drm/i915/bdw: Implement Wa4x4STCOptimizationDisable:bdw
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->fb;
96         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97         struct drm_i915_gem_object *obj = intel_fb->obj;
98         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99         int cfb_pitch;
100         int i;
101         u32 fbc_ctl;
102
103         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104         if (fb->pitches[0] < cfb_pitch)
105                 cfb_pitch = fb->pitches[0];
106
107         /* FBC_CTL wants 32B or 64B units */
108         if (IS_GEN2(dev))
109                 cfb_pitch = (cfb_pitch / 32) - 1;
110         else
111                 cfb_pitch = (cfb_pitch / 64) - 1;
112
113         /* Clear old tags */
114         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
115                 I915_WRITE(FBC_TAG + (i * 4), 0);
116
117         if (IS_GEN4(dev)) {
118                 u32 fbc_ctl2;
119
120                 /* Set it up... */
121                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
122                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
123                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
124                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
125         }
126
127         /* enable it... */
128         fbc_ctl = I915_READ(FBC_CONTROL);
129         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
130         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
131         if (IS_I945GM(dev))
132                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
133         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
134         fbc_ctl |= obj->fence_reg;
135         I915_WRITE(FBC_CONTROL, fbc_ctl);
136
137         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
138                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
139 }
140
141 static bool i8xx_fbc_enabled(struct drm_device *dev)
142 {
143         struct drm_i915_private *dev_priv = dev->dev_private;
144
145         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
146 }
147
148 static void g4x_enable_fbc(struct drm_crtc *crtc)
149 {
150         struct drm_device *dev = crtc->dev;
151         struct drm_i915_private *dev_priv = dev->dev_private;
152         struct drm_framebuffer *fb = crtc->fb;
153         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
154         struct drm_i915_gem_object *obj = intel_fb->obj;
155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
156         u32 dpfc_ctl;
157
158         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
159         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
160                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
161         else
162                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
163         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
164
165         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
166
167         /* enable it... */
168         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
169
170         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
171 }
172
173 static void g4x_disable_fbc(struct drm_device *dev)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176         u32 dpfc_ctl;
177
178         /* Disable compression */
179         dpfc_ctl = I915_READ(DPFC_CONTROL);
180         if (dpfc_ctl & DPFC_CTL_EN) {
181                 dpfc_ctl &= ~DPFC_CTL_EN;
182                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
183
184                 DRM_DEBUG_KMS("disabled FBC\n");
185         }
186 }
187
188 static bool g4x_fbc_enabled(struct drm_device *dev)
189 {
190         struct drm_i915_private *dev_priv = dev->dev_private;
191
192         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
193 }
194
195 static void sandybridge_blit_fbc_update(struct drm_device *dev)
196 {
197         struct drm_i915_private *dev_priv = dev->dev_private;
198         u32 blt_ecoskpd;
199
200         /* Make sure blitter notifies FBC of writes */
201
202         /* Blitter is part of Media powerwell on VLV. No impact of
203          * his param in other platforms for now */
204         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
205
206         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
207         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
208                 GEN6_BLITTER_LOCK_SHIFT;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
211         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
212         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
213                          GEN6_BLITTER_LOCK_SHIFT);
214         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
215         POSTING_READ(GEN6_BLITTER_ECOSKPD);
216
217         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
218 }
219
220 static void ironlake_enable_fbc(struct drm_crtc *crtc)
221 {
222         struct drm_device *dev = crtc->dev;
223         struct drm_i915_private *dev_priv = dev->dev_private;
224         struct drm_framebuffer *fb = crtc->fb;
225         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
226         struct drm_i915_gem_object *obj = intel_fb->obj;
227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
228         u32 dpfc_ctl;
229
230         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
231         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
232                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
233         else
234                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
235         dpfc_ctl |= DPFC_CTL_FENCE_EN;
236         if (IS_GEN5(dev))
237                 dpfc_ctl |= obj->fence_reg;
238
239         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
240         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
241         /* enable it... */
242         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
243
244         if (IS_GEN6(dev)) {
245                 I915_WRITE(SNB_DPFC_CTL_SA,
246                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
247                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
248                 sandybridge_blit_fbc_update(dev);
249         }
250
251         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
252 }
253
254 static void ironlake_disable_fbc(struct drm_device *dev)
255 {
256         struct drm_i915_private *dev_priv = dev->dev_private;
257         u32 dpfc_ctl;
258
259         /* Disable compression */
260         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
261         if (dpfc_ctl & DPFC_CTL_EN) {
262                 dpfc_ctl &= ~DPFC_CTL_EN;
263                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
264
265                 DRM_DEBUG_KMS("disabled FBC\n");
266         }
267 }
268
269 static bool ironlake_fbc_enabled(struct drm_device *dev)
270 {
271         struct drm_i915_private *dev_priv = dev->dev_private;
272
273         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
274 }
275
276 static void gen7_enable_fbc(struct drm_crtc *crtc)
277 {
278         struct drm_device *dev = crtc->dev;
279         struct drm_i915_private *dev_priv = dev->dev_private;
280         struct drm_framebuffer *fb = crtc->fb;
281         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
282         struct drm_i915_gem_object *obj = intel_fb->obj;
283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
284         u32 dpfc_ctl;
285
286         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
287         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
288                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
289         else
290                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
291         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
292
293         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
294
295         if (IS_IVYBRIDGE(dev)) {
296                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
297                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
298                            I915_READ(ILK_DISPLAY_CHICKEN1) |
299                            ILK_FBCQ_DIS);
300         } else {
301                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
302                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
303                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
304                            HSW_FBCQ_DIS);
305         }
306
307         I915_WRITE(SNB_DPFC_CTL_SA,
308                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
309         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
310
311         sandybridge_blit_fbc_update(dev);
312
313         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
314 }
315
316 bool intel_fbc_enabled(struct drm_device *dev)
317 {
318         struct drm_i915_private *dev_priv = dev->dev_private;
319
320         if (!dev_priv->display.fbc_enabled)
321                 return false;
322
323         return dev_priv->display.fbc_enabled(dev);
324 }
325
326 static void intel_fbc_work_fn(struct work_struct *__work)
327 {
328         struct intel_fbc_work *work =
329                 container_of(to_delayed_work(__work),
330                              struct intel_fbc_work, work);
331         struct drm_device *dev = work->crtc->dev;
332         struct drm_i915_private *dev_priv = dev->dev_private;
333
334         mutex_lock(&dev->struct_mutex);
335         if (work == dev_priv->fbc.fbc_work) {
336                 /* Double check that we haven't switched fb without cancelling
337                  * the prior work.
338                  */
339                 if (work->crtc->fb == work->fb) {
340                         dev_priv->display.enable_fbc(work->crtc);
341
342                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
343                         dev_priv->fbc.fb_id = work->crtc->fb->base.id;
344                         dev_priv->fbc.y = work->crtc->y;
345                 }
346
347                 dev_priv->fbc.fbc_work = NULL;
348         }
349         mutex_unlock(&dev->struct_mutex);
350
351         kfree(work);
352 }
353
354 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
355 {
356         if (dev_priv->fbc.fbc_work == NULL)
357                 return;
358
359         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
360
361         /* Synchronisation is provided by struct_mutex and checking of
362          * dev_priv->fbc.fbc_work, so we can perform the cancellation
363          * entirely asynchronously.
364          */
365         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
366                 /* tasklet was killed before being run, clean up */
367                 kfree(dev_priv->fbc.fbc_work);
368
369         /* Mark the work as no longer wanted so that if it does
370          * wake-up (because the work was already running and waiting
371          * for our mutex), it will discover that is no longer
372          * necessary to run.
373          */
374         dev_priv->fbc.fbc_work = NULL;
375 }
376
377 static void intel_enable_fbc(struct drm_crtc *crtc)
378 {
379         struct intel_fbc_work *work;
380         struct drm_device *dev = crtc->dev;
381         struct drm_i915_private *dev_priv = dev->dev_private;
382
383         if (!dev_priv->display.enable_fbc)
384                 return;
385
386         intel_cancel_fbc_work(dev_priv);
387
388         work = kzalloc(sizeof(*work), GFP_KERNEL);
389         if (work == NULL) {
390                 DRM_ERROR("Failed to allocate FBC work structure\n");
391                 dev_priv->display.enable_fbc(crtc);
392                 return;
393         }
394
395         work->crtc = crtc;
396         work->fb = crtc->fb;
397         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
398
399         dev_priv->fbc.fbc_work = work;
400
401         /* Delay the actual enabling to let pageflipping cease and the
402          * display to settle before starting the compression. Note that
403          * this delay also serves a second purpose: it allows for a
404          * vblank to pass after disabling the FBC before we attempt
405          * to modify the control registers.
406          *
407          * A more complicated solution would involve tracking vblanks
408          * following the termination of the page-flipping sequence
409          * and indeed performing the enable as a co-routine and not
410          * waiting synchronously upon the vblank.
411          *
412          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
413          */
414         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
415 }
416
417 void intel_disable_fbc(struct drm_device *dev)
418 {
419         struct drm_i915_private *dev_priv = dev->dev_private;
420
421         intel_cancel_fbc_work(dev_priv);
422
423         if (!dev_priv->display.disable_fbc)
424                 return;
425
426         dev_priv->display.disable_fbc(dev);
427         dev_priv->fbc.plane = -1;
428 }
429
430 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
431                               enum no_fbc_reason reason)
432 {
433         if (dev_priv->fbc.no_fbc_reason == reason)
434                 return false;
435
436         dev_priv->fbc.no_fbc_reason = reason;
437         return true;
438 }
439
440 /**
441  * intel_update_fbc - enable/disable FBC as needed
442  * @dev: the drm_device
443  *
444  * Set up the framebuffer compression hardware at mode set time.  We
445  * enable it if possible:
446  *   - plane A only (on pre-965)
447  *   - no pixel mulitply/line duplication
448  *   - no alpha buffer discard
449  *   - no dual wide
450  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
451  *
452  * We can't assume that any compression will take place (worst case),
453  * so the compressed buffer has to be the same size as the uncompressed
454  * one.  It also must reside (along with the line length buffer) in
455  * stolen memory.
456  *
457  * We need to enable/disable FBC on a global basis.
458  */
459 void intel_update_fbc(struct drm_device *dev)
460 {
461         struct drm_i915_private *dev_priv = dev->dev_private;
462         struct drm_crtc *crtc = NULL, *tmp_crtc;
463         struct intel_crtc *intel_crtc;
464         struct drm_framebuffer *fb;
465         struct intel_framebuffer *intel_fb;
466         struct drm_i915_gem_object *obj;
467         const struct drm_display_mode *adjusted_mode;
468         unsigned int max_width, max_height;
469
470         if (!HAS_FBC(dev)) {
471                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
472                 return;
473         }
474
475         if (!i915.powersave) {
476                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
477                         DRM_DEBUG_KMS("fbc disabled per module param\n");
478                 return;
479         }
480
481         /*
482          * If FBC is already on, we just have to verify that we can
483          * keep it that way...
484          * Need to disable if:
485          *   - more than one pipe is active
486          *   - changing FBC params (stride, fence, mode)
487          *   - new fb is too large to fit in compressed buffer
488          *   - going to an unsupported config (interlace, pixel multiply, etc.)
489          */
490         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
491                 if (intel_crtc_active(tmp_crtc) &&
492                     to_intel_crtc(tmp_crtc)->primary_enabled) {
493                         if (crtc) {
494                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
495                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
496                                 goto out_disable;
497                         }
498                         crtc = tmp_crtc;
499                 }
500         }
501
502         if (!crtc || crtc->fb == NULL) {
503                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
504                         DRM_DEBUG_KMS("no output, disabling\n");
505                 goto out_disable;
506         }
507
508         intel_crtc = to_intel_crtc(crtc);
509         fb = crtc->fb;
510         intel_fb = to_intel_framebuffer(fb);
511         obj = intel_fb->obj;
512         adjusted_mode = &intel_crtc->config.adjusted_mode;
513
514         if (i915.enable_fbc < 0 &&
515             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
516                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
517                         DRM_DEBUG_KMS("disabled per chip default\n");
518                 goto out_disable;
519         }
520         if (!i915.enable_fbc) {
521                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
522                         DRM_DEBUG_KMS("fbc disabled per module param\n");
523                 goto out_disable;
524         }
525         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
526             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
527                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
528                         DRM_DEBUG_KMS("mode incompatible with compression, "
529                                       "disabling\n");
530                 goto out_disable;
531         }
532
533         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
534                 max_width = 4096;
535                 max_height = 2048;
536         } else {
537                 max_width = 2048;
538                 max_height = 1536;
539         }
540         if (intel_crtc->config.pipe_src_w > max_width ||
541             intel_crtc->config.pipe_src_h > max_height) {
542                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
543                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
544                 goto out_disable;
545         }
546         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
547             intel_crtc->plane != PLANE_A) {
548                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
549                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
550                 goto out_disable;
551         }
552
553         /* The use of a CPU fence is mandatory in order to detect writes
554          * by the CPU to the scanout and trigger updates to the FBC.
555          */
556         if (obj->tiling_mode != I915_TILING_X ||
557             obj->fence_reg == I915_FENCE_REG_NONE) {
558                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
559                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
560                 goto out_disable;
561         }
562
563         /* If the kernel debugger is active, always disable compression */
564         if (in_dbg_master())
565                 goto out_disable;
566
567         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
568                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
569                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
570                 goto out_disable;
571         }
572
573         /* If the scanout has not changed, don't modify the FBC settings.
574          * Note that we make the fundamental assumption that the fb->obj
575          * cannot be unpinned (and have its GTT offset and fence revoked)
576          * without first being decoupled from the scanout and FBC disabled.
577          */
578         if (dev_priv->fbc.plane == intel_crtc->plane &&
579             dev_priv->fbc.fb_id == fb->base.id &&
580             dev_priv->fbc.y == crtc->y)
581                 return;
582
583         if (intel_fbc_enabled(dev)) {
584                 /* We update FBC along two paths, after changing fb/crtc
585                  * configuration (modeswitching) and after page-flipping
586                  * finishes. For the latter, we know that not only did
587                  * we disable the FBC at the start of the page-flip
588                  * sequence, but also more than one vblank has passed.
589                  *
590                  * For the former case of modeswitching, it is possible
591                  * to switch between two FBC valid configurations
592                  * instantaneously so we do need to disable the FBC
593                  * before we can modify its control registers. We also
594                  * have to wait for the next vblank for that to take
595                  * effect. However, since we delay enabling FBC we can
596                  * assume that a vblank has passed since disabling and
597                  * that we can safely alter the registers in the deferred
598                  * callback.
599                  *
600                  * In the scenario that we go from a valid to invalid
601                  * and then back to valid FBC configuration we have
602                  * no strict enforcement that a vblank occurred since
603                  * disabling the FBC. However, along all current pipe
604                  * disabling paths we do need to wait for a vblank at
605                  * some point. And we wait before enabling FBC anyway.
606                  */
607                 DRM_DEBUG_KMS("disabling active FBC for update\n");
608                 intel_disable_fbc(dev);
609         }
610
611         intel_enable_fbc(crtc);
612         dev_priv->fbc.no_fbc_reason = FBC_OK;
613         return;
614
615 out_disable:
616         /* Multiple disables should be harmless */
617         if (intel_fbc_enabled(dev)) {
618                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
619                 intel_disable_fbc(dev);
620         }
621         i915_gem_stolen_cleanup_compression(dev);
622 }
623
624 static void i915_pineview_get_mem_freq(struct drm_device *dev)
625 {
626         drm_i915_private_t *dev_priv = dev->dev_private;
627         u32 tmp;
628
629         tmp = I915_READ(CLKCFG);
630
631         switch (tmp & CLKCFG_FSB_MASK) {
632         case CLKCFG_FSB_533:
633                 dev_priv->fsb_freq = 533; /* 133*4 */
634                 break;
635         case CLKCFG_FSB_800:
636                 dev_priv->fsb_freq = 800; /* 200*4 */
637                 break;
638         case CLKCFG_FSB_667:
639                 dev_priv->fsb_freq =  667; /* 167*4 */
640                 break;
641         case CLKCFG_FSB_400:
642                 dev_priv->fsb_freq = 400; /* 100*4 */
643                 break;
644         }
645
646         switch (tmp & CLKCFG_MEM_MASK) {
647         case CLKCFG_MEM_533:
648                 dev_priv->mem_freq = 533;
649                 break;
650         case CLKCFG_MEM_667:
651                 dev_priv->mem_freq = 667;
652                 break;
653         case CLKCFG_MEM_800:
654                 dev_priv->mem_freq = 800;
655                 break;
656         }
657
658         /* detect pineview DDR3 setting */
659         tmp = I915_READ(CSHRDDR3CTL);
660         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
661 }
662
663 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
664 {
665         drm_i915_private_t *dev_priv = dev->dev_private;
666         u16 ddrpll, csipll;
667
668         ddrpll = I915_READ16(DDRMPLL1);
669         csipll = I915_READ16(CSIPLL0);
670
671         switch (ddrpll & 0xff) {
672         case 0xc:
673                 dev_priv->mem_freq = 800;
674                 break;
675         case 0x10:
676                 dev_priv->mem_freq = 1066;
677                 break;
678         case 0x14:
679                 dev_priv->mem_freq = 1333;
680                 break;
681         case 0x18:
682                 dev_priv->mem_freq = 1600;
683                 break;
684         default:
685                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
686                                  ddrpll & 0xff);
687                 dev_priv->mem_freq = 0;
688                 break;
689         }
690
691         dev_priv->ips.r_t = dev_priv->mem_freq;
692
693         switch (csipll & 0x3ff) {
694         case 0x00c:
695                 dev_priv->fsb_freq = 3200;
696                 break;
697         case 0x00e:
698                 dev_priv->fsb_freq = 3733;
699                 break;
700         case 0x010:
701                 dev_priv->fsb_freq = 4266;
702                 break;
703         case 0x012:
704                 dev_priv->fsb_freq = 4800;
705                 break;
706         case 0x014:
707                 dev_priv->fsb_freq = 5333;
708                 break;
709         case 0x016:
710                 dev_priv->fsb_freq = 5866;
711                 break;
712         case 0x018:
713                 dev_priv->fsb_freq = 6400;
714                 break;
715         default:
716                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
717                                  csipll & 0x3ff);
718                 dev_priv->fsb_freq = 0;
719                 break;
720         }
721
722         if (dev_priv->fsb_freq == 3200) {
723                 dev_priv->ips.c_m = 0;
724         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
725                 dev_priv->ips.c_m = 1;
726         } else {
727                 dev_priv->ips.c_m = 2;
728         }
729 }
730
731 static const struct cxsr_latency cxsr_latency_table[] = {
732         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
733         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
734         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
735         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
736         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
737
738         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
739         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
740         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
741         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
742         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
743
744         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
745         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
746         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
747         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
748         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
749
750         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
751         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
752         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
753         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
754         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
755
756         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
757         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
758         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
759         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
760         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
761
762         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
763         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
764         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
765         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
766         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
767 };
768
769 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
770                                                          int is_ddr3,
771                                                          int fsb,
772                                                          int mem)
773 {
774         const struct cxsr_latency *latency;
775         int i;
776
777         if (fsb == 0 || mem == 0)
778                 return NULL;
779
780         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
781                 latency = &cxsr_latency_table[i];
782                 if (is_desktop == latency->is_desktop &&
783                     is_ddr3 == latency->is_ddr3 &&
784                     fsb == latency->fsb_freq && mem == latency->mem_freq)
785                         return latency;
786         }
787
788         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
789
790         return NULL;
791 }
792
793 static void pineview_disable_cxsr(struct drm_device *dev)
794 {
795         struct drm_i915_private *dev_priv = dev->dev_private;
796
797         /* deactivate cxsr */
798         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
799 }
800
801 /*
802  * Latency for FIFO fetches is dependent on several factors:
803  *   - memory configuration (speed, channels)
804  *   - chipset
805  *   - current MCH state
806  * It can be fairly high in some situations, so here we assume a fairly
807  * pessimal value.  It's a tradeoff between extra memory fetches (if we
808  * set this value too high, the FIFO will fetch frequently to stay full)
809  * and power consumption (set it too low to save power and we might see
810  * FIFO underruns and display "flicker").
811  *
812  * A value of 5us seems to be a good balance; safe for very low end
813  * platforms but not overly aggressive on lower latency configs.
