Merge tag 'wireless-drivers-for-davem-2015-12-28' of git://git.kernel.org/pub/scm...
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50         DRM_FORMAT_C8,
51         DRM_FORMAT_RGB565,
52         DRM_FORMAT_XRGB1555,
53         DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB8888,
61         DRM_FORMAT_XBGR8888,
62         DRM_FORMAT_XRGB2101010,
63         DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_ARGB8888,
72         DRM_FORMAT_ABGR8888,
73         DRM_FORMAT_XRGB2101010,
74         DRM_FORMAT_XBGR2101010,
75         DRM_FORMAT_YUYV,
76         DRM_FORMAT_YVYU,
77         DRM_FORMAT_UYVY,
78         DRM_FORMAT_VYUY,
79 };
80
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83         DRM_FORMAT_ARGB8888,
84 };
85
86 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89                                 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91                                    struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94                                   struct intel_framebuffer *ifb,
95                                   struct drm_mode_fb_cmd2 *mode_cmd,
96                                   struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100                                          struct intel_link_m_n *m_n,
101                                          struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106                             const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112         struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114                            int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119
120 typedef struct {
121         int     min, max;
122 } intel_range_t;
123
124 typedef struct {
125         int     dot_limit;
126         int     p2_slow, p2_fast;
127 } intel_p2_t;
128
129 typedef struct intel_limit intel_limit_t;
130 struct intel_limit {
131         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
132         intel_p2_t          p2;
133 };
134
135 /* returns HPLL frequency in kHz */
136 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
137 {
138         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
139
140         /* Obtain SKU information */
141         mutex_lock(&dev_priv->sb_lock);
142         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
143                 CCK_FUSE_HPLL_FREQ_MASK;
144         mutex_unlock(&dev_priv->sb_lock);
145
146         return vco_freq[hpll_freq] * 1000;
147 }
148
149 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
150                                   const char *name, u32 reg)
151 {
152         u32 val;
153         int divider;
154
155         if (dev_priv->hpll_freq == 0)
156                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
157
158         mutex_lock(&dev_priv->sb_lock);
159         val = vlv_cck_read(dev_priv, reg);
160         mutex_unlock(&dev_priv->sb_lock);
161
162         divider = val & CCK_FREQUENCY_VALUES;
163
164         WARN((val & CCK_FREQUENCY_STATUS) !=
165              (divider << CCK_FREQUENCY_STATUS_SHIFT),
166              "%s change in progress\n", name);
167
168         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
169 }
170
171 int
172 intel_pch_rawclk(struct drm_device *dev)
173 {
174         struct drm_i915_private *dev_priv = dev->dev_private;
175
176         WARN_ON(!HAS_PCH_SPLIT(dev));
177
178         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
179 }
180
181 /* hrawclock is 1/4 the FSB frequency */
182 int intel_hrawclk(struct drm_device *dev)
183 {
184         struct drm_i915_private *dev_priv = dev->dev_private;
185         uint32_t clkcfg;
186
187         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
188         if (IS_VALLEYVIEW(dev))
189                 return 200;
190
191         clkcfg = I915_READ(CLKCFG);
192         switch (clkcfg & CLKCFG_FSB_MASK) {
193         case CLKCFG_FSB_400:
194                 return 100;
195         case CLKCFG_FSB_533:
196                 return 133;
197         case CLKCFG_FSB_667:
198                 return 166;
199         case CLKCFG_FSB_800:
200                 return 200;
201         case CLKCFG_FSB_1067:
202                 return 266;
203         case CLKCFG_FSB_1333:
204                 return 333;
205         /* these two are just a guess; one of them might be right */
206         case CLKCFG_FSB_1600:
207         case CLKCFG_FSB_1600_ALT:
208                 return 400;
209         default:
210                 return 133;
211         }
212 }
213
214 static void intel_update_czclk(struct drm_i915_private *dev_priv)
215 {
216         if (!IS_VALLEYVIEW(dev_priv))
217                 return;
218
219         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
220                                                       CCK_CZ_CLOCK_CONTROL);
221
222         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
223 }
224
225 static inline u32 /* units of 100MHz */
226 intel_fdi_link_freq(struct drm_device *dev)
227 {
228         if (IS_GEN5(dev)) {
229                 struct drm_i915_private *dev_priv = dev->dev_private;
230                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
231         } else
232                 return 27;
233 }
234
235 static const intel_limit_t intel_limits_i8xx_dac = {
236         .dot = { .min = 25000, .max = 350000 },
237         .vco = { .min = 908000, .max = 1512000 },
238         .n = { .min = 2, .max = 16 },
239         .m = { .min = 96, .max = 140 },
240         .m1 = { .min = 18, .max = 26 },
241         .m2 = { .min = 6, .max = 16 },
242         .p = { .min = 4, .max = 128 },
243         .p1 = { .min = 2, .max = 33 },
244         .p2 = { .dot_limit = 165000,
245                 .p2_slow = 4, .p2_fast = 2 },
246 };
247
248 static const intel_limit_t intel_limits_i8xx_dvo = {
249         .dot = { .min = 25000, .max = 350000 },
250         .vco = { .min = 908000, .max = 1512000 },
251         .n = { .min = 2, .max = 16 },
252         .m = { .min = 96, .max = 140 },
253         .m1 = { .min = 18, .max = 26 },
254         .m2 = { .min = 6, .max = 16 },
255         .p = { .min = 4, .max = 128 },
256         .p1 = { .min = 2, .max = 33 },
257         .p2 = { .dot_limit = 165000,
258                 .p2_slow = 4, .p2_fast = 4 },
259 };
260
261 static const intel_limit_t intel_limits_i8xx_lvds = {
262         .dot = { .min = 25000, .max = 350000 },
263         .vco = { .min = 908000, .max = 1512000 },
264         .n = { .min = 2, .max = 16 },
265         .m = { .min = 96, .max = 140 },
266         .m1 = { .min = 18, .max = 26 },
267         .m2 = { .min = 6, .max = 16 },
268         .p = { .min = 4, .max = 128 },
269         .p1 = { .min = 1, .max = 6 },
270         .p2 = { .dot_limit = 165000,
271                 .p2_slow = 14, .p2_fast = 7 },
272 };
273
274 static const intel_limit_t intel_limits_i9xx_sdvo = {
275         .dot = { .min = 20000, .max = 400000 },
276         .vco = { .min = 1400000, .max = 2800000 },
277         .n = { .min = 1, .max = 6 },
278         .m = { .min = 70, .max = 120 },
279         .m1 = { .min = 8, .max = 18 },
280         .m2 = { .min = 3, .max = 7 },
281         .p = { .min = 5, .max = 80 },
282         .p1 = { .min = 1, .max = 8 },
283         .p2 = { .dot_limit = 200000,
284                 .p2_slow = 10, .p2_fast = 5 },
285 };
286
287 static const intel_limit_t intel_limits_i9xx_lvds = {
288         .dot = { .min = 20000, .max = 400000 },
289         .vco = { .min = 1400000, .max = 2800000 },
290         .n = { .min = 1, .max = 6 },
291         .m = { .min = 70, .max = 120 },
292         .m1 = { .min = 8, .max = 18 },
293         .m2 = { .min = 3, .max = 7 },
294         .p = { .min = 7, .max = 98 },
295         .p1 = { .min = 1, .max = 8 },
296         .p2 = { .dot_limit = 112000,
297                 .p2_slow = 14, .p2_fast = 7 },
298 };
299
300
301 static const intel_limit_t intel_limits_g4x_sdvo = {
302         .dot = { .min = 25000, .max = 270000 },
303         .vco = { .min = 1750000, .max = 3500000},
304         .n = { .min = 1, .max = 4 },
305         .m = { .min = 104, .max = 138 },
306         .m1 = { .min = 17, .max = 23 },
307         .m2 = { .min = 5, .max = 11 },
308         .p = { .min = 10, .max = 30 },
309         .p1 = { .min = 1, .max = 3},
310         .p2 = { .dot_limit = 270000,
311                 .p2_slow = 10,
312                 .p2_fast = 10
313         },
314 };
315
316 static const intel_limit_t intel_limits_g4x_hdmi = {
317         .dot = { .min = 22000, .max = 400000 },
318         .vco = { .min = 1750000, .max = 3500000},
319         .n = { .min = 1, .max = 4 },
320         .m = { .min = 104, .max = 138 },
321         .m1 = { .min = 16, .max = 23 },
322         .m2 = { .min = 5, .max = 11 },
323         .p = { .min = 5, .max = 80 },
324         .p1 = { .min = 1, .max = 8},
325         .p2 = { .dot_limit = 165000,
326                 .p2_slow = 10, .p2_fast = 5 },
327 };
328
329 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
330         .dot = { .min = 20000, .max = 115000 },
331         .vco = { .min = 1750000, .max = 3500000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 104, .max = 138 },
334         .m1 = { .min = 17, .max = 23 },
335         .m2 = { .min = 5, .max = 11 },
336         .p = { .min = 28, .max = 112 },
337         .p1 = { .min = 2, .max = 8 },
338         .p2 = { .dot_limit = 0,
339                 .p2_slow = 14, .p2_fast = 14
340         },
341 };
342
343 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
344         .dot = { .min = 80000, .max = 224000 },
345         .vco = { .min = 1750000, .max = 3500000 },
346         .n = { .min = 1, .max = 3 },
347         .m = { .min = 104, .max = 138 },
348         .m1 = { .min = 17, .max = 23 },
349         .m2 = { .min = 5, .max = 11 },
350         .p = { .min = 14, .max = 42 },
351         .p1 = { .min = 2, .max = 6 },
352         .p2 = { .dot_limit = 0,
353                 .p2_slow = 7, .p2_fast = 7
354         },
355 };
356
357 static const intel_limit_t intel_limits_pineview_sdvo = {
358         .dot = { .min = 20000, .max = 400000},
359         .vco = { .min = 1700000, .max = 3500000 },
360         /* Pineview's Ncounter is a ring counter */
361         .n = { .min = 3, .max = 6 },
362         .m = { .min = 2, .max = 256 },
363         /* Pineview only has one combined m divider, which we treat as m2. */
364         .m1 = { .min = 0, .max = 0 },
365         .m2 = { .min = 0, .max = 254 },
366         .p = { .min = 5, .max = 80 },
367         .p1 = { .min = 1, .max = 8 },
368         .p2 = { .dot_limit = 200000,
369                 .p2_slow = 10, .p2_fast = 5 },
370 };
371
372 static const intel_limit_t intel_limits_pineview_lvds = {
373         .dot = { .min = 20000, .max = 400000 },
374         .vco = { .min = 1700000, .max = 3500000 },
375         .n = { .min = 3, .max = 6 },
376         .m = { .min = 2, .max = 256 },
377         .m1 = { .min = 0, .max = 0 },
378         .m2 = { .min = 0, .max = 254 },
379         .p = { .min = 7, .max = 112 },
380         .p1 = { .min = 1, .max = 8 },
381         .p2 = { .dot_limit = 112000,
382                 .p2_slow = 14, .p2_fast = 14 },
383 };
384
385 /* Ironlake / Sandybridge
386  *
387  * We calculate clock using (register_value + 2) for N/M1/M2, so here
388  * the range value for them is (actual_value - 2).
389  */
390 static const intel_limit_t intel_limits_ironlake_dac = {
391         .dot = { .min = 25000, .max = 350000 },
392         .vco = { .min = 1760000, .max = 3510000 },
393         .n = { .min = 1, .max = 5 },
394         .m = { .min = 79, .max = 127 },
395         .m1 = { .min = 12, .max = 22 },
396         .m2 = { .min = 5, .max = 9 },
397         .p = { .min = 5, .max = 80 },
398         .p1 = { .min = 1, .max = 8 },
399         .p2 = { .dot_limit = 225000,
400                 .p2_slow = 10, .p2_fast = 5 },
401 };
402
403 static const intel_limit_t intel_limits_ironlake_single_lvds = {
404         .dot = { .min = 25000, .max = 350000 },
405         .vco = { .min = 1760000, .max = 3510000 },
406         .n = { .min = 1, .max = 3 },
407         .m = { .min = 79, .max = 118 },
408         .m1 = { .min = 12, .max = 22 },
409         .m2 = { .min = 5, .max = 9 },
410         .p = { .min = 28, .max = 112 },
411         .p1 = { .min = 2, .max = 8 },
412         .p2 = { .dot_limit = 225000,
413                 .p2_slow = 14, .p2_fast = 14 },
414 };
415
416 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
417         .dot = { .min = 25000, .max = 350000 },
418         .vco = { .min = 1760000, .max = 3510000 },
419         .n = { .min = 1, .max = 3 },
420         .m = { .min = 79, .max = 127 },
421         .m1 = { .min = 12, .max = 22 },
422         .m2 = { .min = 5, .max = 9 },
423         .p = { .min = 14, .max = 56 },
424         .p1 = { .min = 2, .max = 8 },
425         .p2 = { .dot_limit = 225000,
426                 .p2_slow = 7, .p2_fast = 7 },
427 };
428
429 /* LVDS 100mhz refclk limits. */
430 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
431         .dot = { .min = 25000, .max = 350000 },
432         .vco = { .min = 1760000, .max = 3510000 },
433         .n = { .min = 1, .max = 2 },
434         .m = { .min = 79, .max = 126 },
435         .m1 = { .min = 12, .max = 22 },
436         .m2 = { .min = 5, .max = 9 },
437         .p = { .min = 28, .max = 112 },
438         .p1 = { .min = 2, .max = 8 },
439         .p2 = { .dot_limit = 225000,
440                 .p2_slow = 14, .p2_fast = 14 },
441 };
442
443 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
444         .dot = { .min = 25000, .max = 350000 },
445         .vco = { .min = 1760000, .max = 3510000 },
446         .n = { .min = 1, .max = 3 },
447         .m = { .min = 79, .max = 126 },
448         .m1 = { .min = 12, .max = 22 },
449         .m2 = { .min = 5, .max = 9 },
450         .p = { .min = 14, .max = 42 },
451         .p1 = { .min = 2, .max = 6 },
452         .p2 = { .dot_limit = 225000,
453                 .p2_slow = 7, .p2_fast = 7 },
454 };
455
456 static const intel_limit_t intel_limits_vlv = {
457          /*
458           * These are the data rate limits (measured in fast clocks)
459           * since those are the strictest limits we have. The fast
460           * clock and actual rate limits are more relaxed, so checking
461           * them would make no difference.
462           */
463         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
464         .vco = { .min = 4000000, .max = 6000000 },
465         .n = { .min = 1, .max = 7 },
466         .m1 = { .min = 2, .max = 3 },
467         .m2 = { .min = 11, .max = 156 },
468         .p1 = { .min = 2, .max = 3 },
469         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
470 };
471
472 static const intel_limit_t intel_limits_chv = {
473         /*
474          * These are the data rate limits (measured in fast clocks)
475          * since those are the strictest limits we have.  The fast
476          * clock and actual rate limits are more relaxed, so checking
477          * them would make no difference.
478          */
479         .dot = { .min = 25000 * 5, .max = 540000 * 5},
480         .vco = { .min = 4800000, .max = 6480000 },
481         .n = { .min = 1, .max = 1 },
482         .m1 = { .min = 2, .max = 2 },
483         .m2 = { .min = 24 << 22, .max = 175 << 22 },
484         .p1 = { .min = 2, .max = 4 },
485         .p2 = { .p2_slow = 1, .p2_fast = 14 },
486 };
487
488 static const intel_limit_t intel_limits_bxt = {
489         /* FIXME: find real dot limits */
490         .dot = { .min = 0, .max = INT_MAX },
491         .vco = { .min = 4800000, .max = 6700000 },
492         .n = { .min = 1, .max = 1 },
493         .m1 = { .min = 2, .max = 2 },
494         /* FIXME: find real m2 limits */
495         .m2 = { .min = 2 << 22, .max = 255 << 22 },
496         .p1 = { .min = 2, .max = 4 },
497         .p2 = { .p2_slow = 1, .p2_fast = 20 },
498 };
499
500 static bool
501 needs_modeset(struct drm_crtc_state *state)
502 {
503         return drm_atomic_crtc_needs_modeset(state);
504 }
505
506 /**
507  * Returns whether any output on the specified pipe is of the specified type
508  */
509 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
510 {
511         struct drm_device *dev = crtc->base.dev;
512         struct intel_encoder *encoder;
513
514         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
515                 if (encoder->type == type)
516                         return true;
517
518         return false;
519 }
520
521 /**
522  * Returns whether any output on the specified pipe will have the specified
523  * type after a staged modeset is complete, i.e., the same as
524  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
525  * encoder->crtc.
526  */
527 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
528                                       int type)
529 {
530         struct drm_atomic_state *state = crtc_state->base.state;
531         struct drm_connector *connector;
532         struct drm_connector_state *connector_state;
533         struct intel_encoder *encoder;
534         int i, num_connectors = 0;
535
536         for_each_connector_in_state(state, connector, connector_state, i) {
537                 if (connector_state->crtc != crtc_state->base.crtc)
538                         continue;
539
540                 num_connectors++;
541
542                 encoder = to_intel_encoder(connector_state->best_encoder);
543                 if (encoder->type == type)
544                         return true;
545         }
546
547         WARN_ON(num_connectors == 0);
548
549         return false;
550 }
551
552 static const intel_limit_t *
553 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
554 {
555         struct drm_device *dev = crtc_state->base.crtc->dev;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
559                 if (intel_is_dual_link_lvds(dev)) {
560                         if (refclk == 100000)
561                                 limit = &intel_limits_ironlake_dual_lvds_100m;
562                         else
563                                 limit = &intel_limits_ironlake_dual_lvds;
564                 } else {
565                         if (refclk == 100000)
566                                 limit = &intel_limits_ironlake_single_lvds_100m;
567                         else
568                                 limit = &intel_limits_ironlake_single_lvds;
569                 }
570         } else
571                 limit = &intel_limits_ironlake_dac;
572
573         return limit;
574 }
575
576 static const intel_limit_t *
577 intel_g4x_limit(struct intel_crtc_state *crtc_state)
578 {
579         struct drm_device *dev = crtc_state->base.crtc->dev;
580         const intel_limit_t *limit;
581
582         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
583                 if (intel_is_dual_link_lvds(dev))
584                         limit = &intel_limits_g4x_dual_channel_lvds;
585                 else
586                         limit = &intel_limits_g4x_single_channel_lvds;
587         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
588                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
589                 limit = &intel_limits_g4x_hdmi;
590         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
591                 limit = &intel_limits_g4x_sdvo;
592         } else /* The option is for other outputs */
593                 limit = &intel_limits_i9xx_sdvo;
594
595         return limit;
596 }
597
598 static const intel_limit_t *
599 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
600 {
601         struct drm_device *dev = crtc_state->base.crtc->dev;
602         const intel_limit_t *limit;
603
604         if (IS_BROXTON(dev))
605                 limit = &intel_limits_bxt;
606         else if (HAS_PCH_SPLIT(dev))
607                 limit = intel_ironlake_limit(crtc_state, refclk);
608         else if (IS_G4X(dev)) {
609                 limit = intel_g4x_limit(crtc_state);
610         } else if (IS_PINEVIEW(dev)) {
611                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
612                         limit = &intel_limits_pineview_lvds;
613                 else
614                         limit = &intel_limits_pineview_sdvo;
615         } else if (IS_CHERRYVIEW(dev)) {
616                 limit = &intel_limits_chv;
617         } else if (IS_VALLEYVIEW(dev)) {
618                 limit = &intel_limits_vlv;
619         } else if (!IS_GEN2(dev)) {
620                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
621                         limit = &intel_limits_i9xx_lvds;
622                 else
623                         limit = &intel_limits_i9xx_sdvo;
624         } else {
625                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
626                         limit = &intel_limits_i8xx_lvds;
627                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
628                         limit = &intel_limits_i8xx_dvo;
629                 else
630                         limit = &intel_limits_i8xx_dac;
631         }
632         return limit;
633 }
634
635 /*
636  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
637  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
638  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
639  * The helpers' return value is the rate of the clock that is fed to the
640  * display engine's pipe which can be the above fast dot clock rate or a
641  * divided-down version of it.
642  */
643 /* m1 is reserved as 0 in Pineview, n is a ring counter */
644 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
645 {
646         clock->m = clock->m2 + 2;
647         clock->p = clock->p1 * clock->p2;
648         if (WARN_ON(clock->n == 0 || clock->p == 0))
649                 return 0;
650         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
651         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
652
653         return clock->dot;
654 }
655
656 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
657 {
658         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
659 }
660
661 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
662 {
663         clock->m = i9xx_dpll_compute_m(clock);
664         clock->p = clock->p1 * clock->p2;
665         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
666                 return 0;
667         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
668         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
669
670         return clock->dot;
671 }
672
673 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
674 {
675         clock->m = clock->m1 * clock->m2;
676         clock->p = clock->p1 * clock->p2;
677         if (WARN_ON(clock->n == 0 || clock->p == 0))
678                 return 0;
679         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
680         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
681
682         return clock->dot / 5;
683 }
684
685 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
686 {
687         clock->m = clock->m1 * clock->m2;
688         clock->p = clock->p1 * clock->p2;
689         if (WARN_ON(clock->n == 0 || clock->p == 0))
690                 return 0;
691         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
692                         clock->n << 22);
693         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
694
695         return clock->dot / 5;
696 }
697
698 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
699 /**
700  * Returns whether the given set of divisors are valid for a given refclk with
701  * the given connectors.
702  */
703
704 static bool intel_PLL_is_valid(struct drm_device *dev,
705                                const intel_limit_t *limit,
706                                const intel_clock_t *clock)
707 {
708         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
709                 INTELPllInvalid("n out of range\n");
710         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
711                 INTELPllInvalid("p1 out of range\n");
712         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
713                 INTELPllInvalid("m2 out of range\n");
714         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
715                 INTELPllInvalid("m1 out of range\n");
716
717         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
718                 if (clock->m1 <= clock->m2)
719                         INTELPllInvalid("m1 <= m2\n");
720
721         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
722                 if (clock->p < limit->p.min || limit->p.max < clock->p)
723                         INTELPllInvalid("p out of range\n");
724                 if (clock->m < limit->m.min || limit->m.max < clock->m)
725                         INTELPllInvalid("m out of range\n");
726         }
727
728         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
729                 INTELPllInvalid("vco out of range\n");
730         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
731          * connector, etc., rather than just a single range.
732          */
733         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
734                 INTELPllInvalid("dot out of range\n");
735
736         return true;
737 }
738
739 static int
740 i9xx_select_p2_div(const intel_limit_t *limit,
741                    const struct intel_crtc_state *crtc_state,
742                    int target)
743 {
744         struct drm_device *dev = crtc_state->base.crtc->dev;
745
746         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
747                 /*
748                  * For LVDS just rely on its current settings for dual-channel.
749                  * We haven't figured out how to reliably set up different
750                  * single/dual channel state, if we even can.
751                  */
752                 if (intel_is_dual_link_lvds(dev))
753                         return limit->p2.p2_fast;
754                 else
755                         return limit->p2.p2_slow;
756         } else {
757                 if (target < limit->p2.dot_limit)
758                         return limit->p2.p2_slow;
759                 else
760                         return limit->p2.p2_fast;
761         }
762 }
763
764 static bool
765 i9xx_find_best_dpll(const intel_limit_t *limit,
766                     struct intel_crtc_state *crtc_state,
767                     int target, int refclk, intel_clock_t *match_clock,
768                     intel_clock_t *best_clock)
769 {
770         struct drm_device *dev = crtc_state->base.crtc->dev;
771         intel_clock_t clock;
772         int err = target;
773
774         memset(best_clock, 0, sizeof(*best_clock));
775
776         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
777
778         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
779              clock.m1++) {
780                 for (clock.m2 = limit->m2.min;
781                      clock.m2 <= limit->m2.max; clock.m2++) {
782                         if (clock.m2 >= clock.m1)
783                                 break;
784                         for (clock.n = limit->n.min;
785                              clock.n <= limit->n.max; clock.n++) {
786                                 for (clock.p1 = limit->p1.min;
787                                         clock.p1 <= limit->p1.max; clock.p1++) {
788                                         int this_err;
789
790                                         i9xx_calc_dpll_params(refclk, &clock);
791                                         if (!intel_PLL_is_valid(dev, limit,
792                                                                 &clock))
793                                                 continue;
794                                         if (match_clock &&
795                                             clock.p != match_clock->p)
796                                                 continue;
797
798                                         this_err = abs(clock.dot - target);
799                                         if (this_err < err) {
800                                                 *best_clock = clock;
801                                                 err = this_err;
802                                         }
803                                 }
804                         }
805                 }
806         }
807
808         return (err != target);
809 }
810
811 static bool
812 pnv_find_best_dpll(const intel_limit_t *limit,
813                    struct intel_crtc_state *crtc_state,
814                    int target, int refclk, intel_clock_t *match_clock,
815                    intel_clock_t *best_clock)
816 {
817         struct drm_device *dev = crtc_state->base.crtc->dev;
818         intel_clock_t clock;
819         int err = target;
820
821         memset(best_clock, 0, sizeof(*best_clock));
822
823         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
824
825         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
826              clock.m1++) {
827                 for (clock.m2 = limit->m2.min;
828                      clock.m2 <= limit->m2.max; clock.m2++) {
829                         for (clock.n = limit->n.min;
830                              clock.n <= limit->n.max; clock.n++) {
831                                 for (clock.p1 = limit->p1.min;
832                                         clock.p1 <= limit->p1.max; clock.p1++) {
833                                         int this_err;
834
835                                         pnv_calc_dpll_params(refclk, &clock);
836                                         if (!intel_PLL_is_valid(dev, limit,
837                                                                 &clock))
838                                                 continue;
839                                         if (match_clock &&
840                                             clock.p != match_clock->p)
841                                                 continue;
842
843                                         this_err = abs(clock.dot - target);
844                                         if (this_err < err) {
845                                                 *best_clock = clock;
846                                                 err = this_err;
847                                         }
848                                 }
849                         }
850                 }
851         }
852
853         return (err != target);
854 }
855
856 static bool
857 g4x_find_best_dpll(const intel_limit_t *limit,
858                    struct intel_crtc_state *crtc_state,
859                    int target, int refclk, intel_clock_t *match_clock,
860                    intel_clock_t *best_clock)
861 {
862         struct drm_device *dev = crtc_state->base.crtc->dev;
863         intel_clock_t clock;
864         int max_n;
865         bool found = false;
866         /* approximately equals target * 0.00585 */
867         int err_most = (target >> 8) + (target >> 9);
868
869         memset(best_clock, 0, sizeof(*best_clock));
870
871         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
872
873         max_n = limit->n.max;
874         /* based on hardware requirement, prefer smaller n to precision */
875         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
876                 /* based on hardware requirement, prefere larger m1,m2 */
877                 for (clock.m1 = limit->m1.max;
878                      clock.m1 >= limit->m1.min; clock.m1--) {
879                         for (clock.m2 = limit->m2.max;
880                              clock.m2 >= limit->m2.min; clock.m2--) {
881                                 for (clock.p1 = limit->p1.max;
882                                      clock.p1 >= limit->p1.min; clock.p1--) {
883                                         int this_err;
884
885                                         i9xx_calc_dpll_params(refclk, &clock);
886                                         if (!intel_PLL_is_valid(dev, limit,
887                                                                 &clock))
888                                                 continue;
889
890                                         this_err = abs(clock.dot - target);
891                                         if (this_err < err_most) {
892                                                 *best_clock = clock;
893                                                 err_most = this_err;
894                                                 max_n = clock.n;
895                                                 found = true;
896                                         }
897                                 }
898                         }
899                 }
900         }
901         return found;
902 }
903
904 /*
905  * Check if the calculated PLL configuration is more optimal compared to the
906  * best configuration and error found so far. Return the calculated error.
907  */
908 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
909                                const intel_clock_t *calculated_clock,
910                                const intel_clock_t *best_clock,
911                                unsigned int best_error_ppm,
912                                unsigned int *error_ppm)
913 {
914         /*
915          * For CHV ignore the error and consider only the P value.
916          * Prefer a bigger P value based on HW requirements.
917          */
918         if (IS_CHERRYVIEW(dev)) {
919                 *error_ppm = 0;
920
921                 return calculated_clock->p > best_clock->p;
922         }
923
924         if (WARN_ON_ONCE(!target_freq))
925                 return false;
926
927         *error_ppm = div_u64(1000000ULL *
928                                 abs(target_freq - calculated_clock->dot),
929                              target_freq);
930         /*
931          * Prefer a better P value over a better (smaller) error if the error
932          * is small. Ensure this preference for future configurations too by
933          * setting the error to 0.
934          */
935         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
936                 *error_ppm = 0;
937
938                 return true;
939         }
940
941         return *error_ppm + 10 < best_error_ppm;
942 }
943
944 static bool
945 vlv_find_best_dpll(const intel_limit_t *limit,
946                    struct intel_crtc_state *crtc_state,
947                    int target, int refclk, intel_clock_t *match_clock,
948                    intel_clock_t *best_clock)
949 {
950         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
951         struct drm_device *dev = crtc->base.dev;
952         intel_clock_t clock;
953         unsigned int bestppm = 1000000;
954         /* min update 19.2 MHz */
955         int max_n = min(limit->n.max, refclk / 19200);
956         bool found = false;
957
958         target *= 5; /* fast clock */
959
960         memset(best_clock, 0, sizeof(*best_clock));
961
962         /* based on hardware requirement, prefer smaller n to precision */
963         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
964                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
965                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
966                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
967                                 clock.p = clock.p1 * clock.p2;
968                                 /* based on hardware requirement, prefer bigger m1,m2 values */
969                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
970                                         unsigned int ppm;
971
972                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
973                                                                      refclk * clock.m1);
974
975                                         vlv_calc_dpll_params(refclk, &clock);
976
977                                         if (!intel_PLL_is_valid(dev, limit,
978                                                                 &clock))
979                                                 continue;
980
981                                         if (!vlv_PLL_is_optimal(dev, target,
982                                                                 &clock,
983                                                                 best_clock,
984                                                                 bestppm, &ppm))
985                                                 continue;
986
987                                         *best_clock = clock;
988                                         bestppm = ppm;
989                                         found = true;
990                                 }
991                         }
992                 }
993         }
994
995         return found;
996 }
997
998 static bool
999 chv_find_best_dpll(const intel_limit_t *limit,
1000                    struct intel_crtc_state *crtc_state,
1001                    int target, int refclk, intel_clock_t *match_clock,
1002                    intel_clock_t *best_clock)
1003 {
1004         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1005         struct drm_device *dev = crtc->base.dev;
1006         unsigned int best_error_ppm;
1007         intel_clock_t clock;
1008         uint64_t m2;
1009         int found = false;
1010
1011         memset(best_clock, 0, sizeof(*best_clock));
1012         best_error_ppm = 1000000;
1013
1014         /*
1015          * Based on hardware doc, the n always set to 1, and m1 always
1016          * set to 2.  If requires to support 200Mhz refclk, we need to
1017          * revisit this because n may not 1 anymore.
1018          */
1019         clock.n = 1, clock.m1 = 2;
1020         target *= 5;    /* fast clock */
1021
1022         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1023                 for (clock.p2 = limit->p2.p2_fast;
1024                                 clock.p2 >= limit->p2.p2_slow;
1025                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1026                         unsigned int error_ppm;
1027
1028                         clock.p = clock.p1 * clock.p2;
1029
1030                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1031                                         clock.n) << 22, refclk * clock.m1);
1032
1033                         if (m2 > INT_MAX/clock.m1)
1034                                 continue;
1035
1036                         clock.m2 = m2;
1037
1038                         chv_calc_dpll_params(refclk, &clock);
1039
1040                         if (!intel_PLL_is_valid(dev, limit, &clock))
1041                                 continue;
1042
1043                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1044                                                 best_error_ppm, &error_ppm))
1045                                 continue;
1046
1047                         *best_clock = clock;
1048                         best_error_ppm = error_ppm;
1049                         found = true;
1050                 }
1051         }
1052
1053         return found;
1054 }
1055
1056 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1057                         intel_clock_t *best_clock)
1058 {
1059         int refclk = i9xx_get_refclk(crtc_state, 0);
1060
1061         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1062                                   target_clock, refclk, NULL, best_clock);
1063 }
1064
1065 bool intel_crtc_active(struct drm_crtc *crtc)
1066 {
1067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1068
1069         /* Be paranoid as we can arrive here with only partial
1070          * state retrieved from the hardware during setup.
1071          *
1072          * We can ditch the adjusted_mode.crtc_clock check as soon
1073          * as Haswell has gained clock readout/fastboot support.
1074          *
1075          * We can ditch the crtc->primary->fb check as soon as we can
1076          * properly reconstruct framebuffers.
1077          *
1078          * FIXME: The intel_crtc->active here should be switched to
1079          * crtc->state->active once we have proper CRTC states wired up
1080          * for atomic.
1081          */
1082         return intel_crtc->active && crtc->primary->state->fb &&
1083                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1084 }
1085
1086 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1087                                              enum pipe pipe)
1088 {
1089         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1090         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1091
1092         return intel_crtc->config->cpu_transcoder;
1093 }
1094
1095 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1096 {
1097         struct drm_i915_private *dev_priv = dev->dev_private;
1098         u32 reg = PIPEDSL(pipe);
1099         u32 line1, line2;
1100         u32 line_mask;
1101
1102         if (IS_GEN2(dev))
1103                 line_mask = DSL_LINEMASK_GEN2;
1104         else
1105                 line_mask = DSL_LINEMASK_GEN3;
1106
1107         line1 = I915_READ(reg) & line_mask;
1108         msleep(5);
1109         line2 = I915_READ(reg) & line_mask;
1110
1111         return line1 == line2;
1112 }
1113
1114 /*
1115  * intel_wait_for_pipe_off - wait for pipe to turn off
1116  * @crtc: crtc whose pipe to wait for
1117  *
1118  * After disabling a pipe, we can't wait for vblank in the usual way,
1119  * spinning on the vblank interrupt status bit, since we won't actually
1120  * see an interrupt when the pipe is disabled.
1121  *
1122  * On Gen4 and above:
1123  *   wait for the pipe register state bit to turn off
1124  *
1125  * Otherwise:
1126  *   wait for the display line value to settle (it usually
1127  *   ends up stopping at the start of the next frame).
1128  *
1129  */
1130 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1131 {
1132         struct drm_device *dev = crtc->base.dev;
1133         struct drm_i915_private *dev_priv = dev->dev_private;
1134         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1135         enum pipe pipe = crtc->pipe;
1136
1137         if (INTEL_INFO(dev)->gen >= 4) {
1138                 int reg = PIPECONF(cpu_transcoder);
1139
1140                 /* Wait for the Pipe State to go off */
1141                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1142                              100))
1143                         WARN(1, "pipe_off wait timed out\n");
1144         } else {
1145                 /* Wait for the display line to settle */
1146                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1147                         WARN(1, "pipe_off wait timed out\n");
1148         }
1149 }
1150
1151 static const char *state_string(bool enabled)
1152 {
1153         return enabled ? "on" : "off";
1154 }
1155
1156 /* Only for pre-ILK configs */
1157 void assert_pll(struct drm_i915_private *dev_priv,
1158                 enum pipe pipe, bool state)
1159 {
1160         u32 val;
1161         bool cur_state;
1162
1163         val = I915_READ(DPLL(pipe));
1164         cur_state = !!(val & DPLL_VCO_ENABLE);
1165         I915_STATE_WARN(cur_state != state,
1166              "PLL state assertion failure (expected %s, current %s)\n",
1167              state_string(state), state_string(cur_state));
1168 }
1169
1170 /* XXX: the dsi pll is shared between MIPI DSI ports */
1171 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1172 {
1173         u32 val;
1174         bool cur_state;
1175
1176         mutex_lock(&dev_priv->sb_lock);
1177         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1178         mutex_unlock(&dev_priv->sb_lock);
1179
1180         cur_state = val & DSI_PLL_VCO_EN;
1181         I915_STATE_WARN(cur_state != state,
1182              "DSI PLL state assertion failure (expected %s, current %s)\n",
1183              state_string(state), state_string(cur_state));
1184 }
1185 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1186 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1187
1188 struct intel_shared_dpll *
1189 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1190 {
1191         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1192
1193         if (crtc->config->shared_dpll < 0)
1194                 return NULL;
1195
1196         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1197 }
1198
1199 /* For ILK+ */
1200 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1201                         struct intel_shared_dpll *pll,
1202                         bool state)
1203 {
1204         bool cur_state;
1205         struct intel_dpll_hw_state hw_state;
1206
1207         if (WARN (!pll,
1208                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1209                 return;
1210
1211         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1212         I915_STATE_WARN(cur_state != state,
1213              "%s assertion failure (expected %s, current %s)\n",
1214              pll->name, state_string(state), state_string(cur_state));
1215 }
1216
1217 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1218                           enum pipe pipe, bool state)
1219 {
1220         bool cur_state;
1221         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1222                                                                       pipe);
1223
1224         if (HAS_DDI(dev_priv->dev)) {
1225                 /* DDI does not have a specific FDI_TX register */
1226                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1227                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1228         } else {
1229                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1230                 cur_state = !!(val & FDI_TX_ENABLE);
1231         }
1232         I915_STATE_WARN(cur_state != state,
1233              "FDI TX state assertion failure (expected %s, current %s)\n",
1234              state_string(state), state_string(cur_state));
1235 }
1236 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1237 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1238
1239 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1240                           enum pipe pipe, bool state)
1241 {
1242         u32 val;
1243         bool cur_state;
1244
1245         val = I915_READ(FDI_RX_CTL(pipe));
1246         cur_state = !!(val & FDI_RX_ENABLE);
1247         I915_STATE_WARN(cur_state != state,
1248              "FDI RX state assertion failure (expected %s, current %s)\n",
1249              state_string(state), state_string(cur_state));
1250 }
1251 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1252 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1253
1254 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1255                                       enum pipe pipe)
1256 {
1257         u32 val;
1258
1259         /* ILK FDI PLL is always enabled */
1260         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1261                 return;
1262
1263         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1264         if (HAS_DDI(dev_priv->dev))
1265                 return;
1266
1267         val = I915_READ(FDI_TX_CTL(pipe));
1268         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1269 }
1270
1271 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1272                        enum pipe pipe, bool state)
1273 {
1274         u32 val;
1275         bool cur_state;
1276
1277         val = I915_READ(FDI_RX_CTL(pipe));
1278         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1279         I915_STATE_WARN(cur_state != state,
1280              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1281              state_string(state), state_string(cur_state));
1282 }
1283
1284 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1285                            enum pipe pipe)
1286 {
1287         struct drm_device *dev = dev_priv->dev;
1288         int pp_reg;
1289         u32 val;
1290         enum pipe panel_pipe = PIPE_A;
1291         bool locked = true;
1292
1293         if (WARN_ON(HAS_DDI(dev)))
1294                 return;
1295
1296         if (HAS_PCH_SPLIT(dev)) {
1297                 u32 port_sel;
1298
1299                 pp_reg = PCH_PP_CONTROL;
1300                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1301
1302                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1303                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1304                         panel_pipe = PIPE_B;
1305                 /* XXX: else fix for eDP */
1306         } else if (IS_VALLEYVIEW(dev)) {
1307                 /* presumably write lock depends on pipe, not port select */
1308                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1309                 panel_pipe = pipe;
1310         } else {
1311                 pp_reg = PP_CONTROL;
1312                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1313                         panel_pipe = PIPE_B;
1314         }
1315
1316         val = I915_READ(pp_reg);
1317         if (!(val & PANEL_POWER_ON) ||
1318             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1319                 locked = false;
1320
1321         I915_STATE_WARN(panel_pipe == pipe && locked,
1322              "panel assertion failure, pipe %c regs locked\n",
1323              pipe_name(pipe));
1324 }
1325
1326 static void assert_cursor(struct drm_i915_private *dev_priv,
1327                           enum pipe pipe, bool state)
1328 {
1329         struct drm_device *dev = dev_priv->dev;
1330         bool cur_state;
1331
1332         if (IS_845G(dev) || IS_I865G(dev))
1333                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1334         else
1335                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1336
1337         I915_STATE_WARN(cur_state != state,
1338              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1339              pipe_name(pipe), state_string(state), state_string(cur_state));
1340 }
1341 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1342 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1343
1344 void assert_pipe(struct drm_i915_private *dev_priv,
1345                  enum pipe pipe, bool state)
1346 {
1347         bool cur_state;
1348         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1349                                                                       pipe);
1350
1351         /* if we need the pipe quirk it must be always on */
1352         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1353             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1354                 state = true;
1355
1356         if (!intel_display_power_is_enabled(dev_priv,
1357                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1358                 cur_state = false;
1359         } else {
1360                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1361                 cur_state = !!(val & PIPECONF_ENABLE);
1362         }
1363
1364         I915_STATE_WARN(cur_state != state,
1365              "pipe %c assertion failure (expected %s, current %s)\n",
1366              pipe_name(pipe), state_string(state), state_string(cur_state));
1367 }
1368
1369 static void assert_plane(struct drm_i915_private *dev_priv,
1370                          enum plane plane, bool state)
1371 {
1372         u32 val;
1373         bool cur_state;
1374
1375         val = I915_READ(DSPCNTR(plane));
1376         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1377         I915_STATE_WARN(cur_state != state,
1378              "plane %c assertion failure (expected %s, current %s)\n",
1379              plane_name(plane), state_string(state), state_string(cur_state));
1380 }
1381
1382 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1383 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1384
1385 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1386                                    enum pipe pipe)
1387 {
1388         struct drm_device *dev = dev_priv->dev;
1389         int i;
1390
1391         /* Primary planes are fixed to pipes on gen4+ */
1392         if (INTEL_INFO(dev)->gen >= 4) {
1393                 u32 val = I915_READ(DSPCNTR(pipe));
1394                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1395                      "plane %c assertion failure, should be disabled but not\n",
1396                      plane_name(pipe));
1397                 return;
1398         }
1399
1400         /* Need to check both planes against the pipe */
1401         for_each_pipe(dev_priv, i) {
1402                 u32 val = I915_READ(DSPCNTR(i));
1403                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1404                         DISPPLANE_SEL_PIPE_SHIFT;
1405                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1406                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1407                      plane_name(i), pipe_name(pipe));
1408         }
1409 }
1410
1411 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1412                                     enum pipe pipe)
1413 {
1414         struct drm_device *dev = dev_priv->dev;
1415         int sprite;
1416
1417         if (INTEL_INFO(dev)->gen >= 9) {
1418                 for_each_sprite(dev_priv, pipe, sprite) {
1419                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1420                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1421                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1422                              sprite, pipe_name(pipe));
1423                 }
1424         } else if (IS_VALLEYVIEW(dev)) {
1425                 for_each_sprite(dev_priv, pipe, sprite) {
1426                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1427                         I915_STATE_WARN(val & SP_ENABLE,
1428                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1429                              sprite_name(pipe, sprite), pipe_name(pipe));
1430                 }
1431         } else if (INTEL_INFO(dev)->gen >= 7) {
1432                 u32 val = I915_READ(SPRCTL(pipe));
1433                 I915_STATE_WARN(val & SPRITE_ENABLE,
1434                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1435                      plane_name(pipe), pipe_name(pipe));
1436         } else if (INTEL_INFO(dev)->gen >= 5) {
1437                 u32 val = I915_READ(DVSCNTR(pipe));
1438                 I915_STATE_WARN(val & DVS_ENABLE,
1439                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1440                      plane_name(pipe), pipe_name(pipe));
1441         }
1442 }
1443
1444 static void assert_vblank_disabled(struct drm_crtc *crtc)
1445 {
1446         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1447                 drm_crtc_vblank_put(crtc);
1448 }
1449
1450 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1451 {
1452         u32 val;
1453         bool enabled;
1454
1455         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1456
1457         val = I915_READ(PCH_DREF_CONTROL);
1458         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1459                             DREF_SUPERSPREAD_SOURCE_MASK));
1460         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1461 }
1462
1463 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1464                                            enum pipe pipe)
1465 {
1466         u32 val;
1467         bool enabled;
1468
1469         val = I915_READ(PCH_TRANSCONF(pipe));
1470         enabled = !!(val & TRANS_ENABLE);
1471         I915_STATE_WARN(enabled,
1472              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1473              pipe_name(pipe));
1474 }
1475
1476 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1477                             enum pipe pipe, u32 port_sel, u32 val)
1478 {
1479         if ((val & DP_PORT_EN) == 0)
1480                 return false;
1481
1482         if (HAS_PCH_CPT(dev_priv->dev)) {
1483                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1484                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1485                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1486                         return false;
1487         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1488                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1489                         return false;
1490         } else {
1491                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1492                         return false;
1493         }
1494         return true;
1495 }
1496
1497 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1498                               enum pipe pipe, u32 val)
1499 {
1500         if ((val & SDVO_ENABLE) == 0)
1501                 return false;
1502
1503         if (HAS_PCH_CPT(dev_priv->dev)) {
1504                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1505                         return false;
1506         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1507                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1508                         return false;
1509         } else {
1510                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1511                         return false;
1512         }
1513         return true;
1514 }
1515
1516 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1517                               enum pipe pipe, u32 val)
1518 {
1519         if ((val & LVDS_PORT_EN) == 0)
1520                 return false;
1521
1522         if (HAS_PCH_CPT(dev_priv->dev)) {
1523                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1524                         return false;
1525         } else {
1526                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1527                         return false;
1528         }
1529         return true;
1530 }
1531
1532 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1533                               enum pipe pipe, u32 val)
1534 {
1535         if ((val & ADPA_DAC_ENABLE) == 0)
1536                 return false;
1537         if (HAS_PCH_CPT(dev_priv->dev)) {
1538                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1539                         return false;
1540         } else {
1541                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1542                         return false;
1543         }
1544         return true;
1545 }
1546
1547 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1548                                    enum pipe pipe, int reg, u32 port_sel)
1549 {
1550         u32 val = I915_READ(reg);
1551         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1552              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1553              reg, pipe_name(pipe));
1554
1555         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1556              && (val & DP_PIPEB_SELECT),
1557              "IBX PCH dp port still using transcoder B\n");
1558 }
1559
1560 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1561                                      enum pipe pipe, int reg)
1562 {
1563         u32 val = I915_READ(reg);
1564         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1565              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1566              reg, pipe_name(pipe));
1567
1568         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1569              && (val & SDVO_PIPE_B_SELECT),
1570              "IBX PCH hdmi port still using transcoder B\n");
1571 }
1572
1573 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1574                                       enum pipe pipe)
1575 {
1576         u32 val;
1577
1578         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1579         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1580         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1581
1582         val = I915_READ(PCH_ADPA);
1583         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1584              "PCH VGA enabled on transcoder %c, should be disabled\n",
1585              pipe_name(pipe));
1586
1587         val = I915_READ(PCH_LVDS);
1588         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1589              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1590              pipe_name(pipe));
1591
1592         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1593         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1594         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1595 }
1596
1597 static void vlv_enable_pll(struct intel_crtc *crtc,
1598                            const struct intel_crtc_state *pipe_config)
1599 {
1600         struct drm_device *dev = crtc->base.dev;
1601         struct drm_i915_private *dev_priv = dev->dev_private;
1602         int reg = DPLL(crtc->pipe);
1603         u32 dpll = pipe_config->dpll_hw_state.dpll;
1604
1605         assert_pipe_disabled(dev_priv, crtc->pipe);
1606
1607         /* No really, not for ILK+ */
1608         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1609
1610         /* PLL is protected by panel, make sure we can write it */
1611         if (IS_MOBILE(dev_priv->dev))
1612                 assert_panel_unlocked(dev_priv, crtc->pipe);
1613
1614         I915_WRITE(reg, dpll);
1615         POSTING_READ(reg);
1616         udelay(150);
1617
1618         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1619                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1620
1621         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1622         POSTING_READ(DPLL_MD(crtc->pipe));
1623
1624         /* We do this three times for luck */
1625         I915_WRITE(reg, dpll);
1626         POSTING_READ(reg);
1627         udelay(150); /* wait for warmup */
1628         I915_WRITE(reg, dpll);
1629         POSTING_READ(reg);
1630         udelay(150); /* wait for warmup */
1631         I915_WRITE(reg, dpll);
1632         POSTING_READ(reg);
1633         udelay(150); /* wait for warmup */
1634 }
1635
1636 static void chv_enable_pll(struct intel_crtc *crtc,
1637                            const struct intel_crtc_state *pipe_config)
1638 {
1639         struct drm_device *dev = crtc->base.dev;
1640         struct drm_i915_private *dev_priv = dev->dev_private;
1641         int pipe = crtc->pipe;
1642         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1643         u32 tmp;
1644
1645         assert_pipe_disabled(dev_priv, crtc->pipe);
1646
1647         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1648
1649         mutex_lock(&dev_priv->sb_lock);
1650
1651         /* Enable back the 10bit clock to display controller */
1652         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1653         tmp |= DPIO_DCLKP_EN;
1654         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1655
1656         mutex_unlock(&dev_priv->sb_lock);
1657
1658         /*
1659          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1660          */
1661         udelay(1);
1662
1663         /* Enable PLL */
1664         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1665
1666         /* Check PLL is locked */
1667         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1668                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1669
1670         /* not sure when this should be written */
1671         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1672         POSTING_READ(DPLL_MD(pipe));
1673 }
1674
1675 static int intel_num_dvo_pipes(struct drm_device *dev)
1676 {
1677         struct intel_crtc *crtc;
1678         int count = 0;
1679
1680         for_each_intel_crtc(dev, crtc)
1681                 count += crtc->base.state->active &&
1682                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1683
1684         return count;
1685 }
1686
1687 static void i9xx_enable_pll(struct intel_crtc *crtc)
1688 {
1689         struct drm_device *dev = crtc->base.dev;
1690         struct drm_i915_private *dev_priv = dev->dev_private;
1691         int reg = DPLL(crtc->pipe);
1692         u32 dpll = crtc->config->dpll_hw_state.dpll;
1693
1694         assert_pipe_disabled(dev_priv, crtc->pipe);
1695
1696         /* No really, not for ILK+ */
1697         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1698
1699         /* PLL is protected by panel, make sure we can write it */
1700         if (IS_MOBILE(dev) && !IS_I830(dev))
1701                 assert_panel_unlocked(dev_priv, crtc->pipe);
1702
1703         /* Enable DVO 2x clock on both PLLs if necessary */
1704         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1705                 /*
1706                  * It appears to be important that we don't enable this
1707                  * for the current pipe before otherwise configuring the
1708                  * PLL. No idea how this should be handled if multiple
1709                  * DVO outputs are enabled simultaneosly.
1710                  */
1711                 dpll |= DPLL_DVO_2X_MODE;
1712                 I915_WRITE(DPLL(!crtc->pipe),
1713                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1714         }
1715
1716         /*
1717          * Apparently we need to have VGA mode enabled prior to changing
1718          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1719          * dividers, even though the register value does change.
1720          */
1721         I915_WRITE(reg, 0);
1722
1723         I915_WRITE(reg, dpll);
1724
1725         /* Wait for the clocks to stabilize. */
1726         POSTING_READ(reg);
1727         udelay(150);
1728
1729         if (INTEL_INFO(dev)->gen >= 4) {
1730                 I915_WRITE(DPLL_MD(crtc->pipe),
1731                            crtc->config->dpll_hw_state.dpll_md);
1732         } else {
1733                 /* The pixel multiplier can only be updated once the
1734                  * DPLL is enabled and the clocks are stable.
1735                  *
1736                  * So write it again.
1737                  */
1738                 I915_WRITE(reg, dpll);
1739         }
1740
1741         /* We do this three times for luck */
1742         I915_WRITE(reg, dpll);
1743         POSTING_READ(reg);
1744         udelay(150); /* wait for warmup */
1745         I915_WRITE(reg, dpll);
1746         POSTING_READ(reg);
1747         udelay(150); /* wait for warmup */
1748         I915_WRITE(reg, dpll);
1749         POSTING_READ(reg);
1750         udelay(150); /* wait for warmup */
1751 }
1752
1753 /**
1754  * i9xx_disable_pll - disable a PLL
1755  * @dev_priv: i915 private structure
1756  * @pipe: pipe PLL to disable
1757  *
1758  * Disable the PLL for @pipe, making sure the pipe is off first.
1759  *
1760  * Note!  This is for pre-ILK only.
1761  */
1762 static void i9xx_disable_pll(struct intel_crtc *crtc)
1763 {
1764         struct drm_device *dev = crtc->base.dev;
1765         struct drm_i915_private *dev_priv = dev->dev_private;
1766         enum pipe pipe = crtc->pipe;
1767
1768         /* Disable DVO 2x clock on both PLLs if necessary */
1769         if (IS_I830(dev) &&
1770             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1771             !intel_num_dvo_pipes(dev)) {
1772                 I915_WRITE(DPLL(PIPE_B),
1773                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1774                 I915_WRITE(DPLL(PIPE_A),
1775                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1776         }
1777
1778         /* Don't disable pipe or pipe PLLs if needed */
1779         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1780             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1781                 return;
1782
1783         /* Make sure the pipe isn't still relying on us */
1784         assert_pipe_disabled(dev_priv, pipe);
1785
1786         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1787         POSTING_READ(DPLL(pipe));
1788 }
1789
1790 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1791 {
1792         u32 val;
1793
1794         /* Make sure the pipe isn't still relying on us */
1795         assert_pipe_disabled(dev_priv, pipe);
1796
1797         /*
1798          * Leave integrated clock source and reference clock enabled for pipe B.
1799          * The latter is needed for VGA hotplug / manual detection.
1800          */
1801         val = DPLL_VGA_MODE_DIS;
1802         if (pipe == PIPE_B)
1803                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1804         I915_WRITE(DPLL(pipe), val);
1805         POSTING_READ(DPLL(pipe));
1806
1807 }
1808
1809 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1810 {
1811         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1812         u32 val;
1813
1814         /* Make sure the pipe isn't still relying on us */
1815         assert_pipe_disabled(dev_priv, pipe);
1816
1817         /* Set PLL en = 0 */
1818         val = DPLL_SSC_REF_CLK_CHV |
1819                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1820         if (pipe != PIPE_A)
1821                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1822         I915_WRITE(DPLL(pipe), val);
1823         POSTING_READ(DPLL(pipe));
1824
1825         mutex_lock(&dev_priv->sb_lock);
1826
1827         /* Disable 10bit clock to display controller */
1828         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1829         val &= ~DPIO_DCLKP_EN;
1830         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1831
1832         mutex_unlock(&dev_priv->sb_lock);
1833 }
1834
1835 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1836                          struct intel_digital_port *dport,
1837                          unsigned int expected_mask)
1838 {
1839         u32 port_mask;
1840         int dpll_reg;
1841
1842         switch (dport->port) {
1843         case PORT_B:
1844                 port_mask = DPLL_PORTB_READY_MASK;
1845                 dpll_reg = DPLL(0);
1846                 break;
1847         case PORT_C:
1848                 port_mask = DPLL_PORTC_READY_MASK;
1849                 dpll_reg = DPLL(0);
1850                 expected_mask <<= 4;
1851                 break;
1852         case PORT_D:
1853                 port_mask = DPLL_PORTD_READY_MASK;
1854                 dpll_reg = DPIO_PHY_STATUS;
1855                 break;
1856         default:
1857                 BUG();
1858         }
1859
1860         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1861                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1862                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1863 }
1864
1865 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1866 {
1867         struct drm_device *dev = crtc->base.dev;
1868         struct drm_i915_private *dev_priv = dev->dev_private;
1869         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1870
1871         if (WARN_ON(pll == NULL))
1872                 return;
1873
1874         WARN_ON(!pll->config.crtc_mask);
1875         if (pll->active == 0) {
1876                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1877                 WARN_ON(pll->on);
1878                 assert_shared_dpll_disabled(dev_priv, pll);
1879
1880                 pll->mode_set(dev_priv, pll);
1881         }
1882 }
1883
1884 /**
1885  * intel_enable_shared_dpll - enable PCH PLL
1886  * @dev_priv: i915 private structure
1887  * @pipe: pipe PLL to enable
1888  *
1889  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1890  * drives the transcoder clock.
1891  */
1892 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1893 {
1894         struct drm_device *dev = crtc->base.dev;
1895         struct drm_i915_private *dev_priv = dev->dev_private;
1896         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1897
1898         if (WARN_ON(pll == NULL))
1899                 return;
1900
1901         if (WARN_ON(pll->config.crtc_mask == 0))
1902                 return;
1903
1904         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1905                       pll->name, pll->active, pll->on,
1906                       crtc->base.base.id);
1907
1908         if (pll->active++) {
1909                 WARN_ON(!pll->on);
1910                 assert_shared_dpll_enabled(dev_priv, pll);
1911                 return;
1912         }
1913         WARN_ON(pll->on);
1914
1915         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1916
1917         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1918         pll->enable(dev_priv, pll);
1919         pll->on = true;
1920 }
1921
1922 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1923 {
1924         struct drm_device *dev = crtc->base.dev;
1925         struct drm_i915_private *dev_priv = dev->dev_private;
1926         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1927
1928         /* PCH only available on ILK+ */
1929         if (INTEL_INFO(dev)->gen < 5)
1930                 return;
1931
1932         if (pll == NULL)
1933                 return;
1934
1935         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1936                 return;
1937
1938         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1939                       pll->name, pll->active, pll->on,
1940                       crtc->base.base.id);
1941
1942         if (WARN_ON(pll->active == 0)) {
1943                 assert_shared_dpll_disabled(dev_priv, pll);
1944                 return;
1945         }
1946
1947         assert_shared_dpll_enabled(dev_priv, pll);
1948         WARN_ON(!pll->on);
1949         if (--pll->active)
1950                 return;
1951
1952         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1953         pll->disable(dev_priv, pll);
1954         pll->on = false;
1955
1956         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1957 }
1958
1959 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1960                                            enum pipe pipe)
1961 {
1962         struct drm_device *dev = dev_priv->dev;
1963         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1964         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1965         uint32_t reg, val, pipeconf_val;
1966
1967         /* PCH only available on ILK+ */
1968         BUG_ON(!HAS_PCH_SPLIT(dev));
1969
1970         /* Make sure PCH DPLL is enabled */
1971         assert_shared_dpll_enabled(dev_priv,
1972                                    intel_crtc_to_shared_dpll(intel_crtc));
1973
1974         /* FDI must be feeding us bits for PCH ports */
1975         assert_fdi_tx_enabled(dev_priv, pipe);
1976         assert_fdi_rx_enabled(dev_priv, pipe);
1977
1978         if (HAS_PCH_CPT(dev)) {
1979                 /* Workaround: Set the timing override bit before enabling the
1980                  * pch transcoder. */
1981                 reg = TRANS_CHICKEN2(pipe);
1982                 val = I915_READ(reg);
1983                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1984                 I915_WRITE(reg, val);
1985         }
1986
1987         reg = PCH_TRANSCONF(pipe);
1988         val = I915_READ(reg);
1989         pipeconf_val = I915_READ(PIPECONF(pipe));
1990
1991         if (HAS_PCH_IBX(dev_priv->dev)) {
1992                 /*
1993                  * Make the BPC in transcoder be consistent with
1994                  * that in pipeconf reg. For HDMI we must use 8bpc
1995                  * here for both 8bpc and 12bpc.
