Merge tag 'v3.10.13' into lsk/v3.10/topic/kvm
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         /**
75          * find_pll() - Find the best values for the PLL
76          * @limit: limits for the PLL
77          * @crtc: current CRTC
78          * @target: target frequency in kHz
79          * @refclk: reference clock frequency in kHz
80          * @match_clock: if provided, @best_clock P divider must
81          *               match the P divider from @match_clock
82          *               used for LVDS downclocking
83          * @best_clock: best PLL values found
84          *
85          * Returns true on success, false on failure.
86          */
87         bool (*find_pll)(const intel_limit_t *limit,
88                          struct drm_crtc *crtc,
89                          int target, int refclk,
90                          intel_clock_t *match_clock,
91                          intel_clock_t *best_clock);
92 };
93
94 /* FDI */
95 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
96
97 int
98 intel_pch_rawclk(struct drm_device *dev)
99 {
100         struct drm_i915_private *dev_priv = dev->dev_private;
101
102         WARN_ON(!HAS_PCH_SPLIT(dev));
103
104         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
105 }
106
107 static bool
108 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
109                     int target, int refclk, intel_clock_t *match_clock,
110                     intel_clock_t *best_clock);
111 static bool
112 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static bool
117 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
118                       int target, int refclk, intel_clock_t *match_clock,
119                       intel_clock_t *best_clock);
120 static bool
121 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
122                            int target, int refclk, intel_clock_t *match_clock,
123                            intel_clock_t *best_clock);
124
125 static bool
126 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
127                         int target, int refclk, intel_clock_t *match_clock,
128                         intel_clock_t *best_clock);
129
130 static inline u32 /* units of 100MHz */
131 intel_fdi_link_freq(struct drm_device *dev)
132 {
133         if (IS_GEN5(dev)) {
134                 struct drm_i915_private *dev_priv = dev->dev_private;
135                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
136         } else
137                 return 27;
138 }
139
140 static const intel_limit_t intel_limits_i8xx_dvo = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 2, .max = 33 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 4, .p2_fast = 2 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i8xx_lvds = {
155         .dot = { .min = 25000, .max = 350000 },
156         .vco = { .min = 930000, .max = 1400000 },
157         .n = { .min = 3, .max = 16 },
158         .m = { .min = 96, .max = 140 },
159         .m1 = { .min = 18, .max = 26 },
160         .m2 = { .min = 6, .max = 16 },
161         .p = { .min = 4, .max = 128 },
162         .p1 = { .min = 1, .max = 6 },
163         .p2 = { .dot_limit = 165000,
164                 .p2_slow = 14, .p2_fast = 7 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_sdvo = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 8, .max = 18 },
174         .m2 = { .min = 3, .max = 7 },
175         .p = { .min = 5, .max = 80 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 200000,
178                 .p2_slow = 10, .p2_fast = 5 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182 static const intel_limit_t intel_limits_i9xx_lvds = {
183         .dot = { .min = 20000, .max = 400000 },
184         .vco = { .min = 1400000, .max = 2800000 },
185         .n = { .min = 1, .max = 6 },
186         .m = { .min = 70, .max = 120 },
187         .m1 = { .min = 8, .max = 18 },
188         .m2 = { .min = 3, .max = 7 },
189         .p = { .min = 7, .max = 98 },
190         .p1 = { .min = 1, .max = 8 },
191         .p2 = { .dot_limit = 112000,
192                 .p2_slow = 14, .p2_fast = 7 },
193         .find_pll = intel_find_best_PLL,
194 };
195
196
197 static const intel_limit_t intel_limits_g4x_sdvo = {
198         .dot = { .min = 25000, .max = 270000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 17, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 10, .max = 30 },
205         .p1 = { .min = 1, .max = 3},
206         .p2 = { .dot_limit = 270000,
207                 .p2_slow = 10,
208                 .p2_fast = 10
209         },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_hdmi = {
214         .dot = { .min = 22000, .max = 400000 },
215         .vco = { .min = 1750000, .max = 3500000},
216         .n = { .min = 1, .max = 4 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 16, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 5, .max = 80 },
221         .p1 = { .min = 1, .max = 8},
222         .p2 = { .dot_limit = 165000,
223                 .p2_slow = 10, .p2_fast = 5 },
224         .find_pll = intel_g4x_find_best_PLL,
225 };
226
227 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
228         .dot = { .min = 20000, .max = 115000 },
229         .vco = { .min = 1750000, .max = 3500000 },
230         .n = { .min = 1, .max = 3 },
231         .m = { .min = 104, .max = 138 },
232         .m1 = { .min = 17, .max = 23 },
233         .m2 = { .min = 5, .max = 11 },
234         .p = { .min = 28, .max = 112 },
235         .p1 = { .min = 2, .max = 8 },
236         .p2 = { .dot_limit = 0,
237                 .p2_slow = 14, .p2_fast = 14
238         },
239         .find_pll = intel_g4x_find_best_PLL,
240 };
241
242 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
243         .dot = { .min = 80000, .max = 224000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 14, .max = 42 },
250         .p1 = { .min = 2, .max = 6 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 7, .p2_fast = 7
253         },
254         .find_pll = intel_g4x_find_best_PLL,
255 };
256
257 static const intel_limit_t intel_limits_g4x_display_port = {
258         .dot = { .min = 161670, .max = 227000 },
259         .vco = { .min = 1750000, .max = 3500000},
260         .n = { .min = 1, .max = 2 },
261         .m = { .min = 97, .max = 108 },
262         .m1 = { .min = 0x10, .max = 0x12 },
263         .m2 = { .min = 0x05, .max = 0x06 },
264         .p = { .min = 10, .max = 20 },
265         .p1 = { .min = 1, .max = 2},
266         .p2 = { .dot_limit = 0,
267                 .p2_slow = 10, .p2_fast = 10 },
268         .find_pll = intel_find_pll_g4x_dp,
269 };
270
271 static const intel_limit_t intel_limits_pineview_sdvo = {
272         .dot = { .min = 20000, .max = 400000},
273         .vco = { .min = 1700000, .max = 3500000 },
274         /* Pineview's Ncounter is a ring counter */
275         .n = { .min = 3, .max = 6 },
276         .m = { .min = 2, .max = 256 },
277         /* Pineview only has one combined m divider, which we treat as m2. */
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 5, .max = 80 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 200000,
283                 .p2_slow = 10, .p2_fast = 5 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288         .dot = { .min = 20000, .max = 400000 },
289         .vco = { .min = 1700000, .max = 3500000 },
290         .n = { .min = 3, .max = 6 },
291         .m = { .min = 2, .max = 256 },
292         .m1 = { .min = 0, .max = 0 },
293         .m2 = { .min = 0, .max = 254 },
294         .p = { .min = 7, .max = 112 },
295         .p1 = { .min = 1, .max = 8 },
296         .p2 = { .dot_limit = 112000,
297                 .p2_slow = 14, .p2_fast = 14 },
298         .find_pll = intel_find_best_PLL,
299 };
300
301 /* Ironlake / Sandybridge
302  *
303  * We calculate clock using (register_value + 2) for N/M1/M2, so here
304  * the range value for them is (actual_value - 2).
305  */
306 static const intel_limit_t intel_limits_ironlake_dac = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 5 },
310         .m = { .min = 79, .max = 127 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 5, .max = 80 },
314         .p1 = { .min = 1, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 10, .p2_fast = 5 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_single_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 118 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 28, .max = 112 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 14, .p2_fast = 14 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
335         .dot = { .min = 25000, .max = 350000 },
336         .vco = { .min = 1760000, .max = 3510000 },
337         .n = { .min = 1, .max = 3 },
338         .m = { .min = 79, .max = 127 },
339         .m1 = { .min = 12, .max = 22 },
340         .m2 = { .min = 5, .max = 9 },
341         .p = { .min = 14, .max = 56 },
342         .p1 = { .min = 2, .max = 8 },
343         .p2 = { .dot_limit = 225000,
344                 .p2_slow = 7, .p2_fast = 7 },
345         .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 /* LVDS 100mhz refclk limits. */
349 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 2 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 28, .max = 112 },
357         .p1 = { .min = 2, .max = 8 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 14, .p2_fast = 14 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000 },
366         .n = { .min = 1, .max = 3 },
367         .m = { .min = 79, .max = 126 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 14, .max = 42 },
371         .p1 = { .min = 2, .max = 6 },
372         .p2 = { .dot_limit = 225000,
373                 .p2_slow = 7, .p2_fast = 7 },
374         .find_pll = intel_g4x_find_best_PLL,
375 };
376
377 static const intel_limit_t intel_limits_ironlake_display_port = {
378         .dot = { .min = 25000, .max = 350000 },
379         .vco = { .min = 1760000, .max = 3510000},
380         .n = { .min = 1, .max = 2 },
381         .m = { .min = 81, .max = 90 },
382         .m1 = { .min = 12, .max = 22 },
383         .m2 = { .min = 5, .max = 9 },
384         .p = { .min = 10, .max = 20 },
385         .p1 = { .min = 1, .max = 2},
386         .p2 = { .dot_limit = 0,
387                 .p2_slow = 10, .p2_fast = 10 },
388         .find_pll = intel_find_pll_ironlake_dp,
389 };
390
391 static const intel_limit_t intel_limits_vlv_dac = {
392         .dot = { .min = 25000, .max = 270000 },
393         .vco = { .min = 4000000, .max = 6000000 },
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 22, .max = 450 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_hdmi = {
406         .dot = { .min = 20000, .max = 165000 },
407         .vco = { .min = 4000000, .max = 5994000},
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 60, .max = 300 }, /* guess */
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 static const intel_limit_t intel_limits_vlv_dp = {
420         .dot = { .min = 25000, .max = 270000 },
421         .vco = { .min = 4000000, .max = 6000000 },
422         .n = { .min = 1, .max = 7 },
423         .m = { .min = 22, .max = 450 },
424         .m1 = { .min = 2, .max = 3 },
425         .m2 = { .min = 11, .max = 156 },
426         .p = { .min = 10, .max = 30 },
427         .p1 = { .min = 2, .max = 3 },
428         .p2 = { .dot_limit = 270000,
429                 .p2_slow = 2, .p2_fast = 20 },
430         .find_pll = intel_vlv_find_best_pll,
431 };
432
433 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
434 {
435         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
436
437         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
438                 DRM_ERROR("DPIO idle wait timed out\n");
439                 return 0;
440         }
441
442         I915_WRITE(DPIO_REG, reg);
443         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
444                    DPIO_BYTE);
445         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
446                 DRM_ERROR("DPIO read wait timed out\n");
447                 return 0;
448         }
449
450         return I915_READ(DPIO_DATA);
451 }
452
453 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
454                              u32 val)
455 {
456         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
457
458         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
459                 DRM_ERROR("DPIO idle wait timed out\n");
460                 return;
461         }
462
463         I915_WRITE(DPIO_DATA, val);
464         I915_WRITE(DPIO_REG, reg);
465         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
466                    DPIO_BYTE);
467         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
468                 DRM_ERROR("DPIO write wait timed out\n");
469 }
470
471 static void vlv_init_dpio(struct drm_device *dev)
472 {
473         struct drm_i915_private *dev_priv = dev->dev_private;
474
475         /* Reset the DPIO config */
476         I915_WRITE(DPIO_CTL, 0);
477         POSTING_READ(DPIO_CTL);
478         I915_WRITE(DPIO_CTL, 1);
479         POSTING_READ(DPIO_CTL);
480 }
481
482 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
483                                                 int refclk)
484 {
485         struct drm_device *dev = crtc->dev;
486         const intel_limit_t *limit;
487
488         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
489                 if (intel_is_dual_link_lvds(dev)) {
490                         if (refclk == 100000)
491                                 limit = &intel_limits_ironlake_dual_lvds_100m;
492                         else
493                                 limit = &intel_limits_ironlake_dual_lvds;
494                 } else {
495                         if (refclk == 100000)
496                                 limit = &intel_limits_ironlake_single_lvds_100m;
497                         else
498                                 limit = &intel_limits_ironlake_single_lvds;
499                 }
500         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
501                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
502                 limit = &intel_limits_ironlake_display_port;
503         else
504                 limit = &intel_limits_ironlake_dac;
505
506         return limit;
507 }
508
509 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
510 {
511         struct drm_device *dev = crtc->dev;
512         const intel_limit_t *limit;
513
514         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
515                 if (intel_is_dual_link_lvds(dev))
516                         limit = &intel_limits_g4x_dual_channel_lvds;
517                 else
518                         limit = &intel_limits_g4x_single_channel_lvds;
519         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
520                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
521                 limit = &intel_limits_g4x_hdmi;
522         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
523                 limit = &intel_limits_g4x_sdvo;
524         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
525                 limit = &intel_limits_g4x_display_port;
526         } else /* The option is for other outputs */
527                 limit = &intel_limits_i9xx_sdvo;
528
529         return limit;
530 }
531
532 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
533 {
534         struct drm_device *dev = crtc->dev;
535         const intel_limit_t *limit;
536
537         if (HAS_PCH_SPLIT(dev))
538                 limit = intel_ironlake_limit(crtc, refclk);
539         else if (IS_G4X(dev)) {
540                 limit = intel_g4x_limit(crtc);
541         } else if (IS_PINEVIEW(dev)) {
542                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543                         limit = &intel_limits_pineview_lvds;
544                 else
545                         limit = &intel_limits_pineview_sdvo;
546         } else if (IS_VALLEYVIEW(dev)) {
547                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
548                         limit = &intel_limits_vlv_dac;
549                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
550                         limit = &intel_limits_vlv_hdmi;
551                 else
552                         limit = &intel_limits_vlv_dp;
553         } else if (!IS_GEN2(dev)) {
554                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
555                         limit = &intel_limits_i9xx_lvds;
556                 else
557                         limit = &intel_limits_i9xx_sdvo;
558         } else {
559                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
560                         limit = &intel_limits_i8xx_lvds;
561                 else
562                         limit = &intel_limits_i8xx_dvo;
563         }
564         return limit;
565 }
566
567 /* m1 is reserved as 0 in Pineview, n is a ring counter */
568 static void pineview_clock(int refclk, intel_clock_t *clock)
569 {
570         clock->m = clock->m2 + 2;
571         clock->p = clock->p1 * clock->p2;
572         clock->vco = refclk * clock->m / clock->n;
573         clock->dot = clock->vco / clock->p;
574 }
575
576 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
577 {
578         if (IS_PINEVIEW(dev)) {
579                 pineview_clock(refclk, clock);
580                 return;
581         }
582         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
583         clock->p = clock->p1 * clock->p2;
584         clock->vco = refclk * clock->m / (clock->n + 2);
585         clock->dot = clock->vco / clock->p;
586 }
587
588 /**
589  * Returns whether any output on the specified pipe is of the specified type
590  */
591 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
592 {
593         struct drm_device *dev = crtc->dev;
594         struct intel_encoder *encoder;
595
596         for_each_encoder_on_crtc(dev, crtc, encoder)
597                 if (encoder->type == type)
598                         return true;
599
600         return false;
601 }
602
603 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
604 /**
605  * Returns whether the given set of divisors are valid for a given refclk with
606  * the given connectors.
607  */
608
609 static bool intel_PLL_is_valid(struct drm_device *dev,
610                                const intel_limit_t *limit,
611                                const intel_clock_t *clock)
612 {
613         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
614                 INTELPllInvalid("p1 out of range\n");
615         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
616                 INTELPllInvalid("p out of range\n");
617         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
618                 INTELPllInvalid("m2 out of range\n");
619         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
620                 INTELPllInvalid("m1 out of range\n");
621         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
622                 INTELPllInvalid("m1 <= m2\n");
623         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
624                 INTELPllInvalid("m out of range\n");
625         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
626                 INTELPllInvalid("n out of range\n");
627         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628                 INTELPllInvalid("vco out of range\n");
629         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630          * connector, etc., rather than just a single range.
631          */
632         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633                 INTELPllInvalid("dot out of range\n");
634
635         return true;
636 }
637
638 static bool
639 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
640                     int target, int refclk, intel_clock_t *match_clock,
641                     intel_clock_t *best_clock)
642
643 {
644         struct drm_device *dev = crtc->dev;
645         intel_clock_t clock;
646         int err = target;
647
648         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
649                 /*
650                  * For LVDS just rely on its current settings for dual-channel.
651                  * We haven't figured out how to reliably set up different
652                  * single/dual channel state, if we even can.
