_wm_info,
1470                              &valleyview_cursor_wm_info,
1471                              &plane_sr, &ignore_cursor_sr) &&
1472             g4x_compute_srwm(dev, ffs(enabled) - 1,
1473                              2*sr_latency_ns,
1474                              &valleyview_wm_info,
1475                              &valleyview_cursor_wm_info,
1476                              &ignore_plane_sr, &cursor_sr)) {
1477                 cxsr_enabled = true;
1478         } else {
1479                 cxsr_enabled = false;
1480                 intel_set_memory_cxsr(dev_priv, false);
1481                 plane_sr = cursor_sr = 0;
1482         }
1483
1484         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1485                       "B: plane=%d, cursor=%d, C: plane=%d, cursor=%d, "
1486                       "SR: plane=%d, cursor=%d\n",
1487                       planea_wm, cursora_wm,
1488                       planeb_wm, cursorb_wm,
1489                       planec_wm, cursorc_wm,
1490                       plane_sr, cursor_sr);
1491
1492         I915_WRITE(DSPFW1,
1493                    (plane_sr << DSPFW_SR_SHIFT) |
1494                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1495                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1496                    (planea_wm << DSPFW_PLANEA_SHIFT));
1497         I915_WRITE(DSPFW2,
1498                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1499                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1500         I915_WRITE(DSPFW3,
1501                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1502                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1503         I915_WRITE(DSPFW9_CHV,
1504                    (I915_READ(DSPFW9_CHV) & ~(DSPFW_PLANEC_MASK |
1505                                               DSPFW_CURSORC_MASK)) |
1506                    (planec_wm << DSPFW_PLANEC_SHIFT) |
1507                    (cursorc_wm << DSPFW_CURSORC_SHIFT));
1508
1509         if (cxsr_enabled)
1510                 intel_set_memory_cxsr(dev_priv, true);
1511 }
1512
1513 static void valleyview_update_sprite_wm(struct drm_plane *plane,
1514                                         struct drm_crtc *crtc,
1515                                         uint32_t sprite_width,
1516                                         uint32_t sprite_height,
1517                                         int pixel_size,
1518                                         bool enabled, bool scaled)
1519 {
1520         struct drm_device *dev = crtc->dev;
1521         struct drm_i915_private *dev_priv = dev->dev_private;
1522         int pipe = to_intel_plane(plane)->pipe;
1523         int sprite = to_intel_plane(plane)->plane;
1524         int drain_latency;
1525         int plane_prec;
1526         int sprite_dl;
1527         int prec_mult;
1528
1529         sprite_dl = I915_READ(VLV_DDL(pipe)) & ~(DDL_SPRITE_PRECISION_64(sprite) |
1530                     (DRAIN_LATENCY_MASK << DDL_SPRITE_SHIFT(sprite)));
1531
1532         if (enabled && vlv_compute_drain_latency(crtc, pixel_size, &prec_mult,
1533                                                  &drain_latency)) {
1534                 plane_prec = (prec_mult == DRAIN_LATENCY_PRECISION_64) ?
1535                                            DDL_SPRITE_PRECISION_64(sprite) :
1536                                            DDL_SPRITE_PRECISION_32(sprite);
1537                 sprite_dl |= plane_prec |
1538                              (drain_latency << DDL_SPRITE_SHIFT(sprite));
1539         }
1540
1541         I915_WRITE(VLV_DDL(pipe), sprite_dl);
1542 }
1543
1544 static void g4x_update_wm(struct drm_crtc *crtc)
1545 {
1546         struct drm_device *dev = crtc->dev;
1547         static const int sr_latency_ns = 12000;
1548         struct drm_i915_private *dev_priv = dev->dev_private;
1549         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1550         int plane_sr, cursor_sr;
1551         unsigned int enabled = 0;
1552         bool cxsr_enabled;
1553
1554         if (g4x_compute_wm0(dev, PIPE_A,
1555                             &g4x_wm_info, latency_ns,
1556                             &g4x_cursor_wm_info, latency_ns,
1557                             &planea_wm, &cursora_wm))
1558                 enabled |= 1 << PIPE_A;
1559
1560         if (g4x_compute_wm0(dev, PIPE_B,
1561                             &g4x_wm_info, latency_ns,
1562                             &g4x_cursor_wm_info, latency_ns,
1563                             &planeb_wm, &cursorb_wm))
1564                 enabled |= 1 << PIPE_B;
1565
1566         if (single_plane_enabled(enabled) &&
1567             g4x_compute_srwm(dev, ffs(enabled) - 1,
1568                              sr_latency_ns,
1569                              &g4x_wm_info,
1570                              &g4x_cursor_wm_info,
1571                              &plane_sr, &cursor_sr)) {
1572                 cxsr_enabled = true;
1573         } else {
1574                 cxsr_enabled = false;
1575                 intel_set_memory_cxsr(dev_priv, false);
1576                 plane_sr = cursor_sr = 0;
1577         }
1578
1579         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1580                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1581                       planea_wm, cursora_wm,
1582                       planeb_wm, cursorb_wm,
1583                       plane_sr, cursor_sr);
1584
1585         I915_WRITE(DSPFW1,
1586                    (plane_sr << DSPFW_SR_SHIFT) |
1587                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1588                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1589                    (planea_wm << DSPFW_PLANEA_SHIFT));
1590         I915_WRITE(DSPFW2,
1591                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1592                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1593         /* HPLL off in SR has some issues on G4x... disable it */
1594         I915_WRITE(DSPFW3,
1595                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1596                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1597
1598         if (cxsr_enabled)
1599                 intel_set_memory_cxsr(dev_priv, true);
1600 }
1601
1602 static void i965_update_wm(struct drm_crtc *unused_crtc)
1603 {
1604         struct drm_device *dev = unused_crtc->dev;
1605         struct drm_i915_private *dev_priv = dev->dev_private;
1606         struct drm_crtc *crtc;
1607         int srwm = 1;
1608         int cursor_sr = 16;
1609         bool cxsr_enabled;
1610
1611         /* Calc sr entries for one plane configs */
1612         crtc = single_enabled_crtc(dev);
1613         if (crtc) {
1614                 /* self-refresh has much higher latency */
1615                 static const int sr_latency_ns = 12000;
1616                 const struct drm_display_mode *adjusted_mode =
1617                         &to_intel_crtc(crtc)->config.adjusted_mode;
1618                 int clock = adjusted_mode->crtc_clock;
1619                 int htotal = adjusted_mode->crtc_htotal;
1620                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1621                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1622                 unsigned long line_time_us;
1623                 int entries;
1624
1625                 line_time_us = max(htotal * 1000 / clock, 1);
1626
1627                 /* Use ns/us then divide to preserve precision */
1628                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1629                         pixel_size * hdisplay;
1630                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1631                 srwm = I965_FIFO_SIZE - entries;
1632                 if (srwm < 0)
1633                         srwm = 1;
1634                 srwm &= 0x1ff;
1635                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1636                               entries, srwm);
1637
1638                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1639                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1640                 entries = DIV_ROUND_UP(entries,
1641                                           i965_cursor_wm_info.cacheline_size);
1642                 cursor_sr = i965_cursor_wm_info.fifo_size -
1643                         (entries + i965_cursor_wm_info.guard_size);
1644
1645                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1646                         cursor_sr = i965_cursor_wm_info.max_wm;
1647
1648                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1649                               "cursor %d\n", srwm, cursor_sr);
1650
1651                 cxsr_enabled = true;
1652         } else {
1653                 cxsr_enabled = false;
1654                 /* Turn off self refresh if both pipes are enabled */
1655                 intel_set_memory_cxsr(dev_priv, false);
1656         }
1657
1658         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1659                       srwm);
1660
1661         /* 965 has limitations... */
1662         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1663                    (8 << DSPFW_CURSORB_SHIFT) |
1664                    (8 << DSPFW_PLANEB_SHIFT) |
1665                    (8 << DSPFW_PLANEA_SHIFT));
1666         I915_WRITE(DSPFW2, (8 << DSPFW_CURSORA_SHIFT) |
1667                    (8 << DSPFW_PLANEC_SHIFT_OLD));
1668         /* update cursor SR watermark */
1669         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1670
1671         if (cxsr_enabled)
1672                 intel_set_memory_cxsr(dev_priv, true);
1673 }
1674
1675 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1676 {
1677         struct drm_device *dev = unused_crtc->dev;
1678         struct drm_i915_private *dev_priv = dev->dev_private;
1679         const struct intel_watermark_params *wm_info;
1680         uint32_t fwater_lo;
1681         uint32_t fwater_hi;
1682         int cwm, srwm = 1;
1683         int fifo_size;
1684         int planea_wm, planeb_wm;
1685         struct drm_crtc *crtc, *enabled = NULL;
1686
1687         if (IS_I945GM(dev))
1688                 wm_info = &i945_wm_info;
1689         else if (!IS_GEN2(dev))
1690                 wm_info = &i915_wm_info;
1691         else
1692                 wm_info = &i830_wm_info;
1693
1694         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1695         crtc = intel_get_crtc_for_plane(dev, 0);
1696         if (intel_crtc_active(crtc)) {
1697                 const struct drm_display_mode *adjusted_mode;
1698                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1699                 if (IS_GEN2(dev))
1700                         cpp = 4;
1701
1702                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1703                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1704                                                wm_info, fifo_size, cpp,
1705                                                latency_ns);
1706                 enabled = crtc;
1707         } else
1708                 planea_wm = fifo_size - wm_info->guard_size;
1709
1710         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1711         crtc = intel_get_crtc_for_plane(dev, 1);
1712         if (intel_crtc_active(crtc)) {
1713                 const struct drm_display_mode *adjusted_mode;
1714                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1715                 if (IS_GEN2(dev))
1716                         cpp = 4;
1717
1718                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1719                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1720                                                wm_info, fifo_size, cpp,
1721                                                latency_ns);
1722                 if (enabled == NULL)
1723                         enabled = crtc;
1724                 else
1725                         enabled = NULL;
1726         } else
1727                 planeb_wm = fifo_size - wm_info->guard_size;
1728
1729         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1730
1731         if (IS_I915GM(dev) && enabled) {
1732                 struct drm_i915_gem_object *obj;
1733
1734                 obj = intel_fb_obj(enabled->primary->fb);
1735
1736                 /* self-refresh seems busted with untiled */
1737                 if (obj->tiling_mode == I915_TILING_NONE)
1738                         enabled = NULL;
1739         }
1740
1741         /*
1742          * Overlay gets an aggressive default since video jitter is bad.
1743          */
1744         cwm = 2;
1745
1746         /* Play safe and disable self-refresh before adjusting watermarks. */
1747         intel_set_memory_cxsr(dev_priv, false);
1748
1749         /* Calc sr entries for one plane configs */
1750         if (HAS_FW_BLC(dev) && enabled) {
1751                 /* self-refresh has much higher latency */
1752                 static const int sr_latency_ns = 6000;
1753                 const struct drm_display_mode *adjusted_mode =
1754                         &to_intel_crtc(enabled)->config.adjusted_mode;
1755                 int clock = adjusted_mode->crtc_clock;
1756                 int htotal = adjusted_mode->crtc_htotal;
1757                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1758                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1759                 unsigned long line_time_us;
1760                 int entries;
1761
1762                 line_time_us = max(htotal * 1000 / clock, 1);
1763
1764                 /* Use ns/us then divide to preserve precision */
1765                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1766                         pixel_size * hdisplay;
1767                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1768                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1769                 srwm = wm_info->fifo_size - entries;
1770                 if (srwm < 0)
1771                         srwm = 1;
1772
1773                 if (IS_I945G(dev) || IS_I945GM(dev))
1774                         I915_WRITE(FW_BLC_SELF,
1775                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1776                 else if (IS_I915GM(dev))
1777                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1778         }
1779
1780         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1781                       planea_wm, planeb_wm, cwm, srwm);
1782
1783         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1784         fwater_hi = (cwm & 0x1f);
1785
1786         /* Set request length to 8 cachelines per fetch */
1787         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1788         fwater_hi = fwater_hi | (1 << 8);
1789
1790         I915_WRITE(FW_BLC, fwater_lo);
1791         I915_WRITE(FW_BLC2, fwater_hi);
1792
1793         if (enabled)
1794                 intel_set_memory_cxsr(dev_priv, true);
1795 }
1796
1797 static void i845_update_wm(struct drm_crtc *unused_crtc)
1798 {
1799         struct drm_device *dev = unused_crtc->dev;
1800         struct drm_i915_private *dev_priv = dev->dev_private;
1801         struct drm_crtc *crtc;
1802         const struct drm_display_mode *adjusted_mode;
1803         uint32_t fwater_lo;
1804         int planea_wm;
1805
1806         crtc = single_enabled_crtc(dev);
1807         if (crtc == NULL)
1808                 return;
1809
1810         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1811         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1812                                        &i845_wm_info,
1813                                        dev_priv->display.get_fifo_size(dev, 0),
1814                                        4, latency_ns);
1815         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1816         fwater_lo |= (3<<8) | planea_wm;
1817
1818         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1819
1820         I915_WRITE(FW_BLC, fwater_lo);
1821 }
1822
1823 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1824                                     struct drm_crtc *crtc)
1825 {
1826         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1827         uint32_t pixel_rate;
1828
1829         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1830
1831         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1832          * adjust the pixel_rate here. */
1833
1834         if (intel_crtc->config.pch_pfit.enabled) {
1835                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1836                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1837
1838                 pipe_w = intel_crtc->config.pipe_src_w;
1839                 pipe_h = intel_crtc->config.pipe_src_h;
1840                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1841                 pfit_h = pfit_size & 0xFFFF;
1842                 if (pipe_w < pfit_w)
1843                         pipe_w = pfit_w;
1844                 if (pipe_h < pfit_h)
1845                         pipe_h = pfit_h;
1846
1847                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1848                                      pfit_w * pfit_h);
1849         }
1850
1851         return pixel_rate;
1852 }
1853
1854 /* latency must be in 0.1us units. */
1855 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1856                                uint32_t latency)
1857 {
1858         uint64_t ret;
1859
1860         if (WARN(latency == 0, "Latency value missing\n"))
1861                 return UINT_MAX;
1862
1863         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1864         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1865
1866         return ret;
1867 }
1868
1869 /* latency must be in 0.1us units. */
1870 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1871                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1872                                uint32_t latency)
1873 {
1874         uint32_t ret;
1875
1876         if (WARN(latency == 0, "Latency value missing\n"))
1877                 return UINT_MAX;
1878
1879         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1880         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1881         ret = DIV_ROUND_UP(ret, 64) + 2;
1882         return ret;
1883 }
1884
1885 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1886                            uint8_t bytes_per_pixel)
1887 {
1888         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1889 }
1890
1891 struct ilk_pipe_wm_parameters {
1892         bool active;
1893         uint32_t pipe_htotal;
1894         uint32_t pixel_rate;
1895         struct intel_plane_wm_parameters pri;
1896         struct intel_plane_wm_parameters spr;
1897         struct intel_plane_wm_parameters cur;
1898 };
1899
1900 struct ilk_wm_maximums {
1901         uint16_t pri;
1902         uint16_t spr;
1903         uint16_t cur;
1904         uint16_t fbc;
1905 };
1906
1907 /* used in computing the new watermarks state */
1908 struct intel_wm_config {
1909         unsigned int num_pipes_active;
1910         bool sprites_enabled;
1911         bool sprites_scaled;
1912 };
1913
1914 /*
1915  * For both WM_PIPE and WM_LP.
1916  * mem_value must be in 0.1us units.
1917  */
1918 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1919                                    uint32_t mem_value,
1920                                    bool is_lp)
1921 {
1922         uint32_t method1, method2;
1923
1924         if (!params->active || !params->pri.enabled)
1925                 return 0;
1926
1927         method1 = ilk_wm_method1(params->pixel_rate,
1928                                  params->pri.bytes_per_pixel,
1929                                  mem_value);
1930
1931         if (!is_lp)
1932                 return method1;
1933
1934         method2 = ilk_wm_method2(params->pixel_rate,
1935                                  params->pipe_htotal,
1936                                  params->pri.horiz_pixels,
1937                                  params->pri.bytes_per_pixel,
1938                                  mem_value);
1939
1940         return min(method1, method2);
1941 }
1942
1943 /*
1944  * For both WM_PIPE and WM_LP.
1945  * mem_value must be in 0.1us units.
1946  */
1947 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1948                                    uint32_t mem_value)
1949 {
1950         uint32_t method1, method2;
1951
1952         if (!params->active || !params->spr.enabled)
1953                 return 0;
1954
1955         method1 = ilk_wm_method1(params->pixel_rate,
1956                                  params->spr.bytes_per_pixel,
1957                                  mem_value);
1958         method2 = ilk_wm_method2(params->pixel_rate,
1959                                  params->pipe_htotal,
1960                                  params->spr.horiz_pixels,
1961                                  params->spr.bytes_per_pixel,
1962                                  mem_value);
1963         return min(method1, method2);
1964 }
1965
1966 /*
1967  * For both WM_PIPE and WM_LP.
1968  * mem_value must be in 0.1us units.
1969  */
1970 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1971                                    uint32_t mem_value)
1972 {
1973         if (!params->active || !params->cur.enabled)
1974                 return 0;
1975
1976         return ilk_wm_method2(params->pixel_rate,
1977                               params->pipe_htotal,
1978                               params->cur.horiz_pixels,
1979                               params->cur.bytes_per_pixel,
1980                               mem_value);
1981 }
1982
1983 /* Only for WM_LP. */
1984 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1985                                    uint32_t pri_val)
1986 {
1987         if (!params->active || !params->pri.enabled)
1988                 return 0;
1989
1990         return ilk_wm_fbc(pri_val,
1991                           params->pri.horiz_pixels,
1992                           params->pri.bytes_per_pixel);
1993 }
1994
1995 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1996 {
1997         if (INTEL_INFO(dev)->gen >= 8)
1998                 return 3072;
1999         else if (INTEL_INFO(dev)->gen >= 7)
2000                 return 768;
2001         else
2002                 return 512;
2003 }
2004
2005 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
2006                                          int level, bool is_sprite)
2007 {
2008         if (INTEL_INFO(dev)->gen >= 8)
2009                 /* BDW primary/sprite plane watermarks */
2010                 return level == 0 ? 255 : 2047;
2011         else if (INTEL_INFO(dev)->gen >= 7)
2012                 /* IVB/HSW primary/sprite plane watermarks */
2013                 return level == 0 ? 127 : 1023;
2014         else if (!is_sprite)
2015                 /* ILK/SNB primary plane watermarks */
2016                 return level == 0 ? 127 : 511;
2017         else
2018                 /* ILK/SNB sprite plane watermarks */
2019                 return level == 0 ? 63 : 255;
2020 }
2021
2022 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
2023                                           int level)
2024 {
2025         if (INTEL_INFO(dev)->gen >= 7)
2026                 return level == 0 ? 63 : 255;
2027         else
2028                 return level == 0 ? 31 : 63;
2029 }
2030
2031 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
2032 {
2033         if (INTEL_INFO(dev)->gen >= 8)
2034                 return 31;
2035         else
2036                 return 15;
2037 }
2038
2039 /* Calculate the maximum primary/sprite plane watermark */
2040 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2041                                      int level,
2042                                      const struct intel_wm_config *config,
2043                                      enum intel_ddb_partitioning ddb_partitioning,
2044                                      bool is_sprite)
2045 {
2046         unsigned int fifo_size = ilk_display_fifo_size(dev);
2047
2048         /* if sprites aren't enabled, sprites get nothing */
2049         if (is_sprite && !config->sprites_enabled)
2050                 return 0;
2051
2052         /* HSW allows LP1+ watermarks even with multiple pipes */
2053         if (level == 0 || config->num_pipes_active > 1) {
2054                 fifo_size /= INTEL_INFO(dev)->num_pipes;
2055
2056                 /*
2057                  * For some reason the non self refresh
2058                  * FIFO size is only half of the self
2059                  * refresh FIFO size on ILK/SNB.
2060                  */
2061                 if (INTEL_INFO(dev)->gen <= 6)
2062                         fifo_size /= 2;
2063         }
2064
2065         if (config->sprites_enabled) {
2066                 /* level 0 is always calculated with 1:1 split */
2067                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2068                         if (is_sprite)
2069                                 fifo_size *= 5;
2070                         fifo_size /= 6;
2071                 } else {
2072                         fifo_size /= 2;
2073                 }
2074         }
2075
2076         /* clamp to max that the registers can hold */
2077         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
2078 }
2079
2080 /* Calculate the maximum cursor plane watermark */
2081 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2082                                       int level,
2083                                       const struct intel_wm_config *config)
2084 {
2085         /* HSW LP1+ watermarks w/ multiple pipes */
2086         if (level > 0 && config->num_pipes_active > 1)
2087                 return 64;
2088
2089         /* otherwise just report max that registers can hold */
2090         return ilk_cursor_wm_reg_max(dev, level);
2091 }
2092
2093 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2094                                     int level,
2095                                     const struct intel_wm_config *config,
2096                                     enum intel_ddb_partitioning ddb_partitioning,
2097                                     struct ilk_wm_maximums *max)
2098 {
2099         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2100         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2101         max->cur = ilk_cursor_wm_max(dev, level, config);
2102         max->fbc = ilk_fbc_wm_reg_max(dev);
2103 }
2104
2105 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
2106                                         int level,
2107                                         struct ilk_wm_maximums *max)
2108 {
2109         max->pri = ilk_plane_wm_reg_max(dev, level, false);
2110         max->spr = ilk_plane_wm_reg_max(dev, level, true);
2111         max->cur = ilk_cursor_wm_reg_max(dev, level);
2112         max->fbc = ilk_fbc_wm_reg_max(dev);
2113 }
2114
2115 static bool ilk_validate_wm_level(int level,
2116                                   const struct ilk_wm_maximums *max,
2117                                   struct intel_wm_level *result)
2118 {
2119         bool ret;
2120
2121         /* already determined to be invalid? */
2122         if (!result->enable)
2123                 return false;
2124
2125         result->enable = result->pri_val <= max->pri &&
2126                          result->spr_val <= max->spr &&
2127                          result->cur_val <= max->cur;
2128
2129         ret = result->enable;
2130
2131         /*
2132          * HACK until we can pre-compute everything,
2133          * and thus fail gracefully if LP0 watermarks
2134          * are exceeded...
2135          */
2136         if (level == 0 && !result->enable) {
2137                 if (result->pri_val > max->pri)
2138                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2139                                       level, result->pri_val, max->pri);
2140                 if (result->spr_val > max->spr)
2141                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2142                                       level, result->spr_val, max->spr);
2143                 if (result->cur_val > max->cur)
2144                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2145                                       level, result->cur_val, max->cur);
2146
2147                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2148                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2149                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2150                 result->enable = true;
2151         }
2152
2153         return ret;
2154 }
2155
2156 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2157                                  int level,
2158                                  const struct ilk_pipe_wm_parameters *p,
2159                                  struct intel_wm_level *result)
2160 {
2161         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2162         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2163         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2164
2165         /* WM1+ latency values stored in 0.5us units */
2166         if (level > 0) {
2167                 pri_latency *= 5;
2168                 spr_latency *= 5;
2169                 cur_latency *= 5;
2170         }
2171
2172         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2173         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2174         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2175         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2176         result->enable = true;
2177 }
2178
2179 static uint32_t
2180 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2181 {
2182         struct drm_i915_private *dev_priv = dev->dev_private;
2183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2184         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2185         u32 linetime, ips_linetime;
2186
2187         if (!intel_crtc_active(crtc))
2188                 return 0;
2189
2190         /* The WM are computed with base on how long it takes to fill a single
2191          * row at the given clock rate, multiplied by 8.