1996                  */
1997                 val &= ~PIPECONF_BPC_MASK;
1998                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1999                         val |= PIPECONF_8BPC;
2000                 else
2001                         val |= pipeconf_val & PIPECONF_BPC_MASK;
2002         }
2003
2004         val &= ~TRANS_INTERLACE_MASK;
2005         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2006                 if (HAS_PCH_IBX(dev_priv->dev) &&
2007                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2008                         val |= TRANS_LEGACY_INTERLACED_ILK;
2009                 else
2010                         val |= TRANS_INTERLACED;
2011         else
2012                 val |= TRANS_PROGRESSIVE;
2013
2014         I915_WRITE(reg, val | TRANS_ENABLE);
2015         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2016                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2017 }
2018
2019 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2020                                       enum transcoder cpu_transcoder)
2021 {
2022         u32 val, pipeconf_val;
2023
2024         /* PCH only available on ILK+ */
2025         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2026
2027         /* FDI must be feeding us bits for PCH ports */
2028         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2029         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2030
2031         /* Workaround: set timing override bit. */
2032         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2033         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2034         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2035
2036         val = TRANS_ENABLE;
2037         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2038
2039         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2040             PIPECONF_INTERLACED_ILK)
2041                 val |= TRANS_INTERLACED;
2042         else
2043                 val |= TRANS_PROGRESSIVE;
2044
2045         I915_WRITE(LPT_TRANSCONF, val);
2046         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2047                 DRM_ERROR("Failed to enable PCH transcoder\n");
2048 }
2049
2050 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2051                                             enum pipe pipe)
2052 {
2053         struct drm_device *dev = dev_priv->dev;
2054         uint32_t reg, val;
2055
2056         /* FDI relies on the transcoder */
2057         assert_fdi_tx_disabled(dev_priv, pipe);
2058         assert_fdi_rx_disabled(dev_priv, pipe);
2059
2060         /* Ports must be off as well */
2061         assert_pch_ports_disabled(dev_priv, pipe);
2062
2063         reg = PCH_TRANSCONF(pipe);
2064         val = I915_READ(reg);
2065         val &= ~TRANS_ENABLE;
2066         I915_WRITE(reg, val);
2067         /* wait for PCH transcoder off, transcoder state */
2068         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2069                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2070
2071         if (!HAS_PCH_IBX(dev)) {
2072                 /* Workaround: Clear the timing override chicken bit again. */
2073                 reg = TRANS_CHICKEN2(pipe);
2074                 val = I915_READ(reg);
2075                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2076                 I915_WRITE(reg, val);
2077         }
2078 }
2079
2080 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2081 {
2082         u32 val;
2083
2084         val = I915_READ(LPT_TRANSCONF);
2085         val &= ~TRANS_ENABLE;
2086         I915_WRITE(LPT_TRANSCONF, val);
2087         /* wait for PCH transcoder off, transcoder state */
2088         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2089                 DRM_ERROR("Failed to disable PCH transcoder\n");
2090
2091         /* Workaround: clear timing override bit. */
2092         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2093         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2094         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2095 }
2096
2097 /**
2098  * intel_enable_pipe - enable a pipe, asserting requirements
2099  * @crtc: crtc responsible for the pipe
2100  *
2101  * Enable @crtc's pipe, making sure that various hardware specific requirements
2102  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2103  */
2104 static void intel_enable_pipe(struct intel_crtc *crtc)
2105 {
2106         struct drm_device *dev = crtc->base.dev;
2107         struct drm_i915_private *dev_priv = dev->dev_private;
2108         enum pipe pipe = crtc->pipe;
2109         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2110                                                                       pipe);
2111         enum pipe pch_transcoder;
2112         int reg;
2113         u32 val;
2114
2115         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2116
2117         assert_planes_disabled(dev_priv, pipe);
2118         assert_cursor_disabled(dev_priv, pipe);
2119         assert_sprites_disabled(dev_priv, pipe);
2120
2121         if (HAS_PCH_LPT(dev_priv->dev))
2122                 pch_transcoder = TRANSCODER_A;
2123         else
2124                 pch_transcoder = pipe;
2125
2126         /*
2127          * A pipe without a PLL won't actually be able to drive bits from
2128          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2129          * need the check.
2130          */
2131         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2132                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2133                         assert_dsi_pll_enabled(dev_priv);
2134                 else
2135                         assert_pll_enabled(dev_priv, pipe);
2136         else {
2137                 if (crtc->config->has_pch_encoder) {
2138                         /* if driving the PCH, we need FDI enabled */
2139                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2140                         assert_fdi_tx_pll_enabled(dev_priv,
2141                                                   (enum pipe) cpu_transcoder);
2142                 }
2143                 /* FIXME: assert CPU port conditions for SNB+ */
2144         }
2145
2146         reg = PIPECONF(cpu_transcoder);
2147         val = I915_READ(reg);
2148         if (val & PIPECONF_ENABLE) {
2149                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2150                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2151                 return;
2152         }
2153
2154         I915_WRITE(reg, val | PIPECONF_ENABLE);
2155         POSTING_READ(reg);
2156 }
2157
2158 /**
2159  * intel_disable_pipe - disable a pipe, asserting requirements
2160  * @crtc: crtc whose pipes is to be disabled
2161  *
2162  * Disable the pipe of @crtc, making sure that various hardware
2163  * specific requirements are met, if applicable, e.g. plane
2164  * disabled, panel fitter off, etc.
2165  *
2166  * Will wait until the pipe has shut down before returning.
2167  */
2168 static void intel_disable_pipe(struct intel_crtc *crtc)
2169 {
2170         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2171         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2172         enum pipe pipe = crtc->pipe;
2173         int reg;
2174         u32 val;
2175
2176         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2177
2178         /*
2179          * Make sure planes won't keep trying to pump pixels to us,
2180          * or we might hang the display.
2181          */
2182         assert_planes_disabled(dev_priv, pipe);
2183         assert_cursor_disabled(dev_priv, pipe);
2184         assert_sprites_disabled(dev_priv, pipe);
2185
2186         reg = PIPECONF(cpu_transcoder);
2187         val = I915_READ(reg);
2188         if ((val & PIPECONF_ENABLE) == 0)
2189                 return;
2190
2191         /*
2192          * Double wide has implications for planes
2193          * so best keep it disabled when not needed.
2194          */
2195         if (crtc->config->double_wide)
2196                 val &= ~PIPECONF_DOUBLE_WIDE;
2197
2198         /* Don't disable pipe or pipe PLLs if needed */
2199         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2200             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2201                 val &= ~PIPECONF_ENABLE;
2202
2203         I915_WRITE(reg, val);
2204         if ((val & PIPECONF_ENABLE) == 0)
2205                 intel_wait_for_pipe_off(crtc);
2206 }
2207
2208 static bool need_vtd_wa(struct drm_device *dev)
2209 {
2210 #ifdef CONFIG_INTEL_IOMMU
2211         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2212                 return true;
2213 #endif
2214         return false;
2215 }
2216
2217 unsigned int
2218 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2219                   uint64_t fb_format_modifier, unsigned int plane)
2220 {
2221         unsigned int tile_height;
2222         uint32_t pixel_bytes;
2223
2224         switch (fb_format_modifier) {
2225         case DRM_FORMAT_MOD_NONE:
2226                 tile_height = 1;
2227                 break;
2228         case I915_FORMAT_MOD_X_TILED:
2229                 tile_height = IS_GEN2(dev) ? 16 : 8;
2230                 break;
2231         case I915_FORMAT_MOD_Y_TILED:
2232                 tile_height = 32;
2233                 break;
2234         case I915_FORMAT_MOD_Yf_TILED:
2235                 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2236                 switch (pixel_bytes) {
2237                 default:
2238                 case 1:
2239                         tile_height = 64;
2240                         break;
2241                 case 2:
2242                 case 4:
2243                         tile_height = 32;
2244                         break;
2245                 case 8:
2246                         tile_height = 16;
2247                         break;
2248                 case 16:
2249                         WARN_ONCE(1,
2250                                   "128-bit pixels are not supported for display!");
2251                         tile_height = 16;
2252                         break;
2253                 }
2254                 break;
2255         default:
2256                 MISSING_CASE(fb_format_modifier);
2257                 tile_height = 1;
2258                 break;
2259         }
2260
2261         return tile_height;
2262 }
2263
2264 unsigned int
2265 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2266                       uint32_t pixel_format, uint64_t fb_format_modifier)
2267 {
2268         return ALIGN(height, intel_tile_height(dev, pixel_format,
2269                                                fb_format_modifier, 0));
2270 }
2271
2272 static int
2273 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2274                         const struct drm_plane_state *plane_state)
2275 {
2276         struct intel_rotation_info *info = &view->rotation_info;
2277         unsigned int tile_height, tile_pitch;
2278
2279         *view = i915_ggtt_view_normal;
2280
2281         if (!plane_state)
2282                 return 0;
2283
2284         if (!intel_rotation_90_or_270(plane_state->rotation))
2285                 return 0;
2286
2287         *view = i915_ggtt_view_rotated;
2288
2289         info->height = fb->height;
2290         info->pixel_format = fb->pixel_format;
2291         info->pitch = fb->pitches[0];
2292         info->uv_offset = fb->offsets[1];
2293         info->fb_modifier = fb->modifier[0];
2294
2295         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2296                                         fb->modifier[0], 0);
2297         tile_pitch = PAGE_SIZE / tile_height;
2298         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2299         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2300         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2301
2302         if (info->pixel_format == DRM_FORMAT_NV12) {
2303                 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2304                                                 fb->modifier[0], 1);
2305                 tile_pitch = PAGE_SIZE / tile_height;
2306                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2307                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2308                                                      tile_height);
2309                 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2310                                 PAGE_SIZE;
2311         }
2312
2313         return 0;
2314 }
2315
2316 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2317 {
2318         if (INTEL_INFO(dev_priv)->gen >= 9)
2319                 return 256 * 1024;
2320         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2321                  IS_VALLEYVIEW(dev_priv))
2322                 return 128 * 1024;
2323         else if (INTEL_INFO(dev_priv)->gen >= 4)
2324                 return 4 * 1024;
2325         else
2326                 return 0;
2327 }
2328
2329 int
2330 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2331                            struct drm_framebuffer *fb,
2332                            const struct drm_plane_state *plane_state,
2333                            struct intel_engine_cs *pipelined,
2334                            struct drm_i915_gem_request **pipelined_request)
2335 {
2336         struct drm_device *dev = fb->dev;
2337         struct drm_i915_private *dev_priv = dev->dev_private;
2338         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2339         struct i915_ggtt_view view;
2340         u32 alignment;
2341         int ret;
2342
2343         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2344
2345         switch (fb->modifier[0]) {
2346         case DRM_FORMAT_MOD_NONE:
2347                 alignment = intel_linear_alignment(dev_priv);
2348                 break;
2349         case I915_FORMAT_MOD_X_TILED:
2350                 if (INTEL_INFO(dev)->gen >= 9)
2351                         alignment = 256 * 1024;
2352                 else {
2353                         /* pin() will align the object as required by fence */
2354                         alignment = 0;
2355                 }
2356                 break;
2357         case I915_FORMAT_MOD_Y_TILED:
2358         case I915_FORMAT_MOD_Yf_TILED:
2359                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2360                           "Y tiling bo slipped through, driver bug!\n"))
2361                         return -EINVAL;
2362                 alignment = 1 * 1024 * 1024;
2363                 break;
2364         default:
2365                 MISSING_CASE(fb->modifier[0]);
2366                 return -EINVAL;
2367         }
2368
2369         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2370         if (ret)
2371                 return ret;
2372
2373         /* Note that the w/a also requires 64 PTE of padding following the
2374          * bo. We currently fill all unused PTE with the shadow page and so
2375          * we should always have valid PTE following the scanout preventing
2376          * the VT-d warning.
2377          */
2378         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2379                 alignment = 256 * 1024;
2380
2381         /*
2382          * Global gtt pte registers are special registers which actually forward
2383          * writes to a chunk of system memory. Which means that there is no risk
2384          * that the register values disappear as soon as we call
2385          * intel_runtime_pm_put(), so it is correct to wrap only the
2386          * pin/unpin/fence and not more.
2387          */
2388         intel_runtime_pm_get(dev_priv);
2389
2390         dev_priv->mm.interruptible = false;
2391         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2392                                                    pipelined_request, &view);
2393         if (ret)
2394                 goto err_interruptible;
2395
2396         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2397          * fence, whereas 965+ only requires a fence if using
2398          * framebuffer compression.  For simplicity, we always install
2399          * a fence as the cost is not that onerous.
2400          */
2401         if (view.type == I915_GGTT_VIEW_NORMAL) {
2402                 ret = i915_gem_object_get_fence(obj);
2403                 if (ret == -EDEADLK) {
2404                         /*
2405                          * -EDEADLK means there are no free fences
2406                          * no pending flips.
2407                          *
2408                          * This is propagated to atomic, but it uses
2409                          * -EDEADLK to force a locking recovery, so
2410                          * change the returned error to -EBUSY.
2411                          */
2412                         ret = -EBUSY;
2413                         goto err_unpin;
2414                 } else if (ret)
2415                         goto err_unpin;
2416
2417                 i915_gem_object_pin_fence(obj);
2418         }
2419
2420         dev_priv->mm.interruptible = true;
2421         intel_runtime_pm_put(dev_priv);
2422         return 0;
2423
2424 err_unpin:
2425         i915_gem_object_unpin_from_display_plane(obj, &view);
2426 err_interruptible:
2427         dev_priv->mm.interruptible = true;
2428         intel_runtime_pm_put(dev_priv);
2429         return ret;
2430 }
2431
2432 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2433                                const struct drm_plane_state *plane_state)
2434 {
2435         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2436         struct i915_ggtt_view view;
2437         int ret;
2438
2439         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2440
2441         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2442         WARN_ONCE(ret, "Couldn't get view from plane state!");
2443
2444         if (view.type == I915_GGTT_VIEW_NORMAL)
2445                 i915_gem_object_unpin_fence(obj);
2446
2447         i915_gem_object_unpin_from_display_plane(obj, &view);
2448 }
2449
2450 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2451  * is assumed to be a power-of-two. */
2452 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2453                                              int *x, int *y,
2454                                              unsigned int tiling_mode,
2455                                              unsigned int cpp,
2456                                              unsigned int pitch)
2457 {
2458         if (tiling_mode != I915_TILING_NONE) {
2459                 unsigned int tile_rows, tiles;
2460
2461                 tile_rows = *y / 8;
2462                 *y %= 8;
2463
2464                 tiles = *x / (512/cpp);
2465                 *x %= 512/cpp;
2466
2467                 return tile_rows * pitch * 8 + tiles * 4096;
2468         } else {
2469                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2470                 unsigned int offset;
2471
2472                 offset = *y * pitch + *x * cpp;
2473                 *y = (offset & alignment) / pitch;
2474                 *x = ((offset & alignment) - *y * pitch) / cpp;
2475                 return offset & ~alignment;
2476         }
2477 }
2478
2479 static int i9xx_format_to_fourcc(int format)
2480 {
2481         switch (format) {
2482         case DISPPLANE_8BPP:
2483                 return DRM_FORMAT_C8;
2484         case DISPPLANE_BGRX555:
2485                 return DRM_FORMAT_XRGB1555;
2486         case DISPPLANE_BGRX565:
2487                 return DRM_FORMAT_RGB565;
2488         default:
2489         case DISPPLANE_BGRX888:
2490                 return DRM_FORMAT_XRGB8888;
2491         case DISPPLANE_RGBX888:
2492                 return DRM_FORMAT_XBGR8888;
2493         case DISPPLANE_BGRX101010:
2494                 return DRM_FORMAT_XRGB2101010;
2495         case DISPPLANE_RGBX101010:
2496                 return DRM_FORMAT_XBGR2101010;
2497         }
2498 }
2499
2500 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2501 {
2502         switch (format) {
2503         case PLANE_CTL_FORMAT_RGB_565:
2504                 return DRM_FORMAT_RGB565;
2505         default:
2506         case PLANE_CTL_FORMAT_XRGB_8888:
2507                 if (rgb_order) {
2508                         if (alpha)
2509                                 return DRM_FORMAT_ABGR8888;
2510                         else
2511                                 return DRM_FORMAT_XBGR8888;
2512                 } else {
2513                         if (alpha)
2514                                 return DRM_FORMAT_ARGB8888;
2515                         else
2516                                 return DRM_FORMAT_XRGB8888;
2517                 }
2518         case PLANE_CTL_FORMAT_XRGB_2101010:
2519                 if (rgb_order)
2520                         return DRM_FORMAT_XBGR2101010;
2521                 else
2522                         return DRM_FORMAT_XRGB2101010;
2523         }
2524 }
2525
2526 static bool
2527 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2528                               struct intel_initial_plane_config *plane_config)
2529 {
2530         struct drm_device *dev = crtc->base.dev;
2531         struct drm_i915_private *dev_priv = to_i915(dev);
2532         struct drm_i915_gem_object *obj = NULL;
2533         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2534         struct drm_framebuffer *fb = &plane_config->fb->base;
2535         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2536         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2537                                     PAGE_SIZE);
2538
2539         size_aligned -= base_aligned;
2540
2541         if (plane_config->size == 0)
2542                 return false;
2543
2544         /* If the FB is too big, just don't use it since fbdev is not very
2545          * important and we should probably use that space with FBC or other
2546          * features. */
2547         if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2548                 return false;
2549
2550         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2551                                                              base_aligned,
2552                                                              base_aligned,
2553                                                              size_aligned);
2554         if (!obj)
2555                 return false;
2556
2557         obj->tiling_mode = plane_config->tiling;
2558         if (obj->tiling_mode == I915_TILING_X)
2559                 obj->stride = fb->pitches[0];
2560
2561         mode_cmd.pixel_format = fb->pixel_format;
2562         mode_cmd.width = fb->width;
2563         mode_cmd.height = fb->height;
2564         mode_cmd.pitches[0] = fb->pitches[0];
2565         mode_cmd.modifier[0] = fb->modifier[0];
2566         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2567
2568         mutex_lock(&dev->struct_mutex);
2569         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2570                                    &mode_cmd, obj)) {
2571                 DRM_DEBUG_KMS("intel fb init failed\n");
2572                 goto out_unref_obj;
2573         }
2574         mutex_unlock(&dev->struct_mutex);
2575
2576         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2577         return true;
2578
2579 out_unref_obj:
2580         drm_gem_object_unreference(&obj->base);
2581         mutex_unlock(&dev->struct_mutex);
2582         return false;
2583 }
2584
2585 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2586 static void
2587 update_state_fb(struct drm_plane *plane)
2588 {
2589         if (plane->fb == plane->state->fb)
2590                 return;
2591
2592         if (plane->state->fb)
2593                 drm_framebuffer_unreference(plane->state->fb);
2594         plane->state->fb = plane->fb;
2595         if (plane->state->fb)
2596                 drm_framebuffer_reference(plane->state->fb);
2597 }
2598
2599 static void
2600 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2601                              struct intel_initial_plane_config *plane_config)
2602 {
2603         struct drm_device *dev = intel_crtc->base.dev;
2604         struct drm_i915_private *dev_priv = dev->dev_private;
2605         struct drm_crtc *c;
2606         struct intel_crtc *i;
2607         struct drm_i915_gem_object *obj;
2608         struct drm_plane *primary = intel_crtc->base.primary;
2609         struct drm_plane_state *plane_state = primary->state;
2610         struct drm_framebuffer *fb;
2611
2612         if (!plane_config->fb)
2613                 return;
2614
2615         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2616                 fb = &plane_config->fb->base;
2617                 goto valid_fb;
2618         }
2619
2620         kfree(plane_config->fb);
2621
2622         /*
2623          * Failed to alloc the obj, check to see if we should share
2624          * an fb with another CRTC instead
2625          */
2626         for_each_crtc(dev, c) {
2627                 i = to_intel_crtc(c);
2628
2629                 if (c == &intel_crtc->base)
2630                         continue;
2631
2632                 if (!i->active)
2633                         continue;
2634
2635                 fb = c->primary->fb;
2636                 if (!fb)
2637                         continue;
2638
2639                 obj = intel_fb_obj(fb);
2640                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2641                         drm_framebuffer_reference(fb);
2642                         goto valid_fb;
2643                 }
2644         }
2645
2646         return;
2647
2648 valid_fb:
2649         plane_state->src_x = 0;
2650         plane_state->src_y = 0;
2651         plane_state->src_w = fb->width << 16;
2652         plane_state->src_h = fb->height << 16;
2653
2654         plane_state->crtc_x = 0;
2655         plane_state->crtc_y = 0;
2656         plane_state->crtc_w = fb->width;
2657         plane_state->crtc_h = fb->height;
2658
2659         obj = intel_fb_obj(fb);
2660         if (obj->tiling_mode != I915_TILING_NONE)
2661                 dev_priv->preserve_bios_swizzle = true;
2662
2663         drm_framebuffer_reference(fb);
2664         primary->fb = primary->state->fb = fb;
2665         primary->crtc = primary->state->crtc = &intel_crtc->base;
2666         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2667         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2668 }
2669
2670 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2671                                       struct drm_framebuffer *fb,
2672                                       int x, int y)
2673 {
2674         struct drm_device *dev = crtc->dev;
2675         struct drm_i915_private *dev_priv = dev->dev_private;
2676         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2677         struct drm_plane *primary = crtc->primary;
2678         bool visible = to_intel_plane_state(primary->state)->visible;
2679         struct drm_i915_gem_object *obj;
2680         int plane = intel_crtc->plane;
2681         unsigned long linear_offset;
2682         u32 dspcntr;
2683         u32 reg = DSPCNTR(plane);
2684         int pixel_size;
2685
2686         if (!visible || !fb) {
2687                 I915_WRITE(reg, 0);
2688                 if (INTEL_INFO(dev)->gen >= 4)
2689                         I915_WRITE(DSPSURF(plane), 0);
2690                 else
2691                         I915_WRITE(DSPADDR(plane), 0);
2692                 POSTING_READ(reg);
2693                 return;
2694         }
2695
2696         obj = intel_fb_obj(fb);
2697         if (WARN_ON(obj == NULL))
2698                 return;
2699
2700         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2701
2702         dspcntr = DISPPLANE_GAMMA_ENABLE;
2703
2704         dspcntr |= DISPLAY_PLANE_ENABLE;
2705
2706         if (INTEL_INFO(dev)->gen < 4) {
2707                 if (intel_crtc->pipe == PIPE_B)
2708                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2709
2710                 /* pipesrc and dspsize control the size that is scaled from,
2711                  * which should always be the user's requested size.
2712                  */
2713                 I915_WRITE(DSPSIZE(plane),
2714                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2715                            (intel_crtc->config->pipe_src_w - 1));
2716                 I915_WRITE(DSPPOS(plane), 0);
2717         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2718                 I915_WRITE(PRIMSIZE(plane),
2719                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2720                            (intel_crtc->config->pipe_src_w - 1));
2721                 I915_WRITE(PRIMPOS(plane), 0);
2722                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2723         }
2724
2725         switch (fb->pixel_format) {
2726         case DRM_FORMAT_C8:
2727                 dspcntr |= DISPPLANE_8BPP;
2728                 break;
2729         case DRM_FORMAT_XRGB1555:
2730                 dspcntr |= DISPPLANE_BGRX555;
2731                 break;
2732         case DRM_FORMAT_RGB565:
2733                 dspcntr |= DISPPLANE_BGRX565;
2734                 break;
2735         case DRM_FORMAT_XRGB8888:
2736                 dspcntr |= DISPPLANE_BGRX888;
2737                 break;
2738         case DRM_FORMAT_XBGR8888:
2739                 dspcntr |= DISPPLANE_RGBX888;
2740                 break;
2741         case DRM_FORMAT_XRGB2101010:
2742                 dspcntr |= DISPPLANE_BGRX101010;
2743                 break;
2744         case DRM_FORMAT_XBGR2101010:
2745                 dspcntr |= DISPPLANE_RGBX101010;
2746                 break;
2747         default:
2748                 BUG();
2749         }
2750
2751         if (INTEL_INFO(dev)->gen >= 4 &&
2752             obj->tiling_mode != I915_TILING_NONE)
2753                 dspcntr |= DISPPLANE_TILED;
2754
2755         if (IS_G4X(dev))
2756                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2757
2758         linear_offset = y * fb->pitches[0] + x * pixel_size;
2759
2760         if (INTEL_INFO(dev)->gen >= 4) {
2761                 intel_crtc->dspaddr_offset =
2762                         intel_gen4_compute_page_offset(dev_priv,
2763                                                        &x, &y, obj->tiling_mode,
2764                                                        pixel_size,
2765                                                        fb->pitches[0]);
2766                 linear_offset -= intel_crtc->dspaddr_offset;
2767         } else {
2768                 intel_crtc->dspaddr_offset = linear_offset;
2769         }
2770
2771         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2772                 dspcntr |= DISPPLANE_ROTATE_180;
2773
2774                 x += (intel_crtc->config->pipe_src_w - 1);
2775                 y += (intel_crtc->config->pipe_src_h - 1);
2776
2777                 /* Finding the last pixel of the last line of the display
2778                 data and adding to linear_offset*/
2779                 linear_offset +=
2780                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2781                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2782         }
2783
2784         intel_crtc->adjusted_x = x;
2785         intel_crtc->adjusted_y = y;
2786
2787         I915_WRITE(reg, dspcntr);
2788
2789         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2790         if (INTEL_INFO(dev)->gen >= 4) {
2791                 I915_WRITE(DSPSURF(plane),
2792                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2793                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2794                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2795         } else
2796                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2797         POSTING_READ(reg);
2798 }
2799
2800 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2801                                           struct drm_framebuffer *fb,
2802                                           int x, int y)
2803 {
2804         struct drm_device *dev = crtc->dev;
2805         struct drm_i915_private *dev_priv = dev->dev_private;
2806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2807         struct drm_plane *primary = crtc->primary;
2808         bool visible = to_intel_plane_state(primary->state)->visible;
2809         struct drm_i915_gem_object *obj;
2810         int plane = intel_crtc->plane;
2811         unsigned long linear_offset;
2812         u32 dspcntr;
2813         u32 reg = DSPCNTR(plane);
2814         int pixel_size;
2815
2816         if (!visible || !fb) {
2817                 I915_WRITE(reg, 0);
2818                 I915_WRITE(DSPSURF(plane), 0);
2819                 POSTING_READ(reg);
2820                 return;
2821         }
2822
2823         obj = intel_fb_obj(fb);
2824         if (WARN_ON(obj == NULL))
2825                 return;
2826
2827         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2828
2829         dspcntr = DISPPLANE_GAMMA_ENABLE;
2830
2831         dspcntr |= DISPLAY_PLANE_ENABLE;
2832
2833         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2834                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2835
2836         switch (fb->pixel_format) {
2837         case DRM_FORMAT_C8:
2838                 dspcntr |= DISPPLANE_8BPP;
2839                 break;
2840         case DRM_FORMAT_RGB565:
2841                 dspcntr |= DISPPLANE_BGRX565;
2842                 break;
2843         case DRM_FORMAT_XRGB8888:
2844                 dspcntr |= DISPPLANE_BGRX888;
2845                 break;
2846         case DRM_FORMAT_XBGR8888:
2847                 dspcntr |= DISPPLANE_RGBX888;
2848                 break;
2849         case DRM_FORMAT_XRGB2101010:
2850                 dspcntr |= DISPPLANE_BGRX101010;
2851                 break;
2852         case DRM_FORMAT_XBGR2101010:
2853                 dspcntr |= DISPPLANE_RGBX101010;
2854                 break;
2855         default:
2856                 BUG();
2857         }
2858
2859         if (obj->tiling_mode != I915_TILING_NONE)
2860                 dspcntr |= DISPPLANE_TILED;
2861
2862         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2863                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2864
2865         linear_offset = y * fb->pitches[0] + x * pixel_size;
2866         intel_crtc->dspaddr_offset =
2867                 intel_gen4_compute_page_offset(dev_priv,
2868                                                &x, &y, obj->tiling_mode,
2869                                                pixel_size,
2870                                                fb->pitches[0]);
2871         linear_offset -= intel_crtc->dspaddr_offset;
2872         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2873                 dspcntr |= DISPPLANE_ROTATE_180;
2874
2875                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2876                         x += (intel_crtc->config->pipe_src_w - 1);
2877                         y += (intel_crtc->config->pipe_src_h - 1);
2878
2879                         /* Finding the last pixel of the last line of the display
2880                         data and adding to linear_offset*/
2881                         linear_offset +=
2882                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2883                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2884                 }
2885         }
2886
2887         intel_crtc->adjusted_x = x;
2888         intel_crtc->adjusted_y = y;
2889
2890         I915_WRITE(reg, dspcntr);
2891
2892         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2893         I915_WRITE(DSPSURF(plane),
2894                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2895         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2896                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2897         } else {
2898                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2899                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2900         }
2901         POSTING_READ(reg);
2902 }
2903
2904 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2905                               uint32_t pixel_format)
2906 {
2907         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2908
2909         /*
2910          * The stride is either expressed as a multiple of 64 bytes
2911          * chunks for linear buffers or in number of tiles for tiled
2912          * buffers.
2913          */
2914         switch (fb_modifier) {
2915         case DRM_FORMAT_MOD_NONE:
2916                 return 64;
2917         case I915_FORMAT_MOD_X_TILED:
2918                 if (INTEL_INFO(dev)->gen == 2)
2919                         return 128;
2920                 return 512;
2921         case I915_FORMAT_MOD_Y_TILED:
2922                 /* No need to check for old gens and Y tiling since this is
2923                  * about the display engine and those will be blocked before
2924                  * we get here.
2925                  */
2926                 return 128;
2927         case I915_FORMAT_MOD_Yf_TILED:
2928                 if (bits_per_pixel == 8)
2929                         return 64;
2930                 else
2931                         return 128;
2932         default:
2933                 MISSING_CASE(fb_modifier);
2934                 return 64;
2935         }
2936 }
2937
2938 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2939                                      struct drm_i915_gem_object *obj,
2940                                      unsigned int plane)
2941 {
2942         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2943         struct i915_vma *vma;
2944         unsigned char *offset;
2945
2946         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2947                 view = &i915_ggtt_view_rotated;
2948
2949         vma = i915_gem_obj_to_ggtt_view(obj, view);
2950         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2951                 view->type))
2952                 return -1;
2953
2954         offset = (unsigned char *)vma->node.start;
2955
2956         if (plane == 1) {
2957                 offset += vma->ggtt_view.rotation_info.uv_start_page *
2958                           PAGE_SIZE;
2959         }
2960
2961         return (unsigned long)offset;
2962 }
2963
2964 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2965 {
2966         struct drm_device *dev = intel_crtc->base.dev;
2967         struct drm_i915_private *dev_priv = dev->dev_private;
2968
2969         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2970         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2971         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2972 }
2973
2974 /*
2975  * This function detaches (aka. unbinds) unused scalers in hardware
2976  */
2977 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2978 {
2979         struct intel_crtc_scaler_state *scaler_state;
2980         int i;
2981
2982         scaler_state = &intel_crtc->config->scaler_state;
2983
2984         /* loop through and disable scalers that aren't in use */
2985         for (i = 0; i < intel_crtc->num_scalers; i++) {
2986                 if (!scaler_state->scalers[i].in_use)
2987                         skl_detach_scaler(intel_crtc, i);
2988         }
2989 }
2990
2991 u32 skl_plane_ctl_format(uint32_t pixel_format)
2992 {
2993         switch (pixel_format) {
2994         case DRM_FORMAT_C8:
2995                 return PLANE_CTL_FORMAT_INDEXED;
2996         case DRM_FORMAT_RGB565:
2997                 return PLANE_CTL_FORMAT_RGB_565;
2998         case DRM_FORMAT_XBGR8888:
2999                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3000         case DRM_FORMAT_XRGB8888:
3001                 return PLANE_CTL_FORMAT_XRGB_8888;
3002         /*
3003          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3004          * to be already pre-multiplied. We need to add a knob (or a different
3005          * DRM_FORMAT) for user-space to configure that.
3006          */
3007         case DRM_FORMAT_ABGR8888:
3008                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3009                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3010         case DRM_FORMAT_ARGB8888:
3011                 return PLANE_CTL_FORMAT_XRGB_8888 |
3012                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3013         case DRM_FORMAT_XRGB2101010:
3014                 return PLANE_CTL_FORMAT_XRGB_2101010;
3015         case DRM_FORMAT_XBGR2101010:
3016                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3017         case DRM_FORMAT_YUYV:
3018                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3019         case DRM_FORMAT_YVYU:
3020                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3021         case DRM_FORMAT_UYVY:
3022                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3023         case DRM_FORMAT_VYUY:
3024                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3025         default:
3026                 MISSING_CASE(pixel_format);
3027         }
3028
3029         return 0;
3030 }
3031
3032 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3033 {
3034         switch (fb_modifier) {
3035         case DRM_FORMAT_MOD_NONE:
3036                 break;
3037         case I915_FORMAT_MOD_X_TILED:
3038                 return PLANE_CTL_TILED_X;
3039         case I915_FORMAT_MOD_Y_TILED:
3040                 return PLANE_CTL_TILED_Y;
3041         case I915_FORMAT_MOD_Yf_TILED:
3042                 return PLANE_CTL_TILED_YF;
3043         default:
3044                 MISSING_CASE(fb_modifier);
3045         }
3046
3047         return 0;
3048 }
3049
3050 u32 skl_plane_ctl_rotation(unsigned int rotation)
3051 {
3052         switch (rotation) {
3053         case BIT(DRM_ROTATE_0):
3054                 break;
3055         /*
3056          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3057          * while i915 HW rotation is clockwise, thats why this swapping.
3058          */
3059         case BIT(DRM_ROTATE_90):
3060                 return PLANE_CTL_ROTATE_270;
3061         case BIT(DRM_ROTATE_180):
3062                 return PLANE_CTL_ROTATE_180;
3063         case BIT(DRM_ROTATE_270):
3064                 return PLANE_CTL_ROTATE_90;
3065         default:
3066                 MISSING_CASE(rotation);
3067         }
3068
3069         return 0;
3070 }
3071
3072 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3073                                          struct drm_framebuffer *fb,
3074                                          int x, int y)
3075 {
3076         struct drm_device *dev = crtc->dev;
3077         struct drm_i915_private *dev_priv = dev->dev_private;
3078         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3079         struct drm_plane *plane = crtc->primary;
3080         bool visible = to_intel_plane_state(plane->state)->visible;
3081         struct drm_i915_gem_object *obj;
3082         int pipe = intel_crtc->pipe;
3083         u32 plane_ctl, stride_div, stride;
3084         u32 tile_height, plane_offset, plane_size;
3085         unsigned int rotation;
3086         int x_offset, y_offset;
3087         unsigned long surf_addr;
3088         struct intel_crtc_state *crtc_state = intel_crtc->config;
3089         struct intel_plane_state *plane_state;
3090         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3091         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3092         int scaler_id = -1;
3093
3094         plane_state = to_intel_plane_state(plane->state);
3095
3096         if (!visible || !fb) {
3097                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3098                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3099                 POSTING_READ(PLANE_CTL(pipe, 0));
3100                 return;
3101         }
3102
3103         plane_ctl = PLANE_CTL_ENABLE |
3104                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3105                     PLANE_CTL_PIPE_CSC_ENABLE;
3106
3107         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3108         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3109         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3110
3111         rotation = plane->state->rotation;
3112         plane_ctl |= skl_plane_ctl_rotation(rotation);
3113
3114         obj = intel_fb_obj(fb);
3115         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3116                                                fb->pixel_format);
3117         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3118
3119         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3120
3121         scaler_id = plane_state->scaler_id;
3122         src_x = plane_state->src.x1 >> 16;
3123         src_y = plane_state->src.y1 >> 16;
3124         src_w = drm_rect_width(&plane_state->src) >> 16;
3125         src_h = drm_rect_height(&plane_state->src) >> 16;
3126         dst_x = plane_state->dst.x1;
3127         dst_y = plane_state->dst.y1;
3128         dst_w = drm_rect_width(&plane_state->dst);
3129         dst_h = drm_rect_height(&plane_state->dst);
3130
3131         WARN_ON(x != src_x || y != src_y);
3132
3133         if (intel_rotation_90_or_270(rotation)) {
3134                 /* stride = Surface height in tiles */
3135                 tile_height = intel_tile_height(dev, fb->pixel_format,
3136                                                 fb->modifier[0], 0);
3137                 stride = DIV_ROUND_UP(fb->height, tile_height);
3138                 x_offset = stride * tile_height - y - src_h;
3139                 y_offset = x;
3140                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3141         } else {
3142                 stride = fb->pitches[0] / stride_div;
3143                 x_offset = x;
3144                 y_offset = y;
3145                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3146         }
3147         plane_offset = y_offset << 16 | x_offset;
3148
3149         intel_crtc->adjusted_x = x_offset;
3150         intel_crtc->adjusted_y = y_offset;
3151
3152         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3153         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3154         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3155         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3156
3157         if (scaler_id >= 0) {
3158                 uint32_t ps_ctrl = 0;
3159
3160                 WARN_ON(!dst_w || !dst_h);
3161                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3162                         crtc_state->scaler_state.scalers[scaler_id].mode;
3163                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3164                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3165                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3166                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3167                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3168         } else {
3169                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3170         }
3171
3172         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3173
3174         POSTING_READ(PLANE_SURF(pipe, 0));
3175 }
3176
3177 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3178 static int
3179 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3180                            int x, int y, enum mode_set_atomic state)
3181 {
3182         struct drm_device *dev = crtc->dev;
3183         struct drm_i915_private *dev_priv = dev->dev_private;
3184
3185         if (dev_priv->fbc.disable_fbc)
3186                 dev_priv->fbc.disable_fbc(dev_priv);
3187
3188         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3189
3190         return 0;
3191 }
3192
3193 static void intel_complete_page_flips(struct drm_device *dev)
3194 {
3195         struct drm_crtc *crtc;
3196
3197         for_each_crtc(dev, crtc) {
3198                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3199                 enum plane plane = intel_crtc->plane;
3200
3201                 intel_prepare_page_flip(dev, plane);
3202                 intel_finish_page_flip_plane(dev, plane);
3203         }
3204 }
3205
3206 static void intel_update_primary_planes(struct drm_device *dev)
3207 {
3208         struct drm_crtc *crtc;
3209
3210         for_each_crtc(dev, crtc) {
3211                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3212                 struct intel_plane_state *plane_state;
3213
3214                 drm_modeset_lock_crtc(crtc, &plane->base);
3215
3216                 plane_state = to_intel_plane_state(plane->base.state);
3217
3218                 if (plane_state->base.fb)
3219                         plane->commit_plane(&plane->base, plane_state);
3220
3221                 drm_modeset_unlock_crtc(crtc);
3222         }
3223 }
3224
3225 void intel_prepare_reset(struct drm_device *dev)
3226 {
3227         /* no reset support for gen2 */
3228         if (IS_GEN2(dev))
3229                 return;
3230
3231         /* reset doesn't touch the display */
3232         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3233                 return;
3234
3235         drm_modeset_lock_all(dev);
3236         /*
3237          * Disabling the crtcs gracefully seems nicer. Also the
3238          * g33 docs say we should at least disable all the planes.
3239          */
3240         intel_display_suspend(dev);
3241 }
3242
3243 void intel_finish_reset(struct drm_device *dev)
3244 {
3245         struct drm_i915_private *dev_priv = to_i915(dev);
3246
3247         /*
3248          * Flips in the rings will be nuked by the reset,
3249          * so complete all pending flips so that user space
3250          * will get its events and not get stuck.
3251          */
3252         intel_complete_page_flips(dev);
3253
3254         /* no reset support for gen2 */
3255         if (IS_GEN2(dev))
3256                 return;
3257
3258         /* reset doesn't touch the display */
3259         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3260                 /*
3261                  * Flips in the rings have been nuked by the reset,
3262                  * so update the base address of all primary
3263                  * planes to the the last fb to make sure we're
3264                  * showing the correct fb after a reset.
3265                  *
3266                  * FIXME: Atomic will make this obsolete since we won't schedule
3267                  * CS-based flips (which might get lost in gpu resets) any more.
3268                  */
3269                 intel_update_primary_planes(dev);
3270                 return;
3271         }
3272
3273         /*
3274          * The display has been reset as well,
3275          * so need a full re-initialization.
3276          */
3277         intel_runtime_pm_disable_interrupts(dev_priv);
3278         intel_runtime_pm_enable_interrupts(dev_priv);
3279
3280         intel_modeset_init_hw(dev);
3281
3282         spin_lock_irq(&dev_priv->irq_lock);
3283         if (dev_priv->display.hpd_irq_setup)
3284                 dev_priv->display.hpd_irq_setup(dev);
3285         spin_unlock_irq(&dev_priv->irq_lock);
3286
3287         intel_display_resume(dev);
3288
3289         intel_hpd_init(dev_priv);
3290
3291         drm_modeset_unlock_all(dev);
3292 }
3293
3294 static void
3295 intel_finish_fb(struct drm_framebuffer *old_fb)
3296 {
3297         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3298         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3299         bool was_interruptible = dev_priv->mm.interruptible;
3300         int ret;
3301
3302         /* Big Hammer, we also need to ensure that any pending
3303          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3304          * current scanout is retired before unpinning the old
3305          * framebuffer. Note that we rely on userspace rendering
3306          * into the buffer attached to the pipe they are waiting
3307          * on. If not, userspace generates a GPU hang with IPEHR
3308          * point to the MI_WAIT_FOR_EVENT.
3309          *
3310          * This should only fail upon a hung GPU, in which case we
3311          * can safely continue.
3312          */
3313         dev_priv->mm.interruptible = false;
3314         ret = i915_gem_object_wait_rendering(obj, true);
3315         dev_priv->mm.interruptible = was_interruptible;
3316
3317         WARN_ON(ret);
3318 }
3319
3320 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3321 {
3322         struct drm_device *dev = crtc->dev;
3323         struct drm_i915_private *dev_priv = dev->dev_private;
3324         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3325         bool pending;
3326
3327         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3328             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3329                 return false;
3330
3331         spin_lock_irq(&dev->event_lock);
3332         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3333         spin_unlock_irq(&dev->event_lock);
3334
3335         return pending;
3336 }
3337
3338 static void intel_update_pipe_config(struct intel_crtc *crtc,
3339                                      struct intel_crtc_state *old_crtc_state)
3340 {
3341         struct drm_device *dev = crtc->base.dev;
3342         struct drm_i915_private *dev_priv = dev->dev_private;
3343         struct intel_crtc_state *pipe_config =
3344                 to_intel_crtc_state(crtc->base.state);
3345
3346         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3347         crtc->base.mode = crtc->base.state->mode;
3348
3349         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3350                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3351                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3352
3353         if (HAS_DDI(dev))
3354                 intel_set_pipe_csc(&crtc->base);
3355
3356         /*
3357          * Update pipe size and adjust fitter if needed: the reason for this is
3358          * that in compute_mode_changes we check the native mode (not the pfit
3359          * mode) to see if we can flip rather than do a full mode set. In the
3360          * fastboot case, we'll flip, but if we don't update the pipesrc and
3361          * pfit state, we'll end up with a big fb scanned out into the wrong
3362          * sized surface.
3363          */
3364
3365         I915_WRITE(PIPESRC(crtc->pipe),
3366                    ((pipe_config->pipe_src_w - 1) << 16) |
3367                    (pipe_config->pipe_src_h - 1));
3368
3369         /* on skylake this is done by detaching scalers */
3370         if (INTEL_INFO(dev)->gen >= 9) {
3371                 skl_detach_scalers(crtc);
3372
3373                 if (pipe_config->pch_pfit.enabled)
3374                         skylake_pfit_enable(crtc);
3375         } else if (HAS_PCH_SPLIT(dev)) {
3376                 if (pipe_config->pch_pfit.enabled)
3377                         ironlake_pfit_enable(crtc);
3378                 else if (old_crtc_state->pch_pfit.enabled)
3379                         ironlake_pfit_disable(crtc, true);
3380         }
3381 }
3382
3383 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3384 {
3385         struct drm_device *dev = crtc->dev;
3386         struct drm_i915_private *dev_priv = dev->dev_private;
3387         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3388         int pipe = intel_crtc->pipe;
3389         u32 reg, temp;
3390
3391         /* enable normal train */
3392         reg = FDI_TX_CTL(pipe);
3393         temp = I915_READ(reg);
3394         if (IS_IVYBRIDGE(dev)) {
3395                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3396                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3397         } else {
3398                 temp &= ~FDI_LINK_TRAIN_NONE;
3399                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3400         }
3401         I915_WRITE(reg, temp);
3402
3403         reg = FDI_RX_CTL(pipe);
3404         temp = I915_READ(reg);
3405         if (HAS_PCH_CPT(dev)) {
3406                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3407                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3408         } else {
3409                 temp &= ~FDI_LINK_TRAIN_NONE;
3410                 temp |= FDI_LINK_TRAIN_NONE;
3411         }
3412         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3413
3414         /* wait one idle pattern time */
3415         POSTING_READ(reg);
3416         udelay(1000);
3417
3418         /* IVB wants error correction enabled */
3419         if (IS_IVYBRIDGE(dev))
3420                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3421                            FDI_FE_ERRC_ENABLE);
3422 }
3423
3424 /* The FDI link training functions for ILK/Ibexpeak. */
3425 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3426 {
3427         struct drm_device *dev = crtc->dev;
3428         struct drm_i915_private *dev_priv = dev->dev_private;
3429         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3430         int pipe = intel_crtc->pipe;
3431         u32 reg, temp, tries;
3432
3433         /* FDI needs bits from pipe first */
3434         assert_pipe_enabled(dev_priv, pipe);
3435
3436         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3437            for train result */
3438         reg = FDI_RX_IMR(pipe);
3439         temp = I915_READ(reg);
3440         temp &= ~FDI_RX_SYMBOL_LOCK;
3441         temp &= ~FDI_RX_BIT_LOCK;
3442         I915_WRITE(reg, temp);
3443         I915_READ(reg);
3444         udelay(150);
3445
3446         /* enable CPU FDI TX and PCH FDI RX */
3447         reg = FDI_TX_CTL(pipe);
3448         temp = I915_READ(reg);
3449         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3450         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3451         temp &= ~FDI_LINK_TRAIN_NONE;
3452         temp |= FDI_LINK_TRAIN_PATTERN_1;
3453         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3454
3455         reg = FDI_RX_CTL(pipe);
3456         temp = I915_READ(reg);
3457         temp &= ~FDI_LINK_TRAIN_NONE;
3458         temp |= FDI_LINK_TRAIN_PATTERN_1;
3459         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3460
3461         POSTING_READ(reg);
3462         udelay(150);
3463
3464         /* Ironlake workaround, enable clock pointer after FDI enable*/
3465         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3466         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3467                    FDI_RX_PHASE_SYNC_POINTER_EN);
3468
3469         reg = FDI_RX_IIR(pipe);
3470         for (tries = 0; tries < 5; tries++) {
3471                 temp = I915_READ(reg);
3472                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3473
3474                 if ((temp & FDI_RX_BIT_LOCK)) {
3475                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3476                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3477                         break;
3478                 }
3479         }
3480         if (tries == 5)
3481                 DRM_ERROR("FDI train 1 fail!\n");
3482
3483         /* Train 2 */
3484         reg = FDI_TX_CTL(pipe);
3485         temp = I915_READ(reg);
3486         temp &= ~FDI_LINK_TRAIN_NONE;
3487         temp |= FDI_LINK_TRAIN_PATTERN_2;
3488         I915_WRITE(reg, temp);
3489
3490         reg = FDI_RX_CTL(pipe);
3491         temp = I915_READ(reg);
3492         temp &= ~FDI_LINK_TRAIN_NONE;
3493         temp |= FDI_LINK_TRAIN_PATTERN_2;
3494         I915_WRITE(reg, temp);
3495
3496         POSTING_READ(reg);
3497         udelay(150);
3498
3499         reg = FDI_RX_IIR(pipe);
3500         for (tries = 0; tries < 5; tries++) {
3501                 temp = I915_READ(reg);
3502                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3503
3504                 if (temp & FDI_RX_SYMBOL_LOCK) {
3505                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3506                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3507                         break;
3508                 }
3509         }
3510         if (tries == 5)
3511                 DRM_ERROR("FDI train 2 fail!\n");
3512
3513         DRM_DEBUG_KMS("FDI train done\n");
3514
3515 }
3516
3517 static const int snb_b_fdi_train_param[] = {
3518         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3519         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3520         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3521         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3522 };
3523
3524 /* The FDI link training functions for SNB/Cougarpoint. */
3525 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3526 {
3527         struct drm_device *dev = crtc->dev;
3528         struct drm_i915_private *dev_priv = dev->dev_private;
3529         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3530         int pipe = intel_crtc->pipe;
3531         u32 reg, temp, i, retry;
3532
3533         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3534            for train result */
3535         reg = FDI_RX_IMR(pipe);
3536         temp = I915_READ(reg);
3537         temp &= ~FDI_RX_SYMBOL_LOCK;
3538         temp &= ~FDI_RX_BIT_LOCK;
3539         I915_WRITE(reg, temp);
3540
3541         POSTING_READ(reg);
3542         udelay(150);
3543
3544         /* enable CPU FDI TX and PCH FDI RX */
3545         reg = FDI_TX_CTL(pipe);
3546         temp = I915_READ(reg);
3547         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3548         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3549         temp &= ~FDI_LINK_TRAIN_NONE;
3550         temp |= FDI_LINK_TRAIN_PATTERN_1;
3551         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3552         /* SNB-B */
3553         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3554         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3555
3556         I915_WRITE(FDI_RX_MISC(pipe),
3557                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3558
3559         reg = FDI_RX_CTL(pipe);
3560         temp = I915_READ(reg);
3561         if (HAS_PCH_CPT(dev)) {
3562                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3563                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3564         } else {
3565                 temp &= ~FDI_LINK_TRAIN_NONE;
3566                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3567         }
3568         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3569
3570         POSTING_READ(reg);
3571         udelay(150);
3572
3573         for (i = 0; i < 4; i++) {
3574                 reg = FDI_TX_CTL(pipe);
3575                 temp = I915_READ(reg);
3576                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3577                 temp |= snb_b_fdi_train_param[i];
3578                 I915_WRITE(reg, temp);
3579
3580                 POSTING_READ(reg);
3581                 udelay(500);
3582
3583                 for (retry = 0; retry < 5; retry++) {
3584                         reg = FDI_RX_IIR(pipe);
3585                         temp = I915_READ(reg);
3586                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3587                         if (temp & FDI_RX_BIT_LOCK) {
3588                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3589                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3590                                 break;
3591                         }
3592                         udelay(50);
3593                 }
3594                 if (retry < 5)
3595                         break;
3596         }
3597         if (i == 4)
3598                 DRM_ERROR("FDI train 1 fail!\n");
3599
3600         /* Train 2 */
3601         reg = FDI_TX_CTL(pipe);
3602         temp = I915_READ(reg);
3603         temp &= ~FDI_LINK_TRAIN_NONE;
3604         temp |= FDI_LINK_TRAIN_PATTERN_2;
3605         if (IS_GEN6(dev)) {
3606                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3607                 /* SNB-B */
3608                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3609         }
3610         I915_WRITE(reg, temp);
3611
3612         reg = FDI_RX_CTL(pipe);
3613         temp = I915_READ(reg);
3614         if (HAS_PCH_CPT(dev)) {
3615                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3616                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3617         } else {
3618                 temp &= ~FDI_LINK_TRAIN_NONE;
3619                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3620         }
3621         I915_WRITE(reg, temp);
3622
3623         POSTING_READ(reg);
3624         udelay(150);
3625
3626         for (i = 0; i < 4; i++) {
3627                 reg = FDI_TX_CTL(pipe);
3628                 temp = I915_READ(reg);
3629                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3630                 temp |= snb_b_fdi_train_param[i];
3631                 I915_WRITE(reg, temp);
3632
3633                 POSTING_READ(reg);
3634                 udelay(500);
3635
3636                 for (retry = 0; retry < 5; retry++) {
3637                         reg = FDI_RX_IIR(pipe);
3638                         temp = I915_READ(reg);
3639                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3640                         if (temp & FDI_RX_SYMBOL_LOCK) {
3641                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3642                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3643                                 break;
3644                         }
3645                         udelay(50);
3646                 }
3647                 if (retry < 5)
3648                         break;
3649         }
3650         if (i == 4)
3651                 DRM_ERROR("FDI train 2 fail!\n");
3652
3653         DRM_DEBUG_KMS("FDI train done.\n");
3654 }
3655
3656 /* Manual link training for Ivy Bridge A0 parts */
3657 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3658 {
3659         struct drm_device *dev = crtc->dev;
3660         struct drm_i915_private *dev_priv = dev->dev_private;
3661         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3662         int pipe = intel_crtc->pipe;
3663         u32 reg, temp, i, j;
3664
3665         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3666            for train result */
3667         reg = FDI_RX_IMR(pipe);
3668         temp = I915_READ(reg);
3669         temp &= ~FDI_RX_SYMBOL_LOCK;
3670         temp &= ~FDI_RX_BIT_LOCK;
3671         I915_WRITE(reg, temp);
3672
3673         POSTING_READ(reg);
3674         udelay(150);
3675
3676         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3677                       I915_READ(FDI_RX_IIR(pipe)));
3678
3679         /* Try each vswing and preemphasis setting twice before moving on */
3680         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3681                 /* disable first in case we need to retry */
3682                 reg = FDI_TX_CTL(pipe);
3683                 temp = I915_READ(reg);
3684                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3685                 temp &= ~FDI_TX_ENABLE;
3686                 I915_WRITE(reg, temp);
3687
3688                 reg = FDI_RX_CTL(pipe);
3689                 temp = I915_READ(reg);
3690                 temp &= ~FDI_LINK_TRAIN_AUTO;
3691                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3692                 temp &= ~FDI_RX_ENABLE;
3693                 I915_WRITE(reg, temp);
3694
3695                 /* enable CPU FDI TX and PCH FDI RX */
3696                 reg = FDI_TX_CTL(pipe);
3697                 temp = I915_READ(reg);
3698                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3699                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3700                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3701                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3702                 temp |= snb_b_fdi_train_param[j/2];
3703                 temp |= FDI_COMPOSITE_SYNC;
3704                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3705
3706                 I915_WRITE(FDI_RX_MISC(pipe),
3707                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3708
3709                 reg = FDI_RX_CTL(pipe);
3710                 temp = I915_READ(reg);
3711                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3712                 temp |= FDI_COMPOSITE_SYNC;
3713                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3714
3715                 POSTING_READ(reg);
3716                 udelay(1); /* should be 0.5us */
3717
3718                 for (i = 0; i < 4; i++) {
3719                         reg = FDI_RX_IIR(pipe);
3720                         temp = I915_READ(reg);
3721                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3722
3723                         if (temp & FDI_RX_BIT_LOCK ||
3724                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3725                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3726                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3727                                               i);
3728                                 break;
3729                         }
3730                         udelay(1); /* should be 0.5us */
3731                 }
3732                 if (i == 4) {
3733                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3734                         continue;
3735                 }
3736
3737                 /* Train 2 */
3738                 reg = FDI_TX_CTL(pipe);
3739                 temp = I915_READ(reg);
3740                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3741                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3742                 I915_WRITE(reg, temp);
3743
3744                 reg = FDI_RX_CTL(pipe);
3745                 temp = I915_READ(reg);
3746                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3747                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3748                 I915_WRITE(reg, temp);
3749
3750                 POSTING_READ(reg);
3751                 udelay(2); /* should be 1.5us */
3752
3753                 for (i = 0; i < 4; i++) {
3754                         reg = FDI_RX_IIR(pipe);
3755                         temp = I915_READ(reg);
3756                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3757
3758                         if (temp & FDI_RX_SYMBOL_LOCK ||
3759                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3760                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3761                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3762                                               i);
3763                                 goto train_done;
3764                         }
3765                         udelay(2); /* should be 1.5us */
3766                 }
3767                 if (i == 4)
3768                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3769         }
3770
3771 train_done:
3772         DRM_DEBUG_KMS("FDI train done.\n");
3773 }
3774
3775 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3776 {
3777         struct drm_device *dev = intel_crtc->base.dev;
3778         struct drm_i915_private *dev_priv = dev->dev_private;
3779         int pipe = intel_crtc->pipe;
3780         u32 reg, temp;
3781
3782
3783         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3784         reg = FDI_RX_CTL(pipe);
3785         temp = I915_READ(reg);
3786         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3787         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3788         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3789         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3790
3791         POSTING_READ(reg);
3792         udelay(200);
3793
3794         /* Switch from Rawclk to PCDclk */
3795         temp = I915_READ(reg);
3796         I915_WRITE(reg, temp | FDI_PCDCLK);
3797
3798         POSTING_READ(reg);
3799         udelay(200);
3800
3801         /* Enable CPU FDI TX PLL, always on for Ironlake */
3802         reg = FDI_TX_CTL(pipe);
3803         temp = I915_READ(reg);
3804         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3805                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3806
3807                 POSTING_READ(reg);
3808                 udelay(100);
3809         }
3810 }
3811
3812 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3813 {
3814         struct drm_device *dev = intel_crtc->base.dev;
3815         struct drm_i915_private *dev_priv = dev->dev_private;
3816         int pipe = intel_crtc->pipe;
3817         u32 reg, temp;
3818
3819         /* Switch from PCDclk to Rawclk */
3820         reg = FDI_RX_CTL(pipe);
3821         temp = I915_READ(reg);
3822         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3823
3824         /* Disable CPU FDI TX PLL */
3825         reg = FDI_TX_CTL(pipe);
3826         temp = I915_READ(reg);
3827         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3828
3829         POSTING_READ(reg);
3830         udelay(100);
3831
3832         reg = FDI_RX_CTL(pipe);
3833         temp = I915_READ(reg);
3834         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3835
3836         /* Wait for the clocks to turn off. */
3837         POSTING_READ(reg);
3838         udelay(100);
3839 }
3840
3841 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3842 {
3843         struct drm_device *dev = crtc->dev;
3844         struct drm_i915_private *dev_priv = dev->dev_private;
3845         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3846         int pipe = intel_crtc->pipe;
3847         u32 reg, temp;
3848
3849         /* disable CPU FDI tx and PCH FDI rx */
3850         reg = FDI_TX_CTL(pipe);
3851         temp = I915_READ(reg);
3852         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3853         POSTING_READ(reg);
3854
3855         reg = FDI_RX_CTL(pipe);
3856         temp = I915_READ(reg);
3857         temp &= ~(0x7 << 16);
3858         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3859         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3860
3861         POSTING_READ(reg);
3862         udelay(100);
3863
3864         /* Ironlake workaround, disable clock pointer after downing FDI */
3865         if (HAS_PCH_IBX(dev))
3866                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3867
3868         /* still set train pattern 1 */
3869         reg = FDI_TX_CTL(pipe);
3870         temp = I915_READ(reg);
3871         temp &= ~FDI_LINK_TRAIN_NONE;
3872         temp |= FDI_LINK_TRAIN_PATTERN_1;
3873         I915_WRITE(reg, temp);
3874
3875         reg = FDI_RX_CTL(pipe);
3876         temp = I915_READ(reg);
3877         if (HAS_PCH_CPT(dev)) {
3878                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3879                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3880         } else {
3881                 temp &= ~FDI_LINK_TRAIN_NONE;
3882                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3883         }
3884         /* BPC in FDI rx is consistent with that in PIPECONF */
3885         temp &= ~(0x07 << 16);
3886         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3887         I915_WRITE(reg, temp);
3888
3889         POSTING_READ(reg);
3890         udelay(100);
3891 }
3892
3893 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3894 {
3895         struct intel_crtc *crtc;
3896
3897         /* Note that we don't need to be called with mode_config.lock here
3898          * as our list of CRTC objects is static for the lifetime of the
3899          * device and so cannot disappear as we iterate. Similarly, we can
3900          * happily treat the predicates as racy, atomic checks as userspace
3901          * cannot claim and pin a new fb without at least acquring the
3902          * struct_mutex and so serialising with us.