653                  */
654                 if (intel_is_dual_link_lvds(dev))
655                         clock.p2 = limit->p2.p2_fast;
656                 else
657                         clock.p2 = limit->p2.p2_slow;
658         } else {
659                 if (target < limit->p2.dot_limit)
660                         clock.p2 = limit->p2.p2_slow;
661                 else
662                         clock.p2 = limit->p2.p2_fast;
663         }
664
665         memset(best_clock, 0, sizeof(*best_clock));
666
667         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668              clock.m1++) {
669                 for (clock.m2 = limit->m2.min;
670                      clock.m2 <= limit->m2.max; clock.m2++) {
671                         /* m1 is always 0 in Pineview */
672                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
673                                 break;
674                         for (clock.n = limit->n.min;
675                              clock.n <= limit->n.max; clock.n++) {
676                                 for (clock.p1 = limit->p1.min;
677                                         clock.p1 <= limit->p1.max; clock.p1++) {
678                                         int this_err;
679
680                                         intel_clock(dev, refclk, &clock);
681                                         if (!intel_PLL_is_valid(dev, limit,
682                                                                 &clock))
683                                                 continue;
684                                         if (match_clock &&
685                                             clock.p != match_clock->p)
686                                                 continue;
687
688                                         this_err = abs(clock.dot - target);
689                                         if (this_err < err) {
690                                                 *best_clock = clock;
691                                                 err = this_err;
692                                         }
693                                 }
694                         }
695                 }
696         }
697
698         return (err != target);
699 }
700
701 static bool
702 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
703                         int target, int refclk, intel_clock_t *match_clock,
704                         intel_clock_t *best_clock)
705 {
706         struct drm_device *dev = crtc->dev;
707         intel_clock_t clock;
708         int max_n;
709         bool found;
710         /* approximately equals target * 0.00585 */
711         int err_most = (target >> 8) + (target >> 9);
712         found = false;
713
714         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
715                 int lvds_reg;
716
717                 if (HAS_PCH_SPLIT(dev))
718                         lvds_reg = PCH_LVDS;
719                 else
720                         lvds_reg = LVDS;
721                 if (intel_is_dual_link_lvds(dev))
722                         clock.p2 = limit->p2.p2_fast;
723                 else
724                         clock.p2 = limit->p2.p2_slow;
725         } else {
726                 if (target < limit->p2.dot_limit)
727                         clock.p2 = limit->p2.p2_slow;
728                 else
729                         clock.p2 = limit->p2.p2_fast;
730         }
731
732         memset(best_clock, 0, sizeof(*best_clock));
733         max_n = limit->n.max;
734         /* based on hardware requirement, prefer smaller n to precision */
735         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736                 /* based on hardware requirement, prefere larger m1,m2 */
737                 for (clock.m1 = limit->m1.max;
738                      clock.m1 >= limit->m1.min; clock.m1--) {
739                         for (clock.m2 = limit->m2.max;
740                              clock.m2 >= limit->m2.min; clock.m2--) {
741                                 for (clock.p1 = limit->p1.max;
742                                      clock.p1 >= limit->p1.min; clock.p1--) {
743                                         int this_err;
744
745                                         intel_clock(dev, refclk, &clock);
746                                         if (!intel_PLL_is_valid(dev, limit,
747                                                                 &clock))
748                                                 continue;
749                                         if (match_clock &&
750                                             clock.p != match_clock->p)
751                                                 continue;
752
753                                         this_err = abs(clock.dot - target);
754                                         if (this_err < err_most) {
755                                                 *best_clock = clock;
756                                                 err_most = this_err;
757                                                 max_n = clock.n;
758                                                 found = true;
759                                         }
760                                 }
761                         }
762                 }
763         }
764         return found;
765 }
766
767 static bool
768 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
769                            int target, int refclk, intel_clock_t *match_clock,
770                            intel_clock_t *best_clock)
771 {
772         struct drm_device *dev = crtc->dev;
773         intel_clock_t clock;
774
775         if (target < 200000) {
776                 clock.n = 1;
777                 clock.p1 = 2;
778                 clock.p2 = 10;
779                 clock.m1 = 12;
780                 clock.m2 = 9;
781         } else {
782                 clock.n = 2;
783                 clock.p1 = 1;
784                 clock.p2 = 10;
785                 clock.m1 = 14;
786                 clock.m2 = 8;
787         }
788         intel_clock(dev, refclk, &clock);
789         memcpy(best_clock, &clock, sizeof(intel_clock_t));
790         return true;
791 }
792
793 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
794 static bool
795 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
796                       int target, int refclk, intel_clock_t *match_clock,
797                       intel_clock_t *best_clock)
798 {
799         intel_clock_t clock;
800         if (target < 200000) {
801                 clock.p1 = 2;
802                 clock.p2 = 10;
803                 clock.n = 2;
804                 clock.m1 = 23;
805                 clock.m2 = 8;
806         } else {
807                 clock.p1 = 1;
808                 clock.p2 = 10;
809                 clock.n = 1;
810                 clock.m1 = 14;
811                 clock.m2 = 2;
812         }
813         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
814         clock.p = (clock.p1 * clock.p2);
815         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
816         clock.vco = 0;
817         memcpy(best_clock, &clock, sizeof(intel_clock_t));
818         return true;
819 }
820 static bool
821 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
822                         int target, int refclk, intel_clock_t *match_clock,
823                         intel_clock_t *best_clock)
824 {
825         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
826         u32 m, n, fastclk;
827         u32 updrate, minupdate, fracbits, p;
828         unsigned long bestppm, ppm, absppm;
829         int dotclk, flag;
830
831         flag = 0;
832         dotclk = target * 1000;
833         bestppm = 1000000;
834         ppm = absppm = 0;
835         fastclk = dotclk / (2*100);
836         updrate = 0;
837         minupdate = 19200;
838         fracbits = 1;
839         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
840         bestm1 = bestm2 = bestp1 = bestp2 = 0;
841
842         /* based on hardware requirement, prefer smaller n to precision */
843         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
844                 updrate = refclk / n;
845                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
846                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
847                                 if (p2 > 10)
848                                         p2 = p2 - 1;
849                                 p = p1 * p2;
850                                 /* based on hardware requirement, prefer bigger m1,m2 values */
851                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
852                                         m2 = (((2*(fastclk * p * n / m1 )) +
853                                                refclk) / (2*refclk));
854                                         m = m1 * m2;
855                                         vco = updrate * m;
856                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
857                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
858                                                 absppm = (ppm > 0) ? ppm : (-ppm);
859                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
860                                                         bestppm = 0;
861                                                         flag = 1;
862                                                 }
863                                                 if (absppm < bestppm - 10) {
864                                                         bestppm = absppm;
865                                                         flag = 1;
866                                                 }
867                                                 if (flag) {
868                                                         bestn = n;
869                                                         bestm1 = m1;
870                                                         bestm2 = m2;
871                                                         bestp1 = p1;
872                                                         bestp2 = p2;
873                                                         flag = 0;
874                                                 }
875                                         }
876                                 }
877                         }
878                 }
879         }
880         best_clock->n = bestn;
881         best_clock->m1 = bestm1;
882         best_clock->m2 = bestm2;
883         best_clock->p1 = bestp1;
884         best_clock->p2 = bestp2;
885
886         return true;
887 }
888
889 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
890                                              enum pipe pipe)
891 {
892         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
894
895         return intel_crtc->config.cpu_transcoder;
896 }
897
898 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
899 {
900         struct drm_i915_private *dev_priv = dev->dev_private;
901         u32 frame, frame_reg = PIPEFRAME(pipe);
902
903         frame = I915_READ(frame_reg);
904
905         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
906                 DRM_DEBUG_KMS("vblank wait timed out\n");
907 }
908
909 /**
910  * intel_wait_for_vblank - wait for vblank on a given pipe
911  * @dev: drm device
912  * @pipe: pipe to wait for
913  *
914  * Wait for vblank to occur on a given pipe.  Needed for various bits of
915  * mode setting code.
916  */
917 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
918 {
919         struct drm_i915_private *dev_priv = dev->dev_private;
920         int pipestat_reg = PIPESTAT(pipe);
921
922         if (INTEL_INFO(dev)->gen >= 5) {
923                 ironlake_wait_for_vblank(dev, pipe);
924                 return;
925         }
926
927         /* Clear existing vblank status. Note this will clear any other
928          * sticky status fields as well.
929          *
930          * This races with i915_driver_irq_handler() with the result
931          * that either function could miss a vblank event.  Here it is not
932          * fatal, as we will either wait upon the next vblank interrupt or
933          * timeout.  Generally speaking intel_wait_for_vblank() is only
934          * called during modeset at which time the GPU should be idle and
935          * should *not* be performing page flips and thus not waiting on
936          * vblanks...
937          * Currently, the result of us stealing a vblank from the irq
938          * handler is that a single frame will be skipped during swapbuffers.
939          */
940         I915_WRITE(pipestat_reg,
941                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
942
943         /* Wait for vblank interrupt bit to set */
944         if (wait_for(I915_READ(pipestat_reg) &
945                      PIPE_VBLANK_INTERRUPT_STATUS,
946                      50))
947                 DRM_DEBUG_KMS("vblank wait timed out\n");
948 }
949
950 /*
951  * intel_wait_for_pipe_off - wait for pipe to turn off
952  * @dev: drm device
953  * @pipe: pipe to wait for
954  *
955  * After disabling a pipe, we can't wait for vblank in the usual way,
956  * spinning on the vblank interrupt status bit, since we won't actually
957  * see an interrupt when the pipe is disabled.
958  *
959  * On Gen4 and above:
960  *   wait for the pipe register state bit to turn off
961  *
962  * Otherwise:
963  *   wait for the display line value to settle (it usually
964  *   ends up stopping at the start of the next frame).
965  *
966  */
967 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
968 {
969         struct drm_i915_private *dev_priv = dev->dev_private;
970         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971                                                                       pipe);
972
973         if (INTEL_INFO(dev)->gen >= 4) {
974                 int reg = PIPECONF(cpu_transcoder);
975
976                 /* Wait for the Pipe State to go off */
977                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
978                              100))
979                         WARN(1, "pipe_off wait timed out\n");
980         } else {
981                 u32 last_line, line_mask;
982                 int reg = PIPEDSL(pipe);
983                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
984
985                 if (IS_GEN2(dev))
986                         line_mask = DSL_LINEMASK_GEN2;
987                 else
988                         line_mask = DSL_LINEMASK_GEN3;
989
990                 /* Wait for the display line to settle */
991                 do {
992                         last_line = I915_READ(reg) & line_mask;
993                         mdelay(5);
994                 } while (((I915_READ(reg) & line_mask) != last_line) &&
995                          time_after(timeout, jiffies));
996                 if (time_after(jiffies, timeout))
997                         WARN(1, "pipe_off wait timed out\n");
998         }
999 }
1000
1001 /*
1002  * ibx_digital_port_connected - is the specified port connected?
1003  * @dev_priv: i915 private structure
1004  * @port: the port to test
1005  *
1006  * Returns true if @port is connected, false otherwise.
1007  */
1008 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1009                                 struct intel_digital_port *port)
1010 {
1011         u32 bit;
1012
1013         if (HAS_PCH_IBX(dev_priv->dev)) {
1014                 switch(port->port) {
1015                 case PORT_B:
1016                         bit = SDE_PORTB_HOTPLUG;
1017                         break;
1018                 case PORT_C:
1019                         bit = SDE_PORTC_HOTPLUG;
1020                         break;
1021                 case PORT_D:
1022                         bit = SDE_PORTD_HOTPLUG;
1023                         break;
1024                 default:
1025                         return true;
1026                 }
1027         } else {
1028                 switch(port->port) {
1029                 case PORT_B:
1030                         bit = SDE_PORTB_HOTPLUG_CPT;
1031                         break;
1032                 case PORT_C:
1033                         bit = SDE_PORTC_HOTPLUG_CPT;
1034                         break;
1035                 case PORT_D:
1036                         bit = SDE_PORTD_HOTPLUG_CPT;
1037                         break;
1038                 default:
1039                         return true;
1040                 }
1041         }
1042
1043         return I915_READ(SDEISR) & bit;
1044 }
1045
1046 static const char *state_string(bool enabled)
1047 {
1048         return enabled ? "on" : "off";
1049 }
1050
1051 /* Only for pre-ILK configs */
1052 static void assert_pll(struct drm_i915_private *dev_priv,
1053                        enum pipe pipe, bool state)
1054 {
1055         int reg;
1056         u32 val;
1057         bool cur_state;
1058
1059         reg = DPLL(pipe);
1060         val = I915_READ(reg);
1061         cur_state = !!(val & DPLL_VCO_ENABLE);
1062         WARN(cur_state != state,
1063              "PLL state assertion failure (expected %s, current %s)\n",
1064              state_string(state), state_string(cur_state));
1065 }
1066 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1067 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1068
1069 /* For ILK+ */
1070 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1071                            struct intel_pch_pll *pll,
1072                            struct intel_crtc *crtc,
1073                            bool state)
1074 {
1075         u32 val;
1076         bool cur_state;
1077
1078         if (HAS_PCH_LPT(dev_priv->dev)) {
1079                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1080                 return;
1081         }
1082
1083         if (WARN (!pll,
1084                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1085                 return;
1086
1087         val = I915_READ(pll->pll_reg);
1088         cur_state = !!(val & DPLL_VCO_ENABLE);
1089         WARN(cur_state != state,
1090              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1091              pll->pll_reg, state_string(state), state_string(cur_state), val);
1092
1093         /* Make sure the selected PLL is correctly attached to the transcoder */
1094         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1095                 u32 pch_dpll;
1096
1097                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1098                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1099                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1100                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1101                           cur_state, crtc->pipe, pch_dpll)) {
1102                         cur_state = !!(val >> (4*crtc->pipe + 3));
1103                         WARN(cur_state != state,
1104                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1105                              pll->pll_reg == _PCH_DPLL_B,
1106                              state_string(state),
1107                              crtc->pipe,
1108                              val);
1109                 }
1110         }
1111 }
1112 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1113 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116                           enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122                                                                       pipe);
1123
1124         if (HAS_DDI(dev_priv->dev)) {
1125                 /* DDI does not have a specific FDI_TX register */
1126                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129         } else {
1130                 reg = FDI_TX_CTL(pipe);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & FDI_TX_ENABLE);
1133         }
1134         WARN(cur_state != state,
1135              "FDI TX state assertion failure (expected %s, current %s)\n",
1136              state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142                           enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX state assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159                                       enum pipe pipe)
1160 {
1161         int reg;
1162         u32 val;
1163
1164         /* ILK FDI PLL is always enabled */
1165         if (dev_priv->info->gen == 5)
1166                 return;
1167
1168         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169         if (HAS_DDI(dev_priv->dev))
1170                 return;
1171
1172         reg = FDI_TX_CTL(pipe);
1173         val = I915_READ(reg);
1174         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1178                                       enum pipe pipe)
1179 {
1180         int reg;
1181         u32 val;
1182
1183         reg = FDI_RX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1189                                   enum pipe pipe)
1190 {
1191         int pp_reg, lvds_reg;
1192         u32 val;
1193         enum pipe panel_pipe = PIPE_A;
1194         bool locked = true;
1195
1196         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1197                 pp_reg = PCH_PP_CONTROL;
1198                 lvds_reg = PCH_LVDS;
1199         } else {
1200                 pp_reg = PP_CONTROL;
1201                 lvds_reg = LVDS;
1202         }
1203
1204         val = I915_READ(pp_reg);
1205         if (!(val & PANEL_POWER_ON) ||
1206             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1207                 locked = false;
1208
1209         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1210                 panel_pipe = PIPE_B;
1211
1212         WARN(panel_pipe == pipe && locked,
1213              "panel assertion failure, pipe %c regs locked\n",
1214              pipe_name(pipe));
1215 }
1216
1217 void assert_pipe(struct drm_i915_private *dev_priv,
1218                  enum pipe pipe, bool state)
1219 {
1220         int reg;
1221         u32 val;
1222         bool cur_state;
1223         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1224                                                                       pipe);
1225
1226         /* if we need the pipe A quirk it must be always on */
1227         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1228                 state = true;
1229
1230         if (!intel_using_power_well(dev_priv->dev) &&
1231             cpu_transcoder != TRANSCODER_EDP) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         int reg, i;
1266         u32 val;
1267         int cur_pipe;
1268
1269         /* Planes are fixed to pipes on ILK+ */
1270         if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1271                 reg = DSPCNTR(pipe);
1272                 val = I915_READ(reg);
1273                 WARN((val & DISPLAY_PLANE_ENABLE),
1274                      "plane %c assertion failure, should be disabled but not\n",
1275                      plane_name(pipe));
1276                 return;
1277         }
1278
1279         /* Need to check both planes against the pipe */
1280         for (i = 0; i < 2; i++) {
1281                 reg = DSPCNTR(i);
1282                 val = I915_READ(reg);
1283                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1284                         DISPPLANE_SEL_PIPE_SHIFT;
1285                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1286                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1287                      plane_name(i), pipe_name(pipe));
1288         }
1289 }
1290
1291 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1292                                     enum pipe pipe)
1293 {
1294         int reg, i;
1295         u32 val;
1296
1297         if (!IS_VALLEYVIEW(dev_priv->dev))
1298                 return;
1299
1300         /* Need to check both planes against the pipe */
1301         for (i = 0; i < dev_priv->num_plane; i++) {
1302                 reg = SPCNTR(pipe, i);
1303                 val = I915_READ(reg);
1304                 WARN((val & SP_ENABLE),
1305                      "sprite %d assertion failure, should be off on pipe %c but is still active\n",
1306                      pipe * 2 + i, pipe_name(pipe));
1307         }
1308 }
1309
1310 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1311 {
1312         u32 val;
1313         bool enabled;
1314
1315         if (HAS_PCH_LPT(dev_priv->dev)) {
1316                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1317                 return;
1318         }
1319
1320         val = I915_READ(PCH_DREF_CONTROL);
1321         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1322                             DREF_SUPERSPREAD_SOURCE_MASK));
1323         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1324 }
1325
1326 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1327                                        enum pipe pipe)
1328 {
1329         int reg;
1330         u32 val;
1331         bool enabled;
1332
1333         reg = TRANSCONF(pipe);
1334         val = I915_READ(reg);
1335         enabled = !!(val & TRANS_ENABLE);
1336         WARN(enabled,
1337              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1338              pipe_name(pipe));
1339 }
1340
1341 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1342                             enum pipe pipe, u32 port_sel, u32 val)
1343 {
1344         if ((val & DP_PORT_EN) == 0)
1345                 return false;
1346
1347         if (HAS_PCH_CPT(dev_priv->dev)) {
1348                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1349                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1350                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1351                         return false;
1352         } else {
1353                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1354                         return false;
1355         }
1356         return true;
1357 }
1358
1359 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1360                               enum pipe pipe, u32 val)
1361 {
1362         if ((val & SDVO_ENABLE) == 0)
1363                 return false;
1364
1365         if (HAS_PCH_CPT(dev_priv->dev)) {
1366                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1367                         return false;
1368         } else {
1369                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1370                         return false;
1371         }
1372         return true;
1373 }
1374
1375 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1376                               enum pipe pipe, u32 val)
1377 {
1378         if ((val & LVDS_PORT_EN) == 0)
1379                 return false;
1380
1381         if (HAS_PCH_CPT(dev_priv->dev)) {
1382                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1383                         return false;
1384         } else {
1385                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1386                         return false;
1387         }
1388         return true;
1389 }
1390
1391 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1392                               enum pipe pipe, u32 val)
1393 {
1394         if ((val & ADPA_DAC_ENABLE) == 0)
1395                 return false;
1396         if (HAS_PCH_CPT(dev_priv->dev)) {
1397                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1398                         return false;
1399         } else {
1400                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1401                         return false;
1402         }
1403         return true;
1404 }
1405
1406 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1407                                    enum pipe pipe, int reg, u32 port_sel)
1408 {
1409         u32 val = I915_READ(reg);
1410         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1411              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1412              reg, pipe_name(pipe));
1413
1414         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1415              && (val & DP_PIPEB_SELECT),
1416              "IBX PCH dp port still using transcoder B\n");
1417 }
1418
1419 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1420                                      enum pipe pipe, int reg)
1421 {
1422         u32 val = I915_READ(reg);
1423         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1424              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1425              reg, pipe_name(pipe));
1426
1427         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1428              && (val & SDVO_PIPE_B_SELECT),
1429              "IBX PCH hdmi port still using transcoder B\n");
1430 }
1431
1432 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1433                                       enum pipe pipe)
1434 {
1435         int reg;
1436         u32 val;
1437
1438         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1439         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1440         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1441
1442         reg = PCH_ADPA;
1443         val = I915_READ(reg);
1444         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1445              "PCH VGA enabled on transcoder %c, should be disabled\n",
1446              pipe_name(pipe));
1447
1448         reg = PCH_LVDS;
1449         val = I915_READ(reg);
1450         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1451              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1452              pipe_name(pipe));
1453
1454         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1455         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1456         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1457 }
1458
1459 /**
1460  * intel_enable_pll - enable a PLL
1461  * @dev_priv: i915 private structure
1462  * @pipe: pipe PLL to enable
1463  *
1464  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1465  * make sure the PLL reg is writable first though, since the panel write
1466  * protect mechanism may be enabled.