2192          * */
2193         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2194                                      mode->crtc_clock);
2195         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2196                                          intel_ddi_get_cdclk_freq(dev_priv));
2197
2198         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2199                PIPE_WM_LINETIME_TIME(linetime);
2200 }
2201
2202 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2203 {
2204         struct drm_i915_private *dev_priv = dev->dev_private;
2205
2206         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2207                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2208
2209                 wm[0] = (sskpd >> 56) & 0xFF;
2210                 if (wm[0] == 0)
2211                         wm[0] = sskpd & 0xF;
2212                 wm[1] = (sskpd >> 4) & 0xFF;
2213                 wm[2] = (sskpd >> 12) & 0xFF;
2214                 wm[3] = (sskpd >> 20) & 0x1FF;
2215                 wm[4] = (sskpd >> 32) & 0x1FF;
2216         } else if (INTEL_INFO(dev)->gen >= 6) {
2217                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2218
2219                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2220                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2221                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2222                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2223         } else if (INTEL_INFO(dev)->gen >= 5) {
2224                 uint32_t mltr = I915_READ(MLTR_ILK);
2225
2226                 /* ILK primary LP0 latency is 700 ns */
2227                 wm[0] = 7;
2228                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2229                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2230         }
2231 }
2232
2233 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2234 {
2235         /* ILK sprite LP0 latency is 1300 ns */
2236         if (INTEL_INFO(dev)->gen == 5)
2237                 wm[0] = 13;
2238 }
2239
2240 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2241 {
2242         /* ILK cursor LP0 latency is 1300 ns */
2243         if (INTEL_INFO(dev)->gen == 5)
2244                 wm[0] = 13;
2245
2246         /* WaDoubleCursorLP3Latency:ivb */
2247         if (IS_IVYBRIDGE(dev))
2248                 wm[3] *= 2;
2249 }
2250
2251 int ilk_wm_max_level(const struct drm_device *dev)
2252 {
2253         /* how many WM levels are we expecting */
2254         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2255                 return 4;
2256         else if (INTEL_INFO(dev)->gen >= 6)
2257                 return 3;
2258         else
2259                 return 2;
2260 }
2261 static void intel_print_wm_latency(struct drm_device *dev,
2262                                    const char *name,
2263                                    const uint16_t wm[5])
2264 {
2265         int level, max_level = ilk_wm_max_level(dev);
2266
2267         for (level = 0; level <= max_level; level++) {
2268                 unsigned int latency = wm[level];
2269
2270                 if (latency == 0) {
2271                         DRM_ERROR("%s WM%d latency not provided\n",
2272                                   name, level);
2273                         continue;
2274                 }
2275
2276                 /* WM1+ latency values in 0.5us units */
2277                 if (level > 0)
2278                         latency *= 5;
2279
2280                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2281                               name, level, wm[level],
2282                               latency / 10, latency % 10);
2283         }
2284 }
2285
2286 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2287                                     uint16_t wm[5], uint16_t min)
2288 {
2289         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2290
2291         if (wm[0] >= min)
2292                 return false;
2293
2294         wm[0] = max(wm[0], min);
2295         for (level = 1; level <= max_level; level++)
2296                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2297
2298         return true;
2299 }
2300
2301 static void snb_wm_latency_quirk(struct drm_device *dev)
2302 {
2303         struct drm_i915_private *dev_priv = dev->dev_private;
2304         bool changed;
2305
2306         /*
2307          * The BIOS provided WM memory latency values are often
2308          * inadequate for high resolution displays. Adjust them.
2309          */
2310         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2311                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2312                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2313
2314         if (!changed)
2315                 return;
2316
2317         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2318         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2319         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2320         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2321 }
2322
2323 static void ilk_setup_wm_latency(struct drm_device *dev)
2324 {
2325         struct drm_i915_private *dev_priv = dev->dev_private;
2326
2327         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2328
2329         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2330                sizeof(dev_priv->wm.pri_latency));
2331         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2332                sizeof(dev_priv->wm.pri_latency));
2333
2334         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2335         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2336
2337         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2338         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2339         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2340
2341         if (IS_GEN6(dev))
2342                 snb_wm_latency_quirk(dev);
2343 }
2344
2345 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2346                                       struct ilk_pipe_wm_parameters *p)
2347 {
2348         struct drm_device *dev = crtc->dev;
2349         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2350         enum pipe pipe = intel_crtc->pipe;
2351         struct drm_plane *plane;
2352
2353         if (!intel_crtc_active(crtc))
2354                 return;
2355
2356         p->active = true;
2357         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2358         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2359         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2360         p->cur.bytes_per_pixel = 4;
2361         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2362         p->cur.horiz_pixels = intel_crtc->cursor_width;
2363         /* TODO: for now, assume primary and cursor planes are always enabled. */
2364         p->pri.enabled = true;
2365         p->cur.enabled = true;
2366
2367         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2368                 struct intel_plane *intel_plane = to_intel_plane(plane);
2369
2370                 if (intel_plane->pipe == pipe) {
2371                         p->spr = intel_plane->wm;
2372                         break;
2373                 }
2374         }
2375 }
2376
2377 static void ilk_compute_wm_config(struct drm_device *dev,
2378                                   struct intel_wm_config *config)
2379 {
2380         struct intel_crtc *intel_crtc;
2381
2382         /* Compute the currently _active_ config */
2383         for_each_intel_crtc(dev, intel_crtc) {
2384                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2385
2386                 if (!wm->pipe_enabled)
2387                         continue;
2388
2389                 config->sprites_enabled |= wm->sprites_enabled;
2390                 config->sprites_scaled |= wm->sprites_scaled;
2391                 config->num_pipes_active++;
2392         }
2393 }
2394
2395 /* Compute new watermarks for the pipe */
2396 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2397                                   const struct ilk_pipe_wm_parameters *params,
2398                                   struct intel_pipe_wm *pipe_wm)
2399 {
2400         struct drm_device *dev = crtc->dev;
2401         const struct drm_i915_private *dev_priv = dev->dev_private;
2402         int level, max_level = ilk_wm_max_level(dev);
2403         /* LP0 watermark maximums depend on this pipe alone */
2404         struct intel_wm_config config = {
2405                 .num_pipes_active = 1,
2406                 .sprites_enabled = params->spr.enabled,
2407                 .sprites_scaled = params->spr.scaled,
2408         };
2409         struct ilk_wm_maximums max;
2410
2411         pipe_wm->pipe_enabled = params->active;
2412         pipe_wm->sprites_enabled = params->spr.enabled;
2413         pipe_wm->sprites_scaled = params->spr.scaled;
2414
2415         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2416         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2417                 max_level = 1;
2418
2419         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2420         if (params->spr.scaled)
2421                 max_level = 0;
2422
2423         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2424
2425         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2426                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2427
2428         /* LP0 watermarks always use 1/2 DDB partitioning */
2429         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2430
2431         /* At least LP0 must be valid */
2432         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2433                 return false;
2434
2435         ilk_compute_wm_reg_maximums(dev, 1, &max);
2436
2437         for (level = 1; level <= max_level; level++) {
2438                 struct intel_wm_level wm = {};
2439
2440                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2441
2442                 /*
2443                  * Disable any watermark level that exceeds the
2444                  * register maximums since such watermarks are
2445                  * always invalid.
2446                  */
2447                 if (!ilk_validate_wm_level(level, &max, &wm))
2448                         break;
2449
2450                 pipe_wm->wm[level] = wm;
2451         }
2452
2453         return true;
2454 }
2455
2456 /*
2457  * Merge the watermarks from all active pipes for a specific level.
2458  */
2459 static void ilk_merge_wm_level(struct drm_device *dev,
2460                                int level,
2461                                struct intel_wm_level *ret_wm)
2462 {
2463         const struct intel_crtc *intel_crtc;
2464
2465         ret_wm->enable = true;
2466
2467         for_each_intel_crtc(dev, intel_crtc) {
2468                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2469                 const struct intel_wm_level *wm = &active->wm[level];
2470
2471                 if (!active->pipe_enabled)
2472                         continue;
2473
2474                 /*
2475                  * The watermark values may have been used in the past,
2476                  * so we must maintain them in the registers for some
2477                  * time even if the level is now disabled.
2478                  */
2479                 if (!wm->enable)
2480                         ret_wm->enable = false;
2481
2482                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2483                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2484                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2485                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2486         }
2487 }
2488
2489 /*
2490  * Merge all low power watermarks for all active pipes.
2491  */
2492 static void ilk_wm_merge(struct drm_device *dev,
2493                          const struct intel_wm_config *config,
2494                          const struct ilk_wm_maximums *max,
2495                          struct intel_pipe_wm *merged)
2496 {
2497         int level, max_level = ilk_wm_max_level(dev);
2498         int last_enabled_level = max_level;
2499
2500         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2501         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2502             config->num_pipes_active > 1)
2503                 return;
2504
2505         /* ILK: FBC WM must be disabled always */
2506         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2507
2508         /* merge each WM1+ level */
2509         for (level = 1; level <= max_level; level++) {
2510                 struct intel_wm_level *wm = &merged->wm[level];
2511
2512                 ilk_merge_wm_level(dev, level, wm);
2513
2514                 if (level > last_enabled_level)
2515                         wm->enable = false;
2516                 else if (!ilk_validate_wm_level(level, max, wm))
2517                         /* make sure all following levels get disabled */
2518                         last_enabled_level = level - 1;
2519
2520                 /*
2521                  * The spec says it is preferred to disable
2522                  * FBC WMs instead of disabling a WM level.
2523                  */
2524                 if (wm->fbc_val > max->fbc) {
2525                         if (wm->enable)
2526                                 merged->fbc_wm_enabled = false;
2527                         wm->fbc_val = 0;
2528                 }
2529         }
2530
2531         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2532         /*
2533          * FIXME this is racy. FBC might get enabled later.
2534          * What we should check here is whether FBC can be
2535          * enabled sometime later.
2536          */
2537         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2538                 for (level = 2; level <= max_level; level++) {
2539                         struct intel_wm_level *wm = &merged->wm[level];
2540
2541                         wm->enable = false;
2542                 }
2543         }
2544 }
2545
2546 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2547 {
2548         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2549         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2550 }
2551
2552 /* The value we need to program into the WM_LPx latency field */
2553 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2554 {
2555         struct drm_i915_private *dev_priv = dev->dev_private;
2556
2557         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2558                 return 2 * level;
2559         else
2560                 return dev_priv->wm.pri_latency[level];
2561 }
2562
2563 static void ilk_compute_wm_results(struct drm_device *dev,
2564                                    const struct intel_pipe_wm *merged,
2565                                    enum intel_ddb_partitioning partitioning,
2566                                    struct ilk_wm_values *results)
2567 {
2568         struct intel_crtc *intel_crtc;
2569         int level, wm_lp;
2570
2571         results->enable_fbc_wm = merged->fbc_wm_enabled;
2572         results->partitioning = partitioning;
2573
2574         /* LP1+ register values */
2575         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2576                 const struct intel_wm_level *r;
2577
2578                 level = ilk_wm_lp_to_level(wm_lp, merged);
2579
2580                 r = &merged->wm[level];
2581
2582                 /*
2583                  * Maintain the watermark values even if the level is
2584                  * disabled. Doing otherwise could cause underruns.
2585                  */
2586                 results->wm_lp[wm_lp - 1] =
2587                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2588                         (r->pri_val << WM1_LP_SR_SHIFT) |
2589                         r->cur_val;
2590
2591                 if (r->enable)
2592                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2593
2594                 if (INTEL_INFO(dev)->gen >= 8)
2595                         results->wm_lp[wm_lp - 1] |=
2596                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2597                 else
2598                         results->wm_lp[wm_lp - 1] |=
2599                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2600
2601                 /*
2602                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2603                  * level is disabled. Doing otherwise could cause underruns.
2604                  */
2605                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2606                         WARN_ON(wm_lp != 1);
2607                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2608                 } else
2609                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2610         }
2611
2612         /* LP0 register values */
2613         for_each_intel_crtc(dev, intel_crtc) {
2614                 enum pipe pipe = intel_crtc->pipe;
2615                 const struct intel_wm_level *r =
2616                         &intel_crtc->wm.active.wm[0];
2617
2618                 if (WARN_ON(!r->enable))
2619                         continue;
2620
2621                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2622
2623                 results->wm_pipe[pipe] =
2624                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2625                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2626                         r->cur_val;
2627         }
2628 }
2629
2630 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2631  * case both are at the same level. Prefer r1 in case they're the same. */
2632 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2633                                                   struct intel_pipe_wm *r1,
2634                                                   struct intel_pipe_wm *r2)
2635 {
2636         int level, max_level = ilk_wm_max_level(dev);
2637         int level1 = 0, level2 = 0;
2638
2639         for (level = 1; level <= max_level; level++) {
2640                 if (r1->wm[level].enable)
2641                         level1 = level;
2642                 if (r2->wm[level].enable)
2643                         level2 = level;
2644         }
2645
2646         if (level1 == level2) {
2647                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2648                         return r2;
2649                 else
2650                         return r1;
2651         } else if (level1 > level2) {
2652                 return r1;
2653         } else {
2654                 return r2;
2655         }
2656 }
2657
2658 /* dirty bits used to track which watermarks need changes */
2659 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2660 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2661 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2662 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2663 #define WM_DIRTY_FBC (1 << 24)
2664 #define WM_DIRTY_DDB (1 << 25)
2665
2666 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2667                                          const struct ilk_wm_values *old,
2668                                          const struct ilk_wm_values *new)
2669 {
2670         unsigned int dirty = 0;
2671         enum pipe pipe;
2672         int wm_lp;
2673
2674         for_each_pipe(dev_priv, pipe) {
2675                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2676                         dirty |= WM_DIRTY_LINETIME(pipe);
2677                         /* Must disable LP1+ watermarks too */
2678                         dirty |= WM_DIRTY_LP_ALL;
2679                 }
2680
2681                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2682                         dirty |= WM_DIRTY_PIPE(pipe);
2683                         /* Must disable LP1+ watermarks too */
2684                         dirty |= WM_DIRTY_LP_ALL;
2685                 }
2686         }
2687
2688         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2689                 dirty |= WM_DIRTY_FBC;
2690                 /* Must disable LP1+ watermarks too */
2691                 dirty |= WM_DIRTY_LP_ALL;
2692         }
2693
2694         if (old->partitioning != new->partitioning) {
2695                 dirty |= WM_DIRTY_DDB;
2696                 /* Must disable LP1+ watermarks too */
2697                 dirty |= WM_DIRTY_LP_ALL;
2698         }
2699
2700         /* LP1+ watermarks already deemed dirty, no need to continue */
2701         if (dirty & WM_DIRTY_LP_ALL)
2702                 return dirty;
2703
2704         /* Find the lowest numbered LP1+ watermark in need of an update... */
2705         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2706                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2707                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2708                         break;
2709         }
2710
2711         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2712         for (; wm_lp <= 3; wm_lp++)
2713                 dirty |= WM_DIRTY_LP(wm_lp);
2714
2715         return dirty;
2716 }
2717
2718 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2719                                unsigned int dirty)
2720 {
2721         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2722         bool changed = false;
2723
2724         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2725                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2726                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2727                 changed = true;
2728         }
2729         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2730                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2731                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2732                 changed = true;
2733         }
2734         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2735                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2736                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2737                 changed = true;
2738         }
2739
2740         /*
2741          * Don't touch WM1S_LP_EN here.
2742          * Doing so could cause underruns.
2743          */
2744
2745         return changed;
2746 }
2747
2748 /*
2749  * The spec says we shouldn't write when we don't need, because every write
2750  * causes WMs to be re-evaluated, expending some power.
2751  */
2752 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2753                                 struct ilk_wm_values *results)
2754 {
2755         struct drm_device *dev = dev_priv->dev;
2756         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2757         unsigned int dirty;
2758         uint32_t val;
2759
2760         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2761         if (!dirty)
2762                 return;
2763
2764         _ilk_disable_lp_wm(dev_priv, dirty);
2765
2766         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2767                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2768         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2769                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2770         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2771                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2772
2773         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2774                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2775         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2776                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2777         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2778                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2779
2780         if (dirty & WM_DIRTY_DDB) {
2781                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2782                         val = I915_READ(WM_MISC);
2783                         if (results->partitioning == INTEL_DDB_PART_1_2)
2784                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2785                         else
2786                                 val |= WM_MISC_DATA_PARTITION_5_6;
2787                         I915_WRITE(WM_MISC, val);
2788                 } else {
2789                         val = I915_READ(DISP_ARB_CTL2);
2790                         if (results->partitioning == INTEL_DDB_PART_1_2)
2791                                 val &= ~DISP_DATA_PARTITION_5_6;
2792                         else
2793                                 val |= DISP_DATA_PARTITION_5_6;
2794                         I915_WRITE(DISP_ARB_CTL2, val);
2795                 }
2796         }
2797
2798         if (dirty & WM_DIRTY_FBC) {
2799                 val = I915_READ(DISP_ARB_CTL);
2800                 if (results->enable_fbc_wm)
2801                         val &= ~DISP_FBC_WM_DIS;
2802                 else
2803                         val |= DISP_FBC_WM_DIS;
2804                 I915_WRITE(DISP_ARB_CTL, val);
2805         }
2806
2807         if (dirty & WM_DIRTY_LP(1) &&
2808             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2809                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2810
2811         if (INTEL_INFO(dev)->gen >= 7) {
2812                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2813                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2814                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2815                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2816         }
2817
2818         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2819                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2820         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2821                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2822         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2823                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2824
2825         dev_priv->wm.hw = *results;
2826 }
2827
2828 static bool ilk_disable_lp_wm(struct drm_device *dev)
2829 {
2830         struct drm_i915_private *dev_priv = dev->dev_private;
2831
2832         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2833 }
2834
2835 static void ilk_update_wm(struct drm_crtc *crtc)
2836 {
2837         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2838         struct drm_device *dev = crtc->dev;
2839         struct drm_i915_private *dev_priv = dev->dev_private;
2840         struct ilk_wm_maximums max;
2841         struct ilk_pipe_wm_parameters params = {};
2842         struct ilk_wm_values results = {};
2843         enum intel_ddb_partitioning partitioning;
2844         struct intel_pipe_wm pipe_wm = {};
2845         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2846         struct intel_wm_config config = {};
2847
2848         ilk_compute_wm_parameters(crtc, &params);
2849
2850         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2851
2852         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2853                 return;
2854
2855         intel_crtc->wm.active = pipe_wm;
2856
2857         ilk_compute_wm_config(dev, &config);
2858
2859         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2860         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2861
2862         /* 5/6 split only in single pipe config on IVB+ */
2863         if (INTEL_INFO(dev)->gen >= 7 &&
2864             config.num_pipes_active == 1 && config.sprites_enabled) {
2865                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2866                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2867
2868                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2869         } else {
2870                 best_lp_wm = &lp_wm_1_2;
2871         }
2872
2873         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2874                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2875
2876         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2877
2878         ilk_write_wm_values(dev_priv, &results);
2879 }
2880
2881 static void
2882 ilk_update_sprite_wm(struct drm_plane *plane,
2883                      struct drm_crtc *crtc,
2884                      uint32_t sprite_width, uint32_t sprite_height,
2885                      int pixel_size, bool enabled, bool scaled)
2886 {
2887         struct drm_device *dev = plane->dev;
2888         struct intel_plane *intel_plane = to_intel_plane(plane);
2889
2890         intel_plane->wm.enabled = enabled;
2891         intel_plane->wm.scaled = scaled;
2892         intel_plane->wm.horiz_pixels = sprite_width;
2893         intel_plane->wm.vert_pixels = sprite_width;
2894         intel_plane->wm.bytes_per_pixel = pixel_size;
2895
2896         /*
2897          * IVB workaround: must disable low power watermarks for at least
2898          * one frame before enabling scaling.  LP watermarks can be re-enabled
2899          * when scaling is disabled.
2900          *
2901          * WaCxSRDisabledForSpriteScaling:ivb
2902          */
2903         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2904                 intel_wait_for_vblank(dev, intel_plane->pipe);
2905
2906         ilk_update_wm(crtc);
2907 }
2908
2909 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2910 {
2911         struct drm_device *dev = crtc->dev;
2912         struct drm_i915_private *dev_priv = dev->dev_private;
2913         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2914         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2915         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2916         enum pipe pipe = intel_crtc->pipe;
2917         static const unsigned int wm0_pipe_reg[] = {
2918                 [PIPE_A] = WM0_PIPEA_ILK,
2919                 [PIPE_B] = WM0_PIPEB_ILK,
2920                 [PIPE_C] = WM0_PIPEC_IVB,
2921         };
2922
2923         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2924         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2925                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2926
2927         active->pipe_enabled = intel_crtc_active(crtc);
2928
2929         if (active->pipe_enabled) {
2930                 u32 tmp = hw->wm_pipe[pipe];
2931
2932                 /*
2933                  * For active pipes LP0 watermark is marked as
2934                  * enabled, and LP1+ watermaks as disabled since
2935                  * we can't really reverse compute them in case
2936                  * multiple pipes are active.
2937                  */
2938                 active->wm[0].enable = true;
2939                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2940                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2941                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2942                 active->linetime = hw->wm_linetime[pipe];
2943         } else {
2944                 int level, max_level = ilk_wm_max_level(dev);
2945
2946                 /*
2947                  * For inactive pipes, all watermark levels
2948                  * should be marked as enabled but zeroed,
2949                  * which is what we'd compute them to.
2950                  */
2951                 for (level = 0; level <= max_level; level++)
2952                         active->wm[level].enable = true;
2953         }
2954 }
2955
2956 void ilk_wm_get_hw_state(struct drm_device *dev)
2957 {
2958         struct drm_i915_private *dev_priv = dev->dev_private;
2959         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2960         struct drm_crtc *crtc;
2961
2962         for_each_crtc(dev, crtc)
2963                 ilk_pipe_wm_get_hw_state(crtc);
2964
2965         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2966         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2967         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2968
2969         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2970         if (INTEL_INFO(dev)->gen >= 7) {
2971                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2972                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2973         }
2974
2975         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2976                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2977                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2978         else if (IS_IVYBRIDGE(dev))
2979                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2980                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2981
2982         hw->enable_fbc_wm =
2983                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2984 }
2985
2986 /**
2987  * intel_update_watermarks - update FIFO watermark values based on current modes
2988  *
2989  * Calculate watermark values for the various WM regs based on current mode
2990  * and plane configuration.