814  */
815 static const int latency_ns = 5000;
816
817 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
818 {
819         struct drm_i915_private *dev_priv = dev->dev_private;
820         uint32_t dsparb = I915_READ(DSPARB);
821         int size;
822
823         size = dsparb & 0x7f;
824         if (plane)
825                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
826
827         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
828                       plane ? "B" : "A", size);
829
830         return size;
831 }
832
833 static int i830_get_fifo_size(struct drm_device *dev, int plane)
834 {
835         struct drm_i915_private *dev_priv = dev->dev_private;
836         uint32_t dsparb = I915_READ(DSPARB);
837         int size;
838
839         size = dsparb & 0x1ff;
840         if (plane)
841                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
842         size >>= 1; /* Convert to cachelines */
843
844         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
845                       plane ? "B" : "A", size);
846
847         return size;
848 }
849
850 static int i845_get_fifo_size(struct drm_device *dev, int plane)
851 {
852         struct drm_i915_private *dev_priv = dev->dev_private;
853         uint32_t dsparb = I915_READ(DSPARB);
854         int size;
855
856         size = dsparb & 0x7f;
857         size >>= 2; /* Convert to cachelines */
858
859         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
860                       plane ? "B" : "A",
861                       size);
862
863         return size;
864 }
865
866 /* Pineview has different values for various configs */
867 static const struct intel_watermark_params pineview_display_wm = {
868         PINEVIEW_DISPLAY_FIFO,
869         PINEVIEW_MAX_WM,
870         PINEVIEW_DFT_WM,
871         PINEVIEW_GUARD_WM,
872         PINEVIEW_FIFO_LINE_SIZE
873 };
874 static const struct intel_watermark_params pineview_display_hplloff_wm = {
875         PINEVIEW_DISPLAY_FIFO,
876         PINEVIEW_MAX_WM,
877         PINEVIEW_DFT_HPLLOFF_WM,
878         PINEVIEW_GUARD_WM,
879         PINEVIEW_FIFO_LINE_SIZE
880 };
881 static const struct intel_watermark_params pineview_cursor_wm = {
882         PINEVIEW_CURSOR_FIFO,
883         PINEVIEW_CURSOR_MAX_WM,
884         PINEVIEW_CURSOR_DFT_WM,
885         PINEVIEW_CURSOR_GUARD_WM,
886         PINEVIEW_FIFO_LINE_SIZE,
887 };
888 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
889         PINEVIEW_CURSOR_FIFO,
890         PINEVIEW_CURSOR_MAX_WM,
891         PINEVIEW_CURSOR_DFT_WM,
892         PINEVIEW_CURSOR_GUARD_WM,
893         PINEVIEW_FIFO_LINE_SIZE
894 };
895 static const struct intel_watermark_params g4x_wm_info = {
896         G4X_FIFO_SIZE,
897         G4X_MAX_WM,
898         G4X_MAX_WM,
899         2,
900         G4X_FIFO_LINE_SIZE,
901 };
902 static const struct intel_watermark_params g4x_cursor_wm_info = {
903         I965_CURSOR_FIFO,
904         I965_CURSOR_MAX_WM,
905         I965_CURSOR_DFT_WM,
906         2,
907         G4X_FIFO_LINE_SIZE,
908 };
909 static const struct intel_watermark_params valleyview_wm_info = {
910         VALLEYVIEW_FIFO_SIZE,
911         VALLEYVIEW_MAX_WM,
912         VALLEYVIEW_MAX_WM,
913         2,
914         G4X_FIFO_LINE_SIZE,
915 };
916 static const struct intel_watermark_params valleyview_cursor_wm_info = {
917         I965_CURSOR_FIFO,
918         VALLEYVIEW_CURSOR_MAX_WM,
919         I965_CURSOR_DFT_WM,
920         2,
921         G4X_FIFO_LINE_SIZE,
922 };
923 static const struct intel_watermark_params i965_cursor_wm_info = {
924         I965_CURSOR_FIFO,
925         I965_CURSOR_MAX_WM,
926         I965_CURSOR_DFT_WM,
927         2,
928         I915_FIFO_LINE_SIZE,
929 };
930 static const struct intel_watermark_params i945_wm_info = {
931         I945_FIFO_SIZE,
932         I915_MAX_WM,
933         1,
934         2,
935         I915_FIFO_LINE_SIZE
936 };
937 static const struct intel_watermark_params i915_wm_info = {
938         I915_FIFO_SIZE,
939         I915_MAX_WM,
940         1,
941         2,
942         I915_FIFO_LINE_SIZE
943 };
944 static const struct intel_watermark_params i830_wm_info = {
945         I855GM_FIFO_SIZE,
946         I915_MAX_WM,
947         1,
948         2,
949         I830_FIFO_LINE_SIZE
950 };
951 static const struct intel_watermark_params i845_wm_info = {
952         I830_FIFO_SIZE,
953         I915_MAX_WM,
954         1,
955         2,
956         I830_FIFO_LINE_SIZE
957 };
958
959 /**
960  * intel_calculate_wm - calculate watermark level
961  * @clock_in_khz: pixel clock
962  * @wm: chip FIFO params
963  * @pixel_size: display pixel size
964  * @latency_ns: memory latency for the platform
965  *
966  * Calculate the watermark level (the level at which the display plane will
967  * start fetching from memory again).  Each chip has a different display
968  * FIFO size and allocation, so the caller needs to figure that out and pass
969  * in the correct intel_watermark_params structure.
970  *
971  * As the pixel clock runs, the FIFO will be drained at a rate that depends
972  * on the pixel size.  When it reaches the watermark level, it'll start
973  * fetching FIFO line sized based chunks from memory until the FIFO fills
974  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
975  * will occur, and a display engine hang could result.
976  */
977 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
978                                         const struct intel_watermark_params *wm,
979                                         int fifo_size,
980                                         int pixel_size,
981                                         unsigned long latency_ns)
982 {
983         long entries_required, wm_size;
984
985         /*
986          * Note: we need to make sure we don't overflow for various clock &
987          * latency values.
988          * clocks go from a few thousand to several hundred thousand.
989          * latency is usually a few thousand
990          */
991         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
992                 1000;
993         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
994
995         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
996
997         wm_size = fifo_size - (entries_required + wm->guard_size);
998
999         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1000
1001         /* Don't promote wm_size to unsigned... */
1002         if (wm_size > (long)wm->max_wm)
1003                 wm_size = wm->max_wm;
1004         if (wm_size <= 0)
1005                 wm_size = wm->default_wm;
1006         return wm_size;
1007 }
1008
1009 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1010 {
1011         struct drm_crtc *crtc, *enabled = NULL;
1012
1013         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1014                 if (intel_crtc_active(crtc)) {
1015                         if (enabled)
1016                                 return NULL;
1017                         enabled = crtc;
1018                 }
1019         }
1020
1021         return enabled;
1022 }
1023
1024 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1025 {
1026         struct drm_device *dev = unused_crtc->dev;
1027         struct drm_i915_private *dev_priv = dev->dev_private;
1028         struct drm_crtc *crtc;
1029         const struct cxsr_latency *latency;
1030         u32 reg;
1031         unsigned long wm;
1032
1033         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1034                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1035         if (!latency) {
1036                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1037                 pineview_disable_cxsr(dev);
1038                 return;
1039         }
1040
1041         crtc = single_enabled_crtc(dev);
1042         if (crtc) {
1043                 const struct drm_display_mode *adjusted_mode;
1044                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1045                 int clock;
1046
1047                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1048                 clock = adjusted_mode->crtc_clock;
1049
1050                 /* Display SR */
1051                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1052                                         pineview_display_wm.fifo_size,
1053                                         pixel_size, latency->display_sr);
1054                 reg = I915_READ(DSPFW1);
1055                 reg &= ~DSPFW_SR_MASK;
1056                 reg |= wm << DSPFW_SR_SHIFT;
1057                 I915_WRITE(DSPFW1, reg);
1058                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1059
1060                 /* cursor SR */
1061                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1062                                         pineview_display_wm.fifo_size,
1063                                         pixel_size, latency->cursor_sr);
1064                 reg = I915_READ(DSPFW3);
1065                 reg &= ~DSPFW_CURSOR_SR_MASK;
1066                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1067                 I915_WRITE(DSPFW3, reg);
1068
1069                 /* Display HPLL off SR */
1070                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1071                                         pineview_display_hplloff_wm.fifo_size,
1072                                         pixel_size, latency->display_hpll_disable);
1073                 reg = I915_READ(DSPFW3);
1074                 reg &= ~DSPFW_HPLL_SR_MASK;
1075                 reg |= wm & DSPFW_HPLL_SR_MASK;
1076                 I915_WRITE(DSPFW3, reg);
1077
1078                 /* cursor HPLL off SR */
1079                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1080                                         pineview_display_hplloff_wm.fifo_size,
1081                                         pixel_size, latency->cursor_hpll_disable);
1082                 reg = I915_READ(DSPFW3);
1083                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1084                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1085                 I915_WRITE(DSPFW3, reg);
1086                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1087
1088                 /* activate cxsr */
1089                 I915_WRITE(DSPFW3,
1090                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1091                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1092         } else {
1093                 pineview_disable_cxsr(dev);
1094                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1095         }
1096 }
1097
1098 static bool g4x_compute_wm0(struct drm_device *dev,
1099                             int plane,
1100                             const struct intel_watermark_params *display,
1101                             int display_latency_ns,
1102                             const struct intel_watermark_params *cursor,
1103                             int cursor_latency_ns,
1104                             int *plane_wm,
1105                             int *cursor_wm)
1106 {
1107         struct drm_crtc *crtc;
1108         const struct drm_display_mode *adjusted_mode;
1109         int htotal, hdisplay, clock, pixel_size;
1110         int line_time_us, line_count;
1111         int entries, tlb_miss;
1112
1113         crtc = intel_get_crtc_for_plane(dev, plane);
1114         if (!intel_crtc_active(crtc)) {
1115                 *cursor_wm = cursor->guard_size;
1116                 *plane_wm = display->guard_size;
1117                 return false;
1118         }
1119
1120         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1121         clock = adjusted_mode->crtc_clock;
1122         htotal = adjusted_mode->crtc_htotal;
1123         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1124         pixel_size = crtc->fb->bits_per_pixel / 8;
1125
1126         /* Use the small buffer method to calculate plane watermark */
1127         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1128         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1129         if (tlb_miss > 0)
1130                 entries += tlb_miss;
1131         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1132         *plane_wm = entries + display->guard_size;
1133         if (*plane_wm > (int)display->max_wm)
1134                 *plane_wm = display->max_wm;
1135
1136         /* Use the large buffer method to calculate cursor watermark */
1137         line_time_us = max(htotal * 1000 / clock, 1);
1138         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1139         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1140         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1141         if (tlb_miss > 0)
1142                 entries += tlb_miss;
1143         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1144         *cursor_wm = entries + cursor->guard_size;
1145         if (*cursor_wm > (int)cursor->max_wm)
1146                 *cursor_wm = (int)cursor->max_wm;
1147
1148         return true;
1149 }
1150
1151 /*
1152  * Check the wm result.
1153  *
1154  * If any calculated watermark values is larger than the maximum value that
1155  * can be programmed into the associated watermark register, that watermark
1156  * must be disabled.
1157  */
1158 static bool g4x_check_srwm(struct drm_device *dev,
1159                            int display_wm, int cursor_wm,
1160                            const struct intel_watermark_params *display,
1161                            const struct intel_watermark_params *cursor)
1162 {
1163         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1164                       display_wm, cursor_wm);
1165
1166         if (display_wm > display->max_wm) {
1167                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1168                               display_wm, display->max_wm);
1169                 return false;
1170         }
1171
1172         if (cursor_wm > cursor->max_wm) {
1173                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1174                               cursor_wm, cursor->max_wm);
1175                 return false;
1176         }
1177
1178         if (!(display_wm || cursor_wm)) {
1179                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1180                 return false;
1181         }
1182
1183         return true;
1184 }
1185
1186 static bool g4x_compute_srwm(struct drm_device *dev,
1187                              int plane,
1188                              int latency_ns,
1189                              const struct intel_watermark_params *display,
1190                              const struct intel_watermark_params *cursor,
1191                              int *display_wm, int *cursor_wm)
1192 {
1193         struct drm_crtc *crtc;
1194         const struct drm_display_mode *adjusted_mode;
1195         int hdisplay, htotal, pixel_size, clock;
1196         unsigned long line_time_us;
1197         int line_count, line_size;
1198         int small, large;
1199         int entries;
1200
1201         if (!latency_ns) {
1202                 *display_wm = *cursor_wm = 0;
1203                 return false;
1204         }
1205
1206         crtc = intel_get_crtc_for_plane(dev, plane);
1207         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1208         clock = adjusted_mode->crtc_clock;
1209         htotal = adjusted_mode->crtc_htotal;
1210         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1211         pixel_size = crtc->fb->bits_per_pixel / 8;
1212
1213         line_time_us = max(htotal * 1000 / clock, 1);
1214         line_count = (latency_ns / line_time_us + 1000) / 1000;
1215         line_size = hdisplay * pixel_size;
1216
1217         /* Use the minimum of the small and large buffer method for primary */
1218         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1219         large = line_count * line_size;
1220
1221         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1222         *display_wm = entries + display->guard_size;
1223
1224         /* calculate the self-refresh watermark for display cursor */
1225         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1226         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1227         *cursor_wm = entries + cursor->guard_size;
1228
1229         return g4x_check_srwm(dev,
1230                               *display_wm, *cursor_wm,
1231                               display, cursor);
1232 }
1233
1234 static bool vlv_compute_drain_latency(struct drm_device *dev,
1235                                      int plane,
1236                                      int *plane_prec_mult,
1237                                      int *plane_dl,
1238                                      int *cursor_prec_mult,
1239                                      int *cursor_dl)
1240 {
1241         struct drm_crtc *crtc;
1242         int clock, pixel_size;
1243         int entries;
1244
1245         crtc = intel_get_crtc_for_plane(dev, plane);
1246         if (!intel_crtc_active(crtc))
1247                 return false;
1248
1249         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1250         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1251
1252         entries = (clock / 1000) * pixel_size;
1253         *plane_prec_mult = (entries > 256) ?
1254                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1255         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1256                                                      pixel_size);
1257
1258         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1259         *cursor_prec_mult = (entries > 256) ?
1260                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1261         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1262
1263         return true;
1264 }
1265
1266 /*
1267  * Update drain latency registers of memory arbiter
1268  *
1269  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1270  * to be programmed. Each plane has a drain latency multiplier and a drain
1271  * latency value.
1272  */
1273
1274 static void vlv_update_drain_latency(struct drm_device *dev)
1275 {
1276         struct drm_i915_private *dev_priv = dev->dev_private;
1277         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1278         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1279         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1280                                                         either 16 or 32 */
1281
1282         /* For plane A, Cursor A */
1283         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1284                                       &cursor_prec_mult, &cursora_dl)) {
1285                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1286                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1287                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1288                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1289
1290                 I915_WRITE(VLV_DDL1, cursora_prec |
1291                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1292                                 planea_prec | planea_dl);
1293         }
1294
1295         /* For plane B, Cursor B */
1296         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1297                                       &cursor_prec_mult, &cursorb_dl)) {
1298                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1299                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1300                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1301                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1302
1303                 I915_WRITE(VLV_DDL2, cursorb_prec |
1304                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1305                                 planeb_prec | planeb_dl);
1306         }
1307 }
1308
1309 #define single_plane_enabled(mask) is_power_of_2(mask)
1310
1311 static void valleyview_update_wm(struct drm_crtc *crtc)
1312 {
1313         struct drm_device *dev = crtc->dev;
1314         static const int sr_latency_ns = 12000;
1315         struct drm_i915_private *dev_priv = dev->dev_private;
1316         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1317         int plane_sr, cursor_sr;
1318         int ignore_plane_sr, ignore_cursor_sr;
1319         unsigned int enabled = 0;
1320
1321         vlv_update_drain_latency(dev);
1322
1323         if (g4x_compute_wm0(dev, PIPE_A,
1324                             &valleyview_wm_info, latency_ns,
1325                             &valleyview_cursor_wm_info, latency_ns,
1326                             &planea_wm, &cursora_wm))
1327                 enabled |= 1 << PIPE_A;
1328
1329         if (g4x_compute_wm0(dev, PIPE_B,
1330                             &valleyview_wm_info, latency_ns,
1331                             &valleyview_cursor_wm_info, latency_ns,
1332                             &planeb_wm, &cursorb_wm))
1333                 enabled |= 1 << PIPE_B;
1334
1335         if (single_plane_enabled(enabled) &&
1336             g4x_compute_srwm(dev, ffs(enabled) - 1,
1337                              sr_latency_ns,
1338                              &valleyview_wm_info,
1339                              &valleyview_cursor_wm_info,
1340                              &plane_sr, &ignore_cursor_sr) &&
1341             g4x_compute_srwm(dev, ffs(enabled) - 1,
1342                              2*sr_latency_ns,
1343                              &valleyview_wm_info,
1344                              &valleyview_cursor_wm_info,
1345                              &ignore_plane_sr, &cursor_sr)) {
1346                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1347         } else {
1348                 I915_WRITE(FW_BLC_SELF_VLV,
1349                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1350                 plane_sr = cursor_sr = 0;
1351         }
1352
1353         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1354                       planea_wm, cursora_wm,
1355                       planeb_wm, cursorb_wm,
1356                       plane_sr, cursor_sr);
1357
1358         I915_WRITE(DSPFW1,
1359                    (plane_sr << DSPFW_SR_SHIFT) |
1360                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1361                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1362                    planea_wm);
1363         I915_WRITE(DSPFW2,
1364                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1365                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1366         I915_WRITE(DSPFW3,
1367                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1368                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1369 }
1370
1371 static void g4x_update_wm(struct drm_crtc *crtc)
1372 {
1373         struct drm_device *dev = crtc->dev;
1374         static const int sr_latency_ns = 12000;
1375         struct drm_i915_private *dev_priv = dev->dev_private;
1376         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1377         int plane_sr, cursor_sr;
1378         unsigned int enabled = 0;
1379
1380         if (g4x_compute_wm0(dev, PIPE_A,
1381                             &g4x_wm_info, latency_ns,
1382                             &g4x_cursor_wm_info, latency_ns,
1383                             &planea_wm, &cursora_wm))
1384                 enabled |= 1 << PIPE_A;
1385
1386         if (g4x_compute_wm0(dev, PIPE_B,
1387                             &g4x_wm_info, latency_ns,
1388                             &g4x_cursor_wm_info, latency_ns,
1389                             &planeb_wm, &cursorb_wm))
1390                 enabled |= 1 << PIPE_B;
1391
1392         if (single_plane_enabled(enabled) &&
1393             g4x_compute_srwm(dev, ffs(enabled) - 1,
1394                              sr_latency_ns,
1395                              &g4x_wm_info,
1396                              &g4x_cursor_wm_info,
1397                              &plane_sr, &cursor_sr)) {
1398                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1399         } else {
1400                 I915_WRITE(FW_BLC_SELF,
1401                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1402                 plane_sr = cursor_sr = 0;
1403         }
1404
1405         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1406                       planea_wm, cursora_wm,
1407                       planeb_wm, cursorb_wm,
1408                       plane_sr, cursor_sr);
1409
1410         I915_WRITE(DSPFW1,
1411                    (plane_sr << DSPFW_SR_SHIFT) |
1412                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1413                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1414                    planea_wm);
1415         I915_WRITE(DSPFW2,
1416                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1417                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1418         /* HPLL off in SR has some issues on G4x... disable it */
1419         I915_WRITE(DSPFW3,
1420                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1421                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1422 }
1423
1424 static void i965_update_wm(struct drm_crtc *unused_crtc)
1425 {
1426         struct drm_device *dev = unused_crtc->dev;
1427         struct drm_i915_private *dev_priv = dev->dev_private;
1428         struct drm_crtc *crtc;
1429         int srwm = 1;
1430         int cursor_sr = 16;
1431
1432         /* Calc sr entries for one plane configs */
1433         crtc = single_enabled_crtc(dev);
1434         if (crtc) {
1435                 /* self-refresh has much higher latency */
1436                 static const int sr_latency_ns = 12000;
1437                 const struct drm_display_mode *adjusted_mode =
1438                         &to_intel_crtc(crtc)->config.adjusted_mode;
1439                 int clock = adjusted_mode->crtc_clock;
1440                 int htotal = adjusted_mode->crtc_htotal;
1441                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1442                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1443                 unsigned long line_time_us;
1444                 int entries;
1445
1446                 line_time_us = max(htotal * 1000 / clock, 1);
1447
1448                 /* Use ns/us then divide to preserve precision */
1449                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450                         pixel_size * hdisplay;
1451                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1452                 srwm = I965_FIFO_SIZE - entries;
1453                 if (srwm < 0)
1454                         srwm = 1;
1455                 srwm &= 0x1ff;
1456                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1457                               entries, srwm);
1458
1459                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1460                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1461                 entries = DIV_ROUND_UP(entries,
1462                                           i965_cursor_wm_info.cacheline_size);
1463                 cursor_sr = i965_cursor_wm_info.fifo_size -
1464                         (entries + i965_cursor_wm_info.guard_size);
1465
1466                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1467                         cursor_sr = i965_cursor_wm_info.max_wm;
1468
1469                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1470                               "cursor %d\n", srwm, cursor_sr);
1471
1472                 if (IS_CRESTLINE(dev))
1473                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1474         } else {
1475                 /* Turn off self refresh if both pipes are enabled */
1476                 if (IS_CRESTLINE(dev))
1477                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1478                                    & ~FW_BLC_SELF_EN);
1479         }
1480
1481         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1482                       srwm);
1483
1484         /* 965 has limitations... */
1485         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1486                    (8 << 16) | (8 << 8) | (8 << 0));
1487         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1488         /* update cursor SR watermark */
1489         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1490 }
1491
1492 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1493 {
1494         struct drm_device *dev = unused_crtc->dev;
1495         struct drm_i915_private *dev_priv = dev->dev_private;
1496         const struct intel_watermark_params *wm_info;
1497         uint32_t fwater_lo;
1498         uint32_t fwater_hi;
1499         int cwm, srwm = 1;
1500         int fifo_size;
1501         int planea_wm, planeb_wm;
1502         struct drm_crtc *crtc, *enabled = NULL;
1503
1504         if (IS_I945GM(dev))
1505                 wm_info = &i945_wm_info;
1506         else if (!IS_GEN2(dev))
1507                 wm_info = &i915_wm_info;
1508         else
1509                 wm_info = &i830_wm_info;
1510
1511         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1512         crtc = intel_get_crtc_for_plane(dev, 0);
1513         if (intel_crtc_active(crtc)) {
1514                 const struct drm_display_mode *adjusted_mode;
1515                 int cpp = crtc->fb->bits_per_pixel / 8;
1516                 if (IS_GEN2(dev))
1517                         cpp = 4;
1518
1519                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1520                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1521                                                wm_info, fifo_size, cpp,
1522                                                latency_ns);
1523                 enabled = crtc;
1524         } else
1525                 planea_wm = fifo_size - wm_info->guard_size;
1526
1527         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1528         crtc = intel_get_crtc_for_plane(dev, 1);
1529         if (intel_crtc_active(crtc)) {
1530                 const struct drm_display_mode *adjusted_mode;
1531                 int cpp = crtc->fb->bits_per_pixel / 8;
1532                 if (IS_GEN2(dev))
1533                         cpp = 4;
1534
1535                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1536                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1537                                                wm_info, fifo_size, cpp,
1538                                                latency_ns);
1539                 if (enabled == NULL)
1540                         enabled = crtc;
1541                 else
1542                         enabled = NULL;
1543         } else
1544                 planeb_wm = fifo_size - wm_info->guard_size;
1545
1546         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1547
1548         /*
1549          * Overlay gets an aggressive default since video jitter is bad.