1467  *
1468  * Note!  This is for pre-ILK only.
1469  *
1470  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1471  */
1472 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1473 {
1474         int reg;
1475         u32 val;
1476
1477         /* No really, not for ILK+ */
1478         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1479
1480         /* PLL is protected by panel, make sure we can write it */
1481         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1482                 assert_panel_unlocked(dev_priv, pipe);
1483
1484         reg = DPLL(pipe);
1485         val = I915_READ(reg);
1486         val |= DPLL_VCO_ENABLE;
1487
1488         /* We do this three times for luck */
1489         I915_WRITE(reg, val);
1490         POSTING_READ(reg);
1491         udelay(150); /* wait for warmup */
1492         I915_WRITE(reg, val);
1493         POSTING_READ(reg);
1494         udelay(150); /* wait for warmup */
1495         I915_WRITE(reg, val);
1496         POSTING_READ(reg);
1497         udelay(150); /* wait for warmup */
1498 }
1499
1500 /**
1501  * intel_disable_pll - disable a PLL
1502  * @dev_priv: i915 private structure
1503  * @pipe: pipe PLL to disable
1504  *
1505  * Disable the PLL for @pipe, making sure the pipe is off first.
1506  *
1507  * Note!  This is for pre-ILK only.
1508  */
1509 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1510 {
1511         int reg;
1512         u32 val;
1513
1514         /* Don't disable pipe A or pipe A PLLs if needed */
1515         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1516                 return;
1517
1518         /* Make sure the pipe isn't still relying on us */
1519         assert_pipe_disabled(dev_priv, pipe);
1520
1521         reg = DPLL(pipe);
1522         val = I915_READ(reg);
1523         val &= ~DPLL_VCO_ENABLE;
1524         I915_WRITE(reg, val);
1525         POSTING_READ(reg);
1526 }
1527
1528 /* SBI access */
1529 static void
1530 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1531                 enum intel_sbi_destination destination)
1532 {
1533         u32 tmp;
1534
1535         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1536
1537         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1538                                 100)) {
1539                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1540                 return;
1541         }
1542
1543         I915_WRITE(SBI_ADDR, (reg << 16));
1544         I915_WRITE(SBI_DATA, value);
1545
1546         if (destination == SBI_ICLK)
1547                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1548         else
1549                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1550         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1551
1552         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1553                                 100)) {
1554                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1555                 return;
1556         }
1557 }
1558
1559 static u32
1560 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1561                enum intel_sbi_destination destination)
1562 {
1563         u32 value = 0;
1564         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1565
1566         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1567                                 100)) {
1568                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1569                 return 0;
1570         }
1571
1572         I915_WRITE(SBI_ADDR, (reg << 16));
1573
1574         if (destination == SBI_ICLK)
1575                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1576         else
1577                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1578         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1579
1580         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1581                                 100)) {
1582                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1583                 return 0;
1584         }
1585
1586         return I915_READ(SBI_DATA);
1587 }
1588
1589 /**
1590  * ironlake_enable_pch_pll - enable PCH PLL
1591  * @dev_priv: i915 private structure
1592  * @pipe: pipe PLL to enable
1593  *
1594  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1595  * drives the transcoder clock.
1596  */
1597 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1598 {
1599         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1600         struct intel_pch_pll *pll;
1601         int reg;
1602         u32 val;
1603
1604         /* PCH PLLs only available on ILK, SNB and IVB */
1605         BUG_ON(dev_priv->info->gen < 5);
1606         pll = intel_crtc->pch_pll;
1607         if (pll == NULL)
1608                 return;
1609
1610         if (WARN_ON(pll->refcount == 0))
1611                 return;
1612
1613         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1614                       pll->pll_reg, pll->active, pll->on,
1615                       intel_crtc->base.base.id);
1616
1617         /* PCH refclock must be enabled first */
1618         assert_pch_refclk_enabled(dev_priv);
1619
1620         if (pll->active++ && pll->on) {
1621                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1622                 return;
1623         }
1624
1625         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1626
1627         reg = pll->pll_reg;
1628         val = I915_READ(reg);
1629         val |= DPLL_VCO_ENABLE;
1630         I915_WRITE(reg, val);
1631         POSTING_READ(reg);
1632         udelay(200);
1633
1634         pll->on = true;
1635 }
1636
1637 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1638 {
1639         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1640         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1641         int reg;
1642         u32 val;
1643
1644         /* PCH only available on ILK+ */
1645         BUG_ON(dev_priv->info->gen < 5);
1646         if (pll == NULL)
1647                return;
1648
1649         if (WARN_ON(pll->refcount == 0))
1650                 return;
1651
1652         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1653                       pll->pll_reg, pll->active, pll->on,
1654                       intel_crtc->base.base.id);
1655
1656         if (WARN_ON(pll->active == 0)) {
1657                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1658                 return;
1659         }
1660
1661         if (--pll->active) {
1662                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1663                 return;
1664         }
1665
1666         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1667
1668         /* Make sure transcoder isn't still depending on us */
1669         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1670
1671         reg = pll->pll_reg;
1672         val = I915_READ(reg);
1673         val &= ~DPLL_VCO_ENABLE;
1674         I915_WRITE(reg, val);
1675         POSTING_READ(reg);
1676         udelay(200);
1677
1678         pll->on = false;
1679 }
1680
1681 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1682                                            enum pipe pipe)
1683 {
1684         struct drm_device *dev = dev_priv->dev;
1685         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1686         uint32_t reg, val, pipeconf_val;
1687
1688         /* PCH only available on ILK+ */
1689         BUG_ON(dev_priv->info->gen < 5);
1690
1691         /* Make sure PCH DPLL is enabled */
1692         assert_pch_pll_enabled(dev_priv,
1693                                to_intel_crtc(crtc)->pch_pll,
1694                                to_intel_crtc(crtc));
1695
1696         /* FDI must be feeding us bits for PCH ports */
1697         assert_fdi_tx_enabled(dev_priv, pipe);
1698         assert_fdi_rx_enabled(dev_priv, pipe);
1699
1700         if (HAS_PCH_CPT(dev)) {
1701                 /* Workaround: Set the timing override bit before enabling the
1702                  * pch transcoder. */
1703                 reg = TRANS_CHICKEN2(pipe);
1704                 val = I915_READ(reg);
1705                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1706                 I915_WRITE(reg, val);
1707         }
1708
1709         reg = TRANSCONF(pipe);
1710         val = I915_READ(reg);
1711         pipeconf_val = I915_READ(PIPECONF(pipe));
1712
1713         if (HAS_PCH_IBX(dev_priv->dev)) {
1714                 /*
1715                  * make the BPC in transcoder be consistent with
1716                  * that in pipeconf reg.
1717                  */
1718                 val &= ~PIPECONF_BPC_MASK;
1719                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1720         }
1721
1722         val &= ~TRANS_INTERLACE_MASK;
1723         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1724                 if (HAS_PCH_IBX(dev_priv->dev) &&
1725                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1726                         val |= TRANS_LEGACY_INTERLACED_ILK;
1727                 else
1728                         val |= TRANS_INTERLACED;
1729         else
1730                 val |= TRANS_PROGRESSIVE;
1731
1732         I915_WRITE(reg, val | TRANS_ENABLE);
1733         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1734                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1735 }
1736
1737 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1738                                       enum transcoder cpu_transcoder)
1739 {
1740         u32 val, pipeconf_val;
1741
1742         /* PCH only available on ILK+ */
1743         BUG_ON(dev_priv->info->gen < 5);
1744
1745         /* FDI must be feeding us bits for PCH ports */
1746         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1747         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1748
1749         /* Workaround: set timing override bit. */
1750         val = I915_READ(_TRANSA_CHICKEN2);
1751         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1752         I915_WRITE(_TRANSA_CHICKEN2, val);
1753
1754         val = TRANS_ENABLE;
1755         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1756
1757         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1758             PIPECONF_INTERLACED_ILK)
1759                 val |= TRANS_INTERLACED;
1760         else
1761                 val |= TRANS_PROGRESSIVE;
1762
1763         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1764         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1765                 DRM_ERROR("Failed to enable PCH transcoder\n");
1766 }
1767
1768 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1769                                             enum pipe pipe)
1770 {
1771         struct drm_device *dev = dev_priv->dev;
1772         uint32_t reg, val;
1773
1774         /* FDI relies on the transcoder */
1775         assert_fdi_tx_disabled(dev_priv, pipe);
1776         assert_fdi_rx_disabled(dev_priv, pipe);
1777
1778         /* Ports must be off as well */
1779         assert_pch_ports_disabled(dev_priv, pipe);
1780
1781         reg = TRANSCONF(pipe);
1782         val = I915_READ(reg);
1783         val &= ~TRANS_ENABLE;
1784         I915_WRITE(reg, val);
1785         /* wait for PCH transcoder off, transcoder state */
1786         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1787                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1788
1789         if (!HAS_PCH_IBX(dev)) {
1790                 /* Workaround: Clear the timing override chicken bit again. */
1791                 reg = TRANS_CHICKEN2(pipe);
1792                 val = I915_READ(reg);
1793                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1794                 I915_WRITE(reg, val);
1795         }
1796 }
1797
1798 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1799 {
1800         u32 val;
1801
1802         val = I915_READ(_TRANSACONF);
1803         val &= ~TRANS_ENABLE;
1804         I915_WRITE(_TRANSACONF, val);
1805         /* wait for PCH transcoder off, transcoder state */
1806         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1807                 DRM_ERROR("Failed to disable PCH transcoder\n");
1808
1809         /* Workaround: clear timing override bit. */
1810         val = I915_READ(_TRANSA_CHICKEN2);
1811         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1812         I915_WRITE(_TRANSA_CHICKEN2, val);
1813 }
1814
1815 /**
1816  * intel_enable_pipe - enable a pipe, asserting requirements
1817  * @dev_priv: i915 private structure
1818  * @pipe: pipe to enable
1819  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1820  *
1821  * Enable @pipe, making sure that various hardware specific requirements
1822  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1823  *
1824  * @pipe should be %PIPE_A or %PIPE_B.
1825  *
1826  * Will wait until the pipe is actually running (i.e. first vblank) before
1827  * returning.
1828  */
1829 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1830                               bool pch_port)
1831 {
1832         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1833                                                                       pipe);
1834         enum pipe pch_transcoder;
1835         int reg;
1836         u32 val;
1837
1838         if (HAS_PCH_LPT(dev_priv->dev))
1839                 pch_transcoder = TRANSCODER_A;
1840         else
1841                 pch_transcoder = pipe;
1842
1843         /*
1844          * A pipe without a PLL won't actually be able to drive bits from
1845          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1846          * need the check.
1847          */
1848         if (!HAS_PCH_SPLIT(dev_priv->dev))
1849                 assert_pll_enabled(dev_priv, pipe);
1850         else {
1851                 if (pch_port) {
1852                         /* if driving the PCH, we need FDI enabled */
1853                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1854                         assert_fdi_tx_pll_enabled(dev_priv,
1855                                                   (enum pipe) cpu_transcoder);
1856                 }
1857                 /* FIXME: assert CPU port conditions for SNB+ */
1858         }
1859
1860         reg = PIPECONF(cpu_transcoder);
1861         val = I915_READ(reg);
1862         if (val & PIPECONF_ENABLE)
1863                 return;
1864
1865         I915_WRITE(reg, val | PIPECONF_ENABLE);
1866         intel_wait_for_vblank(dev_priv->dev, pipe);
1867 }
1868
1869 /**
1870  * intel_disable_pipe - disable a pipe, asserting requirements
1871  * @dev_priv: i915 private structure
1872  * @pipe: pipe to disable
1873  *
1874  * Disable @pipe, making sure that various hardware specific requirements
1875  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1876  *
1877  * @pipe should be %PIPE_A or %PIPE_B.
1878  *
1879  * Will wait until the pipe has shut down before returning.
1880  */
1881 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1882                                enum pipe pipe)
1883 {
1884         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1885                                                                       pipe);
1886         int reg;
1887         u32 val;
1888
1889         /*
1890          * Make sure planes won't keep trying to pump pixels to us,
1891          * or we might hang the display.
1892          */
1893         assert_planes_disabled(dev_priv, pipe);
1894         assert_sprites_disabled(dev_priv, pipe);
1895
1896         /* Don't disable pipe A or pipe A PLLs if needed */
1897         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1898                 return;
1899
1900         reg = PIPECONF(cpu_transcoder);
1901         val = I915_READ(reg);
1902         if ((val & PIPECONF_ENABLE) == 0)
1903                 return;
1904
1905         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1906         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1907 }
1908
1909 /*
1910  * Plane regs are double buffered, going from enabled->disabled needs a
1911  * trigger in order to latch.  The display address reg provides this.
1912  */
1913 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1914                                       enum plane plane)
1915 {
1916         if (dev_priv->info->gen >= 4)
1917                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1918         else
1919                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1920 }
1921
1922 /**
1923  * intel_enable_plane - enable a display plane on a given pipe
1924  * @dev_priv: i915 private structure
1925  * @plane: plane to enable
1926  * @pipe: pipe being fed
1927  *
1928  * Enable @plane on @pipe, making sure that @pipe is running first.
1929  */
1930 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1931                                enum plane plane, enum pipe pipe)
1932 {
1933         int reg;
1934         u32 val;
1935
1936         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1937         assert_pipe_enabled(dev_priv, pipe);
1938
1939         reg = DSPCNTR(plane);
1940         val = I915_READ(reg);
1941         if (val & DISPLAY_PLANE_ENABLE)
1942                 return;
1943
1944         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1945         intel_flush_display_plane(dev_priv, plane);
1946         intel_wait_for_vblank(dev_priv->dev, pipe);
1947 }
1948
1949 /**
1950  * intel_disable_plane - disable a display plane
1951  * @dev_priv: i915 private structure
1952  * @plane: plane to disable
1953  * @pipe: pipe consuming the data
1954  *
1955  * Disable @plane; should be an independent operation.