2991  *
2992  * There are several cases to deal with here:
2993  *   - normal (i.e. non-self-refresh)
2994  *   - self-refresh (SR) mode
2995  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2996  *   - lines are small relative to FIFO size (buffer can hold more than 2
2997  *     lines), so need to account for TLB latency
2998  *
2999  *   The normal calculation is:
3000  *     watermark = dotclock * bytes per pixel * latency
3001  *   where latency is platform & configuration dependent (we assume pessimal
3002  *   values here).
3003  *
3004  *   The SR calculation is:
3005  *     watermark = (trunc(latency/line time)+1) * surface width *
3006  *       bytes per pixel
3007  *   where
3008  *     line time = htotal / dotclock
3009  *     surface width = hdisplay for normal plane and 64 for cursor
3010  *   and latency is assumed to be high, as above.
3011  *
3012  * The final value programmed to the register should always be rounded up,
3013  * and include an extra 2 entries to account for clock crossings.
3014  *
3015  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3016  * to set the non-SR watermarks to 8.
3017  */
3018 void intel_update_watermarks(struct drm_crtc *crtc)
3019 {
3020         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3021
3022         if (dev_priv->display.update_wm)
3023                 dev_priv->display.update_wm(crtc);
3024 }
3025
3026 void intel_update_sprite_watermarks(struct drm_plane *plane,
3027                                     struct drm_crtc *crtc,
3028                                     uint32_t sprite_width,
3029                                     uint32_t sprite_height,
3030                                     int pixel_size,
3031                                     bool enabled, bool scaled)
3032 {
3033         struct drm_i915_private *dev_priv = plane->dev->dev_private;
3034
3035         if (dev_priv->display.update_sprite_wm)
3036                 dev_priv->display.update_sprite_wm(plane, crtc,
3037                                                    sprite_width, sprite_height,
3038                                                    pixel_size, enabled, scaled);
3039 }
3040
3041 static struct drm_i915_gem_object *
3042 intel_alloc_context_page(struct drm_device *dev)
3043 {
3044         struct drm_i915_gem_object *ctx;
3045         int ret;
3046
3047         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3048
3049         ctx = i915_gem_alloc_object(dev, 4096);
3050         if (!ctx) {
3051                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3052                 return NULL;
3053         }
3054
3055         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
3056         if (ret) {
3057                 DRM_ERROR("failed to pin power context: %d\n", ret);
3058                 goto err_unref;
3059         }
3060
3061         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3062         if (ret) {
3063                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3064                 goto err_unpin;
3065         }
3066
3067         return ctx;
3068
3069 err_unpin:
3070         i915_gem_object_ggtt_unpin(ctx);
3071 err_unref:
3072         drm_gem_object_unreference(&ctx->base);
3073         return NULL;
3074 }
3075
3076 /**
3077  * Lock protecting IPS related data structures
3078  */
3079 DEFINE_SPINLOCK(mchdev_lock);
3080
3081 /* Global for IPS driver to get at the current i915 device. Protected by
3082  * mchdev_lock. */
3083 static struct drm_i915_private *i915_mch_dev;
3084
3085 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3086 {
3087         struct drm_i915_private *dev_priv = dev->dev_private;
3088         u16 rgvswctl;
3089
3090         assert_spin_locked(&mchdev_lock);
3091
3092         rgvswctl = I915_READ16(MEMSWCTL);
3093         if (rgvswctl & MEMCTL_CMD_STS) {
3094                 DRM_DEBUG("gpu busy, RCS change rejected\n");
3095                 return false; /* still busy with another command */
3096         }
3097
3098         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3099                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3100         I915_WRITE16(MEMSWCTL, rgvswctl);
3101         POSTING_READ16(MEMSWCTL);
3102
3103         rgvswctl |= MEMCTL_CMD_STS;
3104         I915_WRITE16(MEMSWCTL, rgvswctl);
3105
3106         return true;
3107 }
3108
3109 static void ironlake_enable_drps(struct drm_device *dev)
3110 {
3111         struct drm_i915_private *dev_priv = dev->dev_private;
3112         u32 rgvmodectl = I915_READ(MEMMODECTL);
3113         u8 fmax, fmin, fstart, vstart;
3114
3115         spin_lock_irq(&mchdev_lock);
3116
3117         /* Enable temp reporting */
3118         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3119         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3120
3121         /* 100ms RC evaluation intervals */
3122         I915_WRITE(RCUPEI, 100000);
3123         I915_WRITE(RCDNEI, 100000);
3124
3125         /* Set max/min thresholds to 90ms and 80ms respectively */
3126         I915_WRITE(RCBMAXAVG, 90000);
3127         I915_WRITE(RCBMINAVG, 80000);
3128
3129         I915_WRITE(MEMIHYST, 1);
3130
3131         /* Set up min, max, and cur for interrupt handling */
3132         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3133         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3134         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3135                 MEMMODE_FSTART_SHIFT;
3136
3137         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3138                 PXVFREQ_PX_SHIFT;
3139
3140         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3141         dev_priv->ips.fstart = fstart;
3142
3143         dev_priv->ips.max_delay = fstart;
3144         dev_priv->ips.min_delay = fmin;
3145         dev_priv->ips.cur_delay = fstart;
3146
3147         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3148                          fmax, fmin, fstart);
3149
3150         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3151
3152         /*
3153          * Interrupts will be enabled in ironlake_irq_postinstall
3154          */
3155
3156         I915_WRITE(VIDSTART, vstart);
3157         POSTING_READ(VIDSTART);
3158
3159         rgvmodectl |= MEMMODE_SWMODE_EN;
3160         I915_WRITE(MEMMODECTL, rgvmodectl);
3161
3162         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3163                 DRM_ERROR("stuck trying to change perf mode\n");
3164         mdelay(1);
3165
3166         ironlake_set_drps(dev, fstart);
3167
3168         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3169                 I915_READ(0x112e0);
3170         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3171         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3172         dev_priv->ips.last_time2 = ktime_get_raw_ns();
3173
3174         spin_unlock_irq(&mchdev_lock);
3175 }
3176
3177 static void ironlake_disable_drps(struct drm_device *dev)
3178 {
3179         struct drm_i915_private *dev_priv = dev->dev_private;
3180         u16 rgvswctl;
3181
3182         spin_lock_irq(&mchdev_lock);
3183
3184         rgvswctl = I915_READ16(MEMSWCTL);
3185
3186         /* Ack interrupts, disable EFC interrupt */
3187         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3188         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3189         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3190         I915_WRITE(DEIIR, DE_PCU_EVENT);
3191         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3192
3193         /* Go back to the starting frequency */
3194         ironlake_set_drps(dev, dev_priv->ips.fstart);
3195         mdelay(1);
3196         rgvswctl |= MEMCTL_CMD_STS;
3197         I915_WRITE(MEMSWCTL, rgvswctl);
3198         mdelay(1);
3199
3200         spin_unlock_irq(&mchdev_lock);
3201 }
3202
3203 /* There's a funny hw issue where the hw returns all 0 when reading from
3204  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3205  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3206  * all limits and the gpu stuck at whatever frequency it is at atm).
3207  */
3208 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3209 {
3210         u32 limits;
3211
3212         /* Only set the down limit when we've reached the lowest level to avoid
3213          * getting more interrupts, otherwise leave this clear. This prevents a
3214          * race in the hw when coming out of rc6: There's a tiny window where
3215          * the hw runs at the minimal clock before selecting the desired
3216          * frequency, if the down threshold expires in that window we will not
3217          * receive a down interrupt. */
3218         limits = dev_priv->rps.max_freq_softlimit << 24;
3219         if (val <= dev_priv->rps.min_freq_softlimit)
3220                 limits |= dev_priv->rps.min_freq_softlimit << 16;
3221
3222         return limits;
3223 }
3224
3225 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3226 {
3227         int new_power;
3228
3229         if (dev_priv->rps.is_bdw_sw_turbo)
3230                 return;
3231
3232         new_power = dev_priv->rps.power;
3233         switch (dev_priv->rps.power) {
3234         case LOW_POWER:
3235                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3236                         new_power = BETWEEN;
3237                 break;
3238
3239         case BETWEEN:
3240                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3241                         new_power = LOW_POWER;
3242                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3243                         new_power = HIGH_POWER;
3244                 break;
3245
3246         case HIGH_POWER:
3247                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3248                         new_power = BETWEEN;
3249                 break;
3250         }
3251         /* Max/min bins are special */
3252         if (val == dev_priv->rps.min_freq_softlimit)
3253                 new_power = LOW_POWER;
3254         if (val == dev_priv->rps.max_freq_softlimit)
3255                 new_power = HIGH_POWER;
3256         if (new_power == dev_priv->rps.power)
3257                 return;
3258
3259         /* Note the units here are not exactly 1us, but 1280ns. */
3260         switch (new_power) {
3261         case LOW_POWER:
3262                 /* Upclock if more than 95% busy over 16ms */
3263                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3264                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3265
3266                 /* Downclock if less than 85% busy over 32ms */
3267                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3268                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3269
3270                 I915_WRITE(GEN6_RP_CONTROL,
3271                            GEN6_RP_MEDIA_TURBO |
3272                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3273                            GEN6_RP_MEDIA_IS_GFX |
3274                            GEN6_RP_ENABLE |
3275                            GEN6_RP_UP_BUSY_AVG |
3276                            GEN6_RP_DOWN_IDLE_AVG);
3277                 break;
3278
3279         case BETWEEN:
3280                 /* Upclock if more than 90% busy over 13ms */
3281                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3282                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3283
3284                 /* Downclock if less than 75% busy over 32ms */
3285                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3286                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3287
3288                 I915_WRITE(GEN6_RP_CONTROL,
3289                            GEN6_RP_MEDIA_TURBO |
3290                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3291                            GEN6_RP_MEDIA_IS_GFX |
3292                            GEN6_RP_ENABLE |
3293                            GEN6_RP_UP_BUSY_AVG |
3294                            GEN6_RP_DOWN_IDLE_AVG);
3295                 break;
3296
3297         case HIGH_POWER:
3298                 /* Upclock if more than 85% busy over 10ms */
3299                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3300                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3301
3302                 /* Downclock if less than 60% busy over 32ms */
3303                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3304                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3305
3306                 I915_WRITE(GEN6_RP_CONTROL,
3307                            GEN6_RP_MEDIA_TURBO |
3308                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3309                            GEN6_RP_MEDIA_IS_GFX |
3310                            GEN6_RP_ENABLE |
3311                            GEN6_RP_UP_BUSY_AVG |
3312                            GEN6_RP_DOWN_IDLE_AVG);
3313                 break;
3314         }
3315
3316         dev_priv->rps.power = new_power;
3317         dev_priv->rps.last_adj = 0;
3318 }
3319
3320 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3321 {
3322         u32 mask = 0;
3323
3324         if (val > dev_priv->rps.min_freq_softlimit)
3325                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3326         if (val < dev_priv->rps.max_freq_softlimit)
3327                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3328
3329         mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3330         mask &= dev_priv->pm_rps_events;
3331
3332         /* IVB and SNB hard hangs on looping batchbuffer
3333          * if GEN6_PM_UP_EI_EXPIRED is masked.
3334          */
3335         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3336                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3337
3338         if (IS_GEN8(dev_priv->dev))
3339                 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3340
3341         return ~mask;
3342 }
3343
3344 /* gen6_set_rps is called to update the frequency request, but should also be
3345  * called when the range (min_delay and max_delay) is modified so that we can
3346  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3347 void gen6_set_rps(struct drm_device *dev, u8 val)
3348 {
3349         struct drm_i915_private *dev_priv = dev->dev_private;
3350
3351         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3352         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3353         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3354
3355         /* min/max delay may still have been modified so be sure to
3356          * write the limits value.
3357          */
3358         if (val != dev_priv->rps.cur_freq) {
3359                 gen6_set_rps_thresholds(dev_priv, val);
3360
3361                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3362                         I915_WRITE(GEN6_RPNSWREQ,
3363                                    HSW_FREQUENCY(val));
3364                 else
3365                         I915_WRITE(GEN6_RPNSWREQ,
3366                                    GEN6_FREQUENCY(val) |
3367                                    GEN6_OFFSET(0) |
3368                                    GEN6_AGGRESSIVE_TURBO);
3369         }
3370
3371         /* Make sure we continue to get interrupts
3372          * until we hit the minimum or maximum frequencies.
3373          */
3374         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3375         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3376
3377         POSTING_READ(GEN6_RPNSWREQ);
3378
3379         dev_priv->rps.cur_freq = val;
3380         trace_intel_gpu_freq_change(val * 50);
3381 }
3382
3383 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3384  *
3385  * * If Gfx is Idle, then
3386  * 1. Mask Turbo interrupts
3387  * 2. Bring up Gfx clock
3388  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3389  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3390  * 5. Unmask Turbo interrupts
3391 */
3392 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3393 {
3394         struct drm_device *dev = dev_priv->dev;
3395
3396         /* Latest VLV doesn't need to force the gfx clock */
3397         if (dev->pdev->revision >= 0xd) {
3398                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3399                 return;
3400         }
3401
3402         /*
3403          * When we are idle.  Drop to min voltage state.
3404          */
3405
3406         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3407                 return;
3408
3409         /* Mask turbo interrupt so that they will not come in between */
3410         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3411
3412         vlv_force_gfx_clock(dev_priv, true);
3413
3414         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3415
3416         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3417                                         dev_priv->rps.min_freq_softlimit);
3418
3419         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3420                                 & GENFREQSTATUS) == 0, 5))
3421                 DRM_ERROR("timed out waiting for Punit\n");
3422
3423         vlv_force_gfx_clock(dev_priv, false);
3424
3425         I915_WRITE(GEN6_PMINTRMSK,
3426                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3427 }
3428
3429 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3430 {
3431         struct drm_device *dev = dev_priv->dev;
3432
3433         mutex_lock(&dev_priv->rps.hw_lock);
3434         if (dev_priv->rps.enabled) {
3435                 if (IS_CHERRYVIEW(dev))
3436                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3437                 else if (IS_VALLEYVIEW(dev))
3438                         vlv_set_rps_idle(dev_priv);
3439                 else if (!dev_priv->rps.is_bdw_sw_turbo
3440                                         || atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
3441                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3442                 }
3443
3444                 dev_priv->rps.last_adj = 0;
3445         }
3446         mutex_unlock(&dev_priv->rps.hw_lock);
3447 }
3448
3449 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3450 {
3451         struct drm_device *dev = dev_priv->dev;
3452
3453         mutex_lock(&dev_priv->rps.hw_lock);
3454         if (dev_priv->rps.enabled) {
3455                 if (IS_VALLEYVIEW(dev))
3456                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3457                 else if (!dev_priv->rps.is_bdw_sw_turbo
3458                                         || atomic_read(&dev_priv->rps.sw_turbo.flip_received)){
3459                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3460                 }
3461
3462                 dev_priv->rps.last_adj = 0;
3463         }
3464         mutex_unlock(&dev_priv->rps.hw_lock);
3465 }
3466
3467 void valleyview_set_rps(struct drm_device *dev, u8 val)
3468 {
3469         struct drm_i915_private *dev_priv = dev->dev_private;
3470
3471         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3472         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3473         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3474
3475         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3476                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3477                          dev_priv->rps.cur_freq,
3478                          vlv_gpu_freq(dev_priv, val), val);
3479
3480         if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
3481                       "Odd GPU freq value\n"))
3482                 val &= ~1;
3483
3484         if (val != dev_priv->rps.cur_freq)
3485                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3486
3487         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3488
3489         dev_priv->rps.cur_freq = val;
3490         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3491 }
3492
3493 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3494 {
3495         struct drm_i915_private *dev_priv = dev->dev_private;
3496         if (IS_BROADWELL(dev) && dev_priv->rps.is_bdw_sw_turbo){
3497                 if (atomic_read(&dev_priv->rps.sw_turbo.flip_received))
3498                         del_timer(&dev_priv->rps.sw_turbo.flip_timer);
3499                 dev_priv-> rps.is_bdw_sw_turbo = false;
3500         } else {
3501                 I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3502                 I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3503                                            ~dev_priv->pm_rps_events);
3504                 /* Complete PM interrupt masking here doesn't race with the rps work
3505                  * item again unmasking PM interrupts because that is using a different
3506                  * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3507                  * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3508                  * gen8_enable_rps will clean up. */
3509
3510                 spin_lock_irq(&dev_priv->irq_lock);
3511                 dev_priv->rps.pm_iir = 0;
3512                 spin_unlock_irq(&dev_priv->irq_lock);
3513
3514                 I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3515         }
3516 }
3517
3518 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3519 {
3520         struct drm_i915_private *dev_priv = dev->dev_private;
3521
3522         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3523         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3524                                 ~dev_priv->pm_rps_events);
3525         /* Complete PM interrupt masking here doesn't race with the rps work
3526          * item again unmasking PM interrupts because that is using a different
3527          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3528          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3529
3530         spin_lock_irq(&dev_priv->irq_lock);
3531         dev_priv->rps.pm_iir = 0;
3532         spin_unlock_irq(&dev_priv->irq_lock);
3533
3534         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3535 }
3536
3537 static void gen6_disable_rps(struct drm_device *dev)
3538 {
3539         struct drm_i915_private *dev_priv = dev->dev_private;
3540
3541         I915_WRITE(GEN6_RC_CONTROL, 0);
3542         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3543
3544         if (IS_BROADWELL(dev))
3545                 gen8_disable_rps_interrupts(dev);
3546         else
3547                 gen6_disable_rps_interrupts(dev);
3548 }
3549
3550 static void cherryview_disable_rps(struct drm_device *dev)
3551 {
3552         struct drm_i915_private *dev_priv = dev->dev_private;
3553
3554         I915_WRITE(GEN6_RC_CONTROL, 0);
3555
3556         gen8_disable_rps_interrupts(dev);
3557 }
3558
3559 static void valleyview_disable_rps(struct drm_device *dev)
3560 {
3561         struct drm_i915_private *dev_priv = dev->dev_private;
3562
3563         /* we're doing forcewake before Disabling RC6,
3564          * This what the BIOS expects when going into suspend */
3565         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3566
3567         I915_WRITE(GEN6_RC_CONTROL, 0);
3568
3569         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3570
3571         gen6_disable_rps_interrupts(dev);
3572 }
3573
3574 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3575 {
3576         if (IS_VALLEYVIEW(dev)) {
3577                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3578                         mode = GEN6_RC_CTL_RC6_ENABLE;
3579                 else
3580                         mode = 0;
3581         }
3582         DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3583                       (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3584                       (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3585                       (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3586 }
3587
3588 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3589 {
3590         /* No RC6 before Ironlake */
3591         if (INTEL_INFO(dev)->gen < 5)
3592                 return 0;
3593
3594         /* RC6 is only on Ironlake mobile not on desktop */
3595         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3596                 return 0;
3597
3598         /* Respect the kernel parameter if it is set */
3599         if (enable_rc6 >= 0) {
3600                 int mask;
3601
3602                 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3603                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3604                                INTEL_RC6pp_ENABLE;
3605                 else
3606                         mask = INTEL_RC6_ENABLE;
3607
3608                 if ((enable_rc6 & mask) != enable_rc6)
3609                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3610                                       enable_rc6 & mask, enable_rc6, mask);
3611
3612                 return enable_rc6 & mask;
3613         }
3614
3615         /* Disable RC6 on Ironlake */
3616         if (INTEL_INFO(dev)->gen == 5)
3617                 return 0;
3618
3619         if (IS_IVYBRIDGE(dev))
3620                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3621
3622         return INTEL_RC6_ENABLE;
3623 }
3624
3625 int intel_enable_rc6(const struct drm_device *dev)
3626 {
3627         return i915.enable_rc6;
3628 }
3629
3630 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3631 {
3632         struct drm_i915_private *dev_priv = dev->dev_private;
3633
3634         spin_lock_irq(&dev_priv->irq_lock);
3635         WARN_ON(dev_priv->rps.pm_iir);
3636         gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3637         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3638         spin_unlock_irq(&dev_priv->irq_lock);
3639 }
3640
3641 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3642 {
3643         struct drm_i915_private *dev_priv = dev->dev_private;
3644
3645         spin_lock_irq(&dev_priv->irq_lock);
3646         WARN_ON(dev_priv->rps.pm_iir);
3647         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3648         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3649         spin_unlock_irq(&dev_priv->irq_lock);
3650 }
3651
3652 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3653 {
3654         /* All of these values are in units of 50MHz */
3655         dev_priv->rps.cur_freq          = 0;
3656         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3657         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3658         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3659         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3660         /* XXX: only BYT has a special efficient freq */
3661         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3662         /* hw_max = RP0 until we check for overclocking */
3663         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3664
3665         /* Preserve min/max settings in case of re-init */
3666         if (dev_priv->rps.max_freq_softlimit == 0)
3667                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3668
3669         if (dev_priv->rps.min_freq_softlimit == 0)
3670                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3671 }
3672
3673 static void bdw_sw_calculate_freq(struct drm_device *dev,
3674                 struct intel_rps_bdw_cal *c, u32 *cur_time, u32 *c0)
3675 {
3676         struct drm_i915_private *dev_priv = dev->dev_private;
3677         u64 busy = 0;
3678         u32 busyness_pct = 0;
3679         u32 elapsed_time = 0;
3680         u16 new_freq = 0;
3681
3682         if (!c || !cur_time || !c0)
3683                 return;
3684
3685         if (0 == c->last_c0)
3686                 goto out;
3687
3688         /* Check Evaluation interval */
3689         elapsed_time = *cur_time - c->last_ts;
3690         if (elapsed_time < c->eval_interval)
3691                 return;
3692
3693         mutex_lock(&dev_priv->rps.hw_lock);
3694
3695         /*
3696          * c0 unit in 32*1.28 usec, elapsed_time unit in 1 usec.