3903          */
3904         for_each_intel_crtc(dev, crtc) {
3905                 if (atomic_read(&crtc->unpin_work_count) == 0)
3906                         continue;
3907
3908                 if (crtc->unpin_work)
3909                         intel_wait_for_vblank(dev, crtc->pipe);
3910
3911                 return true;
3912         }
3913
3914         return false;
3915 }
3916
3917 static void page_flip_completed(struct intel_crtc *intel_crtc)
3918 {
3919         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3920         struct intel_unpin_work *work = intel_crtc->unpin_work;
3921
3922         /* ensure that the unpin work is consistent wrt ->pending. */
3923         smp_rmb();
3924         intel_crtc->unpin_work = NULL;
3925
3926         if (work->event)
3927                 drm_send_vblank_event(intel_crtc->base.dev,
3928                                       intel_crtc->pipe,
3929                                       work->event);
3930
3931         drm_crtc_vblank_put(&intel_crtc->base);
3932
3933         wake_up_all(&dev_priv->pending_flip_queue);
3934         queue_work(dev_priv->wq, &work->work);
3935
3936         trace_i915_flip_complete(intel_crtc->plane,
3937                                  work->pending_flip_obj);
3938 }
3939
3940 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3941 {
3942         struct drm_device *dev = crtc->dev;
3943         struct drm_i915_private *dev_priv = dev->dev_private;
3944
3945         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3946         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3947                                        !intel_crtc_has_pending_flip(crtc),
3948                                        60*HZ) == 0)) {
3949                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3950
3951                 spin_lock_irq(&dev->event_lock);
3952                 if (intel_crtc->unpin_work) {
3953                         WARN_ONCE(1, "Removing stuck page flip\n");
3954                         page_flip_completed(intel_crtc);
3955                 }
3956                 spin_unlock_irq(&dev->event_lock);
3957         }
3958
3959         if (crtc->primary->fb) {
3960                 mutex_lock(&dev->struct_mutex);
3961                 intel_finish_fb(crtc->primary->fb);
3962                 mutex_unlock(&dev->struct_mutex);
3963         }
3964 }
3965
3966 /* Program iCLKIP clock to the desired frequency */
3967 static void lpt_program_iclkip(struct drm_crtc *crtc)
3968 {
3969         struct drm_device *dev = crtc->dev;
3970         struct drm_i915_private *dev_priv = dev->dev_private;
3971         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3972         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3973         u32 temp;
3974
3975         mutex_lock(&dev_priv->sb_lock);
3976
3977         /* It is necessary to ungate the pixclk gate prior to programming
3978          * the divisors, and gate it back when it is done.
3979          */
3980         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3981
3982         /* Disable SSCCTL */
3983         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3984                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3985                                 SBI_SSCCTL_DISABLE,
3986                         SBI_ICLK);
3987
3988         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3989         if (clock == 20000) {
3990                 auxdiv = 1;
3991                 divsel = 0x41;
3992                 phaseinc = 0x20;
3993         } else {
3994                 /* The iCLK virtual clock root frequency is in MHz,
3995                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3996                  * divisors, it is necessary to divide one by another, so we
3997                  * convert the virtual clock precision to KHz here for higher
3998                  * precision.
3999                  */
4000                 u32 iclk_virtual_root_freq = 172800 * 1000;
4001                 u32 iclk_pi_range = 64;
4002                 u32 desired_divisor, msb_divisor_value, pi_value;
4003
4004                 desired_divisor = (iclk_virtual_root_freq / clock);
4005                 msb_divisor_value = desired_divisor / iclk_pi_range;
4006                 pi_value = desired_divisor % iclk_pi_range;
4007
4008                 auxdiv = 0;
4009                 divsel = msb_divisor_value - 2;
4010                 phaseinc = pi_value;
4011         }
4012
4013         /* This should not happen with any sane values */
4014         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4015                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4016         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4017                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4018
4019         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4020                         clock,
4021                         auxdiv,
4022                         divsel,
4023                         phasedir,
4024                         phaseinc);
4025
4026         /* Program SSCDIVINTPHASE6 */
4027         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4028         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4029         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4030         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4031         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4032         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4033         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4034         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4035
4036         /* Program SSCAUXDIV */
4037         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4038         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4039         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4040         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4041
4042         /* Enable modulator and associated divider */
4043         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4044         temp &= ~SBI_SSCCTL_DISABLE;
4045         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4046
4047         /* Wait for initialization time */
4048         udelay(24);
4049
4050         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4051
4052         mutex_unlock(&dev_priv->sb_lock);
4053 }
4054
4055 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4056                                                 enum pipe pch_transcoder)
4057 {
4058         struct drm_device *dev = crtc->base.dev;
4059         struct drm_i915_private *dev_priv = dev->dev_private;
4060         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4061
4062         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4063                    I915_READ(HTOTAL(cpu_transcoder)));
4064         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4065                    I915_READ(HBLANK(cpu_transcoder)));
4066         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4067                    I915_READ(HSYNC(cpu_transcoder)));
4068
4069         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4070                    I915_READ(VTOTAL(cpu_transcoder)));
4071         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4072                    I915_READ(VBLANK(cpu_transcoder)));
4073         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4074                    I915_READ(VSYNC(cpu_transcoder)));
4075         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4076                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4077 }
4078
4079 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4080 {
4081         struct drm_i915_private *dev_priv = dev->dev_private;
4082         uint32_t temp;
4083
4084         temp = I915_READ(SOUTH_CHICKEN1);
4085         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4086                 return;
4087
4088         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4089         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4090
4091         temp &= ~FDI_BC_BIFURCATION_SELECT;
4092         if (enable)
4093                 temp |= FDI_BC_BIFURCATION_SELECT;
4094
4095         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4096         I915_WRITE(SOUTH_CHICKEN1, temp);
4097         POSTING_READ(SOUTH_CHICKEN1);
4098 }
4099
4100 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4101 {
4102         struct drm_device *dev = intel_crtc->base.dev;
4103
4104         switch (intel_crtc->pipe) {
4105         case PIPE_A:
4106                 break;
4107         case PIPE_B:
4108                 if (intel_crtc->config->fdi_lanes > 2)
4109                         cpt_set_fdi_bc_bifurcation(dev, false);
4110                 else
4111                         cpt_set_fdi_bc_bifurcation(dev, true);
4112
4113                 break;
4114         case PIPE_C:
4115                 cpt_set_fdi_bc_bifurcation(dev, true);
4116
4117                 break;
4118         default:
4119                 BUG();
4120         }
4121 }
4122
4123 /*
4124  * Enable PCH resources required for PCH ports:
4125  *   - PCH PLLs
4126  *   - FDI training & RX/TX
4127  *   - update transcoder timings
4128  *   - DP transcoding bits
4129  *   - transcoder
4130  */
4131 static void ironlake_pch_enable(struct drm_crtc *crtc)
4132 {
4133         struct drm_device *dev = crtc->dev;
4134         struct drm_i915_private *dev_priv = dev->dev_private;
4135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4136         int pipe = intel_crtc->pipe;
4137         u32 reg, temp;
4138
4139         assert_pch_transcoder_disabled(dev_priv, pipe);
4140
4141         if (IS_IVYBRIDGE(dev))
4142                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4143
4144         /* Write the TU size bits before fdi link training, so that error
4145          * detection works. */
4146         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4147                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4148
4149         /* For PCH output, training FDI link */
4150         dev_priv->display.fdi_link_train(crtc);
4151
4152         /* We need to program the right clock selection before writing the pixel
4153          * mutliplier into the DPLL. */
4154         if (HAS_PCH_CPT(dev)) {
4155                 u32 sel;
4156
4157                 temp = I915_READ(PCH_DPLL_SEL);
4158                 temp |= TRANS_DPLL_ENABLE(pipe);
4159                 sel = TRANS_DPLLB_SEL(pipe);
4160                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4161                         temp |= sel;
4162                 else
4163                         temp &= ~sel;
4164                 I915_WRITE(PCH_DPLL_SEL, temp);
4165         }
4166
4167         /* XXX: pch pll's can be enabled any time before we enable the PCH
4168          * transcoder, and we actually should do this to not upset any PCH
4169          * transcoder that already use the clock when we share it.
4170          *
4171          * Note that enable_shared_dpll tries to do the right thing, but
4172          * get_shared_dpll unconditionally resets the pll - we need that to have
4173          * the right LVDS enable sequence. */
4174         intel_enable_shared_dpll(intel_crtc);
4175
4176         /* set transcoder timing, panel must allow it */
4177         assert_panel_unlocked(dev_priv, pipe);
4178         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4179
4180         intel_fdi_normal_train(crtc);
4181
4182         /* For PCH DP, enable TRANS_DP_CTL */
4183         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4184                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4185                 reg = TRANS_DP_CTL(pipe);
4186                 temp = I915_READ(reg);
4187                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4188                           TRANS_DP_SYNC_MASK |
4189                           TRANS_DP_BPC_MASK);
4190                 temp |= TRANS_DP_OUTPUT_ENABLE;
4191                 temp |= bpc << 9; /* same format but at 11:9 */
4192
4193                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4194                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4195                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4196                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4197
4198                 switch (intel_trans_dp_port_sel(crtc)) {
4199                 case PCH_DP_B:
4200                         temp |= TRANS_DP_PORT_SEL_B;
4201                         break;
4202                 case PCH_DP_C:
4203                         temp |= TRANS_DP_PORT_SEL_C;
4204                         break;
4205                 case PCH_DP_D:
4206                         temp |= TRANS_DP_PORT_SEL_D;
4207                         break;
4208                 default:
4209                         BUG();
4210                 }
4211
4212                 I915_WRITE(reg, temp);
4213         }
4214
4215         ironlake_enable_pch_transcoder(dev_priv, pipe);
4216 }
4217
4218 static void lpt_pch_enable(struct drm_crtc *crtc)
4219 {
4220         struct drm_device *dev = crtc->dev;
4221         struct drm_i915_private *dev_priv = dev->dev_private;
4222         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4223         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4224
4225         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4226
4227         lpt_program_iclkip(crtc);
4228
4229         /* Set transcoder timing. */
4230         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4231
4232         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4233 }
4234
4235 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4236                                                 struct intel_crtc_state *crtc_state)
4237 {
4238         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4239         struct intel_shared_dpll *pll;
4240         struct intel_shared_dpll_config *shared_dpll;
4241         enum intel_dpll_id i;
4242         int max = dev_priv->num_shared_dpll;
4243
4244         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4245
4246         if (HAS_PCH_IBX(dev_priv->dev)) {
4247                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4248                 i = (enum intel_dpll_id) crtc->pipe;
4249                 pll = &dev_priv->shared_dplls[i];
4250
4251                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4252                               crtc->base.base.id, pll->name);
4253
4254                 WARN_ON(shared_dpll[i].crtc_mask);
4255
4256                 goto found;
4257         }
4258
4259         if (IS_BROXTON(dev_priv->dev)) {
4260                 /* PLL is attached to port in bxt */
4261                 struct intel_encoder *encoder;
4262                 struct intel_digital_port *intel_dig_port;
4263
4264                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4265                 if (WARN_ON(!encoder))
4266                         return NULL;
4267
4268                 intel_dig_port = enc_to_dig_port(&encoder->base);
4269                 /* 1:1 mapping between ports and PLLs */
4270                 i = (enum intel_dpll_id)intel_dig_port->port;
4271                 pll = &dev_priv->shared_dplls[i];
4272                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4273                         crtc->base.base.id, pll->name);
4274                 WARN_ON(shared_dpll[i].crtc_mask);
4275
4276                 goto found;
4277         } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4278                 /* Do not consider SPLL */
4279                 max = 2;
4280
4281         for (i = 0; i < max; i++) {
4282                 pll = &dev_priv->shared_dplls[i];
4283
4284                 /* Only want to check enabled timings first */
4285                 if (shared_dpll[i].crtc_mask == 0)
4286                         continue;
4287
4288                 if (memcmp(&crtc_state->dpll_hw_state,
4289                            &shared_dpll[i].hw_state,
4290                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4291                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4292                                       crtc->base.base.id, pll->name,
4293                                       shared_dpll[i].crtc_mask,
4294                                       pll->active);
4295                         goto found;
4296                 }
4297         }
4298
4299         /* Ok no matching timings, maybe there's a free one? */
4300         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4301                 pll = &dev_priv->shared_dplls[i];
4302                 if (shared_dpll[i].crtc_mask == 0) {
4303                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4304                                       crtc->base.base.id, pll->name);
4305                         goto found;
4306                 }
4307         }
4308
4309         return NULL;
4310
4311 found:
4312         if (shared_dpll[i].crtc_mask == 0)
4313                 shared_dpll[i].hw_state =
4314                         crtc_state->dpll_hw_state;
4315
4316         crtc_state->shared_dpll = i;
4317         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4318                          pipe_name(crtc->pipe));
4319
4320         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4321
4322         return pll;
4323 }
4324
4325 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4326 {
4327         struct drm_i915_private *dev_priv = to_i915(state->dev);
4328         struct intel_shared_dpll_config *shared_dpll;
4329         struct intel_shared_dpll *pll;
4330         enum intel_dpll_id i;
4331
4332         if (!to_intel_atomic_state(state)->dpll_set)
4333                 return;
4334
4335         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4336         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4337                 pll = &dev_priv->shared_dplls[i];
4338                 pll->config = shared_dpll[i];
4339         }
4340 }
4341
4342 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4343 {
4344         struct drm_i915_private *dev_priv = dev->dev_private;
4345         int dslreg = PIPEDSL(pipe);
4346         u32 temp;
4347
4348         temp = I915_READ(dslreg);
4349         udelay(500);
4350         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4351                 if (wait_for(I915_READ(dslreg) != temp, 5))
4352                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4353         }
4354 }
4355
4356 static int
4357 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4358                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4359                   int src_w, int src_h, int dst_w, int dst_h)
4360 {
4361         struct intel_crtc_scaler_state *scaler_state =
4362                 &crtc_state->scaler_state;
4363         struct intel_crtc *intel_crtc =
4364                 to_intel_crtc(crtc_state->base.crtc);
4365         int need_scaling;
4366
4367         need_scaling = intel_rotation_90_or_270(rotation) ?
4368                 (src_h != dst_w || src_w != dst_h):
4369                 (src_w != dst_w || src_h != dst_h);
4370
4371         /*
4372          * if plane is being disabled or scaler is no more required or force detach
4373          *  - free scaler binded to this plane/crtc
4374          *  - in order to do this, update crtc->scaler_usage
4375          *
4376          * Here scaler state in crtc_state is set free so that
4377          * scaler can be assigned to other user. Actual register
4378          * update to free the scaler is done in plane/panel-fit programming.
4379          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4380          */
4381         if (force_detach || !need_scaling) {
4382                 if (*scaler_id >= 0) {
4383                         scaler_state->scaler_users &= ~(1 << scaler_user);
4384                         scaler_state->scalers[*scaler_id].in_use = 0;
4385
4386                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4387                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4388                                 intel_crtc->pipe, scaler_user, *scaler_id,
4389                                 scaler_state->scaler_users);
4390                         *scaler_id = -1;
4391                 }
4392                 return 0;
4393         }
4394
4395         /* range checks */
4396         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4397                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4398
4399                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4400                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4401                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4402                         "size is out of scaler range\n",
4403                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4404                 return -EINVAL;
4405         }
4406
4407         /* mark this plane as a scaler user in crtc_state */
4408         scaler_state->scaler_users |= (1 << scaler_user);
4409         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4410                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4411                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4412                 scaler_state->scaler_users);
4413
4414         return 0;
4415 }
4416
4417 /**
4418  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4419  *
4420  * @state: crtc's scaler state
4421  *
4422  * Return
4423  *     0 - scaler_usage updated successfully
4424  *    error - requested scaling cannot be supported or other error condition
4425  */
4426 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4427 {
4428         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4429         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4430
4431         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4432                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4433
4434         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4435                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4436                 state->pipe_src_w, state->pipe_src_h,
4437                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4438 }
4439
4440 /**
4441  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4442  *
4443  * @state: crtc's scaler state
4444  * @plane_state: atomic plane state to update
4445  *
4446  * Return
4447  *     0 - scaler_usage updated successfully
4448  *    error - requested scaling cannot be supported or other error condition
4449  */
4450 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4451                                    struct intel_plane_state *plane_state)
4452 {
4453
4454         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4455         struct intel_plane *intel_plane =
4456                 to_intel_plane(plane_state->base.plane);
4457         struct drm_framebuffer *fb = plane_state->base.fb;
4458         int ret;
4459
4460         bool force_detach = !fb || !plane_state->visible;
4461
4462         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4463                       intel_plane->base.base.id, intel_crtc->pipe,
4464                       drm_plane_index(&intel_plane->base));
4465
4466         ret = skl_update_scaler(crtc_state, force_detach,
4467                                 drm_plane_index(&intel_plane->base),
4468                                 &plane_state->scaler_id,
4469                                 plane_state->base.rotation,
4470                                 drm_rect_width(&plane_state->src) >> 16,
4471                                 drm_rect_height(&plane_state->src) >> 16,
4472                                 drm_rect_width(&plane_state->dst),
4473                                 drm_rect_height(&plane_state->dst));
4474
4475         if (ret || plane_state->scaler_id < 0)
4476                 return ret;
4477
4478         /* check colorkey */
4479         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4480                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4481                               intel_plane->base.base.id);
4482                 return -EINVAL;
4483         }
4484
4485         /* Check src format */
4486         switch (fb->pixel_format) {
4487         case DRM_FORMAT_RGB565:
4488         case DRM_FORMAT_XBGR8888:
4489         case DRM_FORMAT_XRGB8888:
4490         case DRM_FORMAT_ABGR8888:
4491         case DRM_FORMAT_ARGB8888:
4492         case DRM_FORMAT_XRGB2101010:
4493         case DRM_FORMAT_XBGR2101010:
4494         case DRM_FORMAT_YUYV:
4495         case DRM_FORMAT_YVYU:
4496         case DRM_FORMAT_UYVY:
4497         case DRM_FORMAT_VYUY:
4498                 break;
4499         default:
4500                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4501                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4502                 return -EINVAL;
4503         }
4504
4505         return 0;
4506 }
4507
4508 static void skylake_scaler_disable(struct intel_crtc *crtc)
4509 {
4510         int i;
4511
4512         for (i = 0; i < crtc->num_scalers; i++)
4513                 skl_detach_scaler(crtc, i);
4514 }
4515
4516 static void skylake_pfit_enable(struct intel_crtc *crtc)
4517 {
4518         struct drm_device *dev = crtc->base.dev;
4519         struct drm_i915_private *dev_priv = dev->dev_private;
4520         int pipe = crtc->pipe;
4521         struct intel_crtc_scaler_state *scaler_state =
4522                 &crtc->config->scaler_state;
4523
4524         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4525
4526         if (crtc->config->pch_pfit.enabled) {
4527                 int id;
4528
4529                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4530                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4531                         return;
4532                 }
4533
4534                 id = scaler_state->scaler_id;
4535                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4536                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4537                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4538                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4539
4540                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4541         }
4542 }
4543
4544 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4545 {
4546         struct drm_device *dev = crtc->base.dev;
4547         struct drm_i915_private *dev_priv = dev->dev_private;
4548         int pipe = crtc->pipe;
4549
4550         if (crtc->config->pch_pfit.enabled) {
4551                 /* Force use of hard-coded filter coefficients
4552                  * as some pre-programmed values are broken,
4553                  * e.g. x201.
4554                  */
4555                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4556                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4557                                                  PF_PIPE_SEL_IVB(pipe));
4558                 else
4559                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4560                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4561                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4562         }
4563 }
4564
4565 void hsw_enable_ips(struct intel_crtc *crtc)
4566 {
4567         struct drm_device *dev = crtc->base.dev;
4568         struct drm_i915_private *dev_priv = dev->dev_private;
4569
4570         if (!crtc->config->ips_enabled)
4571                 return;
4572
4573         /* We can only enable IPS after we enable a plane and wait for a vblank */
4574         intel_wait_for_vblank(dev, crtc->pipe);
4575
4576         assert_plane_enabled(dev_priv, crtc->plane);
4577         if (IS_BROADWELL(dev)) {
4578                 mutex_lock(&dev_priv->rps.hw_lock);
4579                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4580                 mutex_unlock(&dev_priv->rps.hw_lock);
4581                 /* Quoting Art Runyan: "its not safe to expect any particular
4582                  * value in IPS_CTL bit 31 after enabling IPS through the
4583                  * mailbox." Moreover, the mailbox may return a bogus state,
4584                  * so we need to just enable it and continue on.
4585                  */
4586         } else {
4587                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4588                 /* The bit only becomes 1 in the next vblank, so this wait here
4589                  * is essentially intel_wait_for_vblank. If we don't have this
4590                  * and don't wait for vblanks until the end of crtc_enable, then
4591                  * the HW state readout code will complain that the expected
4592                  * IPS_CTL value is not the one we read. */
4593                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4594                         DRM_ERROR("Timed out waiting for IPS enable\n");
4595         }
4596 }
4597
4598 void hsw_disable_ips(struct intel_crtc *crtc)
4599 {
4600         struct drm_device *dev = crtc->base.dev;
4601         struct drm_i915_private *dev_priv = dev->dev_private;
4602
4603         if (!crtc->config->ips_enabled)
4604                 return;
4605
4606         assert_plane_enabled(dev_priv, crtc->plane);
4607         if (IS_BROADWELL(dev)) {
4608                 mutex_lock(&dev_priv->rps.hw_lock);
4609                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4610                 mutex_unlock(&dev_priv->rps.hw_lock);
4611                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4612                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4613                         DRM_ERROR("Timed out waiting for IPS disable\n");
4614         } else {
4615                 I915_WRITE(IPS_CTL, 0);
4616                 POSTING_READ(IPS_CTL);
4617         }
4618
4619         /* We need to wait for a vblank before we can disable the plane. */
4620         intel_wait_for_vblank(dev, crtc->pipe);
4621 }
4622
4623 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4624 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4625 {
4626         struct drm_device *dev = crtc->dev;
4627         struct drm_i915_private *dev_priv = dev->dev_private;
4628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4629         enum pipe pipe = intel_crtc->pipe;
4630         int i;
4631         bool reenable_ips = false;
4632
4633         /* The clocks have to be on to load the palette. */
4634         if (!crtc->state->active)
4635                 return;
4636
4637         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4638                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4639                         assert_dsi_pll_enabled(dev_priv);
4640                 else
4641                         assert_pll_enabled(dev_priv, pipe);
4642         }
4643
4644         /* Workaround : Do not read or write the pipe palette/gamma data while
4645          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4646          */
4647         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4648             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4649              GAMMA_MODE_MODE_SPLIT)) {
4650                 hsw_disable_ips(intel_crtc);
4651                 reenable_ips = true;
4652         }
4653
4654         for (i = 0; i < 256; i++) {
4655                 u32 palreg;
4656
4657                 if (HAS_GMCH_DISPLAY(dev))
4658                         palreg = PALETTE(pipe, i);
4659                 else
4660                         palreg = LGC_PALETTE(pipe, i);
4661
4662                 I915_WRITE(palreg,
4663                            (intel_crtc->lut_r[i] << 16) |
4664                            (intel_crtc->lut_g[i] << 8) |
4665                            intel_crtc->lut_b[i]);
4666         }
4667
4668         if (reenable_ips)
4669                 hsw_enable_ips(intel_crtc);
4670 }
4671
4672 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4673 {
4674         if (intel_crtc->overlay) {
4675                 struct drm_device *dev = intel_crtc->base.dev;
4676                 struct drm_i915_private *dev_priv = dev->dev_private;
4677
4678                 mutex_lock(&dev->struct_mutex);
4679                 dev_priv->mm.interruptible = false;
4680                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4681                 dev_priv->mm.interruptible = true;
4682                 mutex_unlock(&dev->struct_mutex);
4683         }
4684
4685         /* Let userspace switch the overlay on again. In most cases userspace
4686          * has to recompute where to put it anyway.
4687          */
4688 }
4689
4690 /**
4691  * intel_post_enable_primary - Perform operations after enabling primary plane
4692  * @crtc: the CRTC whose primary plane was just enabled
4693  *
4694  * Performs potentially sleeping operations that must be done after the primary
4695  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4696  * called due to an explicit primary plane update, or due to an implicit
4697  * re-enable that is caused when a sprite plane is updated to no longer
4698  * completely hide the primary plane.
4699  */
4700 static void
4701 intel_post_enable_primary(struct drm_crtc *crtc)
4702 {
4703         struct drm_device *dev = crtc->dev;
4704         struct drm_i915_private *dev_priv = dev->dev_private;
4705         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4706         int pipe = intel_crtc->pipe;
4707
4708         /*
4709          * BDW signals flip done immediately if the plane
4710          * is disabled, even if the plane enable is already
4711          * armed to occur at the next vblank :(
4712          */
4713         if (IS_BROADWELL(dev))
4714                 intel_wait_for_vblank(dev, pipe);
4715
4716         /*
4717          * FIXME IPS should be fine as long as one plane is
4718          * enabled, but in practice it seems to have problems
4719          * when going from primary only to sprite only and vice
4720          * versa.
4721          */
4722         hsw_enable_ips(intel_crtc);
4723
4724         /*
4725          * Gen2 reports pipe underruns whenever all planes are disabled.
4726          * So don't enable underrun reporting before at least some planes
4727          * are enabled.
4728          * FIXME: Need to fix the logic to work when we turn off all planes
4729          * but leave the pipe running.
4730          */
4731         if (IS_GEN2(dev))
4732                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4733
4734         /* Underruns don't raise interrupts, so check manually. */
4735         if (HAS_GMCH_DISPLAY(dev))
4736                 i9xx_check_fifo_underruns(dev_priv);
4737 }
4738
4739 /**
4740  * intel_pre_disable_primary - Perform operations before disabling primary plane
4741  * @crtc: the CRTC whose primary plane is to be disabled
4742  *
4743  * Performs potentially sleeping operations that must be done before the
4744  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4745  * be called due to an explicit primary plane update, or due to an implicit
4746  * disable that is caused when a sprite plane completely hides the primary
4747  * plane.
4748  */
4749 static void
4750 intel_pre_disable_primary(struct drm_crtc *crtc)
4751 {
4752         struct drm_device *dev = crtc->dev;
4753         struct drm_i915_private *dev_priv = dev->dev_private;
4754         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4755         int pipe = intel_crtc->pipe;
4756
4757         /*
4758          * Gen2 reports pipe underruns whenever all planes are disabled.
4759          * So diasble underrun reporting before all the planes get disabled.
4760          * FIXME: Need to fix the logic to work when we turn off all planes
4761          * but leave the pipe running.
4762          */
4763         if (IS_GEN2(dev))
4764                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4765
4766         /*
4767          * Vblank time updates from the shadow to live plane control register
4768          * are blocked if the memory self-refresh mode is active at that
4769          * moment. So to make sure the plane gets truly disabled, disable
4770          * first the self-refresh mode. The self-refresh enable bit in turn
4771          * will be checked/applied by the HW only at the next frame start
4772          * event which is after the vblank start event, so we need to have a
4773          * wait-for-vblank between disabling the plane and the pipe.
4774          */
4775         if (HAS_GMCH_DISPLAY(dev)) {
4776                 intel_set_memory_cxsr(dev_priv, false);
4777                 dev_priv->wm.vlv.cxsr = false;
4778                 intel_wait_for_vblank(dev, pipe);
4779         }
4780
4781         /*
4782          * FIXME IPS should be fine as long as one plane is
4783          * enabled, but in practice it seems to have problems
4784          * when going from primary only to sprite only and vice
4785          * versa.
4786          */
4787         hsw_disable_ips(intel_crtc);
4788 }
4789
4790 static void intel_post_plane_update(struct intel_crtc *crtc)
4791 {
4792         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4793         struct drm_device *dev = crtc->base.dev;
4794         struct drm_i915_private *dev_priv = dev->dev_private;
4795         struct drm_plane *plane;
4796
4797         if (atomic->wait_vblank)
4798                 intel_wait_for_vblank(dev, crtc->pipe);
4799
4800         intel_frontbuffer_flip(dev, atomic->fb_bits);
4801
4802         if (atomic->disable_cxsr)
4803                 crtc->wm.cxsr_allowed = true;
4804
4805         if (crtc->atomic.update_wm_post)
4806                 intel_update_watermarks(&crtc->base);
4807
4808         if (atomic->update_fbc)
4809                 intel_fbc_update(dev_priv);
4810
4811         if (atomic->post_enable_primary)
4812                 intel_post_enable_primary(&crtc->base);
4813
4814         drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4815                 intel_update_sprite_watermarks(plane, &crtc->base,
4816                                                0, 0, 0, false, false);
4817
4818         memset(atomic, 0, sizeof(*atomic));
4819 }
4820
4821 static void intel_pre_plane_update(struct intel_crtc *crtc)
4822 {
4823         struct drm_device *dev = crtc->base.dev;
4824         struct drm_i915_private *dev_priv = dev->dev_private;
4825         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4826         struct drm_plane *p;
4827
4828         /* Track fb's for any planes being disabled */
4829         drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4830                 struct intel_plane *plane = to_intel_plane(p);
4831
4832                 mutex_lock(&dev->struct_mutex);
4833                 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4834                                   plane->frontbuffer_bit);
4835                 mutex_unlock(&dev->struct_mutex);
4836         }
4837
4838         if (atomic->wait_for_flips)
4839                 intel_crtc_wait_for_pending_flips(&crtc->base);
4840
4841         if (atomic->disable_fbc)
4842                 intel_fbc_disable_crtc(crtc);
4843
4844         if (crtc->atomic.disable_ips)
4845                 hsw_disable_ips(crtc);
4846
4847         if (atomic->pre_disable_primary)
4848                 intel_pre_disable_primary(&crtc->base);
4849
4850         if (atomic->disable_cxsr) {
4851                 crtc->wm.cxsr_allowed = false;
4852                 intel_set_memory_cxsr(dev_priv, false);
4853         }
4854 }
4855
4856 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4857 {
4858         struct drm_device *dev = crtc->dev;
4859         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4860         struct drm_plane *p;
4861         int pipe = intel_crtc->pipe;
4862
4863         intel_crtc_dpms_overlay_disable(intel_crtc);
4864
4865         drm_for_each_plane_mask(p, dev, plane_mask)
4866                 to_intel_plane(p)->disable_plane(p, crtc);
4867
4868         /*
4869          * FIXME: Once we grow proper nuclear flip support out of this we need
4870          * to compute the mask of flip planes precisely. For the time being
4871          * consider this a flip to a NULL plane.
4872          */
4873         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4874 }
4875
4876 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4877 {
4878         struct drm_device *dev = crtc->dev;
4879         struct drm_i915_private *dev_priv = dev->dev_private;
4880         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4881         struct intel_encoder *encoder;
4882         int pipe = intel_crtc->pipe;
4883
4884         if (WARN_ON(intel_crtc->active))
4885                 return;
4886
4887         if (intel_crtc->config->has_pch_encoder)
4888                 intel_prepare_shared_dpll(intel_crtc);
4889
4890         if (intel_crtc->config->has_dp_encoder)
4891                 intel_dp_set_m_n(intel_crtc, M1_N1);
4892
4893         intel_set_pipe_timings(intel_crtc);
4894
4895         if (intel_crtc->config->has_pch_encoder) {
4896                 intel_cpu_transcoder_set_m_n(intel_crtc,
4897                                      &intel_crtc->config->fdi_m_n, NULL);
4898         }
4899
4900         ironlake_set_pipeconf(crtc);
4901
4902         intel_crtc->active = true;
4903
4904         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4905         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4906
4907         for_each_encoder_on_crtc(dev, crtc, encoder)
4908                 if (encoder->pre_enable)
4909                         encoder->pre_enable(encoder);
4910
4911         if (intel_crtc->config->has_pch_encoder) {
4912                 /* Note: FDI PLL enabling _must_ be done before we enable the
4913                  * cpu pipes, hence this is separate from all the other fdi/pch
4914                  * enabling. */
4915                 ironlake_fdi_pll_enable(intel_crtc);
4916         } else {
4917                 assert_fdi_tx_disabled(dev_priv, pipe);
4918                 assert_fdi_rx_disabled(dev_priv, pipe);
4919         }
4920
4921         ironlake_pfit_enable(intel_crtc);
4922
4923         /*
4924          * On ILK+ LUT must be loaded before the pipe is running but with
4925          * clocks enabled
4926          */
4927         intel_crtc_load_lut(crtc);
4928
4929         intel_update_watermarks(crtc);
4930         intel_enable_pipe(intel_crtc);
4931
4932         if (intel_crtc->config->has_pch_encoder)
4933                 ironlake_pch_enable(crtc);
4934
4935         assert_vblank_disabled(crtc);
4936         drm_crtc_vblank_on(crtc);
4937
4938         for_each_encoder_on_crtc(dev, crtc, encoder)
4939                 encoder->enable(encoder);
4940
4941         if (HAS_PCH_CPT(dev))
4942                 cpt_verify_modeset(dev, intel_crtc->pipe);
4943 }
4944
4945 /* IPS only exists on ULT machines and is tied to pipe A. */
4946 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4947 {
4948         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4949 }
4950
4951 static void haswell_crtc_enable(struct drm_crtc *crtc)
4952 {
4953         struct drm_device *dev = crtc->dev;
4954         struct drm_i915_private *dev_priv = dev->dev_private;
4955         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4956         struct intel_encoder *encoder;
4957         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4958         struct intel_crtc_state *pipe_config =
4959                 to_intel_crtc_state(crtc->state);
4960         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4961
4962         if (WARN_ON(intel_crtc->active))
4963                 return;
4964
4965         if (intel_crtc_to_shared_dpll(intel_crtc))
4966                 intel_enable_shared_dpll(intel_crtc);
4967
4968         if (intel_crtc->config->has_dp_encoder)
4969                 intel_dp_set_m_n(intel_crtc, M1_N1);
4970
4971         intel_set_pipe_timings(intel_crtc);
4972
4973         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4974                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4975                            intel_crtc->config->pixel_multiplier - 1);
4976         }
4977
4978         if (intel_crtc->config->has_pch_encoder) {
4979                 intel_cpu_transcoder_set_m_n(intel_crtc,
4980                                      &intel_crtc->config->fdi_m_n, NULL);
4981         }
4982
4983         haswell_set_pipeconf(crtc);
4984
4985         intel_set_pipe_csc(crtc);
4986
4987         intel_crtc->active = true;
4988
4989         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4990         for_each_encoder_on_crtc(dev, crtc, encoder) {
4991                 if (encoder->pre_pll_enable)
4992                         encoder->pre_pll_enable(encoder);
4993                 if (encoder->pre_enable)
4994                         encoder->pre_enable(encoder);
4995         }
4996
4997         if (intel_crtc->config->has_pch_encoder) {
4998                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4999                                                       true);
5000                 dev_priv->display.fdi_link_train(crtc);
5001         }
5002
5003         if (!is_dsi)
5004                 intel_ddi_enable_pipe_clock(intel_crtc);
5005
5006         if (INTEL_INFO(dev)->gen >= 9)
5007                 skylake_pfit_enable(intel_crtc);
5008         else
5009                 ironlake_pfit_enable(intel_crtc);
5010
5011         /*
5012          * On ILK+ LUT must be loaded before the pipe is running but with
5013          * clocks enabled
5014          */
5015         intel_crtc_load_lut(crtc);
5016
5017         intel_ddi_set_pipe_settings(crtc);
5018         if (!is_dsi)
5019                 intel_ddi_enable_transcoder_func(crtc);
5020
5021         intel_update_watermarks(crtc);
5022         intel_enable_pipe(intel_crtc);
5023
5024         if (intel_crtc->config->has_pch_encoder)
5025                 lpt_pch_enable(crtc);
5026
5027         if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
5028                 intel_ddi_set_vc_payload_alloc(crtc, true);
5029
5030         assert_vblank_disabled(crtc);
5031         drm_crtc_vblank_on(crtc);
5032
5033         for_each_encoder_on_crtc(dev, crtc, encoder) {
5034                 encoder->enable(encoder);
5035                 intel_opregion_notify_encoder(encoder, true);
5036         }
5037
5038         /* If we change the relative order between pipe/planes enabling, we need
5039          * to change the workaround. */
5040         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5041         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5042                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5043                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5044         }
5045 }
5046
5047 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5048 {
5049         struct drm_device *dev = crtc->base.dev;
5050         struct drm_i915_private *dev_priv = dev->dev_private;
5051         int pipe = crtc->pipe;
5052
5053         /* To avoid upsetting the power well on haswell only disable the pfit if
5054          * it's in use. The hw state code will make sure we get this right. */
5055         if (force || crtc->config->pch_pfit.enabled) {
5056                 I915_WRITE(PF_CTL(pipe), 0);
5057                 I915_WRITE(PF_WIN_POS(pipe), 0);
5058                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5059         }
5060 }
5061
5062 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5063 {
5064         struct drm_device *dev = crtc->dev;
5065         struct drm_i915_private *dev_priv = dev->dev_private;
5066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5067         struct intel_encoder *encoder;
5068         int pipe = intel_crtc->pipe;
5069         u32 reg, temp;
5070
5071         for_each_encoder_on_crtc(dev, crtc, encoder)
5072                 encoder->disable(encoder);
5073
5074         drm_crtc_vblank_off(crtc);
5075         assert_vblank_disabled(crtc);
5076
5077         if (intel_crtc->config->has_pch_encoder)
5078                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5079
5080         intel_disable_pipe(intel_crtc);
5081
5082         ironlake_pfit_disable(intel_crtc, false);
5083
5084         if (intel_crtc->config->has_pch_encoder)
5085                 ironlake_fdi_disable(crtc);
5086
5087         for_each_encoder_on_crtc(dev, crtc, encoder)
5088                 if (encoder->post_disable)
5089                         encoder->post_disable(encoder);
5090
5091         if (intel_crtc->config->has_pch_encoder) {
5092                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5093
5094                 if (HAS_PCH_CPT(dev)) {
5095                         /* disable TRANS_DP_CTL */
5096                         reg = TRANS_DP_CTL(pipe);
5097                         temp = I915_READ(reg);
5098                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5099                                   TRANS_DP_PORT_SEL_MASK);
5100                         temp |= TRANS_DP_PORT_SEL_NONE;
5101                         I915_WRITE(reg, temp);
5102
5103                         /* disable DPLL_SEL */
5104                         temp = I915_READ(PCH_DPLL_SEL);
5105                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5106                         I915_WRITE(PCH_DPLL_SEL, temp);
5107                 }
5108
5109                 ironlake_fdi_pll_disable(intel_crtc);
5110         }
5111 }
5112
5113 static void haswell_crtc_disable(struct drm_crtc *crtc)
5114 {
5115         struct drm_device *dev = crtc->dev;
5116         struct drm_i915_private *dev_priv = dev->dev_private;
5117         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5118         struct intel_encoder *encoder;
5119         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5120         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5121
5122         for_each_encoder_on_crtc(dev, crtc, encoder) {
5123                 intel_opregion_notify_encoder(encoder, false);
5124                 encoder->disable(encoder);
5125         }
5126
5127         drm_crtc_vblank_off(crtc);
5128         assert_vblank_disabled(crtc);
5129
5130         if (intel_crtc->config->has_pch_encoder)
5131                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5132                                                       false);
5133         intel_disable_pipe(intel_crtc);
5134
5135         if (intel_crtc->config->dp_encoder_is_mst)
5136                 intel_ddi_set_vc_payload_alloc(crtc, false);
5137
5138         if (!is_dsi)
5139                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5140
5141         if (INTEL_INFO(dev)->gen >= 9)
5142                 skylake_scaler_disable(intel_crtc);
5143         else
5144                 ironlake_pfit_disable(intel_crtc, false);
5145
5146         if (!is_dsi)
5147                 intel_ddi_disable_pipe_clock(intel_crtc);
5148
5149         if (intel_crtc->config->has_pch_encoder) {
5150                 lpt_disable_pch_transcoder(dev_priv);
5151                 intel_ddi_fdi_disable(crtc);
5152         }
5153
5154         for_each_encoder_on_crtc(dev, crtc, encoder)
5155                 if (encoder->post_disable)
5156                         encoder->post_disable(encoder);
5157 }
5158
5159 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5160 {
5161         struct drm_device *dev = crtc->base.dev;
5162         struct drm_i915_private *dev_priv = dev->dev_private;
5163         struct intel_crtc_state *pipe_config = crtc->config;
5164
5165         if (!pipe_config->gmch_pfit.control)
5166                 return;
5167
5168         /*
5169          * The panel fitter should only be adjusted whilst the pipe is disabled,
5170          * according to register description and PRM.
5171          */
5172         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5173         assert_pipe_disabled(dev_priv, crtc->pipe);
5174
5175         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5176         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5177
5178         /* Border color in case we don't scale up to the full screen. Black by
5179          * default, change to something else for debugging. */
5180         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5181 }
5182
5183 static enum intel_display_power_domain port_to_power_domain(enum port port)
5184 {
5185         switch (port) {
5186         case PORT_A:
5187                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5188         case PORT_B:
5189                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5190         case PORT_C:
5191                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5192         case PORT_D:
5193                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5194         case PORT_E:
5195                 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5196         default:
5197                 MISSING_CASE(port);
5198                 return POWER_DOMAIN_PORT_OTHER;
5199         }
5200 }
5201
5202 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5203 {
5204         switch (port) {
5205         case PORT_A:
5206                 return POWER_DOMAIN_AUX_A;
5207         case PORT_B:
5208                 return POWER_DOMAIN_AUX_B;
5209         case PORT_C:
5210                 return POWER_DOMAIN_AUX_C;
5211         case PORT_D:
5212                 return POWER_DOMAIN_AUX_D;
5213         case PORT_E:
5214                 /* FIXME: Check VBT for actual wiring of PORT E */
5215                 return POWER_DOMAIN_AUX_D;
5216         default:
5217                 MISSING_CASE(port);
5218                 return POWER_DOMAIN_AUX_A;
5219         }
5220 }
5221
5222 #define for_each_power_domain(domain, mask)                             \
5223         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5224                 if ((1 << (domain)) & (mask))
5225
5226 enum intel_display_power_domain
5227 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5228 {
5229         struct drm_device *dev = intel_encoder->base.dev;
5230         struct intel_digital_port *intel_dig_port;
5231
5232         switch (intel_encoder->type) {
5233         case INTEL_OUTPUT_UNKNOWN:
5234                 /* Only DDI platforms should ever use this output type */
5235                 WARN_ON_ONCE(!HAS_DDI(dev));
5236         case INTEL_OUTPUT_DISPLAYPORT:
5237         case INTEL_OUTPUT_HDMI:
5238         case INTEL_OUTPUT_EDP:
5239                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5240                 return port_to_power_domain(intel_dig_port->port);
5241         case INTEL_OUTPUT_DP_MST:
5242                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5243                 return port_to_power_domain(intel_dig_port->port);
5244         case INTEL_OUTPUT_ANALOG:
5245                 return POWER_DOMAIN_PORT_CRT;
5246         case INTEL_OUTPUT_DSI:
5247                 return POWER_DOMAIN_PORT_DSI;
5248         default:
5249                 return POWER_DOMAIN_PORT_OTHER;
5250         }
5251 }
5252
5253 enum intel_display_power_domain
5254 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5255 {
5256         struct drm_device *dev = intel_encoder->base.dev;
5257         struct intel_digital_port *intel_dig_port;
5258
5259         switch (intel_encoder->type) {
5260         case INTEL_OUTPUT_UNKNOWN:
5261         case INTEL_OUTPUT_HDMI:
5262                 /*
5263                  * Only DDI platforms should ever use these output types.
5264                  * We can get here after the HDMI detect code has already set
5265                  * the type of the shared encoder. Since we can't be sure
5266                  * what's the status of the given connectors, play safe and
5267                  * run the DP detection too.
5268                  */
5269                 WARN_ON_ONCE(!HAS_DDI(dev));
5270         case INTEL_OUTPUT_DISPLAYPORT:
5271         case INTEL_OUTPUT_EDP:
5272                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5273                 return port_to_aux_power_domain(intel_dig_port->port);
5274         case INTEL_OUTPUT_DP_MST:
5275                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5276                 return port_to_aux_power_domain(intel_dig_port->port);
5277         default:
5278                 MISSING_CASE(intel_encoder->type);
5279                 return POWER_DOMAIN_AUX_A;
5280         }
5281 }
5282
5283 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5284 {
5285         struct drm_device *dev = crtc->dev;
5286         struct intel_encoder *intel_encoder;
5287         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5288         enum pipe pipe = intel_crtc->pipe;
5289         unsigned long mask;
5290         enum transcoder transcoder;
5291
5292         if (!crtc->state->active)
5293                 return 0;
5294
5295         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5296
5297         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5298         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5299         if (intel_crtc->config->pch_pfit.enabled ||
5300             intel_crtc->config->pch_pfit.force_thru)
5301                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5302
5303         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5304                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5305
5306         return mask;
5307 }
5308
5309 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5310 {
5311         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5312         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5313         enum intel_display_power_domain domain;
5314         unsigned long domains, new_domains, old_domains;
5315
5316         old_domains = intel_crtc->enabled_power_domains;
5317         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5318
5319         domains = new_domains & ~old_domains;
5320
5321         for_each_power_domain(domain, domains)
5322                 intel_display_power_get(dev_priv, domain);
5323
5324         return old_domains & ~new_domains;
5325 }
5326
5327 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5328                                       unsigned long domains)
5329 {
5330         enum intel_display_power_domain domain;
5331
5332         for_each_power_domain(domain, domains)
5333                 intel_display_power_put(dev_priv, domain);
5334 }
5335
5336 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5337 {
5338         struct drm_device *dev = state->dev;
5339         struct drm_i915_private *dev_priv = dev->dev_private;
5340         unsigned long put_domains[I915_MAX_PIPES] = {};
5341         struct drm_crtc_state *crtc_state;
5342         struct drm_crtc *crtc;
5343         int i;
5344
5345         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5346                 if (needs_modeset(crtc->state))
5347                         put_domains[to_intel_crtc(crtc)->pipe] =
5348                                 modeset_get_crtc_power_domains(crtc);
5349         }
5350
5351         if (dev_priv->display.modeset_commit_cdclk) {
5352                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5353
5354                 if (cdclk != dev_priv->cdclk_freq &&
5355                     !WARN_ON(!state->allow_modeset))
5356                         dev_priv->display.modeset_commit_cdclk(state);
5357         }
5358
5359         for (i = 0; i < I915_MAX_PIPES; i++)
5360                 if (put_domains[i])
5361                         modeset_put_power_domains(dev_priv, put_domains[i]);
5362 }
5363
5364 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5365 {
5366         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5367
5368         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5369             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5370                 return max_cdclk_freq;
5371         else if (IS_CHERRYVIEW(dev_priv))
5372                 return max_cdclk_freq*95/100;
5373         else if (INTEL_INFO(dev_priv)->gen < 4)
5374                 return 2*max_cdclk_freq*90/100;
5375         else
5376                 return max_cdclk_freq*90/100;
5377 }
5378
5379 static void intel_update_max_cdclk(struct drm_device *dev)
5380 {
5381         struct drm_i915_private *dev_priv = dev->dev_private;
5382
5383         if (IS_SKYLAKE(dev)) {
5384                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5385
5386                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5387                         dev_priv->max_cdclk_freq = 675000;
5388                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5389                         dev_priv->max_cdclk_freq = 540000;
5390                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5391                         dev_priv->max_cdclk_freq = 450000;
5392                 else
5393                         dev_priv->max_cdclk_freq = 337500;
5394         } else if (IS_BROADWELL(dev))  {
5395                 /*
5396                  * FIXME with extra cooling we can allow
5397                  * 540 MHz for ULX and 675 Mhz for ULT.
5398                  * How can we know if extra cooling is
5399                  * available? PCI ID, VTB, something else?
5400                  */
5401                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5402                         dev_priv->max_cdclk_freq = 450000;
5403                 else if (IS_BDW_ULX(dev))
5404                         dev_priv->max_cdclk_freq = 450000;
5405                 else if (IS_BDW_ULT(dev))
5406                         dev_priv->max_cdclk_freq = 540000;
5407                 else
5408                         dev_priv->max_cdclk_freq = 675000;
5409         } else if (IS_CHERRYVIEW(dev)) {
5410                 dev_priv->max_cdclk_freq = 320000;
5411         } else if (IS_VALLEYVIEW(dev)) {
5412                 dev_priv->max_cdclk_freq = 400000;
5413         } else {
5414                 /* otherwise assume cdclk is fixed */
5415                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5416         }
5417
5418         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5419
5420         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5421                          dev_priv->max_cdclk_freq);
5422
5423         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5424                          dev_priv->max_dotclk_freq);
5425 }
5426
5427 static void intel_update_cdclk(struct drm_device *dev)
5428 {
5429         struct drm_i915_private *dev_priv = dev->dev_private;
5430
5431         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5432         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5433                          dev_priv->cdclk_freq);
5434
5435         /*
5436          * Program the gmbus_freq based on the cdclk frequency.
5437          * BSpec erroneously claims we should aim for 4MHz, but
5438          * in fact 1MHz is the correct frequency.
5439          */
5440         if (IS_VALLEYVIEW(dev)) {
5441                 /*
5442                  * Program the gmbus_freq based on the cdclk frequency.
5443                  * BSpec erroneously claims we should aim for 4MHz, but
5444                  * in fact 1MHz is the correct frequency.
5445                  */
5446                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5447         }
5448
5449         if (dev_priv->max_cdclk_freq == 0)
5450                 intel_update_max_cdclk(dev);
5451 }
5452
5453 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5454 {
5455         struct drm_i915_private *dev_priv = dev->dev_private;
5456         uint32_t divider;
5457         uint32_t ratio;
5458         uint32_t current_freq;
5459         int ret;
5460
5461         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5462         switch (frequency) {
5463         case 144000:
5464                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5465                 ratio = BXT_DE_PLL_RATIO(60);
5466                 break;
5467         case 288000:
5468                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5469                 ratio = BXT_DE_PLL_RATIO(60);
5470                 break;
5471         case 384000:
5472                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5473                 ratio = BXT_DE_PLL_RATIO(60);
5474                 break;
5475         case 576000:
5476                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5477                 ratio = BXT_DE_PLL_RATIO(60);
5478                 break;
5479         case 624000:
5480                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5481                 ratio = BXT_DE_PLL_RATIO(65);
5482                 break;
5483         case 19200:
5484                 /*
5485                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5486                  * to suppress GCC warning.
5487                  */
5488                 ratio = 0;
5489                 divider = 0;
5490                 break;
5491         default:
5492                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5493
5494                 return;
5495         }
5496
5497         mutex_lock(&dev_priv->rps.hw_lock);
5498         /* Inform power controller of upcoming frequency change */
5499         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5500                                       0x80000000);
5501         mutex_unlock(&dev_priv->rps.hw_lock);
5502
5503         if (ret) {
5504                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5505                           ret, frequency);
5506                 return;
5507         }
5508
5509         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5510         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5511         current_freq = current_freq * 500 + 1000;
5512
5513         /*
5514          * DE PLL has to be disabled when
5515          * - setting to 19.2MHz (bypass, PLL isn't used)
5516          * - before setting to 624MHz (PLL needs toggling)
5517          * - before setting to any frequency from 624MHz (PLL needs toggling)
5518          */
5519         if (frequency == 19200 || frequency == 624000 ||
5520             current_freq == 624000) {
5521                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5522                 /* Timeout 200us */
5523                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5524                              1))
5525                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5526         }
5527
5528         if (frequency != 19200) {
5529                 uint32_t val;
5530
5531                 val = I915_READ(BXT_DE_PLL_CTL);
5532                 val &= ~BXT_DE_PLL_RATIO_MASK;
5533                 val |= ratio;
5534                 I915_WRITE(BXT_DE_PLL_CTL, val);
5535
5536                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5537                 /* Timeout 200us */
5538                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5539                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5540
5541                 val = I915_READ(CDCLK_CTL);
5542                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5543                 val |= divider;
5544                 /*
5545                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5546                  * enable otherwise.
5547                  */
5548                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5549                 if (frequency >= 500000)
5550                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5551
5552                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5553                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5554                 val |= (frequency - 1000) / 500;
5555                 I915_WRITE(CDCLK_CTL, val);
5556         }
5557
5558         mutex_lock(&dev_priv->rps.hw_lock);
5559         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5560                                       DIV_ROUND_UP(frequency, 25000));
5561         mutex_unlock(&dev_priv->rps.hw_lock);
5562
5563         if (ret) {
5564                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5565                           ret, frequency);
5566                 return;
5567         }
5568
5569         intel_update_cdclk(dev);
5570 }
5571
5572 void broxton_init_cdclk(struct drm_device *dev)
5573 {
5574         struct drm_i915_private *dev_priv = dev->dev_private;
5575         uint32_t val;
5576
5577         /*
5578          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5579          * or else the reset will hang because there is no PCH to respond.
5580          * Move the handshake programming to initialization sequence.
5581          * Previously was left up to BIOS.
5582          */
5583         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5584         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5585         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5586
5587         /* Enable PG1 for cdclk */
5588         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5589
5590         /* check if cd clock is enabled */
5591         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5592                 DRM_DEBUG_KMS("Display already initialized\n");
5593                 return;
5594         }
5595
5596         /*
5597          * FIXME:
5598          * - The initial CDCLK needs to be read from VBT.
5599          *   Need to make this change after VBT has changes for BXT.
5600          * - check if setting the max (or any) cdclk freq is really necessary
5601          *   here, it belongs to modeset time
5602          */
5603         broxton_set_cdclk(dev, 624000);
5604
5605         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5606         POSTING_READ(DBUF_CTL);
5607
5608         udelay(10);
5609
5610         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5611                 DRM_ERROR("DBuf power enable timeout!\n");
5612 }
5613
5614 void broxton_uninit_cdclk(struct drm_device *dev)
5615 {
5616         struct drm_i915_private *dev_priv = dev->dev_private;
5617
5618         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5619         POSTING_READ(DBUF_CTL);
5620
5621         udelay(10);
5622
5623         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5624                 DRM_ERROR("DBuf power disable timeout!\n");
5625
5626         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5627         broxton_set_cdclk(dev, 19200);
5628
5629         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5630 }
5631
5632 static const struct skl_cdclk_entry {
5633         unsigned int freq;
5634         unsigned int vco;
5635 } skl_cdclk_frequencies[] = {
5636         { .freq = 308570, .vco = 8640 },
5637         { .freq = 337500, .vco = 8100 },
5638         { .freq = 432000, .vco = 8640 },
5639         { .freq = 450000, .vco = 8100 },
5640         { .freq = 540000, .vco = 8100 },
5641         { .freq = 617140, .vco = 8640 },
5642         { .freq = 675000, .vco = 8100 },
5643 };
5644
5645 static unsigned int skl_cdclk_decimal(unsigned int freq)
5646 {
5647         return (freq - 1000) / 500;
5648 }
5649
5650 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5651 {
5652         unsigned int i;
5653
5654         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5655                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5656
5657                 if (e->freq == freq)
5658                         return e->vco;
5659         }
5660
5661         return 8100;
5662 }
5663
5664 static void
5665 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5666 {
5667         unsigned int min_freq;
5668         u32 val;
5669
5670         /* select the minimum CDCLK before enabling DPLL 0 */
5671         val = I915_READ(CDCLK_CTL);
5672         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5673         val |= CDCLK_FREQ_337_308;
5674
5675         if (required_vco == 8640)
5676                 min_freq = 308570;
5677         else
5678                 min_freq = 337500;
5679
5680         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5681
5682         I915_WRITE(CDCLK_CTL, val);
5683         POSTING_READ(CDCLK_CTL);
5684
5685         /*
5686          * We always enable DPLL0 with the lowest link rate possible, but still
5687          * taking into account the VCO required to operate the eDP panel at the
5688          * desired frequency. The usual DP link rates operate with a VCO of
5689          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5690          * The modeset code is responsible for the selection of the exact link
5691          * rate later on, with the constraint of choosing a frequency that
5692          * works with required_vco.
5693          */
5694         val = I915_READ(DPLL_CTRL1);
5695
5696         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5697                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5698         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5699         if (required_vco == 8640)
5700                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5701                                             SKL_DPLL0);
5702         else
5703                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5704                                             SKL_DPLL0);
5705
5706         I915_WRITE(DPLL_CTRL1, val);
5707         POSTING_READ(DPLL_CTRL1);
5708
5709         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5710
5711         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5712                 DRM_ERROR("DPLL0 not locked\n");
5713 }
5714
5715 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5716 {
5717         int ret;
5718         u32 val;
5719
5720         /* inform PCU we want to change CDCLK */
5721         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5722         mutex_lock(&dev_priv->rps.hw_lock);
5723         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5724         mutex_unlock(&dev_priv->rps.hw_lock);
5725
5726         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5727 }
5728
5729 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5730 {
5731         unsigned int i;
5732
5733         for (i = 0; i < 15; i++) {
5734                 if (skl_cdclk_pcu_ready(dev_priv))
5735                         return true;
5736                 udelay(10);
5737         }
5738
5739         return false;
5740 }
5741
5742 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5743 {
5744         struct drm_device *dev = dev_priv->dev;
5745         u32 freq_select, pcu_ack;
5746
5747         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5748
5749         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5750                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5751                 return;
5752         }
5753
5754         /* set CDCLK_CTL */
5755         switch(freq) {
5756         case 450000:
5757         case 432000:
5758                 freq_select = CDCLK_FREQ_450_432;
5759                 pcu_ack = 1;
5760                 break;
5761         case 540000:
5762                 freq_select = CDCLK_FREQ_540;
5763                 pcu_ack = 2;
5764                 break;
5765         case 308570:
5766         case 337500:
5767         default:
5768                 freq_select = CDCLK_FREQ_337_308;
5769                 pcu_ack = 0;
5770                 break;
5771         case 617140:
5772         case 675000:
5773                 freq_select = CDCLK_FREQ_675_617;
5774                 pcu_ack = 3;
5775                 break;
5776         }
5777
5778         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5779         POSTING_READ(CDCLK_CTL);
5780
5781         /* inform PCU of the change */
5782         mutex_lock(&dev_priv->rps.hw_lock);
5783         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5784         mutex_unlock(&dev_priv->rps.hw_lock);
5785
5786         intel_update_cdclk(dev);
5787 }
5788
5789 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5790 {
5791         /* disable DBUF power */
5792         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5793         POSTING_READ(DBUF_CTL);
5794
5795         udelay(10);
5796
5797         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5798                 DRM_ERROR("DBuf power disable timeout\n");
5799
5800         /*
5801          * DMC assumes ownership of LCPLL and will get confused if we touch it.