1550          */
1551         cwm = 2;
1552
1553         /* Play safe and disable self-refresh before adjusting watermarks. */
1554         if (IS_I945G(dev) || IS_I945GM(dev))
1555                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1556         else if (IS_I915GM(dev))
1557                 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1558
1559         /* Calc sr entries for one plane configs */
1560         if (HAS_FW_BLC(dev) && enabled) {
1561                 /* self-refresh has much higher latency */
1562                 static const int sr_latency_ns = 6000;
1563                 const struct drm_display_mode *adjusted_mode =
1564                         &to_intel_crtc(enabled)->config.adjusted_mode;
1565                 int clock = adjusted_mode->crtc_clock;
1566                 int htotal = adjusted_mode->crtc_htotal;
1567                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1568                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1569                 unsigned long line_time_us;
1570                 int entries;
1571
1572                 line_time_us = max(htotal * 1000 / clock, 1);
1573
1574                 /* Use ns/us then divide to preserve precision */
1575                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1576                         pixel_size * hdisplay;
1577                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1578                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1579                 srwm = wm_info->fifo_size - entries;
1580                 if (srwm < 0)
1581                         srwm = 1;
1582
1583                 if (IS_I945G(dev) || IS_I945GM(dev))
1584                         I915_WRITE(FW_BLC_SELF,
1585                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1586                 else if (IS_I915GM(dev))
1587                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1588         }
1589
1590         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1591                       planea_wm, planeb_wm, cwm, srwm);
1592
1593         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1594         fwater_hi = (cwm & 0x1f);
1595
1596         /* Set request length to 8 cachelines per fetch */
1597         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1598         fwater_hi = fwater_hi | (1 << 8);
1599
1600         I915_WRITE(FW_BLC, fwater_lo);
1601         I915_WRITE(FW_BLC2, fwater_hi);
1602
1603         if (HAS_FW_BLC(dev)) {
1604                 if (enabled) {
1605                         if (IS_I945G(dev) || IS_I945GM(dev))
1606                                 I915_WRITE(FW_BLC_SELF,
1607                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1608                         else if (IS_I915GM(dev))
1609                                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1610                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1611                 } else
1612                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1613         }
1614 }
1615
1616 static void i845_update_wm(struct drm_crtc *unused_crtc)
1617 {
1618         struct drm_device *dev = unused_crtc->dev;
1619         struct drm_i915_private *dev_priv = dev->dev_private;
1620         struct drm_crtc *crtc;
1621         const struct drm_display_mode *adjusted_mode;
1622         uint32_t fwater_lo;
1623         int planea_wm;
1624
1625         crtc = single_enabled_crtc(dev);
1626         if (crtc == NULL)
1627                 return;
1628
1629         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1630         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1631                                        &i845_wm_info,
1632                                        dev_priv->display.get_fifo_size(dev, 0),
1633                                        4, latency_ns);
1634         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1635         fwater_lo |= (3<<8) | planea_wm;
1636
1637         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1638
1639         I915_WRITE(FW_BLC, fwater_lo);
1640 }
1641
1642 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1643                                     struct drm_crtc *crtc)
1644 {
1645         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1646         uint32_t pixel_rate;
1647
1648         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1649
1650         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1651          * adjust the pixel_rate here. */
1652
1653         if (intel_crtc->config.pch_pfit.enabled) {
1654                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1655                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1656
1657                 pipe_w = intel_crtc->config.pipe_src_w;
1658                 pipe_h = intel_crtc->config.pipe_src_h;
1659                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1660                 pfit_h = pfit_size & 0xFFFF;
1661                 if (pipe_w < pfit_w)
1662                         pipe_w = pfit_w;
1663                 if (pipe_h < pfit_h)
1664                         pipe_h = pfit_h;
1665
1666                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1667                                      pfit_w * pfit_h);
1668         }
1669
1670         return pixel_rate;
1671 }
1672
1673 /* latency must be in 0.1us units. */
1674 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1675                                uint32_t latency)
1676 {
1677         uint64_t ret;
1678
1679         if (WARN(latency == 0, "Latency value missing\n"))
1680                 return UINT_MAX;
1681
1682         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1683         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1684
1685         return ret;
1686 }
1687
1688 /* latency must be in 0.1us units. */
1689 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1690                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1691                                uint32_t latency)
1692 {
1693         uint32_t ret;
1694
1695         if (WARN(latency == 0, "Latency value missing\n"))
1696                 return UINT_MAX;
1697
1698         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1699         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1700         ret = DIV_ROUND_UP(ret, 64) + 2;
1701         return ret;
1702 }
1703
1704 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1705                            uint8_t bytes_per_pixel)
1706 {
1707         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1708 }
1709
1710 struct ilk_pipe_wm_parameters {
1711         bool active;
1712         uint32_t pipe_htotal;
1713         uint32_t pixel_rate;
1714         struct intel_plane_wm_parameters pri;
1715         struct intel_plane_wm_parameters spr;
1716         struct intel_plane_wm_parameters cur;
1717 };
1718
1719 struct ilk_wm_maximums {
1720         uint16_t pri;
1721         uint16_t spr;
1722         uint16_t cur;
1723         uint16_t fbc;
1724 };
1725
1726 /* used in computing the new watermarks state */
1727 struct intel_wm_config {
1728         unsigned int num_pipes_active;
1729         bool sprites_enabled;
1730         bool sprites_scaled;
1731 };
1732
1733 /*
1734  * For both WM_PIPE and WM_LP.
1735  * mem_value must be in 0.1us units.
1736  */
1737 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1738                                    uint32_t mem_value,
1739                                    bool is_lp)
1740 {
1741         uint32_t method1, method2;
1742
1743         if (!params->active || !params->pri.enabled)
1744                 return 0;
1745
1746         method1 = ilk_wm_method1(params->pixel_rate,
1747                                  params->pri.bytes_per_pixel,
1748                                  mem_value);
1749
1750         if (!is_lp)
1751                 return method1;
1752
1753         method2 = ilk_wm_method2(params->pixel_rate,
1754                                  params->pipe_htotal,
1755                                  params->pri.horiz_pixels,
1756                                  params->pri.bytes_per_pixel,
1757                                  mem_value);
1758
1759         return min(method1, method2);
1760 }
1761
1762 /*
1763  * For both WM_PIPE and WM_LP.
1764  * mem_value must be in 0.1us units.
1765  */
1766 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1767                                    uint32_t mem_value)
1768 {
1769         uint32_t method1, method2;
1770
1771         if (!params->active || !params->spr.enabled)
1772                 return 0;
1773
1774         method1 = ilk_wm_method1(params->pixel_rate,
1775                                  params->spr.bytes_per_pixel,
1776                                  mem_value);
1777         method2 = ilk_wm_method2(params->pixel_rate,
1778                                  params->pipe_htotal,
1779                                  params->spr.horiz_pixels,
1780                                  params->spr.bytes_per_pixel,
1781                                  mem_value);
1782         return min(method1, method2);
1783 }
1784
1785 /*
1786  * For both WM_PIPE and WM_LP.
1787  * mem_value must be in 0.1us units.
1788  */
1789 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1790                                    uint32_t mem_value)
1791 {
1792         if (!params->active || !params->cur.enabled)
1793                 return 0;
1794
1795         return ilk_wm_method2(params->pixel_rate,
1796                               params->pipe_htotal,
1797                               params->cur.horiz_pixels,
1798                               params->cur.bytes_per_pixel,
1799                               mem_value);
1800 }
1801
1802 /* Only for WM_LP. */
1803 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1804                                    uint32_t pri_val)
1805 {
1806         if (!params->active || !params->pri.enabled)
1807                 return 0;
1808
1809         return ilk_wm_fbc(pri_val,
1810                           params->pri.horiz_pixels,
1811                           params->pri.bytes_per_pixel);
1812 }
1813
1814 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1815 {
1816         if (INTEL_INFO(dev)->gen >= 8)
1817                 return 3072;
1818         else if (INTEL_INFO(dev)->gen >= 7)
1819                 return 768;
1820         else
1821                 return 512;
1822 }
1823
1824 /* Calculate the maximum primary/sprite plane watermark */
1825 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1826                                      int level,
1827                                      const struct intel_wm_config *config,
1828                                      enum intel_ddb_partitioning ddb_partitioning,
1829                                      bool is_sprite)
1830 {
1831         unsigned int fifo_size = ilk_display_fifo_size(dev);
1832         unsigned int max;
1833
1834         /* if sprites aren't enabled, sprites get nothing */
1835         if (is_sprite && !config->sprites_enabled)
1836                 return 0;
1837
1838         /* HSW allows LP1+ watermarks even with multiple pipes */
1839         if (level == 0 || config->num_pipes_active > 1) {
1840                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1841
1842                 /*
1843                  * For some reason the non self refresh
1844                  * FIFO size is only half of the self
1845                  * refresh FIFO size on ILK/SNB.
1846                  */
1847                 if (INTEL_INFO(dev)->gen <= 6)
1848                         fifo_size /= 2;
1849         }
1850
1851         if (config->sprites_enabled) {
1852                 /* level 0 is always calculated with 1:1 split */
1853                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1854                         if (is_sprite)
1855                                 fifo_size *= 5;
1856                         fifo_size /= 6;
1857                 } else {
1858                         fifo_size /= 2;
1859                 }
1860         }
1861
1862         /* clamp to max that the registers can hold */
1863         if (INTEL_INFO(dev)->gen >= 8)
1864                 max = level == 0 ? 255 : 2047;
1865         else if (INTEL_INFO(dev)->gen >= 7)
1866                 /* IVB/HSW primary/sprite plane watermarks */
1867                 max = level == 0 ? 127 : 1023;
1868         else if (!is_sprite)
1869                 /* ILK/SNB primary plane watermarks */
1870                 max = level == 0 ? 127 : 511;
1871         else
1872                 /* ILK/SNB sprite plane watermarks */
1873                 max = level == 0 ? 63 : 255;
1874
1875         return min(fifo_size, max);
1876 }
1877
1878 /* Calculate the maximum cursor plane watermark */
1879 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1880                                       int level,
1881                                       const struct intel_wm_config *config)
1882 {
1883         /* HSW LP1+ watermarks w/ multiple pipes */
1884         if (level > 0 && config->num_pipes_active > 1)
1885                 return 64;
1886
1887         /* otherwise just report max that registers can hold */
1888         if (INTEL_INFO(dev)->gen >= 7)
1889                 return level == 0 ? 63 : 255;
1890         else
1891                 return level == 0 ? 31 : 63;
1892 }
1893
1894 /* Calculate the maximum FBC watermark */
1895 static unsigned int ilk_fbc_wm_max(const struct drm_device *dev)
1896 {
1897         /* max that registers can hold */
1898         if (INTEL_INFO(dev)->gen >= 8)
1899                 return 31;
1900         else
1901                 return 15;
1902 }
1903
1904 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1905                                     int level,
1906                                     const struct intel_wm_config *config,
1907                                     enum intel_ddb_partitioning ddb_partitioning,
1908                                     struct ilk_wm_maximums *max)
1909 {
1910         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1911         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1912         max->cur = ilk_cursor_wm_max(dev, level, config);
1913         max->fbc = ilk_fbc_wm_max(dev);
1914 }
1915
1916 static bool ilk_validate_wm_level(int level,
1917                                   const struct ilk_wm_maximums *max,
1918                                   struct intel_wm_level *result)
1919 {
1920         bool ret;
1921
1922         /* already determined to be invalid? */
1923         if (!result->enable)
1924                 return false;
1925
1926         result->enable = result->pri_val <= max->pri &&
1927                          result->spr_val <= max->spr &&
1928                          result->cur_val <= max->cur;
1929
1930         ret = result->enable;
1931
1932         /*
1933          * HACK until we can pre-compute everything,
1934          * and thus fail gracefully if LP0 watermarks
1935          * are exceeded...
1936          */
1937         if (level == 0 && !result->enable) {
1938                 if (result->pri_val > max->pri)
1939                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1940                                       level, result->pri_val, max->pri);
1941                 if (result->spr_val > max->spr)
1942                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1943                                       level, result->spr_val, max->spr);
1944                 if (result->cur_val > max->cur)
1945                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1946                                       level, result->cur_val, max->cur);
1947
1948                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1949                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1950                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1951                 result->enable = true;
1952         }
1953
1954         return ret;
1955 }
1956
1957 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1958                                  int level,
1959                                  const struct ilk_pipe_wm_parameters *p,
1960                                  struct intel_wm_level *result)
1961 {
1962         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1963         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1964         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1965
1966         /* WM1+ latency values stored in 0.5us units */
1967         if (level > 0) {
1968                 pri_latency *= 5;
1969                 spr_latency *= 5;
1970                 cur_latency *= 5;
1971         }
1972
1973         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1974         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1975         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1976         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1977         result->enable = true;
1978 }
1979
1980 static uint32_t
1981 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1982 {
1983         struct drm_i915_private *dev_priv = dev->dev_private;
1984         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1985         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
1986         u32 linetime, ips_linetime;
1987
1988         if (!intel_crtc_active(crtc))
1989                 return 0;
1990
1991         /* The WM are computed with base on how long it takes to fill a single
1992          * row at the given clock rate, multiplied by 8.
1993          * */
1994         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1995                                      mode->crtc_clock);
1996         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1997                                          intel_ddi_get_cdclk_freq(dev_priv));
1998
1999         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2000                PIPE_WM_LINETIME_TIME(linetime);
2001 }
2002
2003 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2004 {
2005         struct drm_i915_private *dev_priv = dev->dev_private;
2006
2007         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2008                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2009
2010                 wm[0] = (sskpd >> 56) & 0xFF;
2011                 if (wm[0] == 0)
2012                         wm[0] = sskpd & 0xF;
2013                 wm[1] = (sskpd >> 4) & 0xFF;
2014                 wm[2] = (sskpd >> 12) & 0xFF;
2015                 wm[3] = (sskpd >> 20) & 0x1FF;
2016                 wm[4] = (sskpd >> 32) & 0x1FF;
2017         } else if (INTEL_INFO(dev)->gen >= 6) {
2018                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2019
2020                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2021                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2022                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2023                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2024         } else if (INTEL_INFO(dev)->gen >= 5) {
2025                 uint32_t mltr = I915_READ(MLTR_ILK);
2026
2027                 /* ILK primary LP0 latency is 700 ns */
2028                 wm[0] = 7;
2029                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2030                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2031         }
2032 }
2033
2034 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2035 {
2036         /* ILK sprite LP0 latency is 1300 ns */
2037         if (INTEL_INFO(dev)->gen == 5)
2038                 wm[0] = 13;
2039 }
2040
2041 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2042 {
2043         /* ILK cursor LP0 latency is 1300 ns */
2044         if (INTEL_INFO(dev)->gen == 5)
2045                 wm[0] = 13;
2046
2047         /* WaDoubleCursorLP3Latency:ivb */
2048         if (IS_IVYBRIDGE(dev))
2049                 wm[3] *= 2;
2050 }
2051
2052 static int ilk_wm_max_level(const struct drm_device *dev)
2053 {
2054         /* how many WM levels are we expecting */
2055         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2056                 return 4;
2057         else if (INTEL_INFO(dev)->gen >= 6)
2058                 return 3;
2059         else
2060                 return 2;
2061 }
2062
2063 static void intel_print_wm_latency(struct drm_device *dev,
2064                                    const char *name,
2065                                    const uint16_t wm[5])
2066 {
2067         int level, max_level = ilk_wm_max_level(dev);
2068
2069         for (level = 0; level <= max_level; level++) {
2070                 unsigned int latency = wm[level];
2071
2072                 if (latency == 0) {
2073                         DRM_ERROR("%s WM%d latency not provided\n",
2074                                   name, level);
2075                         continue;
2076                 }
2077
2078                 /* WM1+ latency values in 0.5us units */
2079                 if (level > 0)
2080                         latency *= 5;
2081
2082                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2083                               name, level, wm[level],
2084                               latency / 10, latency % 10);
2085         }
2086 }
2087
2088 static void ilk_setup_wm_latency(struct drm_device *dev)
2089 {
2090         struct drm_i915_private *dev_priv = dev->dev_private;
2091
2092         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2093
2094         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2095                sizeof(dev_priv->wm.pri_latency));
2096         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2097                sizeof(dev_priv->wm.pri_latency));
2098
2099         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2100         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2101
2102         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2103         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2104         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2105 }
2106
2107 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2108                                       struct ilk_pipe_wm_parameters *p,
2109                                       struct intel_wm_config *config)
2110 {
2111         struct drm_device *dev = crtc->dev;
2112         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2113         enum pipe pipe = intel_crtc->pipe;
2114         struct drm_plane *plane;
2115
2116         p->active = intel_crtc_active(crtc);
2117         if (p->active) {
2118                 p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2119                 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2120                 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2121                 p->cur.bytes_per_pixel = 4;
2122                 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2123                 p->cur.horiz_pixels = intel_crtc->cursor_width;
2124                 /* TODO: for now, assume primary and cursor planes are always enabled. */
2125                 p->pri.enabled = true;
2126                 p->cur.enabled = true;
2127         }
2128
2129         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2130                 config->num_pipes_active += intel_crtc_active(crtc);
2131
2132         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2133                 struct intel_plane *intel_plane = to_intel_plane(plane);
2134
2135                 if (intel_plane->pipe == pipe)
2136                         p->spr = intel_plane->wm;
2137
2138                 config->sprites_enabled |= intel_plane->wm.enabled;
2139                 config->sprites_scaled |= intel_plane->wm.scaled;
2140         }
2141 }
2142
2143 /* Compute new watermarks for the pipe */
2144 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2145                                   const struct ilk_pipe_wm_parameters *params,
2146                                   struct intel_pipe_wm *pipe_wm)
2147 {
2148         struct drm_device *dev = crtc->dev;
2149         const struct drm_i915_private *dev_priv = dev->dev_private;
2150         int level, max_level = ilk_wm_max_level(dev);
2151         /* LP0 watermark maximums depend on this pipe alone */
2152         struct intel_wm_config config = {
2153                 .num_pipes_active = 1,
2154                 .sprites_enabled = params->spr.enabled,
2155                 .sprites_scaled = params->spr.scaled,
2156         };
2157         struct ilk_wm_maximums max;
2158
2159         /* LP0 watermarks always use 1/2 DDB partitioning */
2160         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2161
2162         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2163         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2164                 max_level = 1;
2165
2166         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2167         if (params->spr.scaled)
2168                 max_level = 0;
2169
2170         for (level = 0; level <= max_level; level++)
2171                 ilk_compute_wm_level(dev_priv, level, params,
2172                                      &pipe_wm->wm[level]);
2173
2174         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2175                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2176
2177         /* At least LP0 must be valid */
2178         return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
2179 }
2180
2181 /*
2182  * Merge the watermarks from all active pipes for a specific level.
2183  */
2184 static void ilk_merge_wm_level(struct drm_device *dev,
2185                                int level,
2186                                struct intel_wm_level *ret_wm)
2187 {
2188         const struct intel_crtc *intel_crtc;
2189
2190         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2191                 const struct intel_wm_level *wm =
2192                         &intel_crtc->wm.active.wm[level];
2193
2194                 if (!wm->enable)
2195                         return;
2196
2197                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2198                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2199                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2200                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2201         }
2202
2203         ret_wm->enable = true;
2204 }
2205
2206 /*
2207  * Merge all low power watermarks for all active pipes.
2208  */
2209 static void ilk_wm_merge(struct drm_device *dev,
2210                          const struct intel_wm_config *config,
2211                          const struct ilk_wm_maximums *max,
2212                          struct intel_pipe_wm *merged)
2213 {
2214         int level, max_level = ilk_wm_max_level(dev);
2215
2216         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2217         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2218             config->num_pipes_active > 1)
2219                 return;
2220
2221         /* ILK: FBC WM must be disabled always */
2222         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2223
2224         /* merge each WM1+ level */
2225         for (level = 1; level <= max_level; level++) {
2226                 struct intel_wm_level *wm = &merged->wm[level];
2227
2228                 ilk_merge_wm_level(dev, level, wm);
2229
2230                 if (!ilk_validate_wm_level(level, max, wm))
2231                         break;
2232
2233                 /*
2234                  * The spec says it is preferred to disable
2235                  * FBC WMs instead of disabling a WM level.
2236                  */
2237                 if (wm->fbc_val > max->fbc) {
2238                         merged->fbc_wm_enabled = false;
2239                         wm->fbc_val = 0;
2240                 }
2241         }
2242
2243         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2244         /*
2245          * FIXME this is racy. FBC might get enabled later.
2246          * What we should check here is whether FBC can be
2247          * enabled sometime later.
2248          */
2249         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2250                 for (level = 2; level <= max_level; level++) {
2251                         struct intel_wm_level *wm = &merged->wm[level];
2252
2253                         wm->enable = false;
2254                 }
2255         }
2256 }
2257
2258 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2259 {
2260         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2261         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2262 }
2263
2264 /* The value we need to program into the WM_LPx latency field */
2265 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2266 {
2267         struct drm_i915_private *dev_priv = dev->dev_private;
2268
2269         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2270                 return 2 * level;
2271         else
2272                 return dev_priv->wm.pri_latency[level];
2273 }
2274
2275 static void ilk_compute_wm_results(struct drm_device *dev,
2276                                    const struct intel_pipe_wm *merged,
2277                                    enum intel_ddb_partitioning partitioning,
2278                                    struct ilk_wm_values *results)
2279 {
2280         struct intel_crtc *intel_crtc;
2281         int level, wm_lp;
2282
2283         results->enable_fbc_wm = merged->fbc_wm_enabled;
2284         results->partitioning = partitioning;
2285
2286         /* LP1+ register values */
2287         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2288                 const struct intel_wm_level *r;
2289
2290                 level = ilk_wm_lp_to_level(wm_lp, merged);
2291
2292                 r = &merged->wm[level];
2293                 if (!r->enable)
2294                         break;
2295
2296                 results->wm_lp[wm_lp - 1] = WM3_LP_EN |
2297                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2298                         (r->pri_val << WM1_LP_SR_SHIFT) |
2299                         r->cur_val;
2300
2301                 if (INTEL_INFO(dev)->gen >= 8)
2302                         results->wm_lp[wm_lp - 1] |=
2303                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2304                 else
2305                         results->wm_lp[wm_lp - 1] |=
2306                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2307
2308                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2309                         WARN_ON(wm_lp != 1);
2310                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2311                 } else
2312                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2313         }
2314
2315         /* LP0 register values */
2316         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2317                 enum pipe pipe = intel_crtc->pipe;
2318                 const struct intel_wm_level *r =
2319                         &intel_crtc->wm.active.wm[0];
2320
2321                 if (WARN_ON(!r->enable))
2322                         continue;
2323
2324                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2325
2326                 results->wm_pipe[pipe] =
2327                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2328                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2329                         r->cur_val;
2330         }
2331 }
2332
2333 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2334  * case both are at the same level. Prefer r1 in case they're the same. */
2335 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2336                                                   struct intel_pipe_wm *r1,
2337                                                   struct intel_pipe_wm *r2)
2338 {
2339         int level, max_level = ilk_wm_max_level(dev);
2340         int level1 = 0, level2 = 0;
2341
2342         for (level = 1; level <= max_level; level++) {
2343                 if (r1->wm[level].enable)
2344                         level1 = level;
2345                 if (r2->wm[level].enable)
2346                         level2 = level;
2347         }
2348
2349         if (level1 == level2) {
2350                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2351                         return r2;
2352                 else
2353                         return r1;
2354         } else if (level1 > level2) {
2355                 return r1;
2356         } else {
2357                 return r2;
2358         }
2359 }
2360
2361 /* dirty bits used to track which watermarks need changes */
2362 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2363 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2364 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2365 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2366 #define WM_DIRTY_FBC (1 << 24)
2367 #define WM_DIRTY_DDB (1 << 25)
2368
2369 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2370                                          const struct ilk_wm_values *old,
2371                                          const struct ilk_wm_values *new)
2372 {
2373         unsigned int dirty = 0;
2374         enum pipe pipe;
2375         int wm_lp;
2376
2377         for_each_pipe(pipe) {
2378                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2379                         dirty |= WM_DIRTY_LINETIME(pipe);
2380                         /* Must disable LP1+ watermarks too */
2381                         dirty |= WM_DIRTY_LP_ALL;
2382                 }
2383
2384                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2385                         dirty |= WM_DIRTY_PIPE(pipe);
2386                         /* Must disable LP1+ watermarks too */
2387                         dirty |= WM_DIRTY_LP_ALL;
2388                 }
2389         }
2390
2391         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2392                 dirty |= WM_DIRTY_FBC;
2393                 /* Must disable LP1+ watermarks too */
2394                 dirty |= WM_DIRTY_LP_ALL;
2395         }
2396
2397         if (old->partitioning != new->partitioning) {
2398                 dirty |= WM_DIRTY_DDB;
2399                 /* Must disable LP1+ watermarks too */
2400                 dirty |= WM_DIRTY_LP_ALL;
2401         }
2402
2403         /* LP1+ watermarks already deemed dirty, no need to continue */
2404         if (dirty & WM_DIRTY_LP_ALL)
2405                 return dirty;
2406
2407         /* Find the lowest numbered LP1+ watermark in need of an update... */
2408         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2409                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2410                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2411                         break;
2412         }
2413
2414         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2415         for (; wm_lp <= 3; wm_lp++)
2416                 dirty |= WM_DIRTY_LP(wm_lp);
2417
2418         return dirty;
2419 }
2420
2421 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2422                                unsigned int dirty)
2423 {
2424         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2425         bool changed = false;
2426
2427         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2428                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2429                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2430                 changed = true;
2431         }
2432         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2433                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2434                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2435                 changed = true;
2436         }
2437         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2438                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2439                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2440                 changed = true;
2441         }
2442
2443         /*
2444          * Don't touch WM1S_LP_EN here.