3697          * Whole busyness_pct calculation should be
3698          *     busy = ((u64)(*c0 - c->last_c0) << 5 << 7) / 100;
3699          *     busyness_pct = (u32)(busy * 100 / elapsed_time);
3700          * The final formula is to simplify CPU calculation
3701          */
3702         busy = (u64)(*c0 - c->last_c0) << 12;
3703         do_div(busy, elapsed_time);
3704         busyness_pct = (u32)busy;
3705
3706         if (c->is_up && busyness_pct >= c->it_threshold_pct)
3707                 new_freq = (u16)dev_priv->rps.cur_freq + 3;
3708         if (!c->is_up && busyness_pct <= c->it_threshold_pct)
3709                 new_freq = (u16)dev_priv->rps.cur_freq - 1;
3710
3711         /* Adjust to new frequency busyness and compare with threshold */
3712         if (0 != new_freq) {
3713                 if (new_freq > dev_priv->rps.max_freq_softlimit)
3714                         new_freq = dev_priv->rps.max_freq_softlimit;
3715                 else if (new_freq < dev_priv->rps.min_freq_softlimit)
3716                         new_freq = dev_priv->rps.min_freq_softlimit;
3717
3718                 gen6_set_rps(dev, new_freq);
3719         }
3720
3721         mutex_unlock(&dev_priv->rps.hw_lock);
3722
3723 out:
3724         c->last_c0 = *c0;
3725         c->last_ts = *cur_time;
3726 }
3727
3728 static void gen8_set_frequency_RP0(struct work_struct *work)
3729 {
3730         struct intel_rps_bdw_turbo *p_bdw_turbo =
3731                         container_of(work, struct intel_rps_bdw_turbo, work_max_freq);
3732         struct intel_gen6_power_mgmt *p_power_mgmt =
3733                         container_of(p_bdw_turbo, struct intel_gen6_power_mgmt, sw_turbo);
3734         struct drm_i915_private *dev_priv =
3735                         container_of(p_power_mgmt, struct drm_i915_private, rps);
3736
3737         mutex_lock(&dev_priv->rps.hw_lock);
3738         gen6_set_rps(dev_priv->dev, dev_priv->rps.rp0_freq);
3739         mutex_unlock(&dev_priv->rps.hw_lock);
3740 }
3741
3742 static void flip_active_timeout_handler(unsigned long var)
3743 {
3744         struct drm_i915_private *dev_priv = (struct drm_i915_private *) var;
3745
3746         del_timer(&dev_priv->rps.sw_turbo.flip_timer);
3747         atomic_set(&dev_priv->rps.sw_turbo.flip_received, false);
3748
3749         queue_work(dev_priv->wq, &dev_priv->rps.sw_turbo.work_max_freq);
3750 }
3751
3752 void bdw_software_turbo(struct drm_device *dev)
3753 {
3754         struct drm_i915_private *dev_priv = dev->dev_private;
3755
3756         u32 current_time = I915_READ(TIMESTAMP_CTR); /* unit in usec */
3757         u32 current_c0 = I915_READ(MCHBAR_PCU_C0); /* unit in 32*1.28 usec */
3758
3759         bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.up,
3760                         &current_time, &current_c0);
3761         bdw_sw_calculate_freq(dev, &dev_priv->rps.sw_turbo.down,
3762                         &current_time, &current_c0);
3763 }
3764
3765 static void gen8_enable_rps(struct drm_device *dev)
3766 {
3767         struct drm_i915_private *dev_priv = dev->dev_private;
3768         struct intel_engine_cs *ring;
3769         uint32_t rc6_mask = 0, rp_state_cap;
3770         uint32_t threshold_up_pct, threshold_down_pct;
3771         uint32_t ei_up, ei_down; /* up and down evaluation interval */
3772         u32 rp_ctl_flag;
3773         int unused;
3774
3775         /* Use software Turbo for BDW */
3776         dev_priv->rps.is_bdw_sw_turbo = IS_BROADWELL(dev);
3777
3778         /* 1a: Software RC state - RC0 */
3779         I915_WRITE(GEN6_RC_STATE, 0);
3780
3781         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3782          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3783         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3784
3785         /* 2a: Disable RC states. */
3786         I915_WRITE(GEN6_RC_CONTROL, 0);
3787
3788         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3789         parse_rp_state_cap(dev_priv, rp_state_cap);
3790
3791         /* 2b: Program RC6 thresholds.*/
3792         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3793         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3794         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3795         for_each_ring(ring, dev_priv, unused)
3796                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3797         I915_WRITE(GEN6_RC_SLEEP, 0);
3798         if (IS_BROADWELL(dev))
3799                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
3800         else
3801                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3802
3803         /* 3: Enable RC6 */
3804         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3805                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3806         intel_print_rc6_info(dev, rc6_mask);
3807         if (IS_BROADWELL(dev))
3808                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3809                                 GEN7_RC_CTL_TO_MODE |
3810                                 rc6_mask);
3811         else
3812                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3813                                 GEN6_RC_CTL_EI_MODE(1) |
3814                                 rc6_mask);
3815
3816         /* 4 Program defaults and thresholds for RPS*/
3817         I915_WRITE(GEN6_RPNSWREQ,
3818                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3819         I915_WRITE(GEN6_RC_VIDEO_FREQ,
3820                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3821         ei_up = 84480; /* 84.48ms */
3822         ei_down = 448000;
3823         threshold_up_pct = 90; /* x percent busy */
3824         threshold_down_pct = 70;
3825
3826         if (dev_priv->rps.is_bdw_sw_turbo) {
3827                 dev_priv->rps.sw_turbo.up.it_threshold_pct = threshold_up_pct;
3828                 dev_priv->rps.sw_turbo.up.eval_interval = ei_up;
3829                 dev_priv->rps.sw_turbo.up.is_up = true;
3830                 dev_priv->rps.sw_turbo.up.last_ts = 0;
3831                 dev_priv->rps.sw_turbo.up.last_c0 = 0;
3832
3833                 dev_priv->rps.sw_turbo.down.it_threshold_pct = threshold_down_pct;
3834                 dev_priv->rps.sw_turbo.down.eval_interval = ei_down;
3835                 dev_priv->rps.sw_turbo.down.is_up = false;
3836                 dev_priv->rps.sw_turbo.down.last_ts = 0;
3837                 dev_priv->rps.sw_turbo.down.last_c0 = 0;
3838
3839                 /* Start the timer to track if flip comes*/
3840                 dev_priv->rps.sw_turbo.timeout = 200*1000; /* in us */
3841
3842                 init_timer(&dev_priv->rps.sw_turbo.flip_timer);
3843                 dev_priv->rps.sw_turbo.flip_timer.function = flip_active_timeout_handler;
3844                 dev_priv->rps.sw_turbo.flip_timer.data  = (unsigned long) dev_priv;
3845                 dev_priv->rps.sw_turbo.flip_timer.expires =
3846                         usecs_to_jiffies(dev_priv->rps.sw_turbo.timeout) + jiffies;
3847                 add_timer(&dev_priv->rps.sw_turbo.flip_timer);
3848                 INIT_WORK(&dev_priv->rps.sw_turbo.work_max_freq, gen8_set_frequency_RP0);
3849
3850                 atomic_set(&dev_priv->rps.sw_turbo.flip_received, true);
3851         } else {
3852                 /* NB: Docs say 1s, and 1000000 - which aren't equivalent
3853                  * 1 second timeout*/
3854                 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, FREQ_1_28_US(1000000));
3855
3856                 /* Docs recommend 900MHz, and 300 MHz respectively */
3857                 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3858                            dev_priv->rps.max_freq_softlimit << 24 |
3859                            dev_priv->rps.min_freq_softlimit << 16);
3860
3861                 I915_WRITE(GEN6_RP_UP_THRESHOLD,
3862                         FREQ_1_28_US(ei_up * threshold_up_pct / 100));
3863                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
3864                         FREQ_1_28_US(ei_down * threshold_down_pct / 100));
3865                 I915_WRITE(GEN6_RP_UP_EI,
3866                         FREQ_1_28_US(ei_up));
3867                 I915_WRITE(GEN6_RP_DOWN_EI,
3868                         FREQ_1_28_US(ei_down));
3869
3870                 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3871         }
3872
3873         /* 5: Enable RPS */
3874         rp_ctl_flag = GEN6_RP_MEDIA_TURBO |
3875                                         GEN6_RP_MEDIA_HW_NORMAL_MODE |
3876                                         GEN6_RP_MEDIA_IS_GFX |
3877                                         GEN6_RP_UP_BUSY_AVG |
3878                                         GEN6_RP_DOWN_IDLE_AVG;
3879         if (!dev_priv->rps.is_bdw_sw_turbo)
3880                 rp_ctl_flag |= GEN6_RP_ENABLE;
3881
3882         I915_WRITE(GEN6_RP_CONTROL, rp_ctl_flag);
3883
3884         /* 6: Ring frequency + overclocking
3885          * (our driver does this later */
3886         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3887         if (!dev_priv->rps.is_bdw_sw_turbo)
3888                 gen8_enable_rps_interrupts(dev);
3889
3890         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3891 }
3892
3893 static void gen6_enable_rps(struct drm_device *dev)
3894 {
3895         struct drm_i915_private *dev_priv = dev->dev_private;
3896         struct intel_engine_cs *ring;
3897         u32 rp_state_cap;
3898         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3899         u32 gtfifodbg;
3900         int rc6_mode;
3901         int i, ret;
3902
3903         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3904
3905         /* Here begins a magic sequence of register writes to enable
3906          * auto-downclocking.
3907          *
3908          * Perhaps there might be some value in exposing these to
3909          * userspace...
3910          */
3911         I915_WRITE(GEN6_RC_STATE, 0);
3912
3913         /* Clear the DBG now so we don't confuse earlier errors */
3914         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3915                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3916                 I915_WRITE(GTFIFODBG, gtfifodbg);
3917         }
3918
3919         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3920
3921         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3922
3923         parse_rp_state_cap(dev_priv, rp_state_cap);
3924
3925         /* disable the counters and set deterministic thresholds */
3926         I915_WRITE(GEN6_RC_CONTROL, 0);
3927
3928         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3929         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3930         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3931         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3932         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3933
3934         for_each_ring(ring, dev_priv, i)
3935                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3936
3937         I915_WRITE(GEN6_RC_SLEEP, 0);
3938         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3939         if (IS_IVYBRIDGE(dev))
3940                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3941         else
3942                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3943         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3944         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3945
3946         /* Check if we are enabling RC6 */
3947         rc6_mode = intel_enable_rc6(dev_priv->dev);
3948         if (rc6_mode & INTEL_RC6_ENABLE)
3949                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3950
3951         /* We don't use those on Haswell */
3952         if (!IS_HASWELL(dev)) {
3953                 if (rc6_mode & INTEL_RC6p_ENABLE)
3954                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3955
3956                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3957                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3958         }
3959
3960         intel_print_rc6_info(dev, rc6_mask);
3961
3962         I915_WRITE(GEN6_RC_CONTROL,
3963                    rc6_mask |
3964                    GEN6_RC_CTL_EI_MODE(1) |
3965                    GEN6_RC_CTL_HW_ENABLE);
3966
3967         /* Power down if completely idle for over 50ms */
3968         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3969         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3970
3971         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3972         if (ret)
3973                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3974
3975         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3976         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3977                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3978                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3979                                  (pcu_mbox & 0xff) * 50);
3980                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3981         }
3982
3983         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3984         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3985
3986         gen6_enable_rps_interrupts(dev);
3987
3988         rc6vids = 0;
3989         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3990         if (IS_GEN6(dev) && ret) {
3991                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3992         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3993                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3994                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3995                 rc6vids &= 0xffff00;
3996                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3997                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3998                 if (ret)
3999                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4000         }
4001
4002         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4003 }
4004
4005 static void __gen6_update_ring_freq(struct drm_device *dev)
4006 {
4007         struct drm_i915_private *dev_priv = dev->dev_private;
4008         int min_freq = 15;
4009         unsigned int gpu_freq;
4010         unsigned int max_ia_freq, min_ring_freq;
4011         int scaling_factor = 180;
4012         struct cpufreq_policy *policy;
4013
4014         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4015
4016         policy = cpufreq_cpu_get(0);
4017         if (policy) {
4018                 max_ia_freq = policy->cpuinfo.max_freq;
4019                 cpufreq_cpu_put(policy);
4020         } else {
4021                 /*
4022                  * Default to measured freq if none found, PCU will ensure we
4023                  * don't go over
4024                  */
4025                 max_ia_freq = tsc_khz;
4026         }
4027
4028         /* Convert from kHz to MHz */
4029         max_ia_freq /= 1000;
4030
4031         min_ring_freq = I915_READ(DCLK) & 0xf;
4032         /* convert DDR frequency from units of 266.6MHz to bandwidth */
4033         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4034
4035         /*
4036          * For each potential GPU frequency, load a ring frequency we'd like
4037          * to use for memory access.  We do this by specifying the IA frequency
4038          * the PCU should use as a reference to determine the ring frequency.
4039          */
4040         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
4041              gpu_freq--) {
4042                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
4043                 unsigned int ia_freq = 0, ring_freq = 0;
4044
4045                 if (INTEL_INFO(dev)->gen >= 8) {
4046                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
4047                         ring_freq = max(min_ring_freq, gpu_freq);
4048                 } else if (IS_HASWELL(dev)) {
4049                         ring_freq = mult_frac(gpu_freq, 5, 4);
4050                         ring_freq = max(min_ring_freq, ring_freq);
4051                         /* leave ia_freq as the default, chosen by cpufreq */
4052                 } else {
4053                         /* On older processors, there is no separate ring
4054                          * clock domain, so in order to boost the bandwidth
4055                          * of the ring, we need to upclock the CPU (ia_freq).
4056                          *
4057                          * For GPU frequencies less than 750MHz,
4058                          * just use the lowest ring freq.
4059                          */
4060                         if (gpu_freq < min_freq)
4061                                 ia_freq = 800;
4062                         else
4063                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4064                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4065                 }
4066
4067                 sandybridge_pcode_write(dev_priv,
4068                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4069                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4070                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4071                                         gpu_freq);
4072         }
4073 }
4074
4075 void gen6_update_ring_freq(struct drm_device *dev)
4076 {
4077         struct drm_i915_private *dev_priv = dev->dev_private;
4078
4079         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4080                 return;
4081
4082         mutex_lock(&dev_priv->rps.hw_lock);
4083         __gen6_update_ring_freq(dev);
4084         mutex_unlock(&dev_priv->rps.hw_lock);
4085 }
4086
4087 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4088 {
4089         u32 val, rp0;
4090
4091         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4092         rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4093
4094         return rp0;
4095 }
4096
4097 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4098 {
4099         u32 val, rpe;
4100
4101         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4102         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4103
4104         return rpe;
4105 }
4106
4107 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4108 {
4109         u32 val, rp1;
4110
4111         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4112         rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4113
4114         return rp1;
4115 }
4116
4117 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4118 {
4119         u32 val, rpn;
4120
4121         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4122         rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
4123         return rpn;
4124 }
4125
4126 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4127 {
4128         u32 val, rp1;
4129
4130         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4131
4132         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4133
4134         return rp1;
4135 }
4136
4137 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4138 {
4139         u32 val, rp0;
4140
4141         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4142
4143         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4144         /* Clamp to max */
4145         rp0 = min_t(u32, rp0, 0xea);
4146
4147         return rp0;
4148 }
4149
4150 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4151 {
4152         u32 val, rpe;
4153
4154         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4155         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4156         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4157         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4158
4159         return rpe;
4160 }
4161
4162 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4163 {
4164         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4165 }
4166
4167 /* Check that the pctx buffer wasn't move under us. */
4168 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4169 {
4170         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4171
4172         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4173                              dev_priv->vlv_pctx->stolen->start);
4174 }
4175
4176
4177 /* Check that the pcbr address is not empty. */
4178 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4179 {
4180         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4181
4182         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4183 }
4184
4185 static void cherryview_setup_pctx(struct drm_device *dev)
4186 {
4187         struct drm_i915_private *dev_priv = dev->dev_private;
4188         unsigned long pctx_paddr, paddr;
4189         struct i915_gtt *gtt = &dev_priv->gtt;
4190         u32 pcbr;
4191         int pctx_size = 32*1024;
4192
4193         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4194
4195         pcbr = I915_READ(VLV_PCBR);
4196         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4197                 paddr = (dev_priv->mm.stolen_base +
4198                          (gtt->stolen_size - pctx_size));
4199
4200                 pctx_paddr = (paddr & (~4095));
4201                 I915_WRITE(VLV_PCBR, pctx_paddr);
4202         }
4203 }
4204
4205 static void valleyview_setup_pctx(struct drm_device *dev)
4206 {
4207         struct drm_i915_private *dev_priv = dev->dev_private;
4208         struct drm_i915_gem_object *pctx;
4209         unsigned long pctx_paddr;
4210         u32 pcbr;
4211         int pctx_size = 24*1024;
4212
4213         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4214
4215         pcbr = I915_READ(VLV_PCBR);
4216         if (pcbr) {
4217                 /* BIOS set it up already, grab the pre-alloc'd space */
4218                 int pcbr_offset;
4219
4220                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4221                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4222                                                                       pcbr_offset,
4223                                                                       I915_GTT_OFFSET_NONE,
4224                                                                       pctx_size);
4225                 goto out;
4226         }
4227
4228         /*
4229          * From the Gunit register HAS:
4230          * The Gfx driver is expected to program this register and ensure
4231          * proper allocation within Gfx stolen memory.  For example, this
4232          * register should be programmed such than the PCBR range does not
4233          * overlap with other ranges, such as the frame buffer, protected
4234          * memory, or any other relevant ranges.
4235          */
4236         pctx = i915_gem_object_create_stolen(dev, pctx_size);
4237         if (!pctx) {
4238                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4239                 return;
4240         }
4241
4242         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4243         I915_WRITE(VLV_PCBR, pctx_paddr);
4244
4245 out:
4246         dev_priv->vlv_pctx = pctx;
4247 }
4248
4249 static void valleyview_cleanup_pctx(struct drm_device *dev)
4250 {
4251         struct drm_i915_private *dev_priv = dev->dev_private;
4252
4253         if (WARN_ON(!dev_priv->vlv_pctx))
4254                 return;
4255
4256         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4257         dev_priv->vlv_pctx = NULL;
4258 }
4259
4260 static void valleyview_init_gt_powersave(struct drm_device *dev)
4261 {
4262         struct drm_i915_private *dev_priv = dev->dev_private;
4263         u32 val;
4264
4265         valleyview_setup_pctx(dev);
4266
4267         mutex_lock(&dev_priv->rps.hw_lock);
4268
4269         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4270         switch ((val >> 6) & 3) {
4271         case 0:
4272         case 1:
4273                 dev_priv->mem_freq = 800;
4274                 break;
4275         case 2:
4276                 dev_priv->mem_freq = 1066;
4277                 break;
4278         case 3:
4279                 dev_priv->mem_freq = 1333;
4280                 break;
4281         }
4282         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4283
4284         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4285         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4286         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4287                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4288                          dev_priv->rps.max_freq);
4289
4290         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4291         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4292                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4293                          dev_priv->rps.efficient_freq);
4294
4295         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4296         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4297                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4298                          dev_priv->rps.rp1_freq);
4299
4300         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4301         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4302                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4303                          dev_priv->rps.min_freq);
4304
4305         /* Preserve min/max settings in case of re-init */
4306         if (dev_priv->rps.max_freq_softlimit == 0)
4307                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4308
4309         if (dev_priv->rps.min_freq_softlimit == 0)
4310                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4311
4312         mutex_unlock(&dev_priv->rps.hw_lock);
4313 }
4314
4315 static void cherryview_init_gt_powersave(struct drm_device *dev)
4316 {
4317         struct drm_i915_private *dev_priv = dev->dev_private;
4318         u32 val;
4319
4320         cherryview_setup_pctx(dev);
4321
4322         mutex_lock(&dev_priv->rps.hw_lock);
4323
4324         val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
4325         switch ((val >> 2) & 0x7) {
4326         case 0:
4327         case 1:
4328                 dev_priv->rps.cz_freq = 200;
4329                 dev_priv->mem_freq = 1600;
4330                 break;
4331         case 2:
4332                 dev_priv->rps.cz_freq = 267;
4333                 dev_priv->mem_freq = 1600;
4334                 break;
4335         case 3:
4336                 dev_priv->rps.cz_freq = 333;
4337                 dev_priv->mem_freq = 2000;
4338                 break;
4339         case 4:
4340                 dev_priv->rps.cz_freq = 320;
4341                 dev_priv->mem_freq = 1600;
4342                 break;
4343         case 5:
4344                 dev_priv->rps.cz_freq = 400;
4345                 dev_priv->mem_freq = 1600;
4346                 break;
4347         }
4348         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4349
4350         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4351         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4352         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4353                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4354                          dev_priv->rps.max_freq);
4355
4356         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4357         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4358                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4359                          dev_priv->rps.efficient_freq);
4360
4361         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4362         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4363                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4364                          dev_priv->rps.rp1_freq);
4365
4366         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4367         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4368                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4369                          dev_priv->rps.min_freq);
4370
4371         WARN_ONCE((dev_priv->rps.max_freq |
4372                    dev_priv->rps.efficient_freq |
4373                    dev_priv->rps.rp1_freq |
4374                    dev_priv->rps.min_freq) & 1,
4375                   "Odd GPU freq values\n");
4376
4377         /* Preserve min/max settings in case of re-init */
4378         if (dev_priv->rps.max_freq_softlimit == 0)
4379                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4380
4381         if (dev_priv->rps.min_freq_softlimit == 0)
4382                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4383
4384         mutex_unlock(&dev_priv->rps.hw_lock);
4385 }
4386
4387 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4388 {
4389         valleyview_cleanup_pctx(dev);
4390 }
4391
4392 static void cherryview_enable_rps(struct drm_device *dev)
4393 {
4394         struct drm_i915_private *dev_priv = dev->dev_private;
4395         struct intel_engine_cs *ring;
4396         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4397         int i;
4398
4399         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4400
4401         gtfifodbg = I915_READ(GTFIFODBG);
4402         if (gtfifodbg) {
4403                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4404                                  gtfifodbg);
4405                 I915_WRITE(GTFIFODBG, gtfifodbg);
4406         }
4407
4408         cherryview_check_pctx(dev_priv);
4409
4410         /* 1a & 1b: Get forcewake during program sequence. Although the driver
4411          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4412         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4413
4414         /* 2a: Program RC6 thresholds.*/
4415         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4416         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4417         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4418
4419         for_each_ring(ring, dev_priv, i)
4420                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4421         I915_WRITE(GEN6_RC_SLEEP, 0);
4422
4423         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4424
4425         /* allows RC6 residency counter to work */
4426         I915_WRITE(VLV_COUNTER_CONTROL,
4427                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4428                                       VLV_MEDIA_RC6_COUNT_EN |
4429                                       VLV_RENDER_RC6_COUNT_EN));
4430
4431         /* For now we assume BIOS is allocating and populating the PCBR  */
4432         pcbr = I915_READ(VLV_PCBR);
4433
4434         DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4435
4436         /* 3: Enable RC6 */
4437         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4438                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4439                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4440
4441         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4442
4443         /* 4 Program defaults and thresholds for RPS*/
4444         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4445         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4446         I915_WRITE(GEN6_RP_UP_EI, 66000);
4447         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4448
4449         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4450
4451         /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4452         I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4453         I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4454
4455         /* 5: Enable RPS */
4456         I915_WRITE(GEN6_RP_CONTROL,
4457                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4458                    GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4459                    GEN6_RP_ENABLE |
4460                    GEN6_RP_UP_BUSY_AVG |
4461                    GEN6_RP_DOWN_IDLE_AVG);
4462
4463         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4464
4465         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4466         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4467
4468         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4469         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4470                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4471                          dev_priv->rps.cur_freq);
4472
4473         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4474                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4475                          dev_priv->rps.efficient_freq);
4476
4477         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4478
4479         gen8_enable_rps_interrupts(dev);
4480
4481         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4482 }
4483
4484 static void valleyview_enable_rps(struct drm_device *dev)
4485 {
4486         struct drm_i915_private *dev_priv = dev->dev_private;
4487         struct intel_engine_cs *ring;
4488         u32 gtfifodbg, val, rc6_mode = 0;
4489         int i;
4490
4491         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4492
4493         valleyview_check_pctx(dev_priv);
4494
4495         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4496                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4497                                  gtfifodbg);
4498                 I915_WRITE(GTFIFODBG, gtfifodbg);
4499         }
4500
4501         /* If VLV, Forcewake all wells, else re-direct to regular path */
4502         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4503
4504         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4505         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4506         I915_WRITE(GEN6_RP_UP_EI, 66000);
4507         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4508
4509         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4510         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4511
4512         I915_WRITE(GEN6_RP_CONTROL,
4513                    GEN6_RP_MEDIA_TURBO |
4514                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4515                    GEN6_RP_MEDIA_IS_GFX |
4516                    GEN6_RP_ENABLE |
4517                    GEN6_RP_UP_BUSY_AVG |
4518                    GEN6_RP_DOWN_IDLE_CONT);
4519
4520         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4521         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4522         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4523
4524         for_each_ring(ring, dev_priv, i)
4525                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4526
4527         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4528
4529         /* allows RC6 residency counter to work */
4530         I915_WRITE(VLV_COUNTER_CONTROL,
4531                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4532                                       VLV_RENDER_RC0_COUNT_EN |
4533                                       VLV_MEDIA_RC6_COUNT_EN |
4534                                       VLV_RENDER_RC6_COUNT_EN));
4535
4536         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4537                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4538
4539         intel_print_rc6_info(dev, rc6_mode);
4540
4541         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4542
4543         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4544
4545         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4546         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4547
4548         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4549         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4550                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4551                          dev_priv->rps.cur_freq);
4552
4553         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4554                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4555                          dev_priv->rps.efficient_freq);
4556
4557         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4558
4559         gen6_enable_rps_interrupts(dev);
4560
4561         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4562 }
4563
4564 void ironlake_teardown_rc6(struct drm_device *dev)
4565 {
4566         struct drm_i915_private *dev_priv = dev->dev_private;
4567
4568         if (dev_priv->ips.renderctx) {
4569                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4570                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4571                 dev_priv->ips.renderctx = NULL;
4572         }
4573
4574         if (dev_priv->ips.pwrctx) {
4575                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4576                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4577                 dev_priv->ips.pwrctx = NULL;
4578         }
4579 }
4580
4581 static void ironlake_disable_rc6(struct drm_device *dev)
4582 {
4583         struct drm_i915_private *dev_priv = dev->dev_private;
4584
4585         if (I915_READ(PWRCTXA)) {
4586                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4587                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4588                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4589                          50);
4590
4591                 I915_WRITE(PWRCTXA, 0);
4592                 POSTING_READ(PWRCTXA);
4593
4594                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4595                 POSTING_READ(RSTDBYCTL);
4596         }
4597 }
4598
4599 static int ironlake_setup_rc6(struct drm_device *dev)
4600 {
4601         struct drm_i915_private *dev_priv = dev->dev_private;
4602
4603         if (dev_priv->ips.renderctx == NULL)
4604                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4605         if (!dev_priv->ips.renderctx)
4606                 return -ENOMEM;
4607
4608         if (dev_priv->ips.pwrctx == NULL)
4609                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4610         if (!dev_priv->ips.pwrctx) {
4611                 ironlake_teardown_rc6(dev);
4612                 return -ENOMEM;
4613         }
4614
4615         return 0;
4616 }
4617
4618 static void ironlake_enable_rc6(struct drm_device *dev)
4619 {
4620         struct drm_i915_private *dev_priv = dev->dev_private;
4621         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4622         bool was_interruptible;
4623         int ret;
4624
4625         /* rc6 disabled by default due to repeated reports of hanging during
4626          * boot and resume.