5802          */
5803         if (dev_priv->csr.dmc_payload) {
5804                 /* disable DPLL0 */
5805                 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
5806                                         ~LCPLL_PLL_ENABLE);
5807                 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5808                         DRM_ERROR("Couldn't disable DPLL0\n");
5809         }
5810
5811         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5812 }
5813
5814 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5815 {
5816         u32 val;
5817         unsigned int required_vco;
5818
5819         /* enable PCH reset handshake */
5820         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5821         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5822
5823         /* enable PG1 and Misc I/O */
5824         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5825
5826         /* DPLL0 not enabled (happens on early BIOS versions) */
5827         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5828                 /* enable DPLL0 */
5829                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5830                 skl_dpll0_enable(dev_priv, required_vco);
5831         }
5832
5833         /* set CDCLK to the frequency the BIOS chose */
5834         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5835
5836         /* enable DBUF power */
5837         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5838         POSTING_READ(DBUF_CTL);
5839
5840         udelay(10);
5841
5842         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5843                 DRM_ERROR("DBuf power enable timeout\n");
5844 }
5845
5846 /* Adjust CDclk dividers to allow high res or save power if possible */
5847 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5848 {
5849         struct drm_i915_private *dev_priv = dev->dev_private;
5850         u32 val, cmd;
5851
5852         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5853                                         != dev_priv->cdclk_freq);
5854
5855         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5856                 cmd = 2;
5857         else if (cdclk == 266667)
5858                 cmd = 1;
5859         else
5860                 cmd = 0;
5861
5862         mutex_lock(&dev_priv->rps.hw_lock);
5863         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5864         val &= ~DSPFREQGUAR_MASK;
5865         val |= (cmd << DSPFREQGUAR_SHIFT);
5866         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5867         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5868                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5869                      50)) {
5870                 DRM_ERROR("timed out waiting for CDclk change\n");
5871         }
5872         mutex_unlock(&dev_priv->rps.hw_lock);
5873
5874         mutex_lock(&dev_priv->sb_lock);
5875
5876         if (cdclk == 400000) {
5877                 u32 divider;
5878
5879                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5880
5881                 /* adjust cdclk divider */
5882                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5883                 val &= ~CCK_FREQUENCY_VALUES;
5884                 val |= divider;
5885                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5886
5887                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5888                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5889                              50))
5890                         DRM_ERROR("timed out waiting for CDclk change\n");
5891         }
5892
5893         /* adjust self-refresh exit latency value */
5894         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5895         val &= ~0x7f;
5896
5897         /*
5898          * For high bandwidth configs, we set a higher latency in the bunit
5899          * so that the core display fetch happens in time to avoid underruns.
5900          */
5901         if (cdclk == 400000)
5902                 val |= 4500 / 250; /* 4.5 usec */
5903         else
5904                 val |= 3000 / 250; /* 3.0 usec */
5905         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5906
5907         mutex_unlock(&dev_priv->sb_lock);
5908
5909         intel_update_cdclk(dev);
5910 }
5911
5912 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5913 {
5914         struct drm_i915_private *dev_priv = dev->dev_private;
5915         u32 val, cmd;
5916
5917         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5918                                                 != dev_priv->cdclk_freq);
5919
5920         switch (cdclk) {
5921         case 333333:
5922         case 320000:
5923         case 266667:
5924         case 200000:
5925                 break;
5926         default:
5927                 MISSING_CASE(cdclk);
5928                 return;
5929         }
5930
5931         /*
5932          * Specs are full of misinformation, but testing on actual
5933          * hardware has shown that we just need to write the desired
5934          * CCK divider into the Punit register.
5935          */
5936         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5937
5938         mutex_lock(&dev_priv->rps.hw_lock);
5939         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5940         val &= ~DSPFREQGUAR_MASK_CHV;
5941         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5942         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5943         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5944                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5945                      50)) {
5946                 DRM_ERROR("timed out waiting for CDclk change\n");
5947         }
5948         mutex_unlock(&dev_priv->rps.hw_lock);
5949
5950         intel_update_cdclk(dev);
5951 }
5952
5953 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5954                                  int max_pixclk)
5955 {
5956         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5957         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5958
5959         /*
5960          * Really only a few cases to deal with, as only 4 CDclks are supported:
5961          *   200MHz
5962          *   267MHz
5963          *   320/333MHz (depends on HPLL freq)
5964          *   400MHz (VLV only)
5965          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5966          * of the lower bin and adjust if needed.
5967          *
5968          * We seem to get an unstable or solid color picture at 200MHz.
5969          * Not sure what's wrong. For now use 200MHz only when all pipes
5970          * are off.
5971          */
5972         if (!IS_CHERRYVIEW(dev_priv) &&
5973             max_pixclk > freq_320*limit/100)
5974                 return 400000;
5975         else if (max_pixclk > 266667*limit/100)
5976                 return freq_320;
5977         else if (max_pixclk > 0)
5978                 return 266667;
5979         else
5980                 return 200000;
5981 }
5982
5983 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5984                               int max_pixclk)
5985 {
5986         /*
5987          * FIXME:
5988          * - remove the guardband, it's not needed on BXT
5989          * - set 19.2MHz bypass frequency if there are no active pipes
5990          */
5991         if (max_pixclk > 576000*9/10)
5992                 return 624000;
5993         else if (max_pixclk > 384000*9/10)
5994                 return 576000;
5995         else if (max_pixclk > 288000*9/10)
5996                 return 384000;
5997         else if (max_pixclk > 144000*9/10)
5998                 return 288000;
5999         else
6000                 return 144000;
6001 }
6002
6003 /* Compute the max pixel clock for new configuration. Uses atomic state if
6004  * that's non-NULL, look at current state otherwise. */
6005 static int intel_mode_max_pixclk(struct drm_device *dev,
6006                                  struct drm_atomic_state *state)
6007 {
6008         struct intel_crtc *intel_crtc;
6009         struct intel_crtc_state *crtc_state;
6010         int max_pixclk = 0;
6011
6012         for_each_intel_crtc(dev, intel_crtc) {
6013                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6014                 if (IS_ERR(crtc_state))
6015                         return PTR_ERR(crtc_state);
6016
6017                 if (!crtc_state->base.enable)
6018                         continue;
6019
6020                 max_pixclk = max(max_pixclk,
6021                                  crtc_state->base.adjusted_mode.crtc_clock);
6022         }
6023
6024         return max_pixclk;
6025 }
6026
6027 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6028 {
6029         struct drm_device *dev = state->dev;
6030         struct drm_i915_private *dev_priv = dev->dev_private;
6031         int max_pixclk = intel_mode_max_pixclk(dev, state);
6032
6033         if (max_pixclk < 0)
6034                 return max_pixclk;
6035
6036         to_intel_atomic_state(state)->cdclk =
6037                 valleyview_calc_cdclk(dev_priv, max_pixclk);
6038
6039         return 0;
6040 }
6041
6042 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6043 {
6044         struct drm_device *dev = state->dev;
6045         struct drm_i915_private *dev_priv = dev->dev_private;
6046         int max_pixclk = intel_mode_max_pixclk(dev, state);
6047
6048         if (max_pixclk < 0)
6049                 return max_pixclk;
6050
6051         to_intel_atomic_state(state)->cdclk =
6052                 broxton_calc_cdclk(dev_priv, max_pixclk);
6053
6054         return 0;
6055 }
6056
6057 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6058 {
6059         unsigned int credits, default_credits;
6060
6061         if (IS_CHERRYVIEW(dev_priv))
6062                 default_credits = PFI_CREDIT(12);
6063         else
6064                 default_credits = PFI_CREDIT(8);
6065
6066         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6067                 /* CHV suggested value is 31 or 63 */
6068                 if (IS_CHERRYVIEW(dev_priv))
6069                         credits = PFI_CREDIT_63;
6070                 else
6071                         credits = PFI_CREDIT(15);
6072         } else {
6073                 credits = default_credits;
6074         }
6075
6076         /*
6077          * WA - write default credits before re-programming
6078          * FIXME: should we also set the resend bit here?
6079          */
6080         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6081                    default_credits);
6082
6083         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6084                    credits | PFI_CREDIT_RESEND);
6085
6086         /*
6087          * FIXME is this guaranteed to clear
6088          * immediately or should we poll for it?
6089          */
6090         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6091 }
6092
6093 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6094 {
6095         struct drm_device *dev = old_state->dev;
6096         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6097         struct drm_i915_private *dev_priv = dev->dev_private;
6098
6099         /*
6100          * FIXME: We can end up here with all power domains off, yet
6101          * with a CDCLK frequency other than the minimum. To account
6102          * for this take the PIPE-A power domain, which covers the HW
6103          * blocks needed for the following programming. This can be
6104          * removed once it's guaranteed that we get here either with
6105          * the minimum CDCLK set, or the required power domains
6106          * enabled.
6107          */
6108         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6109
6110         if (IS_CHERRYVIEW(dev))
6111                 cherryview_set_cdclk(dev, req_cdclk);
6112         else
6113                 valleyview_set_cdclk(dev, req_cdclk);
6114
6115         vlv_program_pfi_credits(dev_priv);
6116
6117         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6118 }
6119
6120 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6121 {
6122         struct drm_device *dev = crtc->dev;
6123         struct drm_i915_private *dev_priv = to_i915(dev);
6124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6125         struct intel_encoder *encoder;
6126         int pipe = intel_crtc->pipe;
6127         bool is_dsi;
6128
6129         if (WARN_ON(intel_crtc->active))
6130                 return;
6131
6132         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6133
6134         if (intel_crtc->config->has_dp_encoder)
6135                 intel_dp_set_m_n(intel_crtc, M1_N1);
6136
6137         intel_set_pipe_timings(intel_crtc);
6138
6139         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6140                 struct drm_i915_private *dev_priv = dev->dev_private;
6141
6142                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6143                 I915_WRITE(CHV_CANVAS(pipe), 0);
6144         }
6145
6146         i9xx_set_pipeconf(intel_crtc);
6147
6148         intel_crtc->active = true;
6149
6150         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6151
6152         for_each_encoder_on_crtc(dev, crtc, encoder)
6153                 if (encoder->pre_pll_enable)
6154                         encoder->pre_pll_enable(encoder);
6155
6156         if (!is_dsi) {
6157                 if (IS_CHERRYVIEW(dev)) {
6158                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6159                         chv_enable_pll(intel_crtc, intel_crtc->config);
6160                 } else {
6161                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6162                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6163                 }
6164         }
6165
6166         for_each_encoder_on_crtc(dev, crtc, encoder)
6167                 if (encoder->pre_enable)
6168                         encoder->pre_enable(encoder);
6169
6170         i9xx_pfit_enable(intel_crtc);
6171
6172         intel_crtc_load_lut(crtc);
6173
6174         intel_enable_pipe(intel_crtc);
6175
6176         assert_vblank_disabled(crtc);
6177         drm_crtc_vblank_on(crtc);
6178
6179         for_each_encoder_on_crtc(dev, crtc, encoder)
6180                 encoder->enable(encoder);
6181 }
6182
6183 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6184 {
6185         struct drm_device *dev = crtc->base.dev;
6186         struct drm_i915_private *dev_priv = dev->dev_private;
6187
6188         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6189         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6190 }
6191
6192 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6193 {
6194         struct drm_device *dev = crtc->dev;
6195         struct drm_i915_private *dev_priv = to_i915(dev);
6196         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6197         struct intel_encoder *encoder;
6198         int pipe = intel_crtc->pipe;
6199
6200         if (WARN_ON(intel_crtc->active))
6201                 return;
6202
6203         i9xx_set_pll_dividers(intel_crtc);
6204
6205         if (intel_crtc->config->has_dp_encoder)
6206                 intel_dp_set_m_n(intel_crtc, M1_N1);
6207
6208         intel_set_pipe_timings(intel_crtc);
6209
6210         i9xx_set_pipeconf(intel_crtc);
6211
6212         intel_crtc->active = true;
6213
6214         if (!IS_GEN2(dev))
6215                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6216
6217         for_each_encoder_on_crtc(dev, crtc, encoder)
6218                 if (encoder->pre_enable)
6219                         encoder->pre_enable(encoder);
6220
6221         i9xx_enable_pll(intel_crtc);
6222
6223         i9xx_pfit_enable(intel_crtc);
6224
6225         intel_crtc_load_lut(crtc);
6226
6227         intel_update_watermarks(crtc);
6228         intel_enable_pipe(intel_crtc);
6229
6230         assert_vblank_disabled(crtc);
6231         drm_crtc_vblank_on(crtc);
6232
6233         for_each_encoder_on_crtc(dev, crtc, encoder)
6234                 encoder->enable(encoder);
6235 }
6236
6237 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6238 {
6239         struct drm_device *dev = crtc->base.dev;
6240         struct drm_i915_private *dev_priv = dev->dev_private;
6241
6242         if (!crtc->config->gmch_pfit.control)
6243                 return;
6244
6245         assert_pipe_disabled(dev_priv, crtc->pipe);
6246
6247         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6248                          I915_READ(PFIT_CONTROL));
6249         I915_WRITE(PFIT_CONTROL, 0);
6250 }
6251
6252 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6253 {
6254         struct drm_device *dev = crtc->dev;
6255         struct drm_i915_private *dev_priv = dev->dev_private;
6256         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6257         struct intel_encoder *encoder;
6258         int pipe = intel_crtc->pipe;
6259
6260         /*
6261          * On gen2 planes are double buffered but the pipe isn't, so we must
6262          * wait for planes to fully turn off before disabling the pipe.
6263          * We also need to wait on all gmch platforms because of the
6264          * self-refresh mode constraint explained above.
6265          */
6266         intel_wait_for_vblank(dev, pipe);
6267
6268         for_each_encoder_on_crtc(dev, crtc, encoder)
6269                 encoder->disable(encoder);
6270
6271         drm_crtc_vblank_off(crtc);
6272         assert_vblank_disabled(crtc);
6273
6274         intel_disable_pipe(intel_crtc);
6275
6276         i9xx_pfit_disable(intel_crtc);
6277
6278         for_each_encoder_on_crtc(dev, crtc, encoder)
6279                 if (encoder->post_disable)
6280                         encoder->post_disable(encoder);
6281
6282         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6283                 if (IS_CHERRYVIEW(dev))
6284                         chv_disable_pll(dev_priv, pipe);
6285                 else if (IS_VALLEYVIEW(dev))
6286                         vlv_disable_pll(dev_priv, pipe);
6287                 else
6288                         i9xx_disable_pll(intel_crtc);
6289         }
6290
6291         for_each_encoder_on_crtc(dev, crtc, encoder)
6292                 if (encoder->post_pll_disable)
6293                         encoder->post_pll_disable(encoder);
6294
6295         if (!IS_GEN2(dev))
6296                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6297 }
6298
6299 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6300 {
6301         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6302         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6303         enum intel_display_power_domain domain;
6304         unsigned long domains;
6305
6306         if (!intel_crtc->active)
6307                 return;
6308
6309         if (to_intel_plane_state(crtc->primary->state)->visible) {
6310                 intel_crtc_wait_for_pending_flips(crtc);
6311                 intel_pre_disable_primary(crtc);
6312
6313                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6314                 to_intel_plane_state(crtc->primary->state)->visible = false;
6315         }
6316
6317         dev_priv->display.crtc_disable(crtc);
6318         intel_crtc->active = false;
6319         intel_update_watermarks(crtc);
6320         intel_disable_shared_dpll(intel_crtc);
6321
6322         domains = intel_crtc->enabled_power_domains;
6323         for_each_power_domain(domain, domains)
6324                 intel_display_power_put(dev_priv, domain);
6325         intel_crtc->enabled_power_domains = 0;
6326 }
6327
6328 /*
6329  * turn all crtc's off, but do not adjust state
6330  * This has to be paired with a call to intel_modeset_setup_hw_state.
6331  */
6332 int intel_display_suspend(struct drm_device *dev)
6333 {
6334         struct drm_mode_config *config = &dev->mode_config;
6335         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6336         struct drm_atomic_state *state;
6337         struct drm_crtc *crtc;
6338         unsigned crtc_mask = 0;
6339         int ret = 0;
6340
6341         if (WARN_ON(!ctx))
6342                 return 0;
6343
6344         lockdep_assert_held(&ctx->ww_ctx);
6345         state = drm_atomic_state_alloc(dev);
6346         if (WARN_ON(!state))
6347                 return -ENOMEM;
6348
6349         state->acquire_ctx = ctx;
6350         state->allow_modeset = true;
6351
6352         for_each_crtc(dev, crtc) {
6353                 struct drm_crtc_state *crtc_state =
6354                         drm_atomic_get_crtc_state(state, crtc);
6355
6356                 ret = PTR_ERR_OR_ZERO(crtc_state);
6357                 if (ret)
6358                         goto free;
6359
6360                 if (!crtc_state->active)
6361                         continue;
6362
6363                 crtc_state->active = false;
6364                 crtc_mask |= 1 << drm_crtc_index(crtc);
6365         }
6366
6367         if (crtc_mask) {
6368                 ret = drm_atomic_commit(state);
6369
6370                 if (!ret) {
6371                         for_each_crtc(dev, crtc)
6372                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6373                                         crtc->state->active = true;
6374
6375                         return ret;
6376                 }
6377         }
6378
6379 free:
6380         if (ret)
6381                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6382         drm_atomic_state_free(state);
6383         return ret;
6384 }
6385
6386 void intel_encoder_destroy(struct drm_encoder *encoder)
6387 {
6388         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6389
6390         drm_encoder_cleanup(encoder);
6391         kfree(intel_encoder);
6392 }
6393
6394 /* Cross check the actual hw state with our own modeset state tracking (and it's
6395  * internal consistency). */
6396 static void intel_connector_check_state(struct intel_connector *connector)
6397 {
6398         struct drm_crtc *crtc = connector->base.state->crtc;
6399
6400         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6401                       connector->base.base.id,
6402                       connector->base.name);
6403
6404         if (connector->get_hw_state(connector)) {
6405                 struct intel_encoder *encoder = connector->encoder;
6406                 struct drm_connector_state *conn_state = connector->base.state;
6407
6408                 I915_STATE_WARN(!crtc,
6409                          "connector enabled without attached crtc\n");
6410
6411                 if (!crtc)
6412                         return;
6413
6414                 I915_STATE_WARN(!crtc->state->active,
6415                       "connector is active, but attached crtc isn't\n");
6416
6417                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6418                         return;
6419
6420                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6421                         "atomic encoder doesn't match attached encoder\n");
6422
6423                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6424                         "attached encoder crtc differs from connector crtc\n");
6425         } else {
6426                 I915_STATE_WARN(crtc && crtc->state->active,
6427                         "attached crtc is active, but connector isn't\n");
6428                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6429                         "best encoder set without crtc!\n");
6430         }
6431 }
6432
6433 int intel_connector_init(struct intel_connector *connector)
6434 {
6435         struct drm_connector_state *connector_state;
6436
6437         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6438         if (!connector_state)
6439                 return -ENOMEM;
6440
6441         connector->base.state = connector_state;
6442         return 0;
6443 }
6444
6445 struct intel_connector *intel_connector_alloc(void)
6446 {
6447         struct intel_connector *connector;
6448
6449         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6450         if (!connector)
6451                 return NULL;
6452
6453         if (intel_connector_init(connector) < 0) {
6454                 kfree(connector);
6455                 return NULL;
6456         }
6457
6458         return connector;
6459 }
6460
6461 /* Simple connector->get_hw_state implementation for encoders that support only
6462  * one connector and no cloning and hence the encoder state determines the state
6463  * of the connector. */
6464 bool intel_connector_get_hw_state(struct intel_connector *connector)
6465 {
6466         enum pipe pipe = 0;
6467         struct intel_encoder *encoder = connector->encoder;
6468
6469         return encoder->get_hw_state(encoder, &pipe);
6470 }
6471
6472 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6473 {
6474         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6475                 return crtc_state->fdi_lanes;
6476
6477         return 0;
6478 }
6479
6480 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6481                                      struct intel_crtc_state *pipe_config)
6482 {
6483         struct drm_atomic_state *state = pipe_config->base.state;
6484         struct intel_crtc *other_crtc;
6485         struct intel_crtc_state *other_crtc_state;
6486
6487         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6488                       pipe_name(pipe), pipe_config->fdi_lanes);
6489         if (pipe_config->fdi_lanes > 4) {
6490                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6491                               pipe_name(pipe), pipe_config->fdi_lanes);
6492                 return -EINVAL;
6493         }
6494
6495         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6496                 if (pipe_config->fdi_lanes > 2) {
6497                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6498                                       pipe_config->fdi_lanes);
6499                         return -EINVAL;
6500                 } else {
6501                         return 0;
6502                 }
6503         }
6504
6505         if (INTEL_INFO(dev)->num_pipes == 2)
6506                 return 0;
6507
6508         /* Ivybridge 3 pipe is really complicated */
6509         switch (pipe) {
6510         case PIPE_A:
6511                 return 0;
6512         case PIPE_B:
6513                 if (pipe_config->fdi_lanes <= 2)
6514                         return 0;
6515
6516                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6517                 other_crtc_state =
6518                         intel_atomic_get_crtc_state(state, other_crtc);
6519                 if (IS_ERR(other_crtc_state))
6520                         return PTR_ERR(other_crtc_state);
6521
6522                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6523                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6524                                       pipe_name(pipe), pipe_config->fdi_lanes);
6525                         return -EINVAL;
6526                 }
6527                 return 0;
6528         case PIPE_C:
6529                 if (pipe_config->fdi_lanes > 2) {
6530                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6531                                       pipe_name(pipe), pipe_config->fdi_lanes);
6532                         return -EINVAL;
6533                 }
6534
6535                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6536                 other_crtc_state =
6537                         intel_atomic_get_crtc_state(state, other_crtc);
6538                 if (IS_ERR(other_crtc_state))
6539                         return PTR_ERR(other_crtc_state);
6540
6541                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6542                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6543                         return -EINVAL;
6544                 }
6545                 return 0;
6546         default:
6547                 BUG();
6548         }
6549 }
6550
6551 #define RETRY 1
6552 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6553                                        struct intel_crtc_state *pipe_config)
6554 {
6555         struct drm_device *dev = intel_crtc->base.dev;
6556         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6557         int lane, link_bw, fdi_dotclock, ret;
6558         bool needs_recompute = false;
6559
6560 retry:
6561         /* FDI is a binary signal running at ~2.7GHz, encoding
6562          * each output octet as 10 bits. The actual frequency
6563          * is stored as a divider into a 100MHz clock, and the
6564          * mode pixel clock is stored in units of 1KHz.
6565          * Hence the bw of each lane in terms of the mode signal
6566          * is:
6567          */
6568         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6569
6570         fdi_dotclock = adjusted_mode->crtc_clock;
6571
6572         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6573                                            pipe_config->pipe_bpp);
6574
6575         pipe_config->fdi_lanes = lane;
6576
6577         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6578                                link_bw, &pipe_config->fdi_m_n);
6579
6580         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6581                                        intel_crtc->pipe, pipe_config);
6582         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6583                 pipe_config->pipe_bpp -= 2*3;
6584                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6585                               pipe_config->pipe_bpp);
6586                 needs_recompute = true;
6587                 pipe_config->bw_constrained = true;
6588
6589                 goto retry;
6590         }
6591
6592         if (needs_recompute)
6593                 return RETRY;
6594
6595         return ret;
6596 }
6597
6598 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6599                                      struct intel_crtc_state *pipe_config)
6600 {
6601         if (pipe_config->pipe_bpp > 24)
6602                 return false;
6603
6604         /* HSW can handle pixel rate up to cdclk? */
6605         if (IS_HASWELL(dev_priv->dev))
6606                 return true;
6607
6608         /*
6609          * We compare against max which means we must take
6610          * the increased cdclk requirement into account when
6611          * calculating the new cdclk.
6612          *
6613          * Should measure whether using a lower cdclk w/o IPS
6614          */
6615         return ilk_pipe_pixel_rate(pipe_config) <=
6616                 dev_priv->max_cdclk_freq * 95 / 100;
6617 }
6618
6619 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6620                                    struct intel_crtc_state *pipe_config)
6621 {
6622         struct drm_device *dev = crtc->base.dev;
6623         struct drm_i915_private *dev_priv = dev->dev_private;
6624
6625         pipe_config->ips_enabled = i915.enable_ips &&
6626                 hsw_crtc_supports_ips(crtc) &&
6627                 pipe_config_supports_ips(dev_priv, pipe_config);
6628 }
6629
6630 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6631                                      struct intel_crtc_state *pipe_config)
6632 {
6633         struct drm_device *dev = crtc->base.dev;
6634         struct drm_i915_private *dev_priv = dev->dev_private;
6635         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6636
6637         /* FIXME should check pixel clock limits on all platforms */
6638         if (INTEL_INFO(dev)->gen < 4) {
6639                 int clock_limit = dev_priv->max_cdclk_freq;
6640
6641                 /*
6642                  * Enable pixel doubling when the dot clock
6643                  * is > 90% of the (display) core speed.
6644                  *
6645                  * GDG double wide on either pipe,
6646                  * otherwise pipe A only.
6647                  */
6648                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6649                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6650                         clock_limit *= 2;
6651                         pipe_config->double_wide = true;
6652                 }
6653
6654                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6655                         return -EINVAL;
6656         }
6657
6658         /*
6659          * Pipe horizontal size must be even in:
6660          * - DVO ganged mode
6661          * - LVDS dual channel mode
6662          * - Double wide pipe
6663          */
6664         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6665              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6666                 pipe_config->pipe_src_w &= ~1;
6667
6668         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6669          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6670          */
6671         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6672                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6673                 return -EINVAL;
6674
6675         if (HAS_IPS(dev))
6676                 hsw_compute_ips_config(crtc, pipe_config);
6677
6678         if (pipe_config->has_pch_encoder)
6679                 return ironlake_fdi_compute_config(crtc, pipe_config);
6680
6681         return 0;
6682 }
6683
6684 static int skylake_get_display_clock_speed(struct drm_device *dev)
6685 {
6686         struct drm_i915_private *dev_priv = to_i915(dev);
6687         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6688         uint32_t cdctl = I915_READ(CDCLK_CTL);
6689         uint32_t linkrate;
6690
6691         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6692                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6693
6694         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6695                 return 540000;
6696
6697         linkrate = (I915_READ(DPLL_CTRL1) &
6698                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6699
6700         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6701             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6702                 /* vco 8640 */
6703                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6704                 case CDCLK_FREQ_450_432:
6705                         return 432000;
6706                 case CDCLK_FREQ_337_308:
6707                         return 308570;
6708                 case CDCLK_FREQ_675_617:
6709                         return 617140;
6710                 default:
6711                         WARN(1, "Unknown cd freq selection\n");
6712                 }
6713         } else {
6714                 /* vco 8100 */
6715                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6716                 case CDCLK_FREQ_450_432:
6717                         return 450000;
6718                 case CDCLK_FREQ_337_308:
6719                         return 337500;
6720                 case CDCLK_FREQ_675_617:
6721                         return 675000;
6722                 default:
6723                         WARN(1, "Unknown cd freq selection\n");
6724                 }
6725         }
6726
6727         /* error case, do as if DPLL0 isn't enabled */
6728         return 24000;
6729 }
6730
6731 static int broxton_get_display_clock_speed(struct drm_device *dev)
6732 {
6733         struct drm_i915_private *dev_priv = to_i915(dev);
6734         uint32_t cdctl = I915_READ(CDCLK_CTL);
6735         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6736         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6737         int cdclk;
6738
6739         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6740                 return 19200;
6741
6742         cdclk = 19200 * pll_ratio / 2;
6743
6744         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6745         case BXT_CDCLK_CD2X_DIV_SEL_1:
6746                 return cdclk;  /* 576MHz or 624MHz */
6747         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6748                 return cdclk * 2 / 3; /* 384MHz */
6749         case BXT_CDCLK_CD2X_DIV_SEL_2:
6750                 return cdclk / 2; /* 288MHz */
6751         case BXT_CDCLK_CD2X_DIV_SEL_4:
6752                 return cdclk / 4; /* 144MHz */
6753         }
6754
6755         /* error case, do as if DE PLL isn't enabled */
6756         return 19200;
6757 }
6758
6759 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6760 {
6761         struct drm_i915_private *dev_priv = dev->dev_private;
6762         uint32_t lcpll = I915_READ(LCPLL_CTL);
6763         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6764
6765         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6766                 return 800000;
6767         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6768                 return 450000;
6769         else if (freq == LCPLL_CLK_FREQ_450)
6770                 return 450000;
6771         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6772                 return 540000;
6773         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6774                 return 337500;
6775         else
6776                 return 675000;
6777 }
6778
6779 static int haswell_get_display_clock_speed(struct drm_device *dev)
6780 {
6781         struct drm_i915_private *dev_priv = dev->dev_private;
6782         uint32_t lcpll = I915_READ(LCPLL_CTL);
6783         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6784
6785         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6786                 return 800000;
6787         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6788                 return 450000;
6789         else if (freq == LCPLL_CLK_FREQ_450)
6790                 return 450000;
6791         else if (IS_HSW_ULT(dev))
6792                 return 337500;
6793         else
6794                 return 540000;
6795 }
6796
6797 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6798 {
6799         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6800                                       CCK_DISPLAY_CLOCK_CONTROL);
6801 }
6802
6803 static int ilk_get_display_clock_speed(struct drm_device *dev)
6804 {
6805         return 450000;
6806 }
6807
6808 static int i945_get_display_clock_speed(struct drm_device *dev)
6809 {
6810         return 400000;
6811 }
6812
6813 static int i915_get_display_clock_speed(struct drm_device *dev)
6814 {
6815         return 333333;
6816 }
6817
6818 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6819 {
6820         return 200000;
6821 }
6822
6823 static int pnv_get_display_clock_speed(struct drm_device *dev)
6824 {
6825         u16 gcfgc = 0;
6826
6827         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6828
6829         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6830         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6831                 return 266667;
6832         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6833                 return 333333;
6834         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6835                 return 444444;
6836         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6837                 return 200000;
6838         default:
6839                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6840         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6841                 return 133333;
6842         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6843                 return 166667;
6844         }
6845 }
6846
6847 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6848 {
6849         u16 gcfgc = 0;
6850
6851         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6852
6853         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6854                 return 133333;
6855         else {
6856                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6857                 case GC_DISPLAY_CLOCK_333_MHZ:
6858                         return 333333;
6859                 default:
6860                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6861                         return 190000;
6862                 }
6863         }
6864 }
6865
6866 static int i865_get_display_clock_speed(struct drm_device *dev)
6867 {
6868         return 266667;
6869 }
6870
6871 static int i85x_get_display_clock_speed(struct drm_device *dev)
6872 {
6873         u16 hpllcc = 0;
6874
6875         /*
6876          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6877          * encoding is different :(
6878          * FIXME is this the right way to detect 852GM/852GMV?
6879          */
6880         if (dev->pdev->revision == 0x1)
6881                 return 133333;
6882
6883         pci_bus_read_config_word(dev->pdev->bus,
6884                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6885
6886         /* Assume that the hardware is in the high speed state.  This
6887          * should be the default.
6888          */
6889         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6890         case GC_CLOCK_133_200:
6891         case GC_CLOCK_133_200_2:
6892         case GC_CLOCK_100_200:
6893                 return 200000;
6894         case GC_CLOCK_166_250:
6895                 return 250000;
6896         case GC_CLOCK_100_133:
6897                 return 133333;
6898         case GC_CLOCK_133_266:
6899         case GC_CLOCK_133_266_2:
6900         case GC_CLOCK_166_266:
6901                 return 266667;
6902         }
6903
6904         /* Shouldn't happen */
6905         return 0;
6906 }
6907
6908 static int i830_get_display_clock_speed(struct drm_device *dev)
6909 {
6910         return 133333;
6911 }
6912
6913 static unsigned int intel_hpll_vco(struct drm_device *dev)
6914 {
6915         struct drm_i915_private *dev_priv = dev->dev_private;
6916         static const unsigned int blb_vco[8] = {
6917                 [0] = 3200000,
6918                 [1] = 4000000,
6919                 [2] = 5333333,
6920                 [3] = 4800000,
6921                 [4] = 6400000,
6922         };
6923         static const unsigned int pnv_vco[8] = {
6924                 [0] = 3200000,
6925                 [1] = 4000000,
6926                 [2] = 5333333,
6927                 [3] = 4800000,
6928                 [4] = 2666667,
6929         };
6930         static const unsigned int cl_vco[8] = {
6931                 [0] = 3200000,
6932                 [1] = 4000000,
6933                 [2] = 5333333,
6934                 [3] = 6400000,
6935                 [4] = 3333333,
6936                 [5] = 3566667,
6937                 [6] = 4266667,
6938         };
6939         static const unsigned int elk_vco[8] = {
6940                 [0] = 3200000,
6941                 [1] = 4000000,
6942                 [2] = 5333333,
6943                 [3] = 4800000,
6944         };
6945         static const unsigned int ctg_vco[8] = {
6946                 [0] = 3200000,
6947                 [1] = 4000000,
6948                 [2] = 5333333,
6949                 [3] = 6400000,
6950                 [4] = 2666667,
6951                 [5] = 4266667,
6952         };
6953         const unsigned int *vco_table;
6954         unsigned int vco;
6955         uint8_t tmp = 0;
6956
6957         /* FIXME other chipsets? */
6958         if (IS_GM45(dev))
6959                 vco_table = ctg_vco;
6960         else if (IS_G4X(dev))
6961                 vco_table = elk_vco;
6962         else if (IS_CRESTLINE(dev))
6963                 vco_table = cl_vco;
6964         else if (IS_PINEVIEW(dev))
6965                 vco_table = pnv_vco;
6966         else if (IS_G33(dev))
6967                 vco_table = blb_vco;
6968         else
6969                 return 0;
6970
6971         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6972
6973         vco = vco_table[tmp & 0x7];
6974         if (vco == 0)
6975                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6976         else
6977                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6978
6979         return vco;
6980 }
6981
6982 static int gm45_get_display_clock_speed(struct drm_device *dev)
6983 {
6984         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6985         uint16_t tmp = 0;
6986
6987         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6988
6989         cdclk_sel = (tmp >> 12) & 0x1;
6990
6991         switch (vco) {
6992         case 2666667:
6993         case 4000000:
6994         case 5333333:
6995                 return cdclk_sel ? 333333 : 222222;
6996         case 3200000:
6997                 return cdclk_sel ? 320000 : 228571;
6998         default:
6999                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7000                 return 222222;
7001         }
7002 }
7003
7004 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7005 {
7006         static const uint8_t div_3200[] = { 16, 10,  8 };
7007         static const uint8_t div_4000[] = { 20, 12, 10 };
7008         static const uint8_t div_5333[] = { 24, 16, 14 };
7009         const uint8_t *div_table;
7010         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7011         uint16_t tmp = 0;
7012
7013         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7014
7015         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7016
7017         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7018                 goto fail;
7019
7020         switch (vco) {
7021         case 3200000:
7022                 div_table = div_3200;
7023                 break;
7024         case 4000000:
7025                 div_table = div_4000;
7026                 break;
7027         case 5333333:
7028                 div_table = div_5333;
7029                 break;
7030         default:
7031                 goto fail;
7032         }
7033
7034         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7035
7036 fail:
7037         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7038         return 200000;
7039 }
7040
7041 static int g33_get_display_clock_speed(struct drm_device *dev)
7042 {
7043         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7044         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7045         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7046         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7047         const uint8_t *div_table;
7048         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7049         uint16_t tmp = 0;
7050
7051         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7052
7053         cdclk_sel = (tmp >> 4) & 0x7;
7054
7055         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7056                 goto fail;
7057
7058         switch (vco) {
7059         case 3200000:
7060                 div_table = div_3200;
7061                 break;
7062         case 4000000:
7063                 div_table = div_4000;
7064                 break;
7065         case 4800000:
7066                 div_table = div_4800;
7067                 break;
7068         case 5333333:
7069                 div_table = div_5333;
7070                 break;
7071         default:
7072                 goto fail;
7073         }
7074
7075         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7076
7077 fail:
7078         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7079         return 190476;
7080 }
7081
7082 static void
7083 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7084 {
7085         while (*num > DATA_LINK_M_N_MASK ||
7086                *den > DATA_LINK_M_N_MASK) {
7087                 *num >>= 1;
7088                 *den >>= 1;
7089         }
7090 }
7091
7092 static void compute_m_n(unsigned int m, unsigned int n,
7093                         uint32_t *ret_m, uint32_t *ret_n)
7094 {
7095         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7096         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7097         intel_reduce_m_n_ratio(ret_m, ret_n);
7098 }
7099
7100 void
7101 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7102                        int pixel_clock, int link_clock,
7103                        struct intel_link_m_n *m_n)
7104 {
7105         m_n->tu = 64;
7106
7107         compute_m_n(bits_per_pixel * pixel_clock,
7108                     link_clock * nlanes * 8,
7109                     &m_n->gmch_m, &m_n->gmch_n);
7110
7111         compute_m_n(pixel_clock, link_clock,
7112                     &m_n->link_m, &m_n->link_n);
7113 }
7114
7115 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7116 {
7117         if (i915.panel_use_ssc >= 0)
7118                 return i915.panel_use_ssc != 0;
7119         return dev_priv->vbt.lvds_use_ssc
7120                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7121 }
7122
7123 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7124                            int num_connectors)
7125 {
7126         struct drm_device *dev = crtc_state->base.crtc->dev;
7127         struct drm_i915_private *dev_priv = dev->dev_private;
7128         int refclk;
7129
7130         WARN_ON(!crtc_state->base.state);
7131
7132         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7133                 refclk = 100000;
7134         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7135             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7136                 refclk = dev_priv->vbt.lvds_ssc_freq;
7137                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7138         } else if (!IS_GEN2(dev)) {
7139                 refclk = 96000;
7140         } else {
7141                 refclk = 48000;
7142         }
7143
7144         return refclk;
7145 }
7146
7147 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7148 {
7149         return (1 << dpll->n) << 16 | dpll->m2;
7150 }
7151
7152 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7153 {
7154         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7155 }
7156
7157 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7158                                      struct intel_crtc_state *crtc_state,
7159                                      intel_clock_t *reduced_clock)
7160 {
7161         struct drm_device *dev = crtc->base.dev;
7162         u32 fp, fp2 = 0;
7163
7164         if (IS_PINEVIEW(dev)) {
7165                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7166                 if (reduced_clock)
7167                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7168         } else {
7169                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7170                 if (reduced_clock)
7171                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7172         }
7173
7174         crtc_state->dpll_hw_state.fp0 = fp;
7175
7176         crtc->lowfreq_avail = false;
7177         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7178             reduced_clock) {
7179                 crtc_state->dpll_hw_state.fp1 = fp2;
7180                 crtc->lowfreq_avail = true;
7181         } else {
7182                 crtc_state->dpll_hw_state.fp1 = fp;
7183         }
7184 }
7185
7186 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7187                 pipe)
7188 {
7189         u32 reg_val;
7190
7191         /*
7192          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7193          * and set it to a reasonable value instead.
7194          */
7195         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7196         reg_val &= 0xffffff00;
7197         reg_val |= 0x00000030;
7198         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7199
7200         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7201         reg_val &= 0x8cffffff;
7202         reg_val = 0x8c000000;
7203         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7204
7205         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7206         reg_val &= 0xffffff00;
7207         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7208
7209         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7210         reg_val &= 0x00ffffff;
7211         reg_val |= 0xb0000000;
7212         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7213 }
7214
7215 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7216                                          struct intel_link_m_n *m_n)
7217 {
7218         struct drm_device *dev = crtc->base.dev;
7219         struct drm_i915_private *dev_priv = dev->dev_private;
7220         int pipe = crtc->pipe;
7221
7222         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7223         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7224         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7225         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7226 }
7227
7228 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7229                                          struct intel_link_m_n *m_n,
7230                                          struct intel_link_m_n *m2_n2)
7231 {
7232         struct drm_device *dev = crtc->base.dev;
7233         struct drm_i915_private *dev_priv = dev->dev_private;
7234         int pipe = crtc->pipe;
7235         enum transcoder transcoder = crtc->config->cpu_transcoder;
7236
7237         if (INTEL_INFO(dev)->gen >= 5) {
7238                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7239                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7240                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7241                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7242                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7243                  * for gen < 8) and if DRRS is supported (to make sure the
7244                  * registers are not unnecessarily accessed).
7245                  */
7246                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7247                         crtc->config->has_drrs) {
7248                         I915_WRITE(PIPE_DATA_M2(transcoder),
7249                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7250                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7251                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7252                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7253                 }
7254         } else {
7255                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7256                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7257                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7258                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7259         }
7260 }
7261
7262 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7263 {
7264         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7265
7266         if (m_n == M1_N1) {
7267                 dp_m_n = &crtc->config->dp_m_n;
7268                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7269         } else if (m_n == M2_N2) {
7270
7271                 /*
7272                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7273                  * needs to be programmed into M1_N1.
7274                  */
7275                 dp_m_n = &crtc->config->dp_m2_n2;
7276         } else {
7277                 DRM_ERROR("Unsupported divider value\n");
7278                 return;
7279         }
7280
7281         if (crtc->config->has_pch_encoder)
7282                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7283         else
7284                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7285 }
7286
7287 static void vlv_compute_dpll(struct intel_crtc *crtc,
7288                              struct intel_crtc_state *pipe_config)
7289 {
7290         u32 dpll, dpll_md;
7291
7292         /*
7293          * Enable DPIO clock input. We should never disable the reference
7294          * clock for pipe B, since VGA hotplug / manual detection depends
7295          * on it.
7296          */
7297         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7298                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7299         /* We should never disable this, set it here for state tracking */
7300         if (crtc->pipe == PIPE_B)
7301                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7302         dpll |= DPLL_VCO_ENABLE;
7303         pipe_config->dpll_hw_state.dpll = dpll;
7304
7305         dpll_md = (pipe_config->pixel_multiplier - 1)
7306                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7307         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7308 }
7309
7310 static void vlv_prepare_pll(struct intel_crtc *crtc,
7311                             const struct intel_crtc_state *pipe_config)
7312 {
7313         struct drm_device *dev = crtc->base.dev;
7314         struct drm_i915_private *dev_priv = dev->dev_private;
7315         int pipe = crtc->pipe;
7316         u32 mdiv;
7317         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7318         u32 coreclk, reg_val;
7319
7320         mutex_lock(&dev_priv->sb_lock);
7321
7322         bestn = pipe_config->dpll.n;
7323         bestm1 = pipe_config->dpll.m1;
7324         bestm2 = pipe_config->dpll.m2;
7325         bestp1 = pipe_config->dpll.p1;
7326         bestp2 = pipe_config->dpll.p2;
7327
7328         /* See eDP HDMI DPIO driver vbios notes doc */
7329
7330         /* PLL B needs special handling */
7331         if (pipe == PIPE_B)
7332                 vlv_pllb_recal_opamp(dev_priv, pipe);
7333
7334         /* Set up Tx target for periodic Rcomp update */
7335         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7336
7337         /* Disable target IRef on PLL */
7338         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7339         reg_val &= 0x00ffffff;
7340         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7341
7342         /* Disable fast lock */
7343         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7344
7345         /* Set idtafcrecal before PLL is enabled */
7346         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7347         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7348         mdiv |= ((bestn << DPIO_N_SHIFT));
7349         mdiv |= (1 << DPIO_K_SHIFT);
7350
7351         /*
7352          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7353          * but we don't support that).
7354          * Note: don't use the DAC post divider as it seems unstable.
7355          */
7356         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7357         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7358
7359         mdiv |= DPIO_ENABLE_CALIBRATION;
7360         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7361
7362         /* Set HBR and RBR LPF coefficients */
7363         if (pipe_config->port_clock == 162000 ||
7364             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7365             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7366                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7367                                  0x009f0003);
7368         else
7369                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7370                                  0x00d0000f);
7371
7372         if (pipe_config->has_dp_encoder) {
7373                 /* Use SSC source */
7374                 if (pipe == PIPE_A)
7375                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7376                                          0x0df40000);
7377                 else
7378                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7379                                          0x0df70000);
7380         } else { /* HDMI or VGA */
7381                 /* Use bend source */
7382                 if (pipe == PIPE_A)
7383                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7384                                          0x0df70000);
7385                 else
7386                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7387                                          0x0df40000);
7388         }
7389
7390         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7391         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7392         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7393             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7394                 coreclk |= 0x01000000;
7395         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7396
7397         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7398         mutex_unlock(&dev_priv->sb_lock);
7399 }
7400
7401 static void chv_compute_dpll(struct intel_crtc *crtc,
7402                              struct intel_crtc_state *pipe_config)
7403 {
7404         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7405                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7406                 DPLL_VCO_ENABLE;
7407         if (crtc->pipe != PIPE_A)
7408                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7409
7410         pipe_config->dpll_hw_state.dpll_md =
7411                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7412 }
7413
7414 static void chv_prepare_pll(struct intel_crtc *crtc,
7415                             const struct intel_crtc_state *pipe_config)
7416 {
7417         struct drm_device *dev = crtc->base.dev;
7418         struct drm_i915_private *dev_priv = dev->dev_private;
7419         int pipe = crtc->pipe;
7420         int dpll_reg = DPLL(crtc->pipe);
7421         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7422         u32 loopfilter, tribuf_calcntr;
7423         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7424         u32 dpio_val;
7425         int vco;
7426
7427         bestn = pipe_config->dpll.n;
7428         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7429         bestm1 = pipe_config->dpll.m1;
7430         bestm2 = pipe_config->dpll.m2 >> 22;
7431         bestp1 = pipe_config->dpll.p1;
7432         bestp2 = pipe_config->dpll.p2;
7433         vco = pipe_config->dpll.vco;
7434         dpio_val = 0;
7435         loopfilter = 0;
7436
7437         /*
7438          * Enable Refclk and SSC
7439          */
7440         I915_WRITE(dpll_reg,
7441                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7442
7443         mutex_lock(&dev_priv->sb_lock);
7444
7445         /* p1 and p2 divider */
7446         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7447                         5 << DPIO_CHV_S1_DIV_SHIFT |
7448                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7449                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7450                         1 << DPIO_CHV_K_DIV_SHIFT);
7451
7452         /* Feedback post-divider - m2 */
7453         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7454
7455         /* Feedback refclk divider - n and m1 */
7456         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7457                         DPIO_CHV_M1_DIV_BY_2 |
7458                         1 << DPIO_CHV_N_DIV_SHIFT);
7459
7460         /* M2 fraction division */
7461         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7462
7463         /* M2 fraction division enable */
7464         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7465         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7466         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7467         if (bestm2_frac)
7468                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7469         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7470
7471         /* Program digital lock detect threshold */
7472         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7473         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7474                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7475         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7476         if (!bestm2_frac)
7477                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7478         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7479
7480         /* Loop filter */
7481         if (vco == 5400000) {
7482                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7483                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7484                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7485                 tribuf_calcntr = 0x9;
7486         } else if (vco <= 6200000) {
7487                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7488                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7489                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7490                 tribuf_calcntr = 0x9;
7491         } else if (vco <= 6480000) {
7492                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7493                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7494                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7495                 tribuf_calcntr = 0x8;
7496         } else {
7497                 /* Not supported. Apply the same limits as in the max case */
7498                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7499                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7500                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7501                 tribuf_calcntr = 0;
7502         }
7503         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7504
7505         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7506         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7507         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7508         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7509
7510         /* AFC Recal */
7511         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7512                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7513                         DPIO_AFC_RECAL);
7514
7515         mutex_unlock(&dev_priv->sb_lock);
7516 }
7517
7518 /**
7519  * vlv_force_pll_on - forcibly enable just the PLL
7520  * @dev_priv: i915 private structure
7521  * @pipe: pipe PLL to enable
7522  * @dpll: PLL configuration
7523  *
7524  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7525  * in cases where we need the PLL enabled even when @pipe is not going to
7526  * be enabled.
7527  */
7528 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7529                       const struct dpll *dpll)
7530 {
7531         struct intel_crtc *crtc =
7532                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7533         struct intel_crtc_state pipe_config = {
7534                 .base.crtc = &crtc->base,
7535                 .pixel_multiplier = 1,
7536                 .dpll = *dpll,
7537         };
7538
7539         if (IS_CHERRYVIEW(dev)) {
7540                 chv_compute_dpll(crtc, &pipe_config);
7541                 chv_prepare_pll(crtc, &pipe_config);
7542                 chv_enable_pll(crtc, &pipe_config);
7543         } else {
7544                 vlv_compute_dpll(crtc, &pipe_config);
7545                 vlv_prepare_pll(crtc, &pipe_config);
7546                 vlv_enable_pll(crtc, &pipe_config);
7547         }
7548 }
7549
7550 /**
7551  * vlv_force_pll_off - forcibly disable just the PLL
7552  * @dev_priv: i915 private structure
7553  * @pipe: pipe PLL to disable
7554  *
7555  * Disable the PLL for @pipe. To be used in cases where we need
7556  * the PLL enabled even when @pipe is not going to be enabled.
7557  */
7558 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7559 {
7560         if (IS_CHERRYVIEW(dev))
7561                 chv_disable_pll(to_i915(dev), pipe);
7562         else
7563                 vlv_disable_pll(to_i915(dev), pipe);
7564 }
7565
7566 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7567                               struct intel_crtc_state *crtc_state,
7568                               intel_clock_t *reduced_clock,
7569                               int num_connectors)
7570 {
7571         struct drm_device *dev = crtc->base.dev;
7572         struct drm_i915_private *dev_priv = dev->dev_private;
7573         u32 dpll;
7574         bool is_sdvo;
7575         struct dpll *clock = &crtc_state->dpll;
7576
7577         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7578
7579         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7580                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7581
7582         dpll = DPLL_VGA_MODE_DIS;
7583
7584         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7585                 dpll |= DPLLB_MODE_LVDS;
7586         else
7587                 dpll |= DPLLB_MODE_DAC_SERIAL;
7588
7589         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7590                 dpll |= (crtc_state->pixel_multiplier - 1)
7591                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7592         }
7593
7594         if (is_sdvo)
7595                 dpll |= DPLL_SDVO_HIGH_SPEED;
7596
7597         if (crtc_state->has_dp_encoder)
7598                 dpll |= DPLL_SDVO_HIGH_SPEED;
7599
7600         /* compute bitmask from p1 value */
7601         if (IS_PINEVIEW(dev))
7602                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7603         else {
7604                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7605                 if (IS_G4X(dev) && reduced_clock)
7606                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7607         }
7608         switch (clock->p2) {
7609         case 5:
7610                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7611                 break;
7612         case 7:
7613                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7614                 break;
7615         case 10:
7616                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7617                 break;
7618         case 14:
7619                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7620                 break;
7621         }
7622         if (INTEL_INFO(dev)->gen >= 4)
7623                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7624
7625         if (crtc_state->sdvo_tv_clock)
7626                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7627         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7628                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7629                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7630         else
7631                 dpll |= PLL_REF_INPUT_DREFCLK;
7632
7633         dpll |= DPLL_VCO_ENABLE;
7634         crtc_state->dpll_hw_state.dpll = dpll;
7635
7636         if (INTEL_INFO(dev)->gen >= 4) {
7637                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7638                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7639                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7640         }
7641 }
7642
7643 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7644                               struct intel_crtc_state *crtc_state,
7645                               intel_clock_t *reduced_clock,
7646                               int num_connectors)
7647 {
7648         struct drm_device *dev = crtc->base.dev;
7649         struct drm_i915_private *dev_priv = dev->dev_private;
7650         u32 dpll;
7651         struct dpll *clock = &crtc_state->dpll;
7652
7653         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7654
7655         dpll = DPLL_VGA_MODE_DIS;
7656
7657         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7658                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7659         } else {
7660                 if (clock->p1 == 2)
7661                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7662                 else
7663                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7664                 if (clock->p2 == 4)
7665                         dpll |= PLL_P2_DIVIDE_BY_4;
7666         }
7667
7668         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7669                 dpll |= DPLL_DVO_2X_MODE;
7670
7671         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7672                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7673                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7674         else
7675                 dpll |= PLL_REF_INPUT_DREFCLK;
7676
7677         dpll |= DPLL_VCO_ENABLE;
7678         crtc_state->dpll_hw_state.dpll = dpll;
7679 }
7680
7681 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7682 {
7683         struct drm_device *dev = intel_crtc->base.dev;
7684         struct drm_i915_private *dev_priv = dev->dev_private;
7685         enum pipe pipe = intel_crtc->pipe;
7686         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7687         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7688         uint32_t crtc_vtotal, crtc_vblank_end;
7689         int vsyncshift = 0;
7690
7691         /* We need to be careful not to changed the adjusted mode, for otherwise
7692          * the hw state checker will get angry at the mismatch. */
7693         crtc_vtotal = adjusted_mode->crtc_vtotal;
7694         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7695
7696         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7697                 /* the chip adds 2 halflines automatically */
7698                 crtc_vtotal -= 1;
7699                 crtc_vblank_end -= 1;
7700
7701                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7702                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7703                 else
7704                         vsyncshift = adjusted_mode->crtc_hsync_start -
7705                                 adjusted_mode->crtc_htotal / 2;
7706                 if (vsyncshift < 0)
7707                         vsyncshift += adjusted_mode->crtc_htotal;
7708         }
7709
7710         if (INTEL_INFO(dev)->gen > 3)
7711                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7712
7713         I915_WRITE(HTOTAL(cpu_transcoder),
7714                    (adjusted_mode->crtc_hdisplay - 1) |
7715                    ((adjusted_mode->crtc_htotal - 1) << 16));
7716         I915_WRITE(HBLANK(cpu_transcoder),
7717                    (adjusted_mode->crtc_hblank_start - 1) |
7718                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7719         I915_WRITE(HSYNC(cpu_transcoder),
7720                    (adjusted_mode->crtc_hsync_start - 1) |
7721                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7722
7723         I915_WRITE(VTOTAL(cpu_transcoder),
7724                    (adjusted_mode->crtc_vdisplay - 1) |
7725                    ((crtc_vtotal - 1) << 16));
7726         I915_WRITE(VBLANK(cpu_transcoder),
7727                    (adjusted_mode->crtc_vblank_start - 1) |
7728                    ((crtc_vblank_end - 1) << 16));
7729         I915_WRITE(VSYNC(cpu_transcoder),
7730                    (adjusted_mode->crtc_vsync_start - 1) |
7731                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7732
7733         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7734          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7735          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7736          * bits. */
7737         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7738             (pipe == PIPE_B || pipe == PIPE_C))
7739                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7740
7741         /* pipesrc controls the size that is scaled from, which should
7742          * always be the user's requested size.
7743          */
7744         I915_WRITE(PIPESRC(pipe),
7745                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7746                    (intel_crtc->config->pipe_src_h - 1));
7747 }
7748
7749 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7750                                    struct intel_crtc_state *pipe_config)
7751 {
7752         struct drm_device *dev = crtc->base.dev;
7753         struct drm_i915_private *dev_priv = dev->dev_private;
7754         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7755         uint32_t tmp;
7756
7757         tmp = I915_READ(HTOTAL(cpu_transcoder));
7758         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7759         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7760         tmp = I915_READ(HBLANK(cpu_transcoder));
7761         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7762         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7763         tmp = I915_READ(HSYNC(cpu_transcoder));
7764         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7765         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7766
7767         tmp = I915_READ(VTOTAL(cpu_transcoder));
7768         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7769         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7770         tmp = I915_READ(VBLANK(cpu_transcoder));
7771         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7772         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7773         tmp = I915_READ(VSYNC(cpu_transcoder));
7774         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7775         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7776
7777         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7778                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7779                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7780                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7781         }
7782
7783         tmp = I915_READ(PIPESRC(crtc->pipe));
7784         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7785         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7786
7787         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7788         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7789 }
7790
7791 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7792                                  struct intel_crtc_state *pipe_config)
7793 {
7794         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7795         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7796         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7797         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7798
7799         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7800         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7801         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7802         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7803
7804         mode->flags = pipe_config->base.adjusted_mode.flags;
7805         mode->type = DRM_MODE_TYPE_DRIVER;
7806
7807         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7808         mode->flags |= pipe_config->base.adjusted_mode.flags;
7809
7810         mode->hsync = drm_mode_hsync(mode);
7811         mode->vrefresh = drm_mode_vrefresh(mode);
7812         drm_mode_set_name(mode);
7813 }
7814
7815 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7816 {
7817         struct drm_device *dev = intel_crtc->base.dev;
7818         struct drm_i915_private *dev_priv = dev->dev_private;
7819         uint32_t pipeconf;
7820
7821         pipeconf = 0;
7822
7823         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7824             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7825                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7826
7827         if (intel_crtc->config->double_wide)
7828                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7829
7830         /* only g4x and later have fancy bpc/dither controls */
7831         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7832                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7833                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7834                         pipeconf |= PIPECONF_DITHER_EN |
7835                                     PIPECONF_DITHER_TYPE_SP;
7836
7837                 switch (intel_crtc->config->pipe_bpp) {
7838                 case 18:
7839                         pipeconf |= PIPECONF_6BPC;
7840                         break;
7841                 case 24:
7842                         pipeconf |= PIPECONF_8BPC;
7843                         break;
7844                 case 30:
7845                         pipeconf |= PIPECONF_10BPC;
7846                         break;
7847                 default:
7848                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7849                         BUG();
7850                 }
7851         }
7852
7853         if (HAS_PIPE_CXSR(dev)) {
7854                 if (intel_crtc->lowfreq_avail) {
7855                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7856                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7857                 } else {
7858                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7859                 }
7860         }
7861
7862         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7863                 if (INTEL_INFO(dev)->gen < 4 ||
7864                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7865                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7866                 else
7867                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7868         } else
7869                 pipeconf |= PIPECONF_PROGRESSIVE;
7870
7871         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7872                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7873
7874         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7875         POSTING_READ(PIPECONF(intel_crtc->pipe));
7876 }
7877
7878 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7879                                    struct intel_crtc_state *crtc_state)
7880 {
7881         struct drm_device *dev = crtc->base.dev;
7882         struct drm_i915_private *dev_priv = dev->dev_private;
7883         int refclk, num_connectors = 0;
7884         intel_clock_t clock;
7885         bool ok;
7886         bool is_dsi = false;
7887         struct intel_encoder *encoder;
7888         const intel_limit_t *limit;
7889         struct drm_atomic_state *state = crtc_state->base.state;
7890         struct drm_connector *connector;
7891         struct drm_connector_state *connector_state;
7892         int i;
7893
7894         memset(&crtc_state->dpll_hw_state, 0,
7895                sizeof(crtc_state->dpll_hw_state));
7896
7897         for_each_connector_in_state(state, connector, connector_state, i) {
7898                 if (connector_state->crtc != &crtc->base)
7899                         continue;
7900
7901                 encoder = to_intel_encoder(connector_state->best_encoder);
7902
7903                 switch (encoder->type) {
7904                 case INTEL_OUTPUT_DSI:
7905                         is_dsi = true;
7906                         break;
7907                 default:
7908                         break;
7909                 }
7910
7911                 num_connectors++;
7912         }
7913
7914         if (is_dsi)
7915                 return 0;
7916
7917         if (!crtc_state->clock_set) {
7918                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7919
7920                 /*
7921                  * Returns a set of divisors for the desired target clock with
7922                  * the given refclk, or FALSE.  The returned values represent
7923                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7924                  * 2) / p1 / p2.