1956  */
1957 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1958                                 enum plane plane, enum pipe pipe)
1959 {
1960         int reg;
1961         u32 val;
1962
1963         reg = DSPCNTR(plane);
1964         val = I915_READ(reg);
1965         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1966                 return;
1967
1968         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1969         intel_flush_display_plane(dev_priv, plane);
1970         intel_wait_for_vblank(dev_priv->dev, pipe);
1971 }
1972
1973 static bool need_vtd_wa(struct drm_device *dev)
1974 {
1975 #ifdef CONFIG_INTEL_IOMMU
1976         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1977                 return true;
1978 #endif
1979         return false;
1980 }
1981
1982 int
1983 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1984                            struct drm_i915_gem_object *obj,
1985                            struct intel_ring_buffer *pipelined)
1986 {
1987         struct drm_i915_private *dev_priv = dev->dev_private;
1988         u32 alignment;
1989         int ret;
1990
1991         switch (obj->tiling_mode) {
1992         case I915_TILING_NONE:
1993                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1994                         alignment = 128 * 1024;
1995                 else if (INTEL_INFO(dev)->gen >= 4)
1996                         alignment = 4 * 1024;
1997                 else
1998                         alignment = 64 * 1024;
1999                 break;
2000         case I915_TILING_X:
2001                 /* pin() will align the object as required by fence */
2002                 alignment = 0;
2003                 break;
2004         case I915_TILING_Y:
2005                 /* Despite that we check this in framebuffer_init userspace can
2006                  * screw us over and change the tiling after the fact. Only
2007                  * pinned buffers can't change their tiling. */
2008                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
2009                 return -EINVAL;
2010         default:
2011                 BUG();
2012         }
2013
2014         /* Note that the w/a also requires 64 PTE of padding following the
2015          * bo. We currently fill all unused PTE with the shadow page and so
2016          * we should always have valid PTE following the scanout preventing
2017          * the VT-d warning.
2018          */
2019         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2020                 alignment = 256 * 1024;
2021
2022         dev_priv->mm.interruptible = false;
2023         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2024         if (ret)
2025                 goto err_interruptible;
2026
2027         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2028          * fence, whereas 965+ only requires a fence if using
2029          * framebuffer compression.  For simplicity, we always install
2030          * a fence as the cost is not that onerous.
2031          */
2032         ret = i915_gem_object_get_fence(obj);
2033         if (ret)
2034                 goto err_unpin;
2035
2036         i915_gem_object_pin_fence(obj);
2037
2038         dev_priv->mm.interruptible = true;
2039         return 0;
2040
2041 err_unpin:
2042         i915_gem_object_unpin(obj);
2043 err_interruptible:
2044         dev_priv->mm.interruptible = true;
2045         return ret;
2046 }
2047
2048 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2049 {
2050         i915_gem_object_unpin_fence(obj);
2051         i915_gem_object_unpin(obj);
2052 }
2053
2054 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2055  * is assumed to be a power-of-two. */
2056 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2057                                              unsigned int tiling_mode,
2058                                              unsigned int cpp,
2059                                              unsigned int pitch)
2060 {
2061         if (tiling_mode != I915_TILING_NONE) {
2062                 unsigned int tile_rows, tiles;
2063
2064                 tile_rows = *y / 8;
2065                 *y %= 8;
2066
2067                 tiles = *x / (512/cpp);
2068                 *x %= 512/cpp;
2069
2070                 return tile_rows * pitch * 8 + tiles * 4096;
2071         } else {
2072                 unsigned int offset;
2073
2074                 offset = *y * pitch + *x * cpp;
2075                 *y = 0;
2076                 *x = (offset & 4095) / cpp;
2077                 return offset & -4096;
2078         }
2079 }
2080
2081 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2082                              int x, int y)
2083 {
2084         struct drm_device *dev = crtc->dev;
2085         struct drm_i915_private *dev_priv = dev->dev_private;
2086         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2087         struct intel_framebuffer *intel_fb;
2088         struct drm_i915_gem_object *obj;
2089         int plane = intel_crtc->plane;
2090         unsigned long linear_offset;
2091         u32 dspcntr;
2092         u32 reg;
2093
2094         switch (plane) {
2095         case 0:
2096         case 1:
2097                 break;
2098         default:
2099                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2100                 return -EINVAL;
2101         }
2102
2103         intel_fb = to_intel_framebuffer(fb);
2104         obj = intel_fb->obj;
2105
2106         reg = DSPCNTR(plane);
2107         dspcntr = I915_READ(reg);
2108         /* Mask out pixel format bits in case we change it */
2109         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2110         switch (fb->pixel_format) {
2111         case DRM_FORMAT_C8:
2112                 dspcntr |= DISPPLANE_8BPP;
2113                 break;
2114         case DRM_FORMAT_XRGB1555:
2115         case DRM_FORMAT_ARGB1555:
2116                 dspcntr |= DISPPLANE_BGRX555;
2117                 break;
2118         case DRM_FORMAT_RGB565:
2119                 dspcntr |= DISPPLANE_BGRX565;
2120                 break;
2121         case DRM_FORMAT_XRGB8888:
2122         case DRM_FORMAT_ARGB8888:
2123                 dspcntr |= DISPPLANE_BGRX888;
2124                 break;
2125         case DRM_FORMAT_XBGR8888:
2126         case DRM_FORMAT_ABGR8888:
2127                 dspcntr |= DISPPLANE_RGBX888;
2128                 break;
2129         case DRM_FORMAT_XRGB2101010:
2130         case DRM_FORMAT_ARGB2101010:
2131                 dspcntr |= DISPPLANE_BGRX101010;
2132                 break;
2133         case DRM_FORMAT_XBGR2101010:
2134         case DRM_FORMAT_ABGR2101010:
2135                 dspcntr |= DISPPLANE_RGBX101010;
2136                 break;
2137         default:
2138                 BUG();
2139         }
2140
2141         if (INTEL_INFO(dev)->gen >= 4) {
2142                 if (obj->tiling_mode != I915_TILING_NONE)
2143                         dspcntr |= DISPPLANE_TILED;
2144                 else
2145                         dspcntr &= ~DISPPLANE_TILED;
2146         }
2147
2148         I915_WRITE(reg, dspcntr);
2149
2150         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2151
2152         if (INTEL_INFO(dev)->gen >= 4) {
2153                 intel_crtc->dspaddr_offset =
2154                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2155                                                        fb->bits_per_pixel / 8,
2156                                                        fb->pitches[0]);
2157                 linear_offset -= intel_crtc->dspaddr_offset;
2158         } else {
2159                 intel_crtc->dspaddr_offset = linear_offset;
2160         }
2161
2162         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2163                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2164         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2165         if (INTEL_INFO(dev)->gen >= 4) {
2166                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2167                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2168                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2169                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2170         } else
2171                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2172         POSTING_READ(reg);
2173
2174         return 0;
2175 }
2176
2177 static int ironlake_update_plane(struct drm_crtc *crtc,
2178                                  struct drm_framebuffer *fb, int x, int y)
2179 {
2180         struct drm_device *dev = crtc->dev;
2181         struct drm_i915_private *dev_priv = dev->dev_private;
2182         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2183         struct intel_framebuffer *intel_fb;
2184         struct drm_i915_gem_object *obj;
2185         int plane = intel_crtc->plane;
2186         unsigned long linear_offset;
2187         u32 dspcntr;
2188         u32 reg;
2189
2190         switch (plane) {
2191         case 0:
2192         case 1:
2193         case 2:
2194                 break;
2195         default:
2196                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2197                 return -EINVAL;
2198         }
2199
2200         intel_fb = to_intel_framebuffer(fb);
2201         obj = intel_fb->obj;
2202
2203         reg = DSPCNTR(plane);
2204         dspcntr = I915_READ(reg);
2205         /* Mask out pixel format bits in case we change it */
2206         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2207         switch (fb->pixel_format) {
2208         case DRM_FORMAT_C8:
2209                 dspcntr |= DISPPLANE_8BPP;
2210                 break;
2211         case DRM_FORMAT_RGB565:
2212                 dspcntr |= DISPPLANE_BGRX565;
2213                 break;
2214         case DRM_FORMAT_XRGB8888:
2215         case DRM_FORMAT_ARGB8888:
2216                 dspcntr |= DISPPLANE_BGRX888;
2217                 break;
2218         case DRM_FORMAT_XBGR8888:
2219         case DRM_FORMAT_ABGR8888:
2220                 dspcntr |= DISPPLANE_RGBX888;
2221                 break;
2222         case DRM_FORMAT_XRGB2101010:
2223         case DRM_FORMAT_ARGB2101010:
2224                 dspcntr |= DISPPLANE_BGRX101010;
2225                 break;
2226         case DRM_FORMAT_XBGR2101010:
2227         case DRM_FORMAT_ABGR2101010:
2228                 dspcntr |= DISPPLANE_RGBX101010;
2229                 break;
2230         default:
2231                 BUG();
2232         }
2233
2234         if (obj->tiling_mode != I915_TILING_NONE)
2235                 dspcntr |= DISPPLANE_TILED;
2236         else
2237                 dspcntr &= ~DISPPLANE_TILED;
2238
2239         /* must disable */
2240         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2241
2242         I915_WRITE(reg, dspcntr);
2243
2244         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2245         intel_crtc->dspaddr_offset =
2246                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2247                                                fb->bits_per_pixel / 8,
2248                                                fb->pitches[0]);
2249         linear_offset -= intel_crtc->dspaddr_offset;
2250
2251         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2252                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2253         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2254         I915_MODIFY_DISPBASE(DSPSURF(plane),
2255                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2256         if (IS_HASWELL(dev)) {
2257                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2258         } else {
2259                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2260                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2261         }
2262         POSTING_READ(reg);
2263
2264         return 0;
2265 }
2266
2267 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2268 static int
2269 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2270                            int x, int y, enum mode_set_atomic state)
2271 {
2272         struct drm_device *dev = crtc->dev;
2273         struct drm_i915_private *dev_priv = dev->dev_private;
2274
2275         if (dev_priv->display.disable_fbc)
2276                 dev_priv->display.disable_fbc(dev);
2277         intel_increase_pllclock(crtc);
2278
2279         return dev_priv->display.update_plane(crtc, fb, x, y);
2280 }
2281
2282 void intel_display_handle_reset(struct drm_device *dev)
2283 {
2284         struct drm_i915_private *dev_priv = dev->dev_private;
2285         struct drm_crtc *crtc;
2286
2287         /*
2288          * Flips in the rings have been nuked by the reset,
2289          * so complete all pending flips so that user space
2290          * will get its events and not get stuck.
2291          *
2292          * Also update the base address of all primary
2293          * planes to the the last fb to make sure we're
2294          * showing the correct fb after a reset.
2295          *
2296          * Need to make two loops over the crtcs so that we
2297          * don't try to grab a crtc mutex before the
2298          * pending_flip_queue really got woken up.
2299          */
2300
2301         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2302                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2303                 enum plane plane = intel_crtc->plane;
2304
2305                 intel_prepare_page_flip(dev, plane);
2306                 intel_finish_page_flip_plane(dev, plane);
2307         }
2308
2309         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2310                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2311
2312                 mutex_lock(&crtc->mutex);
2313                 if (intel_crtc->active)
2314                         dev_priv->display.update_plane(crtc, crtc->fb,
2315                                                        crtc->x, crtc->y);
2316                 mutex_unlock(&crtc->mutex);
2317         }
2318 }
2319
2320 static int
2321 intel_finish_fb(struct drm_framebuffer *old_fb)
2322 {
2323         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2324         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2325         bool was_interruptible = dev_priv->mm.interruptible;
2326         int ret;
2327
2328         /* Big Hammer, we also need to ensure that any pending
2329          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2330          * current scanout is retired before unpinning the old
2331          * framebuffer.
2332          *
2333          * This should only fail upon a hung GPU, in which case we
2334          * can safely continue.
2335          */
2336         dev_priv->mm.interruptible = false;
2337         ret = i915_gem_object_finish_gpu(obj);
2338         dev_priv->mm.interruptible = was_interruptible;
2339
2340         return ret;
2341 }
2342
2343 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2344 {
2345         struct drm_device *dev = crtc->dev;
2346         struct drm_i915_master_private *master_priv;
2347         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2348
2349         if (!dev->primary->master)
2350                 return;
2351
2352         master_priv = dev->primary->master->driver_priv;
2353         if (!master_priv->sarea_priv)
2354                 return;
2355
2356         switch (intel_crtc->pipe) {
2357         case 0:
2358                 master_priv->sarea_priv->pipeA_x = x;
2359                 master_priv->sarea_priv->pipeA_y = y;
2360                 break;
2361         case 1:
2362                 master_priv->sarea_priv->pipeB_x = x;
2363                 master_priv->sarea_priv->pipeB_y = y;
2364                 break;
2365         default:
2366                 break;
2367         }
2368 }
2369
2370 static int
2371 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2372                     struct drm_framebuffer *fb)
2373 {
2374         struct drm_device *dev = crtc->dev;
2375         struct drm_i915_private *dev_priv = dev->dev_private;
2376         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2377         struct drm_framebuffer *old_fb;
2378         int ret;
2379
2380         /* no fb bound */
2381         if (!fb) {
2382                 DRM_ERROR("No FB bound\n");
2383                 return 0;
2384         }
2385
2386         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2387                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2388                                 intel_crtc->plane,
2389                                 INTEL_INFO(dev)->num_pipes);
2390                 return -EINVAL;
2391         }
2392
2393         mutex_lock(&dev->struct_mutex);
2394         ret = intel_pin_and_fence_fb_obj(dev,
2395                                          to_intel_framebuffer(fb)->obj,
2396                                          NULL);
2397         if (ret != 0) {
2398                 mutex_unlock(&dev->struct_mutex);
2399                 DRM_ERROR("pin & fence failed\n");
2400                 return ret;
2401         }
2402
2403         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2404         if (ret) {
2405                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2406                 mutex_unlock(&dev->struct_mutex);
2407                 DRM_ERROR("failed to update base address\n");
2408                 return ret;
2409         }
2410
2411         old_fb = crtc->fb;
2412         crtc->fb = fb;
2413         crtc->x = x;
2414         crtc->y = y;
2415
2416         if (old_fb) {
2417                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2418                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2419         }
2420
2421         intel_update_fbc(dev);
2422         mutex_unlock(&dev->struct_mutex);
2423
2424         intel_crtc_update_sarea_pos(crtc, x, y);
2425
2426         return 0;
2427 }
2428
2429 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2430 {
2431         struct drm_device *dev = crtc->dev;
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2434         int pipe = intel_crtc->pipe;
2435         u32 reg, temp;
2436
2437         /* enable normal train */
2438         reg = FDI_TX_CTL(pipe);
2439         temp = I915_READ(reg);
2440         if (IS_IVYBRIDGE(dev)) {
2441                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2442                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2443         } else {
2444                 temp &= ~FDI_LINK_TRAIN_NONE;
2445                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2446         }
2447         I915_WRITE(reg, temp);
2448
2449         reg = FDI_RX_CTL(pipe);
2450         temp = I915_READ(reg);
2451         if (HAS_PCH_CPT(dev)) {
2452                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2453                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2454         } else {
2455                 temp &= ~FDI_LINK_TRAIN_NONE;
2456                 temp |= FDI_LINK_TRAIN_NONE;
2457         }
2458         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2459
2460         /* wait one idle pattern time */
2461         POSTING_READ(reg);
2462         udelay(1000);
2463
2464         /* IVB wants error correction enabled */
2465         if (IS_IVYBRIDGE(dev))
2466                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2467                            FDI_FE_ERRC_ENABLE);
2468 }
2469
2470 static void ivb_modeset_global_resources(struct drm_device *dev)
2471 {
2472         struct drm_i915_private *dev_priv = dev->dev_private;
2473         struct intel_crtc *pipe_B_crtc =
2474                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2475         struct intel_crtc *pipe_C_crtc =
2476                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2477         uint32_t temp;
2478
2479         /* When everything is off disable fdi C so that we could enable fdi B
2480          * with all lanes. XXX: This misses the case where a pipe is not using
2481          * any pch resources and so doesn't need any fdi lanes. */
2482         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2483                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2484                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2485
2486                 temp = I915_READ(SOUTH_CHICKEN1);
2487                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2488                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2489                 I915_WRITE(SOUTH_CHICKEN1, temp);
2490         }
2491 }
2492
2493 /* The FDI link training functions for ILK/Ibexpeak. */
2494 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2495 {
2496         struct drm_device *dev = crtc->dev;
2497         struct drm_i915_private *dev_priv = dev->dev_private;
2498         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2499         int pipe = intel_crtc->pipe;
2500         int plane = intel_crtc->plane;
2501         u32 reg, temp, tries;
2502
2503         /* FDI needs bits from pipe & plane first */
2504         assert_pipe_enabled(dev_priv, pipe);
2505         assert_plane_enabled(dev_priv, plane);
2506
2507         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2508            for train result */
2509         reg = FDI_RX_IMR(pipe);
2510         temp = I915_READ(reg);
2511         temp &= ~FDI_RX_SYMBOL_LOCK;
2512         temp &= ~FDI_RX_BIT_LOCK;
2513         I915_WRITE(reg, temp);
2514         I915_READ(reg);
2515         udelay(150);
2516
2517         /* enable CPU FDI TX and PCH FDI RX */
2518         reg = FDI_TX_CTL(pipe);
2519         temp = I915_READ(reg);
2520         temp &= ~(7 << 19);
2521         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2522         temp &= ~FDI_LINK_TRAIN_NONE;
2523         temp |= FDI_LINK_TRAIN_PATTERN_1;
2524         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2525
2526         reg = FDI_RX_CTL(pipe);
2527         temp = I915_READ(reg);
2528         temp &= ~FDI_LINK_TRAIN_NONE;
2529         temp |= FDI_LINK_TRAIN_PATTERN_1;
2530         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2531
2532         POSTING_READ(reg);
2533         udelay(150);
2534
2535         /* Ironlake workaround, enable clock pointer after FDI enable*/
2536         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2537         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2538                    FDI_RX_PHASE_SYNC_POINTER_EN);
2539
2540         reg = FDI_RX_IIR(pipe);
2541         for (tries = 0; tries < 5; tries++) {