4627          */
4628         if (!intel_enable_rc6(dev))
4629                 return;
4630
4631         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4632
4633         ret = ironlake_setup_rc6(dev);
4634         if (ret)
4635                 return;
4636
4637         was_interruptible = dev_priv->mm.interruptible;
4638         dev_priv->mm.interruptible = false;
4639
4640         /*
4641          * GPU can automatically power down the render unit if given a page
4642          * to save state.
4643          */
4644         ret = intel_ring_begin(ring, 6);
4645         if (ret) {
4646                 ironlake_teardown_rc6(dev);
4647                 dev_priv->mm.interruptible = was_interruptible;
4648                 return;
4649         }
4650
4651         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4652         intel_ring_emit(ring, MI_SET_CONTEXT);
4653         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4654                         MI_MM_SPACE_GTT |
4655                         MI_SAVE_EXT_STATE_EN |
4656                         MI_RESTORE_EXT_STATE_EN |
4657                         MI_RESTORE_INHIBIT);
4658         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4659         intel_ring_emit(ring, MI_NOOP);
4660         intel_ring_emit(ring, MI_FLUSH);
4661         intel_ring_advance(ring);
4662
4663         /*
4664          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4665          * does an implicit flush, combined with MI_FLUSH above, it should be
4666          * safe to assume that renderctx is valid
4667          */
4668         ret = intel_ring_idle(ring);
4669         dev_priv->mm.interruptible = was_interruptible;
4670         if (ret) {
4671                 DRM_ERROR("failed to enable ironlake power savings\n");
4672                 ironlake_teardown_rc6(dev);
4673                 return;
4674         }
4675
4676         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4677         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4678
4679         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4680 }
4681
4682 static unsigned long intel_pxfreq(u32 vidfreq)
4683 {
4684         unsigned long freq;
4685         int div = (vidfreq & 0x3f0000) >> 16;
4686         int post = (vidfreq & 0x3000) >> 12;
4687         int pre = (vidfreq & 0x7);
4688
4689         if (!pre)
4690                 return 0;
4691
4692         freq = ((div * 133333) / ((1<<post) * pre));
4693
4694         return freq;
4695 }
4696
4697 static const struct cparams {
4698         u16 i;
4699         u16 t;
4700         u16 m;
4701         u16 c;
4702 } cparams[] = {
4703         { 1, 1333, 301, 28664 },
4704         { 1, 1066, 294, 24460 },
4705         { 1, 800, 294, 25192 },
4706         { 0, 1333, 276, 27605 },
4707         { 0, 1066, 276, 27605 },
4708         { 0, 800, 231, 23784 },
4709 };
4710
4711 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4712 {
4713         u64 total_count, diff, ret;
4714         u32 count1, count2, count3, m = 0, c = 0;
4715         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4716         int i;
4717
4718         assert_spin_locked(&mchdev_lock);
4719
4720         diff1 = now - dev_priv->ips.last_time1;
4721
4722         /* Prevent division-by-zero if we are asking too fast.
4723          * Also, we don't get interesting results if we are polling
4724          * faster than once in 10ms, so just return the saved value
4725          * in such cases.
4726          */
4727         if (diff1 <= 10)
4728                 return dev_priv->ips.chipset_power;
4729
4730         count1 = I915_READ(DMIEC);
4731         count2 = I915_READ(DDREC);
4732         count3 = I915_READ(CSIEC);
4733
4734         total_count = count1 + count2 + count3;
4735
4736         /* FIXME: handle per-counter overflow */
4737         if (total_count < dev_priv->ips.last_count1) {
4738                 diff = ~0UL - dev_priv->ips.last_count1;
4739                 diff += total_count;
4740         } else {
4741                 diff = total_count - dev_priv->ips.last_count1;
4742         }
4743
4744         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4745                 if (cparams[i].i == dev_priv->ips.c_m &&
4746                     cparams[i].t == dev_priv->ips.r_t) {
4747                         m = cparams[i].m;
4748                         c = cparams[i].c;
4749                         break;
4750                 }
4751         }
4752
4753         diff = div_u64(diff, diff1);
4754         ret = ((m * diff) + c);
4755         ret = div_u64(ret, 10);
4756
4757         dev_priv->ips.last_count1 = total_count;
4758         dev_priv->ips.last_time1 = now;
4759
4760         dev_priv->ips.chipset_power = ret;
4761
4762         return ret;
4763 }
4764
4765 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4766 {
4767         struct drm_device *dev = dev_priv->dev;
4768         unsigned long val;
4769
4770         if (INTEL_INFO(dev)->gen != 5)
4771                 return 0;
4772
4773         spin_lock_irq(&mchdev_lock);
4774
4775         val = __i915_chipset_val(dev_priv);
4776
4777         spin_unlock_irq(&mchdev_lock);
4778
4779         return val;
4780 }
4781
4782 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4783 {
4784         unsigned long m, x, b;
4785         u32 tsfs;
4786
4787         tsfs = I915_READ(TSFS);
4788
4789         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4790         x = I915_READ8(TR1);
4791
4792         b = tsfs & TSFS_INTR_MASK;
4793
4794         return ((m * x) / 127) - b;
4795 }
4796
4797 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4798 {
4799         struct drm_device *dev = dev_priv->dev;
4800         static const struct v_table {
4801                 u16 vd; /* in .1 mil */
4802                 u16 vm; /* in .1 mil */
4803         } v_table[] = {
4804                 { 0, 0, },
4805                 { 375, 0, },
4806                 { 500, 0, },
4807                 { 625, 0, },
4808                 { 750, 0, },
4809                 { 875, 0, },
4810                 { 1000, 0, },
4811                 { 1125, 0, },
4812                 { 4125, 3000, },
4813                 { 4125, 3000, },
4814                 { 4125, 3000, },
4815                 { 4125, 3000, },
4816                 { 4125, 3000, },
4817                 { 4125, 3000, },
4818                 { 4125, 3000, },
4819                 { 4125, 3000, },
4820                 { 4125, 3000, },
4821                 { 4125, 3000, },
4822                 { 4125, 3000, },
4823                 { 4125, 3000, },
4824                 { 4125, 3000, },
4825                 { 4125, 3000, },
4826                 { 4125, 3000, },
4827                 { 4125, 3000, },
4828                 { 4125, 3000, },
4829                 { 4125, 3000, },
4830                 { 4125, 3000, },
4831                 { 4125, 3000, },
4832                 { 4125, 3000, },
4833                 { 4125, 3000, },
4834                 { 4125, 3000, },
4835                 { 4125, 3000, },
4836                 { 4250, 3125, },
4837                 { 4375, 3250, },
4838                 { 4500, 3375, },
4839                 { 4625, 3500, },
4840                 { 4750, 3625, },
4841                 { 4875, 3750, },
4842                 { 5000, 3875, },
4843                 { 5125, 4000, },
4844                 { 5250, 4125, },
4845                 { 5375, 4250, },
4846                 { 5500, 4375, },
4847                 { 5625, 4500, },
4848                 { 5750, 4625, },
4849                 { 5875, 4750, },
4850                 { 6000, 4875, },
4851                 { 6125, 5000, },
4852                 { 6250, 5125, },
4853                 { 6375, 5250, },
4854                 { 6500, 5375, },
4855                 { 6625, 5500, },
4856                 { 6750, 5625, },
4857                 { 6875, 5750, },
4858                 { 7000, 5875, },
4859                 { 7125, 6000, },
4860                 { 7250, 6125, },
4861                 { 7375, 6250, },
4862                 { 7500, 6375, },
4863                 { 7625, 6500, },
4864                 { 7750, 6625, },
4865                 { 7875, 6750, },
4866                 { 8000, 6875, },
4867                 { 8125, 7000, },
4868                 { 8250, 7125, },
4869                 { 8375, 7250, },
4870                 { 8500, 7375, },
4871                 { 8625, 7500, },
4872                 { 8750, 7625, },
4873                 { 8875, 7750, },
4874                 { 9000, 7875, },
4875                 { 9125, 8000, },
4876                 { 9250, 8125, },
4877                 { 9375, 8250, },
4878                 { 9500, 8375, },
4879                 { 9625, 8500, },
4880                 { 9750, 8625, },
4881                 { 9875, 8750, },
4882                 { 10000, 8875, },
4883                 { 10125, 9000, },
4884                 { 10250, 9125, },
4885                 { 10375, 9250, },
4886                 { 10500, 9375, },
4887                 { 10625, 9500, },
4888                 { 10750, 9625, },
4889                 { 10875, 9750, },
4890                 { 11000, 9875, },
4891                 { 11125, 10000, },
4892                 { 11250, 10125, },
4893                 { 11375, 10250, },
4894                 { 11500, 10375, },
4895                 { 11625, 10500, },
4896                 { 11750, 10625, },
4897                 { 11875, 10750, },
4898                 { 12000, 10875, },
4899                 { 12125, 11000, },
4900                 { 12250, 11125, },
4901                 { 12375, 11250, },
4902                 { 12500, 11375, },
4903                 { 12625, 11500, },
4904                 { 12750, 11625, },
4905                 { 12875, 11750, },
4906                 { 13000, 11875, },
4907                 { 13125, 12000, },
4908                 { 13250, 12125, },
4909                 { 13375, 12250, },
4910                 { 13500, 12375, },
4911                 { 13625, 12500, },
4912                 { 13750, 12625, },
4913                 { 13875, 12750, },
4914                 { 14000, 12875, },
4915                 { 14125, 13000, },
4916                 { 14250, 13125, },
4917                 { 14375, 13250, },
4918                 { 14500, 13375, },
4919                 { 14625, 13500, },
4920                 { 14750, 13625, },
4921                 { 14875, 13750, },
4922                 { 15000, 13875, },
4923                 { 15125, 14000, },
4924                 { 15250, 14125, },
4925                 { 15375, 14250, },
4926                 { 15500, 14375, },
4927                 { 15625, 14500, },
4928                 { 15750, 14625, },
4929                 { 15875, 14750, },
4930                 { 16000, 14875, },
4931                 { 16125, 15000, },
4932         };
4933         if (INTEL_INFO(dev)->is_mobile)
4934                 return v_table[pxvid].vm;
4935         else
4936                 return v_table[pxvid].vd;
4937 }
4938
4939 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4940 {
4941         u64 now, diff, diffms;
4942         u32 count;
4943
4944         assert_spin_locked(&mchdev_lock);
4945
4946         now = ktime_get_raw_ns();
4947         diffms = now - dev_priv->ips.last_time2;
4948         do_div(diffms, NSEC_PER_MSEC);
4949
4950         /* Don't divide by 0 */
4951         if (!diffms)
4952                 return;
4953
4954         count = I915_READ(GFXEC);
4955
4956         if (count < dev_priv->ips.last_count2) {
4957                 diff = ~0UL - dev_priv->ips.last_count2;
4958                 diff += count;
4959         } else {
4960                 diff = count - dev_priv->ips.last_count2;
4961         }
4962
4963         dev_priv->ips.last_count2 = count;
4964         dev_priv->ips.last_time2 = now;
4965
4966         /* More magic constants... */
4967         diff = diff * 1181;
4968         diff = div_u64(diff, diffms * 10);
4969         dev_priv->ips.gfx_power = diff;
4970 }
4971
4972 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4973 {
4974         struct drm_device *dev = dev_priv->dev;
4975
4976         if (INTEL_INFO(dev)->gen != 5)
4977                 return;
4978
4979         spin_lock_irq(&mchdev_lock);
4980
4981         __i915_update_gfx_val(dev_priv);
4982
4983         spin_unlock_irq(&mchdev_lock);
4984 }
4985
4986 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4987 {
4988         unsigned long t, corr, state1, corr2, state2;
4989         u32 pxvid, ext_v;
4990
4991         assert_spin_locked(&mchdev_lock);
4992
4993         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4994         pxvid = (pxvid >> 24) & 0x7f;
4995         ext_v = pvid_to_extvid(dev_priv, pxvid);
4996
4997         state1 = ext_v;
4998
4999         t = i915_mch_val(dev_priv);
5000
5001         /* Revel in the empirically derived constants */
5002
5003         /* Correction factor in 1/100000 units */
5004         if (t > 80)
5005                 corr = ((t * 2349) + 135940);
5006         else if (t >= 50)
5007                 corr = ((t * 964) + 29317);
5008         else /* < 50 */
5009                 corr = ((t * 301) + 1004);
5010
5011         corr = corr * ((150142 * state1) / 10000 - 78642);
5012         corr /= 100000;
5013         corr2 = (corr * dev_priv->ips.corr);
5014
5015         state2 = (corr2 * state1) / 10000;
5016         state2 /= 100; /* convert to mW */
5017
5018         __i915_update_gfx_val(dev_priv);
5019
5020         return dev_priv->ips.gfx_power + state2;
5021 }
5022
5023 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5024 {
5025         struct drm_device *dev = dev_priv->dev;
5026         unsigned long val;
5027
5028         if (INTEL_INFO(dev)->gen != 5)
5029                 return 0;
5030
5031         spin_lock_irq(&mchdev_lock);
5032
5033         val = __i915_gfx_val(dev_priv);
5034
5035         spin_unlock_irq(&mchdev_lock);
5036
5037         return val;
5038 }
5039
5040 /**
5041  * i915_read_mch_val - return value for IPS use
5042  *
5043  * Calculate and return a value for the IPS driver to use when deciding whether
5044  * we have thermal and power headroom to increase CPU or GPU power budget.
5045  */
5046 unsigned long i915_read_mch_val(void)
5047 {
5048         struct drm_i915_private *dev_priv;
5049         unsigned long chipset_val, graphics_val, ret = 0;
5050
5051         spin_lock_irq(&mchdev_lock);
5052         if (!i915_mch_dev)
5053                 goto out_unlock;
5054         dev_priv = i915_mch_dev;
5055
5056         chipset_val = __i915_chipset_val(dev_priv);
5057         graphics_val = __i915_gfx_val(dev_priv);
5058
5059         ret = chipset_val + graphics_val;
5060
5061 out_unlock:
5062         spin_unlock_irq(&mchdev_lock);
5063
5064         return ret;
5065 }
5066 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5067
5068 /**
5069  * i915_gpu_raise - raise GPU frequency limit
5070  *
5071  * Raise the limit; IPS indicates we have thermal headroom.
5072  */
5073 bool i915_gpu_raise(void)
5074 {
5075         struct drm_i915_private *dev_priv;
5076         bool ret = true;
5077
5078         spin_lock_irq(&mchdev_lock);
5079         if (!i915_mch_dev) {
5080                 ret = false;
5081                 goto out_unlock;
5082         }
5083         dev_priv = i915_mch_dev;
5084
5085         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5086                 dev_priv->ips.max_delay--;
5087
5088 out_unlock:
5089         spin_unlock_irq(&mchdev_lock);
5090
5091         return ret;
5092 }
5093 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5094
5095 /**
5096  * i915_gpu_lower - lower GPU frequency limit
5097  *
5098  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5099  * frequency maximum.
5100  */
5101 bool i915_gpu_lower(void)
5102 {
5103         struct drm_i915_private *dev_priv;
5104         bool ret = true;
5105
5106         spin_lock_irq(&mchdev_lock);
5107         if (!i915_mch_dev) {
5108                 ret = false;
5109                 goto out_unlock;
5110         }
5111         dev_priv = i915_mch_dev;
5112
5113         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5114                 dev_priv->ips.max_delay++;
5115
5116 out_unlock:
5117         spin_unlock_irq(&mchdev_lock);
5118
5119         return ret;
5120 }
5121 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5122
5123 /**
5124  * i915_gpu_busy - indicate GPU business to IPS
5125  *
5126  * Tell the IPS driver whether or not the GPU is busy.
5127  */
5128 bool i915_gpu_busy(void)
5129 {
5130         struct drm_i915_private *dev_priv;
5131         struct intel_engine_cs *ring;
5132         bool ret = false;
5133         int i;
5134
5135         spin_lock_irq(&mchdev_lock);
5136         if (!i915_mch_dev)
5137                 goto out_unlock;
5138         dev_priv = i915_mch_dev;
5139
5140         for_each_ring(ring, dev_priv, i)
5141                 ret |= !list_empty(&ring->request_list);
5142
5143 out_unlock:
5144         spin_unlock_irq(&mchdev_lock);
5145
5146         return ret;
5147 }
5148 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5149
5150 /**
5151  * i915_gpu_turbo_disable - disable graphics turbo
5152  *
5153  * Disable graphics turbo by resetting the max frequency and setting the
5154  * current frequency to the default.
5155  */
5156 bool i915_gpu_turbo_disable(void)
5157 {
5158         struct drm_i915_private *dev_priv;
5159         bool ret = true;
5160
5161         spin_lock_irq(&mchdev_lock);
5162         if (!i915_mch_dev) {
5163                 ret = false;
5164                 goto out_unlock;
5165         }
5166         dev_priv = i915_mch_dev;
5167
5168         dev_priv->ips.max_delay = dev_priv->ips.fstart;
5169
5170         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5171                 ret = false;
5172
5173 out_unlock:
5174         spin_unlock_irq(&mchdev_lock);
5175
5176         return ret;
5177 }
5178 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5179
5180 /**
5181  * Tells the intel_ips driver that the i915 driver is now loaded, if
5182  * IPS got loaded first.
5183  *
5184  * This awkward dance is so that neither module has to depend on the
5185  * other in order for IPS to do the appropriate communication of
5186  * GPU turbo limits to i915.