7925                  */
7926                 limit = intel_limit(crtc_state, refclk);
7927                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7928                                                  crtc_state->port_clock,
7929                                                  refclk, NULL, &clock);
7930                 if (!ok) {
7931                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7932                         return -EINVAL;
7933                 }
7934
7935                 /* Compat-code for transition, will disappear. */
7936                 crtc_state->dpll.n = clock.n;
7937                 crtc_state->dpll.m1 = clock.m1;
7938                 crtc_state->dpll.m2 = clock.m2;
7939                 crtc_state->dpll.p1 = clock.p1;
7940                 crtc_state->dpll.p2 = clock.p2;
7941         }
7942
7943         if (IS_GEN2(dev)) {
7944                 i8xx_compute_dpll(crtc, crtc_state, NULL,
7945                                   num_connectors);
7946         } else if (IS_CHERRYVIEW(dev)) {
7947                 chv_compute_dpll(crtc, crtc_state);
7948         } else if (IS_VALLEYVIEW(dev)) {
7949                 vlv_compute_dpll(crtc, crtc_state);
7950         } else {
7951                 i9xx_compute_dpll(crtc, crtc_state, NULL,
7952                                   num_connectors);
7953         }
7954
7955         return 0;
7956 }
7957
7958 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7959                                  struct intel_crtc_state *pipe_config)
7960 {
7961         struct drm_device *dev = crtc->base.dev;
7962         struct drm_i915_private *dev_priv = dev->dev_private;
7963         uint32_t tmp;
7964
7965         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7966                 return;
7967
7968         tmp = I915_READ(PFIT_CONTROL);
7969         if (!(tmp & PFIT_ENABLE))
7970                 return;
7971
7972         /* Check whether the pfit is attached to our pipe. */
7973         if (INTEL_INFO(dev)->gen < 4) {
7974                 if (crtc->pipe != PIPE_B)
7975                         return;
7976         } else {
7977                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7978                         return;
7979         }
7980
7981         pipe_config->gmch_pfit.control = tmp;
7982         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7983         if (INTEL_INFO(dev)->gen < 5)
7984                 pipe_config->gmch_pfit.lvds_border_bits =
7985                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7986 }
7987
7988 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7989                                struct intel_crtc_state *pipe_config)
7990 {
7991         struct drm_device *dev = crtc->base.dev;
7992         struct drm_i915_private *dev_priv = dev->dev_private;
7993         int pipe = pipe_config->cpu_transcoder;
7994         intel_clock_t clock;
7995         u32 mdiv;
7996         int refclk = 100000;
7997
7998         /* In case of MIPI DPLL will not even be used */
7999         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8000                 return;
8001
8002         mutex_lock(&dev_priv->sb_lock);
8003         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8004         mutex_unlock(&dev_priv->sb_lock);
8005
8006         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8007         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8008         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8009         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8010         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8011
8012         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8013 }
8014
8015 static void
8016 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8017                               struct intel_initial_plane_config *plane_config)
8018 {
8019         struct drm_device *dev = crtc->base.dev;
8020         struct drm_i915_private *dev_priv = dev->dev_private;
8021         u32 val, base, offset;
8022         int pipe = crtc->pipe, plane = crtc->plane;
8023         int fourcc, pixel_format;
8024         unsigned int aligned_height;
8025         struct drm_framebuffer *fb;
8026         struct intel_framebuffer *intel_fb;
8027
8028         val = I915_READ(DSPCNTR(plane));
8029         if (!(val & DISPLAY_PLANE_ENABLE))
8030                 return;
8031
8032         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8033         if (!intel_fb) {
8034                 DRM_DEBUG_KMS("failed to alloc fb\n");
8035                 return;
8036         }
8037
8038         fb = &intel_fb->base;
8039
8040         if (INTEL_INFO(dev)->gen >= 4) {
8041                 if (val & DISPPLANE_TILED) {
8042                         plane_config->tiling = I915_TILING_X;
8043                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8044                 }
8045         }
8046
8047         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8048         fourcc = i9xx_format_to_fourcc(pixel_format);
8049         fb->pixel_format = fourcc;
8050         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8051
8052         if (INTEL_INFO(dev)->gen >= 4) {
8053                 if (plane_config->tiling)
8054                         offset = I915_READ(DSPTILEOFF(plane));
8055                 else
8056                         offset = I915_READ(DSPLINOFF(plane));
8057                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8058         } else {
8059                 base = I915_READ(DSPADDR(plane));
8060         }
8061         plane_config->base = base;
8062
8063         val = I915_READ(PIPESRC(pipe));
8064         fb->width = ((val >> 16) & 0xfff) + 1;
8065         fb->height = ((val >> 0) & 0xfff) + 1;
8066
8067         val = I915_READ(DSPSTRIDE(pipe));
8068         fb->pitches[0] = val & 0xffffffc0;
8069
8070         aligned_height = intel_fb_align_height(dev, fb->height,
8071                                                fb->pixel_format,
8072                                                fb->modifier[0]);
8073
8074         plane_config->size = fb->pitches[0] * aligned_height;
8075
8076         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8077                       pipe_name(pipe), plane, fb->width, fb->height,
8078                       fb->bits_per_pixel, base, fb->pitches[0],
8079                       plane_config->size);
8080
8081         plane_config->fb = intel_fb;
8082 }
8083
8084 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8085                                struct intel_crtc_state *pipe_config)
8086 {
8087         struct drm_device *dev = crtc->base.dev;
8088         struct drm_i915_private *dev_priv = dev->dev_private;
8089         int pipe = pipe_config->cpu_transcoder;
8090         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8091         intel_clock_t clock;
8092         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8093         int refclk = 100000;
8094
8095         mutex_lock(&dev_priv->sb_lock);
8096         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8097         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8098         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8099         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8100         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8101         mutex_unlock(&dev_priv->sb_lock);
8102
8103         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8104         clock.m2 = (pll_dw0 & 0xff) << 22;
8105         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8106                 clock.m2 |= pll_dw2 & 0x3fffff;
8107         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8108         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8109         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8110
8111         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8112 }
8113
8114 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8115                                  struct intel_crtc_state *pipe_config)
8116 {
8117         struct drm_device *dev = crtc->base.dev;
8118         struct drm_i915_private *dev_priv = dev->dev_private;
8119         uint32_t tmp;
8120
8121         if (!intel_display_power_is_enabled(dev_priv,
8122                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8123                 return false;
8124
8125         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8126         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8127
8128         tmp = I915_READ(PIPECONF(crtc->pipe));
8129         if (!(tmp & PIPECONF_ENABLE))
8130                 return false;
8131
8132         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8133                 switch (tmp & PIPECONF_BPC_MASK) {
8134                 case PIPECONF_6BPC:
8135                         pipe_config->pipe_bpp = 18;
8136                         break;
8137                 case PIPECONF_8BPC:
8138                         pipe_config->pipe_bpp = 24;
8139                         break;
8140                 case PIPECONF_10BPC:
8141                         pipe_config->pipe_bpp = 30;
8142                         break;
8143                 default:
8144                         break;
8145                 }
8146         }
8147
8148         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8149                 pipe_config->limited_color_range = true;
8150
8151         if (INTEL_INFO(dev)->gen < 4)
8152                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8153
8154         intel_get_pipe_timings(crtc, pipe_config);
8155
8156         i9xx_get_pfit_config(crtc, pipe_config);
8157
8158         if (INTEL_INFO(dev)->gen >= 4) {
8159                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8160                 pipe_config->pixel_multiplier =
8161                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8162                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8163                 pipe_config->dpll_hw_state.dpll_md = tmp;
8164         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8165                 tmp = I915_READ(DPLL(crtc->pipe));
8166                 pipe_config->pixel_multiplier =
8167                         ((tmp & SDVO_MULTIPLIER_MASK)
8168                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8169         } else {
8170                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8171                  * port and will be fixed up in the encoder->get_config
8172                  * function. */
8173                 pipe_config->pixel_multiplier = 1;
8174         }
8175         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8176         if (!IS_VALLEYVIEW(dev)) {
8177                 /*
8178                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8179                  * on 830. Filter it out here so that we don't
8180                  * report errors due to that.
8181                  */
8182                 if (IS_I830(dev))
8183                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8184
8185                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8186                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8187         } else {
8188                 /* Mask out read-only status bits. */
8189                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8190                                                      DPLL_PORTC_READY_MASK |
8191                                                      DPLL_PORTB_READY_MASK);
8192         }
8193
8194         if (IS_CHERRYVIEW(dev))
8195                 chv_crtc_clock_get(crtc, pipe_config);
8196         else if (IS_VALLEYVIEW(dev))
8197                 vlv_crtc_clock_get(crtc, pipe_config);
8198         else
8199                 i9xx_crtc_clock_get(crtc, pipe_config);
8200
8201         /*
8202          * Normally the dotclock is filled in by the encoder .get_config()
8203          * but in case the pipe is enabled w/o any ports we need a sane
8204          * default.
8205          */
8206         pipe_config->base.adjusted_mode.crtc_clock =
8207                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8208
8209         return true;
8210 }
8211
8212 static void ironlake_init_pch_refclk(struct drm_device *dev)
8213 {
8214         struct drm_i915_private *dev_priv = dev->dev_private;
8215         struct intel_encoder *encoder;
8216         u32 val, final;
8217         bool has_lvds = false;
8218         bool has_cpu_edp = false;
8219         bool has_panel = false;
8220         bool has_ck505 = false;
8221         bool can_ssc = false;
8222
8223         /* We need to take the global config into account */
8224         for_each_intel_encoder(dev, encoder) {
8225                 switch (encoder->type) {
8226                 case INTEL_OUTPUT_LVDS:
8227                         has_panel = true;
8228                         has_lvds = true;
8229                         break;
8230                 case INTEL_OUTPUT_EDP:
8231                         has_panel = true;
8232                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8233                                 has_cpu_edp = true;
8234                         break;
8235                 default:
8236                         break;
8237                 }
8238         }
8239
8240         if (HAS_PCH_IBX(dev)) {
8241                 has_ck505 = dev_priv->vbt.display_clock_mode;
8242                 can_ssc = has_ck505;
8243         } else {
8244                 has_ck505 = false;
8245                 can_ssc = true;
8246         }
8247
8248         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8249                       has_panel, has_lvds, has_ck505);
8250
8251         /* Ironlake: try to setup display ref clock before DPLL
8252          * enabling. This is only under driver's control after
8253          * PCH B stepping, previous chipset stepping should be
8254          * ignoring this setting.
8255          */
8256         val = I915_READ(PCH_DREF_CONTROL);
8257
8258         /* As we must carefully and slowly disable/enable each source in turn,
8259          * compute the final state we want first and check if we need to
8260          * make any changes at all.
8261          */
8262         final = val;
8263         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8264         if (has_ck505)
8265                 final |= DREF_NONSPREAD_CK505_ENABLE;
8266         else
8267                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8268
8269         final &= ~DREF_SSC_SOURCE_MASK;
8270         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8271         final &= ~DREF_SSC1_ENABLE;
8272
8273         if (has_panel) {
8274                 final |= DREF_SSC_SOURCE_ENABLE;
8275
8276                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8277                         final |= DREF_SSC1_ENABLE;
8278
8279                 if (has_cpu_edp) {
8280                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8281                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8282                         else
8283                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8284                 } else
8285                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8286         } else {
8287                 final |= DREF_SSC_SOURCE_DISABLE;
8288                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8289         }
8290
8291         if (final == val)
8292                 return;
8293
8294         /* Always enable nonspread source */
8295         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8296
8297         if (has_ck505)
8298                 val |= DREF_NONSPREAD_CK505_ENABLE;
8299         else
8300                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8301
8302         if (has_panel) {
8303                 val &= ~DREF_SSC_SOURCE_MASK;
8304                 val |= DREF_SSC_SOURCE_ENABLE;
8305
8306                 /* SSC must be turned on before enabling the CPU output  */
8307                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8308                         DRM_DEBUG_KMS("Using SSC on panel\n");
8309                         val |= DREF_SSC1_ENABLE;
8310                 } else
8311                         val &= ~DREF_SSC1_ENABLE;
8312
8313                 /* Get SSC going before enabling the outputs */
8314                 I915_WRITE(PCH_DREF_CONTROL, val);
8315                 POSTING_READ(PCH_DREF_CONTROL);
8316                 udelay(200);
8317
8318                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8319
8320                 /* Enable CPU source on CPU attached eDP */
8321                 if (has_cpu_edp) {
8322                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8323                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8324                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8325                         } else
8326                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8327                 } else
8328                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8329
8330                 I915_WRITE(PCH_DREF_CONTROL, val);
8331                 POSTING_READ(PCH_DREF_CONTROL);
8332                 udelay(200);
8333         } else {
8334                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8335
8336                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8337
8338                 /* Turn off CPU output */
8339                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8340
8341                 I915_WRITE(PCH_DREF_CONTROL, val);
8342                 POSTING_READ(PCH_DREF_CONTROL);
8343                 udelay(200);
8344
8345                 /* Turn off the SSC source */
8346                 val &= ~DREF_SSC_SOURCE_MASK;
8347                 val |= DREF_SSC_SOURCE_DISABLE;
8348
8349                 /* Turn off SSC1 */
8350                 val &= ~DREF_SSC1_ENABLE;
8351
8352                 I915_WRITE(PCH_DREF_CONTROL, val);
8353                 POSTING_READ(PCH_DREF_CONTROL);
8354                 udelay(200);
8355         }
8356
8357         BUG_ON(val != final);
8358 }
8359
8360 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8361 {
8362         uint32_t tmp;
8363
8364         tmp = I915_READ(SOUTH_CHICKEN2);
8365         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8366         I915_WRITE(SOUTH_CHICKEN2, tmp);
8367
8368         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8369                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8370                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8371
8372         tmp = I915_READ(SOUTH_CHICKEN2);
8373         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8374         I915_WRITE(SOUTH_CHICKEN2, tmp);
8375
8376         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8377                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8378                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8379 }
8380
8381 /* WaMPhyProgramming:hsw */
8382 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8383 {
8384         uint32_t tmp;
8385
8386         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8387         tmp &= ~(0xFF << 24);
8388         tmp |= (0x12 << 24);
8389         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8390
8391         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8392         tmp |= (1 << 11);
8393         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8394
8395         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8396         tmp |= (1 << 11);
8397         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8398
8399         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8400         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8401         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8402
8403         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8404         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8405         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8406
8407         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8408         tmp &= ~(7 << 13);
8409         tmp |= (5 << 13);
8410         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8411
8412         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8413         tmp &= ~(7 << 13);
8414         tmp |= (5 << 13);
8415         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8416
8417         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8418         tmp &= ~0xFF;
8419         tmp |= 0x1C;
8420         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8421
8422         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8423         tmp &= ~0xFF;
8424         tmp |= 0x1C;
8425         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8426
8427         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8428         tmp &= ~(0xFF << 16);
8429         tmp |= (0x1C << 16);
8430         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8431
8432         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8433         tmp &= ~(0xFF << 16);
8434         tmp |= (0x1C << 16);
8435         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8436
8437         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8438         tmp |= (1 << 27);
8439         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8440
8441         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8442         tmp |= (1 << 27);
8443         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8444
8445         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8446         tmp &= ~(0xF << 28);
8447         tmp |= (4 << 28);
8448         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8449
8450         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8451         tmp &= ~(0xF << 28);
8452         tmp |= (4 << 28);
8453         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8454 }
8455
8456 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8457  * Programming" based on the parameters passed:
8458  * - Sequence to enable CLKOUT_DP
8459  * - Sequence to enable CLKOUT_DP without spread
8460  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8461  */
8462 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8463                                  bool with_fdi)
8464 {
8465         struct drm_i915_private *dev_priv = dev->dev_private;
8466         uint32_t reg, tmp;
8467
8468         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8469                 with_spread = true;
8470         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8471                 with_fdi = false;
8472
8473         mutex_lock(&dev_priv->sb_lock);
8474
8475         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8476         tmp &= ~SBI_SSCCTL_DISABLE;
8477         tmp |= SBI_SSCCTL_PATHALT;
8478         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8479
8480         udelay(24);
8481
8482         if (with_spread) {
8483                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8484                 tmp &= ~SBI_SSCCTL_PATHALT;
8485                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8486
8487                 if (with_fdi) {
8488                         lpt_reset_fdi_mphy(dev_priv);
8489                         lpt_program_fdi_mphy(dev_priv);
8490                 }
8491         }
8492
8493         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8494         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8495         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8496         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8497
8498         mutex_unlock(&dev_priv->sb_lock);
8499 }
8500
8501 /* Sequence to disable CLKOUT_DP */
8502 static void lpt_disable_clkout_dp(struct drm_device *dev)
8503 {
8504         struct drm_i915_private *dev_priv = dev->dev_private;
8505         uint32_t reg, tmp;
8506
8507         mutex_lock(&dev_priv->sb_lock);
8508
8509         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8510         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8511         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8512         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8513
8514         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8515         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8516                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8517                         tmp |= SBI_SSCCTL_PATHALT;
8518                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8519                         udelay(32);
8520                 }
8521                 tmp |= SBI_SSCCTL_DISABLE;
8522                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8523         }
8524
8525         mutex_unlock(&dev_priv->sb_lock);
8526 }
8527
8528 static void lpt_init_pch_refclk(struct drm_device *dev)
8529 {
8530         struct intel_encoder *encoder;
8531         bool has_vga = false;
8532
8533         for_each_intel_encoder(dev, encoder) {
8534                 switch (encoder->type) {
8535                 case INTEL_OUTPUT_ANALOG:
8536                         has_vga = true;
8537                         break;
8538                 default:
8539                         break;
8540                 }
8541         }
8542
8543         if (has_vga)
8544                 lpt_enable_clkout_dp(dev, true, true);
8545         else
8546                 lpt_disable_clkout_dp(dev);
8547 }
8548
8549 /*
8550  * Initialize reference clocks when the driver loads
8551  */
8552 void intel_init_pch_refclk(struct drm_device *dev)
8553 {
8554         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8555                 ironlake_init_pch_refclk(dev);
8556         else if (HAS_PCH_LPT(dev))
8557                 lpt_init_pch_refclk(dev);
8558 }
8559
8560 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8561 {
8562         struct drm_device *dev = crtc_state->base.crtc->dev;
8563         struct drm_i915_private *dev_priv = dev->dev_private;
8564         struct drm_atomic_state *state = crtc_state->base.state;
8565         struct drm_connector *connector;
8566         struct drm_connector_state *connector_state;
8567         struct intel_encoder *encoder;
8568         int num_connectors = 0, i;
8569         bool is_lvds = false;
8570
8571         for_each_connector_in_state(state, connector, connector_state, i) {
8572                 if (connector_state->crtc != crtc_state->base.crtc)
8573                         continue;
8574
8575                 encoder = to_intel_encoder(connector_state->best_encoder);
8576
8577                 switch (encoder->type) {
8578                 case INTEL_OUTPUT_LVDS:
8579                         is_lvds = true;
8580                         break;
8581                 default:
8582                         break;
8583                 }
8584                 num_connectors++;
8585         }
8586
8587         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8588                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8589                               dev_priv->vbt.lvds_ssc_freq);
8590                 return dev_priv->vbt.lvds_ssc_freq;
8591         }
8592
8593         return 120000;
8594 }
8595
8596 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8597 {
8598         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8599         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8600         int pipe = intel_crtc->pipe;
8601         uint32_t val;
8602
8603         val = 0;
8604
8605         switch (intel_crtc->config->pipe_bpp) {
8606         case 18:
8607                 val |= PIPECONF_6BPC;
8608                 break;
8609         case 24:
8610                 val |= PIPECONF_8BPC;
8611                 break;
8612         case 30:
8613                 val |= PIPECONF_10BPC;
8614                 break;
8615         case 36:
8616                 val |= PIPECONF_12BPC;
8617                 break;
8618         default:
8619                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8620                 BUG();
8621         }
8622
8623         if (intel_crtc->config->dither)
8624                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8625
8626         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8627                 val |= PIPECONF_INTERLACED_ILK;
8628         else
8629                 val |= PIPECONF_PROGRESSIVE;
8630
8631         if (intel_crtc->config->limited_color_range)
8632                 val |= PIPECONF_COLOR_RANGE_SELECT;
8633
8634         I915_WRITE(PIPECONF(pipe), val);
8635         POSTING_READ(PIPECONF(pipe));
8636 }
8637
8638 /*
8639  * Set up the pipe CSC unit.
8640  *
8641  * Currently only full range RGB to limited range RGB conversion
8642  * is supported, but eventually this should handle various
8643  * RGB<->YCbCr scenarios as well.
8644  */
8645 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8646 {
8647         struct drm_device *dev = crtc->dev;
8648         struct drm_i915_private *dev_priv = dev->dev_private;
8649         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8650         int pipe = intel_crtc->pipe;
8651         uint16_t coeff = 0x7800; /* 1.0 */
8652
8653         /*
8654          * TODO: Check what kind of values actually come out of the pipe
8655          * with these coeff/postoff values and adjust to get the best
8656          * accuracy. Perhaps we even need to take the bpc value into
8657          * consideration.
8658          */
8659
8660         if (intel_crtc->config->limited_color_range)
8661                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8662
8663         /*
8664          * GY/GU and RY/RU should be the other way around according
8665          * to BSpec, but reality doesn't agree. Just set them up in
8666          * a way that results in the correct picture.
8667          */
8668         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8669         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8670
8671         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8672         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8673
8674         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8675         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8676
8677         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8678         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8679         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8680
8681         if (INTEL_INFO(dev)->gen > 6) {
8682                 uint16_t postoff = 0;
8683
8684                 if (intel_crtc->config->limited_color_range)
8685                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8686
8687                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8688                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8689                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8690
8691                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8692         } else {
8693                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8694
8695                 if (intel_crtc->config->limited_color_range)
8696                         mode |= CSC_BLACK_SCREEN_OFFSET;
8697
8698                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8699         }
8700 }
8701
8702 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8703 {
8704         struct drm_device *dev = crtc->dev;
8705         struct drm_i915_private *dev_priv = dev->dev_private;
8706         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8707         enum pipe pipe = intel_crtc->pipe;
8708         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8709         uint32_t val;
8710
8711         val = 0;
8712
8713         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8714                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8715
8716         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8717                 val |= PIPECONF_INTERLACED_ILK;
8718         else
8719                 val |= PIPECONF_PROGRESSIVE;
8720
8721         I915_WRITE(PIPECONF(cpu_transcoder), val);
8722         POSTING_READ(PIPECONF(cpu_transcoder));
8723
8724         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8725         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8726
8727         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8728                 val = 0;
8729
8730                 switch (intel_crtc->config->pipe_bpp) {
8731                 case 18:
8732                         val |= PIPEMISC_DITHER_6_BPC;
8733                         break;
8734                 case 24:
8735                         val |= PIPEMISC_DITHER_8_BPC;
8736                         break;
8737                 case 30:
8738                         val |= PIPEMISC_DITHER_10_BPC;
8739                         break;
8740                 case 36:
8741                         val |= PIPEMISC_DITHER_12_BPC;
8742                         break;
8743                 default:
8744                         /* Case prevented by pipe_config_set_bpp. */
8745                         BUG();
8746                 }
8747
8748                 if (intel_crtc->config->dither)
8749                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8750
8751                 I915_WRITE(PIPEMISC(pipe), val);
8752         }
8753 }
8754
8755 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8756                                     struct intel_crtc_state *crtc_state,
8757                                     intel_clock_t *clock,
8758                                     bool *has_reduced_clock,
8759                                     intel_clock_t *reduced_clock)
8760 {
8761         struct drm_device *dev = crtc->dev;
8762         struct drm_i915_private *dev_priv = dev->dev_private;
8763         int refclk;
8764         const intel_limit_t *limit;
8765         bool ret;
8766
8767         refclk = ironlake_get_refclk(crtc_state);
8768
8769         /*
8770          * Returns a set of divisors for the desired target clock with the given
8771          * refclk, or FALSE.  The returned values represent the clock equation:
8772          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8773          */
8774         limit = intel_limit(crtc_state, refclk);
8775         ret = dev_priv->display.find_dpll(limit, crtc_state,
8776                                           crtc_state->port_clock,
8777                                           refclk, NULL, clock);
8778         if (!ret)
8779                 return false;
8780
8781         return true;
8782 }
8783
8784 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8785 {
8786         /*
8787          * Account for spread spectrum to avoid
8788          * oversubscribing the link. Max center spread
8789          * is 2.5%; use 5% for safety's sake.
8790          */
8791         u32 bps = target_clock * bpp * 21 / 20;
8792         return DIV_ROUND_UP(bps, link_bw * 8);
8793 }
8794
8795 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8796 {
8797         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8798 }
8799
8800 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8801                                       struct intel_crtc_state *crtc_state,
8802                                       u32 *fp,
8803                                       intel_clock_t *reduced_clock, u32 *fp2)
8804 {
8805         struct drm_crtc *crtc = &intel_crtc->base;
8806         struct drm_device *dev = crtc->dev;
8807         struct drm_i915_private *dev_priv = dev->dev_private;
8808         struct drm_atomic_state *state = crtc_state->base.state;
8809         struct drm_connector *connector;
8810         struct drm_connector_state *connector_state;
8811         struct intel_encoder *encoder;
8812         uint32_t dpll;
8813         int factor, num_connectors = 0, i;
8814         bool is_lvds = false, is_sdvo = false;
8815
8816         for_each_connector_in_state(state, connector, connector_state, i) {
8817                 if (connector_state->crtc != crtc_state->base.crtc)
8818                         continue;
8819
8820                 encoder = to_intel_encoder(connector_state->best_encoder);
8821
8822                 switch (encoder->type) {
8823                 case INTEL_OUTPUT_LVDS:
8824                         is_lvds = true;
8825                         break;
8826                 case INTEL_OUTPUT_SDVO:
8827                 case INTEL_OUTPUT_HDMI:
8828                         is_sdvo = true;
8829                         break;
8830                 default:
8831                         break;
8832                 }
8833
8834                 num_connectors++;
8835         }
8836
8837         /* Enable autotuning of the PLL clock (if permissible) */
8838         factor = 21;
8839         if (is_lvds) {
8840                 if ((intel_panel_use_ssc(dev_priv) &&
8841                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8842                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8843                         factor = 25;
8844         } else if (crtc_state->sdvo_tv_clock)
8845                 factor = 20;
8846
8847         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8848                 *fp |= FP_CB_TUNE;
8849
8850         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8851                 *fp2 |= FP_CB_TUNE;
8852
8853         dpll = 0;
8854
8855         if (is_lvds)
8856                 dpll |= DPLLB_MODE_LVDS;
8857         else
8858                 dpll |= DPLLB_MODE_DAC_SERIAL;
8859
8860         dpll |= (crtc_state->pixel_multiplier - 1)
8861                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8862
8863         if (is_sdvo)
8864                 dpll |= DPLL_SDVO_HIGH_SPEED;
8865         if (crtc_state->has_dp_encoder)
8866                 dpll |= DPLL_SDVO_HIGH_SPEED;
8867
8868         /* compute bitmask from p1 value */
8869         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8870         /* also FPA1 */
8871         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8872
8873         switch (crtc_state->dpll.p2) {
8874         case 5:
8875                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8876                 break;
8877         case 7:
8878                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8879                 break;
8880         case 10:
8881                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8882                 break;
8883         case 14:
8884                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8885                 break;
8886         }
8887
8888         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8889                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8890         else
8891                 dpll |= PLL_REF_INPUT_DREFCLK;
8892
8893         return dpll | DPLL_VCO_ENABLE;
8894 }
8895
8896 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8897                                        struct intel_crtc_state *crtc_state)
8898 {
8899         struct drm_device *dev = crtc->base.dev;
8900         intel_clock_t clock, reduced_clock;
8901         u32 dpll = 0, fp = 0, fp2 = 0;
8902         bool ok, has_reduced_clock = false;
8903         bool is_lvds = false;
8904         struct intel_shared_dpll *pll;
8905
8906         memset(&crtc_state->dpll_hw_state, 0,
8907                sizeof(crtc_state->dpll_hw_state));
8908
8909         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8910
8911         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8912              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8913
8914         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8915                                      &has_reduced_clock, &reduced_clock);
8916         if (!ok && !crtc_state->clock_set) {
8917                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8918                 return -EINVAL;
8919         }
8920         /* Compat-code for transition, will disappear. */
8921         if (!crtc_state->clock_set) {
8922                 crtc_state->dpll.n = clock.n;
8923                 crtc_state->dpll.m1 = clock.m1;
8924                 crtc_state->dpll.m2 = clock.m2;
8925                 crtc_state->dpll.p1 = clock.p1;
8926                 crtc_state->dpll.p2 = clock.p2;
8927         }
8928
8929         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8930         if (crtc_state->has_pch_encoder) {
8931                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8932                 if (has_reduced_clock)
8933                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8934
8935                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8936                                              &fp, &reduced_clock,
8937                                              has_reduced_clock ? &fp2 : NULL);
8938
8939                 crtc_state->dpll_hw_state.dpll = dpll;
8940                 crtc_state->dpll_hw_state.fp0 = fp;
8941                 if (has_reduced_clock)
8942                         crtc_state->dpll_hw_state.fp1 = fp2;
8943                 else
8944                         crtc_state->dpll_hw_state.fp1 = fp;
8945
8946                 pll = intel_get_shared_dpll(crtc, crtc_state);
8947                 if (pll == NULL) {
8948                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8949                                          pipe_name(crtc->pipe));
8950                         return -EINVAL;
8951                 }
8952         }
8953
8954         if (is_lvds && has_reduced_clock)
8955                 crtc->lowfreq_avail = true;
8956         else
8957                 crtc->lowfreq_avail = false;
8958
8959         return 0;
8960 }
8961
8962 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8963                                          struct intel_link_m_n *m_n)
8964 {
8965         struct drm_device *dev = crtc->base.dev;
8966         struct drm_i915_private *dev_priv = dev->dev_private;
8967         enum pipe pipe = crtc->pipe;
8968
8969         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8970         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8971         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8972                 & ~TU_SIZE_MASK;
8973         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8974         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8975                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8976 }
8977
8978 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8979                                          enum transcoder transcoder,
8980                                          struct intel_link_m_n *m_n,
8981                                          struct intel_link_m_n *m2_n2)
8982 {
8983         struct drm_device *dev = crtc->base.dev;
8984         struct drm_i915_private *dev_priv = dev->dev_private;
8985         enum pipe pipe = crtc->pipe;
8986
8987         if (INTEL_INFO(dev)->gen >= 5) {
8988                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8989                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8990                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8991                         & ~TU_SIZE_MASK;
8992                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8993                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8994                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8995                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8996                  * gen < 8) and if DRRS is supported (to make sure the
8997                  * registers are not unnecessarily read).
8998                  */
8999                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9000                         crtc->config->has_drrs) {
9001                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9002                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9003                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9004                                         & ~TU_SIZE_MASK;
9005                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9006                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9007                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9008                 }
9009         } else {
9010                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9011                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9012                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9013                         & ~TU_SIZE_MASK;
9014                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9015                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9016                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9017         }
9018 }
9019
9020 void intel_dp_get_m_n(struct intel_crtc *crtc,
9021                       struct intel_crtc_state *pipe_config)
9022 {
9023         if (pipe_config->has_pch_encoder)
9024                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9025         else
9026                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9027                                              &pipe_config->dp_m_n,
9028                                              &pipe_config->dp_m2_n2);
9029 }
9030
9031 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9032                                         struct intel_crtc_state *pipe_config)
9033 {
9034         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9035                                      &pipe_config->fdi_m_n, NULL);
9036 }
9037
9038 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9039                                     struct intel_crtc_state *pipe_config)
9040 {
9041         struct drm_device *dev = crtc->base.dev;
9042         struct drm_i915_private *dev_priv = dev->dev_private;
9043         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9044         uint32_t ps_ctrl = 0;
9045         int id = -1;
9046         int i;
9047
9048         /* find scaler attached to this pipe */
9049         for (i = 0; i < crtc->num_scalers; i++) {
9050                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9051                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9052                         id = i;
9053                         pipe_config->pch_pfit.enabled = true;
9054                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9055                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9056                         break;
9057                 }
9058         }
9059
9060         scaler_state->scaler_id = id;
9061         if (id >= 0) {
9062                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9063         } else {
9064                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9065         }
9066 }
9067
9068 static void
9069 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9070                                  struct intel_initial_plane_config *plane_config)
9071 {
9072         struct drm_device *dev = crtc->base.dev;
9073         struct drm_i915_private *dev_priv = dev->dev_private;
9074         u32 val, base, offset, stride_mult, tiling;
9075         int pipe = crtc->pipe;
9076         int fourcc, pixel_format;
9077         unsigned int aligned_height;
9078         struct drm_framebuffer *fb;
9079         struct intel_framebuffer *intel_fb;
9080
9081         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9082         if (!intel_fb) {
9083                 DRM_DEBUG_KMS("failed to alloc fb\n");
9084                 return;
9085         }
9086
9087         fb = &intel_fb->base;
9088
9089         val = I915_READ(PLANE_CTL(pipe, 0));
9090         if (!(val & PLANE_CTL_ENABLE))
9091                 goto error;
9092
9093         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9094         fourcc = skl_format_to_fourcc(pixel_format,
9095                                       val & PLANE_CTL_ORDER_RGBX,
9096                                       val & PLANE_CTL_ALPHA_MASK);
9097         fb->pixel_format = fourcc;
9098         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9099
9100         tiling = val & PLANE_CTL_TILED_MASK;
9101         switch (tiling) {
9102         case PLANE_CTL_TILED_LINEAR:
9103                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9104                 break;
9105         case PLANE_CTL_TILED_X:
9106                 plane_config->tiling = I915_TILING_X;
9107                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9108                 break;
9109         case PLANE_CTL_TILED_Y:
9110                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9111                 break;
9112         case PLANE_CTL_TILED_YF:
9113                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9114                 break;
9115         default:
9116                 MISSING_CASE(tiling);
9117                 goto error;
9118         }
9119
9120         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9121         plane_config->base = base;
9122
9123         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9124
9125         val = I915_READ(PLANE_SIZE(pipe, 0));
9126         fb->height = ((val >> 16) & 0xfff) + 1;
9127         fb->width = ((val >> 0) & 0x1fff) + 1;
9128
9129         val = I915_READ(PLANE_STRIDE(pipe, 0));
9130         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9131                                                 fb->pixel_format);
9132         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9133
9134         aligned_height = intel_fb_align_height(dev, fb->height,
9135                                                fb->pixel_format,
9136                                                fb->modifier[0]);
9137
9138         plane_config->size = fb->pitches[0] * aligned_height;
9139
9140         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9141                       pipe_name(pipe), fb->width, fb->height,
9142                       fb->bits_per_pixel, base, fb->pitches[0],
9143                       plane_config->size);
9144
9145         plane_config->fb = intel_fb;
9146         return;
9147
9148 error:
9149         kfree(fb);
9150 }
9151
9152 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9153                                      struct intel_crtc_state *pipe_config)
9154 {
9155         struct drm_device *dev = crtc->base.dev;
9156         struct drm_i915_private *dev_priv = dev->dev_private;
9157         uint32_t tmp;
9158
9159         tmp = I915_READ(PF_CTL(crtc->pipe));
9160
9161         if (tmp & PF_ENABLE) {
9162                 pipe_config->pch_pfit.enabled = true;
9163                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9164                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9165
9166                 /* We currently do not free assignements of panel fitters on
9167                  * ivb/hsw (since we don't use the higher upscaling modes which
9168                  * differentiates them) so just WARN about this case for now. */
9169                 if (IS_GEN7(dev)) {
9170                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9171                                 PF_PIPE_SEL_IVB(crtc->pipe));
9172                 }
9173         }
9174 }
9175
9176 static void
9177 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9178                                   struct intel_initial_plane_config *plane_config)
9179 {
9180         struct drm_device *dev = crtc->base.dev;
9181         struct drm_i915_private *dev_priv = dev->dev_private;
9182         u32 val, base, offset;
9183         int pipe = crtc->pipe;
9184         int fourcc, pixel_format;
9185         unsigned int aligned_height;
9186         struct drm_framebuffer *fb;
9187         struct intel_framebuffer *intel_fb;
9188
9189         val = I915_READ(DSPCNTR(pipe));
9190         if (!(val & DISPLAY_PLANE_ENABLE))
9191                 return;
9192
9193         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9194         if (!intel_fb) {
9195                 DRM_DEBUG_KMS("failed to alloc fb\n");
9196                 return;
9197         }
9198
9199         fb = &intel_fb->base;
9200
9201         if (INTEL_INFO(dev)->gen >= 4) {
9202                 if (val & DISPPLANE_TILED) {
9203                         plane_config->tiling = I915_TILING_X;
9204                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9205                 }
9206         }
9207
9208         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9209         fourcc = i9xx_format_to_fourcc(pixel_format);
9210         fb->pixel_format = fourcc;
9211         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9212
9213         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9214         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9215                 offset = I915_READ(DSPOFFSET(pipe));
9216         } else {
9217                 if (plane_config->tiling)
9218                         offset = I915_READ(DSPTILEOFF(pipe));
9219                 else
9220                         offset = I915_READ(DSPLINOFF(pipe));
9221         }
9222         plane_config->base = base;
9223
9224         val = I915_READ(PIPESRC(pipe));
9225         fb->width = ((val >> 16) & 0xfff) + 1;
9226         fb->height = ((val >> 0) & 0xfff) + 1;
9227
9228         val = I915_READ(DSPSTRIDE(pipe));
9229         fb->pitches[0] = val & 0xffffffc0;
9230
9231         aligned_height = intel_fb_align_height(dev, fb->height,
9232                                                fb->pixel_format,
9233                                                fb->modifier[0]);
9234
9235         plane_config->size = fb->pitches[0] * aligned_height;
9236
9237         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9238                       pipe_name(pipe), fb->width, fb->height,
9239                       fb->bits_per_pixel, base, fb->pitches[0],
9240                       plane_config->size);
9241
9242         plane_config->fb = intel_fb;
9243 }
9244
9245 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9246                                      struct intel_crtc_state *pipe_config)
9247 {
9248         struct drm_device *dev = crtc->base.dev;
9249         struct drm_i915_private *dev_priv = dev->dev_private;
9250         uint32_t tmp;
9251
9252         if (!intel_display_power_is_enabled(dev_priv,
9253                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9254                 return false;
9255
9256         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9257         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9258
9259         tmp = I915_READ(PIPECONF(crtc->pipe));
9260         if (!(tmp & PIPECONF_ENABLE))
9261                 return false;
9262
9263         switch (tmp & PIPECONF_BPC_MASK) {
9264         case PIPECONF_6BPC:
9265                 pipe_config->pipe_bpp = 18;
9266                 break;
9267         case PIPECONF_8BPC:
9268                 pipe_config->pipe_bpp = 24;
9269                 break;
9270         case PIPECONF_10BPC:
9271                 pipe_config->pipe_bpp = 30;
9272                 break;
9273         case PIPECONF_12BPC:
9274                 pipe_config->pipe_bpp = 36;
9275                 break;
9276         default:
9277                 break;
9278         }
9279
9280         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9281                 pipe_config->limited_color_range = true;
9282
9283         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9284                 struct intel_shared_dpll *pll;
9285
9286                 pipe_config->has_pch_encoder = true;
9287
9288                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9289                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9290                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9291
9292                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9293
9294                 if (HAS_PCH_IBX(dev_priv->dev)) {
9295                         pipe_config->shared_dpll =
9296                                 (enum intel_dpll_id) crtc->pipe;
9297                 } else {
9298                         tmp = I915_READ(PCH_DPLL_SEL);
9299                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9300                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9301                         else
9302                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9303                 }
9304
9305                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9306
9307                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9308                                            &pipe_config->dpll_hw_state));
9309
9310                 tmp = pipe_config->dpll_hw_state.dpll;
9311                 pipe_config->pixel_multiplier =
9312                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9313                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9314
9315                 ironlake_pch_clock_get(crtc, pipe_config);
9316         } else {
9317                 pipe_config->pixel_multiplier = 1;
9318         }
9319
9320         intel_get_pipe_timings(crtc, pipe_config);
9321
9322         ironlake_get_pfit_config(crtc, pipe_config);
9323
9324         return true;
9325 }
9326
9327 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9328 {
9329         struct drm_device *dev = dev_priv->dev;
9330         struct intel_crtc *crtc;
9331
9332         for_each_intel_crtc(dev, crtc)
9333                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9334                      pipe_name(crtc->pipe));
9335
9336         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9337         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9338         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9339         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9340         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9341         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9342              "CPU PWM1 enabled\n");
9343         if (IS_HASWELL(dev))
9344                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9345                      "CPU PWM2 enabled\n");
9346         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9347              "PCH PWM1 enabled\n");
9348         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9349              "Utility pin enabled\n");
9350         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9351
9352         /*
9353          * In theory we can still leave IRQs enabled, as long as only the HPD
9354          * interrupts remain enabled. We used to check for that, but since it's
9355          * gen-specific and since we only disable LCPLL after we fully disable
9356          * the interrupts, the check below should be enough.
9357          */
9358         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9359 }
9360
9361 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9362 {
9363         struct drm_device *dev = dev_priv->dev;
9364
9365         if (IS_HASWELL(dev))
9366                 return I915_READ(D_COMP_HSW);
9367         else
9368                 return I915_READ(D_COMP_BDW);
9369 }
9370
9371 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9372 {
9373         struct drm_device *dev = dev_priv->dev;
9374
9375         if (IS_HASWELL(dev)) {
9376                 mutex_lock(&dev_priv->rps.hw_lock);
9377                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9378                                             val))
9379                         DRM_ERROR("Failed to write to D_COMP\n");
9380                 mutex_unlock(&dev_priv->rps.hw_lock);
9381         } else {
9382                 I915_WRITE(D_COMP_BDW, val);
9383                 POSTING_READ(D_COMP_BDW);
9384         }
9385 }
9386
9387 /*
9388  * This function implements pieces of two sequences from BSpec:
9389  * - Sequence for display software to disable LCPLL
9390  * - Sequence for display software to allow package C8+
9391  * The steps implemented here are just the steps that actually touch the LCPLL
9392  * register. Callers should take care of disabling all the display engine
9393  * functions, doing the mode unset, fixing interrupts, etc.
9394  */
9395 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9396                               bool switch_to_fclk, bool allow_power_down)
9397 {
9398         uint32_t val;
9399
9400         assert_can_disable_lcpll(dev_priv);
9401
9402         val = I915_READ(LCPLL_CTL);
9403
9404         if (switch_to_fclk) {
9405                 val |= LCPLL_CD_SOURCE_FCLK;
9406                 I915_WRITE(LCPLL_CTL, val);
9407
9408                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9409                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9410                         DRM_ERROR("Switching to FCLK failed\n");
9411
9412                 val = I915_READ(LCPLL_CTL);
9413         }
9414
9415         val |= LCPLL_PLL_DISABLE;
9416         I915_WRITE(LCPLL_CTL, val);
9417         POSTING_READ(LCPLL_CTL);
9418
9419         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9420                 DRM_ERROR("LCPLL still locked\n");
9421
9422         val = hsw_read_dcomp(dev_priv);
9423         val |= D_COMP_COMP_DISABLE;
9424         hsw_write_dcomp(dev_priv, val);
9425         ndelay(100);
9426
9427         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9428                      1))
9429                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9430
9431         if (allow_power_down) {
9432                 val = I915_READ(LCPLL_CTL);
9433                 val |= LCPLL_POWER_DOWN_ALLOW;
9434                 I915_WRITE(LCPLL_CTL, val);
9435                 POSTING_READ(LCPLL_CTL);
9436         }
9437 }
9438
9439 /*
9440  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9441  * source.
9442  */
9443 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9444 {
9445         uint32_t val;
9446
9447         val = I915_READ(LCPLL_CTL);
9448
9449         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9450                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9451                 return;
9452
9453         /*
9454          * Make sure we're not on PC8 state before disabling PC8, otherwise
9455          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9456          */
9457         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9458
9459         if (val & LCPLL_POWER_DOWN_ALLOW) {
9460                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9461                 I915_WRITE(LCPLL_CTL, val);
9462                 POSTING_READ(LCPLL_CTL);
9463         }
9464
9465         val = hsw_read_dcomp(dev_priv);
9466         val |= D_COMP_COMP_FORCE;
9467         val &= ~D_COMP_COMP_DISABLE;
9468         hsw_write_dcomp(dev_priv, val);
9469
9470         val = I915_READ(LCPLL_CTL);
9471         val &= ~LCPLL_PLL_DISABLE;
9472         I915_WRITE(LCPLL_CTL, val);
9473
9474         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9475                 DRM_ERROR("LCPLL not locked yet\n");
9476
9477         if (val & LCPLL_CD_SOURCE_FCLK) {
9478                 val = I915_READ(LCPLL_CTL);
9479                 val &= ~LCPLL_CD_SOURCE_FCLK;
9480                 I915_WRITE(LCPLL_CTL, val);
9481
9482                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9483                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9484                         DRM_ERROR("Switching back to LCPLL failed\n");
9485         }
9486
9487         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9488         intel_update_cdclk(dev_priv->dev);
9489 }
9490
9491 /*
9492  * Package states C8 and deeper are really deep PC states that can only be
9493  * reached when all the devices on the system allow it, so even if the graphics
9494  * device allows PC8+, it doesn't mean the system will actually get to these
9495  * states. Our driver only allows PC8+ when going into runtime PM.
9496  *
9497  * The requirements for PC8+ are that all the outputs are disabled, the power
9498  * well is disabled and most interrupts are disabled, and these are also
9499  * requirements for runtime PM. When these conditions are met, we manually do
9500  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9501  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9502  * hang the machine.
9503  *
9504  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9505  * the state of some registers, so when we come back from PC8+ we need to
9506  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9507  * need to take care of the registers kept by RC6. Notice that this happens even
9508  * if we don't put the device in PCI D3 state (which is what currently happens
9509  * because of the runtime PM support).
9510  *
9511  * For more, read "Display Sequences for Package C8" on the hardware
9512  * documentation.
9513  */
9514 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9515 {
9516         struct drm_device *dev = dev_priv->dev;
9517         uint32_t val;
9518
9519         DRM_DEBUG_KMS("Enabling package C8+\n");
9520
9521         if (HAS_PCH_LPT_LP(dev)) {
9522                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9523                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9524                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9525         }
9526
9527         lpt_disable_clkout_dp(dev);
9528         hsw_disable_lcpll(dev_priv, true, true);
9529 }
9530
9531 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9532 {
9533         struct drm_device *dev = dev_priv->dev;
9534         uint32_t val;
9535
9536         DRM_DEBUG_KMS("Disabling package C8+\n");
9537
9538         hsw_restore_lcpll(dev_priv);
9539         lpt_init_pch_refclk(dev);
9540
9541         if (HAS_PCH_LPT_LP(dev)) {
9542                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9543                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9544                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9545         }
9546
9547         intel_prepare_ddi(dev);
9548 }
9549
9550 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9551 {
9552         struct drm_device *dev = old_state->dev;
9553         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9554
9555         broxton_set_cdclk(dev, req_cdclk);
9556 }
9557
9558 /* compute the max rate for new configuration */
9559 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9560 {
9561         struct intel_crtc *intel_crtc;
9562         struct intel_crtc_state *crtc_state;
9563         int max_pixel_rate = 0;
9564
9565         for_each_intel_crtc(state->dev, intel_crtc) {
9566                 int pixel_rate;
9567
9568                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9569                 if (IS_ERR(crtc_state))
9570                         return PTR_ERR(crtc_state);
9571
9572                 if (!crtc_state->base.enable)
9573                         continue;
9574
9575                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9576
9577                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9578                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9579                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9580
9581                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9582         }
9583
9584         return max_pixel_rate;
9585 }
9586
9587 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9588 {
9589         struct drm_i915_private *dev_priv = dev->dev_private;
9590         uint32_t val, data;
9591         int ret;
9592
9593         if (WARN((I915_READ(LCPLL_CTL) &
9594                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9595                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9596                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9597                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9598                  "trying to change cdclk frequency with cdclk not enabled\n"))
9599                 return;
9600
9601         mutex_lock(&dev_priv->rps.hw_lock);
9602         ret = sandybridge_pcode_write(dev_priv,
9603                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9604         mutex_unlock(&dev_priv->rps.hw_lock);
9605         if (ret) {
9606                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9607                 return;
9608         }
9609
9610         val = I915_READ(LCPLL_CTL);
9611         val |= LCPLL_CD_SOURCE_FCLK;
9612         I915_WRITE(LCPLL_CTL, val);
9613
9614         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9615                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9616                 DRM_ERROR("Switching to FCLK failed\n");
9617
9618         val = I915_READ(LCPLL_CTL);
9619         val &= ~LCPLL_CLK_FREQ_MASK;
9620
9621         switch (cdclk) {
9622         case 450000:
9623                 val |= LCPLL_CLK_FREQ_450;
9624                 data = 0;
9625                 break;
9626         case 540000:
9627                 val |= LCPLL_CLK_FREQ_54O_BDW;
9628                 data = 1;
9629                 break;
9630         case 337500:
9631                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9632                 data = 2;
9633                 break;
9634         case 675000:
9635                 val |= LCPLL_CLK_FREQ_675_BDW;
9636                 data = 3;
9637                 break;
9638         default:
9639                 WARN(1, "invalid cdclk frequency\n");
9640                 return;
9641         }
9642
9643         I915_WRITE(LCPLL_CTL, val);
9644
9645         val = I915_READ(LCPLL_CTL);
9646         val &= ~LCPLL_CD_SOURCE_FCLK;
9647         I915_WRITE(LCPLL_CTL, val);
9648
9649         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9650                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9651                 DRM_ERROR("Switching back to LCPLL failed\n");
9652
9653         mutex_lock(&dev_priv->rps.hw_lock);
9654         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9655         mutex_unlock(&dev_priv->rps.hw_lock);
9656
9657         intel_update_cdclk(dev);
9658
9659         WARN(cdclk != dev_priv->cdclk_freq,
9660              "cdclk requested %d kHz but got %d kHz\n",
9661              cdclk, dev_priv->cdclk_freq);
9662 }
9663
9664 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9665 {
9666         struct drm_i915_private *dev_priv = to_i915(state->dev);
9667         int max_pixclk = ilk_max_pixel_rate(state);
9668         int cdclk;
9669
9670         /*
9671          * FIXME should also account for plane ratio
9672          * once 64bpp pixel formats are supported.
9673          */
9674         if (max_pixclk > 540000)
9675                 cdclk = 675000;
9676         else if (max_pixclk > 450000)
9677                 cdclk = 540000;
9678         else if (max_pixclk > 337500)
9679                 cdclk = 450000;
9680         else
9681                 cdclk = 337500;
9682
9683         /*
9684          * FIXME move the cdclk caclulation to
9685          * compute_config() so we can fail gracegully.
9686          */
9687         if (cdclk > dev_priv->max_cdclk_freq) {
9688                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9689                           cdclk, dev_priv->max_cdclk_freq);
9690                 cdclk = dev_priv->max_cdclk_freq;
9691         }
9692
9693         to_intel_atomic_state(state)->cdclk = cdclk;
9694
9695         return 0;
9696 }
9697
9698 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9699 {
9700         struct drm_device *dev = old_state->dev;
9701         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9702
9703         broadwell_set_cdclk(dev, req_cdclk);
9704 }
9705
9706 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9707                                       struct intel_crtc_state *crtc_state)
9708 {
9709         if (!intel_ddi_pll_select(crtc, crtc_state))
9710                 return -EINVAL;
9711
9712         crtc->lowfreq_avail = false;
9713
9714         return 0;
9715 }
9716
9717 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9718                                 enum port port,
9719                                 struct intel_crtc_state *pipe_config)
9720 {
9721         switch (port) {
9722         case PORT_A:
9723                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9724                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9725                 break;
9726         case PORT_B:
9727                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9728                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9729                 break;
9730         case PORT_C:
9731                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9732                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9733                 break;
9734         default:
9735                 DRM_ERROR("Incorrect port type\n");
9736         }
9737 }
9738
9739 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9740                                 enum port port,
9741                                 struct intel_crtc_state *pipe_config)
9742 {
9743         u32 temp, dpll_ctl1;
9744
9745         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9746         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9747
9748         switch (pipe_config->ddi_pll_sel) {
9749         case SKL_DPLL0:
9750                 /*
9751                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9752                  * of the shared DPLL framework and thus needs to be read out
9753                  * separately
9754                  */
9755                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9756                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9757                 break;
9758         case SKL_DPLL1:
9759                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9760                 break;
9761         case SKL_DPLL2:
9762                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9763                 break;
9764         case SKL_DPLL3:
9765                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9766                 break;
9767         }
9768 }
9769
9770 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9771                                 enum port port,
9772                                 struct intel_crtc_state *pipe_config)
9773 {
9774         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9775
9776         switch (pipe_config->ddi_pll_sel) {
9777         case PORT_CLK_SEL_WRPLL1:
9778                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9779                 break;
9780         case PORT_CLK_SEL_WRPLL2:
9781                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9782                 break;
9783         case PORT_CLK_SEL_SPLL:
9784                 pipe_config->shared_dpll = DPLL_ID_SPLL;
9785         }
9786 }
9787
9788 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9789                                        struct intel_crtc_state *pipe_config)
9790 {
9791         struct drm_device *dev = crtc->base.dev;
9792         struct drm_i915_private *dev_priv = dev->dev_private;
9793         struct intel_shared_dpll *pll;
9794         enum port port;
9795         uint32_t tmp;
9796
9797         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9798
9799         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9800
9801         if (IS_SKYLAKE(dev))
9802                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9803         else if (IS_BROXTON(dev))
9804                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9805         else
9806                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9807
9808         if (pipe_config->shared_dpll >= 0) {
9809                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9810
9811                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9812                                            &pipe_config->dpll_hw_state));
9813         }
9814
9815         /*
9816          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9817          * DDI E. So just check whether this pipe is wired to DDI E and whether
9818          * the PCH transcoder is on.
9819          */
9820         if (INTEL_INFO(dev)->gen < 9 &&
9821             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9822                 pipe_config->has_pch_encoder = true;
9823
9824                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9825                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9826                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9827
9828                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9829         }
9830 }
9831
9832 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9833                                     struct intel_crtc_state *pipe_config)
9834 {
9835         struct drm_device *dev = crtc->base.dev;
9836         struct drm_i915_private *dev_priv = dev->dev_private;
9837         enum intel_display_power_domain pfit_domain;
9838         uint32_t tmp;
9839
9840         if (!intel_display_power_is_enabled(dev_priv,
9841                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9842                 return false;
9843
9844         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9845         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9846
9847         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9848         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9849                 enum pipe trans_edp_pipe;
9850                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9851                 default:
9852                         WARN(1, "unknown pipe linked to edp transcoder\n");
9853                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9854                 case TRANS_DDI_EDP_INPUT_A_ON:
9855                         trans_edp_pipe = PIPE_A;
9856                         break;
9857                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9858                         trans_edp_pipe = PIPE_B;
9859                         break;
9860                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9861                         trans_edp_pipe = PIPE_C;
9862                         break;
9863                 }
9864
9865                 if (trans_edp_pipe == crtc->pipe)
9866                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9867         }
9868
9869         if (!intel_display_power_is_enabled(dev_priv,
9870                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9871                 return false;
9872
9873         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9874         if (!(tmp & PIPECONF_ENABLE))
9875                 return false;
9876
9877         haswell_get_ddi_port_state(crtc, pipe_config);
9878
9879         intel_get_pipe_timings(crtc, pipe_config);
9880
9881         if (INTEL_INFO(dev)->gen >= 9) {
9882                 skl_init_scalers(dev, crtc, pipe_config);
9883         }
9884
9885         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9886
9887         if (INTEL_INFO(dev)->gen >= 9) {
9888                 pipe_config->scaler_state.scaler_id = -1;
9889                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9890         }
9891
9892         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9893                 if (INTEL_INFO(dev)->gen >= 9)
9894                         skylake_get_pfit_config(crtc, pipe_config);
9895                 else
9896                         ironlake_get_pfit_config(crtc, pipe_config);
9897         }
9898
9899         if (IS_HASWELL(dev))
9900                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9901                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9902
9903         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9904                 pipe_config->pixel_multiplier =
9905                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9906         } else {
9907                 pipe_config->pixel_multiplier = 1;
9908         }
9909
9910         return true;
9911 }
9912
9913 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9914 {
9915         struct drm_device *dev = crtc->dev;
9916         struct drm_i915_private *dev_priv = dev->dev_private;
9917         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9918         uint32_t cntl = 0, size = 0;
9919
9920         if (base) {
9921                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9922                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9923                 unsigned int stride = roundup_pow_of_two(width) * 4;
9924
9925                 switch (stride) {
9926                 default:
9927                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9928                                   width, stride);
9929                         stride = 256;
9930                         /* fallthrough */
9931                 case 256:
9932                 case 512:
9933                 case 1024:
9934                 case 2048:
9935                         break;
9936                 }
9937
9938                 cntl |= CURSOR_ENABLE |
9939                         CURSOR_GAMMA_ENABLE |
9940                         CURSOR_FORMAT_ARGB |
9941                         CURSOR_STRIDE(stride);
9942
9943                 size = (height << 12) | width;
9944         }
9945
9946         if (intel_crtc->cursor_cntl != 0 &&
9947             (intel_crtc->cursor_base != base ||
9948              intel_crtc->cursor_size != size ||
9949              intel_crtc->cursor_cntl != cntl)) {
9950                 /* On these chipsets we can only modify the base/size/stride
9951                  * whilst the cursor is disabled.