2445          * Doing so could cause underruns.
2446          */
2447
2448         return changed;
2449 }
2450
2451 /*
2452  * The spec says we shouldn't write when we don't need, because every write
2453  * causes WMs to be re-evaluated, expending some power.
2454  */
2455 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2456                                 struct ilk_wm_values *results)
2457 {
2458         struct drm_device *dev = dev_priv->dev;
2459         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2460         unsigned int dirty;
2461         uint32_t val;
2462
2463         dirty = ilk_compute_wm_dirty(dev, previous, results);
2464         if (!dirty)
2465                 return;
2466
2467         _ilk_disable_lp_wm(dev_priv, dirty);
2468
2469         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2470                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2471         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2472                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2473         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2474                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2475
2476         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2477                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2478         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2479                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2480         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2481                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2482
2483         if (dirty & WM_DIRTY_DDB) {
2484                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2485                         val = I915_READ(WM_MISC);
2486                         if (results->partitioning == INTEL_DDB_PART_1_2)
2487                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2488                         else
2489                                 val |= WM_MISC_DATA_PARTITION_5_6;
2490                         I915_WRITE(WM_MISC, val);
2491                 } else {
2492                         val = I915_READ(DISP_ARB_CTL2);
2493                         if (results->partitioning == INTEL_DDB_PART_1_2)
2494                                 val &= ~DISP_DATA_PARTITION_5_6;
2495                         else
2496                                 val |= DISP_DATA_PARTITION_5_6;
2497                         I915_WRITE(DISP_ARB_CTL2, val);
2498                 }
2499         }
2500
2501         if (dirty & WM_DIRTY_FBC) {
2502                 val = I915_READ(DISP_ARB_CTL);
2503                 if (results->enable_fbc_wm)
2504                         val &= ~DISP_FBC_WM_DIS;
2505                 else
2506                         val |= DISP_FBC_WM_DIS;
2507                 I915_WRITE(DISP_ARB_CTL, val);
2508         }
2509
2510         if (dirty & WM_DIRTY_LP(1) &&
2511             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2512                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2513
2514         if (INTEL_INFO(dev)->gen >= 7) {
2515                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2516                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2517                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2518                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2519         }
2520
2521         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2522                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2523         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2524                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2525         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2526                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2527
2528         dev_priv->wm.hw = *results;
2529 }
2530
2531 static bool ilk_disable_lp_wm(struct drm_device *dev)
2532 {
2533         struct drm_i915_private *dev_priv = dev->dev_private;
2534
2535         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2536 }
2537
2538 static void ilk_update_wm(struct drm_crtc *crtc)
2539 {
2540         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2541         struct drm_device *dev = crtc->dev;
2542         struct drm_i915_private *dev_priv = dev->dev_private;
2543         struct ilk_wm_maximums max;
2544         struct ilk_pipe_wm_parameters params = {};
2545         struct ilk_wm_values results = {};
2546         enum intel_ddb_partitioning partitioning;
2547         struct intel_pipe_wm pipe_wm = {};
2548         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2549         struct intel_wm_config config = {};
2550
2551         ilk_compute_wm_parameters(crtc, &params, &config);
2552
2553         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2554
2555         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2556                 return;
2557
2558         intel_crtc->wm.active = pipe_wm;
2559
2560         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2561         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2562
2563         /* 5/6 split only in single pipe config on IVB+ */
2564         if (INTEL_INFO(dev)->gen >= 7 &&
2565             config.num_pipes_active == 1 && config.sprites_enabled) {
2566                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2567                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2568
2569                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2570         } else {
2571                 best_lp_wm = &lp_wm_1_2;
2572         }
2573
2574         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2575                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2576
2577         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2578
2579         ilk_write_wm_values(dev_priv, &results);
2580 }
2581
2582 static void ilk_update_sprite_wm(struct drm_plane *plane,
2583                                      struct drm_crtc *crtc,
2584                                      uint32_t sprite_width, int pixel_size,
2585                                      bool enabled, bool scaled)
2586 {
2587         struct drm_device *dev = plane->dev;
2588         struct intel_plane *intel_plane = to_intel_plane(plane);
2589
2590         intel_plane->wm.enabled = enabled;
2591         intel_plane->wm.scaled = scaled;
2592         intel_plane->wm.horiz_pixels = sprite_width;
2593         intel_plane->wm.bytes_per_pixel = pixel_size;
2594
2595         /*
2596          * IVB workaround: must disable low power watermarks for at least
2597          * one frame before enabling scaling.  LP watermarks can be re-enabled
2598          * when scaling is disabled.
2599          *
2600          * WaCxSRDisabledForSpriteScaling:ivb
2601          */
2602         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2603                 intel_wait_for_vblank(dev, intel_plane->pipe);
2604
2605         ilk_update_wm(crtc);
2606 }
2607
2608 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2609 {
2610         struct drm_device *dev = crtc->dev;
2611         struct drm_i915_private *dev_priv = dev->dev_private;
2612         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2613         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2614         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2615         enum pipe pipe = intel_crtc->pipe;
2616         static const unsigned int wm0_pipe_reg[] = {
2617                 [PIPE_A] = WM0_PIPEA_ILK,
2618                 [PIPE_B] = WM0_PIPEB_ILK,
2619                 [PIPE_C] = WM0_PIPEC_IVB,
2620         };
2621
2622         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2623         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2624                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2625
2626         if (intel_crtc_active(crtc)) {
2627                 u32 tmp = hw->wm_pipe[pipe];
2628
2629                 /*
2630                  * For active pipes LP0 watermark is marked as
2631                  * enabled, and LP1+ watermaks as disabled since
2632                  * we can't really reverse compute them in case
2633                  * multiple pipes are active.
2634                  */
2635                 active->wm[0].enable = true;
2636                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2637                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2638                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2639                 active->linetime = hw->wm_linetime[pipe];
2640         } else {
2641                 int level, max_level = ilk_wm_max_level(dev);
2642
2643                 /*
2644                  * For inactive pipes, all watermark levels
2645                  * should be marked as enabled but zeroed,
2646                  * which is what we'd compute them to.
2647                  */
2648                 for (level = 0; level <= max_level; level++)
2649                         active->wm[level].enable = true;
2650         }
2651 }
2652
2653 void ilk_wm_get_hw_state(struct drm_device *dev)
2654 {
2655         struct drm_i915_private *dev_priv = dev->dev_private;
2656         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2657         struct drm_crtc *crtc;
2658
2659         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2660                 ilk_pipe_wm_get_hw_state(crtc);
2661
2662         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2663         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2664         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2665
2666         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2667         hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2668         hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2669
2670         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2671                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2672                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2673         else if (IS_IVYBRIDGE(dev))
2674                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2675                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2676
2677         hw->enable_fbc_wm =
2678                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2679 }
2680
2681 /**
2682  * intel_update_watermarks - update FIFO watermark values based on current modes
2683  *
2684  * Calculate watermark values for the various WM regs based on current mode
2685  * and plane configuration.
2686  *
2687  * There are several cases to deal with here:
2688  *   - normal (i.e. non-self-refresh)
2689  *   - self-refresh (SR) mode
2690  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2691  *   - lines are small relative to FIFO size (buffer can hold more than 2
2692  *     lines), so need to account for TLB latency
2693  *
2694  *   The normal calculation is:
2695  *     watermark = dotclock * bytes per pixel * latency
2696  *   where latency is platform & configuration dependent (we assume pessimal
2697  *   values here).
2698  *
2699  *   The SR calculation is:
2700  *     watermark = (trunc(latency/line time)+1) * surface width *
2701  *       bytes per pixel
2702  *   where
2703  *     line time = htotal / dotclock
2704  *     surface width = hdisplay for normal plane and 64 for cursor
2705  *   and latency is assumed to be high, as above.
2706  *
2707  * The final value programmed to the register should always be rounded up,
2708  * and include an extra 2 entries to account for clock crossings.
2709  *
2710  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2711  * to set the non-SR watermarks to 8.
2712  */
2713 void intel_update_watermarks(struct drm_crtc *crtc)
2714 {
2715         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2716
2717         if (dev_priv->display.update_wm)
2718                 dev_priv->display.update_wm(crtc);
2719 }
2720
2721 void intel_update_sprite_watermarks(struct drm_plane *plane,
2722                                     struct drm_crtc *crtc,
2723                                     uint32_t sprite_width, int pixel_size,
2724                                     bool enabled, bool scaled)
2725 {
2726         struct drm_i915_private *dev_priv = plane->dev->dev_private;
2727
2728         if (dev_priv->display.update_sprite_wm)
2729                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2730                                                    pixel_size, enabled, scaled);
2731 }
2732
2733 static struct drm_i915_gem_object *
2734 intel_alloc_context_page(struct drm_device *dev)
2735 {
2736         struct drm_i915_gem_object *ctx;
2737         int ret;
2738
2739         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2740
2741         ctx = i915_gem_alloc_object(dev, 4096);
2742         if (!ctx) {
2743                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2744                 return NULL;
2745         }
2746
2747         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2748         if (ret) {
2749                 DRM_ERROR("failed to pin power context: %d\n", ret);
2750                 goto err_unref;
2751         }
2752
2753         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2754         if (ret) {
2755                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2756                 goto err_unpin;
2757         }
2758
2759         return ctx;
2760
2761 err_unpin:
2762         i915_gem_object_ggtt_unpin(ctx);
2763 err_unref:
2764         drm_gem_object_unreference(&ctx->base);
2765         return NULL;
2766 }
2767
2768 /**
2769  * Lock protecting IPS related data structures
2770  */
2771 DEFINE_SPINLOCK(mchdev_lock);
2772
2773 /* Global for IPS driver to get at the current i915 device. Protected by
2774  * mchdev_lock. */
2775 static struct drm_i915_private *i915_mch_dev;
2776
2777 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2778 {
2779         struct drm_i915_private *dev_priv = dev->dev_private;
2780         u16 rgvswctl;
2781
2782         assert_spin_locked(&mchdev_lock);
2783
2784         rgvswctl = I915_READ16(MEMSWCTL);
2785         if (rgvswctl & MEMCTL_CMD_STS) {
2786                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2787                 return false; /* still busy with another command */
2788         }
2789
2790         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2791                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2792         I915_WRITE16(MEMSWCTL, rgvswctl);
2793         POSTING_READ16(MEMSWCTL);
2794
2795         rgvswctl |= MEMCTL_CMD_STS;
2796         I915_WRITE16(MEMSWCTL, rgvswctl);
2797
2798         return true;
2799 }
2800
2801 static void ironlake_enable_drps(struct drm_device *dev)
2802 {
2803         struct drm_i915_private *dev_priv = dev->dev_private;
2804         u32 rgvmodectl = I915_READ(MEMMODECTL);
2805         u8 fmax, fmin, fstart, vstart;
2806
2807         spin_lock_irq(&mchdev_lock);
2808
2809         /* Enable temp reporting */
2810         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2811         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2812
2813         /* 100ms RC evaluation intervals */
2814         I915_WRITE(RCUPEI, 100000);
2815         I915_WRITE(RCDNEI, 100000);
2816
2817         /* Set max/min thresholds to 90ms and 80ms respectively */
2818         I915_WRITE(RCBMAXAVG, 90000);
2819         I915_WRITE(RCBMINAVG, 80000);
2820
2821         I915_WRITE(MEMIHYST, 1);
2822
2823         /* Set up min, max, and cur for interrupt handling */
2824         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2825         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2826         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2827                 MEMMODE_FSTART_SHIFT;
2828
2829         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2830                 PXVFREQ_PX_SHIFT;
2831
2832         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2833         dev_priv->ips.fstart = fstart;
2834
2835         dev_priv->ips.max_delay = fstart;
2836         dev_priv->ips.min_delay = fmin;
2837         dev_priv->ips.cur_delay = fstart;
2838
2839         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2840                          fmax, fmin, fstart);
2841
2842         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2843
2844         /*
2845          * Interrupts will be enabled in ironlake_irq_postinstall
2846          */
2847
2848         I915_WRITE(VIDSTART, vstart);
2849         POSTING_READ(VIDSTART);
2850
2851         rgvmodectl |= MEMMODE_SWMODE_EN;
2852         I915_WRITE(MEMMODECTL, rgvmodectl);
2853
2854         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2855                 DRM_ERROR("stuck trying to change perf mode\n");
2856         mdelay(1);
2857
2858         ironlake_set_drps(dev, fstart);
2859
2860         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2861                 I915_READ(0x112e0);
2862         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2863         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2864         getrawmonotonic(&dev_priv->ips.last_time2);
2865
2866         spin_unlock_irq(&mchdev_lock);
2867 }
2868
2869 static void ironlake_disable_drps(struct drm_device *dev)
2870 {
2871         struct drm_i915_private *dev_priv = dev->dev_private;
2872         u16 rgvswctl;
2873
2874         spin_lock_irq(&mchdev_lock);
2875
2876         rgvswctl = I915_READ16(MEMSWCTL);
2877
2878         /* Ack interrupts, disable EFC interrupt */
2879         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2880         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2881         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2882         I915_WRITE(DEIIR, DE_PCU_EVENT);
2883         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2884
2885         /* Go back to the starting frequency */
2886         ironlake_set_drps(dev, dev_priv->ips.fstart);
2887         mdelay(1);
2888         rgvswctl |= MEMCTL_CMD_STS;
2889         I915_WRITE(MEMSWCTL, rgvswctl);
2890         mdelay(1);
2891
2892         spin_unlock_irq(&mchdev_lock);
2893 }
2894
2895 /* There's a funny hw issue where the hw returns all 0 when reading from
2896  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2897  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2898  * all limits and the gpu stuck at whatever frequency it is at atm).
2899  */
2900 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
2901 {
2902         u32 limits;
2903
2904         /* Only set the down limit when we've reached the lowest level to avoid
2905          * getting more interrupts, otherwise leave this clear. This prevents a
2906          * race in the hw when coming out of rc6: There's a tiny window where
2907          * the hw runs at the minimal clock before selecting the desired
2908          * frequency, if the down threshold expires in that window we will not
2909          * receive a down interrupt. */
2910         limits = dev_priv->rps.max_freq_softlimit << 24;
2911         if (val <= dev_priv->rps.min_freq_softlimit)
2912                 limits |= dev_priv->rps.min_freq_softlimit << 16;
2913
2914         return limits;
2915 }
2916
2917 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
2918 {
2919         int new_power;
2920
2921         new_power = dev_priv->rps.power;
2922         switch (dev_priv->rps.power) {
2923         case LOW_POWER:
2924                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
2925                         new_power = BETWEEN;
2926                 break;
2927
2928         case BETWEEN:
2929                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
2930                         new_power = LOW_POWER;
2931                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
2932                         new_power = HIGH_POWER;
2933                 break;
2934
2935         case HIGH_POWER:
2936                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
2937                         new_power = BETWEEN;
2938                 break;
2939         }
2940         /* Max/min bins are special */
2941         if (val == dev_priv->rps.min_freq_softlimit)
2942                 new_power = LOW_POWER;
2943         if (val == dev_priv->rps.max_freq_softlimit)
2944                 new_power = HIGH_POWER;
2945         if (new_power == dev_priv->rps.power)
2946                 return;
2947
2948         /* Note the units here are not exactly 1us, but 1280ns. */
2949         switch (new_power) {
2950         case LOW_POWER:
2951                 /* Upclock if more than 95% busy over 16ms */
2952                 I915_WRITE(GEN6_RP_UP_EI, 12500);
2953                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
2954
2955                 /* Downclock if less than 85% busy over 32ms */
2956                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2957                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
2958
2959                 I915_WRITE(GEN6_RP_CONTROL,
2960                            GEN6_RP_MEDIA_TURBO |
2961                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
2962                            GEN6_RP_MEDIA_IS_GFX |
2963                            GEN6_RP_ENABLE |
2964                            GEN6_RP_UP_BUSY_AVG |
2965                            GEN6_RP_DOWN_IDLE_AVG);
2966                 break;
2967
2968         case BETWEEN:
2969                 /* Upclock if more than 90% busy over 13ms */
2970                 I915_WRITE(GEN6_RP_UP_EI, 10250);
2971                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
2972
2973                 /* Downclock if less than 75% busy over 32ms */
2974                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2975                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
2976
2977                 I915_WRITE(GEN6_RP_CONTROL,
2978                            GEN6_RP_MEDIA_TURBO |
2979                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
2980                            GEN6_RP_MEDIA_IS_GFX |
2981                            GEN6_RP_ENABLE |
2982                            GEN6_RP_UP_BUSY_AVG |
2983                            GEN6_RP_DOWN_IDLE_AVG);
2984                 break;
2985
2986         case HIGH_POWER:
2987                 /* Upclock if more than 85% busy over 10ms */
2988                 I915_WRITE(GEN6_RP_UP_EI, 8000);
2989                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
2990
2991                 /* Downclock if less than 60% busy over 32ms */
2992                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2993                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
2994
2995                 I915_WRITE(GEN6_RP_CONTROL,
2996                            GEN6_RP_MEDIA_TURBO |
2997                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
2998                            GEN6_RP_MEDIA_IS_GFX |
2999                            GEN6_RP_ENABLE |
3000                            GEN6_RP_UP_BUSY_AVG |
3001                            GEN6_RP_DOWN_IDLE_AVG);
3002                 break;
3003         }
3004
3005         dev_priv->rps.power = new_power;
3006         dev_priv->rps.last_adj = 0;
3007 }
3008
3009 /* gen6_set_rps is called to update the frequency request, but should also be
3010  * called when the range (min_delay and max_delay) is modified so that we can
3011  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3012 void gen6_set_rps(struct drm_device *dev, u8 val)
3013 {
3014         struct drm_i915_private *dev_priv = dev->dev_private;
3015
3016         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3017         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3018         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3019
3020         if (val == dev_priv->rps.cur_freq) {
3021                 /* min/max delay may still have been modified so be sure to
3022                  * write the limits value */
3023                 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3024                            gen6_rps_limits(dev_priv, val));
3025
3026                 return;
3027         }
3028
3029         gen6_set_rps_thresholds(dev_priv, val);
3030
3031         if (IS_HASWELL(dev))
3032                 I915_WRITE(GEN6_RPNSWREQ,
3033                            HSW_FREQUENCY(val));
3034         else
3035                 I915_WRITE(GEN6_RPNSWREQ,
3036                            GEN6_FREQUENCY(val) |
3037                            GEN6_OFFSET(0) |
3038                            GEN6_AGGRESSIVE_TURBO);
3039
3040         /* Make sure we continue to get interrupts
3041          * until we hit the minimum or maximum frequencies.
3042          */
3043         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3044                    gen6_rps_limits(dev_priv, val));
3045
3046         POSTING_READ(GEN6_RPNSWREQ);
3047
3048         dev_priv->rps.cur_freq = val;
3049
3050         trace_intel_gpu_freq_change(val * 50);
3051 }
3052
3053 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3054  *
3055  * * If Gfx is Idle, then
3056  * 1. Mask Turbo interrupts
3057  * 2. Bring up Gfx clock
3058  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3059  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3060  * 5. Unmask Turbo interrupts
3061 */
3062 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3063 {
3064         /*
3065          * When we are idle.  Drop to min voltage state.