5187  */
5188 static void
5189 ips_ping_for_i915_load(void)
5190 {
5191         void (*link)(void);
5192
5193         link = symbol_get(ips_link_to_i915_driver);
5194         if (link) {
5195                 link();
5196                 symbol_put(ips_link_to_i915_driver);
5197         }
5198 }
5199
5200 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5201 {
5202         /* We only register the i915 ips part with intel-ips once everything is
5203          * set up, to avoid intel-ips sneaking in and reading bogus values. */
5204         spin_lock_irq(&mchdev_lock);
5205         i915_mch_dev = dev_priv;
5206         spin_unlock_irq(&mchdev_lock);
5207
5208         ips_ping_for_i915_load();
5209 }
5210
5211 void intel_gpu_ips_teardown(void)
5212 {
5213         spin_lock_irq(&mchdev_lock);
5214         i915_mch_dev = NULL;
5215         spin_unlock_irq(&mchdev_lock);
5216 }
5217
5218 static void intel_init_emon(struct drm_device *dev)
5219 {
5220         struct drm_i915_private *dev_priv = dev->dev_private;
5221         u32 lcfuse;
5222         u8 pxw[16];
5223         int i;
5224
5225         /* Disable to program */
5226         I915_WRITE(ECR, 0);
5227         POSTING_READ(ECR);
5228
5229         /* Program energy weights for various events */
5230         I915_WRITE(SDEW, 0x15040d00);
5231         I915_WRITE(CSIEW0, 0x007f0000);
5232         I915_WRITE(CSIEW1, 0x1e220004);
5233         I915_WRITE(CSIEW2, 0x04000004);
5234
5235         for (i = 0; i < 5; i++)
5236                 I915_WRITE(PEW + (i * 4), 0);
5237         for (i = 0; i < 3; i++)
5238                 I915_WRITE(DEW + (i * 4), 0);
5239
5240         /* Program P-state weights to account for frequency power adjustment */
5241         for (i = 0; i < 16; i++) {
5242                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5243                 unsigned long freq = intel_pxfreq(pxvidfreq);
5244                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5245                         PXVFREQ_PX_SHIFT;
5246                 unsigned long val;
5247
5248                 val = vid * vid;
5249                 val *= (freq / 1000);
5250                 val *= 255;
5251                 val /= (127*127*900);
5252                 if (val > 0xff)
5253                         DRM_ERROR("bad pxval: %ld\n", val);
5254                 pxw[i] = val;
5255         }
5256         /* Render standby states get 0 weight */
5257         pxw[14] = 0;
5258         pxw[15] = 0;
5259
5260         for (i = 0; i < 4; i++) {
5261                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5262                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5263                 I915_WRITE(PXW + (i * 4), val);
5264         }
5265
5266         /* Adjust magic regs to magic values (more experimental results) */
5267         I915_WRITE(OGW0, 0);
5268         I915_WRITE(OGW1, 0);
5269         I915_WRITE(EG0, 0x00007f00);
5270         I915_WRITE(EG1, 0x0000000e);
5271         I915_WRITE(EG2, 0x000e0000);
5272         I915_WRITE(EG3, 0x68000300);
5273         I915_WRITE(EG4, 0x42000000);
5274         I915_WRITE(EG5, 0x00140031);
5275         I915_WRITE(EG6, 0);
5276         I915_WRITE(EG7, 0);
5277
5278         for (i = 0; i < 8; i++)
5279                 I915_WRITE(PXWL + (i * 4), 0);
5280
5281         /* Enable PMON + select events */
5282         I915_WRITE(ECR, 0x80000019);
5283
5284         lcfuse = I915_READ(LCFUSE02);
5285
5286         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5287 }
5288
5289 void intel_init_gt_powersave(struct drm_device *dev)
5290 {
5291         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5292
5293         if (IS_CHERRYVIEW(dev))
5294                 cherryview_init_gt_powersave(dev);
5295         else if (IS_VALLEYVIEW(dev))
5296                 valleyview_init_gt_powersave(dev);
5297 }
5298
5299 void intel_cleanup_gt_powersave(struct drm_device *dev)
5300 {
5301         if (IS_CHERRYVIEW(dev))
5302                 return;
5303         else if (IS_VALLEYVIEW(dev))
5304                 valleyview_cleanup_gt_powersave(dev);
5305 }
5306
5307 /**
5308  * intel_suspend_gt_powersave - suspend PM work and helper threads
5309  * @dev: drm device
5310  *
5311  * We don't want to disable RC6 or other features here, we just want
5312  * to make sure any work we've queued has finished and won't bother
5313  * us while we're suspended.
5314  */
5315 void intel_suspend_gt_powersave(struct drm_device *dev)
5316 {
5317         struct drm_i915_private *dev_priv = dev->dev_private;
5318
5319         /* Interrupts should be disabled already to avoid re-arming. */
5320         WARN_ON(intel_irqs_enabled(dev_priv));
5321
5322         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5323
5324         cancel_work_sync(&dev_priv->rps.work);
5325
5326         /* Force GPU to min freq during suspend */
5327         gen6_rps_idle(dev_priv);
5328 }
5329
5330 void intel_disable_gt_powersave(struct drm_device *dev)
5331 {
5332         struct drm_i915_private *dev_priv = dev->dev_private;
5333
5334         /* Interrupts should be disabled already to avoid re-arming. */
5335         WARN_ON(intel_irqs_enabled(dev_priv));
5336
5337         if (IS_IRONLAKE_M(dev)) {
5338                 ironlake_disable_drps(dev);
5339                 ironlake_disable_rc6(dev);
5340         } else if (INTEL_INFO(dev)->gen >= 6) {
5341                 intel_suspend_gt_powersave(dev);
5342
5343                 mutex_lock(&dev_priv->rps.hw_lock);
5344                 if (IS_CHERRYVIEW(dev))
5345                         cherryview_disable_rps(dev);
5346                 else if (IS_VALLEYVIEW(dev))
5347                         valleyview_disable_rps(dev);
5348                 else
5349                         gen6_disable_rps(dev);
5350                 dev_priv->rps.enabled = false;
5351                 mutex_unlock(&dev_priv->rps.hw_lock);
5352         }
5353 }
5354
5355 static void intel_gen6_powersave_work(struct work_struct *work)
5356 {
5357         struct drm_i915_private *dev_priv =
5358                 container_of(work, struct drm_i915_private,
5359                              rps.delayed_resume_work.work);
5360         struct drm_device *dev = dev_priv->dev;
5361
5362         dev_priv->rps.is_bdw_sw_turbo = false;
5363
5364         mutex_lock(&dev_priv->rps.hw_lock);
5365
5366         if (IS_CHERRYVIEW(dev)) {
5367                 cherryview_enable_rps(dev);
5368         } else if (IS_VALLEYVIEW(dev)) {
5369                 valleyview_enable_rps(dev);
5370         } else if (IS_BROADWELL(dev)) {
5371                 gen8_enable_rps(dev);
5372                 __gen6_update_ring_freq(dev);
5373         } else {
5374                 gen6_enable_rps(dev);
5375                 __gen6_update_ring_freq(dev);
5376         }
5377         dev_priv->rps.enabled = true;
5378         mutex_unlock(&dev_priv->rps.hw_lock);
5379
5380         intel_runtime_pm_put(dev_priv);
5381 }
5382
5383 void intel_enable_gt_powersave(struct drm_device *dev)
5384 {
5385         struct drm_i915_private *dev_priv = dev->dev_private;
5386
5387         if (IS_IRONLAKE_M(dev)) {
5388                 mutex_lock(&dev->struct_mutex);
5389                 ironlake_enable_drps(dev);
5390                 ironlake_enable_rc6(dev);
5391                 intel_init_emon(dev);
5392                 mutex_unlock(&dev->struct_mutex);
5393         } else if (INTEL_INFO(dev)->gen >= 6) {
5394                 /*
5395                  * PCU communication is slow and this doesn't need to be
5396                  * done at any specific time, so do this out of our fast path
5397                  * to make resume and init faster.
5398                  *
5399                  * We depend on the HW RC6 power context save/restore
5400                  * mechanism when entering D3 through runtime PM suspend. So
5401                  * disable RPM until RPS/RC6 is properly setup. We can only
5402                  * get here via the driver load/system resume/runtime resume
5403                  * paths, so the _noresume version is enough (and in case of
5404                  * runtime resume it's necessary).
5405                  */
5406                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5407                                            round_jiffies_up_relative(HZ)))
5408                         intel_runtime_pm_get_noresume(dev_priv);
5409         }
5410 }
5411
5412 void intel_reset_gt_powersave(struct drm_device *dev)
5413 {
5414         struct drm_i915_private *dev_priv = dev->dev_private;
5415
5416         dev_priv->rps.enabled = false;
5417         intel_enable_gt_powersave(dev);
5418 }
5419
5420 static void ibx_init_clock_gating(struct drm_device *dev)
5421 {
5422         struct drm_i915_private *dev_priv = dev->dev_private;
5423
5424         /*
5425          * On Ibex Peak and Cougar Point, we need to disable clock
5426          * gating for the panel power sequencer or it will fail to
5427          * start up when no ports are active.
5428          */
5429         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5430 }
5431
5432 static void g4x_disable_trickle_feed(struct drm_device *dev)
5433 {
5434         struct drm_i915_private *dev_priv = dev->dev_private;
5435         int pipe;
5436
5437         for_each_pipe(dev_priv, pipe) {
5438                 I915_WRITE(DSPCNTR(pipe),
5439                            I915_READ(DSPCNTR(pipe)) |
5440                            DISPPLANE_TRICKLE_FEED_DISABLE);
5441                 intel_flush_primary_plane(dev_priv, pipe);
5442         }
5443 }
5444
5445 static void ilk_init_lp_watermarks(struct drm_device *dev)
5446 {
5447         struct drm_i915_private *dev_priv = dev->dev_private;
5448
5449         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5450         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5451         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5452
5453         /*
5454          * Don't touch WM1S_LP_EN here.
5455          * Doing so could cause underruns.
5456          */
5457 }
5458
5459 static void ironlake_init_clock_gating(struct drm_device *dev)
5460 {
5461         struct drm_i915_private *dev_priv = dev->dev_private;
5462         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5463
5464         /*
5465          * Required for FBC
5466          * WaFbcDisableDpfcClockGating:ilk
5467          */
5468         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5469                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5470                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5471
5472         I915_WRITE(PCH_3DCGDIS0,
5473                    MARIUNIT_CLOCK_GATE_DISABLE |
5474                    SVSMUNIT_CLOCK_GATE_DISABLE);
5475         I915_WRITE(PCH_3DCGDIS1,
5476                    VFMUNIT_CLOCK_GATE_DISABLE);
5477
5478         /*
5479          * According to the spec the following bits should be set in
5480          * order to enable memory self-refresh
5481          * The bit 22/21 of 0x42004
5482          * The bit 5 of 0x42020
5483          * The bit 15 of 0x45000
5484          */
5485         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5486                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
5487                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5488         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5489         I915_WRITE(DISP_ARB_CTL,
5490                    (I915_READ(DISP_ARB_CTL) |
5491                     DISP_FBC_WM_DIS));
5492
5493         ilk_init_lp_watermarks(dev);
5494
5495         /*
5496          * Based on the document from hardware guys the following bits
5497          * should be set unconditionally in order to enable FBC.
5498          * The bit 22 of 0x42000
5499          * The bit 22 of 0x42004
5500          * The bit 7,8,9 of 0x42020.
5501          */
5502         if (IS_IRONLAKE_M(dev)) {
5503                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5504                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5505                            I915_READ(ILK_DISPLAY_CHICKEN1) |
5506                            ILK_FBCQ_DIS);
5507                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5508                            I915_READ(ILK_DISPLAY_CHICKEN2) |
5509                            ILK_DPARB_GATE);
5510         }
5511
5512         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5513
5514         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5515                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5516                    ILK_ELPIN_409_SELECT);
5517         I915_WRITE(_3D_CHICKEN2,
5518                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5519                    _3D_CHICKEN2_WM_READ_PIPELINED);
5520
5521         /* WaDisableRenderCachePipelinedFlush:ilk */
5522         I915_WRITE(CACHE_MODE_0,
5523                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5524
5525         /* WaDisable_RenderCache_OperationalFlush:ilk */
5526         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5527
5528         g4x_disable_trickle_feed(dev);
5529
5530         ibx_init_clock_gating(dev);
5531 }
5532
5533 static void cpt_init_clock_gating(struct drm_device *dev)
5534 {
5535         struct drm_i915_private *dev_priv = dev->dev_private;
5536         int pipe;
5537         uint32_t val;
5538
5539         /*
5540          * On Ibex Peak and Cougar Point, we need to disable clock
5541          * gating for the panel power sequencer or it will fail to
5542          * start up when no ports are active.
5543          */
5544         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5545                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5546                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
5547         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5548                    DPLS_EDP_PPS_FIX_DIS);
5549         /* The below fixes the weird display corruption, a few pixels shifted
5550          * downward, on (only) LVDS of some HP laptops with IVY.
5551          */
5552         for_each_pipe(dev_priv, pipe) {
5553                 val = I915_READ(TRANS_CHICKEN2(pipe));
5554                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5555                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5556                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5557                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5558                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5559                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5560                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5561                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5562         }
5563         /* WADP0ClockGatingDisable */
5564         for_each_pipe(dev_priv, pipe) {
5565                 I915_WRITE(TRANS_CHICKEN1(pipe),
5566                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5567         }
5568 }
5569
5570 static void gen6_check_mch_setup(struct drm_device *dev)
5571 {
5572         struct drm_i915_private *dev_priv = dev->dev_private;
5573         uint32_t tmp;
5574
5575         tmp = I915_READ(MCH_SSKPD);
5576         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5577                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5578                               tmp);
5579 }
5580
5581 static void gen6_init_clock_gating(struct drm_device *dev)
5582 {
5583         struct drm_i915_private *dev_priv = dev->dev_private;
5584         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5585
5586         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5587
5588         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5589                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5590                    ILK_ELPIN_409_SELECT);
5591
5592         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5593         I915_WRITE(_3D_CHICKEN,
5594                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5595
5596         /* WaSetupGtModeTdRowDispatch:snb */
5597         if (IS_SNB_GT1(dev))
5598                 I915_WRITE(GEN6_GT_MODE,
5599                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5600
5601         /* WaDisable_RenderCache_OperationalFlush:snb */
5602         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5603
5604         /*
5605          * BSpec recoomends 8x4 when MSAA is used,
5606          * however in practice 16x4 seems fastest.
5607          *
5608          * Note that PS/WM thread counts depend on the WIZ hashing
5609          * disable bit, which we don't touch here, but it's good
5610          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5611          */
5612         I915_WRITE(GEN6_GT_MODE,
5613                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5614
5615         ilk_init_lp_watermarks(dev);
5616
5617         I915_WRITE(CACHE_MODE_0,
5618                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5619
5620         I915_WRITE(GEN6_UCGCTL1,
5621                    I915_READ(GEN6_UCGCTL1) |
5622                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5623                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5624
5625         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5626          * gating disable must be set.  Failure to set it results in
5627          * flickering pixels due to Z write ordering failures after
5628          * some amount of runtime in the Mesa "fire" demo, and Unigine
5629          * Sanctuary and Tropics, and apparently anything else with
5630          * alpha test or pixel discard.
5631          *
5632          * According to the spec, bit 11 (RCCUNIT) must also be set,
5633          * but we didn't debug actual testcases to find it out.
5634          *
5635          * WaDisableRCCUnitClockGating:snb
5636          * WaDisableRCPBUnitClockGating:snb
5637          */
5638         I915_WRITE(GEN6_UCGCTL2,
5639                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5640                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5641
5642         /* WaStripsFansDisableFastClipPerformanceFix:snb */
5643         I915_WRITE(_3D_CHICKEN3,
5644                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5645
5646         /*
5647          * Bspec says:
5648          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5649          * 3DSTATE_SF number of SF output attributes is more than 16."
5650          */
5651         I915_WRITE(_3D_CHICKEN3,
5652                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5653
5654         /*
5655          * According to the spec the following bits should be
5656          * set in order to enable memory self-refresh and fbc:
5657          * The bit21 and bit22 of 0x42000
5658          * The bit21 and bit22 of 0x42004
5659          * The bit5 and bit7 of 0x42020
5660          * The bit14 of 0x70180
5661          * The bit14 of 0x71180
5662          *
5663          * WaFbcAsynchFlipDisableFbcQueue:snb
5664          */
5665         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5666                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5667                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5668         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5669                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5670                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5671         I915_WRITE(ILK_DSPCLK_GATE_D,
5672                    I915_READ(ILK_DSPCLK_GATE_D) |
5673                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5674                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5675
5676         g4x_disable_trickle_feed(dev);
5677
5678         cpt_init_clock_gating(dev);
5679
5680         gen6_check_mch_setup(dev);
5681 }
5682
5683 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5684 {
5685         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5686
5687         /*
5688          * WaVSThreadDispatchOverride:ivb,vlv
5689          *
5690          * This actually overrides the dispatch
5691          * mode for all thread types.
5692          */
5693         reg &= ~GEN7_FF_SCHED_MASK;
5694         reg |= GEN7_FF_TS_SCHED_HW;
5695         reg |= GEN7_FF_VS_SCHED_HW;
5696         reg |= GEN7_FF_DS_SCHED_HW;
5697
5698         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5699 }
5700
5701 static void lpt_init_clock_gating(struct drm_device *dev)
5702 {
5703         struct drm_i915_private *dev_priv = dev->dev_private;
5704
5705         /*
5706          * TODO: this bit should only be enabled when really needed, then
5707          * disabled when not needed anymore in order to save power.
5708          */
5709         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5710                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5711                            I915_READ(SOUTH_DSPCLK_GATE_D) |
5712                            PCH_LP_PARTITION_LEVEL_DISABLE);
5713
5714         /* WADPOClockGatingDisable:hsw */
5715         I915_WRITE(_TRANSA_CHICKEN1,
5716                    I915_READ(_TRANSA_CHICKEN1) |
5717                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5718 }
5719
5720 static void lpt_suspend_hw(struct drm_device *dev)
5721 {
5722         struct drm_i915_private *dev_priv = dev->dev_private;
5723
5724         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5725                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5726
5727                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5728                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5729         }
5730 }
5731
5732 static void broadwell_init_clock_gating(struct drm_device *dev)
5733 {
5734         struct drm_i915_private *dev_priv = dev->dev_private;
5735         enum pipe pipe;
5736
5737         I915_WRITE(WM3_LP_ILK, 0);
5738         I915_WRITE(WM2_LP_ILK, 0);
5739         I915_WRITE(WM1_LP_ILK, 0);
5740
5741         /* FIXME(BDW): Check all the w/a, some might only apply to
5742          * pre-production hw. */
5743
5744
5745         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5746
5747         I915_WRITE(_3D_CHICKEN3,
5748                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5749
5750
5751         /* WaSwitchSolVfFArbitrationPriority:bdw */
5752         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5753
5754         /* WaPsrDPAMaskVBlankInSRD:bdw */
5755         I915_WRITE(CHICKEN_PAR1_1,
5756                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5757
5758         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5759         for_each_pipe(dev_priv, pipe) {
5760                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5761                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
5762                            BDW_DPRS_MASK_VBLANK_SRD);
5763         }
5764
5765         /* WaVSRefCountFullforceMissDisable:bdw */
5766         /* WaDSRefCountFullforceMissDisable:bdw */
5767         I915_WRITE(GEN7_FF_THREAD_MODE,
5768                    I915_READ(GEN7_FF_THREAD_MODE) &
5769                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5770
5771         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5772                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5773
5774         /* WaDisableSDEUnitClockGating:bdw */
5775         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5776                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5777
5778         lpt_init_clock_gating(dev);
5779 }
5780
5781 static void haswell_init_clock_gating(struct drm_device *dev)
5782 {
5783         struct drm_i915_private *dev_priv = dev->dev_private;
5784
5785         ilk_init_lp_watermarks(dev);
5786
5787         /* L3 caching of data atomics doesn't work -- disable it. */
5788         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5789         I915_WRITE(HSW_ROW_CHICKEN3,
5790                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5791
5792         /* This is required by WaCatErrorRejectionIssue:hsw */
5793         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5794                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5795                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5796
5797         /* WaVSRefCountFullforceMissDisable:hsw */
5798         I915_WRITE(GEN7_FF_THREAD_MODE,
5799                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5800
5801         /* WaDisable_RenderCache_OperationalFlush:hsw */
5802         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5803
5804         /* enable HiZ Raw Stall Optimization */
5805         I915_WRITE(CACHE_MODE_0_GEN7,
5806                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5807
5808         /* WaDisable4x2SubspanOptimization:hsw */
5809         I915_WRITE(CACHE_MODE_1,
5810                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5811
5812         /*
5813          * BSpec recommends 8x4 when MSAA is used,
5814          * however in practice 16x4 seems fastest.
5815          *
5816          * Note that PS/WM thread counts depend on the WIZ hashing
5817          * disable bit, which we don't touch here, but it's good
5818          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5819          */
5820         I915_WRITE(GEN7_GT_MODE,
5821                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5822
5823         /* WaSwitchSolVfFArbitrationPriority:hsw */
5824         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5825
5826         /* WaRsPkgCStateDisplayPMReq:hsw */
5827         I915_WRITE(CHICKEN_PAR1_1,
5828                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5829
5830         lpt_init_clock_gating(dev);
5831 }
5832
5833 static void ivybridge_init_clock_gating(struct drm_device *dev)
5834 {
5835         struct drm_i915_private *dev_priv = dev->dev_private;
5836         uint32_t snpcr;
5837
5838         ilk_init_lp_watermarks(dev);
5839
5840         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5841
5842         /* WaDisableEarlyCull:ivb */
5843         I915_WRITE(_3D_CHICKEN3,
5844                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5845
5846         /* WaDisableBackToBackFlipFix:ivb */
5847         I915_WRITE(IVB_CHICKEN3,
5848                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5849                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5850
5851         /* WaDisablePSDDualDispatchEnable:ivb */
5852         if (IS_IVB_GT1(dev))
5853                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5854                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5855
5856         /* WaDisable_RenderCache_OperationalFlush:ivb */
5857         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5858
5859         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5860         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5861                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5862
5863         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5864         I915_WRITE(GEN7_L3CNTLREG1,
5865                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5866         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5867                    GEN7_WA_L3_CHICKEN_MODE);
5868         if (IS_IVB_GT1(dev))
5869                 I915_WRITE(GEN7_ROW_CHICKEN2,
5870                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5871         else {
5872                 /* must write both registers */
5873                 I915_WRITE(GEN7_ROW_CHICKEN2,
5874                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5875                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5876                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5877         }
5878
5879         /* WaForceL3Serialization:ivb */
5880         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5881                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5882
5883         /*
5884          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5885          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5886          */
5887         I915_WRITE(GEN6_UCGCTL2,
5888                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5889
5890         /* This is required by WaCatErrorRejectionIssue:ivb */
5891         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5892                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5893                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5894
5895         g4x_disable_trickle_feed(dev);
5896
5897         gen7_setup_fixed_func_scheduler(dev_priv);
5898
5899         if (0) { /* causes HiZ corruption on ivb:gt1 */
5900                 /* enable HiZ Raw Stall Optimization */
5901                 I915_WRITE(CACHE_MODE_0_GEN7,
5902                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5903         }
5904
5905         /* WaDisable4x2SubspanOptimization:ivb */
5906         I915_WRITE(CACHE_MODE_1,
5907                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5908
5909         /*
5910          * BSpec recommends 8x4 when MSAA is used,
5911          * however in practice 16x4 seems fastest.
5912          *
5913          * Note that PS/WM thread counts depend on the WIZ hashing
5914          * disable bit, which we don't touch here, but it's good
5915          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5916          */
5917         I915_WRITE(GEN7_GT_MODE,
5918                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5919
5920         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5921         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5922         snpcr |= GEN6_MBC_SNPCR_MED;
5923         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5924
5925         if (!HAS_PCH_NOP(dev))
5926                 cpt_init_clock_gating(dev);
5927
5928         gen6_check_mch_setup(dev);
5929 }
5930
5931 static void valleyview_init_clock_gating(struct drm_device *dev)
5932 {
5933         struct drm_i915_private *dev_priv = dev->dev_private;
5934
5935         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5936
5937         /* WaDisableEarlyCull:vlv */
5938         I915_WRITE(_3D_CHICKEN3,
5939                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5940
5941         /* WaDisableBackToBackFlipFix:vlv */
5942         I915_WRITE(IVB_CHICKEN3,
5943                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5944                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5945
5946         /* WaPsdDispatchEnable:vlv */
5947         /* WaDisablePSDDualDispatchEnable:vlv */
5948         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5949                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5950                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5951
5952         /* WaDisable_RenderCache_OperationalFlush:vlv */
5953         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5954
5955         /* WaForceL3Serialization:vlv */
5956         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5957                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5958
5959         /* WaDisableDopClockGating:vlv */
5960         I915_WRITE(GEN7_ROW_CHICKEN2,
5961                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5962
5963         /* This is required by WaCatErrorRejectionIssue:vlv */
5964         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5965                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5966                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5967
5968         gen7_setup_fixed_func_scheduler(dev_priv);
5969
5970         /*
5971          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5972          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5973          */
5974         I915_WRITE(GEN6_UCGCTL2,
5975                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5976
5977         /* WaDisableL3Bank2xClockGate:vlv
5978          * Disabling L3 clock gating- MMIO 940c[25] = 1
5979          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5980         I915_WRITE(GEN7_UCGCTL4,
5981                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5982
5983         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5984
5985         /*
5986          * BSpec says this must be set, even though
5987          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5988          */
5989         I915_WRITE(CACHE_MODE_1,
5990                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5991
5992         /*
5993          * WaIncreaseL3CreditsForVLVB0:vlv
5994          * This is the hardware default actually.