2542                 temp = I915_READ(reg);
2543                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2544
2545                 if ((temp & FDI_RX_BIT_LOCK)) {
2546                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2547                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2548                         break;
2549                 }
2550         }
2551         if (tries == 5)
2552                 DRM_ERROR("FDI train 1 fail!\n");
2553
2554         /* Train 2 */
2555         reg = FDI_TX_CTL(pipe);
2556         temp = I915_READ(reg);
2557         temp &= ~FDI_LINK_TRAIN_NONE;
2558         temp |= FDI_LINK_TRAIN_PATTERN_2;
2559         I915_WRITE(reg, temp);
2560
2561         reg = FDI_RX_CTL(pipe);
2562         temp = I915_READ(reg);
2563         temp &= ~FDI_LINK_TRAIN_NONE;
2564         temp |= FDI_LINK_TRAIN_PATTERN_2;
2565         I915_WRITE(reg, temp);
2566
2567         POSTING_READ(reg);
2568         udelay(150);
2569
2570         reg = FDI_RX_IIR(pipe);
2571         for (tries = 0; tries < 5; tries++) {
2572                 temp = I915_READ(reg);
2573                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2574
2575                 if (temp & FDI_RX_SYMBOL_LOCK) {
2576                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2577                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2578                         break;
2579                 }
2580         }
2581         if (tries == 5)
2582                 DRM_ERROR("FDI train 2 fail!\n");
2583
2584         DRM_DEBUG_KMS("FDI train done\n");
2585
2586 }
2587
2588 static const int snb_b_fdi_train_param[] = {
2589         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2590         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2591         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2592         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2593 };
2594
2595 /* The FDI link training functions for SNB/Cougarpoint. */
2596 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2597 {
2598         struct drm_device *dev = crtc->dev;
2599         struct drm_i915_private *dev_priv = dev->dev_private;
2600         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2601         int pipe = intel_crtc->pipe;
2602         u32 reg, temp, i, retry;
2603
2604         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2605            for train result */
2606         reg = FDI_RX_IMR(pipe);
2607         temp = I915_READ(reg);
2608         temp &= ~FDI_RX_SYMBOL_LOCK;
2609         temp &= ~FDI_RX_BIT_LOCK;
2610         I915_WRITE(reg, temp);
2611
2612         POSTING_READ(reg);
2613         udelay(150);
2614
2615         /* enable CPU FDI TX and PCH FDI RX */
2616         reg = FDI_TX_CTL(pipe);
2617         temp = I915_READ(reg);
2618         temp &= ~(7 << 19);
2619         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2620         temp &= ~FDI_LINK_TRAIN_NONE;
2621         temp |= FDI_LINK_TRAIN_PATTERN_1;
2622         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2623         /* SNB-B */
2624         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2625         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2626
2627         I915_WRITE(FDI_RX_MISC(pipe),
2628                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2629
2630         reg = FDI_RX_CTL(pipe);
2631         temp = I915_READ(reg);
2632         if (HAS_PCH_CPT(dev)) {
2633                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2634                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2635         } else {
2636                 temp &= ~FDI_LINK_TRAIN_NONE;
2637                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2638         }
2639         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2640
2641         POSTING_READ(reg);
2642         udelay(150);
2643
2644         for (i = 0; i < 4; i++) {
2645                 reg = FDI_TX_CTL(pipe);
2646                 temp = I915_READ(reg);
2647                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2648                 temp |= snb_b_fdi_train_param[i];
2649                 I915_WRITE(reg, temp);
2650
2651                 POSTING_READ(reg);
2652                 udelay(500);
2653
2654                 for (retry = 0; retry < 5; retry++) {
2655                         reg = FDI_RX_IIR(pipe);
2656                         temp = I915_READ(reg);
2657                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2658                         if (temp & FDI_RX_BIT_LOCK) {
2659                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2660                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2661                                 break;
2662                         }
2663                         udelay(50);
2664                 }
2665                 if (retry < 5)
2666                         break;
2667         }
2668         if (i == 4)
2669                 DRM_ERROR("FDI train 1 fail!\n");
2670
2671         /* Train 2 */
2672         reg = FDI_TX_CTL(pipe);
2673         temp = I915_READ(reg);
2674         temp &= ~FDI_LINK_TRAIN_NONE;
2675         temp |= FDI_LINK_TRAIN_PATTERN_2;
2676         if (IS_GEN6(dev)) {
2677                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2678                 /* SNB-B */
2679                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2680         }
2681         I915_WRITE(reg, temp);
2682
2683         reg = FDI_RX_CTL(pipe);
2684         temp = I915_READ(reg);
2685         if (HAS_PCH_CPT(dev)) {
2686                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2687                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2688         } else {
2689                 temp &= ~FDI_LINK_TRAIN_NONE;
2690                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2691         }
2692         I915_WRITE(reg, temp);
2693
2694         POSTING_READ(reg);
2695         udelay(150);
2696
2697         for (i = 0; i < 4; i++) {
2698                 reg = FDI_TX_CTL(pipe);
2699                 temp = I915_READ(reg);
2700                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2701                 temp |= snb_b_fdi_train_param[i];
2702                 I915_WRITE(reg, temp);
2703
2704                 POSTING_READ(reg);
2705                 udelay(500);
2706
2707                 for (retry = 0; retry < 5; retry++) {
2708                         reg = FDI_RX_IIR(pipe);
2709                         temp = I915_READ(reg);
2710                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2711                         if (temp & FDI_RX_SYMBOL_LOCK) {
2712                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2713                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2714                                 break;
2715                         }
2716                         udelay(50);
2717                 }
2718                 if (retry < 5)
2719                         break;
2720         }
2721         if (i == 4)
2722                 DRM_ERROR("FDI train 2 fail!\n");
2723
2724         DRM_DEBUG_KMS("FDI train done.\n");
2725 }
2726
2727 /* Manual link training for Ivy Bridge A0 parts */
2728 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2729 {
2730         struct drm_device *dev = crtc->dev;
2731         struct drm_i915_private *dev_priv = dev->dev_private;
2732         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2733         int pipe = intel_crtc->pipe;
2734         u32 reg, temp, i;
2735
2736         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2737            for train result */
2738         reg = FDI_RX_IMR(pipe);
2739         temp = I915_READ(reg);
2740         temp &= ~FDI_RX_SYMBOL_LOCK;
2741         temp &= ~FDI_RX_BIT_LOCK;
2742         I915_WRITE(reg, temp);
2743
2744         POSTING_READ(reg);
2745         udelay(150);
2746
2747         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2748                       I915_READ(FDI_RX_IIR(pipe)));
2749
2750         /* enable CPU FDI TX and PCH FDI RX */
2751         reg = FDI_TX_CTL(pipe);
2752         temp = I915_READ(reg);
2753         temp &= ~(7 << 19);
2754         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2755         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2756         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2757         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2758         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2759         temp |= FDI_COMPOSITE_SYNC;
2760         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2761
2762         I915_WRITE(FDI_RX_MISC(pipe),
2763                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2764
2765         reg = FDI_RX_CTL(pipe);
2766         temp = I915_READ(reg);
2767         temp &= ~FDI_LINK_TRAIN_AUTO;
2768         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2769         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2770         temp |= FDI_COMPOSITE_SYNC;
2771         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2772
2773         POSTING_READ(reg);
2774         udelay(150);
2775
2776         for (i = 0; i < 4; i++) {
2777                 reg = FDI_TX_CTL(pipe);
2778                 temp = I915_READ(reg);
2779                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2780                 temp |= snb_b_fdi_train_param[i];
2781                 I915_WRITE(reg, temp);
2782
2783                 POSTING_READ(reg);
2784                 udelay(500);
2785
2786                 reg = FDI_RX_IIR(pipe);
2787                 temp = I915_READ(reg);
2788                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2789
2790                 if (temp & FDI_RX_BIT_LOCK ||
2791                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2792                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2793                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2794                         break;
2795                 }
2796         }
2797         if (i == 4)
2798                 DRM_ERROR("FDI train 1 fail!\n");
2799
2800         /* Train 2 */
2801         reg = FDI_TX_CTL(pipe);
2802         temp = I915_READ(reg);
2803         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2804         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2805         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2806         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2807         I915_WRITE(reg, temp);
2808
2809         reg = FDI_RX_CTL(pipe);
2810         temp = I915_READ(reg);
2811         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2812         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2813         I915_WRITE(reg, temp);
2814
2815         POSTING_READ(reg);
2816         udelay(150);
2817
2818         for (i = 0; i < 4; i++) {
2819                 reg = FDI_TX_CTL(pipe);
2820                 temp = I915_READ(reg);
2821                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2822                 temp |= snb_b_fdi_train_param[i];
2823                 I915_WRITE(reg, temp);
2824
2825                 POSTING_READ(reg);
2826                 udelay(500);
2827
2828                 reg = FDI_RX_IIR(pipe);
2829                 temp = I915_READ(reg);
2830                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2831
2832                 if (temp & FDI_RX_SYMBOL_LOCK) {
2833                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2834                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2835                         break;
2836                 }
2837         }
2838         if (i == 4)
2839                 DRM_ERROR("FDI train 2 fail!\n");
2840
2841         DRM_DEBUG_KMS("FDI train done.\n");
2842 }
2843
2844 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2845 {
2846         struct drm_device *dev = intel_crtc->base.dev;
2847         struct drm_i915_private *dev_priv = dev->dev_private;
2848         int pipe = intel_crtc->pipe;
2849         u32 reg, temp;
2850
2851
2852         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2853         reg = FDI_RX_CTL(pipe);
2854         temp = I915_READ(reg);
2855         temp &= ~((0x7 << 19) | (0x7 << 16));
2856         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2857         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2858         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2859
2860         POSTING_READ(reg);
2861         udelay(200);
2862
2863         /* Switch from Rawclk to PCDclk */
2864         temp = I915_READ(reg);
2865         I915_WRITE(reg, temp | FDI_PCDCLK);
2866
2867         POSTING_READ(reg);
2868         udelay(200);
2869
2870         /* Enable CPU FDI TX PLL, always on for Ironlake */
2871         reg = FDI_TX_CTL(pipe);
2872         temp = I915_READ(reg);
2873         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2874                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2875
2876                 POSTING_READ(reg);
2877                 udelay(100);
2878         }
2879 }
2880
2881 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2882 {
2883         struct drm_device *dev = intel_crtc->base.dev;
2884         struct drm_i915_private *dev_priv = dev->dev_private;
2885         int pipe = intel_crtc->pipe;
2886         u32 reg, temp;
2887
2888         /* Switch from PCDclk to Rawclk */
2889         reg = FDI_RX_CTL(pipe);
2890         temp = I915_READ(reg);
2891         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2892
2893         /* Disable CPU FDI TX PLL */
2894         reg = FDI_TX_CTL(pipe);
2895         temp = I915_READ(reg);
2896         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2897
2898         POSTING_READ(reg);
2899         udelay(100);
2900
2901         reg = FDI_RX_CTL(pipe);
2902         temp = I915_READ(reg);
2903         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2904
2905         /* Wait for the clocks to turn off. */
2906         POSTING_READ(reg);
2907         udelay(100);
2908 }
2909
2910 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2911 {
2912         struct drm_device *dev = crtc->dev;
2913         struct drm_i915_private *dev_priv = dev->dev_private;
2914         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2915         int pipe = intel_crtc->pipe;
2916         u32 reg, temp;
2917
2918         /* disable CPU FDI tx and PCH FDI rx */
2919         reg = FDI_TX_CTL(pipe);
2920         temp = I915_READ(reg);
2921         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2922         POSTING_READ(reg);
2923
2924         reg = FDI_RX_CTL(pipe);
2925         temp = I915_READ(reg);
2926         temp &= ~(0x7 << 16);
2927         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2928         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2929
2930         POSTING_READ(reg);
2931         udelay(100);
2932
2933         /* Ironlake workaround, disable clock pointer after downing FDI */
2934         if (HAS_PCH_IBX(dev)) {
2935                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2936         }
2937
2938         /* still set train pattern 1 */
2939         reg = FDI_TX_CTL(pipe);
2940         temp = I915_READ(reg);
2941         temp &= ~FDI_LINK_TRAIN_NONE;
2942         temp |= FDI_LINK_TRAIN_PATTERN_1;
2943         I915_WRITE(reg, temp);
2944
2945         reg = FDI_RX_CTL(pipe);
2946         temp = I915_READ(reg);
2947         if (HAS_PCH_CPT(dev)) {
2948                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2949                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2950         } else {
2951                 temp &= ~FDI_LINK_TRAIN_NONE;
2952                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2953         }
2954         /* BPC in FDI rx is consistent with that in PIPECONF */
2955         temp &= ~(0x07 << 16);
2956         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2957         I915_WRITE(reg, temp);
2958
2959         POSTING_READ(reg);
2960         udelay(100);
2961 }
2962
2963 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2964 {
2965         struct drm_device *dev = crtc->dev;
2966         struct drm_i915_private *dev_priv = dev->dev_private;
2967         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2968         unsigned long flags;
2969         bool pending;
2970
2971         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2972             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2973                 return false;
2974
2975         spin_lock_irqsave(&dev->event_lock, flags);
2976         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2977         spin_unlock_irqrestore(&dev->event_lock, flags);
2978
2979         return pending;
2980 }
2981
2982 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2983 {
2984         struct drm_device *dev = crtc->dev;
2985         struct drm_i915_private *dev_priv = dev->dev_private;
2986
2987         if (crtc->fb == NULL)
2988                 return;
2989
2990         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2991
2992         wait_event(dev_priv->pending_flip_queue,
2993                    !intel_crtc_has_pending_flip(crtc));
2994
2995         mutex_lock(&dev->struct_mutex);
2996         intel_finish_fb(crtc->fb);
2997         mutex_unlock(&dev->struct_mutex);
2998 }
2999
3000 /* Program iCLKIP clock to the desired frequency */
3001 static void lpt_program_iclkip(struct drm_crtc *crtc)
3002 {
3003         struct drm_device *dev = crtc->dev;
3004         struct drm_i915_private *dev_priv = dev->dev_private;
3005         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3006         u32 temp;
3007
3008         mutex_lock(&dev_priv->dpio_lock);
3009
3010         /* It is necessary to ungate the pixclk gate prior to programming
3011          * the divisors, and gate it back when it is done.
3012          */
3013         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3014
3015         /* Disable SSCCTL */
3016         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3017                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3018                                 SBI_SSCCTL_DISABLE,
3019                         SBI_ICLK);
3020
3021         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3022         if (crtc->mode.clock == 20000) {
3023                 auxdiv = 1;
3024                 divsel = 0x41;
3025                 phaseinc = 0x20;
3026         } else {
3027                 /* The iCLK virtual clock root frequency is in MHz,
3028                  * but the crtc->mode.clock in in KHz. To get the divisors,
3029                  * it is necessary to divide one by another, so we
3030                  * convert the virtual clock precision to KHz here for higher
3031                  * precision.
3032                  */
3033                 u32 iclk_virtual_root_freq = 172800 * 1000;
3034                 u32 iclk_pi_range = 64;
3035                 u32 desired_divisor, msb_divisor_value, pi_value;
3036
3037                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3038                 msb_divisor_value = desired_divisor / iclk_pi_range;
3039                 pi_value = desired_divisor % iclk_pi_range;
3040
3041                 auxdiv = 0;
3042                 divsel = msb_divisor_value - 2;
3043                 phaseinc = pi_value;
3044         }
3045
3046         /* This should not happen with any sane values */
3047         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3048                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3049         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3050                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3051
3052         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3053                         crtc->mode.clock,
3054                         auxdiv,
3055                         divsel,
3056                         phasedir,
3057                         phaseinc);
3058
3059         /* Program SSCDIVINTPHASE6 */
3060         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3061         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3062         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3063         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3064         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3065         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3066         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3067         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3068
3069         /* Program SSCAUXDIV */
3070         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3071         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3072         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3073         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3074
3075         /* Enable modulator and associated divider */
3076         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3077         temp &= ~SBI_SSCCTL_DISABLE;
3078         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3079
3080         /* Wait for initialization time */
3081         udelay(24);
3082
3083         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3084
3085         mutex_unlock(&dev_priv->dpio_lock);
3086 }
3087
3088 /*
3089  * Enable PCH resources required for PCH ports:
3090  *   - PCH PLLs
3091  *   - FDI training & RX/TX
3092  *   - update transcoder timings
3093  *   - DP transcoding bits
3094  *   - transcoder
3095  */
3096 static void ironlake_pch_enable(struct drm_crtc *crtc)
3097 {
3098         struct drm_device *dev = crtc->dev;
3099         struct drm_i915_private *dev_priv = dev->dev_private;
3100         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3101         int pipe = intel_crtc->pipe;
3102         u32 reg, temp;
3103
3104         assert_transcoder_disabled(dev_priv, pipe);
3105
3106         /* Write the TU size bits before fdi link training, so that error
3107          * detection works. */
3108         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3109                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3110
3111         /* For PCH output, training FDI link */
3112         dev_priv->display.fdi_link_train(crtc);
3113
3114         /* XXX: pch pll's can be enabled any time before we enable the PCH
3115          * transcoder, and we actually should do this to not upset any PCH
3116          * transcoder that already use the clock when we share it.