3066          */
3067
3068         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3069                 return;
3070
3071         /* Mask turbo interrupt so that they will not come in between */
3072         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3073
3074         /* Bring up the Gfx clock */
3075         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3076                 I915_READ(VLV_GTLC_SURVIVABILITY_REG) |
3077                                 VLV_GFX_CLK_FORCE_ON_BIT);
3078
3079         if (wait_for(((VLV_GFX_CLK_STATUS_BIT &
3080                 I915_READ(VLV_GTLC_SURVIVABILITY_REG)) != 0), 5)) {
3081                         DRM_ERROR("GFX_CLK_ON request timed out\n");
3082                 return;
3083         }
3084
3085         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3086
3087         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3088                                         dev_priv->rps.min_freq_softlimit);
3089
3090         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3091                                 & GENFREQSTATUS) == 0, 5))
3092                 DRM_ERROR("timed out waiting for Punit\n");
3093
3094         /* Release the Gfx clock */
3095         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG,
3096                 I915_READ(VLV_GTLC_SURVIVABILITY_REG) &
3097                                 ~VLV_GFX_CLK_FORCE_ON_BIT);
3098
3099         /* Unmask Up interrupts */
3100         dev_priv->rps.rp_up_masked = true;
3101         gen6_set_pm_mask(dev_priv, GEN6_PM_RP_DOWN_THRESHOLD,
3102                                                 dev_priv->rps.min_freq_softlimit);
3103 }
3104
3105 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3106 {
3107         struct drm_device *dev = dev_priv->dev;
3108
3109         mutex_lock(&dev_priv->rps.hw_lock);
3110         if (dev_priv->rps.enabled) {
3111                 if (IS_VALLEYVIEW(dev))
3112                         vlv_set_rps_idle(dev_priv);
3113                 else
3114                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3115                 dev_priv->rps.last_adj = 0;
3116         }
3117         mutex_unlock(&dev_priv->rps.hw_lock);
3118 }
3119
3120 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3121 {
3122         struct drm_device *dev = dev_priv->dev;
3123
3124         mutex_lock(&dev_priv->rps.hw_lock);
3125         if (dev_priv->rps.enabled) {
3126                 if (IS_VALLEYVIEW(dev))
3127                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3128                 else
3129                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3130                 dev_priv->rps.last_adj = 0;
3131         }
3132         mutex_unlock(&dev_priv->rps.hw_lock);
3133 }
3134
3135 void valleyview_set_rps(struct drm_device *dev, u8 val)
3136 {
3137         struct drm_i915_private *dev_priv = dev->dev_private;
3138
3139         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3140         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3141         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3142
3143         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3144                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3145                          dev_priv->rps.cur_freq,
3146                          vlv_gpu_freq(dev_priv, val), val);
3147
3148         if (val == dev_priv->rps.cur_freq)
3149                 return;
3150
3151         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3152
3153         dev_priv->rps.cur_freq = val;
3154
3155         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3156 }
3157
3158 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3159 {
3160         struct drm_i915_private *dev_priv = dev->dev_private;
3161
3162         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3163         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3164                                 ~dev_priv->pm_rps_events);
3165         /* Complete PM interrupt masking here doesn't race with the rps work
3166          * item again unmasking PM interrupts because that is using a different
3167          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3168          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3169
3170         spin_lock_irq(&dev_priv->irq_lock);
3171         dev_priv->rps.pm_iir = 0;
3172         spin_unlock_irq(&dev_priv->irq_lock);
3173
3174         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3175 }
3176
3177 static void gen6_disable_rps(struct drm_device *dev)
3178 {
3179         struct drm_i915_private *dev_priv = dev->dev_private;
3180
3181         I915_WRITE(GEN6_RC_CONTROL, 0);
3182         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3183
3184         gen6_disable_rps_interrupts(dev);
3185 }
3186
3187 static void valleyview_disable_rps(struct drm_device *dev)
3188 {
3189         struct drm_i915_private *dev_priv = dev->dev_private;
3190
3191         I915_WRITE(GEN6_RC_CONTROL, 0);
3192
3193         gen6_disable_rps_interrupts(dev);
3194
3195         if (dev_priv->vlv_pctx) {
3196                 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3197                 dev_priv->vlv_pctx = NULL;
3198         }
3199 }
3200
3201 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3202 {
3203         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3204                  (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3205                  (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3206                  (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3207 }
3208
3209 int intel_enable_rc6(const struct drm_device *dev)
3210 {
3211         /* No RC6 before Ironlake */
3212         if (INTEL_INFO(dev)->gen < 5)
3213                 return 0;
3214
3215         /* Respect the kernel parameter if it is set */
3216         if (i915.enable_rc6 >= 0)
3217                 return i915.enable_rc6;
3218
3219         /* Disable RC6 on Ironlake */
3220         if (INTEL_INFO(dev)->gen == 5)
3221                 return 0;
3222
3223         if (IS_IVYBRIDGE(dev))
3224                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3225
3226         return INTEL_RC6_ENABLE;
3227 }
3228
3229 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3230 {
3231         struct drm_i915_private *dev_priv = dev->dev_private;
3232         u32 enabled_intrs;
3233
3234         spin_lock_irq(&dev_priv->irq_lock);
3235         WARN_ON(dev_priv->rps.pm_iir);
3236         snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3237         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3238         spin_unlock_irq(&dev_priv->irq_lock);
3239
3240         /* only unmask PM interrupts we need. Mask all others. */
3241         enabled_intrs = dev_priv->pm_rps_events;
3242
3243         /* IVB and SNB hard hangs on looping batchbuffer
3244          * if GEN6_PM_UP_EI_EXPIRED is masked.
3245          */
3246         if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3247                 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3248
3249         I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3250 }
3251
3252 static void gen8_enable_rps(struct drm_device *dev)
3253 {
3254         struct drm_i915_private *dev_priv = dev->dev_private;
3255         struct intel_ring_buffer *ring;
3256         uint32_t rc6_mask = 0, rp_state_cap;
3257         int unused;
3258
3259         /* 1a: Software RC state - RC0 */
3260         I915_WRITE(GEN6_RC_STATE, 0);
3261
3262         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3263          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3264         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3265
3266         /* 2a: Disable RC states. */
3267         I915_WRITE(GEN6_RC_CONTROL, 0);
3268
3269         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3270
3271         /* 2b: Program RC6 thresholds.*/
3272         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3273         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3274         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3275         for_each_ring(ring, dev_priv, unused)
3276                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3277         I915_WRITE(GEN6_RC_SLEEP, 0);
3278         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3279
3280         /* 3: Enable RC6 */
3281         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3282                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3283         intel_print_rc6_info(dev, rc6_mask);
3284         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3285                                     GEN6_RC_CTL_EI_MODE(1) |
3286                                     rc6_mask);
3287
3288         /* 4 Program defaults and thresholds for RPS*/
3289         I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
3290         I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
3291         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3292         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3293
3294         /* Docs recommend 900MHz, and 300 MHz respectively */
3295         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3296                    dev_priv->rps.max_freq_softlimit << 24 |
3297                    dev_priv->rps.min_freq_softlimit << 16);
3298
3299         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3300         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3301         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3302         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3303
3304         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3305
3306         /* 5: Enable RPS */
3307         I915_WRITE(GEN6_RP_CONTROL,
3308                    GEN6_RP_MEDIA_TURBO |
3309                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3310                    GEN6_RP_MEDIA_IS_GFX |
3311                    GEN6_RP_ENABLE |
3312                    GEN6_RP_UP_BUSY_AVG |
3313                    GEN6_RP_DOWN_IDLE_AVG);
3314
3315         /* 6: Ring frequency + overclocking (our driver does this later */
3316
3317         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3318
3319         gen6_enable_rps_interrupts(dev);
3320
3321         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3322 }
3323
3324 static void gen6_enable_rps(struct drm_device *dev)
3325 {
3326         struct drm_i915_private *dev_priv = dev->dev_private;
3327         struct intel_ring_buffer *ring;
3328         u32 rp_state_cap;
3329         u32 gt_perf_status;
3330         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3331         u32 gtfifodbg;
3332         int rc6_mode;
3333         int i, ret;
3334
3335         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3336
3337         /* Here begins a magic sequence of register writes to enable
3338          * auto-downclocking.
3339          *
3340          * Perhaps there might be some value in exposing these to
3341          * userspace...
3342          */
3343         I915_WRITE(GEN6_RC_STATE, 0);
3344
3345         /* Clear the DBG now so we don't confuse earlier errors */
3346         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3347                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3348                 I915_WRITE(GTFIFODBG, gtfifodbg);
3349         }
3350
3351         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3352
3353         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3354         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3355
3356         /* All of these values are in units of 50MHz */
3357         dev_priv->rps.cur_freq          = 0;
3358         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3359         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3360         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3361         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3362         /* XXX: only BYT has a special efficient freq */
3363         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3364         /* hw_max = RP0 until we check for overclocking */
3365         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3366
3367         /* Preserve min/max settings in case of re-init */
3368         if (dev_priv->rps.max_freq_softlimit == 0)
3369                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3370
3371         if (dev_priv->rps.min_freq_softlimit == 0)
3372                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3373
3374         /* disable the counters and set deterministic thresholds */
3375         I915_WRITE(GEN6_RC_CONTROL, 0);
3376
3377         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3378         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3379         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3380         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3381         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3382
3383         for_each_ring(ring, dev_priv, i)
3384                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3385
3386         I915_WRITE(GEN6_RC_SLEEP, 0);
3387         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3388         if (IS_IVYBRIDGE(dev))
3389                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3390         else
3391                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3392         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3393         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3394
3395         /* Check if we are enabling RC6 */
3396         rc6_mode = intel_enable_rc6(dev_priv->dev);
3397         if (rc6_mode & INTEL_RC6_ENABLE)
3398                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3399
3400         /* We don't use those on Haswell */
3401         if (!IS_HASWELL(dev)) {
3402                 if (rc6_mode & INTEL_RC6p_ENABLE)
3403                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3404
3405                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3406                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3407         }
3408
3409         intel_print_rc6_info(dev, rc6_mask);
3410
3411         I915_WRITE(GEN6_RC_CONTROL,
3412                    rc6_mask |
3413                    GEN6_RC_CTL_EI_MODE(1) |
3414                    GEN6_RC_CTL_HW_ENABLE);
3415
3416         /* Power down if completely idle for over 50ms */
3417         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3418         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3419
3420         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3421         if (ret)
3422                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3423
3424         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3425         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3426                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3427                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3428                                  (pcu_mbox & 0xff) * 50);
3429                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3430         }
3431
3432         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3433         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3434
3435         gen6_enable_rps_interrupts(dev);
3436
3437         rc6vids = 0;
3438         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3439         if (IS_GEN6(dev) && ret) {
3440                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3441         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3442                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3443                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3444                 rc6vids &= 0xffff00;
3445                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3446                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3447                 if (ret)
3448                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3449         }
3450
3451         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3452 }
3453
3454 void gen6_update_ring_freq(struct drm_device *dev)
3455 {
3456         struct drm_i915_private *dev_priv = dev->dev_private;
3457         int min_freq = 15;
3458         unsigned int gpu_freq;
3459         unsigned int max_ia_freq, min_ring_freq;
3460         int scaling_factor = 180;
3461         struct cpufreq_policy *policy;
3462
3463         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3464
3465         policy = cpufreq_cpu_get(0);
3466         if (policy) {
3467                 max_ia_freq = policy->cpuinfo.max_freq;
3468                 cpufreq_cpu_put(policy);
3469         } else {
3470                 /*
3471                  * Default to measured freq if none found, PCU will ensure we
3472                  * don't go over
3473                  */
3474                 max_ia_freq = tsc_khz;
3475         }
3476
3477         /* Convert from kHz to MHz */
3478         max_ia_freq /= 1000;
3479
3480         min_ring_freq = I915_READ(DCLK) & 0xf;
3481         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3482         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3483
3484         /*
3485          * For each potential GPU frequency, load a ring frequency we'd like
3486          * to use for memory access.  We do this by specifying the IA frequency
3487          * the PCU should use as a reference to determine the ring frequency.
3488          */
3489         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3490              gpu_freq--) {
3491                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3492                 unsigned int ia_freq = 0, ring_freq = 0;
3493
3494                 if (INTEL_INFO(dev)->gen >= 8) {
3495                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3496                         ring_freq = max(min_ring_freq, gpu_freq);
3497                 } else if (IS_HASWELL(dev)) {
3498                         ring_freq = mult_frac(gpu_freq, 5, 4);
3499                         ring_freq = max(min_ring_freq, ring_freq);
3500                         /* leave ia_freq as the default, chosen by cpufreq */
3501                 } else {
3502                         /* On older processors, there is no separate ring
3503                          * clock domain, so in order to boost the bandwidth
3504                          * of the ring, we need to upclock the CPU (ia_freq).
3505                          *
3506                          * For GPU frequencies less than 750MHz,
3507                          * just use the lowest ring freq.
3508                          */
3509                         if (gpu_freq < min_freq)
3510                                 ia_freq = 800;
3511                         else
3512                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3513                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3514                 }
3515
3516                 sandybridge_pcode_write(dev_priv,
3517                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3518                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3519                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3520                                         gpu_freq);
3521         }
3522 }
3523
3524 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3525 {
3526         u32 val, rp0;
3527
3528         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3529
3530         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3531         /* Clamp to max */
3532         rp0 = min_t(u32, rp0, 0xea);
3533
3534         return rp0;
3535 }
3536
3537 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3538 {
3539         u32 val, rpe;
3540
3541         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3542         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3543         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3544         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3545
3546         return rpe;
3547 }
3548
3549 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3550 {
3551         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3552 }
3553
3554 static void valleyview_setup_pctx(struct drm_device *dev)
3555 {
3556         struct drm_i915_private *dev_priv = dev->dev_private;
3557         struct drm_i915_gem_object *pctx;
3558         unsigned long pctx_paddr;
3559         u32 pcbr;
3560         int pctx_size = 24*1024;
3561
3562         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3563
3564         pcbr = I915_READ(VLV_PCBR);
3565         if (pcbr) {
3566                 /* BIOS set it up already, grab the pre-alloc'd space */
3567                 int pcbr_offset;
3568
3569                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3570                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3571                                                                       pcbr_offset,
3572                                                                       I915_GTT_OFFSET_NONE,
3573                                                                       pctx_size);
3574                 goto out;
3575         }
3576
3577         /*
3578          * From the Gunit register HAS:
3579          * The Gfx driver is expected to program this register and ensure
3580          * proper allocation within Gfx stolen memory.  For example, this
3581          * register should be programmed such than the PCBR range does not
3582          * overlap with other ranges, such as the frame buffer, protected
3583          * memory, or any other relevant ranges.
3584          */
3585         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3586         if (!pctx) {
3587                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3588                 return;
3589         }
3590
3591         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3592         I915_WRITE(VLV_PCBR, pctx_paddr);
3593
3594 out:
3595         dev_priv->vlv_pctx = pctx;
3596 }
3597
3598 static void valleyview_enable_rps(struct drm_device *dev)
3599 {
3600         struct drm_i915_private *dev_priv = dev->dev_private;
3601         struct intel_ring_buffer *ring;
3602         u32 gtfifodbg, val, rc6_mode = 0;
3603         int i;
3604
3605         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3606
3607         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3608                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3609                                  gtfifodbg);
3610                 I915_WRITE(GTFIFODBG, gtfifodbg);
3611         }
3612
3613         /* If VLV, Forcewake all wells, else re-direct to regular path */
3614         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3615
3616         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3617         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3618         I915_WRITE(GEN6_RP_UP_EI, 66000);
3619         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3620
3621         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3622
3623         I915_WRITE(GEN6_RP_CONTROL,
3624                    GEN6_RP_MEDIA_TURBO |
3625                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3626                    GEN6_RP_MEDIA_IS_GFX |
3627                    GEN6_RP_ENABLE |
3628                    GEN6_RP_UP_BUSY_AVG |
3629                    GEN6_RP_DOWN_IDLE_CONT);
3630
3631         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3632         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3633         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3634
3635         for_each_ring(ring, dev_priv, i)
3636                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3637
3638         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
3639
3640         /* allows RC6 residency counter to work */
3641         I915_WRITE(VLV_COUNTER_CONTROL,
3642                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3643                                       VLV_MEDIA_RC6_COUNT_EN |
3644                                       VLV_RENDER_RC6_COUNT_EN));
3645         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3646                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
3647
3648         intel_print_rc6_info(dev, rc6_mode);
3649
3650         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3651
3652         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3653
3654         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3655         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3656
3657         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
3658         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3659                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3660                          dev_priv->rps.cur_freq);
3661
3662         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3663         dev_priv->rps.rp0_freq  = dev_priv->rps.max_freq;
3664         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3665                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3666                          dev_priv->rps.max_freq);
3667
3668         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3669         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3670                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3671                          dev_priv->rps.efficient_freq);
3672
3673         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3674         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3675                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3676                          dev_priv->rps.min_freq);
3677
3678         /* Preserve min/max settings in case of re-init */
3679         if (dev_priv->rps.max_freq_softlimit == 0)
3680                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3681
3682         if (dev_priv->rps.min_freq_softlimit == 0)
3683                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3684
3685         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3686                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3687                          dev_priv->rps.efficient_freq);
3688
3689         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
3690
3691         dev_priv->rps.rp_up_masked = false;
3692         dev_priv->rps.rp_down_masked = false;
3693
3694         gen6_enable_rps_interrupts(dev);
3695
3696         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3697 }
3698
3699 void ironlake_teardown_rc6(struct drm_device *dev)
3700 {
3701         struct drm_i915_private *dev_priv = dev->dev_private;
3702
3703         if (dev_priv->ips.renderctx) {
3704                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
3705                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3706                 dev_priv->ips.renderctx = NULL;
3707         }
3708
3709         if (dev_priv->ips.pwrctx) {
3710                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
3711                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3712                 dev_priv->ips.pwrctx = NULL;
3713         }
3714 }
3715
3716 static void ironlake_disable_rc6(struct drm_device *dev)
3717 {
3718         struct drm_i915_private *dev_priv = dev->dev_private;
3719
3720         if (I915_READ(PWRCTXA)) {
3721                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3722                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3723                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3724                          50);
3725
3726                 I915_WRITE(PWRCTXA, 0);
3727                 POSTING_READ(PWRCTXA);
3728
3729                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3730                 POSTING_READ(RSTDBYCTL);
3731         }
3732 }
3733
3734 static int ironlake_setup_rc6(struct drm_device *dev)
3735 {
3736         struct drm_i915_private *dev_priv = dev->dev_private;
3737
3738         if (dev_priv->ips.renderctx == NULL)
3739                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3740         if (!dev_priv->ips.renderctx)
3741                 return -ENOMEM;
3742
3743         if (dev_priv->ips.pwrctx == NULL)
3744                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3745         if (!dev_priv->ips.pwrctx) {
3746                 ironlake_teardown_rc6(dev);
3747                 return -ENOMEM;
3748         }
3749
3750         return 0;
3751 }
3752
3753 static void ironlake_enable_rc6(struct drm_device *dev)
3754 {
3755         struct drm_i915_private *dev_priv = dev->dev_private;
3756         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3757         bool was_interruptible;
3758         int ret;
3759
3760         /* rc6 disabled by default due to repeated reports of hanging during
3761          * boot and resume.
3762          */
3763         if (!intel_enable_rc6(dev))
3764                 return;
3765
3766         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3767
3768         ret = ironlake_setup_rc6(dev);
3769         if (ret)
3770                 return;
3771
3772         was_interruptible = dev_priv->mm.interruptible;
3773         dev_priv->mm.interruptible = false;
3774
3775         /*
3776          * GPU can automatically power down the render unit if given a page
3777          * to save state.
3778          */
3779         ret = intel_ring_begin(ring, 6);
3780         if (ret) {
3781                 ironlake_teardown_rc6(dev);
3782                 dev_priv->mm.interruptible = was_interruptible;
3783                 return;
3784         }
3785
3786         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3787         intel_ring_emit(ring, MI_SET_CONTEXT);
3788         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3789                         MI_MM_SPACE_GTT |
3790                         MI_SAVE_EXT_STATE_EN |
3791                         MI_RESTORE_EXT_STATE_EN |
3792                         MI_RESTORE_INHIBIT);
3793         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3794         intel_ring_emit(ring, MI_NOOP);
3795         intel_ring_emit(ring, MI_FLUSH);
3796         intel_ring_advance(ring);
3797
3798         /*
3799          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3800          * does an implicit flush, combined with MI_FLUSH above, it should be
3801          * safe to assume that renderctx is valid
3802          */
3803         ret = intel_ring_idle(ring);
3804         dev_priv->mm.interruptible = was_interruptible;
3805         if (ret) {
3806                 DRM_ERROR("failed to enable ironlake power savings\n");
3807                 ironlake_teardown_rc6(dev);
3808                 return;
3809         }
3810
3811         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3812         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3813
3814         intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
3815 }
3816
3817 static unsigned long intel_pxfreq(u32 vidfreq)
3818 {
3819         unsigned long freq;
3820         int div = (vidfreq & 0x3f0000) >> 16;
3821         int post = (vidfreq & 0x3000) >> 12;
3822         int pre = (vidfreq & 0x7);
3823
3824         if (!pre)
3825                 return 0;
3826
3827         freq = ((div * 133333) / ((1<<post) * pre));
3828
3829         return freq;
3830 }
3831
3832 static const struct cparams {
3833         u16 i;
3834         u16 t;
3835         u16 m;
3836         u16 c;
3837 } cparams[] = {
3838         { 1, 1333, 301, 28664 },
3839         { 1, 1066, 294, 24460 },
3840         { 1, 800, 294, 25192 },
3841         { 0, 1333, 276, 27605 },
3842         { 0, 1066, 276, 27605 },
3843         { 0, 800, 231, 23784 },
3844 };
3845
3846 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3847 {
3848         u64 total_count, diff, ret;
3849         u32 count1, count2, count3, m = 0, c = 0;
3850         unsigned long now = jiffies_to_msecs(jiffies), diff1;
3851         int i;
3852
3853         assert_spin_locked(&mchdev_lock);
3854
3855         diff1 = now - dev_priv->ips.last_time1;
3856
3857         /* Prevent division-by-zero if we are asking too fast.
3858          * Also, we don't get interesting results if we are polling
3859          * faster than once in 10ms, so just return the saved value
3860          * in such cases.