5995          */
5996         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5997
5998         /*
5999          * WaDisableVLVClockGating_VBIIssue:vlv
6000          * Disable clock gating on th GCFG unit to prevent a delay
6001          * in the reporting of vblank events.
6002          */
6003         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6004 }
6005
6006 static void cherryview_init_clock_gating(struct drm_device *dev)
6007 {
6008         struct drm_i915_private *dev_priv = dev->dev_private;
6009
6010         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6011
6012         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6013
6014         /* WaVSRefCountFullforceMissDisable:chv */
6015         /* WaDSRefCountFullforceMissDisable:chv */
6016         I915_WRITE(GEN7_FF_THREAD_MODE,
6017                    I915_READ(GEN7_FF_THREAD_MODE) &
6018                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6019
6020         /* WaDisableSemaphoreAndSyncFlipWait:chv */
6021         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6022                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6023
6024         /* WaDisableCSUnitClockGating:chv */
6025         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6026                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6027
6028         /* WaDisableSDEUnitClockGating:chv */
6029         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6030                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6031
6032         /* WaDisableGunitClockGating:chv (pre-production hw) */
6033         I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
6034                    GINT_DIS);
6035
6036         /* WaDisableFfDopClockGating:chv (pre-production hw) */
6037         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6038                    _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
6039
6040         /* WaDisableDopClockGating:chv (pre-production hw) */
6041         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6042                    GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
6043 }
6044
6045 static void g4x_init_clock_gating(struct drm_device *dev)
6046 {
6047         struct drm_i915_private *dev_priv = dev->dev_private;
6048         uint32_t dspclk_gate;
6049
6050         I915_WRITE(RENCLK_GATE_D1, 0);
6051         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6052                    GS_UNIT_CLOCK_GATE_DISABLE |
6053                    CL_UNIT_CLOCK_GATE_DISABLE);
6054         I915_WRITE(RAMCLK_GATE_D, 0);
6055         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6056                 OVRUNIT_CLOCK_GATE_DISABLE |
6057                 OVCUNIT_CLOCK_GATE_DISABLE;
6058         if (IS_GM45(dev))
6059                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6060         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6061
6062         /* WaDisableRenderCachePipelinedFlush */
6063         I915_WRITE(CACHE_MODE_0,
6064                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6065
6066         /* WaDisable_RenderCache_OperationalFlush:g4x */
6067         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6068
6069         g4x_disable_trickle_feed(dev);
6070 }
6071
6072 static void crestline_init_clock_gating(struct drm_device *dev)
6073 {
6074         struct drm_i915_private *dev_priv = dev->dev_private;
6075
6076         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6077         I915_WRITE(RENCLK_GATE_D2, 0);
6078         I915_WRITE(DSPCLK_GATE_D, 0);
6079         I915_WRITE(RAMCLK_GATE_D, 0);
6080         I915_WRITE16(DEUC, 0);
6081         I915_WRITE(MI_ARB_STATE,
6082                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6083
6084         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6085         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6086 }
6087
6088 static void broadwater_init_clock_gating(struct drm_device *dev)
6089 {
6090         struct drm_i915_private *dev_priv = dev->dev_private;
6091
6092         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6093                    I965_RCC_CLOCK_GATE_DISABLE |
6094                    I965_RCPB_CLOCK_GATE_DISABLE |
6095                    I965_ISC_CLOCK_GATE_DISABLE |
6096                    I965_FBC_CLOCK_GATE_DISABLE);
6097         I915_WRITE(RENCLK_GATE_D2, 0);
6098         I915_WRITE(MI_ARB_STATE,
6099                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6100
6101         /* WaDisable_RenderCache_OperationalFlush:gen4 */
6102         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6103 }
6104
6105 static void gen3_init_clock_gating(struct drm_device *dev)
6106 {
6107         struct drm_i915_private *dev_priv = dev->dev_private;
6108         u32 dstate = I915_READ(D_STATE);
6109
6110         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6111                 DSTATE_DOT_CLOCK_GATING;
6112         I915_WRITE(D_STATE, dstate);
6113
6114         if (IS_PINEVIEW(dev))
6115                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6116
6117         /* IIR "flip pending" means done if this bit is set */
6118         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6119
6120         /* interrupts should cause a wake up from C3 */
6121         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6122
6123         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6124         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6125 }
6126
6127 static void i85x_init_clock_gating(struct drm_device *dev)
6128 {
6129         struct drm_i915_private *dev_priv = dev->dev_private;
6130
6131         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6132
6133         /* interrupts should cause a wake up from C3 */
6134         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6135                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6136 }
6137
6138 static void i830_init_clock_gating(struct drm_device *dev)
6139 {
6140         struct drm_i915_private *dev_priv = dev->dev_private;
6141
6142         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6143 }
6144
6145 void intel_init_clock_gating(struct drm_device *dev)
6146 {
6147         struct drm_i915_private *dev_priv = dev->dev_private;
6148
6149         dev_priv->display.init_clock_gating(dev);
6150 }
6151
6152 void intel_suspend_hw(struct drm_device *dev)
6153 {
6154         if (HAS_PCH_LPT(dev))
6155                 lpt_suspend_hw(dev);
6156 }
6157
6158 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
6159         for (i = 0;                                                     \
6160              i < (power_domains)->power_well_count &&                   \
6161                  ((power_well) = &(power_domains)->power_wells[i]);     \
6162              i++)                                                       \
6163                 if ((power_well)->domains & (domain_mask))
6164
6165 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
6166         for (i = (power_domains)->power_well_count - 1;                  \
6167              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
6168              i--)                                                        \
6169                 if ((power_well)->domains & (domain_mask))
6170
6171 /**
6172  * We should only use the power well if we explicitly asked the hardware to
6173  * enable it, so check if it's enabled and also check if we've requested it to
6174  * be enabled.
6175  */
6176 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
6177                                    struct i915_power_well *power_well)
6178 {
6179         return I915_READ(HSW_PWR_WELL_DRIVER) ==
6180                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
6181 }
6182
6183 bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
6184                                           enum intel_display_power_domain domain)
6185 {
6186         struct i915_power_domains *power_domains;
6187         struct i915_power_well *power_well;
6188         bool is_enabled;
6189         int i;
6190
6191         if (dev_priv->pm.suspended)
6192                 return false;
6193
6194         power_domains = &dev_priv->power_domains;
6195
6196         is_enabled = true;
6197
6198         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6199                 if (power_well->always_on)
6200                         continue;
6201
6202                 if (!power_well->hw_enabled) {
6203                         is_enabled = false;
6204                         break;
6205                 }
6206         }
6207
6208         return is_enabled;
6209 }
6210
6211 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
6212                                  enum intel_display_power_domain domain)
6213 {
6214         struct i915_power_domains *power_domains;
6215         bool ret;
6216
6217         power_domains = &dev_priv->power_domains;
6218
6219         mutex_lock(&power_domains->lock);
6220         ret = intel_display_power_enabled_unlocked(dev_priv, domain);
6221         mutex_unlock(&power_domains->lock);
6222
6223         return ret;
6224 }
6225
6226 /*
6227  * Starting with Haswell, we have a "Power Down Well" that can be turned off
6228  * when not needed anymore. We have 4 registers that can request the power well
6229  * to be enabled, and it will only be disabled if none of the registers is
6230  * requesting it to be enabled.
6231  */
6232 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
6233 {
6234         struct drm_device *dev = dev_priv->dev;
6235
6236         /*
6237          * After we re-enable the power well, if we touch VGA register 0x3d5
6238          * we'll get unclaimed register interrupts. This stops after we write
6239          * anything to the VGA MSR register. The vgacon module uses this
6240          * register all the time, so if we unbind our driver and, as a
6241          * consequence, bind vgacon, we'll get stuck in an infinite loop at
6242          * console_unlock(). So make here we touch the VGA MSR register, making
6243          * sure vgacon can keep working normally without triggering interrupts
6244          * and error messages.
6245          */
6246         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6247         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
6248         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6249
6250         if (IS_BROADWELL(dev))
6251                 gen8_irq_power_well_post_enable(dev_priv);
6252 }
6253
6254 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6255                                struct i915_power_well *power_well, bool enable)
6256 {
6257         bool is_enabled, enable_requested;
6258         uint32_t tmp;
6259
6260         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6261         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
6262         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6263
6264         if (enable) {
6265                 if (!enable_requested)
6266                         I915_WRITE(HSW_PWR_WELL_DRIVER,
6267                                    HSW_PWR_WELL_ENABLE_REQUEST);
6268
6269                 if (!is_enabled) {
6270                         DRM_DEBUG_KMS("Enabling power well\n");
6271                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6272                                       HSW_PWR_WELL_STATE_ENABLED), 20))
6273                                 DRM_ERROR("Timeout enabling power well\n");
6274                 }
6275
6276                 hsw_power_well_post_enable(dev_priv);
6277         } else {
6278                 if (enable_requested) {
6279                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6280                         POSTING_READ(HSW_PWR_WELL_DRIVER);
6281                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
6282                 }
6283         }
6284 }
6285
6286 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
6287                                    struct i915_power_well *power_well)
6288 {
6289         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
6290
6291         /*
6292          * We're taking over the BIOS, so clear any requests made by it since
6293          * the driver is in charge now.
6294          */
6295         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
6296                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
6297 }
6298
6299 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
6300                                   struct i915_power_well *power_well)
6301 {
6302         hsw_set_power_well(dev_priv, power_well, true);
6303 }
6304
6305 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
6306                                    struct i915_power_well *power_well)
6307 {
6308         hsw_set_power_well(dev_priv, power_well, false);
6309 }
6310
6311 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
6312                                            struct i915_power_well *power_well)
6313 {
6314 }
6315
6316 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
6317                                              struct i915_power_well *power_well)
6318 {
6319         return true;
6320 }
6321
6322 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6323                                struct i915_power_well *power_well, bool enable)
6324 {
6325         enum punit_power_well power_well_id = power_well->data;
6326         u32 mask;
6327         u32 state;
6328         u32 ctrl;
6329
6330         mask = PUNIT_PWRGT_MASK(power_well_id);
6331         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6332                          PUNIT_PWRGT_PWR_GATE(power_well_id);
6333
6334         mutex_lock(&dev_priv->rps.hw_lock);
6335
6336 #define COND \
6337         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6338
6339         if (COND)
6340                 goto out;
6341
6342         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6343         ctrl &= ~mask;
6344         ctrl |= state;
6345         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6346
6347         if (wait_for(COND, 100))
6348                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6349                           state,
6350                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6351
6352 #undef COND
6353
6354 out:
6355         mutex_unlock(&dev_priv->rps.hw_lock);
6356 }
6357
6358 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6359                                    struct i915_power_well *power_well)
6360 {
6361         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6362 }
6363
6364 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6365                                   struct i915_power_well *power_well)
6366 {
6367         vlv_set_power_well(dev_priv, power_well, true);
6368 }
6369
6370 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6371                                    struct i915_power_well *power_well)
6372 {
6373         vlv_set_power_well(dev_priv, power_well, false);
6374 }
6375
6376 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6377                                    struct i915_power_well *power_well)
6378 {
6379         int power_well_id = power_well->data;
6380         bool enabled = false;
6381         u32 mask;
6382         u32 state;
6383         u32 ctrl;
6384
6385         mask = PUNIT_PWRGT_MASK(power_well_id);
6386         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6387
6388         mutex_lock(&dev_priv->rps.hw_lock);
6389
6390         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6391         /*
6392          * We only ever set the power-on and power-gate states, anything
6393          * else is unexpected.
6394          */
6395         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6396                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6397         if (state == ctrl)
6398                 enabled = true;
6399
6400         /*
6401          * A transient state at this point would mean some unexpected party
6402          * is poking at the power controls too.
6403          */
6404         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6405         WARN_ON(ctrl != state);
6406
6407         mutex_unlock(&dev_priv->rps.hw_lock);
6408
6409         return enabled;
6410 }
6411
6412 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6413                                           struct i915_power_well *power_well)
6414 {
6415         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6416
6417         vlv_set_power_well(dev_priv, power_well, true);
6418
6419         spin_lock_irq(&dev_priv->irq_lock);
6420         valleyview_enable_display_irqs(dev_priv);
6421         spin_unlock_irq(&dev_priv->irq_lock);
6422
6423         /*
6424          * During driver initialization/resume we can avoid restoring the
6425          * part of the HW/SW state that will be inited anyway explicitly.
6426          */
6427         if (dev_priv->power_domains.initializing)
6428                 return;
6429
6430         intel_hpd_init(dev_priv->dev);
6431
6432         i915_redisable_vga_power_on(dev_priv->dev);
6433 }
6434
6435 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6436                                            struct i915_power_well *power_well)
6437 {
6438         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6439
6440         spin_lock_irq(&dev_priv->irq_lock);
6441         valleyview_disable_display_irqs(dev_priv);
6442         spin_unlock_irq(&dev_priv->irq_lock);
6443
6444         vlv_set_power_well(dev_priv, power_well, false);
6445 }
6446
6447 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6448                                            struct i915_power_well *power_well)
6449 {
6450         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6451
6452         /*
6453          * Enable the CRI clock source so we can get at the
6454          * display and the reference clock for VGA
6455          * hotplug / manual detection.
6456          */
6457         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6458                    DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6459         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6460
6461         vlv_set_power_well(dev_priv, power_well, true);
6462
6463         /*
6464          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6465          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
6466          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
6467          *   b. The other bits such as sfr settings / modesel may all
6468          *      be set to 0.
6469          *
6470          * This should only be done on init and resume from S3 with
6471          * both PLLs disabled, or we risk losing DPIO and PLL
6472          * synchronization.
6473          */
6474         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6475 }
6476
6477 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6478                                             struct i915_power_well *power_well)
6479 {
6480         enum pipe pipe;
6481
6482         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6483
6484         for_each_pipe(dev_priv, pipe)
6485                 assert_pll_disabled(dev_priv, pipe);
6486
6487         /* Assert common reset */
6488         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
6489
6490         vlv_set_power_well(dev_priv, power_well, false);
6491 }
6492
6493 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6494                                            struct i915_power_well *power_well)
6495 {
6496         enum dpio_phy phy;
6497
6498         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6499                      power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6500
6501         /*
6502          * Enable the CRI clock source so we can get at the
6503          * display and the reference clock for VGA
6504          * hotplug / manual detection.
6505          */
6506         if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6507                 phy = DPIO_PHY0;
6508                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6509                            DPLL_REFA_CLK_ENABLE_VLV);
6510                 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6511                            DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6512         } else {
6513                 phy = DPIO_PHY1;
6514                 I915_WRITE(DPLL(PIPE_C), I915_READ(DPLL(PIPE_C)) |
6515                            DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6516         }
6517         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6518         vlv_set_power_well(dev_priv, power_well, true);
6519
6520         /* Poll for phypwrgood signal */
6521         if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
6522                 DRM_ERROR("Display PHY %d is not power up\n", phy);
6523
6524         I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) |
6525                    PHY_COM_LANE_RESET_DEASSERT(phy));
6526 }
6527
6528 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6529                                             struct i915_power_well *power_well)
6530 {
6531         enum dpio_phy phy;
6532
6533         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
6534                      power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
6535
6536         if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
6537                 phy = DPIO_PHY0;
6538                 assert_pll_disabled(dev_priv, PIPE_A);
6539                 assert_pll_disabled(dev_priv, PIPE_B);
6540         } else {
6541                 phy = DPIO_PHY1;
6542                 assert_pll_disabled(dev_priv, PIPE_C);
6543         }
6544
6545         I915_WRITE(DISPLAY_PHY_CONTROL, I915_READ(DISPLAY_PHY_CONTROL) &
6546                    ~PHY_COM_LANE_RESET_DEASSERT(phy));
6547
6548         vlv_set_power_well(dev_priv, power_well, false);
6549 }
6550
6551 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
6552                                         struct i915_power_well *power_well)
6553 {
6554         enum pipe pipe = power_well->data;
6555         bool enabled;
6556         u32 state, ctrl;
6557
6558         mutex_lock(&dev_priv->rps.hw_lock);
6559
6560         state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
6561         /*
6562          * We only ever set the power-on and power-gate states, anything
6563          * else is unexpected.
6564          */
6565         WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
6566         enabled = state == DP_SSS_PWR_ON(pipe);
6567
6568         /*
6569          * A transient state at this point would mean some unexpected party
6570          * is poking at the power controls too.
6571          */
6572         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
6573         WARN_ON(ctrl << 16 != state);
6574
6575         mutex_unlock(&dev_priv->rps.hw_lock);
6576
6577         return enabled;
6578 }
6579
6580 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
6581                                     struct i915_power_well *power_well,
6582                                     bool enable)
6583 {
6584         enum pipe pipe = power_well->data;
6585         u32 state;
6586         u32 ctrl;
6587
6588         state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
6589
6590         mutex_lock(&dev_priv->rps.hw_lock);
6591
6592 #define COND \
6593         ((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
6594
6595         if (COND)
6596                 goto out;
6597
6598         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6599         ctrl &= ~DP_SSC_MASK(pipe);
6600         ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
6601         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
6602
6603         if (wait_for(COND, 100))
6604                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6605                           state,
6606                           vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
6607
6608 #undef COND
6609
6610 out:
6611         mutex_unlock(&dev_priv->rps.hw_lock);
6612 }
6613
6614 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
6615                                         struct i915_power_well *power_well)
6616 {
6617         chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
6618 }
6619
6620 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
6621                                        struct i915_power_well *power_well)
6622 {
6623         WARN_ON_ONCE(power_well->data != PIPE_A &&
6624                      power_well->data != PIPE_B &&
6625                      power_well->data != PIPE_C);
6626
6627         chv_set_pipe_power_well(dev_priv, power_well, true);
6628 }
6629
6630 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
6631                                         struct i915_power_well *power_well)
6632 {
6633         WARN_ON_ONCE(power_well->data != PIPE_A &&
6634                      power_well->data != PIPE_B &&
6635                      power_well->data != PIPE_C);
6636
6637         chv_set_pipe_power_well(dev_priv, power_well, false);
6638 }
6639
6640 static void check_power_well_state(struct drm_i915_private *dev_priv,
6641                                    struct i915_power_well *power_well)
6642 {
6643         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6644
6645         if (power_well->always_on || !i915.disable_power_well) {
6646                 if (!enabled)
6647                         goto mismatch;
6648
6649                 return;
6650         }
6651
6652         if (enabled != (power_well->count > 0))
6653                 goto mismatch;
6654
6655         return;
6656
6657 mismatch:
6658         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6659                   power_well->name, power_well->always_on, enabled,
6660                   power_well->count, i915.disable_power_well);
6661 }
6662
6663 void intel_display_power_get(struct drm_i915_private *dev_priv,
6664                              enum intel_display_power_domain domain)
6665 {
6666         struct i915_power_domains *power_domains;
6667         struct i915_power_well *power_well;
6668         int i;
6669
6670         intel_runtime_pm_get(dev_priv);
6671
6672         power_domains = &dev_priv->power_domains;
6673
6674         mutex_lock(&power_domains->lock);
6675
6676         for_each_power_well(i, power_well, BIT(domain), power_domains) {
6677                 if (!power_well->count++) {
6678                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6679                         power_well->ops->enable(dev_priv, power_well);
6680                         power_well->hw_enabled = true;
6681                 }
6682
6683                 check_power_well_state(dev_priv, power_well);
6684         }
6685
6686         power_domains->domain_use_count[domain]++;
6687
6688         mutex_unlock(&power_domains->lock);
6689 }
6690
6691 void intel_display_power_put(struct drm_i915_private *dev_priv,
6692                              enum intel_display_power_domain domain)
6693 {
6694         struct i915_power_domains *power_domains;
6695         struct i915_power_well *power_well;
6696         int i;
6697
6698         power_domains = &dev_priv->power_domains;
6699
6700         mutex_lock(&power_domains->lock);
6701
6702         WARN_ON(!power_domains->domain_use_count[domain]);
6703         power_domains->domain_use_count[domain]--;
6704
6705         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6706                 WARN_ON(!power_well->count);
6707
6708                 if (!--power_well->count && i915.disable_power_well) {
6709                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6710                         power_well->hw_enabled = false;
6711                         power_well->ops->disable(dev_priv, power_well);
6712                 }
6713
6714                 check_power_well_state(dev_priv, power_well);
6715         }
6716
6717         mutex_unlock(&power_domains->lock);
6718
6719         intel_runtime_pm_put(dev_priv);
6720 }
6721
6722 static struct i915_power_domains *hsw_pwr;
6723
6724 /* Display audio driver power well request */
6725 int i915_request_power_well(void)
6726 {
6727         struct drm_i915_private *dev_priv;
6728
6729         if (!hsw_pwr)
6730                 return -ENODEV;
6731
6732         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6733                                 power_domains);
6734         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6735         return 0;
6736 }
6737 EXPORT_SYMBOL_GPL(i915_request_power_well);
6738
6739 /* Display audio driver power well release */
6740 int i915_release_power_well(void)
6741 {
6742         struct drm_i915_private *dev_priv;
6743
6744         if (!hsw_pwr)
6745                 return -ENODEV;
6746
6747         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6748                                 power_domains);
6749         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6750         return 0;
6751 }
6752 EXPORT_SYMBOL_GPL(i915_release_power_well);
6753
6754 /*
6755  * Private interface for the audio driver to get CDCLK in kHz.
6756  *
6757  * Caller must request power well using i915_request_power_well() prior to
6758  * making the call.