3117          *
3118          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3119          * unconditionally resets the pll - we need that to have the right LVDS
3120          * enable sequence. */
3121         ironlake_enable_pch_pll(intel_crtc);
3122
3123         if (HAS_PCH_CPT(dev)) {
3124                 u32 sel;
3125
3126                 temp = I915_READ(PCH_DPLL_SEL);
3127                 switch (pipe) {
3128                 default:
3129                 case 0:
3130                         temp |= TRANSA_DPLL_ENABLE;
3131                         sel = TRANSA_DPLLB_SEL;
3132                         break;
3133                 case 1:
3134                         temp |= TRANSB_DPLL_ENABLE;
3135                         sel = TRANSB_DPLLB_SEL;
3136                         break;
3137                 case 2:
3138                         temp |= TRANSC_DPLL_ENABLE;
3139                         sel = TRANSC_DPLLB_SEL;
3140                         break;
3141                 }
3142                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3143                         temp |= sel;
3144                 else
3145                         temp &= ~sel;
3146                 I915_WRITE(PCH_DPLL_SEL, temp);
3147         }
3148
3149         /* set transcoder timing, panel must allow it */
3150         assert_panel_unlocked(dev_priv, pipe);
3151         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3152         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3153         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3154
3155         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3156         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3157         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3158         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3159
3160         intel_fdi_normal_train(crtc);
3161
3162         /* For PCH DP, enable TRANS_DP_CTL */
3163         if (HAS_PCH_CPT(dev) &&
3164             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3165              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3166                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3167                 reg = TRANS_DP_CTL(pipe);
3168                 temp = I915_READ(reg);
3169                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3170                           TRANS_DP_SYNC_MASK |
3171                           TRANS_DP_BPC_MASK);
3172                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3173                          TRANS_DP_ENH_FRAMING);
3174                 temp |= bpc << 9; /* same format but at 11:9 */
3175
3176                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3177                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3178                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3179                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3180
3181                 switch (intel_trans_dp_port_sel(crtc)) {
3182                 case PCH_DP_B:
3183                         temp |= TRANS_DP_PORT_SEL_B;
3184                         break;
3185                 case PCH_DP_C:
3186                         temp |= TRANS_DP_PORT_SEL_C;
3187                         break;
3188                 case PCH_DP_D:
3189                         temp |= TRANS_DP_PORT_SEL_D;
3190                         break;
3191                 default:
3192                         BUG();
3193                 }
3194
3195                 I915_WRITE(reg, temp);
3196         }
3197
3198         ironlake_enable_pch_transcoder(dev_priv, pipe);
3199 }
3200
3201 static void lpt_pch_enable(struct drm_crtc *crtc)
3202 {
3203         struct drm_device *dev = crtc->dev;
3204         struct drm_i915_private *dev_priv = dev->dev_private;
3205         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3206         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3207
3208         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3209
3210         lpt_program_iclkip(crtc);
3211
3212         /* Set transcoder timing. */
3213         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3214         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3215         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3216
3217         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3218         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3219         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3220         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3221
3222         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3223 }
3224
3225 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3226 {
3227         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3228
3229         if (pll == NULL)
3230                 return;
3231
3232         if (pll->refcount == 0) {
3233                 WARN(1, "bad PCH PLL refcount\n");
3234                 return;
3235         }
3236
3237         --pll->refcount;
3238         intel_crtc->pch_pll = NULL;
3239 }
3240
3241 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3242 {
3243         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3244         struct intel_pch_pll *pll;
3245         int i;
3246
3247         pll = intel_crtc->pch_pll;
3248         if (pll) {
3249                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3250                               intel_crtc->base.base.id, pll->pll_reg);
3251                 goto prepare;
3252         }
3253
3254         if (HAS_PCH_IBX(dev_priv->dev)) {
3255                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3256                 i = intel_crtc->pipe;
3257                 pll = &dev_priv->pch_plls[i];
3258
3259                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3260                               intel_crtc->base.base.id, pll->pll_reg);
3261
3262                 goto found;
3263         }
3264
3265         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3266                 pll = &dev_priv->pch_plls[i];
3267
3268                 /* Only want to check enabled timings first */
3269                 if (pll->refcount == 0)
3270                         continue;
3271
3272                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3273                     fp == I915_READ(pll->fp0_reg)) {
3274                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3275                                       intel_crtc->base.base.id,
3276                                       pll->pll_reg, pll->refcount, pll->active);
3277
3278                         goto found;
3279                 }
3280         }
3281
3282         /* Ok no matching timings, maybe there's a free one? */
3283         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3284                 pll = &dev_priv->pch_plls[i];
3285                 if (pll->refcount == 0) {
3286                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3287                                       intel_crtc->base.base.id, pll->pll_reg);
3288                         goto found;
3289                 }
3290         }
3291
3292         return NULL;
3293
3294 found:
3295         intel_crtc->pch_pll = pll;
3296         pll->refcount++;
3297         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3298 prepare: /* separate function? */
3299         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3300
3301         /* Wait for the clocks to stabilize before rewriting the regs */
3302         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3303         POSTING_READ(pll->pll_reg);
3304         udelay(150);
3305
3306         I915_WRITE(pll->fp0_reg, fp);
3307         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3308         pll->on = false;
3309         return pll;
3310 }
3311
3312 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3313 {
3314         struct drm_i915_private *dev_priv = dev->dev_private;
3315         int dslreg = PIPEDSL(pipe);
3316         u32 temp;
3317
3318         temp = I915_READ(dslreg);
3319         udelay(500);
3320         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3321                 if (wait_for(I915_READ(dslreg) != temp, 5))
3322                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3323         }
3324 }
3325
3326 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3327 {
3328         struct drm_device *dev = crtc->dev;
3329         struct drm_i915_private *dev_priv = dev->dev_private;
3330         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3331         struct intel_encoder *encoder;
3332         int pipe = intel_crtc->pipe;
3333         int plane = intel_crtc->plane;
3334         u32 temp;
3335
3336         WARN_ON(!crtc->enabled);
3337
3338         if (intel_crtc->active)
3339                 return;
3340
3341         intel_crtc->active = true;
3342         intel_update_watermarks(dev);
3343
3344         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3345                 temp = I915_READ(PCH_LVDS);
3346                 if ((temp & LVDS_PORT_EN) == 0)
3347                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3348         }
3349
3350
3351         if (intel_crtc->config.has_pch_encoder) {
3352                 /* Note: FDI PLL enabling _must_ be done before we enable the
3353                  * cpu pipes, hence this is separate from all the other fdi/pch
3354                  * enabling. */
3355                 ironlake_fdi_pll_enable(intel_crtc);
3356         } else {
3357                 assert_fdi_tx_disabled(dev_priv, pipe);
3358                 assert_fdi_rx_disabled(dev_priv, pipe);
3359         }
3360
3361         for_each_encoder_on_crtc(dev, crtc, encoder)
3362                 if (encoder->pre_enable)
3363                         encoder->pre_enable(encoder);
3364
3365         /* Enable panel fitting for LVDS */
3366         if (dev_priv->pch_pf_size &&
3367             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3368              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3369                 /* Force use of hard-coded filter coefficients
3370                  * as some pre-programmed values are broken,
3371                  * e.g. x201.
3372                  */
3373                 if (IS_IVYBRIDGE(dev))
3374                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3375                                                  PF_PIPE_SEL_IVB(pipe));
3376                 else
3377                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3378                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3379                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3380         }
3381
3382         /*
3383          * On ILK+ LUT must be loaded before the pipe is running but with
3384          * clocks enabled
3385          */
3386         intel_crtc_load_lut(crtc);
3387
3388         intel_enable_pipe(dev_priv, pipe,
3389                           intel_crtc->config.has_pch_encoder);
3390         intel_enable_plane(dev_priv, plane, pipe);
3391
3392         if (intel_crtc->config.has_pch_encoder)
3393                 ironlake_pch_enable(crtc);
3394
3395         mutex_lock(&dev->struct_mutex);
3396         intel_update_fbc(dev);
3397         mutex_unlock(&dev->struct_mutex);
3398
3399         intel_crtc_update_cursor(crtc, true);
3400
3401         for_each_encoder_on_crtc(dev, crtc, encoder)
3402                 encoder->enable(encoder);
3403
3404         if (HAS_PCH_CPT(dev))
3405                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3406
3407         /*
3408          * There seems to be a race in PCH platform hw (at least on some
3409          * outputs) where an enabled pipe still completes any pageflip right
3410          * away (as if the pipe is off) instead of waiting for vblank. As soon
3411          * as the first vblank happend, everything works as expected. Hence just
3412          * wait for one vblank before returning to avoid strange things
3413          * happening.
3414          */
3415         intel_wait_for_vblank(dev, intel_crtc->pipe);
3416 }
3417
3418 static void haswell_crtc_enable(struct drm_crtc *crtc)
3419 {
3420         struct drm_device *dev = crtc->dev;
3421         struct drm_i915_private *dev_priv = dev->dev_private;
3422         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3423         struct intel_encoder *encoder;
3424         int pipe = intel_crtc->pipe;
3425         int plane = intel_crtc->plane;
3426
3427         WARN_ON(!crtc->enabled);
3428
3429         if (intel_crtc->active)
3430                 return;
3431
3432         intel_crtc->active = true;
3433         intel_update_watermarks(dev);
3434
3435         if (intel_crtc->config.has_pch_encoder)
3436                 dev_priv->display.fdi_link_train(crtc);
3437
3438         for_each_encoder_on_crtc(dev, crtc, encoder)
3439                 if (encoder->pre_enable)
3440                         encoder->pre_enable(encoder);
3441
3442         intel_ddi_enable_pipe_clock(intel_crtc);
3443
3444         /* Enable panel fitting for eDP */
3445         if (dev_priv->pch_pf_size &&
3446             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3447                 /* Force use of hard-coded filter coefficients
3448                  * as some pre-programmed values are broken,
3449                  * e.g. x201.
3450                  */
3451                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3452                                          PF_PIPE_SEL_IVB(pipe));
3453                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3454                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3455         }
3456
3457         /*
3458          * On ILK+ LUT must be loaded before the pipe is running but with
3459          * clocks enabled
3460          */
3461         intel_crtc_load_lut(crtc);
3462
3463         intel_ddi_set_pipe_settings(crtc);
3464         intel_ddi_enable_transcoder_func(crtc);
3465
3466         intel_enable_pipe(dev_priv, pipe,
3467                           intel_crtc->config.has_pch_encoder);
3468         intel_enable_plane(dev_priv, plane, pipe);
3469
3470         if (intel_crtc->config.has_pch_encoder)
3471                 lpt_pch_enable(crtc);
3472
3473         mutex_lock(&dev->struct_mutex);
3474         intel_update_fbc(dev);
3475         mutex_unlock(&dev->struct_mutex);
3476
3477         intel_crtc_update_cursor(crtc, true);
3478
3479         for_each_encoder_on_crtc(dev, crtc, encoder)
3480                 encoder->enable(encoder);
3481
3482         /*
3483          * There seems to be a race in PCH platform hw (at least on some
3484          * outputs) where an enabled pipe still completes any pageflip right
3485          * away (as if the pipe is off) instead of waiting for vblank. As soon
3486          * as the first vblank happend, everything works as expected. Hence just
3487          * wait for one vblank before returning to avoid strange things
3488          * happening.
3489          */
3490         intel_wait_for_vblank(dev, intel_crtc->pipe);
3491 }
3492
3493 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3494 {
3495         struct drm_device *dev = crtc->dev;
3496         struct drm_i915_private *dev_priv = dev->dev_private;
3497         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3498         struct intel_encoder *encoder;
3499         int pipe = intel_crtc->pipe;
3500         int plane = intel_crtc->plane;
3501         u32 reg, temp;
3502
3503
3504         if (!intel_crtc->active)
3505                 return;
3506
3507         for_each_encoder_on_crtc(dev, crtc, encoder)
3508                 encoder->disable(encoder);
3509
3510         intel_crtc_wait_for_pending_flips(crtc);
3511         drm_vblank_off(dev, pipe);
3512         intel_crtc_update_cursor(crtc, false);
3513
3514         intel_disable_plane(dev_priv, plane, pipe);
3515
3516         if (dev_priv->cfb_plane == plane)
3517                 intel_disable_fbc(dev);
3518
3519         intel_disable_pipe(dev_priv, pipe);
3520
3521         /* Disable PF */
3522         I915_WRITE(PF_CTL(pipe), 0);
3523         I915_WRITE(PF_WIN_SZ(pipe), 0);
3524
3525         for_each_encoder_on_crtc(dev, crtc, encoder)
3526                 if (encoder->post_disable)
3527                         encoder->post_disable(encoder);
3528
3529         ironlake_fdi_disable(crtc);
3530
3531         ironlake_disable_pch_transcoder(dev_priv, pipe);
3532
3533         if (HAS_PCH_CPT(dev)) {
3534                 /* disable TRANS_DP_CTL */
3535                 reg = TRANS_DP_CTL(pipe);
3536                 temp = I915_READ(reg);
3537                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3538                 temp |= TRANS_DP_PORT_SEL_NONE;
3539                 I915_WRITE(reg, temp);
3540
3541                 /* disable DPLL_SEL */
3542                 temp = I915_READ(PCH_DPLL_SEL);
3543                 switch (pipe) {
3544                 case 0:
3545                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3546                         break;
3547                 case 1:
3548                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3549                         break;
3550                 case 2:
3551                         /* C shares PLL A or B */
3552                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3553                         break;
3554                 default:
3555                         BUG(); /* wtf */
3556                 }
3557                 I915_WRITE(PCH_DPLL_SEL, temp);
3558         }
3559
3560         /* disable PCH DPLL */
3561         intel_disable_pch_pll(intel_crtc);
3562
3563         ironlake_fdi_pll_disable(intel_crtc);
3564
3565         intel_crtc->active = false;
3566         intel_update_watermarks(dev);
3567
3568         mutex_lock(&dev->struct_mutex);
3569         intel_update_fbc(dev);
3570         mutex_unlock(&dev->struct_mutex);
3571 }
3572
3573 static void haswell_crtc_disable(struct drm_crtc *crtc)
3574 {
3575         struct drm_device *dev = crtc->dev;
3576         struct drm_i915_private *dev_priv = dev->dev_private;
3577         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3578         struct intel_encoder *encoder;
3579         int pipe = intel_crtc->pipe;
3580         int plane = intel_crtc->plane;
3581         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3582
3583         if (!intel_crtc->active)
3584                 return;
3585
3586         for_each_encoder_on_crtc(dev, crtc, encoder)
3587                 encoder->disable(encoder);
3588
3589         intel_crtc_wait_for_pending_flips(crtc);
3590         drm_vblank_off(dev, pipe);
3591         intel_crtc_update_cursor(crtc, false);
3592
3593         intel_disable_plane(dev_priv, plane, pipe);
3594
3595         if (dev_priv->cfb_plane == plane)
3596                 intel_disable_fbc(dev);
3597
3598         intel_disable_pipe(dev_priv, pipe);
3599
3600         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3601
3602         /* XXX: Once we have proper panel fitter state tracking implemented with
3603          * hardware state read/check support we should switch to only disable
3604          * the panel fitter when we know it's used. */
3605         if (intel_using_power_well(dev)) {
3606                 I915_WRITE(PF_CTL(pipe), 0);
3607                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3608         }
3609
3610         intel_ddi_disable_pipe_clock(intel_crtc);
3611
3612         for_each_encoder_on_crtc(dev, crtc, encoder)
3613                 if (encoder->post_disable)
3614                         encoder->post_disable(encoder);
3615
3616         if (intel_crtc->config.has_pch_encoder) {
3617                 lpt_disable_pch_transcoder(dev_priv);
3618                 intel_ddi_fdi_disable(crtc);
3619         }
3620
3621         intel_crtc->active = false;
3622         intel_update_watermarks(dev);
3623
3624         mutex_lock(&dev->struct_mutex);
3625         intel_update_fbc(dev);
3626         mutex_unlock(&dev->struct_mutex);
3627 }
3628
3629 static void ironlake_crtc_off(struct drm_crtc *crtc)
3630 {
3631         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3632         intel_put_pch_pll(intel_crtc);
3633 }
3634
3635 static void haswell_crtc_off(struct drm_crtc *crtc)
3636 {
3637         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3638
3639         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3640          * start using it. */
3641         intel_crtc->config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3642
3643         intel_ddi_put_crtc_pll(crtc);
3644 }
3645
3646 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3647 {
3648         if (!enable && intel_crtc->overlay) {
3649                 struct drm_device *dev = intel_crtc->base.dev;
3650                 struct drm_i915_private *dev_priv = dev->dev_private;
3651
3652                 mutex_lock(&dev->struct_mutex);
3653                 dev_priv->mm.interruptible = false;
3654                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3655                 dev_priv->mm.interruptible = true;
3656                 mutex_unlock(&dev->struct_mutex);
3657         }
3658
3659         /* Let userspace switch the overlay on again. In most cases userspace
3660          * has to recompute where to put it anyway.
3661          */
3662 }
3663
3664 /**
3665  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3666  * cursor plane briefly if not already running after enabling the display
3667  * plane.
3668  * This workaround avoids occasional blank screens when self refresh is
3669  * enabled.