9952                  */
9953                 I915_WRITE(CURCNTR(PIPE_A), 0);
9954                 POSTING_READ(CURCNTR(PIPE_A));
9955                 intel_crtc->cursor_cntl = 0;
9956         }
9957
9958         if (intel_crtc->cursor_base != base) {
9959                 I915_WRITE(CURBASE(PIPE_A), base);
9960                 intel_crtc->cursor_base = base;
9961         }
9962
9963         if (intel_crtc->cursor_size != size) {
9964                 I915_WRITE(CURSIZE, size);
9965                 intel_crtc->cursor_size = size;
9966         }
9967
9968         if (intel_crtc->cursor_cntl != cntl) {
9969                 I915_WRITE(CURCNTR(PIPE_A), cntl);
9970                 POSTING_READ(CURCNTR(PIPE_A));
9971                 intel_crtc->cursor_cntl = cntl;
9972         }
9973 }
9974
9975 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9976 {
9977         struct drm_device *dev = crtc->dev;
9978         struct drm_i915_private *dev_priv = dev->dev_private;
9979         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9980         int pipe = intel_crtc->pipe;
9981         uint32_t cntl;
9982
9983         cntl = 0;
9984         if (base) {
9985                 cntl = MCURSOR_GAMMA_ENABLE;
9986                 switch (intel_crtc->base.cursor->state->crtc_w) {
9987                         case 64:
9988                                 cntl |= CURSOR_MODE_64_ARGB_AX;
9989                                 break;
9990                         case 128:
9991                                 cntl |= CURSOR_MODE_128_ARGB_AX;
9992                                 break;
9993                         case 256:
9994                                 cntl |= CURSOR_MODE_256_ARGB_AX;
9995                                 break;
9996                         default:
9997                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9998                                 return;
9999                 }
10000                 cntl |= pipe << 28; /* Connect to correct pipe */
10001
10002                 if (HAS_DDI(dev))
10003                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10004         }
10005
10006         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10007                 cntl |= CURSOR_ROTATE_180;
10008
10009         if (intel_crtc->cursor_cntl != cntl) {
10010                 I915_WRITE(CURCNTR(pipe), cntl);
10011                 POSTING_READ(CURCNTR(pipe));
10012                 intel_crtc->cursor_cntl = cntl;
10013         }
10014
10015         /* and commit changes on next vblank */
10016         I915_WRITE(CURBASE(pipe), base);
10017         POSTING_READ(CURBASE(pipe));
10018
10019         intel_crtc->cursor_base = base;
10020 }
10021
10022 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10023 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10024                                      bool on)
10025 {
10026         struct drm_device *dev = crtc->dev;
10027         struct drm_i915_private *dev_priv = dev->dev_private;
10028         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10029         int pipe = intel_crtc->pipe;
10030         struct drm_plane_state *cursor_state = crtc->cursor->state;
10031         int x = cursor_state->crtc_x;
10032         int y = cursor_state->crtc_y;
10033         u32 base = 0, pos = 0;
10034
10035         if (on)
10036                 base = intel_crtc->cursor_addr;
10037
10038         if (x >= intel_crtc->config->pipe_src_w)
10039                 base = 0;
10040
10041         if (y >= intel_crtc->config->pipe_src_h)
10042                 base = 0;
10043
10044         if (x < 0) {
10045                 if (x + cursor_state->crtc_w <= 0)
10046                         base = 0;
10047
10048                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10049                 x = -x;
10050         }
10051         pos |= x << CURSOR_X_SHIFT;
10052
10053         if (y < 0) {
10054                 if (y + cursor_state->crtc_h <= 0)
10055                         base = 0;
10056
10057                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10058                 y = -y;
10059         }
10060         pos |= y << CURSOR_Y_SHIFT;
10061
10062         if (base == 0 && intel_crtc->cursor_base == 0)
10063                 return;
10064
10065         I915_WRITE(CURPOS(pipe), pos);
10066
10067         /* ILK+ do this automagically */
10068         if (HAS_GMCH_DISPLAY(dev) &&
10069             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10070                 base += (cursor_state->crtc_h *
10071                          cursor_state->crtc_w - 1) * 4;
10072         }
10073
10074         if (IS_845G(dev) || IS_I865G(dev))
10075                 i845_update_cursor(crtc, base);
10076         else
10077                 i9xx_update_cursor(crtc, base);
10078 }
10079
10080 static bool cursor_size_ok(struct drm_device *dev,
10081                            uint32_t width, uint32_t height)
10082 {
10083         if (width == 0 || height == 0)
10084                 return false;
10085
10086         /*
10087          * 845g/865g are special in that they are only limited by
10088          * the width of their cursors, the height is arbitrary up to
10089          * the precision of the register. Everything else requires
10090          * square cursors, limited to a few power-of-two sizes.
10091          */
10092         if (IS_845G(dev) || IS_I865G(dev)) {
10093                 if ((width & 63) != 0)
10094                         return false;
10095
10096                 if (width > (IS_845G(dev) ? 64 : 512))
10097                         return false;
10098
10099                 if (height > 1023)
10100                         return false;
10101         } else {
10102                 switch (width | height) {
10103                 case 256:
10104                 case 128:
10105                         if (IS_GEN2(dev))
10106                                 return false;
10107                 case 64:
10108                         break;
10109                 default:
10110                         return false;
10111                 }
10112         }
10113
10114         return true;
10115 }
10116
10117 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10118                                  u16 *blue, uint32_t start, uint32_t size)
10119 {
10120         int end = (start + size > 256) ? 256 : start + size, i;
10121         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10122
10123         for (i = start; i < end; i++) {
10124                 intel_crtc->lut_r[i] = red[i] >> 8;
10125                 intel_crtc->lut_g[i] = green[i] >> 8;
10126                 intel_crtc->lut_b[i] = blue[i] >> 8;
10127         }
10128
10129         intel_crtc_load_lut(crtc);
10130 }
10131
10132 /* VESA 640x480x72Hz mode to set on the pipe */
10133 static struct drm_display_mode load_detect_mode = {
10134         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10135                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10136 };
10137
10138 struct drm_framebuffer *
10139 __intel_framebuffer_create(struct drm_device *dev,
10140                            struct drm_mode_fb_cmd2 *mode_cmd,
10141                            struct drm_i915_gem_object *obj)
10142 {
10143         struct intel_framebuffer *intel_fb;
10144         int ret;
10145
10146         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10147         if (!intel_fb) {
10148                 drm_gem_object_unreference(&obj->base);
10149                 return ERR_PTR(-ENOMEM);
10150         }
10151
10152         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10153         if (ret)
10154                 goto err;
10155
10156         return &intel_fb->base;
10157 err:
10158         drm_gem_object_unreference(&obj->base);
10159         kfree(intel_fb);
10160
10161         return ERR_PTR(ret);
10162 }
10163
10164 static struct drm_framebuffer *
10165 intel_framebuffer_create(struct drm_device *dev,
10166                          struct drm_mode_fb_cmd2 *mode_cmd,
10167                          struct drm_i915_gem_object *obj)
10168 {
10169         struct drm_framebuffer *fb;
10170         int ret;
10171
10172         ret = i915_mutex_lock_interruptible(dev);
10173         if (ret)
10174                 return ERR_PTR(ret);
10175         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10176         mutex_unlock(&dev->struct_mutex);
10177
10178         return fb;
10179 }
10180
10181 static u32
10182 intel_framebuffer_pitch_for_width(int width, int bpp)
10183 {
10184         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10185         return ALIGN(pitch, 64);
10186 }
10187
10188 static u32
10189 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10190 {
10191         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10192         return PAGE_ALIGN(pitch * mode->vdisplay);
10193 }
10194
10195 static struct drm_framebuffer *
10196 intel_framebuffer_create_for_mode(struct drm_device *dev,
10197                                   struct drm_display_mode *mode,
10198                                   int depth, int bpp)
10199 {
10200         struct drm_i915_gem_object *obj;
10201         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10202
10203         obj = i915_gem_alloc_object(dev,
10204                                     intel_framebuffer_size_for_mode(mode, bpp));
10205         if (obj == NULL)
10206                 return ERR_PTR(-ENOMEM);
10207
10208         mode_cmd.width = mode->hdisplay;
10209         mode_cmd.height = mode->vdisplay;
10210         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10211                                                                 bpp);
10212         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10213
10214         return intel_framebuffer_create(dev, &mode_cmd, obj);
10215 }
10216
10217 static struct drm_framebuffer *
10218 mode_fits_in_fbdev(struct drm_device *dev,
10219                    struct drm_display_mode *mode)
10220 {
10221 #ifdef CONFIG_DRM_FBDEV_EMULATION
10222         struct drm_i915_private *dev_priv = dev->dev_private;
10223         struct drm_i915_gem_object *obj;
10224         struct drm_framebuffer *fb;
10225
10226         if (!dev_priv->fbdev)
10227                 return NULL;
10228
10229         if (!dev_priv->fbdev->fb)
10230                 return NULL;
10231
10232         obj = dev_priv->fbdev->fb->obj;
10233         BUG_ON(!obj);
10234
10235         fb = &dev_priv->fbdev->fb->base;
10236         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10237                                                                fb->bits_per_pixel))
10238                 return NULL;
10239
10240         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10241                 return NULL;
10242
10243         return fb;
10244 #else
10245         return NULL;
10246 #endif
10247 }
10248
10249 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10250                                            struct drm_crtc *crtc,
10251                                            struct drm_display_mode *mode,
10252                                            struct drm_framebuffer *fb,
10253                                            int x, int y)
10254 {
10255         struct drm_plane_state *plane_state;
10256         int hdisplay, vdisplay;
10257         int ret;
10258
10259         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10260         if (IS_ERR(plane_state))
10261                 return PTR_ERR(plane_state);
10262
10263         if (mode)
10264                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10265         else
10266                 hdisplay = vdisplay = 0;
10267
10268         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10269         if (ret)
10270                 return ret;
10271         drm_atomic_set_fb_for_plane(plane_state, fb);
10272         plane_state->crtc_x = 0;
10273         plane_state->crtc_y = 0;
10274         plane_state->crtc_w = hdisplay;
10275         plane_state->crtc_h = vdisplay;
10276         plane_state->src_x = x << 16;
10277         plane_state->src_y = y << 16;
10278         plane_state->src_w = hdisplay << 16;
10279         plane_state->src_h = vdisplay << 16;
10280
10281         return 0;
10282 }
10283
10284 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10285                                 struct drm_display_mode *mode,
10286                                 struct intel_load_detect_pipe *old,
10287                                 struct drm_modeset_acquire_ctx *ctx)
10288 {
10289         struct intel_crtc *intel_crtc;
10290         struct intel_encoder *intel_encoder =
10291                 intel_attached_encoder(connector);
10292         struct drm_crtc *possible_crtc;
10293         struct drm_encoder *encoder = &intel_encoder->base;
10294         struct drm_crtc *crtc = NULL;
10295         struct drm_device *dev = encoder->dev;
10296         struct drm_framebuffer *fb;
10297         struct drm_mode_config *config = &dev->mode_config;
10298         struct drm_atomic_state *state = NULL;
10299         struct drm_connector_state *connector_state;
10300         struct intel_crtc_state *crtc_state;
10301         int ret, i = -1;
10302
10303         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10304                       connector->base.id, connector->name,
10305                       encoder->base.id, encoder->name);
10306
10307 retry:
10308         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10309         if (ret)
10310                 goto fail;
10311
10312         /*
10313          * Algorithm gets a little messy:
10314          *
10315          *   - if the connector already has an assigned crtc, use it (but make
10316          *     sure it's on first)
10317          *
10318          *   - try to find the first unused crtc that can drive this connector,
10319          *     and use that if we find one
10320          */
10321
10322         /* See if we already have a CRTC for this connector */
10323         if (encoder->crtc) {
10324                 crtc = encoder->crtc;
10325
10326                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10327                 if (ret)
10328                         goto fail;
10329                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10330                 if (ret)
10331                         goto fail;
10332
10333                 old->dpms_mode = connector->dpms;
10334                 old->load_detect_temp = false;
10335
10336                 /* Make sure the crtc and connector are running */
10337                 if (connector->dpms != DRM_MODE_DPMS_ON)
10338                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10339
10340                 return true;
10341         }
10342
10343         /* Find an unused one (if possible) */
10344         for_each_crtc(dev, possible_crtc) {
10345                 i++;
10346                 if (!(encoder->possible_crtcs & (1 << i)))
10347                         continue;
10348                 if (possible_crtc->state->enable)
10349                         continue;
10350
10351                 crtc = possible_crtc;
10352                 break;
10353         }
10354
10355         /*
10356          * If we didn't find an unused CRTC, don't use any.
10357          */
10358         if (!crtc) {
10359                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10360                 goto fail;
10361         }
10362
10363         ret = drm_modeset_lock(&crtc->mutex, ctx);
10364         if (ret)
10365                 goto fail;
10366         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10367         if (ret)
10368                 goto fail;
10369
10370         intel_crtc = to_intel_crtc(crtc);
10371         old->dpms_mode = connector->dpms;
10372         old->load_detect_temp = true;
10373         old->release_fb = NULL;
10374
10375         state = drm_atomic_state_alloc(dev);
10376         if (!state)
10377                 return false;
10378
10379         state->acquire_ctx = ctx;
10380
10381         connector_state = drm_atomic_get_connector_state(state, connector);
10382         if (IS_ERR(connector_state)) {
10383                 ret = PTR_ERR(connector_state);
10384                 goto fail;
10385         }
10386
10387         connector_state->crtc = crtc;
10388         connector_state->best_encoder = &intel_encoder->base;
10389
10390         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10391         if (IS_ERR(crtc_state)) {
10392                 ret = PTR_ERR(crtc_state);
10393                 goto fail;
10394         }
10395
10396         crtc_state->base.active = crtc_state->base.enable = true;
10397
10398         if (!mode)
10399                 mode = &load_detect_mode;
10400
10401         /* We need a framebuffer large enough to accommodate all accesses
10402          * that the plane may generate whilst we perform load detection.
10403          * We can not rely on the fbcon either being present (we get called
10404          * during its initialisation to detect all boot displays, or it may
10405          * not even exist) or that it is large enough to satisfy the
10406          * requested mode.
10407          */
10408         fb = mode_fits_in_fbdev(dev, mode);
10409         if (fb == NULL) {
10410                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10411                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10412                 old->release_fb = fb;
10413         } else
10414                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10415         if (IS_ERR(fb)) {
10416                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10417                 goto fail;
10418         }
10419
10420         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10421         if (ret)
10422                 goto fail;
10423
10424         drm_mode_copy(&crtc_state->base.mode, mode);
10425
10426         if (drm_atomic_commit(state)) {
10427                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10428                 if (old->release_fb)
10429                         old->release_fb->funcs->destroy(old->release_fb);
10430                 goto fail;
10431         }
10432         crtc->primary->crtc = crtc;
10433
10434         /* let the connector get through one full cycle before testing */
10435         intel_wait_for_vblank(dev, intel_crtc->pipe);
10436         return true;
10437
10438 fail:
10439         drm_atomic_state_free(state);
10440         state = NULL;
10441
10442         if (ret == -EDEADLK) {
10443                 drm_modeset_backoff(ctx);
10444                 goto retry;
10445         }
10446
10447         return false;
10448 }
10449
10450 void intel_release_load_detect_pipe(struct drm_connector *connector,
10451                                     struct intel_load_detect_pipe *old,
10452                                     struct drm_modeset_acquire_ctx *ctx)
10453 {
10454         struct drm_device *dev = connector->dev;
10455         struct intel_encoder *intel_encoder =
10456                 intel_attached_encoder(connector);
10457         struct drm_encoder *encoder = &intel_encoder->base;
10458         struct drm_crtc *crtc = encoder->crtc;
10459         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10460         struct drm_atomic_state *state;
10461         struct drm_connector_state *connector_state;
10462         struct intel_crtc_state *crtc_state;
10463         int ret;
10464
10465         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10466                       connector->base.id, connector->name,
10467                       encoder->base.id, encoder->name);
10468
10469         if (old->load_detect_temp) {
10470                 state = drm_atomic_state_alloc(dev);
10471                 if (!state)
10472                         goto fail;
10473
10474                 state->acquire_ctx = ctx;
10475
10476                 connector_state = drm_atomic_get_connector_state(state, connector);
10477                 if (IS_ERR(connector_state))
10478                         goto fail;
10479
10480                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10481                 if (IS_ERR(crtc_state))
10482                         goto fail;
10483
10484                 connector_state->best_encoder = NULL;
10485                 connector_state->crtc = NULL;
10486
10487                 crtc_state->base.enable = crtc_state->base.active = false;
10488
10489                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10490                                                       0, 0);
10491                 if (ret)
10492                         goto fail;
10493
10494                 ret = drm_atomic_commit(state);
10495                 if (ret)
10496                         goto fail;
10497
10498                 if (old->release_fb) {
10499                         drm_framebuffer_unregister_private(old->release_fb);
10500                         drm_framebuffer_unreference(old->release_fb);
10501                 }
10502
10503                 return;
10504         }
10505
10506         /* Switch crtc and encoder back off if necessary */
10507         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10508                 connector->funcs->dpms(connector, old->dpms_mode);
10509
10510         return;
10511 fail:
10512         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10513         drm_atomic_state_free(state);
10514 }
10515
10516 static int i9xx_pll_refclk(struct drm_device *dev,
10517                            const struct intel_crtc_state *pipe_config)
10518 {
10519         struct drm_i915_private *dev_priv = dev->dev_private;
10520         u32 dpll = pipe_config->dpll_hw_state.dpll;
10521
10522         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10523                 return dev_priv->vbt.lvds_ssc_freq;
10524         else if (HAS_PCH_SPLIT(dev))
10525                 return 120000;
10526         else if (!IS_GEN2(dev))
10527                 return 96000;
10528         else
10529                 return 48000;
10530 }
10531
10532 /* Returns the clock of the currently programmed mode of the given pipe. */
10533 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10534                                 struct intel_crtc_state *pipe_config)
10535 {
10536         struct drm_device *dev = crtc->base.dev;
10537         struct drm_i915_private *dev_priv = dev->dev_private;
10538         int pipe = pipe_config->cpu_transcoder;
10539         u32 dpll = pipe_config->dpll_hw_state.dpll;
10540         u32 fp;
10541         intel_clock_t clock;
10542         int port_clock;
10543         int refclk = i9xx_pll_refclk(dev, pipe_config);
10544
10545         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10546                 fp = pipe_config->dpll_hw_state.fp0;
10547         else
10548                 fp = pipe_config->dpll_hw_state.fp1;
10549
10550         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10551         if (IS_PINEVIEW(dev)) {
10552                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10553                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10554         } else {
10555                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10556                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10557         }
10558
10559         if (!IS_GEN2(dev)) {
10560                 if (IS_PINEVIEW(dev))
10561                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10562                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10563                 else
10564                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10565                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10566
10567                 switch (dpll & DPLL_MODE_MASK) {
10568                 case DPLLB_MODE_DAC_SERIAL:
10569                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10570                                 5 : 10;
10571                         break;
10572                 case DPLLB_MODE_LVDS:
10573                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10574                                 7 : 14;
10575                         break;
10576                 default:
10577                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10578                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10579                         return;
10580                 }
10581
10582                 if (IS_PINEVIEW(dev))
10583                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10584                 else
10585                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10586         } else {
10587                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10588                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10589
10590                 if (is_lvds) {
10591                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10592                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10593
10594                         if (lvds & LVDS_CLKB_POWER_UP)
10595                                 clock.p2 = 7;
10596                         else
10597                                 clock.p2 = 14;
10598                 } else {
10599                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10600                                 clock.p1 = 2;
10601                         else {
10602                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10603                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10604                         }
10605                         if (dpll & PLL_P2_DIVIDE_BY_4)
10606                                 clock.p2 = 4;
10607                         else
10608                                 clock.p2 = 2;
10609                 }
10610
10611                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10612         }
10613
10614         /*
10615          * This value includes pixel_multiplier. We will use
10616          * port_clock to compute adjusted_mode.crtc_clock in the
10617          * encoder's get_config() function.
10618          */
10619         pipe_config->port_clock = port_clock;
10620 }
10621
10622 int intel_dotclock_calculate(int link_freq,
10623                              const struct intel_link_m_n *m_n)
10624 {
10625         /*
10626          * The calculation for the data clock is:
10627          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10628          * But we want to avoid losing precison if possible, so:
10629          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10630          *
10631          * and the link clock is simpler:
10632          * link_clock = (m * link_clock) / n
10633          */
10634
10635         if (!m_n->link_n)
10636                 return 0;
10637
10638         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10639 }
10640
10641 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10642                                    struct intel_crtc_state *pipe_config)
10643 {
10644         struct drm_device *dev = crtc->base.dev;
10645
10646         /* read out port_clock from the DPLL */
10647         i9xx_crtc_clock_get(crtc, pipe_config);
10648
10649         /*
10650          * This value does not include pixel_multiplier.
10651          * We will check that port_clock and adjusted_mode.crtc_clock
10652          * agree once we know their relationship in the encoder's
10653          * get_config() function.
10654          */
10655         pipe_config->base.adjusted_mode.crtc_clock =
10656                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10657                                          &pipe_config->fdi_m_n);
10658 }
10659
10660 /** Returns the currently programmed mode of the given pipe. */
10661 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10662                                              struct drm_crtc *crtc)
10663 {
10664         struct drm_i915_private *dev_priv = dev->dev_private;
10665         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10666         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10667         struct drm_display_mode *mode;
10668         struct intel_crtc_state pipe_config;
10669         int htot = I915_READ(HTOTAL(cpu_transcoder));
10670         int hsync = I915_READ(HSYNC(cpu_transcoder));
10671         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10672         int vsync = I915_READ(VSYNC(cpu_transcoder));
10673         enum pipe pipe = intel_crtc->pipe;
10674
10675         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10676         if (!mode)
10677                 return NULL;
10678
10679         /*
10680          * Construct a pipe_config sufficient for getting the clock info
10681          * back out of crtc_clock_get.
10682          *
10683          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10684          * to use a real value here instead.
10685          */
10686         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10687         pipe_config.pixel_multiplier = 1;
10688         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10689         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10690         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10691         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10692
10693         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10694         mode->hdisplay = (htot & 0xffff) + 1;
10695         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10696         mode->hsync_start = (hsync & 0xffff) + 1;
10697         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10698         mode->vdisplay = (vtot & 0xffff) + 1;
10699         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10700         mode->vsync_start = (vsync & 0xffff) + 1;
10701         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10702
10703         drm_mode_set_name(mode);
10704
10705         return mode;
10706 }
10707
10708 void intel_mark_busy(struct drm_device *dev)
10709 {
10710         struct drm_i915_private *dev_priv = dev->dev_private;
10711
10712         if (dev_priv->mm.busy)
10713                 return;
10714
10715         intel_runtime_pm_get(dev_priv);
10716         i915_update_gfx_val(dev_priv);
10717         if (INTEL_INFO(dev)->gen >= 6)
10718                 gen6_rps_busy(dev_priv);
10719         dev_priv->mm.busy = true;
10720 }
10721
10722 void intel_mark_idle(struct drm_device *dev)
10723 {
10724         struct drm_i915_private *dev_priv = dev->dev_private;
10725
10726         if (!dev_priv->mm.busy)
10727                 return;
10728
10729         dev_priv->mm.busy = false;
10730
10731         if (INTEL_INFO(dev)->gen >= 6)
10732                 gen6_rps_idle(dev->dev_private);
10733
10734         intel_runtime_pm_put(dev_priv);
10735 }
10736
10737 static void intel_crtc_destroy(struct drm_crtc *crtc)
10738 {
10739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10740         struct drm_device *dev = crtc->dev;
10741         struct intel_unpin_work *work;
10742
10743         spin_lock_irq(&dev->event_lock);
10744         work = intel_crtc->unpin_work;
10745         intel_crtc->unpin_work = NULL;
10746         spin_unlock_irq(&dev->event_lock);
10747
10748         if (work) {
10749                 cancel_work_sync(&work->work);
10750                 kfree(work);
10751         }
10752
10753         drm_crtc_cleanup(crtc);
10754
10755         kfree(intel_crtc);
10756 }
10757
10758 static void intel_unpin_work_fn(struct work_struct *__work)
10759 {
10760         struct intel_unpin_work *work =
10761                 container_of(__work, struct intel_unpin_work, work);
10762         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10763         struct drm_device *dev = crtc->base.dev;
10764         struct drm_plane *primary = crtc->base.primary;
10765
10766         mutex_lock(&dev->struct_mutex);
10767         intel_unpin_fb_obj(work->old_fb, primary->state);
10768         drm_gem_object_unreference(&work->pending_flip_obj->base);
10769
10770         if (work->flip_queued_req)
10771                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10772         mutex_unlock(&dev->struct_mutex);
10773
10774         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10775         drm_framebuffer_unreference(work->old_fb);
10776
10777         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10778         atomic_dec(&crtc->unpin_work_count);
10779
10780         kfree(work);
10781 }
10782
10783 static void do_intel_finish_page_flip(struct drm_device *dev,
10784                                       struct drm_crtc *crtc)
10785 {
10786         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10787         struct intel_unpin_work *work;
10788         unsigned long flags;
10789
10790         /* Ignore early vblank irqs */
10791         if (intel_crtc == NULL)
10792                 return;
10793
10794         /*
10795          * This is called both by irq handlers and the reset code (to complete
10796          * lost pageflips) so needs the full irqsave spinlocks.
10797          */
10798         spin_lock_irqsave(&dev->event_lock, flags);
10799         work = intel_crtc->unpin_work;
10800
10801         /* Ensure we don't miss a work->pending update ... */
10802         smp_rmb();
10803
10804         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10805                 spin_unlock_irqrestore(&dev->event_lock, flags);
10806                 return;
10807         }
10808
10809         page_flip_completed(intel_crtc);
10810
10811         spin_unlock_irqrestore(&dev->event_lock, flags);
10812 }
10813
10814 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10815 {
10816         struct drm_i915_private *dev_priv = dev->dev_private;
10817         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10818
10819         do_intel_finish_page_flip(dev, crtc);
10820 }
10821
10822 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10823 {
10824         struct drm_i915_private *dev_priv = dev->dev_private;
10825         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10826
10827         do_intel_finish_page_flip(dev, crtc);
10828 }
10829
10830 /* Is 'a' after or equal to 'b'? */
10831 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10832 {
10833         return !((a - b) & 0x80000000);
10834 }
10835
10836 static bool page_flip_finished(struct intel_crtc *crtc)
10837 {
10838         struct drm_device *dev = crtc->base.dev;
10839         struct drm_i915_private *dev_priv = dev->dev_private;
10840
10841         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10842             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10843                 return true;
10844
10845         /*
10846          * The relevant registers doen't exist on pre-ctg.
10847          * As the flip done interrupt doesn't trigger for mmio
10848          * flips on gmch platforms, a flip count check isn't
10849          * really needed there. But since ctg has the registers,
10850          * include it in the check anyway.
10851          */
10852         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10853                 return true;
10854
10855         /*
10856          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10857          * used the same base address. In that case the mmio flip might
10858          * have completed, but the CS hasn't even executed the flip yet.
10859          *
10860          * A flip count check isn't enough as the CS might have updated
10861          * the base address just after start of vblank, but before we
10862          * managed to process the interrupt. This means we'd complete the
10863          * CS flip too soon.
10864          *
10865          * Combining both checks should get us a good enough result. It may
10866          * still happen that the CS flip has been executed, but has not
10867          * yet actually completed. But in case the base address is the same
10868          * anyway, we don't really care.
10869          */
10870         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10871                 crtc->unpin_work->gtt_offset &&
10872                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10873                                     crtc->unpin_work->flip_count);
10874 }
10875
10876 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10877 {
10878         struct drm_i915_private *dev_priv = dev->dev_private;
10879         struct intel_crtc *intel_crtc =
10880                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10881         unsigned long flags;
10882
10883
10884         /*
10885          * This is called both by irq handlers and the reset code (to complete
10886          * lost pageflips) so needs the full irqsave spinlocks.
10887          *
10888          * NB: An MMIO update of the plane base pointer will also
10889          * generate a page-flip completion irq, i.e. every modeset
10890          * is also accompanied by a spurious intel_prepare_page_flip().
10891          */
10892         spin_lock_irqsave(&dev->event_lock, flags);
10893         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10894                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10895         spin_unlock_irqrestore(&dev->event_lock, flags);
10896 }
10897
10898 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10899 {
10900         /* Ensure that the work item is consistent when activating it ... */
10901         smp_wmb();
10902         atomic_set(&work->pending, INTEL_FLIP_PENDING);
10903         /* and that it is marked active as soon as the irq could fire. */
10904         smp_wmb();
10905 }
10906
10907 static int intel_gen2_queue_flip(struct drm_device *dev,
10908                                  struct drm_crtc *crtc,
10909                                  struct drm_framebuffer *fb,
10910                                  struct drm_i915_gem_object *obj,
10911                                  struct drm_i915_gem_request *req,
10912                                  uint32_t flags)
10913 {
10914         struct intel_engine_cs *ring = req->ring;
10915         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10916         u32 flip_mask;
10917         int ret;
10918
10919         ret = intel_ring_begin(req, 6);
10920         if (ret)
10921                 return ret;
10922
10923         /* Can't queue multiple flips, so wait for the previous
10924          * one to finish before executing the next.
10925          */
10926         if (intel_crtc->plane)
10927                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10928         else
10929                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10930         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10931         intel_ring_emit(ring, MI_NOOP);
10932         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10933                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10934         intel_ring_emit(ring, fb->pitches[0]);
10935         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10936         intel_ring_emit(ring, 0); /* aux display base address, unused */
10937
10938         intel_mark_page_flip_active(intel_crtc->unpin_work);
10939         return 0;
10940 }
10941
10942 static int intel_gen3_queue_flip(struct drm_device *dev,
10943                                  struct drm_crtc *crtc,
10944                                  struct drm_framebuffer *fb,
10945                                  struct drm_i915_gem_object *obj,
10946                                  struct drm_i915_gem_request *req,
10947                                  uint32_t flags)
10948 {
10949         struct intel_engine_cs *ring = req->ring;
10950         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10951         u32 flip_mask;
10952         int ret;
10953
10954         ret = intel_ring_begin(req, 6);
10955         if (ret)
10956                 return ret;
10957
10958         if (intel_crtc->plane)
10959                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10960         else
10961                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10962         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10963         intel_ring_emit(ring, MI_NOOP);
10964         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10965                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10966         intel_ring_emit(ring, fb->pitches[0]);
10967         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10968         intel_ring_emit(ring, MI_NOOP);
10969
10970         intel_mark_page_flip_active(intel_crtc->unpin_work);
10971         return 0;
10972 }
10973
10974 static int intel_gen4_queue_flip(struct drm_device *dev,
10975                                  struct drm_crtc *crtc,
10976                                  struct drm_framebuffer *fb,
10977                                  struct drm_i915_gem_object *obj,
10978                                  struct drm_i915_gem_request *req,
10979                                  uint32_t flags)
10980 {
10981         struct intel_engine_cs *ring = req->ring;
10982         struct drm_i915_private *dev_priv = dev->dev_private;
10983         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10984         uint32_t pf, pipesrc;
10985         int ret;
10986
10987         ret = intel_ring_begin(req, 4);
10988         if (ret)
10989                 return ret;
10990
10991         /* i965+ uses the linear or tiled offsets from the
10992          * Display Registers (which do not change across a page-flip)
10993          * so we need only reprogram the base address.
10994          */
10995         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10996                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10997         intel_ring_emit(ring, fb->pitches[0]);
10998         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10999                         obj->tiling_mode);
11000
11001         /* XXX Enabling the panel-fitter across page-flip is so far
11002          * untested on non-native modes, so ignore it for now.
11003          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11004          */
11005         pf = 0;
11006         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11007         intel_ring_emit(ring, pf | pipesrc);
11008
11009         intel_mark_page_flip_active(intel_crtc->unpin_work);
11010         return 0;
11011 }
11012
11013 static int intel_gen6_queue_flip(struct drm_device *dev,
11014                                  struct drm_crtc *crtc,
11015                                  struct drm_framebuffer *fb,
11016                                  struct drm_i915_gem_object *obj,
11017                                  struct drm_i915_gem_request *req,
11018                                  uint32_t flags)
11019 {
11020         struct intel_engine_cs *ring = req->ring;
11021         struct drm_i915_private *dev_priv = dev->dev_private;
11022         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11023         uint32_t pf, pipesrc;
11024         int ret;
11025
11026         ret = intel_ring_begin(req, 4);
11027         if (ret)
11028                 return ret;
11029
11030         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11031                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11032         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11033         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11034
11035         /* Contrary to the suggestions in the documentation,
11036          * "Enable Panel Fitter" does not seem to be required when page
11037          * flipping with a non-native mode, and worse causes a normal
11038          * modeset to fail.
11039          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11040          */
11041         pf = 0;
11042         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11043         intel_ring_emit(ring, pf | pipesrc);
11044
11045         intel_mark_page_flip_active(intel_crtc->unpin_work);
11046         return 0;
11047 }
11048
11049 static int intel_gen7_queue_flip(struct drm_device *dev,
11050                                  struct drm_crtc *crtc,
11051                                  struct drm_framebuffer *fb,
11052                                  struct drm_i915_gem_object *obj,
11053                                  struct drm_i915_gem_request *req,
11054                                  uint32_t flags)
11055 {
11056         struct intel_engine_cs *ring = req->ring;
11057         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11058         uint32_t plane_bit = 0;
11059         int len, ret;
11060
11061         switch (intel_crtc->plane) {
11062         case PLANE_A:
11063                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11064                 break;
11065         case PLANE_B:
11066                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11067                 break;
11068         case PLANE_C:
11069                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11070                 break;
11071         default:
11072                 WARN_ONCE(1, "unknown plane in flip command\n");
11073                 return -ENODEV;
11074         }
11075
11076         len = 4;
11077         if (ring->id == RCS) {
11078                 len += 6;
11079                 /*
11080                  * On Gen 8, SRM is now taking an extra dword to accommodate
11081                  * 48bits addresses, and we need a NOOP for the batch size to
11082                  * stay even.
11083                  */
11084                 if (IS_GEN8(dev))
11085                         len += 2;
11086         }
11087
11088         /*
11089          * BSpec MI_DISPLAY_FLIP for IVB:
11090          * "The full packet must be contained within the same cache line."
11091          *
11092          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11093          * cacheline, if we ever start emitting more commands before
11094          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11095          * then do the cacheline alignment, and finally emit the
11096          * MI_DISPLAY_FLIP.
11097          */
11098         ret = intel_ring_cacheline_align(req);
11099         if (ret)
11100                 return ret;
11101
11102         ret = intel_ring_begin(req, len);
11103         if (ret)
11104                 return ret;
11105
11106         /* Unmask the flip-done completion message. Note that the bspec says that
11107          * we should do this for both the BCS and RCS, and that we must not unmask
11108          * more than one flip event at any time (or ensure that one flip message
11109          * can be sent by waiting for flip-done prior to queueing new flips).
11110          * Experimentation says that BCS works despite DERRMR masking all
11111          * flip-done completion events and that unmasking all planes at once
11112          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11113          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11114          */
11115         if (ring->id == RCS) {
11116                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11117                 intel_ring_emit(ring, DERRMR);
11118                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11119                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11120                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11121                 if (IS_GEN8(dev))
11122                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11123                                               MI_SRM_LRM_GLOBAL_GTT);
11124                 else
11125                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11126                                               MI_SRM_LRM_GLOBAL_GTT);
11127                 intel_ring_emit(ring, DERRMR);
11128                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11129                 if (IS_GEN8(dev)) {
11130                         intel_ring_emit(ring, 0);
11131                         intel_ring_emit(ring, MI_NOOP);
11132                 }
11133         }
11134
11135         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11136         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11137         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11138         intel_ring_emit(ring, (MI_NOOP));
11139
11140         intel_mark_page_flip_active(intel_crtc->unpin_work);
11141         return 0;
11142 }
11143
11144 static bool use_mmio_flip(struct intel_engine_cs *ring,
11145                           struct drm_i915_gem_object *obj)
11146 {
11147         /*
11148          * This is not being used for older platforms, because
11149          * non-availability of flip done interrupt forces us to use
11150          * CS flips. Older platforms derive flip done using some clever
11151          * tricks involving the flip_pending status bits and vblank irqs.
11152          * So using MMIO flips there would disrupt this mechanism.
11153          */
11154
11155         if (ring == NULL)
11156                 return true;
11157
11158         if (INTEL_INFO(ring->dev)->gen < 5)
11159                 return false;
11160
11161         if (i915.use_mmio_flip < 0)
11162                 return false;
11163         else if (i915.use_mmio_flip > 0)
11164                 return true;
11165         else if (i915.enable_execlists)
11166                 return true;
11167         else
11168                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11169 }
11170
11171 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11172                              struct intel_unpin_work *work)
11173 {
11174         struct drm_device *dev = intel_crtc->base.dev;
11175         struct drm_i915_private *dev_priv = dev->dev_private;
11176         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11177         const enum pipe pipe = intel_crtc->pipe;
11178         u32 ctl, stride;
11179
11180         ctl = I915_READ(PLANE_CTL(pipe, 0));
11181         ctl &= ~PLANE_CTL_TILED_MASK;
11182         switch (fb->modifier[0]) {
11183         case DRM_FORMAT_MOD_NONE:
11184                 break;
11185         case I915_FORMAT_MOD_X_TILED:
11186                 ctl |= PLANE_CTL_TILED_X;
11187                 break;
11188         case I915_FORMAT_MOD_Y_TILED:
11189                 ctl |= PLANE_CTL_TILED_Y;
11190                 break;
11191         case I915_FORMAT_MOD_Yf_TILED:
11192                 ctl |= PLANE_CTL_TILED_YF;
11193                 break;
11194         default:
11195                 MISSING_CASE(fb->modifier[0]);
11196         }
11197
11198         /*
11199          * The stride is either expressed as a multiple of 64 bytes chunks for
11200          * linear buffers or in number of tiles for tiled buffers.
11201          */
11202         stride = fb->pitches[0] /
11203                  intel_fb_stride_alignment(dev, fb->modifier[0],
11204                                            fb->pixel_format);
11205
11206         /*
11207          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11208          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11209          */
11210         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11211         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11212
11213         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11214         POSTING_READ(PLANE_SURF(pipe, 0));
11215 }
11216
11217 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11218                              struct intel_unpin_work *work)
11219 {
11220         struct drm_device *dev = intel_crtc->base.dev;
11221         struct drm_i915_private *dev_priv = dev->dev_private;
11222         struct intel_framebuffer *intel_fb =
11223                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11224         struct drm_i915_gem_object *obj = intel_fb->obj;
11225         u32 dspcntr;
11226         u32 reg;
11227
11228         reg = DSPCNTR(intel_crtc->plane);
11229         dspcntr = I915_READ(reg);
11230
11231         if (obj->tiling_mode != I915_TILING_NONE)
11232                 dspcntr |= DISPPLANE_TILED;
11233         else
11234                 dspcntr &= ~DISPPLANE_TILED;
11235
11236         I915_WRITE(reg, dspcntr);
11237
11238         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11239         POSTING_READ(DSPSURF(intel_crtc->plane));
11240 }
11241
11242 /*
11243  * XXX: This is the temporary way to update the plane registers until we get
11244  * around to using the usual plane update functions for MMIO flips
11245  */
11246 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11247 {
11248         struct intel_crtc *crtc = mmio_flip->crtc;
11249         struct intel_unpin_work *work;
11250
11251         spin_lock_irq(&crtc->base.dev->event_lock);
11252         work = crtc->unpin_work;
11253         spin_unlock_irq(&crtc->base.dev->event_lock);
11254         if (work == NULL)
11255                 return;
11256
11257         intel_mark_page_flip_active(work);
11258
11259         intel_pipe_update_start(crtc);
11260
11261         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11262                 skl_do_mmio_flip(crtc, work);
11263         else
11264                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11265                 ilk_do_mmio_flip(crtc, work);
11266
11267         intel_pipe_update_end(crtc);
11268 }
11269
11270 static void intel_mmio_flip_work_func(struct work_struct *work)
11271 {
11272         struct intel_mmio_flip *mmio_flip =
11273                 container_of(work, struct intel_mmio_flip, work);
11274
11275         if (mmio_flip->req) {
11276                 WARN_ON(__i915_wait_request(mmio_flip->req,
11277                                             mmio_flip->crtc->reset_counter,
11278                                             false, NULL,
11279                                             &mmio_flip->i915->rps.mmioflips));
11280                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11281         }
11282
11283         intel_do_mmio_flip(mmio_flip);
11284         kfree(mmio_flip);
11285 }
11286
11287 static int intel_queue_mmio_flip(struct drm_device *dev,
11288                                  struct drm_crtc *crtc,
11289                                  struct drm_framebuffer *fb,
11290                                  struct drm_i915_gem_object *obj,
11291                                  struct intel_engine_cs *ring,
11292                                  uint32_t flags)
11293 {
11294         struct intel_mmio_flip *mmio_flip;
11295
11296         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11297         if (mmio_flip == NULL)
11298                 return -ENOMEM;
11299
11300         mmio_flip->i915 = to_i915(dev);
11301         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11302         mmio_flip->crtc = to_intel_crtc(crtc);
11303
11304         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11305         schedule_work(&mmio_flip->work);
11306
11307         return 0;
11308 }
11309
11310 static int intel_default_queue_flip(struct drm_device *dev,
11311                                     struct drm_crtc *crtc,
11312                                     struct drm_framebuffer *fb,
11313                                     struct drm_i915_gem_object *obj,
11314                                     struct drm_i915_gem_request *req,
11315                                     uint32_t flags)
11316 {
11317         return -ENODEV;
11318 }
11319
11320 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11321                                          struct drm_crtc *crtc)
11322 {
11323         struct drm_i915_private *dev_priv = dev->dev_private;
11324         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11325         struct intel_unpin_work *work = intel_crtc->unpin_work;
11326         u32 addr;
11327
11328         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11329                 return true;
11330
11331         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11332                 return false;
11333
11334         if (!work->enable_stall_check)
11335                 return false;
11336
11337         if (work->flip_ready_vblank == 0) {
11338                 if (work->flip_queued_req &&
11339                     !i915_gem_request_completed(work->flip_queued_req, true))
11340                         return false;
11341
11342                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11343         }
11344
11345         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11346                 return false;
11347
11348         /* Potential stall - if we see that the flip has happened,
11349          * assume a missed interrupt. */
11350         if (INTEL_INFO(dev)->gen >= 4)
11351                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11352         else
11353                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11354
11355         /* There is a potential issue here with a false positive after a flip
11356          * to the same address. We could address this by checking for a
11357          * non-incrementing frame counter.
11358          */
11359         return addr == work->gtt_offset;
11360 }
11361
11362 void intel_check_page_flip(struct drm_device *dev, int pipe)
11363 {
11364         struct drm_i915_private *dev_priv = dev->dev_private;
11365         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11366         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11367         struct intel_unpin_work *work;
11368
11369         WARN_ON(!in_interrupt());
11370
11371         if (crtc == NULL)
11372                 return;
11373
11374         spin_lock(&dev->event_lock);
11375         work = intel_crtc->unpin_work;
11376         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11377                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11378                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11379                 page_flip_completed(intel_crtc);
11380                 work = NULL;
11381         }
11382         if (work != NULL &&
11383             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11384                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11385         spin_unlock(&dev->event_lock);
11386 }
11387
11388 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11389                                 struct drm_framebuffer *fb,
11390                                 struct drm_pending_vblank_event *event,
11391                                 uint32_t page_flip_flags)
11392 {
11393         struct drm_device *dev = crtc->dev;
11394         struct drm_i915_private *dev_priv = dev->dev_private;
11395         struct drm_framebuffer *old_fb = crtc->primary->fb;
11396         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11397         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11398         struct drm_plane *primary = crtc->primary;
11399         enum pipe pipe = intel_crtc->pipe;
11400         struct intel_unpin_work *work;
11401         struct intel_engine_cs *ring;
11402         bool mmio_flip;
11403         struct drm_i915_gem_request *request = NULL;
11404         int ret;
11405
11406         /*
11407          * drm_mode_page_flip_ioctl() should already catch this, but double
11408          * check to be safe.  In the future we may enable pageflipping from
11409          * a disabled primary plane.
11410          */
11411         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11412                 return -EBUSY;
11413
11414         /* Can't change pixel format via MI display flips. */
11415         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11416                 return -EINVAL;
11417
11418         /*
11419          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11420          * Note that pitch changes could also affect these register.
11421          */
11422         if (INTEL_INFO(dev)->gen > 3 &&
11423             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11424              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11425                 return -EINVAL;
11426
11427         if (i915_terminally_wedged(&dev_priv->gpu_error))
11428                 goto out_hang;
11429
11430         work = kzalloc(sizeof(*work), GFP_KERNEL);
11431         if (work == NULL)
11432                 return -ENOMEM;
11433
11434         work->event = event;
11435         work->crtc = crtc;
11436         work->old_fb = old_fb;
11437         INIT_WORK(&work->work, intel_unpin_work_fn);
11438
11439         ret = drm_crtc_vblank_get(crtc);
11440         if (ret)
11441                 goto free_work;
11442
11443         /* We borrow the event spin lock for protecting unpin_work */
11444         spin_lock_irq(&dev->event_lock);
11445         if (intel_crtc->unpin_work) {
11446                 /* Before declaring the flip queue wedged, check if
11447                  * the hardware completed the operation behind our backs.
11448                  */
11449                 if (__intel_pageflip_stall_check(dev, crtc)) {
11450                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11451                         page_flip_completed(intel_crtc);
11452                 } else {
11453                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11454                         spin_unlock_irq(&dev->event_lock);
11455
11456                         drm_crtc_vblank_put(crtc);
11457                         kfree(work);
11458                         return -EBUSY;
11459                 }
11460         }
11461         intel_crtc->unpin_work = work;
11462         spin_unlock_irq(&dev->event_lock);
11463
11464         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11465                 flush_workqueue(dev_priv->wq);
11466
11467         /* Reference the objects for the scheduled work. */
11468         drm_framebuffer_reference(work->old_fb);
11469         drm_gem_object_reference(&obj->base);
11470
11471         crtc->primary->fb = fb;
11472         update_state_fb(crtc->primary);
11473
11474         work->pending_flip_obj = obj;
11475
11476         ret = i915_mutex_lock_interruptible(dev);
11477         if (ret)
11478                 goto cleanup;
11479
11480         atomic_inc(&intel_crtc->unpin_work_count);
11481         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11482
11483         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11484                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11485
11486         if (IS_VALLEYVIEW(dev)) {
11487                 ring = &dev_priv->ring[BCS];
11488                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11489                         /* vlv: DISPLAY_FLIP fails to change tiling */
11490                         ring = NULL;
11491         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11492                 ring = &dev_priv->ring[BCS];
11493         } else if (INTEL_INFO(dev)->gen >= 7) {
11494                 ring = i915_gem_request_get_ring(obj->last_write_req);
11495                 if (ring == NULL || ring->id != RCS)
11496                         ring = &dev_priv->ring[BCS];
11497         } else {
11498                 ring = &dev_priv->ring[RCS];
11499         }
11500
11501         mmio_flip = use_mmio_flip(ring, obj);
11502
11503         /* When using CS flips, we want to emit semaphores between rings.
11504          * However, when using mmio flips we will create a task to do the
11505          * synchronisation, so all we want here is to pin the framebuffer
11506          * into the display plane and skip any waits.
11507          */
11508         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11509                                          crtc->primary->state,
11510                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11511         if (ret)
11512                 goto cleanup_pending;
11513
11514         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11515                                                   obj, 0);
11516         work->gtt_offset += intel_crtc->dspaddr_offset;
11517
11518         if (mmio_flip) {
11519                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11520                                             page_flip_flags);
11521                 if (ret)
11522                         goto cleanup_unpin;
11523
11524                 i915_gem_request_assign(&work->flip_queued_req,
11525                                         obj->last_write_req);
11526         } else {
11527                 if (!request) {
11528                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11529                         if (ret)
11530                                 goto cleanup_unpin;
11531                 }
11532
11533                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11534                                                    page_flip_flags);
11535                 if (ret)
11536                         goto cleanup_unpin;
11537
11538                 i915_gem_request_assign(&work->flip_queued_req, request);
11539         }
11540
11541         if (request)
11542                 i915_add_request_no_flush(request);
11543
11544         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11545         work->enable_stall_check = true;
11546
11547         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11548                           to_intel_plane(primary)->frontbuffer_bit);
11549         mutex_unlock(&dev->struct_mutex);
11550
11551         intel_fbc_disable_crtc(intel_crtc);
11552         intel_frontbuffer_flip_prepare(dev,
11553                                        to_intel_plane(primary)->frontbuffer_bit);
11554
11555         trace_i915_flip_request(intel_crtc->plane, obj);
11556
11557         return 0;
11558
11559 cleanup_unpin:
11560         intel_unpin_fb_obj(fb, crtc->primary->state);
11561 cleanup_pending:
11562         if (request)
11563                 i915_gem_request_cancel(request);
11564         atomic_dec(&intel_crtc->unpin_work_count);
11565         mutex_unlock(&dev->struct_mutex);
11566 cleanup:
11567         crtc->primary->fb = old_fb;
11568         update_state_fb(crtc->primary);
11569
11570         drm_gem_object_unreference_unlocked(&obj->base);
11571         drm_framebuffer_unreference(work->old_fb);
11572
11573         spin_lock_irq(&dev->event_lock);
11574         intel_crtc->unpin_work = NULL;
11575         spin_unlock_irq(&dev->event_lock);
11576
11577         drm_crtc_vblank_put(crtc);
11578 free_work:
11579         kfree(work);
11580
11581         if (ret == -EIO) {
11582                 struct drm_atomic_state *state;
11583                 struct drm_plane_state *plane_state;
11584
11585 out_hang:
11586                 state = drm_atomic_state_alloc(dev);
11587                 if (!state)
11588                         return -ENOMEM;
11589                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11590
11591 retry:
11592                 plane_state = drm_atomic_get_plane_state(state, primary);
11593                 ret = PTR_ERR_OR_ZERO(plane_state);
11594                 if (!ret) {
11595                         drm_atomic_set_fb_for_plane(plane_state, fb);
11596
11597                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11598                         if (!ret)
11599                                 ret = drm_atomic_commit(state);
11600                 }
11601
11602                 if (ret == -EDEADLK) {
11603                         drm_modeset_backoff(state->acquire_ctx);
11604                         drm_atomic_state_clear(state);
11605                         goto retry;
11606                 }
11607
11608                 if (ret)
11609                         drm_atomic_state_free(state);
11610
11611                 if (ret == 0 && event) {
11612                         spin_lock_irq(&dev->event_lock);
11613                         drm_send_vblank_event(dev, pipe, event);
11614                         spin_unlock_irq(&dev->event_lock);
11615                 }
11616         }
11617         return ret;
11618 }
11619
11620
11621 /**
11622  * intel_wm_need_update - Check whether watermarks need updating
11623  * @plane: drm plane
11624  * @state: new plane state
11625  *
11626  * Check current plane state versus the new one to determine whether
11627  * watermarks need to be recalculated.
11628  *
11629  * Returns true or false.
11630  */
11631 static bool intel_wm_need_update(struct drm_plane *plane,
11632                                  struct drm_plane_state *state)
11633 {
11634         /* Update watermarks on tiling changes. */
11635         if (!plane->state->fb || !state->fb ||
11636             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11637             plane->state->rotation != state->rotation)
11638                 return true;
11639
11640         if (plane->state->crtc_w != state->crtc_w)
11641                 return true;
11642
11643         return false;
11644 }
11645
11646 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11647                                     struct drm_plane_state *plane_state)
11648 {
11649         struct drm_crtc *crtc = crtc_state->crtc;
11650         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11651         struct drm_plane *plane = plane_state->plane;
11652         struct drm_device *dev = crtc->dev;
11653         struct drm_i915_private *dev_priv = dev->dev_private;
11654         struct intel_plane_state *old_plane_state =
11655                 to_intel_plane_state(plane->state);
11656         int idx = intel_crtc->base.base.id, ret;
11657         int i = drm_plane_index(plane);
11658         bool mode_changed = needs_modeset(crtc_state);
11659         bool was_crtc_enabled = crtc->state->active;
11660         bool is_crtc_enabled = crtc_state->active;
11661
11662         bool turn_off, turn_on, visible, was_visible;
11663         struct drm_framebuffer *fb = plane_state->fb;
11664
11665         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11666             plane->type != DRM_PLANE_TYPE_CURSOR) {
11667                 ret = skl_update_scaler_plane(
11668                         to_intel_crtc_state(crtc_state),
11669                         to_intel_plane_state(plane_state));
11670                 if (ret)
11671                         return ret;
11672         }
11673
11674         /*
11675          * Disabling a plane is always okay; we just need to update
11676          * fb tracking in a special way since cleanup_fb() won't
11677          * get called by the plane helpers.
11678          */
11679         if (old_plane_state->base.fb && !fb)
11680                 intel_crtc->atomic.disabled_planes |= 1 << i;
11681
11682         was_visible = old_plane_state->visible;
11683         visible = to_intel_plane_state(plane_state)->visible;
11684
11685         if (!was_crtc_enabled && WARN_ON(was_visible))
11686                 was_visible = false;
11687
11688         if (!is_crtc_enabled && WARN_ON(visible))
11689                 visible = false;
11690
11691         if (!was_visible && !visible)
11692                 return 0;
11693
11694         turn_off = was_visible && (!visible || mode_changed);
11695         turn_on = visible && (!was_visible || mode_changed);
11696
11697         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11698                          plane->base.id, fb ? fb->base.id : -1);
11699
11700         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11701                          plane->base.id, was_visible, visible,
11702                          turn_off, turn_on, mode_changed);
11703
11704         if (turn_on) {
11705                 intel_crtc->atomic.update_wm_pre = true;
11706                 /* must disable cxsr around plane enable/disable */
11707                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11708                         intel_crtc->atomic.disable_cxsr = true;
11709                         /* to potentially re-enable cxsr */
11710                         intel_crtc->atomic.wait_vblank = true;
11711                         intel_crtc->atomic.update_wm_post = true;
11712                 }
11713         } else if (turn_off) {
11714                 intel_crtc->atomic.update_wm_post = true;
11715                 /* must disable cxsr around plane enable/disable */
11716                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11717                         if (is_crtc_enabled)
11718                                 intel_crtc->atomic.wait_vblank = true;
11719                         intel_crtc->atomic.disable_cxsr = true;
11720                 }
11721         } else if (intel_wm_need_update(plane, plane_state)) {
11722                 intel_crtc->atomic.update_wm_pre = true;
11723         }
11724
11725         if (visible || was_visible)
11726                 intel_crtc->atomic.fb_bits |=
11727                         to_intel_plane(plane)->frontbuffer_bit;
11728
11729         switch (plane->type) {
11730         case DRM_PLANE_TYPE_PRIMARY:
11731                 intel_crtc->atomic.wait_for_flips = true;
11732                 intel_crtc->atomic.pre_disable_primary = turn_off;
11733                 intel_crtc->atomic.post_enable_primary = turn_on;
11734
11735                 if (turn_off) {
11736                         /*
11737                          * FIXME: Actually if we will still have any other
11738                          * plane enabled on the pipe we could let IPS enabled
11739                          * still, but for now lets consider that when we make
11740                          * primary invisible by setting DSPCNTR to 0 on
11741                          * update_primary_plane function IPS needs to be
11742                          * disable.
11743                          */
11744                         intel_crtc->atomic.disable_ips = true;
11745
11746                         intel_crtc->atomic.disable_fbc = true;
11747                 }
11748
11749                 /*
11750                  * FBC does not work on some platforms for rotated
11751                  * planes, so disable it when rotation is not 0 and
11752                  * update it when rotation is set back to 0.
11753                  *
11754                  * FIXME: This is redundant with the fbc update done in
11755                  * the primary plane enable function except that that
11756                  * one is done too late. We eventually need to unify
11757                  * this.