3861          */
3862         if (diff1 <= 10)
3863                 return dev_priv->ips.chipset_power;
3864
3865         count1 = I915_READ(DMIEC);
3866         count2 = I915_READ(DDREC);
3867         count3 = I915_READ(CSIEC);
3868
3869         total_count = count1 + count2 + count3;
3870
3871         /* FIXME: handle per-counter overflow */
3872         if (total_count < dev_priv->ips.last_count1) {
3873                 diff = ~0UL - dev_priv->ips.last_count1;
3874                 diff += total_count;
3875         } else {
3876                 diff = total_count - dev_priv->ips.last_count1;
3877         }
3878
3879         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3880                 if (cparams[i].i == dev_priv->ips.c_m &&
3881                     cparams[i].t == dev_priv->ips.r_t) {
3882                         m = cparams[i].m;
3883                         c = cparams[i].c;
3884                         break;
3885                 }
3886         }
3887
3888         diff = div_u64(diff, diff1);
3889         ret = ((m * diff) + c);
3890         ret = div_u64(ret, 10);
3891
3892         dev_priv->ips.last_count1 = total_count;
3893         dev_priv->ips.last_time1 = now;
3894
3895         dev_priv->ips.chipset_power = ret;
3896
3897         return ret;
3898 }
3899
3900 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3901 {
3902         struct drm_device *dev = dev_priv->dev;
3903         unsigned long val;
3904
3905         if (INTEL_INFO(dev)->gen != 5)
3906                 return 0;
3907
3908         spin_lock_irq(&mchdev_lock);
3909
3910         val = __i915_chipset_val(dev_priv);
3911
3912         spin_unlock_irq(&mchdev_lock);
3913
3914         return val;
3915 }
3916
3917 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3918 {
3919         unsigned long m, x, b;
3920         u32 tsfs;
3921
3922         tsfs = I915_READ(TSFS);
3923
3924         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3925         x = I915_READ8(TR1);
3926
3927         b = tsfs & TSFS_INTR_MASK;
3928
3929         return ((m * x) / 127) - b;
3930 }
3931
3932 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3933 {
3934         struct drm_device *dev = dev_priv->dev;
3935         static const struct v_table {
3936                 u16 vd; /* in .1 mil */
3937                 u16 vm; /* in .1 mil */
3938         } v_table[] = {
3939                 { 0, 0, },
3940                 { 375, 0, },
3941                 { 500, 0, },
3942                 { 625, 0, },
3943                 { 750, 0, },
3944                 { 875, 0, },
3945                 { 1000, 0, },
3946                 { 1125, 0, },
3947                 { 4125, 3000, },
3948                 { 4125, 3000, },
3949                 { 4125, 3000, },
3950                 { 4125, 3000, },
3951                 { 4125, 3000, },
3952                 { 4125, 3000, },
3953                 { 4125, 3000, },
3954                 { 4125, 3000, },
3955                 { 4125, 3000, },
3956                 { 4125, 3000, },
3957                 { 4125, 3000, },
3958                 { 4125, 3000, },
3959                 { 4125, 3000, },
3960                 { 4125, 3000, },
3961                 { 4125, 3000, },
3962                 { 4125, 3000, },
3963                 { 4125, 3000, },
3964                 { 4125, 3000, },
3965                 { 4125, 3000, },
3966                 { 4125, 3000, },
3967                 { 4125, 3000, },
3968                 { 4125, 3000, },
3969                 { 4125, 3000, },
3970                 { 4125, 3000, },
3971                 { 4250, 3125, },
3972                 { 4375, 3250, },
3973                 { 4500, 3375, },
3974                 { 4625, 3500, },
3975                 { 4750, 3625, },
3976                 { 4875, 3750, },
3977                 { 5000, 3875, },
3978                 { 5125, 4000, },
3979                 { 5250, 4125, },
3980                 { 5375, 4250, },
3981                 { 5500, 4375, },
3982                 { 5625, 4500, },
3983                 { 5750, 4625, },
3984                 { 5875, 4750, },
3985                 { 6000, 4875, },
3986                 { 6125, 5000, },
3987                 { 6250, 5125, },
3988                 { 6375, 5250, },
3989                 { 6500, 5375, },
3990                 { 6625, 5500, },
3991                 { 6750, 5625, },
3992                 { 6875, 5750, },
3993                 { 7000, 5875, },
3994                 { 7125, 6000, },
3995                 { 7250, 6125, },
3996                 { 7375, 6250, },
3997                 { 7500, 6375, },
3998                 { 7625, 6500, },
3999                 { 7750, 6625, },
4000                 { 7875, 6750, },
4001                 { 8000, 6875, },
4002                 { 8125, 7000, },
4003                 { 8250, 7125, },
4004                 { 8375, 7250, },
4005                 { 8500, 7375, },
4006                 { 8625, 7500, },
4007                 { 8750, 7625, },
4008                 { 8875, 7750, },
4009                 { 9000, 7875, },
4010                 { 9125, 8000, },
4011                 { 9250, 8125, },
4012                 { 9375, 8250, },
4013                 { 9500, 8375, },
4014                 { 9625, 8500, },
4015                 { 9750, 8625, },
4016                 { 9875, 8750, },
4017                 { 10000, 8875, },
4018                 { 10125, 9000, },
4019                 { 10250, 9125, },
4020                 { 10375, 9250, },
4021                 { 10500, 9375, },
4022                 { 10625, 9500, },
4023                 { 10750, 9625, },
4024                 { 10875, 9750, },
4025                 { 11000, 9875, },
4026                 { 11125, 10000, },
4027                 { 11250, 10125, },
4028                 { 11375, 10250, },
4029                 { 11500, 10375, },
4030                 { 11625, 10500, },
4031                 { 11750, 10625, },
4032                 { 11875, 10750, },
4033                 { 12000, 10875, },
4034                 { 12125, 11000, },
4035                 { 12250, 11125, },
4036                 { 12375, 11250, },
4037                 { 12500, 11375, },
4038                 { 12625, 11500, },
4039                 { 12750, 11625, },
4040                 { 12875, 11750, },
4041                 { 13000, 11875, },
4042                 { 13125, 12000, },
4043                 { 13250, 12125, },
4044                 { 13375, 12250, },
4045                 { 13500, 12375, },
4046                 { 13625, 12500, },
4047                 { 13750, 12625, },
4048                 { 13875, 12750, },
4049                 { 14000, 12875, },
4050                 { 14125, 13000, },
4051                 { 14250, 13125, },
4052                 { 14375, 13250, },
4053                 { 14500, 13375, },
4054                 { 14625, 13500, },
4055                 { 14750, 13625, },
4056                 { 14875, 13750, },
4057                 { 15000, 13875, },
4058                 { 15125, 14000, },
4059                 { 15250, 14125, },
4060                 { 15375, 14250, },
4061                 { 15500, 14375, },
4062                 { 15625, 14500, },
4063                 { 15750, 14625, },
4064                 { 15875, 14750, },
4065                 { 16000, 14875, },
4066                 { 16125, 15000, },
4067         };
4068         if (INTEL_INFO(dev)->is_mobile)
4069                 return v_table[pxvid].vm;
4070         else
4071                 return v_table[pxvid].vd;
4072 }
4073
4074 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4075 {
4076         struct timespec now, diff1;
4077         u64 diff;
4078         unsigned long diffms;
4079         u32 count;
4080
4081         assert_spin_locked(&mchdev_lock);
4082
4083         getrawmonotonic(&now);
4084         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4085
4086         /* Don't divide by 0 */
4087         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4088         if (!diffms)
4089                 return;
4090
4091         count = I915_READ(GFXEC);
4092
4093         if (count < dev_priv->ips.last_count2) {
4094                 diff = ~0UL - dev_priv->ips.last_count2;
4095                 diff += count;
4096         } else {
4097                 diff = count - dev_priv->ips.last_count2;
4098         }
4099
4100         dev_priv->ips.last_count2 = count;
4101         dev_priv->ips.last_time2 = now;
4102
4103         /* More magic constants... */
4104         diff = diff * 1181;
4105         diff = div_u64(diff, diffms * 10);
4106         dev_priv->ips.gfx_power = diff;
4107 }
4108
4109 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4110 {
4111         struct drm_device *dev = dev_priv->dev;
4112
4113         if (INTEL_INFO(dev)->gen != 5)
4114                 return;
4115
4116         spin_lock_irq(&mchdev_lock);
4117
4118         __i915_update_gfx_val(dev_priv);
4119
4120         spin_unlock_irq(&mchdev_lock);
4121 }
4122
4123 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4124 {
4125         unsigned long t, corr, state1, corr2, state2;
4126         u32 pxvid, ext_v;
4127
4128         assert_spin_locked(&mchdev_lock);
4129
4130         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4131         pxvid = (pxvid >> 24) & 0x7f;
4132         ext_v = pvid_to_extvid(dev_priv, pxvid);
4133
4134         state1 = ext_v;
4135
4136         t = i915_mch_val(dev_priv);
4137
4138         /* Revel in the empirically derived constants */
4139
4140         /* Correction factor in 1/100000 units */
4141         if (t > 80)
4142                 corr = ((t * 2349) + 135940);
4143         else if (t >= 50)
4144                 corr = ((t * 964) + 29317);
4145         else /* < 50 */
4146                 corr = ((t * 301) + 1004);
4147
4148         corr = corr * ((150142 * state1) / 10000 - 78642);
4149         corr /= 100000;
4150         corr2 = (corr * dev_priv->ips.corr);
4151
4152         state2 = (corr2 * state1) / 10000;
4153         state2 /= 100; /* convert to mW */
4154
4155         __i915_update_gfx_val(dev_priv);
4156
4157         return dev_priv->ips.gfx_power + state2;
4158 }
4159
4160 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4161 {
4162         struct drm_device *dev = dev_priv->dev;
4163         unsigned long val;
4164
4165         if (INTEL_INFO(dev)->gen != 5)
4166                 return 0;
4167
4168         spin_lock_irq(&mchdev_lock);
4169
4170         val = __i915_gfx_val(dev_priv);
4171
4172         spin_unlock_irq(&mchdev_lock);
4173
4174         return val;
4175 }
4176
4177 /**
4178  * i915_read_mch_val - return value for IPS use
4179  *
4180  * Calculate and return a value for the IPS driver to use when deciding whether
4181  * we have thermal and power headroom to increase CPU or GPU power budget.
4182  */
4183 unsigned long i915_read_mch_val(void)
4184 {
4185         struct drm_i915_private *dev_priv;
4186         unsigned long chipset_val, graphics_val, ret = 0;
4187
4188         spin_lock_irq(&mchdev_lock);
4189         if (!i915_mch_dev)
4190                 goto out_unlock;
4191         dev_priv = i915_mch_dev;
4192
4193         chipset_val = __i915_chipset_val(dev_priv);
4194         graphics_val = __i915_gfx_val(dev_priv);
4195
4196         ret = chipset_val + graphics_val;
4197
4198 out_unlock:
4199         spin_unlock_irq(&mchdev_lock);
4200
4201         return ret;
4202 }
4203 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4204
4205 /**
4206  * i915_gpu_raise - raise GPU frequency limit
4207  *
4208  * Raise the limit; IPS indicates we have thermal headroom.
4209  */
4210 bool i915_gpu_raise(void)
4211 {
4212         struct drm_i915_private *dev_priv;
4213         bool ret = true;
4214
4215         spin_lock_irq(&mchdev_lock);
4216         if (!i915_mch_dev) {
4217                 ret = false;
4218                 goto out_unlock;
4219         }
4220         dev_priv = i915_mch_dev;
4221
4222         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4223                 dev_priv->ips.max_delay--;
4224
4225 out_unlock:
4226         spin_unlock_irq(&mchdev_lock);
4227
4228         return ret;
4229 }
4230 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4231
4232 /**
4233  * i915_gpu_lower - lower GPU frequency limit
4234  *
4235  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4236  * frequency maximum.
4237  */
4238 bool i915_gpu_lower(void)
4239 {
4240         struct drm_i915_private *dev_priv;
4241         bool ret = true;
4242
4243         spin_lock_irq(&mchdev_lock);
4244         if (!i915_mch_dev) {
4245                 ret = false;
4246                 goto out_unlock;
4247         }
4248         dev_priv = i915_mch_dev;
4249
4250         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4251                 dev_priv->ips.max_delay++;
4252
4253 out_unlock:
4254         spin_unlock_irq(&mchdev_lock);
4255
4256         return ret;
4257 }
4258 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4259
4260 /**
4261  * i915_gpu_busy - indicate GPU business to IPS
4262  *
4263  * Tell the IPS driver whether or not the GPU is busy.
4264  */
4265 bool i915_gpu_busy(void)
4266 {
4267         struct drm_i915_private *dev_priv;
4268         struct intel_ring_buffer *ring;
4269         bool ret = false;
4270         int i;
4271
4272         spin_lock_irq(&mchdev_lock);
4273         if (!i915_mch_dev)
4274                 goto out_unlock;
4275         dev_priv = i915_mch_dev;
4276
4277         for_each_ring(ring, dev_priv, i)
4278                 ret |= !list_empty(&ring->request_list);
4279
4280 out_unlock:
4281         spin_unlock_irq(&mchdev_lock);
4282
4283         return ret;
4284 }
4285 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4286
4287 /**
4288  * i915_gpu_turbo_disable - disable graphics turbo
4289  *
4290  * Disable graphics turbo by resetting the max frequency and setting the
4291  * current frequency to the default.
4292  */
4293 bool i915_gpu_turbo_disable(void)
4294 {
4295         struct drm_i915_private *dev_priv;
4296         bool ret = true;
4297
4298         spin_lock_irq(&mchdev_lock);
4299         if (!i915_mch_dev) {
4300                 ret = false;
4301                 goto out_unlock;
4302         }
4303         dev_priv = i915_mch_dev;
4304
4305         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4306
4307         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4308                 ret = false;
4309
4310 out_unlock:
4311         spin_unlock_irq(&mchdev_lock);
4312
4313         return ret;
4314 }
4315 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4316
4317 /**
4318  * Tells the intel_ips driver that the i915 driver is now loaded, if
4319  * IPS got loaded first.
4320  *
4321  * This awkward dance is so that neither module has to depend on the
4322  * other in order for IPS to do the appropriate communication of
4323  * GPU turbo limits to i915.
4324  */
4325 static void
4326 ips_ping_for_i915_load(void)
4327 {
4328         void (*link)(void);
4329
4330         link = symbol_get(ips_link_to_i915_driver);
4331         if (link) {
4332                 link();
4333                 symbol_put(ips_link_to_i915_driver);
4334         }
4335 }
4336
4337 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4338 {
4339         /* We only register the i915 ips part with intel-ips once everything is
4340          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4341         spin_lock_irq(&mchdev_lock);
4342         i915_mch_dev = dev_priv;
4343         spin_unlock_irq(&mchdev_lock);
4344
4345         ips_ping_for_i915_load();
4346 }
4347
4348 void intel_gpu_ips_teardown(void)
4349 {
4350         spin_lock_irq(&mchdev_lock);
4351         i915_mch_dev = NULL;
4352         spin_unlock_irq(&mchdev_lock);
4353 }
4354
4355 static void intel_init_emon(struct drm_device *dev)
4356 {
4357         struct drm_i915_private *dev_priv = dev->dev_private;
4358         u32 lcfuse;
4359         u8 pxw[16];
4360         int i;
4361
4362         /* Disable to program */
4363         I915_WRITE(ECR, 0);
4364         POSTING_READ(ECR);
4365
4366         /* Program energy weights for various events */
4367         I915_WRITE(SDEW, 0x15040d00);
4368         I915_WRITE(CSIEW0, 0x007f0000);
4369         I915_WRITE(CSIEW1, 0x1e220004);
4370         I915_WRITE(CSIEW2, 0x04000004);
4371
4372         for (i = 0; i < 5; i++)
4373                 I915_WRITE(PEW + (i * 4), 0);
4374         for (i = 0; i < 3; i++)
4375                 I915_WRITE(DEW + (i * 4), 0);
4376
4377         /* Program P-state weights to account for frequency power adjustment */
4378         for (i = 0; i < 16; i++) {
4379                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4380                 unsigned long freq = intel_pxfreq(pxvidfreq);
4381                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4382                         PXVFREQ_PX_SHIFT;
4383                 unsigned long val;
4384
4385                 val = vid * vid;
4386                 val *= (freq / 1000);
4387                 val *= 255;
4388                 val /= (127*127*900);
4389                 if (val > 0xff)
4390                         DRM_ERROR("bad pxval: %ld\n", val);
4391                 pxw[i] = val;
4392         }
4393         /* Render standby states get 0 weight */
4394         pxw[14] = 0;
4395         pxw[15] = 0;
4396
4397         for (i = 0; i < 4; i++) {
4398                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4399                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4400                 I915_WRITE(PXW + (i * 4), val);
4401         }
4402
4403         /* Adjust magic regs to magic values (more experimental results) */
4404         I915_WRITE(OGW0, 0);
4405         I915_WRITE(OGW1, 0);
4406         I915_WRITE(EG0, 0x00007f00);
4407         I915_WRITE(EG1, 0x0000000e);
4408         I915_WRITE(EG2, 0x000e0000);
4409         I915_WRITE(EG3, 0x68000300);
4410         I915_WRITE(EG4, 0x42000000);
4411         I915_WRITE(EG5, 0x00140031);
4412         I915_WRITE(EG6, 0);
4413         I915_WRITE(EG7, 0);
4414
4415         for (i = 0; i < 8; i++)
4416                 I915_WRITE(PXWL + (i * 4), 0);
4417
4418         /* Enable PMON + select events */
4419         I915_WRITE(ECR, 0x80000019);
4420
4421         lcfuse = I915_READ(LCFUSE02);
4422
4423         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4424 }
4425
4426 void intel_disable_gt_powersave(struct drm_device *dev)
4427 {
4428         struct drm_i915_private *dev_priv = dev->dev_private;
4429
4430         /* Interrupts should be disabled already to avoid re-arming. */
4431         WARN_ON(dev->irq_enabled);
4432
4433         if (IS_IRONLAKE_M(dev)) {
4434                 ironlake_disable_drps(dev);
4435                 ironlake_disable_rc6(dev);
4436         } else if (INTEL_INFO(dev)->gen >= 6) {
4437                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4438                 cancel_work_sync(&dev_priv->rps.work);
4439                 mutex_lock(&dev_priv->rps.hw_lock);
4440                 if (IS_VALLEYVIEW(dev))
4441                         valleyview_disable_rps(dev);
4442                 else
4443                         gen6_disable_rps(dev);
4444                 dev_priv->rps.enabled = false;
4445                 mutex_unlock(&dev_priv->rps.hw_lock);
4446         }
4447 }
4448
4449 static void intel_gen6_powersave_work(struct work_struct *work)
4450 {
4451         struct drm_i915_private *dev_priv =
4452                 container_of(work, struct drm_i915_private,
4453                              rps.delayed_resume_work.work);
4454         struct drm_device *dev = dev_priv->dev;
4455
4456         mutex_lock(&dev_priv->rps.hw_lock);
4457
4458         if (IS_VALLEYVIEW(dev)) {
4459                 valleyview_enable_rps(dev);
4460         } else if (IS_BROADWELL(dev)) {
4461                 gen8_enable_rps(dev);
4462                 gen6_update_ring_freq(dev);
4463         } else {
4464                 gen6_enable_rps(dev);
4465                 gen6_update_ring_freq(dev);
4466         }
4467         dev_priv->rps.enabled = true;
4468         mutex_unlock(&dev_priv->rps.hw_lock);
4469 }
4470
4471 void intel_enable_gt_powersave(struct drm_device *dev)
4472 {
4473         struct drm_i915_private *dev_priv = dev->dev_private;
4474
4475         if (IS_IRONLAKE_M(dev)) {
4476                 ironlake_enable_drps(dev);
4477                 ironlake_enable_rc6(dev);
4478                 intel_init_emon(dev);
4479         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4480                 if (IS_VALLEYVIEW(dev))
4481                         valleyview_setup_pctx(dev);
4482                 /*
4483                  * PCU communication is slow and this doesn't need to be
4484                  * done at any specific time, so do this out of our fast path
4485                  * to make resume and init faster.
4486                  */
4487                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4488                                       round_jiffies_up_relative(HZ));
4489         }
4490 }
4491
4492 static void ibx_init_clock_gating(struct drm_device *dev)
4493 {
4494         struct drm_i915_private *dev_priv = dev->dev_private;
4495
4496         /*
4497          * On Ibex Peak and Cougar Point, we need to disable clock
4498          * gating for the panel power sequencer or it will fail to
4499          * start up when no ports are active.
4500          */
4501         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4502 }
4503
4504 static void g4x_disable_trickle_feed(struct drm_device *dev)
4505 {
4506         struct drm_i915_private *dev_priv = dev->dev_private;
4507         int pipe;
4508
4509         for_each_pipe(pipe) {
4510                 I915_WRITE(DSPCNTR(pipe),
4511                            I915_READ(DSPCNTR(pipe)) |
4512                            DISPPLANE_TRICKLE_FEED_DISABLE);
4513                 intel_flush_primary_plane(dev_priv, pipe);
4514         }
4515 }
4516
4517 static void ilk_init_lp_watermarks(struct drm_device *dev)
4518 {
4519         struct drm_i915_private *dev_priv = dev->dev_private;
4520
4521         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4522         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4523         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4524
4525         /*
4526          * Don't touch WM1S_LP_EN here.
4527          * Doing so could cause underruns.
4528          */
4529 }
4530
4531 static void ironlake_init_clock_gating(struct drm_device *dev)
4532 {
4533         struct drm_i915_private *dev_priv = dev->dev_private;
4534         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4535
4536         /*
4537          * Required for FBC
4538          * WaFbcDisableDpfcClockGating:ilk
4539          */
4540         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4541                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4542                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4543
4544         I915_WRITE(PCH_3DCGDIS0,
4545                    MARIUNIT_CLOCK_GATE_DISABLE |
4546                    SVSMUNIT_CLOCK_GATE_DISABLE);
4547         I915_WRITE(PCH_3DCGDIS1,
4548                    VFMUNIT_CLOCK_GATE_DISABLE);
4549
4550         /*
4551          * According to the spec the following bits should be set in
4552          * order to enable memory self-refresh
4553          * The bit 22/21 of 0x42004
4554          * The bit 5 of 0x42020
4555          * The bit 15 of 0x45000
4556          */
4557         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4558                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4559                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4560         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4561         I915_WRITE(DISP_ARB_CTL,
4562                    (I915_READ(DISP_ARB_CTL) |
4563                     DISP_FBC_WM_DIS));
4564
4565         ilk_init_lp_watermarks(dev);
4566
4567         /*
4568          * Based on the document from hardware guys the following bits
4569          * should be set unconditionally in order to enable FBC.
4570          * The bit 22 of 0x42000
4571          * The bit 22 of 0x42004
4572          * The bit 7,8,9 of 0x42020.
4573          */
4574         if (IS_IRONLAKE_M(dev)) {
4575                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4576                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4577                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4578                            ILK_FBCQ_DIS);
4579                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4580                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4581                            ILK_DPARB_GATE);
4582         }
4583
4584         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4585
4586         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4587                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4588                    ILK_ELPIN_409_SELECT);
4589         I915_WRITE(_3D_CHICKEN2,
4590                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4591                    _3D_CHICKEN2_WM_READ_PIPELINED);
4592
4593         /* WaDisableRenderCachePipelinedFlush:ilk */
4594         I915_WRITE(CACHE_MODE_0,
4595                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4596
4597         g4x_disable_trickle_feed(dev);
4598
4599         ibx_init_clock_gating(dev);
4600 }
4601
4602 static void cpt_init_clock_gating(struct drm_device *dev)
4603 {
4604         struct drm_i915_private *dev_priv = dev->dev_private;
4605         int pipe;
4606         uint32_t val;
4607
4608         /*
4609          * On Ibex Peak and Cougar Point, we need to disable clock
4610          * gating for the panel power sequencer or it will fail to
4611          * start up when no ports are active.