3670  */
3671 static void
3672 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3673 {
3674         u32 cntl = I915_READ(CURCNTR(pipe));
3675
3676         if ((cntl & CURSOR_MODE) == 0) {
3677                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3678
3679                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3680                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3681                 intel_wait_for_vblank(dev_priv->dev, pipe);
3682                 I915_WRITE(CURCNTR(pipe), cntl);
3683                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3684                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3685         }
3686 }
3687
3688 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3689 {
3690         struct drm_device *dev = crtc->dev;
3691         struct drm_i915_private *dev_priv = dev->dev_private;
3692         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3693         struct intel_encoder *encoder;
3694         int pipe = intel_crtc->pipe;
3695         int plane = intel_crtc->plane;
3696
3697         WARN_ON(!crtc->enabled);
3698
3699         if (intel_crtc->active)
3700                 return;
3701
3702         intel_crtc->active = true;
3703         intel_update_watermarks(dev);
3704
3705         intel_enable_pll(dev_priv, pipe);
3706
3707         for_each_encoder_on_crtc(dev, crtc, encoder)
3708                 if (encoder->pre_enable)
3709                         encoder->pre_enable(encoder);
3710
3711         intel_enable_pipe(dev_priv, pipe, false);
3712         intel_enable_plane(dev_priv, plane, pipe);
3713         if (IS_G4X(dev))
3714                 g4x_fixup_plane(dev_priv, pipe);
3715
3716         intel_crtc_load_lut(crtc);
3717         intel_update_fbc(dev);
3718
3719         /* Give the overlay scaler a chance to enable if it's on this pipe */
3720         intel_crtc_dpms_overlay(intel_crtc, true);
3721         intel_crtc_update_cursor(crtc, true);
3722
3723         for_each_encoder_on_crtc(dev, crtc, encoder)
3724                 encoder->enable(encoder);
3725 }
3726
3727 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3728 {
3729         struct drm_device *dev = crtc->base.dev;
3730         struct drm_i915_private *dev_priv = dev->dev_private;
3731         enum pipe pipe;
3732         uint32_t pctl = I915_READ(PFIT_CONTROL);
3733
3734         assert_pipe_disabled(dev_priv, crtc->pipe);
3735
3736         if (INTEL_INFO(dev)->gen >= 4)
3737                 pipe = (pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT;
3738         else
3739                 pipe = PIPE_B;
3740
3741         if (pipe == crtc->pipe) {
3742                 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", pctl);
3743                 I915_WRITE(PFIT_CONTROL, 0);
3744         }
3745 }
3746
3747 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3748 {
3749         struct drm_device *dev = crtc->dev;
3750         struct drm_i915_private *dev_priv = dev->dev_private;
3751         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3752         struct intel_encoder *encoder;
3753         int pipe = intel_crtc->pipe;
3754         int plane = intel_crtc->plane;
3755
3756         if (!intel_crtc->active)
3757                 return;
3758
3759         for_each_encoder_on_crtc(dev, crtc, encoder)
3760                 encoder->disable(encoder);
3761
3762         /* Give the overlay scaler a chance to disable if it's on this pipe */
3763         intel_crtc_wait_for_pending_flips(crtc);
3764         drm_vblank_off(dev, pipe);
3765         intel_crtc_dpms_overlay(intel_crtc, false);
3766         intel_crtc_update_cursor(crtc, false);
3767
3768         if (dev_priv->cfb_plane == plane)
3769                 intel_disable_fbc(dev);
3770
3771         intel_disable_plane(dev_priv, plane, pipe);
3772         intel_disable_pipe(dev_priv, pipe);
3773
3774         i9xx_pfit_disable(intel_crtc);
3775
3776         intel_disable_pll(dev_priv, pipe);
3777
3778         intel_crtc->active = false;
3779         intel_update_fbc(dev);
3780         intel_update_watermarks(dev);
3781 }
3782
3783 static void i9xx_crtc_off(struct drm_crtc *crtc)
3784 {
3785 }
3786
3787 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3788                                     bool enabled)
3789 {
3790         struct drm_device *dev = crtc->dev;
3791         struct drm_i915_master_private *master_priv;
3792         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3793         int pipe = intel_crtc->pipe;
3794
3795         if (!dev->primary->master)
3796                 return;
3797
3798         master_priv = dev->primary->master->driver_priv;
3799         if (!master_priv->sarea_priv)
3800                 return;
3801
3802         switch (pipe) {
3803         case 0:
3804                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3805                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3806                 break;
3807         case 1:
3808                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3809                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3810                 break;
3811         default:
3812                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3813                 break;
3814         }
3815 }
3816
3817 /**
3818  * Sets the power management mode of the pipe and plane.
3819  */
3820 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3821 {
3822         struct drm_device *dev = crtc->dev;
3823         struct drm_i915_private *dev_priv = dev->dev_private;
3824         struct intel_encoder *intel_encoder;
3825         bool enable = false;
3826
3827         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3828                 enable |= intel_encoder->connectors_active;
3829
3830         if (enable)
3831                 dev_priv->display.crtc_enable(crtc);
3832         else
3833                 dev_priv->display.crtc_disable(crtc);
3834
3835         intel_crtc_update_sarea(crtc, enable);
3836 }
3837
3838 static void intel_crtc_disable(struct drm_crtc *crtc)
3839 {
3840         struct drm_device *dev = crtc->dev;
3841         struct drm_connector *connector;
3842         struct drm_i915_private *dev_priv = dev->dev_private;
3843         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3844
3845         /* crtc should still be enabled when we disable it. */
3846         WARN_ON(!crtc->enabled);
3847
3848         intel_crtc->eld_vld = false;
3849         dev_priv->display.crtc_disable(crtc);
3850         intel_crtc_update_sarea(crtc, false);
3851         dev_priv->display.off(crtc);
3852
3853         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3854         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3855
3856         if (crtc->fb) {
3857                 mutex_lock(&dev->struct_mutex);
3858                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3859                 mutex_unlock(&dev->struct_mutex);
3860                 crtc->fb = NULL;
3861         }
3862
3863         /* Update computed state. */
3864         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3865                 if (!connector->encoder || !connector->encoder->crtc)
3866                         continue;
3867
3868                 if (connector->encoder->crtc != crtc)
3869                         continue;
3870
3871                 connector->dpms = DRM_MODE_DPMS_OFF;
3872                 to_intel_encoder(connector->encoder)->connectors_active = false;
3873         }
3874 }
3875
3876 void intel_modeset_disable(struct drm_device *dev)
3877 {
3878         struct drm_crtc *crtc;
3879
3880         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3881                 if (crtc->enabled)
3882                         intel_crtc_disable(crtc);
3883         }
3884 }
3885
3886 void intel_encoder_destroy(struct drm_encoder *encoder)
3887 {
3888         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3889
3890         drm_encoder_cleanup(encoder);
3891         kfree(intel_encoder);
3892 }
3893
3894 /* Simple dpms helper for encodres with just one connector, no cloning and only
3895  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3896  * state of the entire output pipe. */
3897 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3898 {
3899         if (mode == DRM_MODE_DPMS_ON) {
3900                 encoder->connectors_active = true;
3901
3902                 intel_crtc_update_dpms(encoder->base.crtc);
3903         } else {
3904                 encoder->connectors_active = false;
3905
3906                 intel_crtc_update_dpms(encoder->base.crtc);
3907         }
3908 }
3909
3910 /* Cross check the actual hw state with our own modeset state tracking (and it's
3911  * internal consistency). */
3912 static void intel_connector_check_state(struct intel_connector *connector)
3913 {
3914         if (connector->get_hw_state(connector)) {
3915                 struct intel_encoder *encoder = connector->encoder;
3916                 struct drm_crtc *crtc;
3917                 bool encoder_enabled;
3918                 enum pipe pipe;
3919
3920                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3921                               connector->base.base.id,
3922                               drm_get_connector_name(&connector->base));
3923
3924                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3925                      "wrong connector dpms state\n");
3926                 WARN(connector->base.encoder != &encoder->base,
3927                      "active connector not linked to encoder\n");
3928                 WARN(!encoder->connectors_active,
3929                      "encoder->connectors_active not set\n");
3930
3931                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3932                 WARN(!encoder_enabled, "encoder not enabled\n");
3933                 if (WARN_ON(!encoder->base.crtc))
3934                         return;
3935
3936                 crtc = encoder->base.crtc;
3937
3938                 WARN(!crtc->enabled, "crtc not enabled\n");
3939                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3940                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3941                      "encoder active on the wrong pipe\n");
3942         }
3943 }
3944
3945 /* Even simpler default implementation, if there's really no special case to
3946  * consider. */
3947 void intel_connector_dpms(struct drm_connector *connector, int mode)
3948 {
3949         struct intel_encoder *encoder = intel_attached_encoder(connector);
3950
3951         /* All the simple cases only support two dpms states. */
3952         if (mode != DRM_MODE_DPMS_ON)
3953                 mode = DRM_MODE_DPMS_OFF;
3954
3955         if (mode == connector->dpms)
3956                 return;
3957
3958         connector->dpms = mode;
3959
3960         /* Only need to change hw state when actually enabled */
3961         if (encoder->base.crtc)
3962                 intel_encoder_dpms(encoder, mode);
3963         else
3964                 WARN_ON(encoder->connectors_active != false);
3965
3966         intel_modeset_check_state(connector->dev);
3967 }
3968
3969 /* Simple connector->get_hw_state implementation for encoders that support only
3970  * one connector and no cloning and hence the encoder state determines the state
3971  * of the connector. */
3972 bool intel_connector_get_hw_state(struct intel_connector *connector)
3973 {
3974         enum pipe pipe = 0;
3975         struct intel_encoder *encoder = connector->encoder;
3976
3977         return encoder->get_hw_state(encoder, &pipe);
3978 }
3979
3980 static bool intel_crtc_compute_config(struct drm_crtc *crtc,
3981                                       struct intel_crtc_config *pipe_config)
3982 {
3983         struct drm_device *dev = crtc->dev;
3984         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
3985
3986         if (HAS_PCH_SPLIT(dev)) {
3987                 /* FDI link clock is fixed at 2.7G */
3988                 if (pipe_config->requested_mode.clock * 3
3989                     > IRONLAKE_FDI_FREQ * 4)
3990                         return false;
3991         }
3992
3993         /* All interlaced capable intel hw wants timings in frames. Note though
3994          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3995          * timings, so we need to be careful not to clobber these.*/
3996         if (!pipe_config->timings_set)
3997                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3998
3999         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
4000          * with a hsync front porch of 0.
4001          */
4002         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4003                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4004                 return false;
4005
4006         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4007                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4008         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4009                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4010                  * for lvds. */
4011                 pipe_config->pipe_bpp = 8*3;
4012         }
4013
4014         return true;
4015 }
4016
4017 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4018 {
4019         return 400000; /* FIXME */
4020 }
4021
4022 static int i945_get_display_clock_speed(struct drm_device *dev)
4023 {
4024         return 400000;
4025 }
4026
4027 static int i915_get_display_clock_speed(struct drm_device *dev)
4028 {
4029         return 333000;
4030 }
4031
4032 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4033 {
4034         return 200000;
4035 }
4036
4037 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4038 {
4039         u16 gcfgc = 0;
4040
4041         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4042
4043         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4044                 return 133000;
4045         else {
4046                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4047                 case GC_DISPLAY_CLOCK_333_MHZ:
4048                         return 333000;
4049                 default:
4050                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4051                         return 190000;
4052                 }
4053         }
4054 }
4055
4056 static int i865_get_display_clock_speed(struct drm_device *dev)
4057 {
4058         return 266000;
4059 }
4060
4061 static int i855_get_display_clock_speed(struct drm_device *dev)
4062 {
4063         u16 hpllcc = 0;
4064         /* Assume that the hardware is in the high speed state.  This
4065          * should be the default.
4066          */
4067         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4068         case GC_CLOCK_133_200:
4069         case GC_CLOCK_100_200:
4070                 return 200000;
4071         case GC_CLOCK_166_250:
4072                 return 250000;
4073         case GC_CLOCK_100_133:
4074                 return 133000;
4075         }
4076
4077         /* Shouldn't happen */
4078         return 0;
4079 }
4080
4081 static int i830_get_display_clock_speed(struct drm_device *dev)
4082 {
4083         return 133000;
4084 }
4085
4086 static void
4087 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4088 {
4089         while (*num > DATA_LINK_M_N_MASK ||
4090                *den > DATA_LINK_M_N_MASK) {
4091                 *num >>= 1;
4092                 *den >>= 1;
4093         }
4094 }
4095
4096 static void compute_m_n(unsigned int m, unsigned int n,
4097                         uint32_t *ret_m, uint32_t *ret_n)
4098 {
4099         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4100         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4101         intel_reduce_m_n_ratio(ret_m, ret_n);
4102 }
4103
4104 void
4105 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4106                        int pixel_clock, int link_clock,
4107                        struct intel_link_m_n *m_n)
4108 {
4109         m_n->tu = 64;
4110
4111         compute_m_n(bits_per_pixel * pixel_clock,
4112                     link_clock * nlanes * 8,
4113                     &m_n->gmch_m, &m_n->gmch_n);
4114
4115         compute_m_n(pixel_clock, link_clock,
4116                     &m_n->link_m, &m_n->link_n);
4117 }
4118
4119 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4120 {
4121         if (i915_panel_use_ssc >= 0)
4122                 return i915_panel_use_ssc != 0;
4123         return dev_priv->lvds_use_ssc
4124                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4125 }
4126
4127 static int vlv_get_refclk(struct drm_crtc *crtc)
4128 {
4129         struct drm_device *dev = crtc->dev;
4130         struct drm_i915_private *dev_priv = dev->dev_private;
4131         int refclk = 27000; /* for DP & HDMI */
4132
4133         return 100000; /* only one validated so far */
4134
4135         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4136                 refclk = 96000;
4137         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4138                 if (intel_panel_use_ssc(dev_priv))
4139                         refclk = 100000;
4140                 else
4141                         refclk = 96000;
4142         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4143                 refclk = 100000;
4144         }
4145
4146         return refclk;
4147 }
4148
4149 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4150 {
4151         struct drm_device *dev = crtc->dev;
4152         struct drm_i915_private *dev_priv = dev->dev_private;
4153         int refclk;
4154
4155         if (IS_VALLEYVIEW(dev)) {
4156                 refclk = vlv_get_refclk(crtc);
4157         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4158             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4159                 refclk = dev_priv->lvds_ssc_freq * 1000;
4160                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4161                               refclk / 1000);
4162         } else if (!IS_GEN2(dev)) {
4163                 refclk = 96000;
4164         } else {
4165                 refclk = 48000;
4166         }
4167
4168         return refclk;
4169 }
4170
4171 static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc *crtc)
4172 {
4173         unsigned dotclock = crtc->config.adjusted_mode.clock;
4174         struct dpll *clock = &crtc->config.dpll;
4175
4176         /* SDVO TV has fixed PLL values depend on its clock range,
4177            this mirrors vbios setting. */
4178         if (dotclock >= 100000 && dotclock < 140500) {
4179                 clock->p1 = 2;
4180                 clock->p2 = 10;
4181                 clock->n = 3;
4182                 clock->m1 = 16;
4183                 clock->m2 = 8;
4184         } else if (dotclock >= 140500 && dotclock <= 200000) {
4185                 clock->p1 = 1;
4186                 clock->p2 = 10;
4187                 clock->n = 6;
4188                 clock->m1 = 12;
4189                 clock->m2 = 8;
4190         }
4191
4192         crtc->config.clock_set = true;
4193 }
4194
4195 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4196                                      intel_clock_t *reduced_clock)
4197 {
4198         struct drm_device *dev = crtc->base.dev;
4199         struct drm_i915_private *dev_priv = dev->dev_private;
4200         int pipe = crtc->pipe;
4201         u32 fp, fp2 = 0;
4202         struct dpll *clock = &crtc->config.dpll;
4203
4204         if (IS_PINEVIEW(dev)) {
4205                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4206                 if (reduced_clock)
4207                         fp2 = (1 << reduced_clock->n) << 16 |
4208                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4209         } else {
4210                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4211                 if (reduced_clock)
4212                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4213                                 reduced_clock->m2;
4214         }
4215
4216         I915_WRITE(FP0(pipe), fp);
4217
4218         crtc->lowfreq_avail = false;
4219         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4220             reduced_clock && i915_powersave) {
4221                 I915_WRITE(FP1(pipe), fp2);
4222                 crtc->lowfreq_avail = true;
4223         } else {
4224                 I915_WRITE(FP1(pipe), fp);
4225         }
4226 }
4227
4228 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4229 {
4230         if (crtc->config.has_pch_encoder)
4231                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4232         else
4233                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4234 }
4235
4236 static void vlv_update_pll(struct intel_crtc *crtc)
4237 {
4238         struct drm_device *dev = crtc->base.dev;
4239         struct drm_i915_private *dev_priv = dev->dev_private;
4240         int pipe = crtc->pipe;
4241         u32 dpll, mdiv, pdiv;
4242         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4243         bool is_sdvo;
4244         u32 temp;
4245
4246         mutex_lock(&dev_priv->dpio_lock);
4247
4248         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4249                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4250
4251         dpll = DPLL_VGA_MODE_DIS;
4252         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4253         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4254         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4255
4256         I915_WRITE(DPLL(pipe), dpll);
4257         POSTING_READ(DPLL(pipe));
4258
4259         bestn = crtc->config.dpll.n;
4260         bestm1 = crtc->config.dpll.m1;
4261         bestm2 = crtc->config.dpll.m2;
4262         bestp1 = crtc->config.dpll.p1;
4263         bestp2 = crtc->config.dpll.p2;
4264
4265         /*
4266          * In Valleyview PLL and program lane counter registers are exposed
4267          * through DPIO interface
4268          */
4269         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4270         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4271         mdiv |= ((bestn << DPIO_N_SHIFT));
4272         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4273         mdiv |= (1 << DPIO_K_SHIFT);
4274         mdiv |= DPIO_ENABLE_CALIBRATION;
4275         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4276
4277         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4278
4279         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4280                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4281                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4282                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4283         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4284
4285         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4286
4287         dpll |= DPLL_VCO_ENABLE;
4288         I915_WRITE(DPLL(pipe), dpll);
4289         POSTING_READ(DPLL(pipe));
4290         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4291                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4292
4293         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4294
4295         if (crtc->config.has_dp_encoder)
4296                 intel_dp_set_m_n(crtc);
4297
4298         I915_WRITE(DPLL(pipe), dpll);
4299
4300         /* Wait for the clocks to stabilize. */
4301         POSTING_READ(DPLL(pipe));
4302         udelay(150);
4303
4304         temp = 0;
4305         if (is_sdvo) {
4306                 temp = 0;
4307                 if (crtc->config.pixel_multiplier > 1) {
4308                         temp = (crtc->config.pixel_multiplier - 1)
4309                                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4310                 }
4311         }
4312         I915_WRITE(DPLL_MD(pipe), temp);
4313         POSTING_READ(DPLL_MD(pipe));
4314
4315         /* Now program lane control registers */
4316         if(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)
4317            || intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
4318                 temp = 0x1000C4;
4319                 if(pipe == 1)
4320                         temp |= (1 << 21);
4321                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4322         }
4323
4324         if(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP)) {
4325                 temp = 0x1000C4;
4326                 if(pipe == 1)
4327                         temp |= (1 << 21);
4328                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4329         }
4330
4331         mutex_unlock(&dev_priv->dpio_lock);
4332 }
4333
4334 static void i9xx_update_pll(struct intel_crtc *crtc,
4335                             intel_clock_t *reduced_clock,
4336                             int num_connectors,
4337                             bool needs_tv_clock)
4338 {
4339         struct drm_device *dev = crtc->base.dev;
4340         struct drm_i915_private *dev_priv = dev->dev_private;
4341         struct intel_encoder *encoder;
4342         int pipe = crtc->pipe;
4343         u32 dpll;
4344         bool is_sdvo;
4345         struct dpll *clock = &crtc->config.dpll;
4346
4347         i9xx_update_pll_dividers(crtc, reduced_clock);
4348
4349         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4350                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4351
4352         dpll = DPLL_VGA_MODE_DIS;
4353
4354         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4355                 dpll |= DPLLB_MODE_LVDS;
4356         else
4357                 dpll |= DPLLB_MODE_DAC_SERIAL;
4358
4359         if (is_sdvo) {
4360                 if ((crtc->config.pixel_multiplier > 1) &&
4361                     (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4362                         dpll |= (crtc->config.pixel_multiplier - 1)
4363                                 << SDVO_MULTIPLIER_SHIFT_HIRES;
4364                 }
4365                 dpll |= DPLL_DVO_HIGH_SPEED;
4366         }
4367         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4368                 dpll |= DPLL_DVO_HIGH_SPEED;
4369
4370         /* compute bitmask from p1 value */
4371         if (IS_PINEVIEW(dev))
4372                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4373         else {
4374                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4375                 if (IS_G4X(dev) && reduced_clock)
4376                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4377         }
4378         switch (clock->p2) {
4379         case 5:
4380                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4381                 break;
4382         case 7:
4383                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4384                 break;
4385         case 10:
4386                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4387                 break;
4388         case 14:
4389                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4390                 break;
4391         }
4392         if (INTEL_INFO(dev)->gen >= 4)
4393                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4394
4395         if (is_sdvo && needs_tv_clock)
4396                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4397         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4398                 /* XXX: just matching BIOS for now */
4399                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4400                 dpll |= 3;
4401         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4402                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4403                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4404         else
4405                 dpll |= PLL_REF_INPUT_DREFCLK;
4406
4407         dpll |= DPLL_VCO_ENABLE;
4408         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4409         POSTING_READ(DPLL(pipe));
4410         udelay(150);
4411
4412         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4413                 if (encoder->pre_pll_enable)
4414                         encoder->pre_pll_enable(encoder);
4415
4416         if (crtc->config.has_dp_encoder)
4417                 intel_dp_set_m_n(crtc);
4418
4419         I915_WRITE(DPLL(pipe), dpll);
4420
4421         /* Wait for the clocks to stabilize. */
4422         POSTING_READ(DPLL(pipe));
4423         udelay(150);
4424
4425         if (INTEL_INFO(dev)->gen >= 4) {
4426                 u32 temp = 0;
4427                 if (is_sdvo) {
4428                         temp = 0;
4429                         if (crtc->config.pixel_multiplier > 1) {
4430                                 temp = (crtc->config.pixel_multiplier - 1)
4431                                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4432                         }
4433                 }
4434                 I915_WRITE(DPLL_MD(pipe), temp);
4435         } else {
4436                 /* The pixel multiplier can only be updated once the
4437                  * DPLL is enabled and the clocks are stable.