6759  */
6760 int i915_get_cdclk_freq(void)
6761 {
6762         struct drm_i915_private *dev_priv;
6763
6764         if (!hsw_pwr)
6765                 return -ENODEV;
6766
6767         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6768                                 power_domains);
6769
6770         return intel_ddi_get_cdclk_freq(dev_priv);
6771 }
6772 EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
6773
6774
6775 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6776
6777 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
6778         BIT(POWER_DOMAIN_PIPE_A) |                      \
6779         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
6780         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
6781         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
6782         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
6783         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
6784         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
6785         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
6786         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
6787         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
6788         BIT(POWER_DOMAIN_PORT_CRT) |                    \
6789         BIT(POWER_DOMAIN_PLLS) |                        \
6790         BIT(POWER_DOMAIN_INIT))
6791 #define HSW_DISPLAY_POWER_DOMAINS (                             \
6792         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
6793         BIT(POWER_DOMAIN_INIT))
6794
6795 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
6796         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
6797         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6798 #define BDW_DISPLAY_POWER_DOMAINS (                             \
6799         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
6800         BIT(POWER_DOMAIN_INIT))
6801
6802 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
6803 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
6804
6805 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
6806         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6807         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6808         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6809         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6810         BIT(POWER_DOMAIN_PORT_CRT) |            \
6811         BIT(POWER_DOMAIN_INIT))
6812
6813 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
6814         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6815         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6816         BIT(POWER_DOMAIN_INIT))
6817
6818 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
6819         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6820         BIT(POWER_DOMAIN_INIT))
6821
6822 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
6823         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6824         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6825         BIT(POWER_DOMAIN_INIT))
6826
6827 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
6828         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6829         BIT(POWER_DOMAIN_INIT))
6830
6831 #define CHV_PIPE_A_POWER_DOMAINS (      \
6832         BIT(POWER_DOMAIN_PIPE_A) |      \
6833         BIT(POWER_DOMAIN_INIT))
6834
6835 #define CHV_PIPE_B_POWER_DOMAINS (      \
6836         BIT(POWER_DOMAIN_PIPE_B) |      \
6837         BIT(POWER_DOMAIN_INIT))
6838
6839 #define CHV_PIPE_C_POWER_DOMAINS (      \
6840         BIT(POWER_DOMAIN_PIPE_C) |      \
6841         BIT(POWER_DOMAIN_INIT))
6842
6843 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (         \
6844         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6845         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6846         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6847         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6848         BIT(POWER_DOMAIN_INIT))
6849
6850 #define CHV_DPIO_CMN_D_POWER_DOMAINS (          \
6851         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |  \
6852         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |  \
6853         BIT(POWER_DOMAIN_INIT))
6854
6855 #define CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS (  \
6856         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |  \
6857         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |  \
6858         BIT(POWER_DOMAIN_INIT))
6859
6860 #define CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS (  \
6861         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |  \
6862         BIT(POWER_DOMAIN_INIT))
6863
6864 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6865         .sync_hw = i9xx_always_on_power_well_noop,
6866         .enable = i9xx_always_on_power_well_noop,
6867         .disable = i9xx_always_on_power_well_noop,
6868         .is_enabled = i9xx_always_on_power_well_enabled,
6869 };
6870
6871 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
6872         .sync_hw = chv_pipe_power_well_sync_hw,
6873         .enable = chv_pipe_power_well_enable,
6874         .disable = chv_pipe_power_well_disable,
6875         .is_enabled = chv_pipe_power_well_enabled,
6876 };
6877
6878 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
6879         .sync_hw = vlv_power_well_sync_hw,
6880         .enable = chv_dpio_cmn_power_well_enable,
6881         .disable = chv_dpio_cmn_power_well_disable,
6882         .is_enabled = vlv_power_well_enabled,
6883 };
6884
6885 static struct i915_power_well i9xx_always_on_power_well[] = {
6886         {
6887                 .name = "always-on",
6888                 .always_on = 1,
6889                 .domains = POWER_DOMAIN_MASK,
6890                 .ops = &i9xx_always_on_power_well_ops,
6891         },
6892 };
6893
6894 static const struct i915_power_well_ops hsw_power_well_ops = {
6895         .sync_hw = hsw_power_well_sync_hw,
6896         .enable = hsw_power_well_enable,
6897         .disable = hsw_power_well_disable,
6898         .is_enabled = hsw_power_well_enabled,
6899 };
6900
6901 static struct i915_power_well hsw_power_wells[] = {
6902         {
6903                 .name = "always-on",
6904                 .always_on = 1,
6905                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6906                 .ops = &i9xx_always_on_power_well_ops,
6907         },
6908         {
6909                 .name = "display",
6910                 .domains = HSW_DISPLAY_POWER_DOMAINS,
6911                 .ops = &hsw_power_well_ops,
6912         },
6913 };
6914
6915 static struct i915_power_well bdw_power_wells[] = {
6916         {
6917                 .name = "always-on",
6918                 .always_on = 1,
6919                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6920                 .ops = &i9xx_always_on_power_well_ops,
6921         },
6922         {
6923                 .name = "display",
6924                 .domains = BDW_DISPLAY_POWER_DOMAINS,
6925                 .ops = &hsw_power_well_ops,
6926         },
6927 };
6928
6929 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6930         .sync_hw = vlv_power_well_sync_hw,
6931         .enable = vlv_display_power_well_enable,
6932         .disable = vlv_display_power_well_disable,
6933         .is_enabled = vlv_power_well_enabled,
6934 };
6935
6936 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
6937         .sync_hw = vlv_power_well_sync_hw,
6938         .enable = vlv_dpio_cmn_power_well_enable,
6939         .disable = vlv_dpio_cmn_power_well_disable,
6940         .is_enabled = vlv_power_well_enabled,
6941 };
6942
6943 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6944         .sync_hw = vlv_power_well_sync_hw,
6945         .enable = vlv_power_well_enable,
6946         .disable = vlv_power_well_disable,
6947         .is_enabled = vlv_power_well_enabled,
6948 };
6949
6950 static struct i915_power_well vlv_power_wells[] = {
6951         {
6952                 .name = "always-on",
6953                 .always_on = 1,
6954                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6955                 .ops = &i9xx_always_on_power_well_ops,
6956         },
6957         {
6958                 .name = "display",
6959                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6960                 .data = PUNIT_POWER_WELL_DISP2D,
6961                 .ops = &vlv_display_power_well_ops,
6962         },
6963         {
6964                 .name = "dpio-tx-b-01",
6965                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6966                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6967                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6968                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6969                 .ops = &vlv_dpio_power_well_ops,
6970                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6971         },
6972         {
6973                 .name = "dpio-tx-b-23",
6974                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6975                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6976                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6977                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6978                 .ops = &vlv_dpio_power_well_ops,
6979                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6980         },
6981         {
6982                 .name = "dpio-tx-c-01",
6983                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6984                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6985                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6986                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6987                 .ops = &vlv_dpio_power_well_ops,
6988                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6989         },
6990         {
6991                 .name = "dpio-tx-c-23",
6992                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6993                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6994                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6995                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6996                 .ops = &vlv_dpio_power_well_ops,
6997                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6998         },
6999         {
7000                 .name = "dpio-common",
7001                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
7002                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
7003                 .ops = &vlv_dpio_cmn_power_well_ops,
7004         },
7005 };
7006
7007 static struct i915_power_well chv_power_wells[] = {
7008         {
7009                 .name = "always-on",
7010                 .always_on = 1,
7011                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
7012                 .ops = &i9xx_always_on_power_well_ops,
7013         },
7014 #if 0
7015         {
7016                 .name = "display",
7017                 .domains = VLV_DISPLAY_POWER_DOMAINS,
7018                 .data = PUNIT_POWER_WELL_DISP2D,
7019                 .ops = &vlv_display_power_well_ops,
7020         },
7021         {
7022                 .name = "pipe-a",
7023                 .domains = CHV_PIPE_A_POWER_DOMAINS,
7024                 .data = PIPE_A,
7025                 .ops = &chv_pipe_power_well_ops,
7026         },
7027         {
7028                 .name = "pipe-b",
7029                 .domains = CHV_PIPE_B_POWER_DOMAINS,
7030                 .data = PIPE_B,
7031                 .ops = &chv_pipe_power_well_ops,
7032         },
7033         {
7034                 .name = "pipe-c",
7035                 .domains = CHV_PIPE_C_POWER_DOMAINS,
7036                 .data = PIPE_C,
7037                 .ops = &chv_pipe_power_well_ops,
7038         },
7039 #endif
7040         {
7041                 .name = "dpio-common-bc",
7042                 /*
7043                  * XXX: cmnreset for one PHY seems to disturb the other.
7044                  * As a workaround keep both powered on at the same
7045                  * time for now.
7046                  */
7047                 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
7048                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
7049                 .ops = &chv_dpio_cmn_power_well_ops,
7050         },
7051         {
7052                 .name = "dpio-common-d",
7053                 /*
7054                  * XXX: cmnreset for one PHY seems to disturb the other.
7055                  * As a workaround keep both powered on at the same
7056                  * time for now.
7057                  */
7058                 .domains = CHV_DPIO_CMN_BC_POWER_DOMAINS | CHV_DPIO_CMN_D_POWER_DOMAINS,
7059                 .data = PUNIT_POWER_WELL_DPIO_CMN_D,
7060                 .ops = &chv_dpio_cmn_power_well_ops,
7061         },
7062 #if 0
7063         {
7064                 .name = "dpio-tx-b-01",
7065                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
7066                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
7067                 .ops = &vlv_dpio_power_well_ops,
7068                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
7069         },
7070         {
7071                 .name = "dpio-tx-b-23",
7072                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
7073                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS,
7074                 .ops = &vlv_dpio_power_well_ops,
7075                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
7076         },
7077         {
7078                 .name = "dpio-tx-c-01",
7079                 .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
7080                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7081                 .ops = &vlv_dpio_power_well_ops,
7082                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
7083         },
7084         {
7085                 .name = "dpio-tx-c-23",
7086                 .domains = VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
7087                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
7088                 .ops = &vlv_dpio_power_well_ops,
7089                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
7090         },
7091         {
7092                 .name = "dpio-tx-d-01",
7093                 .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
7094                            CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
7095                 .ops = &vlv_dpio_power_well_ops,
7096                 .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_01,
7097         },
7098         {
7099                 .name = "dpio-tx-d-23",
7100                 .domains = CHV_DPIO_TX_D_LANES_01_POWER_DOMAINS |
7101                            CHV_DPIO_TX_D_LANES_23_POWER_DOMAINS,
7102                 .ops = &vlv_dpio_power_well_ops,
7103                 .data = PUNIT_POWER_WELL_DPIO_TX_D_LANES_23,
7104         },
7105 #endif
7106 };
7107
7108 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
7109                                                  enum punit_power_well power_well_id)
7110 {
7111         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7112         struct i915_power_well *power_well;
7113         int i;
7114
7115         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7116                 if (power_well->data == power_well_id)
7117                         return power_well;
7118         }
7119
7120         return NULL;
7121 }
7122
7123 #define set_power_wells(power_domains, __power_wells) ({                \
7124         (power_domains)->power_wells = (__power_wells);                 \
7125         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
7126 })
7127
7128 int intel_power_domains_init(struct drm_i915_private *dev_priv)
7129 {
7130         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7131
7132         mutex_init(&power_domains->lock);
7133
7134         /*
7135          * The enabling order will be from lower to higher indexed wells,
7136          * the disabling order is reversed.
7137          */
7138         if (IS_HASWELL(dev_priv->dev)) {
7139                 set_power_wells(power_domains, hsw_power_wells);
7140                 hsw_pwr = power_domains;
7141         } else if (IS_BROADWELL(dev_priv->dev)) {
7142                 set_power_wells(power_domains, bdw_power_wells);
7143                 hsw_pwr = power_domains;
7144         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
7145                 set_power_wells(power_domains, chv_power_wells);
7146         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
7147                 set_power_wells(power_domains, vlv_power_wells);
7148         } else {
7149                 set_power_wells(power_domains, i9xx_always_on_power_well);
7150         }
7151
7152         return 0;
7153 }
7154
7155 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
7156 {
7157         hsw_pwr = NULL;
7158 }
7159
7160 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
7161 {
7162         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7163         struct i915_power_well *power_well;
7164         int i;
7165
7166         mutex_lock(&power_domains->lock);
7167         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
7168                 power_well->ops->sync_hw(dev_priv, power_well);
7169                 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
7170                                                                      power_well);
7171         }
7172         mutex_unlock(&power_domains->lock);
7173 }
7174
7175 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
7176 {
7177         struct i915_power_well *cmn =
7178                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
7179         struct i915_power_well *disp2d =
7180                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
7181
7182         /* nothing to do if common lane is already off */
7183         if (!cmn->ops->is_enabled(dev_priv, cmn))
7184                 return;
7185
7186         /* If the display might be already active skip this */
7187         if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
7188             I915_READ(DPIO_CTL) & DPIO_CMNRST)
7189                 return;
7190
7191         DRM_DEBUG_KMS("toggling display PHY side reset\n");
7192
7193         /* cmnlane needs DPLL registers */
7194         disp2d->ops->enable(dev_priv, disp2d);
7195
7196         /*
7197          * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
7198          * Need to assert and de-assert PHY SB reset by gating the
7199          * common lane power, then un-gating it.
7200          * Simply ungating isn't enough to reset the PHY enough to get
7201          * ports and lanes running.
7202          */
7203         cmn->ops->disable(dev_priv, cmn);
7204 }
7205
7206 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
7207 {
7208         struct drm_device *dev = dev_priv->dev;
7209         struct i915_power_domains *power_domains = &dev_priv->power_domains;
7210
7211         power_domains->initializing = true;
7212
7213         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
7214                 mutex_lock(&power_domains->lock);
7215                 vlv_cmnlane_wa(dev_priv);
7216                 mutex_unlock(&power_domains->lock);
7217         }
7218
7219         /* For now, we need the power well to be always enabled. */
7220         intel_display_set_init_power(dev_priv, true);
7221         intel_power_domains_resume(dev_priv);
7222         power_domains->initializing = false;
7223 }
7224
7225 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
7226 {
7227         intel_runtime_pm_get(dev_priv);
7228 }
7229
7230 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
7231 {
7232         intel_runtime_pm_put(dev_priv);
7233 }
7234
7235 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
7236 {
7237         struct drm_device *dev = dev_priv->dev;
7238         struct device *device = &dev->pdev->dev;
7239
7240         if (!HAS_RUNTIME_PM(dev))
7241                 return;
7242
7243         pm_runtime_get_sync(device);
7244         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
7245 }
7246
7247 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
7248 {
7249         struct drm_device *dev = dev_priv->dev;
7250         struct device *device = &dev->pdev->dev;
7251
7252         if (!HAS_RUNTIME_PM(dev))
7253                 return;
7254
7255         WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
7256         pm_runtime_get_noresume(device);
7257 }
7258
7259 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
7260 {
7261         struct drm_device *dev = dev_priv->dev;
7262         struct device *device = &dev->pdev->dev;
7263
7264         if (!HAS_RUNTIME_PM(dev))
7265                 return;
7266
7267         pm_runtime_mark_last_busy(device);
7268         pm_runtime_put_autosuspend(device);
7269 }
7270
7271 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
7272 {
7273         struct drm_device *dev = dev_priv->dev;
7274         struct device *device = &dev->pdev->dev;
7275
7276         if (!HAS_RUNTIME_PM(dev))
7277                 return;
7278
7279         pm_runtime_set_active(device);
7280
7281         /*
7282          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
7283          * requirement.
7284          */
7285         if (!intel_enable_rc6(dev)) {
7286                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
7287                 return;
7288         }
7289
7290         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
7291         pm_runtime_mark_last_busy(device);
7292         pm_runtime_use_autosuspend(device);
7293
7294         pm_runtime_put_autosuspend(device);
7295 }
7296
7297 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
7298 {
7299         struct drm_device *dev = dev_priv->dev;
7300         struct device *device = &dev->pdev->dev;
7301
7302         if (!HAS_RUNTIME_PM(dev))
7303                 return;
7304
7305         if (!intel_enable_rc6(dev))
7306                 return;
7307
7308         /* Make sure we're not suspended first. */
7309         pm_runtime_get_sync(device);
7310         pm_runtime_disable(device);
7311 }
7312
7313 /* Set up chip specific power management-related functions */
7314 void intel_init_pm(struct drm_device *dev)
7315 {
7316         struct drm_i915_private *dev_priv = dev->dev_private;
7317
7318         if (HAS_FBC(dev)) {
7319                 if (INTEL_INFO(dev)->gen >= 7) {
7320                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7321                         dev_priv->display.enable_fbc = gen7_enable_fbc;
7322                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7323                 } else if (INTEL_INFO(dev)->gen >= 5) {
7324                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7325                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
7326                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7327                 } else if (IS_GM45(dev)) {
7328                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7329                         dev_priv->display.enable_fbc = g4x_enable_fbc;
7330                         dev_priv->display.disable_fbc = g4x_disable_fbc;
7331                 } else {
7332                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7333                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
7334                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
7335
7336                         /* This value was pulled out of someone's hat */
7337                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
7338                 }
7339         }
7340
7341         /* For cxsr */
7342         if (IS_PINEVIEW(dev))
7343                 i915_pineview_get_mem_freq(dev);
7344         else if (IS_GEN5(dev))
7345                 i915_ironlake_get_mem_freq(dev);
7346
7347         /* For FIFO watermark updates */
7348         if (HAS_PCH_SPLIT(dev)) {
7349                 ilk_setup_wm_latency(dev);
7350
7351                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7352                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7353                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7354                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7355                         dev_priv->display.update_wm = ilk_update_wm;
7356                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7357                 } else {
7358                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7359                                       "Disable CxSR\n");
7360                 }
7361
7362                 if (IS_GEN5(dev))
7363                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7364                 else if (IS_GEN6(dev))
7365                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7366                 else if (IS_IVYBRIDGE(dev))
7367                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7368                 else if (IS_HASWELL(dev))
7369                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7370                 else if (INTEL_INFO(dev)->gen == 8)
7371                         dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7372         } else if (IS_CHERRYVIEW(dev)) {
7373                 dev_priv->display.update_wm = cherryview_update_wm;
7374                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7375                 dev_priv->display.init_clock_gating =
7376                         cherryview_init_clock_gating;
7377         } else if (IS_VALLEYVIEW(dev)) {
7378                 dev_priv->display.update_wm = valleyview_update_wm;
7379                 dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
7380                 dev_priv->display.init_clock_gating =
7381                         valleyview_init_clock_gating;
7382         } else if (IS_PINEVIEW(dev)) {
7383                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7384                                             dev_priv->is_ddr3,
7385                                             dev_priv->fsb_freq,
7386                                             dev_priv->mem_freq)) {
7387                         DRM_INFO("failed to find known CxSR latency "
7388                                  "(found ddr%s fsb freq %d, mem freq %d), "
7389                                  "disabling CxSR\n",
7390                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7391                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7392                         /* Disable CxSR and never update its watermark again */
7393                         intel_set_memory_cxsr(dev_priv, false);
7394                         dev_priv->display.update_wm = NULL;
7395                 } else
7396                         dev_priv->display.update_wm = pineview_update_wm;
7397                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7398         } else if (IS_G4X(dev)) {
7399                 dev_priv->display.update_wm = g4x_update_wm;
7400                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7401         } else if (IS_GEN4(dev)) {
7402                 dev_priv->display.update_wm = i965_update_wm;
7403                 if (IS_CRESTLINE(dev))
7404                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7405                 else if (IS_BROADWATER(dev))
7406                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7407         } else if (IS_GEN3(dev)) {
7408                 dev_priv->display.update_wm = i9xx_update_wm;
7409                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7410                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7411         } else if (IS_GEN2(dev)) {
7412                 if (INTEL_INFO(dev)->num_pipes == 1) {
7413                         dev_priv->display.update_wm = i845_update_wm;
7414                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7415                 } else {
7416                         dev_priv->display.update_wm = i9xx_update_wm;
7417                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7418                 }
7419
7420                 if (IS_I85X(dev) || IS_I865G(dev))
7421                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7422                 else
7423                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
7424         } else {
7425                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7426         }
7427 }
7428
7429 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
7430 {
7431         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7432
7433         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7434                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7435                 return -EAGAIN;
7436         }
7437
7438         I915_WRITE(GEN6_PCODE_DATA, *val);
7439         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7440
7441         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7442                      500)) {
7443                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7444                 return -ETIMEDOUT;
7445         }
7446
7447         *val = I915_READ(GEN6_PCODE_DATA);
7448         I915_WRITE(GEN6_PCODE_DATA, 0);
7449
7450         return 0;
7451 }
7452
7453 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
7454 {
7455         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7456
7457         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7458                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7459                 return -EAGAIN;
7460         }
7461
7462         I915_WRITE(GEN6_PCODE_DATA, val);
7463         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7464
7465         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7466                      500)) {
7467                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7468                 return -ETIMEDOUT;
7469         }
7470
7471         I915_WRITE(GEN6_PCODE_DATA, 0);
7472
7473         return 0;
7474 }
7475
7476 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7477 {
7478         int div;
7479
7480         /* 4 x czclk */
7481         switch (dev_priv->mem_freq) {
7482         case 800:
7483                 div = 10;
7484                 break;
7485         case 1066:
7486                 div = 12;
7487                 break;
7488         case 1333:
7489                 div = 16;
7490                 break;
7491         default:
7492                 return -1;
7493         }
7494
7495         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
7496 }
7497
7498 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7499 {
7500         int mul;
7501
7502         /* 4 x czclk */
7503         switch (dev_priv->mem_freq) {
7504         case 800:
7505                 mul = 10;
7506                 break;
7507         case 1066:
7508                 mul = 12;
7509                 break;
7510         case 1333:
7511                 mul = 16;
7512                 break;
7513         default:
7514                 return -1;
7515         }
7516
7517         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7518 }
7519
7520 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7521 {
7522         int div, freq;
7523
7524         switch (dev_priv->rps.cz_freq) {
7525         case 200:
7526                 div = 5;
7527                 break;
7528         case 267:
7529                 div = 6;
7530                 break;
7531         case 320:
7532         case 333:
7533         case 400:
7534                 div = 8;
7535                 break;
7536         default:
7537                 return -1;
7538         }
7539
7540         freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
7541
7542         return freq;
7543 }
7544
7545 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7546 {
7547         int mul, opcode;
7548
7549         switch (dev_priv->rps.cz_freq) {
7550         case 200:
7551                 mul = 5;
7552                 break;
7553         case 267:
7554                 mul = 6;
7555                 break;
7556         case 320:
7557         case 333:
7558         case 400:
7559                 mul = 8;
7560                 break;
7561         default:
7562                 return -1;
7563         }
7564
7565         /* CHV needs even values */
7566         opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
7567
7568         return opcode;
7569 }
7570
7571 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7572 {
7573         int ret = -1;
7574
7575         if (IS_CHERRYVIEW(dev_priv->dev))
7576                 ret = chv_gpu_freq(dev_priv, val);
7577         else if (IS_VALLEYVIEW(dev_priv->dev))
7578                 ret = byt_gpu_freq(dev_priv, val);
7579
7580         return ret;
7581 }
7582
7583 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7584 {
7585         int ret = -1;
7586
7587         if (IS_CHERRYVIEW(dev_priv->dev))
7588                 ret = chv_freq_opcode(dev_priv, val);
7589         else if (IS_VALLEYVIEW(dev_priv->dev))
7590                 ret = byt_freq_opcode(dev_priv, val);
7591
7592         return ret;
7593 }
7594
7595 void intel_pm_setup(struct drm_device *dev)
7596 {
7597         struct drm_i915_private *dev_priv = dev->dev_private;
7598
7599         mutex_init(&dev_priv->rps.hw_lock);
7600
7601         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7602                           intel_gen6_powersave_work);
7603
7604         dev_priv->pm.suspended = false;
7605         dev_priv->pm._irqs_disabled = false;
7606 }