11758                  */
11759
11760                 if (visible &&
11761                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11762                     dev_priv->fbc.crtc == intel_crtc &&
11763                     plane_state->rotation != BIT(DRM_ROTATE_0))
11764                         intel_crtc->atomic.disable_fbc = true;
11765
11766                 /*
11767                  * BDW signals flip done immediately if the plane
11768                  * is disabled, even if the plane enable is already
11769                  * armed to occur at the next vblank :(
11770                  */
11771                 if (turn_on && IS_BROADWELL(dev))
11772                         intel_crtc->atomic.wait_vblank = true;
11773
11774                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11775                 break;
11776         case DRM_PLANE_TYPE_CURSOR:
11777                 break;
11778         case DRM_PLANE_TYPE_OVERLAY:
11779                 if (turn_off && !mode_changed) {
11780                         intel_crtc->atomic.wait_vblank = true;
11781                         intel_crtc->atomic.update_sprite_watermarks |=
11782                                 1 << i;
11783                 }
11784         }
11785         return 0;
11786 }
11787
11788 static bool encoders_cloneable(const struct intel_encoder *a,
11789                                const struct intel_encoder *b)
11790 {
11791         /* masks could be asymmetric, so check both ways */
11792         return a == b || (a->cloneable & (1 << b->type) &&
11793                           b->cloneable & (1 << a->type));
11794 }
11795
11796 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11797                                          struct intel_crtc *crtc,
11798                                          struct intel_encoder *encoder)
11799 {
11800         struct intel_encoder *source_encoder;
11801         struct drm_connector *connector;
11802         struct drm_connector_state *connector_state;
11803         int i;
11804
11805         for_each_connector_in_state(state, connector, connector_state, i) {
11806                 if (connector_state->crtc != &crtc->base)
11807                         continue;
11808
11809                 source_encoder =
11810                         to_intel_encoder(connector_state->best_encoder);
11811                 if (!encoders_cloneable(encoder, source_encoder))
11812                         return false;
11813         }
11814
11815         return true;
11816 }
11817
11818 static bool check_encoder_cloning(struct drm_atomic_state *state,
11819                                   struct intel_crtc *crtc)
11820 {
11821         struct intel_encoder *encoder;
11822         struct drm_connector *connector;
11823         struct drm_connector_state *connector_state;
11824         int i;
11825
11826         for_each_connector_in_state(state, connector, connector_state, i) {
11827                 if (connector_state->crtc != &crtc->base)
11828                         continue;
11829
11830                 encoder = to_intel_encoder(connector_state->best_encoder);
11831                 if (!check_single_encoder_cloning(state, crtc, encoder))
11832                         return false;
11833         }
11834
11835         return true;
11836 }
11837
11838 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11839                                    struct drm_crtc_state *crtc_state)
11840 {
11841         struct drm_device *dev = crtc->dev;
11842         struct drm_i915_private *dev_priv = dev->dev_private;
11843         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11844         struct intel_crtc_state *pipe_config =
11845                 to_intel_crtc_state(crtc_state);
11846         struct drm_atomic_state *state = crtc_state->state;
11847         int ret;
11848         bool mode_changed = needs_modeset(crtc_state);
11849
11850         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11851                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11852                 return -EINVAL;
11853         }
11854
11855         if (mode_changed && !crtc_state->active)
11856                 intel_crtc->atomic.update_wm_post = true;
11857
11858         if (mode_changed && crtc_state->enable &&
11859             dev_priv->display.crtc_compute_clock &&
11860             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11861                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11862                                                            pipe_config);
11863                 if (ret)
11864                         return ret;
11865         }
11866
11867         ret = 0;
11868         if (INTEL_INFO(dev)->gen >= 9) {
11869                 if (mode_changed)
11870                         ret = skl_update_scaler_crtc(pipe_config);
11871
11872                 if (!ret)
11873                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11874                                                          pipe_config);
11875         }
11876
11877         return ret;
11878 }
11879
11880 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11881         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11882         .load_lut = intel_crtc_load_lut,
11883         .atomic_begin = intel_begin_crtc_commit,
11884         .atomic_flush = intel_finish_crtc_commit,
11885         .atomic_check = intel_crtc_atomic_check,
11886 };
11887
11888 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11889 {
11890         struct intel_connector *connector;
11891
11892         for_each_intel_connector(dev, connector) {
11893                 if (connector->base.encoder) {
11894                         connector->base.state->best_encoder =
11895                                 connector->base.encoder;
11896                         connector->base.state->crtc =
11897                                 connector->base.encoder->crtc;
11898                 } else {
11899                         connector->base.state->best_encoder = NULL;
11900                         connector->base.state->crtc = NULL;
11901                 }
11902         }
11903 }
11904
11905 static void
11906 connected_sink_compute_bpp(struct intel_connector *connector,
11907                            struct intel_crtc_state *pipe_config)
11908 {
11909         int bpp = pipe_config->pipe_bpp;
11910
11911         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11912                 connector->base.base.id,
11913                 connector->base.name);
11914
11915         /* Don't use an invalid EDID bpc value */
11916         if (connector->base.display_info.bpc &&
11917             connector->base.display_info.bpc * 3 < bpp) {
11918                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11919                               bpp, connector->base.display_info.bpc*3);
11920                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11921         }
11922
11923         /* Clamp bpp to 8 on screens without EDID 1.4 */
11924         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11925                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11926                               bpp);
11927                 pipe_config->pipe_bpp = 24;
11928         }
11929 }
11930
11931 static int
11932 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11933                           struct intel_crtc_state *pipe_config)
11934 {
11935         struct drm_device *dev = crtc->base.dev;
11936         struct drm_atomic_state *state;
11937         struct drm_connector *connector;
11938         struct drm_connector_state *connector_state;
11939         int bpp, i;
11940
11941         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11942                 bpp = 10*3;
11943         else if (INTEL_INFO(dev)->gen >= 5)
11944                 bpp = 12*3;
11945         else
11946                 bpp = 8*3;
11947
11948
11949         pipe_config->pipe_bpp = bpp;
11950
11951         state = pipe_config->base.state;
11952
11953         /* Clamp display bpp to EDID value */
11954         for_each_connector_in_state(state, connector, connector_state, i) {
11955                 if (connector_state->crtc != &crtc->base)
11956                         continue;
11957
11958                 connected_sink_compute_bpp(to_intel_connector(connector),
11959                                            pipe_config);
11960         }
11961
11962         return bpp;
11963 }
11964
11965 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11966 {
11967         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11968                         "type: 0x%x flags: 0x%x\n",
11969                 mode->crtc_clock,
11970                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11971                 mode->crtc_hsync_end, mode->crtc_htotal,
11972                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11973                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11974 }
11975
11976 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11977                                    struct intel_crtc_state *pipe_config,
11978                                    const char *context)
11979 {
11980         struct drm_device *dev = crtc->base.dev;
11981         struct drm_plane *plane;
11982         struct intel_plane *intel_plane;
11983         struct intel_plane_state *state;
11984         struct drm_framebuffer *fb;
11985
11986         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11987                       context, pipe_config, pipe_name(crtc->pipe));
11988
11989         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11990         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11991                       pipe_config->pipe_bpp, pipe_config->dither);
11992         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11993                       pipe_config->has_pch_encoder,
11994                       pipe_config->fdi_lanes,
11995                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11996                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11997                       pipe_config->fdi_m_n.tu);
11998         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11999                       pipe_config->has_dp_encoder,
12000                       pipe_config->lane_count,
12001                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12002                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12003                       pipe_config->dp_m_n.tu);
12004
12005         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12006                       pipe_config->has_dp_encoder,
12007                       pipe_config->lane_count,
12008                       pipe_config->dp_m2_n2.gmch_m,
12009                       pipe_config->dp_m2_n2.gmch_n,
12010                       pipe_config->dp_m2_n2.link_m,
12011                       pipe_config->dp_m2_n2.link_n,
12012                       pipe_config->dp_m2_n2.tu);
12013
12014         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12015                       pipe_config->has_audio,
12016                       pipe_config->has_infoframe);
12017
12018         DRM_DEBUG_KMS("requested mode:\n");
12019         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12020         DRM_DEBUG_KMS("adjusted mode:\n");
12021         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12022         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12023         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12024         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12025                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12026         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12027                       crtc->num_scalers,
12028                       pipe_config->scaler_state.scaler_users,
12029                       pipe_config->scaler_state.scaler_id);
12030         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12031                       pipe_config->gmch_pfit.control,
12032                       pipe_config->gmch_pfit.pgm_ratios,
12033                       pipe_config->gmch_pfit.lvds_border_bits);
12034         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12035                       pipe_config->pch_pfit.pos,
12036                       pipe_config->pch_pfit.size,
12037                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12038         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12039         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12040
12041         if (IS_BROXTON(dev)) {
12042                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12043                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12044                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12045                               pipe_config->ddi_pll_sel,
12046                               pipe_config->dpll_hw_state.ebb0,
12047                               pipe_config->dpll_hw_state.ebb4,
12048                               pipe_config->dpll_hw_state.pll0,
12049                               pipe_config->dpll_hw_state.pll1,
12050                               pipe_config->dpll_hw_state.pll2,
12051                               pipe_config->dpll_hw_state.pll3,
12052                               pipe_config->dpll_hw_state.pll6,
12053                               pipe_config->dpll_hw_state.pll8,
12054                               pipe_config->dpll_hw_state.pll9,
12055                               pipe_config->dpll_hw_state.pll10,
12056                               pipe_config->dpll_hw_state.pcsdw12);
12057         } else if (IS_SKYLAKE(dev)) {
12058                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12059                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12060                               pipe_config->ddi_pll_sel,
12061                               pipe_config->dpll_hw_state.ctrl1,
12062                               pipe_config->dpll_hw_state.cfgcr1,
12063                               pipe_config->dpll_hw_state.cfgcr2);
12064         } else if (HAS_DDI(dev)) {
12065                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12066                               pipe_config->ddi_pll_sel,
12067                               pipe_config->dpll_hw_state.wrpll,
12068                               pipe_config->dpll_hw_state.spll);
12069         } else {
12070                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12071                               "fp0: 0x%x, fp1: 0x%x\n",
12072                               pipe_config->dpll_hw_state.dpll,
12073                               pipe_config->dpll_hw_state.dpll_md,
12074                               pipe_config->dpll_hw_state.fp0,
12075                               pipe_config->dpll_hw_state.fp1);
12076         }
12077
12078         DRM_DEBUG_KMS("planes on this crtc\n");
12079         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12080                 intel_plane = to_intel_plane(plane);
12081                 if (intel_plane->pipe != crtc->pipe)
12082                         continue;
12083
12084                 state = to_intel_plane_state(plane->state);
12085                 fb = state->base.fb;
12086                 if (!fb) {
12087                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12088                                 "disabled, scaler_id = %d\n",
12089                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12090                                 plane->base.id, intel_plane->pipe,
12091                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12092                                 drm_plane_index(plane), state->scaler_id);
12093                         continue;
12094                 }
12095
12096                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12097                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12098                         plane->base.id, intel_plane->pipe,
12099                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12100                         drm_plane_index(plane));
12101                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12102                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12103                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12104                         state->scaler_id,
12105                         state->src.x1 >> 16, state->src.y1 >> 16,
12106                         drm_rect_width(&state->src) >> 16,
12107                         drm_rect_height(&state->src) >> 16,
12108                         state->dst.x1, state->dst.y1,
12109                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12110         }
12111 }
12112
12113 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12114 {
12115         struct drm_device *dev = state->dev;
12116         struct intel_encoder *encoder;
12117         struct drm_connector *connector;
12118         struct drm_connector_state *connector_state;
12119         unsigned int used_ports = 0;
12120         int i;
12121
12122         /*
12123          * Walk the connector list instead of the encoder
12124          * list to detect the problem on ddi platforms
12125          * where there's just one encoder per digital port.
12126          */
12127         for_each_connector_in_state(state, connector, connector_state, i) {
12128                 if (!connector_state->best_encoder)
12129                         continue;
12130
12131                 encoder = to_intel_encoder(connector_state->best_encoder);
12132
12133                 WARN_ON(!connector_state->crtc);
12134
12135                 switch (encoder->type) {
12136                         unsigned int port_mask;
12137                 case INTEL_OUTPUT_UNKNOWN:
12138                         if (WARN_ON(!HAS_DDI(dev)))
12139                                 break;
12140                 case INTEL_OUTPUT_DISPLAYPORT:
12141                 case INTEL_OUTPUT_HDMI:
12142                 case INTEL_OUTPUT_EDP:
12143                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12144
12145                         /* the same port mustn't appear more than once */
12146                         if (used_ports & port_mask)
12147                                 return false;
12148
12149                         used_ports |= port_mask;
12150                 default:
12151                         break;
12152                 }
12153         }
12154
12155         return true;
12156 }
12157
12158 static void
12159 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12160 {
12161         struct drm_crtc_state tmp_state;
12162         struct intel_crtc_scaler_state scaler_state;
12163         struct intel_dpll_hw_state dpll_hw_state;
12164         enum intel_dpll_id shared_dpll;
12165         uint32_t ddi_pll_sel;
12166         bool force_thru;
12167
12168         /* FIXME: before the switch to atomic started, a new pipe_config was
12169          * kzalloc'd. Code that depends on any field being zero should be
12170          * fixed, so that the crtc_state can be safely duplicated. For now,
12171          * only fields that are know to not cause problems are preserved. */
12172
12173         tmp_state = crtc_state->base;
12174         scaler_state = crtc_state->scaler_state;
12175         shared_dpll = crtc_state->shared_dpll;
12176         dpll_hw_state = crtc_state->dpll_hw_state;
12177         ddi_pll_sel = crtc_state->ddi_pll_sel;
12178         force_thru = crtc_state->pch_pfit.force_thru;
12179
12180         memset(crtc_state, 0, sizeof *crtc_state);
12181
12182         crtc_state->base = tmp_state;
12183         crtc_state->scaler_state = scaler_state;
12184         crtc_state->shared_dpll = shared_dpll;
12185         crtc_state->dpll_hw_state = dpll_hw_state;
12186         crtc_state->ddi_pll_sel = ddi_pll_sel;
12187         crtc_state->pch_pfit.force_thru = force_thru;
12188 }
12189
12190 static int
12191 intel_modeset_pipe_config(struct drm_crtc *crtc,
12192                           struct intel_crtc_state *pipe_config)
12193 {
12194         struct drm_atomic_state *state = pipe_config->base.state;
12195         struct intel_encoder *encoder;
12196         struct drm_connector *connector;
12197         struct drm_connector_state *connector_state;
12198         int base_bpp, ret = -EINVAL;
12199         int i;
12200         bool retry = true;
12201
12202         clear_intel_crtc_state(pipe_config);
12203
12204         pipe_config->cpu_transcoder =
12205                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12206
12207         /*
12208          * Sanitize sync polarity flags based on requested ones. If neither
12209          * positive or negative polarity is requested, treat this as meaning
12210          * negative polarity.
12211          */
12212         if (!(pipe_config->base.adjusted_mode.flags &
12213               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12214                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12215
12216         if (!(pipe_config->base.adjusted_mode.flags &
12217               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12218                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12219
12220         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12221                                              pipe_config);
12222         if (base_bpp < 0)
12223                 goto fail;
12224
12225         /*
12226          * Determine the real pipe dimensions. Note that stereo modes can
12227          * increase the actual pipe size due to the frame doubling and
12228          * insertion of additional space for blanks between the frame. This
12229          * is stored in the crtc timings. We use the requested mode to do this
12230          * computation to clearly distinguish it from the adjusted mode, which
12231          * can be changed by the connectors in the below retry loop.
12232          */
12233         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12234                                &pipe_config->pipe_src_w,
12235                                &pipe_config->pipe_src_h);
12236
12237 encoder_retry:
12238         /* Ensure the port clock defaults are reset when retrying. */
12239         pipe_config->port_clock = 0;
12240         pipe_config->pixel_multiplier = 1;
12241
12242         /* Fill in default crtc timings, allow encoders to overwrite them. */
12243         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12244                               CRTC_STEREO_DOUBLE);
12245
12246         /* Pass our mode to the connectors and the CRTC to give them a chance to
12247          * adjust it according to limitations or connector properties, and also
12248          * a chance to reject the mode entirely.
12249          */
12250         for_each_connector_in_state(state, connector, connector_state, i) {
12251                 if (connector_state->crtc != crtc)
12252                         continue;
12253
12254                 encoder = to_intel_encoder(connector_state->best_encoder);
12255
12256                 if (!(encoder->compute_config(encoder, pipe_config))) {
12257                         DRM_DEBUG_KMS("Encoder config failure\n");
12258                         goto fail;
12259                 }
12260         }
12261
12262         /* Set default port clock if not overwritten by the encoder. Needs to be
12263          * done afterwards in case the encoder adjusts the mode. */
12264         if (!pipe_config->port_clock)
12265                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12266                         * pipe_config->pixel_multiplier;
12267
12268         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12269         if (ret < 0) {
12270                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12271                 goto fail;
12272         }
12273
12274         if (ret == RETRY) {
12275                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12276                         ret = -EINVAL;
12277                         goto fail;
12278                 }
12279
12280                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12281                 retry = false;
12282                 goto encoder_retry;
12283         }
12284
12285         /* Dithering seems to not pass-through bits correctly when it should, so
12286          * only enable it on 6bpc panels. */
12287         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12288         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12289                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12290
12291 fail:
12292         return ret;
12293 }
12294
12295 static void
12296 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12297 {
12298         struct drm_crtc *crtc;
12299         struct drm_crtc_state *crtc_state;
12300         int i;
12301
12302         /* Double check state. */
12303         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12304                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12305
12306                 /* Update hwmode for vblank functions */
12307                 if (crtc->state->active)
12308                         crtc->hwmode = crtc->state->adjusted_mode;
12309                 else
12310                         crtc->hwmode.crtc_clock = 0;
12311         }
12312 }
12313
12314 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12315 {
12316         int diff;
12317
12318         if (clock1 == clock2)
12319                 return true;
12320
12321         if (!clock1 || !clock2)
12322                 return false;
12323
12324         diff = abs(clock1 - clock2);
12325
12326         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12327                 return true;
12328
12329         return false;
12330 }
12331
12332 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12333         list_for_each_entry((intel_crtc), \
12334                             &(dev)->mode_config.crtc_list, \
12335                             base.head) \
12336                 if (mask & (1 <<(intel_crtc)->pipe))
12337
12338 static bool
12339 intel_compare_m_n(unsigned int m, unsigned int n,
12340                   unsigned int m2, unsigned int n2,
12341                   bool exact)
12342 {
12343         if (m == m2 && n == n2)
12344                 return true;
12345
12346         if (exact || !m || !n || !m2 || !n2)
12347                 return false;
12348
12349         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12350
12351         if (m > m2) {
12352                 while (m > m2) {
12353                         m2 <<= 1;
12354                         n2 <<= 1;
12355                 }
12356         } else if (m < m2) {
12357                 while (m < m2) {
12358                         m <<= 1;
12359                         n <<= 1;
12360                 }
12361         }
12362
12363         return m == m2 && n == n2;
12364 }
12365
12366 static bool
12367 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12368                        struct intel_link_m_n *m2_n2,
12369                        bool adjust)
12370 {
12371         if (m_n->tu == m2_n2->tu &&
12372             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12373                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12374             intel_compare_m_n(m_n->link_m, m_n->link_n,
12375                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12376                 if (adjust)
12377                         *m2_n2 = *m_n;
12378
12379                 return true;
12380         }
12381
12382         return false;
12383 }
12384
12385 static bool
12386 intel_pipe_config_compare(struct drm_device *dev,
12387                           struct intel_crtc_state *current_config,
12388                           struct intel_crtc_state *pipe_config,
12389                           bool adjust)
12390 {
12391         bool ret = true;
12392
12393 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12394         do { \
12395                 if (!adjust) \
12396                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12397                 else \
12398                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12399         } while (0)
12400
12401 #define PIPE_CONF_CHECK_X(name) \
12402         if (current_config->name != pipe_config->name) { \
12403                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12404                           "(expected 0x%08x, found 0x%08x)\n", \
12405                           current_config->name, \
12406                           pipe_config->name); \
12407                 ret = false; \
12408         }
12409
12410 #define PIPE_CONF_CHECK_I(name) \
12411         if (current_config->name != pipe_config->name) { \
12412                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12413                           "(expected %i, found %i)\n", \
12414                           current_config->name, \
12415                           pipe_config->name); \
12416                 ret = false; \
12417         }
12418
12419 #define PIPE_CONF_CHECK_M_N(name) \
12420         if (!intel_compare_link_m_n(&current_config->name, \
12421                                     &pipe_config->name,\
12422                                     adjust)) { \
12423                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12424                           "(expected tu %i gmch %i/%i link %i/%i, " \
12425                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12426                           current_config->name.tu, \
12427                           current_config->name.gmch_m, \
12428                           current_config->name.gmch_n, \
12429                           current_config->name.link_m, \
12430                           current_config->name.link_n, \
12431                           pipe_config->name.tu, \
12432                           pipe_config->name.gmch_m, \
12433                           pipe_config->name.gmch_n, \
12434                           pipe_config->name.link_m, \
12435                           pipe_config->name.link_n); \
12436                 ret = false; \
12437         }
12438
12439 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12440         if (!intel_compare_link_m_n(&current_config->name, \
12441                                     &pipe_config->name, adjust) && \
12442             !intel_compare_link_m_n(&current_config->alt_name, \
12443                                     &pipe_config->name, adjust)) { \
12444                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12445                           "(expected tu %i gmch %i/%i link %i/%i, " \
12446                           "or tu %i gmch %i/%i link %i/%i, " \
12447                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12448                           current_config->name.tu, \
12449                           current_config->name.gmch_m, \
12450                           current_config->name.gmch_n, \
12451                           current_config->name.link_m, \
12452                           current_config->name.link_n, \
12453                           current_config->alt_name.tu, \
12454                           current_config->alt_name.gmch_m, \
12455                           current_config->alt_name.gmch_n, \
12456                           current_config->alt_name.link_m, \
12457                           current_config->alt_name.link_n, \
12458                           pipe_config->name.tu, \
12459                           pipe_config->name.gmch_m, \
12460                           pipe_config->name.gmch_n, \
12461                           pipe_config->name.link_m, \
12462                           pipe_config->name.link_n); \
12463                 ret = false; \
12464         }
12465
12466 /* This is required for BDW+ where there is only one set of registers for
12467  * switching between high and low RR.
12468  * This macro can be used whenever a comparison has to be made between one
12469  * hw state and multiple sw state variables.
12470  */
12471 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12472         if ((current_config->name != pipe_config->name) && \
12473                 (current_config->alt_name != pipe_config->name)) { \
12474                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12475                                   "(expected %i or %i, found %i)\n", \
12476                                   current_config->name, \
12477                                   current_config->alt_name, \
12478                                   pipe_config->name); \
12479                         ret = false; \
12480         }
12481
12482 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12483         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12484                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12485                           "(expected %i, found %i)\n", \
12486                           current_config->name & (mask), \
12487                           pipe_config->name & (mask)); \
12488                 ret = false; \
12489         }
12490
12491 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12492         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12493                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12494                           "(expected %i, found %i)\n", \
12495                           current_config->name, \
12496                           pipe_config->name); \
12497                 ret = false; \
12498         }
12499
12500 #define PIPE_CONF_QUIRK(quirk)  \
12501         ((current_config->quirks | pipe_config->quirks) & (quirk))
12502
12503         PIPE_CONF_CHECK_I(cpu_transcoder);
12504
12505         PIPE_CONF_CHECK_I(has_pch_encoder);
12506         PIPE_CONF_CHECK_I(fdi_lanes);
12507         PIPE_CONF_CHECK_M_N(fdi_m_n);
12508
12509         PIPE_CONF_CHECK_I(has_dp_encoder);
12510         PIPE_CONF_CHECK_I(lane_count);
12511
12512         if (INTEL_INFO(dev)->gen < 8) {
12513                 PIPE_CONF_CHECK_M_N(dp_m_n);
12514
12515                 if (current_config->has_drrs)
12516                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12517         } else
12518                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12519
12520         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12521         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12522         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12523         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12524         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12525         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12526
12527         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12528         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12529         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12530         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12531         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12532         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12533
12534         PIPE_CONF_CHECK_I(pixel_multiplier);
12535         PIPE_CONF_CHECK_I(has_hdmi_sink);
12536         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12537             IS_VALLEYVIEW(dev))
12538                 PIPE_CONF_CHECK_I(limited_color_range);
12539         PIPE_CONF_CHECK_I(has_infoframe);
12540
12541         PIPE_CONF_CHECK_I(has_audio);
12542
12543         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12544                               DRM_MODE_FLAG_INTERLACE);
12545
12546         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12547                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12548                                       DRM_MODE_FLAG_PHSYNC);
12549                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12550                                       DRM_MODE_FLAG_NHSYNC);
12551                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12552                                       DRM_MODE_FLAG_PVSYNC);
12553                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12554                                       DRM_MODE_FLAG_NVSYNC);
12555         }
12556
12557         PIPE_CONF_CHECK_X(gmch_pfit.control);
12558         /* pfit ratios are autocomputed by the hw on gen4+ */
12559         if (INTEL_INFO(dev)->gen < 4)
12560                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12561         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12562
12563         if (!adjust) {
12564                 PIPE_CONF_CHECK_I(pipe_src_w);
12565                 PIPE_CONF_CHECK_I(pipe_src_h);
12566
12567                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12568                 if (current_config->pch_pfit.enabled) {
12569                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12570                         PIPE_CONF_CHECK_X(pch_pfit.size);
12571                 }
12572
12573                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12574         }
12575
12576         /* BDW+ don't expose a synchronous way to read the state */
12577         if (IS_HASWELL(dev))
12578                 PIPE_CONF_CHECK_I(ips_enabled);
12579
12580         PIPE_CONF_CHECK_I(double_wide);
12581
12582         PIPE_CONF_CHECK_X(ddi_pll_sel);
12583
12584         PIPE_CONF_CHECK_I(shared_dpll);
12585         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12586         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12587         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12588         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12589         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12590         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12591         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12592         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12593         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12594
12595         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12596                 PIPE_CONF_CHECK_I(pipe_bpp);
12597
12598         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12599         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12600
12601 #undef PIPE_CONF_CHECK_X
12602 #undef PIPE_CONF_CHECK_I
12603 #undef PIPE_CONF_CHECK_I_ALT
12604 #undef PIPE_CONF_CHECK_FLAGS
12605 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12606 #undef PIPE_CONF_QUIRK
12607 #undef INTEL_ERR_OR_DBG_KMS
12608
12609         return ret;
12610 }
12611
12612 static void check_wm_state(struct drm_device *dev)
12613 {
12614         struct drm_i915_private *dev_priv = dev->dev_private;
12615         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12616         struct intel_crtc *intel_crtc;
12617         int plane;
12618
12619         if (INTEL_INFO(dev)->gen < 9)
12620                 return;
12621
12622         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12623         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12624
12625         for_each_intel_crtc(dev, intel_crtc) {
12626                 struct skl_ddb_entry *hw_entry, *sw_entry;
12627                 const enum pipe pipe = intel_crtc->pipe;
12628
12629                 if (!intel_crtc->active)
12630                         continue;
12631
12632                 /* planes */
12633                 for_each_plane(dev_priv, pipe, plane) {
12634                         hw_entry = &hw_ddb.plane[pipe][plane];
12635                         sw_entry = &sw_ddb->plane[pipe][plane];
12636
12637                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12638                                 continue;
12639
12640                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12641                                   "(expected (%u,%u), found (%u,%u))\n",
12642                                   pipe_name(pipe), plane + 1,
12643                                   sw_entry->start, sw_entry->end,
12644                                   hw_entry->start, hw_entry->end);
12645                 }
12646
12647                 /* cursor */
12648                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12649                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12650
12651                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12652                         continue;
12653
12654                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12655                           "(expected (%u,%u), found (%u,%u))\n",
12656                           pipe_name(pipe),
12657                           sw_entry->start, sw_entry->end,
12658                           hw_entry->start, hw_entry->end);
12659         }
12660 }
12661
12662 static void
12663 check_connector_state(struct drm_device *dev,
12664                       struct drm_atomic_state *old_state)
12665 {
12666         struct drm_connector_state *old_conn_state;
12667         struct drm_connector *connector;
12668         int i;
12669
12670         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12671                 struct drm_encoder *encoder = connector->encoder;
12672                 struct drm_connector_state *state = connector->state;
12673
12674                 /* This also checks the encoder/connector hw state with the
12675                  * ->get_hw_state callbacks. */
12676                 intel_connector_check_state(to_intel_connector(connector));
12677
12678                 I915_STATE_WARN(state->best_encoder != encoder,
12679                      "connector's atomic encoder doesn't match legacy encoder\n");
12680         }
12681 }
12682
12683 static void
12684 check_encoder_state(struct drm_device *dev)
12685 {
12686         struct intel_encoder *encoder;
12687         struct intel_connector *connector;
12688
12689         for_each_intel_encoder(dev, encoder) {
12690                 bool enabled = false;
12691                 enum pipe pipe;
12692
12693                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12694                               encoder->base.base.id,
12695                               encoder->base.name);
12696
12697                 for_each_intel_connector(dev, connector) {
12698                         if (connector->base.state->best_encoder != &encoder->base)
12699                                 continue;
12700                         enabled = true;
12701
12702                         I915_STATE_WARN(connector->base.state->crtc !=
12703                                         encoder->base.crtc,
12704                              "connector's crtc doesn't match encoder crtc\n");
12705                 }
12706
12707                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12708                      "encoder's enabled state mismatch "
12709                      "(expected %i, found %i)\n",
12710                      !!encoder->base.crtc, enabled);
12711
12712                 if (!encoder->base.crtc) {
12713                         bool active;
12714
12715                         active = encoder->get_hw_state(encoder, &pipe);
12716                         I915_STATE_WARN(active,
12717                              "encoder detached but still enabled on pipe %c.\n",
12718                              pipe_name(pipe));
12719                 }
12720         }
12721 }
12722
12723 static void
12724 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12725 {
12726         struct drm_i915_private *dev_priv = dev->dev_private;
12727         struct intel_encoder *encoder;
12728         struct drm_crtc_state *old_crtc_state;
12729         struct drm_crtc *crtc;
12730         int i;
12731
12732         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12733                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12734                 struct intel_crtc_state *pipe_config, *sw_config;
12735                 bool active;
12736
12737                 if (!needs_modeset(crtc->state) &&
12738                     !to_intel_crtc_state(crtc->state)->update_pipe)
12739                         continue;
12740
12741                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12742                 pipe_config = to_intel_crtc_state(old_crtc_state);
12743                 memset(pipe_config, 0, sizeof(*pipe_config));
12744                 pipe_config->base.crtc = crtc;
12745                 pipe_config->base.state = old_state;
12746
12747                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12748                               crtc->base.id);
12749
12750                 active = dev_priv->display.get_pipe_config(intel_crtc,
12751                                                            pipe_config);
12752
12753                 /* hw state is inconsistent with the pipe quirk */
12754                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12755                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12756                         active = crtc->state->active;
12757
12758                 I915_STATE_WARN(crtc->state->active != active,
12759                      "crtc active state doesn't match with hw state "
12760                      "(expected %i, found %i)\n", crtc->state->active, active);
12761
12762                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12763                      "transitional active state does not match atomic hw state "
12764                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12765
12766                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12767                         enum pipe pipe;
12768
12769                         active = encoder->get_hw_state(encoder, &pipe);
12770                         I915_STATE_WARN(active != crtc->state->active,
12771                                 "[ENCODER:%i] active %i with crtc active %i\n",
12772                                 encoder->base.base.id, active, crtc->state->active);
12773
12774                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12775                                         "Encoder connected to wrong pipe %c\n",
12776                                         pipe_name(pipe));
12777
12778                         if (active)
12779                                 encoder->get_config(encoder, pipe_config);
12780                 }
12781
12782                 if (!crtc->state->active)
12783                         continue;
12784
12785                 sw_config = to_intel_crtc_state(crtc->state);
12786                 if (!intel_pipe_config_compare(dev, sw_config,
12787                                                pipe_config, false)) {
12788                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12789                         intel_dump_pipe_config(intel_crtc, pipe_config,
12790                                                "[hw state]");
12791                         intel_dump_pipe_config(intel_crtc, sw_config,
12792                                                "[sw state]");
12793                 }
12794         }
12795 }
12796
12797 static void
12798 check_shared_dpll_state(struct drm_device *dev)
12799 {
12800         struct drm_i915_private *dev_priv = dev->dev_private;
12801         struct intel_crtc *crtc;
12802         struct intel_dpll_hw_state dpll_hw_state;
12803         int i;
12804
12805         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12806                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12807                 int enabled_crtcs = 0, active_crtcs = 0;
12808                 bool active;
12809
12810                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12811
12812                 DRM_DEBUG_KMS("%s\n", pll->name);
12813
12814                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12815
12816                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12817                      "more active pll users than references: %i vs %i\n",
12818                      pll->active, hweight32(pll->config.crtc_mask));
12819                 I915_STATE_WARN(pll->active && !pll->on,
12820                      "pll in active use but not on in sw tracking\n");
12821                 I915_STATE_WARN(pll->on && !pll->active,
12822                      "pll in on but not on in use in sw tracking\n");
12823                 I915_STATE_WARN(pll->on != active,
12824                      "pll on state mismatch (expected %i, found %i)\n",
12825                      pll->on, active);
12826
12827                 for_each_intel_crtc(dev, crtc) {
12828                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12829                                 enabled_crtcs++;
12830                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12831                                 active_crtcs++;
12832                 }
12833                 I915_STATE_WARN(pll->active != active_crtcs,
12834                      "pll active crtcs mismatch (expected %i, found %i)\n",
12835                      pll->active, active_crtcs);
12836                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12837                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12838                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12839
12840                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12841                                        sizeof(dpll_hw_state)),
12842                      "pll hw state mismatch\n");
12843         }
12844 }
12845
12846 static void
12847 intel_modeset_check_state(struct drm_device *dev,
12848                           struct drm_atomic_state *old_state)
12849 {
12850         check_wm_state(dev);
12851         check_connector_state(dev, old_state);
12852         check_encoder_state(dev);
12853         check_crtc_state(dev, old_state);
12854         check_shared_dpll_state(dev);
12855 }
12856
12857 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12858                                      int dotclock)
12859 {
12860         /*
12861          * FDI already provided one idea for the dotclock.
12862          * Yell if the encoder disagrees.
12863          */
12864         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12865              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12866              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12867 }
12868
12869 static void update_scanline_offset(struct intel_crtc *crtc)
12870 {
12871         struct drm_device *dev = crtc->base.dev;
12872
12873         /*
12874          * The scanline counter increments at the leading edge of hsync.
12875          *
12876          * On most platforms it starts counting from vtotal-1 on the
12877          * first active line. That means the scanline counter value is
12878          * always one less than what we would expect. Ie. just after
12879          * start of vblank, which also occurs at start of hsync (on the
12880          * last active line), the scanline counter will read vblank_start-1.
12881          *
12882          * On gen2 the scanline counter starts counting from 1 instead
12883          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12884          * to keep the value positive), instead of adding one.
12885          *
12886          * On HSW+ the behaviour of the scanline counter depends on the output
12887          * type. For DP ports it behaves like most other platforms, but on HDMI
12888          * there's an extra 1 line difference. So we need to add two instead of
12889          * one to the value.
12890          */
12891         if (IS_GEN2(dev)) {
12892                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12893                 int vtotal;
12894
12895                 vtotal = adjusted_mode->crtc_vtotal;
12896                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12897                         vtotal /= 2;
12898
12899                 crtc->scanline_offset = vtotal - 1;
12900         } else if (HAS_DDI(dev) &&
12901                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12902                 crtc->scanline_offset = 2;
12903         } else
12904                 crtc->scanline_offset = 1;
12905 }
12906
12907 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12908 {
12909         struct drm_device *dev = state->dev;
12910         struct drm_i915_private *dev_priv = to_i915(dev);
12911         struct intel_shared_dpll_config *shared_dpll = NULL;
12912         struct intel_crtc *intel_crtc;
12913         struct intel_crtc_state *intel_crtc_state;
12914         struct drm_crtc *crtc;
12915         struct drm_crtc_state *crtc_state;
12916         int i;
12917
12918         if (!dev_priv->display.crtc_compute_clock)
12919                 return;
12920
12921         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12922                 int dpll;
12923
12924                 intel_crtc = to_intel_crtc(crtc);
12925                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12926                 dpll = intel_crtc_state->shared_dpll;
12927
12928                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12929                         continue;
12930
12931                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12932
12933                 if (!shared_dpll)
12934                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
12935
12936                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12937         }
12938 }
12939
12940 /*
12941  * This implements the workaround described in the "notes" section of the mode
12942  * set sequence documentation. When going from no pipes or single pipe to
12943  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12944  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12945  */
12946 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12947 {
12948         struct drm_crtc_state *crtc_state;
12949         struct intel_crtc *intel_crtc;
12950         struct drm_crtc *crtc;
12951         struct intel_crtc_state *first_crtc_state = NULL;
12952         struct intel_crtc_state *other_crtc_state = NULL;
12953         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12954         int i;
12955
12956         /* look at all crtc's that are going to be enabled in during modeset */
12957         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12958                 intel_crtc = to_intel_crtc(crtc);
12959
12960                 if (!crtc_state->active || !needs_modeset(crtc_state))
12961                         continue;
12962
12963                 if (first_crtc_state) {
12964                         other_crtc_state = to_intel_crtc_state(crtc_state);
12965                         break;
12966                 } else {
12967                         first_crtc_state = to_intel_crtc_state(crtc_state);
12968                         first_pipe = intel_crtc->pipe;
12969                 }
12970         }
12971
12972         /* No workaround needed? */
12973         if (!first_crtc_state)
12974                 return 0;
12975
12976         /* w/a possibly needed, check how many crtc's are already enabled. */
12977         for_each_intel_crtc(state->dev, intel_crtc) {
12978                 struct intel_crtc_state *pipe_config;
12979
12980                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12981                 if (IS_ERR(pipe_config))
12982                         return PTR_ERR(pipe_config);
12983
12984                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12985
12986                 if (!pipe_config->base.active ||
12987                     needs_modeset(&pipe_config->base))
12988                         continue;
12989
12990                 /* 2 or more enabled crtcs means no need for w/a */
12991                 if (enabled_pipe != INVALID_PIPE)
12992                         return 0;
12993
12994                 enabled_pipe = intel_crtc->pipe;
12995         }
12996
12997         if (enabled_pipe != INVALID_PIPE)
12998                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12999         else if (other_crtc_state)
13000                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13001
13002         return 0;
13003 }
13004
13005 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13006 {
13007         struct drm_crtc *crtc;
13008         struct drm_crtc_state *crtc_state;
13009         int ret = 0;
13010
13011         /* add all active pipes to the state */
13012         for_each_crtc(state->dev, crtc) {
13013                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13014                 if (IS_ERR(crtc_state))
13015                         return PTR_ERR(crtc_state);
13016
13017                 if (!crtc_state->active || needs_modeset(crtc_state))
13018                         continue;
13019
13020                 crtc_state->mode_changed = true;
13021
13022                 ret = drm_atomic_add_affected_connectors(state, crtc);
13023                 if (ret)
13024                         break;
13025
13026                 ret = drm_atomic_add_affected_planes(state, crtc);
13027                 if (ret)
13028                         break;
13029         }
13030
13031         return ret;
13032 }
13033
13034 static int intel_modeset_checks(struct drm_atomic_state *state)
13035 {
13036         struct drm_device *dev = state->dev;
13037         struct drm_i915_private *dev_priv = dev->dev_private;
13038         int ret;
13039
13040         if (!check_digital_port_conflicts(state)) {
13041                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13042                 return -EINVAL;
13043         }
13044
13045         /*
13046          * See if the config requires any additional preparation, e.g.
13047          * to adjust global state with pipes off.  We need to do this
13048          * here so we can get the modeset_pipe updated config for the new
13049          * mode set on this crtc.  For other crtcs we need to use the
13050          * adjusted_mode bits in the crtc directly.
13051          */
13052         if (dev_priv->display.modeset_calc_cdclk) {
13053                 unsigned int cdclk;
13054
13055                 ret = dev_priv->display.modeset_calc_cdclk(state);
13056
13057                 cdclk = to_intel_atomic_state(state)->cdclk;
13058                 if (!ret && cdclk != dev_priv->cdclk_freq)
13059                         ret = intel_modeset_all_pipes(state);
13060
13061                 if (ret < 0)
13062                         return ret;
13063         } else
13064                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13065
13066         intel_modeset_clear_plls(state);
13067
13068         if (IS_HASWELL(dev))
13069                 return haswell_mode_set_planes_workaround(state);
13070
13071         return 0;
13072 }
13073
13074 /**
13075  * intel_atomic_check - validate state object
13076  * @dev: drm device
13077  * @state: state to validate
13078  */
13079 static int intel_atomic_check(struct drm_device *dev,
13080                               struct drm_atomic_state *state)
13081 {
13082         struct drm_crtc *crtc;
13083         struct drm_crtc_state *crtc_state;
13084         int ret, i;
13085         bool any_ms = false;
13086
13087         ret = drm_atomic_helper_check_modeset(dev, state);
13088         if (ret)
13089                 return ret;
13090
13091         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13092                 struct intel_crtc_state *pipe_config =
13093                         to_intel_crtc_state(crtc_state);
13094
13095                 memset(&to_intel_crtc(crtc)->atomic, 0,
13096                        sizeof(struct intel_crtc_atomic_commit));
13097
13098                 /* Catch I915_MODE_FLAG_INHERITED */
13099                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13100                         crtc_state->mode_changed = true;
13101
13102                 if (!crtc_state->enable) {
13103                         if (needs_modeset(crtc_state))
13104                                 any_ms = true;
13105                         continue;
13106                 }
13107
13108                 if (!needs_modeset(crtc_state))
13109                         continue;
13110
13111                 /* FIXME: For only active_changed we shouldn't need to do any
13112                  * state recomputation at all. */
13113
13114                 ret = drm_atomic_add_affected_connectors(state, crtc);
13115                 if (ret)
13116                         return ret;
13117
13118                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13119                 if (ret)
13120                         return ret;
13121
13122                 if (i915.fastboot &&
13123                     intel_pipe_config_compare(state->dev,
13124                                         to_intel_crtc_state(crtc->state),
13125                                         pipe_config, true)) {
13126                         crtc_state->mode_changed = false;
13127                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13128                 }
13129
13130                 if (needs_modeset(crtc_state)) {
13131                         any_ms = true;
13132
13133                         ret = drm_atomic_add_affected_planes(state, crtc);
13134                         if (ret)
13135                                 return ret;
13136                 }
13137
13138                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13139                                        needs_modeset(crtc_state) ?
13140                                        "[modeset]" : "[fastset]");
13141         }
13142
13143         if (any_ms) {
13144                 ret = intel_modeset_checks(state);
13145
13146                 if (ret)
13147                         return ret;
13148         } else
13149                 to_intel_atomic_state(state)->cdclk =
13150                         to_i915(state->dev)->cdclk_freq;
13151
13152         return drm_atomic_helper_check_planes(state->dev, state);
13153 }
13154
13155 /**
13156  * intel_atomic_commit - commit validated state object
13157  * @dev: DRM device
13158  * @state: the top-level driver state object
13159  * @async: asynchronous commit
13160  *
13161  * This function commits a top-level state object that has been validated
13162  * with drm_atomic_helper_check().
13163  *
13164  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13165  * we can only handle plane-related operations and do not yet support
13166  * asynchronous commit.
13167  *
13168  * RETURNS
13169  * Zero for success or -errno.
13170  */
13171 static int intel_atomic_commit(struct drm_device *dev,
13172                                struct drm_atomic_state *state,
13173                                bool async)
13174 {
13175         struct drm_i915_private *dev_priv = dev->dev_private;
13176         struct drm_crtc *crtc;
13177         struct drm_crtc_state *crtc_state;
13178         int ret = 0;
13179         int i;
13180         bool any_ms = false;
13181
13182         if (async) {
13183                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13184                 return -EINVAL;
13185         }
13186
13187         ret = drm_atomic_helper_prepare_planes(dev, state);
13188         if (ret)
13189                 return ret;
13190
13191         drm_atomic_helper_swap_state(dev, state);
13192
13193         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13194                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13195
13196                 if (!needs_modeset(crtc->state))
13197                         continue;
13198
13199                 any_ms = true;
13200                 intel_pre_plane_update(intel_crtc);
13201
13202                 if (crtc_state->active) {
13203                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13204                         dev_priv->display.crtc_disable(crtc);
13205                         intel_crtc->active = false;
13206                         intel_disable_shared_dpll(intel_crtc);
13207                 }
13208         }
13209
13210         /* Only after disabling all output pipelines that will be changed can we
13211          * update the the output configuration. */
13212         intel_modeset_update_crtc_state(state);
13213
13214         if (any_ms) {
13215                 intel_shared_dpll_commit(state);
13216
13217                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13218                 modeset_update_crtc_power_domains(state);
13219         }
13220
13221         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13222         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13223                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13224                 bool modeset = needs_modeset(crtc->state);
13225                 bool update_pipe = !modeset &&
13226                         to_intel_crtc_state(crtc->state)->update_pipe;
13227                 unsigned long put_domains = 0;
13228
13229                 if (modeset && crtc->state->active) {
13230                         update_scanline_offset(to_intel_crtc(crtc));
13231                         dev_priv->display.crtc_enable(crtc);
13232                 }
13233
13234                 if (update_pipe) {
13235                         put_domains = modeset_get_crtc_power_domains(crtc);
13236
13237                         /* make sure intel_modeset_check_state runs */
13238                         any_ms = true;
13239                 }
13240
13241                 if (!modeset)
13242                         intel_pre_plane_update(intel_crtc);
13243
13244                 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13245
13246                 if (put_domains)
13247                         modeset_put_power_domains(dev_priv, put_domains);
13248
13249                 intel_post_plane_update(intel_crtc);
13250         }
13251
13252         /* FIXME: add subpixel order */
13253
13254         drm_atomic_helper_wait_for_vblanks(dev, state);
13255         drm_atomic_helper_cleanup_planes(dev, state);
13256
13257         if (any_ms)
13258                 intel_modeset_check_state(dev, state);
13259
13260         drm_atomic_state_free(state);
13261
13262         return 0;
13263 }
13264
13265 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13266 {
13267         struct drm_device *dev = crtc->dev;
13268         struct drm_atomic_state *state;
13269         struct drm_crtc_state *crtc_state;
13270         int ret;
13271
13272         state = drm_atomic_state_alloc(dev);
13273         if (!state) {
13274                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13275                               crtc->base.id);
13276                 return;
13277         }
13278
13279         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13280
13281 retry:
13282         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13283         ret = PTR_ERR_OR_ZERO(crtc_state);
13284         if (!ret) {
13285                 if (!crtc_state->active)
13286                         goto out;
13287
13288                 crtc_state->mode_changed = true;
13289                 ret = drm_atomic_commit(state);
13290         }
13291
13292         if (ret == -EDEADLK) {
13293                 drm_atomic_state_clear(state);
13294                 drm_modeset_backoff(state->acquire_ctx);
13295                 goto retry;
13296         }
13297
13298         if (ret)
13299 out:
13300                 drm_atomic_state_free(state);
13301 }
13302
13303 #undef for_each_intel_crtc_masked
13304
13305 static const struct drm_crtc_funcs intel_crtc_funcs = {
13306         .gamma_set = intel_crtc_gamma_set,
13307         .set_config = drm_atomic_helper_set_config,
13308         .destroy = intel_crtc_destroy,
13309         .page_flip = intel_crtc_page_flip,
13310         .atomic_duplicate_state = intel_crtc_duplicate_state,
13311         .atomic_destroy_state = intel_crtc_destroy_state,
13312 };
13313
13314 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13315                                       struct intel_shared_dpll *pll,
13316                                       struct intel_dpll_hw_state *hw_state)
13317 {
13318         uint32_t val;
13319
13320         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13321                 return false;
13322
13323         val = I915_READ(PCH_DPLL(pll->id));
13324         hw_state->dpll = val;
13325         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13326         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13327
13328         return val & DPLL_VCO_ENABLE;
13329 }
13330
13331 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13332                                   struct intel_shared_dpll *pll)
13333 {
13334         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13335         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13336 }
13337
13338 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13339                                 struct intel_shared_dpll *pll)
13340 {
13341         /* PCH refclock must be enabled first */
13342         ibx_assert_pch_refclk_enabled(dev_priv);
13343
13344         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13345
13346         /* Wait for the clocks to stabilize. */
13347         POSTING_READ(PCH_DPLL(pll->id));
13348         udelay(150);
13349
13350         /* The pixel multiplier can only be updated once the
13351          * DPLL is enabled and the clocks are stable.
13352          *
13353          * So write it again.
13354          */
13355         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13356         POSTING_READ(PCH_DPLL(pll->id));
13357         udelay(200);
13358 }
13359
13360 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13361                                  struct intel_shared_dpll *pll)
13362 {
13363         struct drm_device *dev = dev_priv->dev;
13364         struct intel_crtc *crtc;
13365
13366         /* Make sure no transcoder isn't still depending on us. */
13367         for_each_intel_crtc(dev, crtc) {
13368                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13369                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13370         }
13371
13372         I915_WRITE(PCH_DPLL(pll->id), 0);
13373         POSTING_READ(PCH_DPLL(pll->id));
13374         udelay(200);
13375 }
13376
13377 static char *ibx_pch_dpll_names[] = {
13378         "PCH DPLL A",
13379         "PCH DPLL B",
13380 };
13381
13382 static void ibx_pch_dpll_init(struct drm_device *dev)
13383 {
13384         struct drm_i915_private *dev_priv = dev->dev_private;
13385         int i;
13386
13387         dev_priv->num_shared_dpll = 2;
13388
13389         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13390                 dev_priv->shared_dplls[i].id = i;
13391                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13392                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13393                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13394                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13395                 dev_priv->shared_dplls[i].get_hw_state =
13396                         ibx_pch_dpll_get_hw_state;
13397         }
13398 }
13399
13400 static void intel_shared_dpll_init(struct drm_device *dev)
13401 {
13402         struct drm_i915_private *dev_priv = dev->dev_private;
13403
13404         if (HAS_DDI(dev))
13405                 intel_ddi_pll_init(dev);
13406         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13407                 ibx_pch_dpll_init(dev);
13408         else
13409                 dev_priv->num_shared_dpll = 0;
13410
13411         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13412 }
13413
13414 /**
13415  * intel_prepare_plane_fb - Prepare fb for usage on plane
13416  * @plane: drm plane to prepare for
13417  * @fb: framebuffer to prepare for presentation
13418  *
13419  * Prepares a framebuffer for usage on a display plane.  Generally this
13420  * involves pinning the underlying object and updating the frontbuffer tracking
13421  * bits.  Some older platforms need special physical address handling for
13422  * cursor planes.
13423  *
13424  * Returns 0 on success, negative error code on failure.
13425  */
13426 int
13427 intel_prepare_plane_fb(struct drm_plane *plane,
13428                        const struct drm_plane_state *new_state)
13429 {
13430         struct drm_device *dev = plane->dev;
13431         struct drm_framebuffer *fb = new_state->fb;
13432         struct intel_plane *intel_plane = to_intel_plane(plane);
13433         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13434         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13435         int ret = 0;
13436
13437         if (!obj)
13438                 return 0;
13439
13440         mutex_lock(&dev->struct_mutex);
13441
13442         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13443             INTEL_INFO(dev)->cursor_needs_physical) {
13444                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13445                 ret = i915_gem_object_attach_phys(obj, align);
13446                 if (ret)
13447                         DRM_DEBUG_KMS("failed to attach phys object\n");
13448         } else {
13449                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13450         }
13451
13452         if (ret == 0)
13453                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13454
13455         mutex_unlock(&dev->struct_mutex);
13456
13457         return ret;
13458 }
13459
13460 /**
13461  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13462  * @plane: drm plane to clean up for
13463  * @fb: old framebuffer that was on plane
13464  *
13465  * Cleans up a framebuffer that has just been removed from a plane.
13466  */
13467 void
13468 intel_cleanup_plane_fb(struct drm_plane *plane,
13469                        const struct drm_plane_state *old_state)
13470 {
13471         struct drm_device *dev = plane->dev;
13472         struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
13473
13474         if (!obj)
13475                 return;
13476
13477         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13478             !INTEL_INFO(dev)->cursor_needs_physical) {
13479                 mutex_lock(&dev->struct_mutex);
13480                 intel_unpin_fb_obj(old_state->fb, old_state);
13481                 mutex_unlock(&dev->struct_mutex);
13482         }
13483 }
13484
13485 int
13486 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13487 {
13488         int max_scale;
13489         struct drm_device *dev;
13490         struct drm_i915_private *dev_priv;
13491         int crtc_clock, cdclk;
13492
13493         if (!intel_crtc || !crtc_state)
13494                 return DRM_PLANE_HELPER_NO_SCALING;
13495
13496         dev = intel_crtc->base.dev;
13497         dev_priv = dev->dev_private;
13498         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13499         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13500
13501         if (!crtc_clock || !cdclk)
13502                 return DRM_PLANE_HELPER_NO_SCALING;
13503
13504         /*
13505          * skl max scale is lower of:
13506          *    close to 3 but not 3, -1 is for that purpose
13507          *            or
13508          *    cdclk/crtc_clock
13509          */
13510         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13511
13512         return max_scale;
13513 }
13514
13515 static int
13516 intel_check_primary_plane(struct drm_plane *plane,
13517                           struct intel_crtc_state *crtc_state,
13518                           struct intel_plane_state *state)
13519 {
13520         struct drm_crtc *crtc = state->base.crtc;
13521         struct drm_framebuffer *fb = state->base.fb;
13522         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13523         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13524         bool can_position = false;
13525
13526         /* use scaler when colorkey is not required */
13527         if (INTEL_INFO(plane->dev)->gen >= 9 &&
13528             state->ckey.flags == I915_SET_COLORKEY_NONE) {
13529                 min_scale = 1;
13530                 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13531                 can_position = true;
13532         }
13533
13534         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13535                                              &state->dst, &state->clip,
13536                                              min_scale, max_scale,
13537                                              can_position, true,
13538                                              &state->visible);
13539 }
13540
13541 static void
13542 intel_commit_primary_plane(struct drm_plane *plane,
13543                            struct intel_plane_state *state)
13544 {
13545         struct drm_crtc *crtc = state->base.crtc;
13546         struct drm_framebuffer *fb = state->base.fb;
13547         struct drm_device *dev = plane->dev;
13548         struct drm_i915_private *dev_priv = dev->dev_private;
13549         struct intel_crtc *intel_crtc;
13550         struct drm_rect *src = &state->src;
13551
13552         crtc = crtc ? crtc : plane->crtc;
13553         intel_crtc = to_intel_crtc(crtc);
13554
13555         plane->fb = fb;
13556         crtc->x = src->x1 >> 16;
13557         crtc->y = src->y1 >> 16;
13558
13559         if (!crtc->state->active)
13560                 return;
13561
13562         dev_priv->display.update_primary_plane(crtc, fb,
13563                                                state->src.x1 >> 16,
13564                                                state->src.y1 >> 16);
13565 }
13566
13567 static void
13568 intel_disable_primary_plane(struct drm_plane *plane,
13569                             struct drm_crtc *crtc)
13570 {
13571         struct drm_device *dev = plane->dev;
13572         struct drm_i915_private *dev_priv = dev->dev_private;
13573
13574         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13575 }
13576
13577 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13578                                     struct drm_crtc_state *old_crtc_state)
13579 {
13580         struct drm_device *dev = crtc->dev;
13581         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13582         struct intel_crtc_state *old_intel_state =
13583                 to_intel_crtc_state(old_crtc_state);
13584         bool modeset = needs_modeset(crtc->state);
13585
13586         if (intel_crtc->atomic.update_wm_pre)
13587                 intel_update_watermarks(crtc);
13588
13589         /* Perform vblank evasion around commit operation */
13590         if (crtc->state->active)
13591                 intel_pipe_update_start(intel_crtc);
13592
13593         if (modeset)
13594                 return;
13595
13596         if (to_intel_crtc_state(crtc->state)->update_pipe)
13597                 intel_update_pipe_config(intel_crtc, old_intel_state);
13598         else if (INTEL_INFO(dev)->gen >= 9)
13599                 skl_detach_scalers(intel_crtc);
13600 }
13601
13602 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13603                                      struct drm_crtc_state *old_crtc_state)
13604 {
13605         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13606
13607         if (crtc->state->active)
13608                 intel_pipe_update_end(intel_crtc);
13609 }
13610
13611 /**
13612  * intel_plane_destroy - destroy a plane
13613  * @plane: plane to destroy
13614  *
13615  * Common destruction function for all types of planes (primary, cursor,
13616  * sprite).
13617  */
13618 void intel_plane_destroy(struct drm_plane *plane)
13619 {
13620         struct intel_plane *intel_plane = to_intel_plane(plane);
13621         drm_plane_cleanup(plane);
13622         kfree(intel_plane);
13623 }
13624
13625 const struct drm_plane_funcs intel_plane_funcs = {
13626         .update_plane = drm_atomic_helper_update_plane,
13627         .disable_plane = drm_atomic_helper_disable_plane,
13628         .destroy = intel_plane_destroy,
13629         .set_property = drm_atomic_helper_plane_set_property,
13630         .atomic_get_property = intel_plane_atomic_get_property,
13631         .atomic_set_property = intel_plane_atomic_set_property,
13632         .atomic_duplicate_state = intel_plane_duplicate_state,
13633         .atomic_destroy_state = intel_plane_destroy_state,
13634
13635 };
13636
13637 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13638                                                     int pipe)
13639 {
13640         struct intel_plane *primary;
13641         struct intel_plane_state *state;
13642         const uint32_t *intel_primary_formats;
13643         unsigned int num_formats;
13644
13645         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13646         if (primary == NULL)
13647                 return NULL;
13648
13649         state = intel_create_plane_state(&primary->base);
13650         if (!state) {
13651                 kfree(primary);
13652                 return NULL;
13653         }
13654         primary->base.state = &state->base;
13655
13656         primary->can_scale = false;
13657         primary->max_downscale = 1;
13658         if (INTEL_INFO(dev)->gen >= 9) {
13659                 primary->can_scale = true;
13660                 state->scaler_id = -1;
13661         }
13662         primary->pipe = pipe;
13663         primary->plane = pipe;
13664         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13665         primary->check_plane = intel_check_primary_plane;
13666         primary->commit_plane = intel_commit_primary_plane;
13667         primary->disable_plane = intel_disable_primary_plane;
13668         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13669                 primary->plane = !pipe;
13670
13671         if (INTEL_INFO(dev)->gen >= 9) {
13672                 intel_primary_formats = skl_primary_formats;
13673                 num_formats = ARRAY_SIZE(skl_primary_formats);
13674         } else if (INTEL_INFO(dev)->gen >= 4) {
13675                 intel_primary_formats = i965_primary_formats;
13676                 num_formats = ARRAY_SIZE(i965_primary_formats);
13677         } else {
13678                 intel_primary_formats = i8xx_primary_formats;
13679                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13680         }
13681
13682         drm_universal_plane_init(dev, &primary->base, 0,
13683                                  &intel_plane_funcs,
13684                                  intel_primary_formats, num_formats,
13685                                  DRM_PLANE_TYPE_PRIMARY);
13686
13687         if (INTEL_INFO(dev)->gen >= 4)
13688                 intel_create_rotation_property(dev, primary);
13689
13690         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13691
13692         return &primary->base;
13693 }
13694
13695 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13696 {
13697         if (!dev->mode_config.rotation_property) {
13698                 unsigned long flags = BIT(DRM_ROTATE_0) |
13699                         BIT(DRM_ROTATE_180);
13700
13701                 if (INTEL_INFO(dev)->gen >= 9)
13702                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13703
13704                 dev->mode_config.rotation_property =
13705                         drm_mode_create_rotation_property(dev, flags);
13706         }
13707         if (dev->mode_config.rotation_property)
13708                 drm_object_attach_property(&plane->base.base,
13709                                 dev->mode_config.rotation_property,
13710                                 plane->base.state->rotation);
13711 }
13712
13713 static int
13714 intel_check_cursor_plane(struct drm_plane *plane,
13715                          struct intel_crtc_state *crtc_state,
13716                          struct intel_plane_state *state)
13717 {
13718         struct drm_crtc *crtc = crtc_state->base.crtc;
13719         struct drm_framebuffer *fb = state->base.fb;
13720         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13721         unsigned stride;
13722         int ret;
13723
13724         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13725                                             &state->dst, &state->clip,
13726                                             DRM_PLANE_HELPER_NO_SCALING,
13727                                             DRM_PLANE_HELPER_NO_SCALING,
13728                                             true, true, &state->visible);
13729         if (ret)
13730                 return ret;
13731
13732         /* if we want to turn off the cursor ignore width and height */
13733         if (!obj)
13734                 return 0;
13735
13736         /* Check for which cursor types we support */
13737         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13738                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13739                           state->base.crtc_w, state->base.crtc_h);
13740                 return -EINVAL;
13741         }
13742
13743         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13744         if (obj->base.size < stride * state->base.crtc_h) {
13745                 DRM_DEBUG_KMS("buffer is too small\n");
13746                 return -ENOMEM;
13747         }
13748
13749         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13750                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13751                 return -EINVAL;
13752         }
13753
13754         return 0;
13755 }
13756
13757 static void
13758 intel_disable_cursor_plane(struct drm_plane *plane,
13759                            struct drm_crtc *crtc)
13760 {
13761         intel_crtc_update_cursor(crtc, false);
13762 }
13763
13764 static void
13765 intel_commit_cursor_plane(struct drm_plane *plane,
13766                           struct intel_plane_state *state)
13767 {
13768         struct drm_crtc *crtc = state->base.crtc;
13769         struct drm_device *dev = plane->dev;
13770         struct intel_crtc *intel_crtc;
13771         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13772         uint32_t addr;
13773
13774         crtc = crtc ? crtc : plane->crtc;
13775         intel_crtc = to_intel_crtc(crtc);
13776
13777         if (intel_crtc->cursor_bo == obj)
13778                 goto update;
13779
13780         if (!obj)
13781                 addr = 0;
13782         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13783                 addr = i915_gem_obj_ggtt_offset(obj);
13784         else
13785                 addr = obj->phys_handle->busaddr;
13786
13787         intel_crtc->cursor_addr = addr;
13788         intel_crtc->cursor_bo = obj;
13789
13790 update:
13791         if (crtc->state->active)
13792                 intel_crtc_update_cursor(crtc, state->visible);
13793 }
13794
13795 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13796                                                    int pipe)
13797 {
13798         struct intel_plane *cursor;
13799         struct intel_plane_state *state;
13800
13801         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13802         if (cursor == NULL)
13803                 return NULL;
13804
13805         state = intel_create_plane_state(&cursor->base);
13806         if (!state) {
13807                 kfree(cursor);
13808                 return NULL;
13809         }
13810         cursor->base.state = &state->base;
13811
13812         cursor->can_scale = false;
13813         cursor->max_downscale = 1;
13814         cursor->pipe = pipe;
13815         cursor->plane = pipe;
13816         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13817         cursor->check_plane = intel_check_cursor_plane;
13818         cursor->commit_plane = intel_commit_cursor_plane;
13819         cursor->disable_plane = intel_disable_cursor_plane;
13820
13821         drm_universal_plane_init(dev, &cursor->base, 0,
13822                                  &intel_plane_funcs,
13823                                  intel_cursor_formats,
13824                                  ARRAY_SIZE(intel_cursor_formats),
13825                                  DRM_PLANE_TYPE_CURSOR);
13826
13827         if (INTEL_INFO(dev)->gen >= 4) {
13828                 if (!dev->mode_config.rotation_property)
13829                         dev->mode_config.rotation_property =
13830                                 drm_mode_create_rotation_property(dev,
13831                                                         BIT(DRM_ROTATE_0) |
13832                                                         BIT(DRM_ROTATE_180));
13833                 if (dev->mode_config.rotation_property)
13834                         drm_object_attach_property(&cursor->base.base,
13835                                 dev->mode_config.rotation_property,
13836                                 state->base.rotation);
13837         }
13838
13839         if (INTEL_INFO(dev)->gen >=9)
13840                 state->scaler_id = -1;
13841
13842         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13843
13844         return &cursor->base;
13845 }
13846
13847 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13848         struct intel_crtc_state *crtc_state)
13849 {
13850         int i;
13851         struct intel_scaler *intel_scaler;
13852         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13853
13854         for (i = 0; i < intel_crtc->num_scalers; i++) {
13855                 intel_scaler = &scaler_state->scalers[i];
13856                 intel_scaler->in_use = 0;
13857                 intel_scaler->mode = PS_SCALER_MODE_DYN;
13858         }
13859
13860         scaler_state->scaler_id = -1;
13861 }
13862
13863 static void intel_crtc_init(struct drm_device *dev, int pipe)
13864 {
13865         struct drm_i915_private *dev_priv = dev->dev_private;
13866         struct intel_crtc *intel_crtc;
13867         struct intel_crtc_state *crtc_state = NULL;
13868         struct drm_plane *primary = NULL;
13869         struct drm_plane *cursor = NULL;
13870         int i, ret;
13871
13872         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13873         if (intel_crtc == NULL)
13874                 return;
13875
13876         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13877         if (!crtc_state)
13878                 goto fail;
13879         intel_crtc->config = crtc_state;
13880         intel_crtc->base.state = &crtc_state->base;
13881         crtc_state->base.crtc = &intel_crtc->base;
13882
13883         /* initialize shared scalers */
13884         if (INTEL_INFO(dev)->gen >= 9) {
13885                 if (pipe == PIPE_C)
13886                         intel_crtc->num_scalers = 1;
13887                 else
13888                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
13889
13890                 skl_init_scalers(dev, intel_crtc, crtc_state);
13891         }
13892
13893         primary = intel_primary_plane_create(dev, pipe);
13894         if (!primary)
13895                 goto fail;
13896
13897         cursor = intel_cursor_plane_create(dev, pipe);
13898         if (!cursor)
13899                 goto fail;
13900
13901         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13902                                         cursor, &intel_crtc_funcs);
13903         if (ret)
13904                 goto fail;
13905
13906         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13907         for (i = 0; i < 256; i++) {
13908                 intel_crtc->lut_r[i] = i;
13909                 intel_crtc->lut_g[i] = i;
13910                 intel_crtc->lut_b[i] = i;
13911         }
13912
13913         /*
13914          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13915          * is hooked to pipe B. Hence we want plane A feeding pipe B.