4612          */
4613         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4614                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4615                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
4616         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4617                    DPLS_EDP_PPS_FIX_DIS);
4618         /* The below fixes the weird display corruption, a few pixels shifted
4619          * downward, on (only) LVDS of some HP laptops with IVY.
4620          */
4621         for_each_pipe(pipe) {
4622                 val = I915_READ(TRANS_CHICKEN2(pipe));
4623                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4624                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4625                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4626                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4627                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4628                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4629                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4630                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4631         }
4632         /* WADP0ClockGatingDisable */
4633         for_each_pipe(pipe) {
4634                 I915_WRITE(TRANS_CHICKEN1(pipe),
4635                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4636         }
4637 }
4638
4639 static void gen6_check_mch_setup(struct drm_device *dev)
4640 {
4641         struct drm_i915_private *dev_priv = dev->dev_private;
4642         uint32_t tmp;
4643
4644         tmp = I915_READ(MCH_SSKPD);
4645         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4646                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4647                 DRM_INFO("This can cause pipe underruns and display issues.\n");
4648                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4649         }
4650 }
4651
4652 static void gen6_init_clock_gating(struct drm_device *dev)
4653 {
4654         struct drm_i915_private *dev_priv = dev->dev_private;
4655         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4656
4657         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4658
4659         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4660                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4661                    ILK_ELPIN_409_SELECT);
4662
4663         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4664         I915_WRITE(_3D_CHICKEN,
4665                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4666
4667         /* WaSetupGtModeTdRowDispatch:snb */
4668         if (IS_SNB_GT1(dev))
4669                 I915_WRITE(GEN6_GT_MODE,
4670                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4671
4672         /*
4673          * BSpec recoomends 8x4 when MSAA is used,
4674          * however in practice 16x4 seems fastest.
4675          *
4676          * Note that PS/WM thread counts depend on the WIZ hashing
4677          * disable bit, which we don't touch here, but it's good
4678          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4679          */
4680         I915_WRITE(GEN6_GT_MODE,
4681                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4682
4683         ilk_init_lp_watermarks(dev);
4684
4685         I915_WRITE(CACHE_MODE_0,
4686                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4687
4688         I915_WRITE(GEN6_UCGCTL1,
4689                    I915_READ(GEN6_UCGCTL1) |
4690                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4691                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4692
4693         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4694          * gating disable must be set.  Failure to set it results in
4695          * flickering pixels due to Z write ordering failures after
4696          * some amount of runtime in the Mesa "fire" demo, and Unigine
4697          * Sanctuary and Tropics, and apparently anything else with
4698          * alpha test or pixel discard.
4699          *
4700          * According to the spec, bit 11 (RCCUNIT) must also be set,
4701          * but we didn't debug actual testcases to find it out.
4702          *
4703          * WaDisableRCCUnitClockGating:snb
4704          * WaDisableRCPBUnitClockGating:snb
4705          */
4706         I915_WRITE(GEN6_UCGCTL2,
4707                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4708                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4709
4710         /* WaStripsFansDisableFastClipPerformanceFix:snb */
4711         I915_WRITE(_3D_CHICKEN3,
4712                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
4713
4714         /*
4715          * Bspec says:
4716          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
4717          * 3DSTATE_SF number of SF output attributes is more than 16."
4718          */
4719         I915_WRITE(_3D_CHICKEN3,
4720                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
4721
4722         /*
4723          * According to the spec the following bits should be
4724          * set in order to enable memory self-refresh and fbc:
4725          * The bit21 and bit22 of 0x42000
4726          * The bit21 and bit22 of 0x42004
4727          * The bit5 and bit7 of 0x42020
4728          * The bit14 of 0x70180
4729          * The bit14 of 0x71180
4730          *
4731          * WaFbcAsynchFlipDisableFbcQueue:snb
4732          */
4733         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4734                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4735                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4736         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4737                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4738                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4739         I915_WRITE(ILK_DSPCLK_GATE_D,
4740                    I915_READ(ILK_DSPCLK_GATE_D) |
4741                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4742                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4743
4744         g4x_disable_trickle_feed(dev);
4745
4746         cpt_init_clock_gating(dev);
4747
4748         gen6_check_mch_setup(dev);
4749 }
4750
4751 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4752 {
4753         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4754
4755         /*
4756          * WaVSThreadDispatchOverride:ivb,vlv
4757          *
4758          * This actually overrides the dispatch
4759          * mode for all thread types.
4760          */
4761         reg &= ~GEN7_FF_SCHED_MASK;
4762         reg |= GEN7_FF_TS_SCHED_HW;
4763         reg |= GEN7_FF_VS_SCHED_HW;
4764         reg |= GEN7_FF_DS_SCHED_HW;
4765
4766         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4767 }
4768
4769 static void lpt_init_clock_gating(struct drm_device *dev)
4770 {
4771         struct drm_i915_private *dev_priv = dev->dev_private;
4772
4773         /*
4774          * TODO: this bit should only be enabled when really needed, then
4775          * disabled when not needed anymore in order to save power.
4776          */
4777         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4778                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4779                            I915_READ(SOUTH_DSPCLK_GATE_D) |
4780                            PCH_LP_PARTITION_LEVEL_DISABLE);
4781
4782         /* WADPOClockGatingDisable:hsw */
4783         I915_WRITE(_TRANSA_CHICKEN1,
4784                    I915_READ(_TRANSA_CHICKEN1) |
4785                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4786 }
4787
4788 static void lpt_suspend_hw(struct drm_device *dev)
4789 {
4790         struct drm_i915_private *dev_priv = dev->dev_private;
4791
4792         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4793                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4794
4795                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4796                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4797         }
4798 }
4799
4800 static void gen8_init_clock_gating(struct drm_device *dev)
4801 {
4802         struct drm_i915_private *dev_priv = dev->dev_private;
4803         enum pipe pipe;
4804
4805         I915_WRITE(WM3_LP_ILK, 0);
4806         I915_WRITE(WM2_LP_ILK, 0);
4807         I915_WRITE(WM1_LP_ILK, 0);
4808
4809         /* FIXME(BDW): Check all the w/a, some might only apply to
4810          * pre-production hw. */
4811
4812         /* WaDisablePartialInstShootdown:bdw */
4813         I915_WRITE(GEN8_ROW_CHICKEN,
4814                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
4815
4816         /* WaDisableThreadStallDopClockGating:bdw */
4817         /* FIXME: Unclear whether we really need this on production bdw. */
4818         I915_WRITE(GEN8_ROW_CHICKEN,
4819                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
4820
4821         /*
4822          * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
4823          * pre-production hardware
4824          */
4825         I915_WRITE(HALF_SLICE_CHICKEN3,
4826                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
4827         I915_WRITE(HALF_SLICE_CHICKEN3,
4828                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
4829         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
4830
4831         I915_WRITE(_3D_CHICKEN3,
4832                    _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
4833
4834         I915_WRITE(COMMON_SLICE_CHICKEN2,
4835                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
4836
4837         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4838                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
4839
4840         /* WaSwitchSolVfFArbitrationPriority:bdw */
4841         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4842
4843         /* WaPsrDPAMaskVBlankInSRD:bdw */
4844         I915_WRITE(CHICKEN_PAR1_1,
4845                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
4846
4847         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
4848         for_each_pipe(pipe) {
4849                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
4850                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
4851                            BDW_DPRS_MASK_VBLANK_SRD);
4852         }
4853
4854         /* Use Force Non-Coherent whenever executing a 3D context. This is a
4855          * workaround for for a possible hang in the unlikely event a TLB
4856          * invalidation occurs during a PSD flush.
4857          */
4858         I915_WRITE(HDC_CHICKEN0,
4859                    I915_READ(HDC_CHICKEN0) |
4860                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
4861
4862         /* WaVSRefCountFullforceMissDisable:bdw */
4863         /* WaDSRefCountFullforceMissDisable:bdw */
4864         I915_WRITE(GEN7_FF_THREAD_MODE,
4865                    I915_READ(GEN7_FF_THREAD_MODE) &
4866                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
4867
4868         /*
4869          * BSpec recommends 8x4 when MSAA is used,
4870          * however in practice 16x4 seems fastest.
4871          *
4872          * Note that PS/WM thread counts depend on the WIZ hashing
4873          * disable bit, which we don't touch here, but it's good
4874          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4875          */
4876         I915_WRITE(GEN7_GT_MODE,
4877                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4878
4879         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
4880                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
4881
4882         /* WaDisableSDEUnitClockGating:bdw */
4883         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
4884                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
4885
4886         /* Wa4x4STCOptimizationDisable:bdw */
4887         I915_WRITE(CACHE_MODE_1,
4888                    _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
4889 }
4890
4891 static void haswell_init_clock_gating(struct drm_device *dev)
4892 {
4893         struct drm_i915_private *dev_priv = dev->dev_private;
4894
4895         ilk_init_lp_watermarks(dev);
4896
4897         /* L3 caching of data atomics doesn't work -- disable it. */
4898         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4899         I915_WRITE(HSW_ROW_CHICKEN3,
4900                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4901
4902         /* This is required by WaCatErrorRejectionIssue:hsw */
4903         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4904                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4905                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4906
4907         /* WaVSRefCountFullforceMissDisable:hsw */
4908         I915_WRITE(GEN7_FF_THREAD_MODE,
4909                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
4910
4911         /* enable HiZ Raw Stall Optimization */
4912         I915_WRITE(CACHE_MODE_0_GEN7,
4913                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
4914
4915         /* WaDisable4x2SubspanOptimization:hsw */
4916         I915_WRITE(CACHE_MODE_1,
4917                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4918
4919         /*
4920          * BSpec recommends 8x4 when MSAA is used,
4921          * however in practice 16x4 seems fastest.
4922          *
4923          * Note that PS/WM thread counts depend on the WIZ hashing
4924          * disable bit, which we don't touch here, but it's good
4925          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4926          */
4927         I915_WRITE(GEN7_GT_MODE,
4928                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4929
4930         /* WaSwitchSolVfFArbitrationPriority:hsw */
4931         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4932
4933         /* WaRsPkgCStateDisplayPMReq:hsw */
4934         I915_WRITE(CHICKEN_PAR1_1,
4935                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4936
4937         lpt_init_clock_gating(dev);
4938 }
4939
4940 static void ivybridge_init_clock_gating(struct drm_device *dev)
4941 {
4942         struct drm_i915_private *dev_priv = dev->dev_private;
4943         uint32_t snpcr;
4944
4945         ilk_init_lp_watermarks(dev);
4946
4947         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4948
4949         /* WaDisableEarlyCull:ivb */
4950         I915_WRITE(_3D_CHICKEN3,
4951                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4952
4953         /* WaDisableBackToBackFlipFix:ivb */
4954         I915_WRITE(IVB_CHICKEN3,
4955                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4956                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4957
4958         /* WaDisablePSDDualDispatchEnable:ivb */
4959         if (IS_IVB_GT1(dev))
4960                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4961                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4962
4963         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4964         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4965                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4966
4967         /* WaApplyL3ControlAndL3ChickenMode:ivb */
4968         I915_WRITE(GEN7_L3CNTLREG1,
4969                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4970         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4971                    GEN7_WA_L3_CHICKEN_MODE);
4972         if (IS_IVB_GT1(dev))
4973                 I915_WRITE(GEN7_ROW_CHICKEN2,
4974                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4975         else {
4976                 /* must write both registers */
4977                 I915_WRITE(GEN7_ROW_CHICKEN2,
4978                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4979                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4980                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4981         }
4982
4983         /* WaForceL3Serialization:ivb */
4984         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4985                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4986
4987         /*
4988          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4989          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4990          */
4991         I915_WRITE(GEN6_UCGCTL2,
4992                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4993
4994         /* This is required by WaCatErrorRejectionIssue:ivb */
4995         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4996                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4997                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4998
4999         g4x_disable_trickle_feed(dev);
5000
5001         gen7_setup_fixed_func_scheduler(dev_priv);
5002
5003         if (0) { /* causes HiZ corruption on ivb:gt1 */
5004                 /* enable HiZ Raw Stall Optimization */
5005                 I915_WRITE(CACHE_MODE_0_GEN7,
5006                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5007         }
5008
5009         /* WaDisable4x2SubspanOptimization:ivb */
5010         I915_WRITE(CACHE_MODE_1,
5011                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5012
5013         /*
5014          * BSpec recommends 8x4 when MSAA is used,
5015          * however in practice 16x4 seems fastest.
5016          *
5017          * Note that PS/WM thread counts depend on the WIZ hashing
5018          * disable bit, which we don't touch here, but it's good
5019          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5020          */
5021         I915_WRITE(GEN7_GT_MODE,
5022                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5023
5024         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5025         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5026         snpcr |= GEN6_MBC_SNPCR_MED;
5027         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5028
5029         if (!HAS_PCH_NOP(dev))
5030                 cpt_init_clock_gating(dev);
5031
5032         gen6_check_mch_setup(dev);
5033 }
5034
5035 static void valleyview_init_clock_gating(struct drm_device *dev)
5036 {
5037         struct drm_i915_private *dev_priv = dev->dev_private;
5038         u32 val;
5039
5040         mutex_lock(&dev_priv->rps.hw_lock);
5041         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5042         mutex_unlock(&dev_priv->rps.hw_lock);
5043         switch ((val >> 6) & 3) {
5044         case 0:
5045                 dev_priv->mem_freq = 800;
5046                 break;
5047         case 1:
5048                 dev_priv->mem_freq = 1066;
5049                 break;
5050         case 2:
5051                 dev_priv->mem_freq = 1333;
5052                 break;
5053         case 3:
5054                 dev_priv->mem_freq = 1333;
5055                 break;
5056         }
5057         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5058
5059         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5060
5061         /* WaDisableEarlyCull:vlv */
5062         I915_WRITE(_3D_CHICKEN3,
5063                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5064
5065         /* WaDisableBackToBackFlipFix:vlv */
5066         I915_WRITE(IVB_CHICKEN3,
5067                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5068                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5069
5070         /* WaPsdDispatchEnable:vlv */
5071         /* WaDisablePSDDualDispatchEnable:vlv */
5072         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5073                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5074                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5075
5076         /* WaForceL3Serialization:vlv */
5077         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5078                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5079
5080         /* WaDisableDopClockGating:vlv */
5081         I915_WRITE(GEN7_ROW_CHICKEN2,
5082                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5083
5084         /* This is required by WaCatErrorRejectionIssue:vlv */
5085         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5086                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5087                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5088
5089         gen7_setup_fixed_func_scheduler(dev_priv);
5090
5091         /*
5092          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5093          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5094          */
5095         I915_WRITE(GEN6_UCGCTL2,
5096                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5097
5098         /* WaDisableL3Bank2xClockGate:vlv */
5099         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5100
5101         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5102
5103         /*
5104          * BSpec says this must be set, even though
5105          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5106          */
5107         I915_WRITE(CACHE_MODE_1,
5108                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5109
5110         /*
5111          * WaIncreaseL3CreditsForVLVB0:vlv
5112          * This is the hardware default actually.
5113          */
5114         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5115
5116         /*
5117          * WaDisableVLVClockGating_VBIIssue:vlv
5118          * Disable clock gating on th GCFG unit to prevent a delay
5119          * in the reporting of vblank events.
5120          */
5121         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5122 }
5123
5124 static void g4x_init_clock_gating(struct drm_device *dev)
5125 {
5126         struct drm_i915_private *dev_priv = dev->dev_private;
5127         uint32_t dspclk_gate;
5128
5129         I915_WRITE(RENCLK_GATE_D1, 0);
5130         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5131                    GS_UNIT_CLOCK_GATE_DISABLE |
5132                    CL_UNIT_CLOCK_GATE_DISABLE);
5133         I915_WRITE(RAMCLK_GATE_D, 0);
5134         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5135                 OVRUNIT_CLOCK_GATE_DISABLE |
5136                 OVCUNIT_CLOCK_GATE_DISABLE;
5137         if (IS_GM45(dev))
5138                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5139         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5140
5141         /* WaDisableRenderCachePipelinedFlush */
5142         I915_WRITE(CACHE_MODE_0,
5143                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5144
5145         g4x_disable_trickle_feed(dev);
5146 }
5147
5148 static void crestline_init_clock_gating(struct drm_device *dev)
5149 {
5150         struct drm_i915_private *dev_priv = dev->dev_private;
5151
5152         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5153         I915_WRITE(RENCLK_GATE_D2, 0);
5154         I915_WRITE(DSPCLK_GATE_D, 0);
5155         I915_WRITE(RAMCLK_GATE_D, 0);
5156         I915_WRITE16(DEUC, 0);
5157         I915_WRITE(MI_ARB_STATE,
5158                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5159 }
5160
5161 static void broadwater_init_clock_gating(struct drm_device *dev)
5162 {
5163         struct drm_i915_private *dev_priv = dev->dev_private;
5164
5165         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5166                    I965_RCC_CLOCK_GATE_DISABLE |
5167                    I965_RCPB_CLOCK_GATE_DISABLE |
5168                    I965_ISC_CLOCK_GATE_DISABLE |
5169                    I965_FBC_CLOCK_GATE_DISABLE);
5170         I915_WRITE(RENCLK_GATE_D2, 0);
5171         I915_WRITE(MI_ARB_STATE,
5172                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5173 }
5174
5175 static void gen3_init_clock_gating(struct drm_device *dev)
5176 {
5177         struct drm_i915_private *dev_priv = dev->dev_private;
5178         u32 dstate = I915_READ(D_STATE);
5179
5180         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5181                 DSTATE_DOT_CLOCK_GATING;
5182         I915_WRITE(D_STATE, dstate);
5183
5184         if (IS_PINEVIEW(dev))
5185                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5186
5187         /* IIR "flip pending" means done if this bit is set */
5188         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5189 }
5190
5191 static void i85x_init_clock_gating(struct drm_device *dev)
5192 {
5193         struct drm_i915_private *dev_priv = dev->dev_private;
5194
5195         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5196 }
5197
5198 static void i830_init_clock_gating(struct drm_device *dev)
5199 {
5200         struct drm_i915_private *dev_priv = dev->dev_private;
5201
5202         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5203 }
5204
5205 void intel_init_clock_gating(struct drm_device *dev)
5206 {
5207         struct drm_i915_private *dev_priv = dev->dev_private;
5208
5209         dev_priv->display.init_clock_gating(dev);
5210 }
5211
5212 void intel_suspend_hw(struct drm_device *dev)
5213 {
5214         if (HAS_PCH_LPT(dev))
5215                 lpt_suspend_hw(dev);
5216 }
5217
5218 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5219         for (i = 0;                                                     \
5220              i < (power_domains)->power_well_count &&                   \
5221                  ((power_well) = &(power_domains)->power_wells[i]);     \
5222              i++)                                                       \
5223                 if ((power_well)->domains & (domain_mask))
5224
5225 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5226         for (i = (power_domains)->power_well_count - 1;                  \
5227              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5228              i--)                                                        \
5229                 if ((power_well)->domains & (domain_mask))
5230
5231 /**
5232  * We should only use the power well if we explicitly asked the hardware to
5233  * enable it, so check if it's enabled and also check if we've requested it to
5234  * be enabled.
5235  */
5236 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5237                                    struct i915_power_well *power_well)
5238 {
5239         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5240                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5241 }
5242
5243 bool intel_display_power_enabled_sw(struct drm_i915_private *dev_priv,
5244                                     enum intel_display_power_domain domain)
5245 {
5246         struct i915_power_domains *power_domains;
5247
5248         power_domains = &dev_priv->power_domains;
5249
5250         return power_domains->domain_use_count[domain];
5251 }
5252
5253 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5254                                  enum intel_display_power_domain domain)
5255 {
5256         struct i915_power_domains *power_domains;
5257         struct i915_power_well *power_well;
5258         bool is_enabled;
5259         int i;
5260
5261         power_domains = &dev_priv->power_domains;
5262
5263         is_enabled = true;
5264
5265         mutex_lock(&power_domains->lock);
5266         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5267                 if (power_well->always_on)
5268                         continue;
5269
5270                 if (!power_well->ops->is_enabled(dev_priv, power_well)) {
5271                         is_enabled = false;
5272                         break;
5273                 }
5274         }
5275         mutex_unlock(&power_domains->lock);
5276
5277         return is_enabled;
5278 }
5279
5280 /*
5281  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5282  * when not needed anymore. We have 4 registers that can request the power well
5283  * to be enabled, and it will only be disabled if none of the registers is
5284  * requesting it to be enabled.
5285  */
5286 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5287 {
5288         struct drm_device *dev = dev_priv->dev;
5289         unsigned long irqflags;
5290
5291         /*
5292          * After we re-enable the power well, if we touch VGA register 0x3d5
5293          * we'll get unclaimed register interrupts. This stops after we write
5294          * anything to the VGA MSR register. The vgacon module uses this
5295          * register all the time, so if we unbind our driver and, as a
5296          * consequence, bind vgacon, we'll get stuck in an infinite loop at
5297          * console_unlock(). So make here we touch the VGA MSR register, making
5298          * sure vgacon can keep working normally without triggering interrupts
5299          * and error messages.
5300          */
5301         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5302         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5303         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5304
5305         if (IS_BROADWELL(dev)) {
5306                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5307                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5308                            dev_priv->de_irq_mask[PIPE_B]);
5309                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5310                            ~dev_priv->de_irq_mask[PIPE_B] |
5311                            GEN8_PIPE_VBLANK);
5312                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5313                            dev_priv->de_irq_mask[PIPE_C]);
5314                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5315                            ~dev_priv->de_irq_mask[PIPE_C] |
5316                            GEN8_PIPE_VBLANK);
5317                 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5318                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5319         }
5320 }
5321
5322 static void reset_vblank_counter(struct drm_device *dev, enum pipe pipe)
5323 {
5324         assert_spin_locked(&dev->vbl_lock);
5325
5326         dev->vblank[pipe].last = 0;
5327 }
5328
5329 static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
5330 {
5331         struct drm_device *dev = dev_priv->dev;
5332         enum pipe pipe;
5333         unsigned long irqflags;
5334
5335         /*
5336          * After this, the registers on the pipes that are part of the power
5337          * well will become zero, so we have to adjust our counters according to
5338          * that.