13916          */
13917         intel_crtc->pipe = pipe;
13918         intel_crtc->plane = pipe;
13919         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13920                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13921                 intel_crtc->plane = !pipe;
13922         }
13923
13924         intel_crtc->cursor_base = ~0;
13925         intel_crtc->cursor_cntl = ~0;
13926         intel_crtc->cursor_size = ~0;
13927
13928         intel_crtc->wm.cxsr_allowed = true;
13929
13930         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13931                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13932         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13933         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13934
13935         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13936
13937         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13938         return;
13939
13940 fail:
13941         if (primary)
13942                 drm_plane_cleanup(primary);
13943         if (cursor)
13944                 drm_plane_cleanup(cursor);
13945         kfree(crtc_state);
13946         kfree(intel_crtc);
13947 }
13948
13949 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13950 {
13951         struct drm_encoder *encoder = connector->base.encoder;
13952         struct drm_device *dev = connector->base.dev;
13953
13954         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13955
13956         if (!encoder || WARN_ON(!encoder->crtc))
13957                 return INVALID_PIPE;
13958
13959         return to_intel_crtc(encoder->crtc)->pipe;
13960 }
13961
13962 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13963                                 struct drm_file *file)
13964 {
13965         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13966         struct drm_crtc *drmmode_crtc;
13967         struct intel_crtc *crtc;
13968
13969         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13970
13971         if (!drmmode_crtc) {
13972                 DRM_ERROR("no such CRTC id\n");
13973                 return -ENOENT;
13974         }
13975
13976         crtc = to_intel_crtc(drmmode_crtc);
13977         pipe_from_crtc_id->pipe = crtc->pipe;
13978
13979         return 0;
13980 }
13981
13982 static int intel_encoder_clones(struct intel_encoder *encoder)
13983 {
13984         struct drm_device *dev = encoder->base.dev;
13985         struct intel_encoder *source_encoder;
13986         int index_mask = 0;
13987         int entry = 0;
13988
13989         for_each_intel_encoder(dev, source_encoder) {
13990                 if (encoders_cloneable(encoder, source_encoder))
13991                         index_mask |= (1 << entry);
13992
13993                 entry++;
13994         }
13995
13996         return index_mask;
13997 }
13998
13999 static bool has_edp_a(struct drm_device *dev)
14000 {
14001         struct drm_i915_private *dev_priv = dev->dev_private;
14002
14003         if (!IS_MOBILE(dev))
14004                 return false;
14005
14006         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14007                 return false;
14008
14009         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14010                 return false;
14011
14012         return true;
14013 }
14014
14015 static bool intel_crt_present(struct drm_device *dev)
14016 {
14017         struct drm_i915_private *dev_priv = dev->dev_private;
14018
14019         if (INTEL_INFO(dev)->gen >= 9)
14020                 return false;
14021
14022         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14023                 return false;
14024
14025         if (IS_CHERRYVIEW(dev))
14026                 return false;
14027
14028         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14029                 return false;
14030
14031         return true;
14032 }
14033
14034 static void intel_setup_outputs(struct drm_device *dev)
14035 {
14036         struct drm_i915_private *dev_priv = dev->dev_private;
14037         struct intel_encoder *encoder;
14038         bool dpd_is_edp = false;
14039
14040         intel_lvds_init(dev);
14041
14042         if (intel_crt_present(dev))
14043                 intel_crt_init(dev);
14044
14045         if (IS_BROXTON(dev)) {
14046                 /*
14047                  * FIXME: Broxton doesn't support port detection via the
14048                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14049                  * detect the ports.
14050                  */
14051                 intel_ddi_init(dev, PORT_A);
14052                 intel_ddi_init(dev, PORT_B);
14053                 intel_ddi_init(dev, PORT_C);
14054         } else if (HAS_DDI(dev)) {
14055                 int found;
14056
14057                 /*
14058                  * Haswell uses DDI functions to detect digital outputs.
14059                  * On SKL pre-D0 the strap isn't connected, so we assume
14060                  * it's there.
14061                  */
14062                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14063                 /* WaIgnoreDDIAStrap: skl */
14064                 if (found || IS_SKYLAKE(dev))
14065                         intel_ddi_init(dev, PORT_A);
14066
14067                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14068                  * register */
14069                 found = I915_READ(SFUSE_STRAP);
14070
14071                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14072                         intel_ddi_init(dev, PORT_B);
14073                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14074                         intel_ddi_init(dev, PORT_C);
14075                 if (found & SFUSE_STRAP_DDID_DETECTED)
14076                         intel_ddi_init(dev, PORT_D);
14077                 /*
14078                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14079                  */
14080                 if (IS_SKYLAKE(dev) &&
14081                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14082                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14083                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14084                         intel_ddi_init(dev, PORT_E);
14085
14086         } else if (HAS_PCH_SPLIT(dev)) {
14087                 int found;
14088                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14089
14090                 if (has_edp_a(dev))
14091                         intel_dp_init(dev, DP_A, PORT_A);
14092
14093                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14094                         /* PCH SDVOB multiplex with HDMIB */
14095                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
14096                         if (!found)
14097                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14098                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14099                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14100                 }
14101
14102                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14103                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14104
14105                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14106                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14107
14108                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14109                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14110
14111                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14112                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14113         } else if (IS_VALLEYVIEW(dev)) {
14114                 /*
14115                  * The DP_DETECTED bit is the latched state of the DDC
14116                  * SDA pin at boot. However since eDP doesn't require DDC
14117                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14118                  * eDP ports may have been muxed to an alternate function.
14119                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14120                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14121                  * detect eDP ports.
14122                  */
14123                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14124                     !intel_dp_is_edp(dev, PORT_B))
14125                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14126                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14127                     intel_dp_is_edp(dev, PORT_B))
14128                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14129
14130                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14131                     !intel_dp_is_edp(dev, PORT_C))
14132                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14133                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14134                     intel_dp_is_edp(dev, PORT_C))
14135                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14136
14137                 if (IS_CHERRYVIEW(dev)) {
14138                         /* eDP not supported on port D, so don't check VBT */
14139                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14140                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14141                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14142                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14143                 }
14144
14145                 intel_dsi_init(dev);
14146         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14147                 bool found = false;
14148
14149                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14150                         DRM_DEBUG_KMS("probing SDVOB\n");
14151                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14152                         if (!found && IS_G4X(dev)) {
14153                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14154                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14155                         }
14156
14157                         if (!found && IS_G4X(dev))
14158                                 intel_dp_init(dev, DP_B, PORT_B);
14159                 }
14160
14161                 /* Before G4X SDVOC doesn't have its own detect register */
14162
14163                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14164                         DRM_DEBUG_KMS("probing SDVOC\n");
14165                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14166                 }
14167
14168                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14169
14170                         if (IS_G4X(dev)) {
14171                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14172                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14173                         }
14174                         if (IS_G4X(dev))
14175                                 intel_dp_init(dev, DP_C, PORT_C);
14176                 }
14177
14178                 if (IS_G4X(dev) &&
14179                     (I915_READ(DP_D) & DP_DETECTED))
14180                         intel_dp_init(dev, DP_D, PORT_D);
14181         } else if (IS_GEN2(dev))
14182                 intel_dvo_init(dev);
14183
14184         if (SUPPORTS_TV(dev))
14185                 intel_tv_init(dev);
14186
14187         intel_psr_init(dev);
14188
14189         for_each_intel_encoder(dev, encoder) {
14190                 encoder->base.possible_crtcs = encoder->crtc_mask;
14191                 encoder->base.possible_clones =
14192                         intel_encoder_clones(encoder);
14193         }
14194
14195         intel_init_pch_refclk(dev);
14196
14197         drm_helper_move_panel_connectors_to_head(dev);
14198 }
14199
14200 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14201 {
14202         struct drm_device *dev = fb->dev;
14203         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14204
14205         drm_framebuffer_cleanup(fb);
14206         mutex_lock(&dev->struct_mutex);
14207         WARN_ON(!intel_fb->obj->framebuffer_references--);
14208         drm_gem_object_unreference(&intel_fb->obj->base);
14209         mutex_unlock(&dev->struct_mutex);
14210         kfree(intel_fb);
14211 }
14212
14213 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14214                                                 struct drm_file *file,
14215                                                 unsigned int *handle)
14216 {
14217         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14218         struct drm_i915_gem_object *obj = intel_fb->obj;
14219
14220         if (obj->userptr.mm) {
14221                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14222                 return -EINVAL;
14223         }
14224
14225         return drm_gem_handle_create(file, &obj->base, handle);
14226 }
14227
14228 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14229                                         struct drm_file *file,
14230                                         unsigned flags, unsigned color,
14231                                         struct drm_clip_rect *clips,
14232                                         unsigned num_clips)
14233 {
14234         struct drm_device *dev = fb->dev;
14235         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14236         struct drm_i915_gem_object *obj = intel_fb->obj;
14237
14238         mutex_lock(&dev->struct_mutex);
14239         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14240         mutex_unlock(&dev->struct_mutex);
14241
14242         return 0;
14243 }
14244
14245 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14246         .destroy = intel_user_framebuffer_destroy,
14247         .create_handle = intel_user_framebuffer_create_handle,
14248         .dirty = intel_user_framebuffer_dirty,
14249 };
14250
14251 static
14252 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14253                          uint32_t pixel_format)
14254 {
14255         u32 gen = INTEL_INFO(dev)->gen;
14256
14257         if (gen >= 9) {
14258                 /* "The stride in bytes must not exceed the of the size of 8K
14259                  *  pixels and 32K bytes."
14260                  */
14261                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14262         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14263                 return 32*1024;
14264         } else if (gen >= 4) {
14265                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14266                         return 16*1024;
14267                 else
14268                         return 32*1024;
14269         } else if (gen >= 3) {
14270                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14271                         return 8*1024;
14272                 else
14273                         return 16*1024;
14274         } else {
14275                 /* XXX DSPC is limited to 4k tiled */
14276                 return 8*1024;
14277         }
14278 }
14279
14280 static int intel_framebuffer_init(struct drm_device *dev,
14281                                   struct intel_framebuffer *intel_fb,
14282                                   struct drm_mode_fb_cmd2 *mode_cmd,
14283                                   struct drm_i915_gem_object *obj)
14284 {
14285         unsigned int aligned_height;
14286         int ret;
14287         u32 pitch_limit, stride_alignment;
14288
14289         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14290
14291         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14292                 /* Enforce that fb modifier and tiling mode match, but only for
14293                  * X-tiled. This is needed for FBC. */
14294                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14295                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14296                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14297                         return -EINVAL;
14298                 }
14299         } else {
14300                 if (obj->tiling_mode == I915_TILING_X)
14301                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14302                 else if (obj->tiling_mode == I915_TILING_Y) {
14303                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14304                         return -EINVAL;
14305                 }
14306         }
14307
14308         /* Passed in modifier sanity checking. */
14309         switch (mode_cmd->modifier[0]) {
14310         case I915_FORMAT_MOD_Y_TILED:
14311         case I915_FORMAT_MOD_Yf_TILED:
14312                 if (INTEL_INFO(dev)->gen < 9) {
14313                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14314                                   mode_cmd->modifier[0]);
14315                         return -EINVAL;
14316                 }
14317         case DRM_FORMAT_MOD_NONE:
14318         case I915_FORMAT_MOD_X_TILED:
14319                 break;
14320         default:
14321                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14322                           mode_cmd->modifier[0]);
14323                 return -EINVAL;
14324         }
14325
14326         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14327                                                      mode_cmd->pixel_format);
14328         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14329                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14330                           mode_cmd->pitches[0], stride_alignment);
14331                 return -EINVAL;
14332         }
14333
14334         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14335                                            mode_cmd->pixel_format);
14336         if (mode_cmd->pitches[0] > pitch_limit) {
14337                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14338                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14339                           "tiled" : "linear",
14340                           mode_cmd->pitches[0], pitch_limit);
14341                 return -EINVAL;
14342         }
14343
14344         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14345             mode_cmd->pitches[0] != obj->stride) {
14346                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14347                           mode_cmd->pitches[0], obj->stride);
14348                 return -EINVAL;
14349         }
14350
14351         /* Reject formats not supported by any plane early. */
14352         switch (mode_cmd->pixel_format) {
14353         case DRM_FORMAT_C8:
14354         case DRM_FORMAT_RGB565:
14355         case DRM_FORMAT_XRGB8888:
14356         case DRM_FORMAT_ARGB8888:
14357                 break;
14358         case DRM_FORMAT_XRGB1555:
14359                 if (INTEL_INFO(dev)->gen > 3) {
14360                         DRM_DEBUG("unsupported pixel format: %s\n",
14361                                   drm_get_format_name(mode_cmd->pixel_format));
14362                         return -EINVAL;
14363                 }
14364                 break;
14365         case DRM_FORMAT_ABGR8888:
14366                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14367                         DRM_DEBUG("unsupported pixel format: %s\n",
14368                                   drm_get_format_name(mode_cmd->pixel_format));
14369                         return -EINVAL;
14370                 }
14371                 break;
14372         case DRM_FORMAT_XBGR8888:
14373         case DRM_FORMAT_XRGB2101010:
14374         case DRM_FORMAT_XBGR2101010:
14375                 if (INTEL_INFO(dev)->gen < 4) {
14376                         DRM_DEBUG("unsupported pixel format: %s\n",
14377                                   drm_get_format_name(mode_cmd->pixel_format));
14378                         return -EINVAL;
14379                 }
14380                 break;
14381         case DRM_FORMAT_ABGR2101010:
14382                 if (!IS_VALLEYVIEW(dev)) {
14383                         DRM_DEBUG("unsupported pixel format: %s\n",
14384                                   drm_get_format_name(mode_cmd->pixel_format));
14385                         return -EINVAL;
14386                 }
14387                 break;
14388         case DRM_FORMAT_YUYV:
14389         case DRM_FORMAT_UYVY:
14390         case DRM_FORMAT_YVYU:
14391         case DRM_FORMAT_VYUY:
14392                 if (INTEL_INFO(dev)->gen < 5) {
14393                         DRM_DEBUG("unsupported pixel format: %s\n",
14394                                   drm_get_format_name(mode_cmd->pixel_format));
14395                         return -EINVAL;
14396                 }
14397                 break;
14398         default:
14399                 DRM_DEBUG("unsupported pixel format: %s\n",
14400                           drm_get_format_name(mode_cmd->pixel_format));
14401                 return -EINVAL;
14402         }
14403
14404         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14405         if (mode_cmd->offsets[0] != 0)
14406                 return -EINVAL;
14407
14408         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14409                                                mode_cmd->pixel_format,
14410                                                mode_cmd->modifier[0]);
14411         /* FIXME drm helper for size checks (especially planar formats)? */
14412         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14413                 return -EINVAL;
14414
14415         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14416         intel_fb->obj = obj;
14417         intel_fb->obj->framebuffer_references++;
14418
14419         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14420         if (ret) {
14421                 DRM_ERROR("framebuffer init failed %d\n", ret);
14422                 return ret;
14423         }
14424
14425         return 0;
14426 }
14427
14428 static struct drm_framebuffer *
14429 intel_user_framebuffer_create(struct drm_device *dev,
14430                               struct drm_file *filp,
14431                               struct drm_mode_fb_cmd2 *user_mode_cmd)
14432 {
14433         struct drm_i915_gem_object *obj;
14434         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14435
14436         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14437                                                 mode_cmd.handles[0]));
14438         if (&obj->base == NULL)
14439                 return ERR_PTR(-ENOENT);
14440
14441         return intel_framebuffer_create(dev, &mode_cmd, obj);
14442 }
14443
14444 #ifndef CONFIG_DRM_FBDEV_EMULATION
14445 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14446 {
14447 }
14448 #endif
14449
14450 static const struct drm_mode_config_funcs intel_mode_funcs = {
14451         .fb_create = intel_user_framebuffer_create,
14452         .output_poll_changed = intel_fbdev_output_poll_changed,
14453         .atomic_check = intel_atomic_check,
14454         .atomic_commit = intel_atomic_commit,
14455         .atomic_state_alloc = intel_atomic_state_alloc,
14456         .atomic_state_clear = intel_atomic_state_clear,
14457 };
14458
14459 /* Set up chip specific display functions */
14460 static void intel_init_display(struct drm_device *dev)
14461 {
14462         struct drm_i915_private *dev_priv = dev->dev_private;
14463
14464         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14465                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14466         else if (IS_CHERRYVIEW(dev))
14467                 dev_priv->display.find_dpll = chv_find_best_dpll;
14468         else if (IS_VALLEYVIEW(dev))
14469                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14470         else if (IS_PINEVIEW(dev))
14471                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14472         else
14473                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14474
14475         if (INTEL_INFO(dev)->gen >= 9) {
14476                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14477                 dev_priv->display.get_initial_plane_config =
14478                         skylake_get_initial_plane_config;
14479                 dev_priv->display.crtc_compute_clock =
14480                         haswell_crtc_compute_clock;
14481                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14482                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14483                 dev_priv->display.update_primary_plane =
14484                         skylake_update_primary_plane;
14485         } else if (HAS_DDI(dev)) {
14486                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14487                 dev_priv->display.get_initial_plane_config =
14488                         ironlake_get_initial_plane_config;
14489                 dev_priv->display.crtc_compute_clock =
14490                         haswell_crtc_compute_clock;
14491                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14492                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14493                 dev_priv->display.update_primary_plane =
14494                         ironlake_update_primary_plane;
14495         } else if (HAS_PCH_SPLIT(dev)) {
14496                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14497                 dev_priv->display.get_initial_plane_config =
14498                         ironlake_get_initial_plane_config;
14499                 dev_priv->display.crtc_compute_clock =
14500                         ironlake_crtc_compute_clock;
14501                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14502                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14503                 dev_priv->display.update_primary_plane =
14504                         ironlake_update_primary_plane;
14505         } else if (IS_VALLEYVIEW(dev)) {
14506                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14507                 dev_priv->display.get_initial_plane_config =
14508                         i9xx_get_initial_plane_config;
14509                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14510                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14511                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14512                 dev_priv->display.update_primary_plane =
14513                         i9xx_update_primary_plane;
14514         } else {
14515                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14516                 dev_priv->display.get_initial_plane_config =
14517                         i9xx_get_initial_plane_config;
14518                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14519                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14520                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14521                 dev_priv->display.update_primary_plane =
14522                         i9xx_update_primary_plane;
14523         }
14524
14525         /* Returns the core display clock speed */
14526         if (IS_SKYLAKE(dev))
14527                 dev_priv->display.get_display_clock_speed =
14528                         skylake_get_display_clock_speed;
14529         else if (IS_BROXTON(dev))
14530                 dev_priv->display.get_display_clock_speed =
14531                         broxton_get_display_clock_speed;
14532         else if (IS_BROADWELL(dev))
14533                 dev_priv->display.get_display_clock_speed =
14534                         broadwell_get_display_clock_speed;
14535         else if (IS_HASWELL(dev))
14536                 dev_priv->display.get_display_clock_speed =
14537                         haswell_get_display_clock_speed;
14538         else if (IS_VALLEYVIEW(dev))
14539                 dev_priv->display.get_display_clock_speed =
14540                         valleyview_get_display_clock_speed;
14541         else if (IS_GEN5(dev))
14542                 dev_priv->display.get_display_clock_speed =
14543                         ilk_get_display_clock_speed;
14544         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14545                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14546                 dev_priv->display.get_display_clock_speed =
14547                         i945_get_display_clock_speed;
14548         else if (IS_GM45(dev))
14549                 dev_priv->display.get_display_clock_speed =
14550                         gm45_get_display_clock_speed;
14551         else if (IS_CRESTLINE(dev))
14552                 dev_priv->display.get_display_clock_speed =
14553                         i965gm_get_display_clock_speed;
14554         else if (IS_PINEVIEW(dev))
14555                 dev_priv->display.get_display_clock_speed =
14556                         pnv_get_display_clock_speed;
14557         else if (IS_G33(dev) || IS_G4X(dev))
14558                 dev_priv->display.get_display_clock_speed =
14559                         g33_get_display_clock_speed;
14560         else if (IS_I915G(dev))
14561                 dev_priv->display.get_display_clock_speed =
14562                         i915_get_display_clock_speed;
14563         else if (IS_I945GM(dev) || IS_845G(dev))
14564                 dev_priv->display.get_display_clock_speed =
14565                         i9xx_misc_get_display_clock_speed;
14566         else if (IS_PINEVIEW(dev))
14567                 dev_priv->display.get_display_clock_speed =
14568                         pnv_get_display_clock_speed;
14569         else if (IS_I915GM(dev))
14570                 dev_priv->display.get_display_clock_speed =
14571                         i915gm_get_display_clock_speed;
14572         else if (IS_I865G(dev))
14573                 dev_priv->display.get_display_clock_speed =
14574                         i865_get_display_clock_speed;
14575         else if (IS_I85X(dev))
14576                 dev_priv->display.get_display_clock_speed =
14577                         i85x_get_display_clock_speed;
14578         else { /* 830 */
14579                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14580                 dev_priv->display.get_display_clock_speed =
14581                         i830_get_display_clock_speed;
14582         }
14583
14584         if (IS_GEN5(dev)) {
14585                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14586         } else if (IS_GEN6(dev)) {
14587                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14588         } else if (IS_IVYBRIDGE(dev)) {
14589                 /* FIXME: detect B0+ stepping and use auto training */
14590                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14591         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14592                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14593                 if (IS_BROADWELL(dev)) {
14594                         dev_priv->display.modeset_commit_cdclk =
14595                                 broadwell_modeset_commit_cdclk;
14596                         dev_priv->display.modeset_calc_cdclk =
14597                                 broadwell_modeset_calc_cdclk;
14598                 }
14599         } else if (IS_VALLEYVIEW(dev)) {
14600                 dev_priv->display.modeset_commit_cdclk =
14601                         valleyview_modeset_commit_cdclk;
14602                 dev_priv->display.modeset_calc_cdclk =
14603                         valleyview_modeset_calc_cdclk;
14604         } else if (IS_BROXTON(dev)) {
14605                 dev_priv->display.modeset_commit_cdclk =
14606                         broxton_modeset_commit_cdclk;
14607                 dev_priv->display.modeset_calc_cdclk =
14608                         broxton_modeset_calc_cdclk;
14609         }
14610
14611         switch (INTEL_INFO(dev)->gen) {
14612         case 2:
14613                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14614                 break;
14615
14616         case 3:
14617                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14618                 break;
14619
14620         case 4:
14621         case 5:
14622                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14623                 break;
14624
14625         case 6:
14626                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14627                 break;
14628         case 7:
14629         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14630                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14631                 break;
14632         case 9:
14633                 /* Drop through - unsupported since execlist only. */
14634         default:
14635                 /* Default just returns -ENODEV to indicate unsupported */
14636                 dev_priv->display.queue_flip = intel_default_queue_flip;
14637         }
14638
14639         mutex_init(&dev_priv->pps_mutex);
14640 }
14641
14642 /*
14643  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14644  * resume, or other times.  This quirk makes sure that's the case for
14645  * affected systems.
14646  */
14647 static void quirk_pipea_force(struct drm_device *dev)
14648 {
14649         struct drm_i915_private *dev_priv = dev->dev_private;
14650
14651         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14652         DRM_INFO("applying pipe a force quirk\n");
14653 }
14654
14655 static void quirk_pipeb_force(struct drm_device *dev)
14656 {
14657         struct drm_i915_private *dev_priv = dev->dev_private;
14658
14659         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14660         DRM_INFO("applying pipe b force quirk\n");
14661 }
14662
14663 /*
14664  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14665  */
14666 static void quirk_ssc_force_disable(struct drm_device *dev)
14667 {
14668         struct drm_i915_private *dev_priv = dev->dev_private;
14669         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14670         DRM_INFO("applying lvds SSC disable quirk\n");
14671 }
14672
14673 /*
14674  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14675  * brightness value
14676  */
14677 static void quirk_invert_brightness(struct drm_device *dev)
14678 {
14679         struct drm_i915_private *dev_priv = dev->dev_private;
14680         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14681         DRM_INFO("applying inverted panel brightness quirk\n");
14682 }
14683
14684 /* Some VBT's incorrectly indicate no backlight is present */
14685 static void quirk_backlight_present(struct drm_device *dev)
14686 {
14687         struct drm_i915_private *dev_priv = dev->dev_private;
14688         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14689         DRM_INFO("applying backlight present quirk\n");
14690 }
14691
14692 struct intel_quirk {
14693         int device;
14694         int subsystem_vendor;
14695         int subsystem_device;
14696         void (*hook)(struct drm_device *dev);
14697 };
14698
14699 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14700 struct intel_dmi_quirk {
14701         void (*hook)(struct drm_device *dev);
14702         const struct dmi_system_id (*dmi_id_list)[];
14703 };
14704
14705 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14706 {
14707         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14708         return 1;
14709 }
14710
14711 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14712         {
14713                 .dmi_id_list = &(const struct dmi_system_id[]) {
14714                         {
14715                                 .callback = intel_dmi_reverse_brightness,
14716                                 .ident = "NCR Corporation",
14717                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14718                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14719                                 },
14720                         },
14721                         { }  /* terminating entry */
14722                 },
14723                 .hook = quirk_invert_brightness,
14724         },
14725 };
14726
14727 static struct intel_quirk intel_quirks[] = {
14728         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14729         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14730
14731         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14732         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14733
14734         /* 830 needs to leave pipe A & dpll A up */
14735         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14736
14737         /* 830 needs to leave pipe B & dpll B up */
14738         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14739
14740         /* Lenovo U160 cannot use SSC on LVDS */
14741         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14742
14743         /* Sony Vaio Y cannot use SSC on LVDS */
14744         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14745
14746         /* Acer Aspire 5734Z must invert backlight brightness */
14747         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14748
14749         /* Acer/eMachines G725 */
14750         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14751
14752         /* Acer/eMachines e725 */
14753         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14754
14755         /* Acer/Packard Bell NCL20 */
14756         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14757
14758         /* Acer Aspire 4736Z */
14759         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14760
14761         /* Acer Aspire 5336 */
14762         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14763
14764         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14765         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14766
14767         /* Acer C720 Chromebook (Core i3 4005U) */
14768         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14769
14770         /* Apple Macbook 2,1 (Core 2 T7400) */
14771         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14772
14773         /* Apple Macbook 4,1 */
14774         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14775
14776         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14777         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14778
14779         /* HP Chromebook 14 (Celeron 2955U) */
14780         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14781
14782         /* Dell Chromebook 11 */
14783         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14784
14785         /* Dell Chromebook 11 (2015 version) */
14786         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14787 };
14788
14789 static void intel_init_quirks(struct drm_device *dev)
14790 {
14791         struct pci_dev *d = dev->pdev;
14792         int i;
14793
14794         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14795                 struct intel_quirk *q = &intel_quirks[i];
14796
14797                 if (d->device == q->device &&
14798                     (d->subsystem_vendor == q->subsystem_vendor ||
14799                      q->subsystem_vendor == PCI_ANY_ID) &&
14800                     (d->subsystem_device == q->subsystem_device ||
14801                      q->subsystem_device == PCI_ANY_ID))
14802                         q->hook(dev);
14803         }
14804         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14805                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14806                         intel_dmi_quirks[i].hook(dev);
14807         }
14808 }
14809
14810 /* Disable the VGA plane that we never use */
14811 static void i915_disable_vga(struct drm_device *dev)
14812 {
14813         struct drm_i915_private *dev_priv = dev->dev_private;
14814         u8 sr1;
14815         u32 vga_reg = i915_vgacntrl_reg(dev);
14816
14817         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14818         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14819         outb(SR01, VGA_SR_INDEX);
14820         sr1 = inb(VGA_SR_DATA);
14821         outb(sr1 | 1<<5, VGA_SR_DATA);
14822         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14823         udelay(300);
14824
14825         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14826         POSTING_READ(vga_reg);
14827 }
14828
14829 void intel_modeset_init_hw(struct drm_device *dev)
14830 {
14831         intel_update_cdclk(dev);
14832         intel_prepare_ddi(dev);
14833         intel_init_clock_gating(dev);
14834         intel_enable_gt_powersave(dev);
14835 }
14836
14837 void intel_modeset_init(struct drm_device *dev)
14838 {
14839         struct drm_i915_private *dev_priv = dev->dev_private;
14840         int sprite, ret;
14841         enum pipe pipe;
14842         struct intel_crtc *crtc;
14843
14844         drm_mode_config_init(dev);
14845
14846         dev->mode_config.min_width = 0;
14847         dev->mode_config.min_height = 0;
14848
14849         dev->mode_config.preferred_depth = 24;
14850         dev->mode_config.prefer_shadow = 1;
14851
14852         dev->mode_config.allow_fb_modifiers = true;
14853
14854         dev->mode_config.funcs = &intel_mode_funcs;
14855
14856         intel_init_quirks(dev);
14857
14858         intel_init_pm(dev);
14859
14860         if (INTEL_INFO(dev)->num_pipes == 0)
14861                 return;
14862
14863         /*
14864          * There may be no VBT; and if the BIOS enabled SSC we can
14865          * just keep using it to avoid unnecessary flicker.  Whereas if the
14866          * BIOS isn't using it, don't assume it will work even if the VBT
14867          * indicates as much.
14868          */
14869         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14870                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14871                                             DREF_SSC1_ENABLE);
14872
14873                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14874                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14875                                      bios_lvds_use_ssc ? "en" : "dis",
14876                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14877                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14878                 }
14879         }
14880
14881         intel_init_display(dev);
14882         intel_init_audio(dev);
14883
14884         if (IS_GEN2(dev)) {
14885                 dev->mode_config.max_width = 2048;
14886                 dev->mode_config.max_height = 2048;
14887         } else if (IS_GEN3(dev)) {
14888                 dev->mode_config.max_width = 4096;
14889                 dev->mode_config.max_height = 4096;
14890         } else {
14891                 dev->mode_config.max_width = 8192;
14892                 dev->mode_config.max_height = 8192;
14893         }
14894
14895         if (IS_845G(dev) || IS_I865G(dev)) {
14896                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14897                 dev->mode_config.cursor_height = 1023;
14898         } else if (IS_GEN2(dev)) {
14899                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14900                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14901         } else {
14902                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14903                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14904         }
14905
14906         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14907
14908         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14909                       INTEL_INFO(dev)->num_pipes,
14910                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14911
14912         for_each_pipe(dev_priv, pipe) {
14913                 intel_crtc_init(dev, pipe);
14914                 for_each_sprite(dev_priv, pipe, sprite) {
14915                         ret = intel_plane_init(dev, pipe, sprite);
14916                         if (ret)
14917                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14918                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
14919                 }
14920         }
14921
14922         intel_update_czclk(dev_priv);
14923         intel_update_cdclk(dev);
14924
14925         intel_shared_dpll_init(dev);
14926
14927         /* Just disable it once at startup */
14928         i915_disable_vga(dev);
14929         intel_setup_outputs(dev);
14930
14931         /* Just in case the BIOS is doing something questionable. */
14932         intel_fbc_disable(dev_priv);
14933
14934         drm_modeset_lock_all(dev);
14935         intel_modeset_setup_hw_state(dev);
14936         drm_modeset_unlock_all(dev);
14937
14938         for_each_intel_crtc(dev, crtc) {
14939                 struct intel_initial_plane_config plane_config = {};
14940
14941                 if (!crtc->active)
14942                         continue;
14943
14944                 /*
14945                  * Note that reserving the BIOS fb up front prevents us
14946                  * from stuffing other stolen allocations like the ring
14947                  * on top.  This prevents some ugliness at boot time, and
14948                  * can even allow for smooth boot transitions if the BIOS
14949                  * fb is large enough for the active pipe configuration.
14950                  */
14951                 dev_priv->display.get_initial_plane_config(crtc,
14952                                                            &plane_config);
14953
14954                 /*
14955                  * If the fb is shared between multiple heads, we'll
14956                  * just get the first one.
14957                  */
14958                 intel_find_initial_plane_obj(crtc, &plane_config);
14959         }
14960 }
14961
14962 static void intel_enable_pipe_a(struct drm_device *dev)
14963 {
14964         struct intel_connector *connector;
14965         struct drm_connector *crt = NULL;
14966         struct intel_load_detect_pipe load_detect_temp;
14967         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14968
14969         /* We can't just switch on the pipe A, we need to set things up with a
14970          * proper mode and output configuration. As a gross hack, enable pipe A
14971          * by enabling the load detect pipe once. */
14972         for_each_intel_connector(dev, connector) {
14973                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14974                         crt = &connector->base;
14975                         break;
14976                 }
14977         }
14978
14979         if (!crt)
14980                 return;
14981
14982         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14983                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14984 }
14985
14986 static bool
14987 intel_check_plane_mapping(struct intel_crtc *crtc)
14988 {
14989         struct drm_device *dev = crtc->base.dev;
14990         struct drm_i915_private *dev_priv = dev->dev_private;
14991         u32 val;
14992
14993         if (INTEL_INFO(dev)->num_pipes == 1)
14994                 return true;
14995
14996         val = I915_READ(DSPCNTR(!crtc->plane));
14997
14998         if ((val & DISPLAY_PLANE_ENABLE) &&
14999             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15000                 return false;
15001
15002         return true;
15003 }
15004
15005 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15006 {
15007         struct drm_device *dev = crtc->base.dev;
15008         struct intel_encoder *encoder;
15009
15010         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15011                 return true;
15012
15013         return false;
15014 }
15015
15016 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15017 {
15018         struct drm_device *dev = crtc->base.dev;
15019         struct drm_i915_private *dev_priv = dev->dev_private;
15020         u32 reg;
15021
15022         /* Clear any frame start delays used for debugging left by the BIOS */
15023         reg = PIPECONF(crtc->config->cpu_transcoder);
15024         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15025
15026         /* restore vblank interrupts to correct state */
15027         drm_crtc_vblank_reset(&crtc->base);
15028         if (crtc->active) {
15029                 struct intel_plane *plane;
15030
15031                 drm_crtc_vblank_on(&crtc->base);
15032
15033                 /* Disable everything but the primary plane */
15034                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15035                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15036                                 continue;
15037
15038                         plane->disable_plane(&plane->base, &crtc->base);
15039                 }
15040         }
15041
15042         /* We need to sanitize the plane -> pipe mapping first because this will
15043          * disable the crtc (and hence change the state) if it is wrong. Note
15044          * that gen4+ has a fixed plane -> pipe mapping.  */
15045         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15046                 bool plane;
15047
15048                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15049                               crtc->base.base.id);
15050
15051                 /* Pipe has the wrong plane attached and the plane is active.
15052                  * Temporarily change the plane mapping and disable everything
15053                  * ...  */
15054                 plane = crtc->plane;
15055                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15056                 crtc->plane = !plane;
15057                 intel_crtc_disable_noatomic(&crtc->base);
15058                 crtc->plane = plane;
15059         }
15060
15061         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15062             crtc->pipe == PIPE_A && !crtc->active) {
15063                 /* BIOS forgot to enable pipe A, this mostly happens after
15064                  * resume. Force-enable the pipe to fix this, the update_dpms
15065                  * call below we restore the pipe to the right state, but leave
15066                  * the required bits on. */
15067                 intel_enable_pipe_a(dev);
15068         }
15069
15070         /* Adjust the state of the output pipe according to whether we
15071          * have active connectors/encoders. */
15072         if (!intel_crtc_has_encoders(crtc))
15073                 intel_crtc_disable_noatomic(&crtc->base);
15074
15075         if (crtc->active != crtc->base.state->active) {
15076                 struct intel_encoder *encoder;
15077
15078                 /* This can happen either due to bugs in the get_hw_state
15079                  * functions or because of calls to intel_crtc_disable_noatomic,
15080                  * or because the pipe is force-enabled due to the
15081                  * pipe A quirk. */
15082                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15083                               crtc->base.base.id,
15084                               crtc->base.state->enable ? "enabled" : "disabled",
15085                               crtc->active ? "enabled" : "disabled");
15086
15087                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15088                 crtc->base.state->active = crtc->active;
15089                 crtc->base.enabled = crtc->active;
15090
15091                 /* Because we only establish the connector -> encoder ->
15092                  * crtc links if something is active, this means the
15093                  * crtc is now deactivated. Break the links. connector
15094                  * -> encoder links are only establish when things are
15095                  *  actually up, hence no need to break them. */
15096                 WARN_ON(crtc->active);
15097
15098                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15099                         encoder->base.crtc = NULL;
15100         }
15101
15102         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15103                 /*
15104                  * We start out with underrun reporting disabled to avoid races.
15105                  * For correct bookkeeping mark this on active crtcs.
15106                  *
15107                  * Also on gmch platforms we dont have any hardware bits to
15108                  * disable the underrun reporting. Which means we need to start
15109                  * out with underrun reporting disabled also on inactive pipes,
15110                  * since otherwise we'll complain about the garbage we read when
15111                  * e.g. coming up after runtime pm.
15112                  *
15113                  * No protection against concurrent access is required - at
15114                  * worst a fifo underrun happens which also sets this to false.
15115                  */
15116                 crtc->cpu_fifo_underrun_disabled = true;
15117                 crtc->pch_fifo_underrun_disabled = true;
15118         }
15119 }
15120
15121 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15122 {
15123         struct intel_connector *connector;
15124         struct drm_device *dev = encoder->base.dev;
15125         bool active = false;
15126
15127         /* We need to check both for a crtc link (meaning that the
15128          * encoder is active and trying to read from a pipe) and the
15129          * pipe itself being active. */
15130         bool has_active_crtc = encoder->base.crtc &&
15131                 to_intel_crtc(encoder->base.crtc)->active;
15132
15133         for_each_intel_connector(dev, connector) {
15134                 if (connector->base.encoder != &encoder->base)
15135                         continue;
15136
15137                 active = true;
15138                 break;
15139         }
15140
15141         if (active && !has_active_crtc) {
15142                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15143                               encoder->base.base.id,
15144                               encoder->base.name);
15145
15146                 /* Connector is active, but has no active pipe. This is
15147                  * fallout from our resume register restoring. Disable
15148                  * the encoder manually again. */
15149                 if (encoder->base.crtc) {
15150                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15151                                       encoder->base.base.id,
15152                                       encoder->base.name);
15153                         encoder->disable(encoder);
15154                         if (encoder->post_disable)
15155                                 encoder->post_disable(encoder);
15156                 }
15157                 encoder->base.crtc = NULL;
15158
15159                 /* Inconsistent output/port/pipe state happens presumably due to
15160                  * a bug in one of the get_hw_state functions. Or someplace else
15161                  * in our code, like the register restore mess on resume. Clamp
15162                  * things to off as a safer default. */
15163                 for_each_intel_connector(dev, connector) {
15164                         if (connector->encoder != encoder)
15165                                 continue;
15166                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15167                         connector->base.encoder = NULL;
15168                 }
15169         }
15170         /* Enabled encoders without active connectors will be fixed in
15171          * the crtc fixup. */
15172 }
15173
15174 void i915_redisable_vga_power_on(struct drm_device *dev)
15175 {
15176         struct drm_i915_private *dev_priv = dev->dev_private;
15177         u32 vga_reg = i915_vgacntrl_reg(dev);
15178
15179         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15180                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15181                 i915_disable_vga(dev);
15182         }
15183 }
15184
15185 void i915_redisable_vga(struct drm_device *dev)
15186 {
15187         struct drm_i915_private *dev_priv = dev->dev_private;
15188
15189         /* This function can be called both from intel_modeset_setup_hw_state or
15190          * at a very early point in our resume sequence, where the power well
15191          * structures are not yet restored. Since this function is at a very
15192          * paranoid "someone might have enabled VGA while we were not looking"
15193          * level, just check if the power well is enabled instead of trying to
15194          * follow the "don't touch the power well if we don't need it" policy
15195          * the rest of the driver uses. */
15196         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15197                 return;
15198
15199         i915_redisable_vga_power_on(dev);
15200 }
15201
15202 static bool primary_get_hw_state(struct intel_plane *plane)
15203 {
15204         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15205
15206         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15207 }
15208
15209 /* FIXME read out full plane state for all planes */
15210 static void readout_plane_state(struct intel_crtc *crtc)
15211 {
15212         struct drm_plane *primary = crtc->base.primary;
15213         struct intel_plane_state *plane_state =
15214                 to_intel_plane_state(primary->state);
15215
15216         plane_state->visible =
15217                 primary_get_hw_state(to_intel_plane(primary));
15218
15219         if (plane_state->visible)
15220                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15221 }
15222
15223 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15224 {
15225         struct drm_i915_private *dev_priv = dev->dev_private;
15226         enum pipe pipe;
15227         struct intel_crtc *crtc;
15228         struct intel_encoder *encoder;
15229         struct intel_connector *connector;
15230         int i;
15231
15232         for_each_intel_crtc(dev, crtc) {
15233                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15234                 memset(crtc->config, 0, sizeof(*crtc->config));
15235                 crtc->config->base.crtc = &crtc->base;
15236
15237                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15238                                                                  crtc->config);
15239
15240                 crtc->base.state->active = crtc->active;
15241                 crtc->base.enabled = crtc->active;
15242
15243                 readout_plane_state(crtc);
15244
15245                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15246                               crtc->base.base.id,
15247                               crtc->active ? "enabled" : "disabled");
15248         }
15249
15250         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15251                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15252
15253                 pll->on = pll->get_hw_state(dev_priv, pll,
15254                                             &pll->config.hw_state);
15255                 pll->active = 0;
15256                 pll->config.crtc_mask = 0;
15257                 for_each_intel_crtc(dev, crtc) {
15258                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15259                                 pll->active++;
15260                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15261                         }
15262                 }
15263
15264                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15265                               pll->name, pll->config.crtc_mask, pll->on);
15266
15267                 if (pll->config.crtc_mask)
15268                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15269         }
15270
15271         for_each_intel_encoder(dev, encoder) {
15272                 pipe = 0;
15273
15274                 if (encoder->get_hw_state(encoder, &pipe)) {
15275                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15276                         encoder->base.crtc = &crtc->base;
15277                         encoder->get_config(encoder, crtc->config);
15278                 } else {
15279                         encoder->base.crtc = NULL;
15280                 }
15281
15282                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15283                               encoder->base.base.id,
15284                               encoder->base.name,
15285                               encoder->base.crtc ? "enabled" : "disabled",
15286                               pipe_name(pipe));
15287         }
15288
15289         for_each_intel_connector(dev, connector) {
15290                 if (connector->get_hw_state(connector)) {
15291                         connector->base.dpms = DRM_MODE_DPMS_ON;
15292                         connector->base.encoder = &connector->encoder->base;
15293                 } else {
15294                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15295                         connector->base.encoder = NULL;
15296                 }
15297                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15298                               connector->base.base.id,
15299                               connector->base.name,
15300                               connector->base.encoder ? "enabled" : "disabled");
15301         }
15302
15303         for_each_intel_crtc(dev, crtc) {
15304                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15305
15306                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15307                 if (crtc->base.state->active) {
15308                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15309                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15310                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15311
15312                         /*
15313                          * The initial mode needs to be set in order to keep
15314                          * the atomic core happy. It wants a valid mode if the
15315                          * crtc's enabled, so we do the above call.
15316                          *
15317                          * At this point some state updated by the connectors
15318                          * in their ->detect() callback has not run yet, so
15319                          * no recalculation can be done yet.
15320                          *
15321                          * Even if we could do a recalculation and modeset
15322                          * right now it would cause a double modeset if
15323                          * fbdev or userspace chooses a different initial mode.
15324                          *
15325                          * If that happens, someone indicated they wanted a
15326                          * mode change, which means it's safe to do a full
15327                          * recalculation.
15328                          */
15329                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15330
15331                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15332                         update_scanline_offset(crtc);
15333                 }
15334         }
15335 }
15336
15337 /* Scan out the current hw modeset state,
15338  * and sanitizes it to the current state
15339  */
15340 static void
15341 intel_modeset_setup_hw_state(struct drm_device *dev)
15342 {
15343         struct drm_i915_private *dev_priv = dev->dev_private;
15344         enum pipe pipe;
15345         struct intel_crtc *crtc;
15346         struct intel_encoder *encoder;
15347         int i;
15348
15349         intel_modeset_readout_hw_state(dev);
15350
15351         /* HW state is read out, now we need to sanitize this mess. */
15352         for_each_intel_encoder(dev, encoder) {
15353                 intel_sanitize_encoder(encoder);
15354         }
15355
15356         for_each_pipe(dev_priv, pipe) {
15357                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15358                 intel_sanitize_crtc(crtc);
15359                 intel_dump_pipe_config(crtc, crtc->config,
15360                                        "[setup_hw_state]");
15361         }
15362
15363         intel_modeset_update_connector_atomic_state(dev);
15364
15365         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15366                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15367
15368                 if (!pll->on || pll->active)
15369                         continue;
15370
15371                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15372
15373                 pll->disable(dev_priv, pll);
15374                 pll->on = false;
15375         }
15376
15377         if (IS_VALLEYVIEW(dev))
15378                 vlv_wm_get_hw_state(dev);
15379         else if (IS_GEN9(dev))
15380                 skl_wm_get_hw_state(dev);
15381         else if (HAS_PCH_SPLIT(dev))
15382                 ilk_wm_get_hw_state(dev);
15383
15384         for_each_intel_crtc(dev, crtc) {
15385                 unsigned long put_domains;
15386
15387                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15388                 if (WARN_ON(put_domains))
15389                         modeset_put_power_domains(dev_priv, put_domains);
15390         }
15391         intel_display_set_init_power(dev_priv, false);
15392 }
15393
15394 void intel_display_resume(struct drm_device *dev)
15395 {
15396         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15397         struct intel_connector *conn;
15398         struct intel_plane *plane;
15399         struct drm_crtc *crtc;
15400         int ret;
15401
15402         if (!state)
15403                 return;
15404
15405         state->acquire_ctx = dev->mode_config.acquire_ctx;
15406
15407         /* preserve complete old state, including dpll */
15408         intel_atomic_get_shared_dpll_state(state);
15409
15410         for_each_crtc(dev, crtc) {
15411                 struct drm_crtc_state *crtc_state =
15412                         drm_atomic_get_crtc_state(state, crtc);
15413
15414                 ret = PTR_ERR_OR_ZERO(crtc_state);
15415                 if (ret)
15416                         goto err;
15417
15418                 /* force a restore */
15419                 crtc_state->mode_changed = true;
15420         }
15421
15422         for_each_intel_plane(dev, plane) {
15423                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15424                 if (ret)
15425                         goto err;
15426         }
15427
15428         for_each_intel_connector(dev, conn) {
15429                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15430                 if (ret)
15431                         goto err;
15432         }
15433
15434         intel_modeset_setup_hw_state(dev);
15435
15436         i915_redisable_vga(dev);
15437         ret = drm_atomic_commit(state);
15438         if (!ret)
15439                 return;
15440
15441 err:
15442         DRM_ERROR("Restoring old state failed with %i\n", ret);
15443         drm_atomic_state_free(state);
15444 }
15445
15446 void intel_modeset_gem_init(struct drm_device *dev)
15447 {
15448         struct drm_crtc *c;
15449         struct drm_i915_gem_object *obj;
15450         int ret;
15451
15452         mutex_lock(&dev->struct_mutex);
15453         intel_init_gt_powersave(dev);
15454         mutex_unlock(&dev->struct_mutex);
15455
15456         intel_modeset_init_hw(dev);
15457
15458         intel_setup_overlay(dev);
15459
15460         /*
15461          * Make sure any fbs we allocated at startup are properly
15462          * pinned & fenced.  When we do the allocation it's too early
15463          * for this.
15464          */
15465         for_each_crtc(dev, c) {
15466                 obj = intel_fb_obj(c->primary->fb);
15467                 if (obj == NULL)
15468                         continue;
15469
15470                 mutex_lock(&dev->struct_mutex);
15471                 ret = intel_pin_and_fence_fb_obj(c->primary,
15472                                                  c->primary->fb,
15473                                                  c->primary->state,
15474                                                  NULL, NULL);
15475                 mutex_unlock(&dev->struct_mutex);
15476                 if (ret) {
15477                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15478                                   to_intel_crtc(c)->pipe);
15479                         drm_framebuffer_unreference(c->primary->fb);
15480                         c->primary->fb = NULL;
15481                         c->primary->crtc = c->primary->state->crtc = NULL;
15482                         update_state_fb(c->primary);
15483                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15484                 }
15485         }
15486
15487         intel_backlight_register(dev);
15488 }
15489
15490 void intel_connector_unregister(struct intel_connector *intel_connector)
15491 {
15492         struct drm_connector *connector = &intel_connector->base;
15493
15494         intel_panel_destroy_backlight(connector);
15495         drm_connector_unregister(connector);
15496 }
15497
15498 void intel_modeset_cleanup(struct drm_device *dev)
15499 {
15500         struct drm_i915_private *dev_priv = dev->dev_private;
15501         struct drm_connector *connector;
15502
15503         intel_disable_gt_powersave(dev);
15504
15505         intel_backlight_unregister(dev);
15506
15507         /*
15508          * Interrupts and polling as the first thing to avoid creating havoc.
15509          * Too much stuff here (turning of connectors, ...) would
15510          * experience fancy races otherwise.
15511          */
15512         intel_irq_uninstall(dev_priv);
15513
15514         /*
15515          * Due to the hpd irq storm handling the hotplug work can re-arm the
15516          * poll handlers. Hence disable polling after hpd handling is shut down.
15517          */
15518         drm_kms_helper_poll_fini(dev);
15519
15520         intel_unregister_dsm_handler();
15521
15522         intel_fbc_disable(dev_priv);
15523
15524         /* flush any delayed tasks or pending work */
15525         flush_scheduled_work();
15526
15527         /* destroy the backlight and sysfs files before encoders/connectors */
15528         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15529                 struct intel_connector *intel_connector;
15530
15531                 intel_connector = to_intel_connector(connector);
15532                 intel_connector->unregister(intel_connector);
15533         }
15534
15535         drm_mode_config_cleanup(dev);
15536
15537         intel_cleanup_overlay(dev);
15538
15539         mutex_lock(&dev->struct_mutex);
15540         intel_cleanup_gt_powersave(dev);
15541         mutex_unlock(&dev->struct_mutex);
15542 }
15543
15544 /*
15545  * Return which encoder is currently attached for connector.
15546  */
15547 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15548 {
15549         return &intel_attached_encoder(connector)->base;
15550 }
15551
15552 void intel_connector_attach_encoder(struct intel_connector *connector,
15553                                     struct intel_encoder *encoder)
15554 {
15555         connector->encoder = encoder;
15556         drm_mode_connector_attach_encoder(&connector->base,
15557                                           &encoder->base);
15558 }
15559
15560 /*
15561  * set vga decode state - true == enable VGA decode
15562  */
15563 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15564 {
15565         struct drm_i915_private *dev_priv = dev->dev_private;
15566         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15567         u16 gmch_ctrl;
15568
15569         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15570                 DRM_ERROR("failed to read control word\n");
15571                 return -EIO;
15572         }
15573
15574         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15575                 return 0;
15576
15577         if (state)
15578                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15579         else
15580                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15581
15582         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15583                 DRM_ERROR("failed to write control word\n");
15584                 return -EIO;
15585         }
15586
15587         return 0;
15588 }
15589
15590 struct intel_display_error_state {
15591
15592         u32 power_well_driver;
15593
15594         int num_transcoders;
15595
15596         struct intel_cursor_error_state {
15597                 u32 control;
15598                 u32 position;
15599                 u32 base;
15600                 u32 size;
15601         } cursor[I915_MAX_PIPES];
15602
15603         struct intel_pipe_error_state {
15604                 bool power_domain_on;
15605                 u32 source;
15606                 u32 stat;
15607         } pipe[I915_MAX_PIPES];
15608
15609         struct intel_plane_error_state {
15610                 u32 control;
15611                 u32 stride;
15612                 u32 size;
15613                 u32 pos;
15614                 u32 addr;
15615                 u32 surface;
15616                 u32 tile_offset;
15617         } plane[I915_MAX_PIPES];
15618
15619         struct intel_transcoder_error_state {
15620                 bool power_domain_on;
15621                 enum transcoder cpu_transcoder;
15622
15623                 u32 conf;
15624
15625                 u32 htotal;
15626                 u32 hblank;
15627                 u32 hsync;
15628                 u32 vtotal;
15629                 u32 vblank;
15630                 u32 vsync;
15631         } transcoder[4];
15632 };
15633
15634 struct intel_display_error_state *
15635 intel_display_capture_error_state(struct drm_device *dev)
15636 {
15637         struct drm_i915_private *dev_priv = dev->dev_private;
15638         struct intel_display_error_state *error;
15639         int transcoders[] = {
15640                 TRANSCODER_A,
15641                 TRANSCODER_B,
15642                 TRANSCODER_C,
15643                 TRANSCODER_EDP,
15644         };
15645         int i;
15646
15647         if (INTEL_INFO(dev)->num_pipes == 0)
15648                 return NULL;
15649
15650         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15651         if (error == NULL)
15652                 return NULL;
15653
15654         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15655                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15656
15657         for_each_pipe(dev_priv, i) {
15658                 error->pipe[i].power_domain_on =
15659                         __intel_display_power_is_enabled(dev_priv,
15660                                                          POWER_DOMAIN_PIPE(i));
15661                 if (!error->pipe[i].power_domain_on)
15662                         continue;
15663
15664                 error->cursor[i].control = I915_READ(CURCNTR(i));
15665                 error->cursor[i].position = I915_READ(CURPOS(i));
15666                 error->cursor[i].base = I915_READ(CURBASE(i));
15667
15668                 error->plane[i].control = I915_READ(DSPCNTR(i));
15669                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15670                 if (INTEL_INFO(dev)->gen <= 3) {
15671                         error->plane[i].size = I915_READ(DSPSIZE(i));
15672                         error->plane[i].pos = I915_READ(DSPPOS(i));
15673                 }
15674                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15675                         error->plane[i].addr = I915_READ(DSPADDR(i));
15676                 if (INTEL_INFO(dev)->gen >= 4) {
15677                         error->plane[i].surface = I915_READ(DSPSURF(i));
15678                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15679                 }
15680
15681                 error->pipe[i].source = I915_READ(PIPESRC(i));
15682
15683                 if (HAS_GMCH_DISPLAY(dev))
15684                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15685         }
15686
15687         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15688         if (HAS_DDI(dev_priv->dev))
15689                 error->num_transcoders++; /* Account for eDP. */
15690
15691         for (i = 0; i < error->num_transcoders; i++) {
15692                 enum transcoder cpu_transcoder = transcoders[i];
15693
15694                 error->transcoder[i].power_domain_on =
15695                         __intel_display_power_is_enabled(dev_priv,
15696                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15697                 if (!error->transcoder[i].power_domain_on)
15698                         continue;
15699
15700                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15701
15702                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15703                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15704                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15705                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15706                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15707                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15708                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15709         }
15710
15711         return error;
15712 }
15713
15714 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15715
15716 void
15717 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15718                                 struct drm_device *dev,
15719                                 struct intel_display_error_state *error)
15720 {
15721         struct drm_i915_private *dev_priv = dev->dev_private;
15722         int i;
15723
15724         if (!error)
15725                 return;
15726
15727         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15728         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15729                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15730                            error->power_well_driver);
15731         for_each_pipe(dev_priv, i) {
15732                 err_printf(m, "Pipe [%d]:\n", i);
15733                 err_printf(m, "  Power: %s\n",
15734                            error->pipe[i].power_domain_on ? "on" : "off");
15735                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15736                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15737
15738                 err_printf(m, "Plane [%d]:\n", i);
15739                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15740                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15741                 if (INTEL_INFO(dev)->gen <= 3) {
15742                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15743                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15744                 }
15745                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15746                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15747                 if (INTEL_INFO(dev)->gen >= 4) {
15748                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15749                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15750                 }
15751
15752                 err_printf(m, "Cursor [%d]:\n", i);
15753                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15754                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15755                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15756         }
15757
15758         for (i = 0; i < error->num_transcoders; i++) {
15759                 err_printf(m, "CPU transcoder: %c\n",
15760                            transcoder_name(error->transcoder[i].cpu_transcoder));
15761                 err_printf(m, "  Power: %s\n",
15762                            error->transcoder[i].power_domain_on ? "on" : "off");
15763                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15764                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15765                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15766                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15767                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15768                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15769                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15770         }
15771 }
15772
15773 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15774 {
15775         struct intel_crtc *crtc;
15776
15777         for_each_intel_crtc(dev, crtc) {
15778                 struct intel_unpin_work *work;
15779
15780                 spin_lock_irq(&dev->event_lock);
15781
15782                 work = crtc->unpin_work;
15783
15784                 if (work && work->event &&
15785                     work->event->base.file_priv == file) {
15786                         kfree(work->event);
15787                         work->event = NULL;
15788                 }
15789
15790                 spin_unlock_irq(&dev->event_lock);
15791         }
15792 }