5339          *
5340          * FIXME: Should we do this in general in drm_vblank_post_modeset?
5341          */
5342         spin_lock_irqsave(&dev->vbl_lock, irqflags);
5343         for_each_pipe(pipe)
5344                 if (pipe != PIPE_A)
5345                         reset_vblank_counter(dev, pipe);
5346         spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5347 }
5348
5349 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
5350                                struct i915_power_well *power_well, bool enable)
5351 {
5352         bool is_enabled, enable_requested;
5353         uint32_t tmp;
5354
5355         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5356         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5357         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5358
5359         if (enable) {
5360                 if (!enable_requested)
5361                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5362                                    HSW_PWR_WELL_ENABLE_REQUEST);
5363
5364                 if (!is_enabled) {
5365                         DRM_DEBUG_KMS("Enabling power well\n");
5366                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5367                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5368                                 DRM_ERROR("Timeout enabling power well\n");
5369                 }
5370
5371                 hsw_power_well_post_enable(dev_priv);
5372         } else {
5373                 if (enable_requested) {
5374                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5375                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5376                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5377
5378                         hsw_power_well_post_disable(dev_priv);
5379                 }
5380         }
5381 }
5382
5383 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
5384                                    struct i915_power_well *power_well)
5385 {
5386         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
5387
5388         /*
5389          * We're taking over the BIOS, so clear any requests made by it since
5390          * the driver is in charge now.
5391          */
5392         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5393                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5394 }
5395
5396 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
5397                                   struct i915_power_well *power_well)
5398 {
5399         hsw_set_power_well(dev_priv, power_well, true);
5400 }
5401
5402 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
5403                                    struct i915_power_well *power_well)
5404 {
5405         hsw_set_power_well(dev_priv, power_well, false);
5406 }
5407
5408 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
5409                                            struct i915_power_well *power_well)
5410 {
5411 }
5412
5413 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
5414                                              struct i915_power_well *power_well)
5415 {
5416         return true;
5417 }
5418
5419 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
5420                                struct i915_power_well *power_well, bool enable)
5421 {
5422         enum punit_power_well power_well_id = power_well->data;
5423         u32 mask;
5424         u32 state;
5425         u32 ctrl;
5426
5427         mask = PUNIT_PWRGT_MASK(power_well_id);
5428         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
5429                          PUNIT_PWRGT_PWR_GATE(power_well_id);
5430
5431         mutex_lock(&dev_priv->rps.hw_lock);
5432
5433 #define COND \
5434         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
5435
5436         if (COND)
5437                 goto out;
5438
5439         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
5440         ctrl &= ~mask;
5441         ctrl |= state;
5442         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
5443
5444         if (wait_for(COND, 100))
5445                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
5446                           state,
5447                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
5448
5449 #undef COND
5450
5451 out:
5452         mutex_unlock(&dev_priv->rps.hw_lock);
5453 }
5454
5455 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
5456                                    struct i915_power_well *power_well)
5457 {
5458         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
5459 }
5460
5461 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
5462                                   struct i915_power_well *power_well)
5463 {
5464         vlv_set_power_well(dev_priv, power_well, true);
5465 }
5466
5467 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
5468                                    struct i915_power_well *power_well)
5469 {
5470         vlv_set_power_well(dev_priv, power_well, false);
5471 }
5472
5473 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
5474                                    struct i915_power_well *power_well)
5475 {
5476         int power_well_id = power_well->data;
5477         bool enabled = false;
5478         u32 mask;
5479         u32 state;
5480         u32 ctrl;
5481
5482         mask = PUNIT_PWRGT_MASK(power_well_id);
5483         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
5484
5485         mutex_lock(&dev_priv->rps.hw_lock);
5486
5487         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
5488         /*
5489          * We only ever set the power-on and power-gate states, anything
5490          * else is unexpected.
5491          */
5492         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
5493                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
5494         if (state == ctrl)
5495                 enabled = true;
5496
5497         /*
5498          * A transient state at this point would mean some unexpected party
5499          * is poking at the power controls too.
5500          */
5501         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
5502         WARN_ON(ctrl != state);
5503
5504         mutex_unlock(&dev_priv->rps.hw_lock);
5505
5506         return enabled;
5507 }
5508
5509 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
5510                                           struct i915_power_well *power_well)
5511 {
5512         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5513
5514         vlv_set_power_well(dev_priv, power_well, true);
5515
5516         spin_lock_irq(&dev_priv->irq_lock);
5517         valleyview_enable_display_irqs(dev_priv);
5518         spin_unlock_irq(&dev_priv->irq_lock);
5519
5520         /*
5521          * During driver initialization we need to defer enabling hotplug
5522          * processing until fbdev is set up.
5523          */
5524         if (dev_priv->enable_hotplug_processing)
5525                 intel_hpd_init(dev_priv->dev);
5526
5527         i915_redisable_vga_power_on(dev_priv->dev);
5528 }
5529
5530 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
5531                                            struct i915_power_well *power_well)
5532 {
5533         struct drm_device *dev = dev_priv->dev;
5534         enum pipe pipe;
5535
5536         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5537
5538         spin_lock_irq(&dev_priv->irq_lock);
5539         for_each_pipe(pipe)
5540                 __intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
5541
5542         valleyview_disable_display_irqs(dev_priv);
5543         spin_unlock_irq(&dev_priv->irq_lock);
5544
5545         spin_lock_irq(&dev->vbl_lock);
5546         for_each_pipe(pipe)
5547                 reset_vblank_counter(dev, pipe);
5548         spin_unlock_irq(&dev->vbl_lock);
5549
5550         vlv_set_power_well(dev_priv, power_well, false);
5551 }
5552
5553 static void check_power_well_state(struct drm_i915_private *dev_priv,
5554                                    struct i915_power_well *power_well)
5555 {
5556         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
5557
5558         if (power_well->always_on || !i915.disable_power_well) {
5559                 if (!enabled)
5560                         goto mismatch;
5561
5562                 return;
5563         }
5564
5565         if (enabled != (power_well->count > 0))
5566                 goto mismatch;
5567
5568         return;
5569
5570 mismatch:
5571         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
5572                   power_well->name, power_well->always_on, enabled,
5573                   power_well->count, i915.disable_power_well);
5574 }
5575
5576 void intel_display_power_get(struct drm_i915_private *dev_priv,
5577                              enum intel_display_power_domain domain)
5578 {
5579         struct i915_power_domains *power_domains;
5580         struct i915_power_well *power_well;
5581         int i;
5582
5583         intel_runtime_pm_get(dev_priv);
5584
5585         power_domains = &dev_priv->power_domains;
5586
5587         mutex_lock(&power_domains->lock);
5588
5589         for_each_power_well(i, power_well, BIT(domain), power_domains) {
5590                 if (!power_well->count++) {
5591                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
5592                         power_well->ops->enable(dev_priv, power_well);
5593                 }
5594
5595                 check_power_well_state(dev_priv, power_well);
5596         }
5597
5598         power_domains->domain_use_count[domain]++;
5599
5600         mutex_unlock(&power_domains->lock);
5601 }
5602
5603 void intel_display_power_put(struct drm_i915_private *dev_priv,
5604                              enum intel_display_power_domain domain)
5605 {
5606         struct i915_power_domains *power_domains;
5607         struct i915_power_well *power_well;
5608         int i;
5609
5610         power_domains = &dev_priv->power_domains;
5611
5612         mutex_lock(&power_domains->lock);
5613
5614         WARN_ON(!power_domains->domain_use_count[domain]);
5615         power_domains->domain_use_count[domain]--;
5616
5617         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5618                 WARN_ON(!power_well->count);
5619
5620                 if (!--power_well->count && i915.disable_power_well) {
5621                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
5622                         power_well->ops->disable(dev_priv, power_well);
5623                 }
5624
5625                 check_power_well_state(dev_priv, power_well);
5626         }
5627
5628         mutex_unlock(&power_domains->lock);
5629
5630         intel_runtime_pm_put(dev_priv);
5631 }
5632
5633 static struct i915_power_domains *hsw_pwr;
5634
5635 /* Display audio driver power well request */
5636 void i915_request_power_well(void)
5637 {
5638         struct drm_i915_private *dev_priv;
5639
5640         if (WARN_ON(!hsw_pwr))
5641                 return;
5642
5643         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5644                                 power_domains);
5645         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
5646 }
5647 EXPORT_SYMBOL_GPL(i915_request_power_well);
5648
5649 /* Display audio driver power well release */
5650 void i915_release_power_well(void)
5651 {
5652         struct drm_i915_private *dev_priv;
5653
5654         if (WARN_ON(!hsw_pwr))
5655                 return;
5656
5657         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5658                                 power_domains);
5659         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
5660 }
5661 EXPORT_SYMBOL_GPL(i915_release_power_well);
5662
5663 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
5664
5665 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
5666         BIT(POWER_DOMAIN_PIPE_A) |                      \
5667         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
5668         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
5669         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
5670         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
5671         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
5672         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
5673         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
5674         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
5675         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
5676         BIT(POWER_DOMAIN_PORT_CRT) |                    \
5677         BIT(POWER_DOMAIN_INIT))
5678 #define HSW_DISPLAY_POWER_DOMAINS (                             \
5679         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
5680         BIT(POWER_DOMAIN_INIT))
5681
5682 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
5683         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
5684         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
5685 #define BDW_DISPLAY_POWER_DOMAINS (                             \
5686         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
5687         BIT(POWER_DOMAIN_INIT))
5688
5689 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
5690 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
5691
5692 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
5693         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
5694         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5695         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
5696         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5697         BIT(POWER_DOMAIN_PORT_CRT) |            \
5698         BIT(POWER_DOMAIN_INIT))
5699
5700 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
5701         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
5702         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5703         BIT(POWER_DOMAIN_INIT))
5704
5705 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
5706         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
5707         BIT(POWER_DOMAIN_INIT))
5708
5709 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
5710         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
5711         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5712         BIT(POWER_DOMAIN_INIT))
5713
5714 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
5715         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
5716         BIT(POWER_DOMAIN_INIT))
5717
5718 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
5719         .sync_hw = i9xx_always_on_power_well_noop,
5720         .enable = i9xx_always_on_power_well_noop,
5721         .disable = i9xx_always_on_power_well_noop,
5722         .is_enabled = i9xx_always_on_power_well_enabled,
5723 };
5724
5725 static struct i915_power_well i9xx_always_on_power_well[] = {
5726         {
5727                 .name = "always-on",
5728                 .always_on = 1,
5729                 .domains = POWER_DOMAIN_MASK,
5730                 .ops = &i9xx_always_on_power_well_ops,
5731         },
5732 };
5733
5734 static const struct i915_power_well_ops hsw_power_well_ops = {
5735         .sync_hw = hsw_power_well_sync_hw,
5736         .enable = hsw_power_well_enable,
5737         .disable = hsw_power_well_disable,
5738         .is_enabled = hsw_power_well_enabled,
5739 };
5740
5741 static struct i915_power_well hsw_power_wells[] = {
5742         {
5743                 .name = "always-on",
5744                 .always_on = 1,
5745                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5746                 .ops = &i9xx_always_on_power_well_ops,
5747         },
5748         {
5749                 .name = "display",
5750                 .domains = HSW_DISPLAY_POWER_DOMAINS,
5751                 .ops = &hsw_power_well_ops,
5752         },
5753 };
5754
5755 static struct i915_power_well bdw_power_wells[] = {
5756         {
5757                 .name = "always-on",
5758                 .always_on = 1,
5759                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5760                 .ops = &i9xx_always_on_power_well_ops,
5761         },
5762         {
5763                 .name = "display",
5764                 .domains = BDW_DISPLAY_POWER_DOMAINS,
5765                 .ops = &hsw_power_well_ops,
5766         },
5767 };
5768
5769 static const struct i915_power_well_ops vlv_display_power_well_ops = {
5770         .sync_hw = vlv_power_well_sync_hw,
5771         .enable = vlv_display_power_well_enable,
5772         .disable = vlv_display_power_well_disable,
5773         .is_enabled = vlv_power_well_enabled,
5774 };
5775
5776 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
5777         .sync_hw = vlv_power_well_sync_hw,
5778         .enable = vlv_power_well_enable,
5779         .disable = vlv_power_well_disable,
5780         .is_enabled = vlv_power_well_enabled,
5781 };
5782
5783 static struct i915_power_well vlv_power_wells[] = {
5784         {
5785                 .name = "always-on",
5786                 .always_on = 1,
5787                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
5788                 .ops = &i9xx_always_on_power_well_ops,
5789         },
5790         {
5791                 .name = "display",
5792                 .domains = VLV_DISPLAY_POWER_DOMAINS,
5793                 .data = PUNIT_POWER_WELL_DISP2D,
5794                 .ops = &vlv_display_power_well_ops,
5795         },
5796         {
5797                 .name = "dpio-common",
5798                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
5799                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
5800                 .ops = &vlv_dpio_power_well_ops,
5801         },
5802         {
5803                 .name = "dpio-tx-b-01",
5804                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5805                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5806                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5807                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5808                 .ops = &vlv_dpio_power_well_ops,
5809                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
5810         },
5811         {
5812                 .name = "dpio-tx-b-23",
5813                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5814                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5815                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5816                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5817                 .ops = &vlv_dpio_power_well_ops,
5818                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
5819         },
5820         {
5821                 .name = "dpio-tx-c-01",
5822                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5823                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5824                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5825                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5826                 .ops = &vlv_dpio_power_well_ops,
5827                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
5828         },
5829         {
5830                 .name = "dpio-tx-c-23",
5831                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
5832                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
5833                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
5834                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
5835                 .ops = &vlv_dpio_power_well_ops,
5836                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
5837         },
5838 };
5839
5840 #define set_power_wells(power_domains, __power_wells) ({                \
5841         (power_domains)->power_wells = (__power_wells);                 \
5842         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
5843 })
5844
5845 int intel_power_domains_init(struct drm_i915_private *dev_priv)
5846 {
5847         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5848
5849         mutex_init(&power_domains->lock);
5850
5851         /*
5852          * The enabling order will be from lower to higher indexed wells,
5853          * the disabling order is reversed.
5854          */
5855         if (IS_HASWELL(dev_priv->dev)) {
5856                 set_power_wells(power_domains, hsw_power_wells);
5857                 hsw_pwr = power_domains;
5858         } else if (IS_BROADWELL(dev_priv->dev)) {
5859                 set_power_wells(power_domains, bdw_power_wells);
5860                 hsw_pwr = power_domains;
5861         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
5862                 set_power_wells(power_domains, vlv_power_wells);
5863         } else {
5864                 set_power_wells(power_domains, i9xx_always_on_power_well);
5865         }
5866
5867         return 0;
5868 }
5869
5870 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
5871 {
5872         hsw_pwr = NULL;
5873 }
5874
5875 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
5876 {
5877         struct i915_power_domains *power_domains = &dev_priv->power_domains;
5878         struct i915_power_well *power_well;
5879         int i;
5880
5881         mutex_lock(&power_domains->lock);
5882         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains)
5883                 power_well->ops->sync_hw(dev_priv, power_well);
5884         mutex_unlock(&power_domains->lock);
5885 }
5886
5887 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
5888 {
5889         /* For now, we need the power well to be always enabled. */
5890         intel_display_set_init_power(dev_priv, true);
5891         intel_power_domains_resume(dev_priv);
5892 }
5893
5894 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5895 {
5896         intel_runtime_pm_get(dev_priv);
5897 }
5898
5899 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5900 {
5901         intel_runtime_pm_put(dev_priv);
5902 }
5903
5904 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
5905 {
5906         struct drm_device *dev = dev_priv->dev;
5907         struct device *device = &dev->pdev->dev;
5908
5909         if (!HAS_RUNTIME_PM(dev))
5910                 return;
5911
5912         pm_runtime_get_sync(device);
5913         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
5914 }
5915
5916 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
5917 {
5918         struct drm_device *dev = dev_priv->dev;
5919         struct device *device = &dev->pdev->dev;
5920
5921         if (!HAS_RUNTIME_PM(dev))
5922                 return;
5923
5924         pm_runtime_mark_last_busy(device);
5925         pm_runtime_put_autosuspend(device);
5926 }
5927
5928 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
5929 {
5930         struct drm_device *dev = dev_priv->dev;
5931         struct device *device = &dev->pdev->dev;
5932
5933         if (!HAS_RUNTIME_PM(dev))
5934                 return;
5935
5936         pm_runtime_set_active(device);
5937
5938         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
5939         pm_runtime_mark_last_busy(device);
5940         pm_runtime_use_autosuspend(device);
5941
5942         pm_runtime_put_autosuspend(device);
5943 }
5944
5945 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
5946 {
5947         struct drm_device *dev = dev_priv->dev;
5948         struct device *device = &dev->pdev->dev;
5949
5950         if (!HAS_RUNTIME_PM(dev))
5951                 return;
5952
5953         /* Make sure we're not suspended first. */
5954         pm_runtime_get_sync(device);
5955         pm_runtime_disable(device);
5956 }
5957
5958 /* Set up chip specific power management-related functions */
5959 void intel_init_pm(struct drm_device *dev)
5960 {
5961         struct drm_i915_private *dev_priv = dev->dev_private;
5962
5963         if (HAS_FBC(dev)) {
5964                 if (INTEL_INFO(dev)->gen >= 7) {
5965                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5966                         dev_priv->display.enable_fbc = gen7_enable_fbc;
5967                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5968                 } else if (INTEL_INFO(dev)->gen >= 5) {
5969                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5970                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
5971                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5972                 } else if (IS_GM45(dev)) {
5973                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5974                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5975                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5976                 } else {
5977                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5978                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5979                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5980
5981                         /* This value was pulled out of someone's hat */
5982                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
5983                 }
5984         }
5985
5986         /* For cxsr */
5987         if (IS_PINEVIEW(dev))
5988                 i915_pineview_get_mem_freq(dev);
5989         else if (IS_GEN5(dev))
5990                 i915_ironlake_get_mem_freq(dev);
5991
5992         /* For FIFO watermark updates */
5993         if (HAS_PCH_SPLIT(dev)) {
5994                 ilk_setup_wm_latency(dev);
5995
5996                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
5997                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
5998                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
5999                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6000                         dev_priv->display.update_wm = ilk_update_wm;
6001                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6002                 } else {
6003                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6004                                       "Disable CxSR\n");
6005                 }
6006
6007                 if (IS_GEN5(dev))
6008                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6009                 else if (IS_GEN6(dev))
6010                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6011                 else if (IS_IVYBRIDGE(dev))
6012                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6013                 else if (IS_HASWELL(dev))
6014                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6015                 else if (INTEL_INFO(dev)->gen == 8)
6016                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6017         } else if (IS_VALLEYVIEW(dev)) {
6018                 dev_priv->display.update_wm = valleyview_update_wm;
6019                 dev_priv->display.init_clock_gating =
6020                         valleyview_init_clock_gating;
6021         } else if (IS_PINEVIEW(dev)) {
6022                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6023                                             dev_priv->is_ddr3,
6024                                             dev_priv->fsb_freq,
6025                                             dev_priv->mem_freq)) {
6026                         DRM_INFO("failed to find known CxSR latency "
6027                                  "(found ddr%s fsb freq %d, mem freq %d), "
6028                                  "disabling CxSR\n",
6029                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6030                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6031                         /* Disable CxSR and never update its watermark again */
6032                         pineview_disable_cxsr(dev);
6033                         dev_priv->display.update_wm = NULL;
6034                 } else
6035                         dev_priv->display.update_wm = pineview_update_wm;
6036                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6037         } else if (IS_G4X(dev)) {
6038                 dev_priv->display.update_wm = g4x_update_wm;
6039                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6040         } else if (IS_GEN4(dev)) {
6041                 dev_priv->display.update_wm = i965_update_wm;
6042                 if (IS_CRESTLINE(dev))
6043                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6044                 else if (IS_BROADWATER(dev))
6045                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6046         } else if (IS_GEN3(dev)) {
6047                 dev_priv->display.update_wm = i9xx_update_wm;
6048                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6049                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6050         } else if (IS_GEN2(dev)) {
6051                 if (INTEL_INFO(dev)->num_pipes == 1) {
6052                         dev_priv->display.update_wm = i845_update_wm;
6053                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6054                 } else {
6055                         dev_priv->display.update_wm = i9xx_update_wm;
6056                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6057                 }
6058
6059                 if (IS_I85X(dev) || IS_I865G(dev))
6060                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6061                 else
6062                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6063         } else {
6064                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6065         }
6066 }
6067
6068 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6069 {
6070         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6071
6072         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6073                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6074                 return -EAGAIN;
6075         }
6076
6077         I915_WRITE(GEN6_PCODE_DATA, *val);
6078         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6079
6080         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6081                      500)) {
6082                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6083                 return -ETIMEDOUT;
6084         }
6085
6086         *val = I915_READ(GEN6_PCODE_DATA);
6087         I915_WRITE(GEN6_PCODE_DATA, 0);
6088
6089         return 0;
6090 }
6091
6092 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6093 {
6094         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6095
6096         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6097                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6098                 return -EAGAIN;
6099         }
6100
6101         I915_WRITE(GEN6_PCODE_DATA, val);
6102         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6103
6104         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6105                      500)) {
6106                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6107                 return -ETIMEDOUT;
6108         }
6109
6110         I915_WRITE(GEN6_PCODE_DATA, 0);
6111
6112         return 0;
6113 }
6114
6115 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6116 {
6117         int div;
6118
6119         /* 4 x czclk */
6120         switch (dev_priv->mem_freq) {
6121         case 800:
6122                 div = 10;
6123                 break;
6124         case 1066:
6125                 div = 12;
6126                 break;
6127         case 1333:
6128                 div = 16;
6129                 break;
6130         default:
6131                 return -1;
6132         }
6133
6134         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6135 }
6136
6137 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6138 {
6139         int mul;
6140
6141         /* 4 x czclk */
6142         switch (dev_priv->mem_freq) {
6143         case 800:
6144                 mul = 10;
6145                 break;
6146         case 1066:
6147                 mul = 12;
6148                 break;
6149         case 1333:
6150                 mul = 16;
6151                 break;
6152         default:
6153                 return -1;
6154         }
6155
6156         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6157 }
6158
6159 void intel_pm_setup(struct drm_device *dev)
6160 {
6161         struct drm_i915_private *dev_priv = dev->dev_private;
6162
6163         mutex_init(&dev_priv->rps.hw_lock);
6164
6165         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6166                           intel_gen6_powersave_work);
6167
6168         dev_priv->pm.suspended = false;
6169         dev_priv->pm.irqs_disabled = false;
6170 }