4438                  *
4439                  * So write it again.
4440                  */
4441                 I915_WRITE(DPLL(pipe), dpll);
4442         }
4443 }
4444
4445 static void i8xx_update_pll(struct intel_crtc *crtc,
4446                             struct drm_display_mode *adjusted_mode,
4447                             intel_clock_t *reduced_clock,
4448                             int num_connectors)
4449 {
4450         struct drm_device *dev = crtc->base.dev;
4451         struct drm_i915_private *dev_priv = dev->dev_private;
4452         struct intel_encoder *encoder;
4453         int pipe = crtc->pipe;
4454         u32 dpll;
4455         struct dpll *clock = &crtc->config.dpll;
4456
4457         i9xx_update_pll_dividers(crtc, reduced_clock);
4458
4459         dpll = DPLL_VGA_MODE_DIS;
4460
4461         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4462                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4463         } else {
4464                 if (clock->p1 == 2)
4465                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4466                 else
4467                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4468                 if (clock->p2 == 4)
4469                         dpll |= PLL_P2_DIVIDE_BY_4;
4470         }
4471
4472         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4473                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4474                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4475         else
4476                 dpll |= PLL_REF_INPUT_DREFCLK;
4477
4478         dpll |= DPLL_VCO_ENABLE;
4479         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4480         POSTING_READ(DPLL(pipe));
4481         udelay(150);
4482
4483         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4484                 if (encoder->pre_pll_enable)
4485                         encoder->pre_pll_enable(encoder);
4486
4487         I915_WRITE(DPLL(pipe), dpll);
4488
4489         /* Wait for the clocks to stabilize. */
4490         POSTING_READ(DPLL(pipe));
4491         udelay(150);
4492
4493         /* The pixel multiplier can only be updated once the
4494          * DPLL is enabled and the clocks are stable.
4495          *
4496          * So write it again.
4497          */
4498         I915_WRITE(DPLL(pipe), dpll);
4499 }
4500
4501 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4502                                    struct drm_display_mode *mode,
4503                                    struct drm_display_mode *adjusted_mode)
4504 {
4505         struct drm_device *dev = intel_crtc->base.dev;
4506         struct drm_i915_private *dev_priv = dev->dev_private;
4507         enum pipe pipe = intel_crtc->pipe;
4508         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4509         uint32_t vsyncshift;
4510
4511         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4512                 /* the chip adds 2 halflines automatically */
4513                 adjusted_mode->crtc_vtotal -= 1;
4514                 adjusted_mode->crtc_vblank_end -= 1;
4515                 vsyncshift = adjusted_mode->crtc_hsync_start
4516                              - adjusted_mode->crtc_htotal / 2;
4517         } else {
4518                 vsyncshift = 0;
4519         }
4520
4521         if (INTEL_INFO(dev)->gen > 3)
4522                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4523
4524         I915_WRITE(HTOTAL(cpu_transcoder),
4525                    (adjusted_mode->crtc_hdisplay - 1) |
4526                    ((adjusted_mode->crtc_htotal - 1) << 16));
4527         I915_WRITE(HBLANK(cpu_transcoder),
4528                    (adjusted_mode->crtc_hblank_start - 1) |
4529                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4530         I915_WRITE(HSYNC(cpu_transcoder),
4531                    (adjusted_mode->crtc_hsync_start - 1) |
4532                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4533
4534         I915_WRITE(VTOTAL(cpu_transcoder),
4535                    (adjusted_mode->crtc_vdisplay - 1) |
4536                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4537         I915_WRITE(VBLANK(cpu_transcoder),
4538                    (adjusted_mode->crtc_vblank_start - 1) |
4539                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4540         I915_WRITE(VSYNC(cpu_transcoder),
4541                    (adjusted_mode->crtc_vsync_start - 1) |
4542                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4543
4544         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4545          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4546          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4547          * bits. */
4548         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4549             (pipe == PIPE_B || pipe == PIPE_C))
4550                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4551
4552         /* pipesrc controls the size that is scaled from, which should
4553          * always be the user's requested size.
4554          */
4555         I915_WRITE(PIPESRC(pipe),
4556                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4557 }
4558
4559 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4560 {
4561         struct drm_device *dev = intel_crtc->base.dev;
4562         struct drm_i915_private *dev_priv = dev->dev_private;
4563         uint32_t pipeconf;
4564
4565         pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
4566
4567         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4568                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4569                  * core speed.
4570                  *
4571                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4572                  * pipe == 0 check?
4573                  */
4574                 if (intel_crtc->config.requested_mode.clock >
4575                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4576                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4577                 else
4578                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4579         }
4580
4581         /* default to 8bpc */
4582         pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4583         if (intel_crtc->config.has_dp_encoder) {
4584                 if (intel_crtc->config.dither) {
4585                         pipeconf |= PIPECONF_6BPC |
4586                                     PIPECONF_DITHER_EN |
4587                                     PIPECONF_DITHER_TYPE_SP;
4588                 }
4589         }
4590
4591         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(&intel_crtc->base,
4592                                                       INTEL_OUTPUT_EDP)) {
4593                 if (intel_crtc->config.dither) {
4594                         pipeconf |= PIPECONF_6BPC |
4595                                         PIPECONF_ENABLE |
4596                                         I965_PIPECONF_ACTIVE;
4597                 }
4598         }
4599
4600         if (HAS_PIPE_CXSR(dev)) {
4601                 if (intel_crtc->lowfreq_avail) {
4602                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4603                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4604                 } else {
4605                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4606                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4607                 }
4608         }
4609
4610         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4611         if (!IS_GEN2(dev) &&
4612             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4613                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4614         else
4615                 pipeconf |= PIPECONF_PROGRESSIVE;
4616
4617         if (IS_VALLEYVIEW(dev)) {
4618                 if (intel_crtc->config.limited_color_range)
4619                         pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4620                 else
4621                         pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
4622         }
4623
4624         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4625         POSTING_READ(PIPECONF(intel_crtc->pipe));
4626 }
4627
4628 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4629                               int x, int y,
4630                               struct drm_framebuffer *fb)
4631 {
4632         struct drm_device *dev = crtc->dev;
4633         struct drm_i915_private *dev_priv = dev->dev_private;
4634         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4635         struct drm_display_mode *adjusted_mode =
4636                 &intel_crtc->config.adjusted_mode;
4637         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4638         int pipe = intel_crtc->pipe;
4639         int plane = intel_crtc->plane;
4640         int refclk, num_connectors = 0;
4641         intel_clock_t clock, reduced_clock;
4642         u32 dspcntr;
4643         bool ok, has_reduced_clock = false, is_sdvo = false;
4644         bool is_lvds = false, is_tv = false;
4645         struct intel_encoder *encoder;
4646         const intel_limit_t *limit;
4647         int ret;
4648
4649         for_each_encoder_on_crtc(dev, crtc, encoder) {
4650                 switch (encoder->type) {
4651                 case INTEL_OUTPUT_LVDS:
4652                         is_lvds = true;
4653                         break;
4654                 case INTEL_OUTPUT_SDVO:
4655                 case INTEL_OUTPUT_HDMI:
4656                         is_sdvo = true;
4657                         if (encoder->needs_tv_clock)
4658                                 is_tv = true;
4659                         break;
4660                 case INTEL_OUTPUT_TVOUT:
4661                         is_tv = true;
4662                         break;
4663                 }
4664
4665                 num_connectors++;
4666         }
4667
4668         refclk = i9xx_get_refclk(crtc, num_connectors);
4669
4670         /*
4671          * Returns a set of divisors for the desired target clock with the given
4672          * refclk, or FALSE.  The returned values represent the clock equation:
4673          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4674          */
4675         limit = intel_limit(crtc, refclk);
4676         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4677                              &clock);
4678         if (!ok) {
4679                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4680                 return -EINVAL;
4681         }
4682
4683         /* Ensure that the cursor is valid for the new mode before changing... */
4684         intel_crtc_update_cursor(crtc, true);
4685
4686         if (is_lvds && dev_priv->lvds_downclock_avail) {
4687                 /*
4688                  * Ensure we match the reduced clock's P to the target clock.
4689                  * If the clocks don't match, we can't switch the display clock
4690                  * by using the FP0/FP1. In such case we will disable the LVDS
4691                  * downclock feature.
4692                 */
4693                 has_reduced_clock = limit->find_pll(limit, crtc,
4694                                                     dev_priv->lvds_downclock,
4695                                                     refclk,
4696                                                     &clock,
4697                                                     &reduced_clock);
4698         }
4699         /* Compat-code for transition, will disappear. */
4700         if (!intel_crtc->config.clock_set) {
4701                 intel_crtc->config.dpll.n = clock.n;
4702                 intel_crtc->config.dpll.m1 = clock.m1;
4703                 intel_crtc->config.dpll.m2 = clock.m2;
4704                 intel_crtc->config.dpll.p1 = clock.p1;
4705                 intel_crtc->config.dpll.p2 = clock.p2;
4706         }
4707
4708         if (is_sdvo && is_tv)
4709                 i9xx_adjust_sdvo_tv_clock(intel_crtc);
4710
4711         if (IS_GEN2(dev))
4712                 i8xx_update_pll(intel_crtc, adjusted_mode,
4713                                 has_reduced_clock ? &reduced_clock : NULL,
4714                                 num_connectors);
4715         else if (IS_VALLEYVIEW(dev))
4716                 vlv_update_pll(intel_crtc);
4717         else
4718                 i9xx_update_pll(intel_crtc,
4719                                 has_reduced_clock ? &reduced_clock : NULL,
4720                                 num_connectors,
4721                                 is_sdvo && is_tv);
4722
4723         /* Set up the display plane register */
4724         dspcntr = DISPPLANE_GAMMA_ENABLE;
4725
4726         if (!IS_VALLEYVIEW(dev)) {
4727                 if (pipe == 0)
4728                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4729                 else
4730                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4731         }
4732
4733         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4734         drm_mode_debug_printmodeline(mode);
4735
4736         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4737
4738         /* pipesrc and dspsize control the size that is scaled from,
4739          * which should always be the user's requested size.
4740          */
4741         I915_WRITE(DSPSIZE(plane),
4742                    ((mode->vdisplay - 1) << 16) |
4743                    (mode->hdisplay - 1));
4744         I915_WRITE(DSPPOS(plane), 0);
4745
4746         i9xx_set_pipeconf(intel_crtc);
4747
4748         intel_enable_pipe(dev_priv, pipe, false);
4749
4750         intel_wait_for_vblank(dev, pipe);
4751
4752         I915_WRITE(DSPCNTR(plane), dspcntr);
4753         POSTING_READ(DSPCNTR(plane));
4754
4755         ret = intel_pipe_set_base(crtc, x, y, fb);
4756
4757         intel_update_watermarks(dev);
4758
4759         return ret;
4760 }
4761
4762 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4763                                  struct intel_crtc_config *pipe_config)
4764 {
4765         struct drm_device *dev = crtc->base.dev;
4766         struct drm_i915_private *dev_priv = dev->dev_private;
4767         uint32_t tmp;
4768
4769         tmp = I915_READ(PIPECONF(crtc->pipe));
4770         if (!(tmp & PIPECONF_ENABLE))
4771                 return false;
4772
4773         return true;
4774 }
4775
4776 static void ironlake_init_pch_refclk(struct drm_device *dev)
4777 {
4778         struct drm_i915_private *dev_priv = dev->dev_private;
4779         struct drm_mode_config *mode_config = &dev->mode_config;
4780         struct intel_encoder *encoder;
4781         u32 val, final;
4782         bool has_lvds = false;
4783         bool has_cpu_edp = false;
4784         bool has_pch_edp = false;
4785         bool has_panel = false;
4786         bool has_ck505 = false;
4787         bool can_ssc = false;
4788
4789         /* We need to take the global config into account */
4790         list_for_each_entry(encoder, &mode_config->encoder_list,
4791                             base.head) {
4792                 switch (encoder->type) {
4793                 case INTEL_OUTPUT_LVDS:
4794                         has_panel = true;
4795                         has_lvds = true;
4796                         break;
4797                 case INTEL_OUTPUT_EDP:
4798                         has_panel = true;
4799                         if (intel_encoder_is_pch_edp(&encoder->base))
4800                                 has_pch_edp = true;
4801                         else
4802                                 has_cpu_edp = true;
4803                         break;
4804                 }
4805         }
4806
4807         if (HAS_PCH_IBX(dev)) {
4808                 has_ck505 = dev_priv->display_clock_mode;
4809                 can_ssc = has_ck505;
4810         } else {
4811                 has_ck505 = false;
4812                 can_ssc = true;
4813         }
4814
4815         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4816                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4817                       has_ck505);
4818
4819         /* Ironlake: try to setup display ref clock before DPLL
4820          * enabling. This is only under driver's control after
4821          * PCH B stepping, previous chipset stepping should be
4822          * ignoring this setting.
4823          */
4824         val = I915_READ(PCH_DREF_CONTROL);
4825
4826         /* As we must carefully and slowly disable/enable each source in turn,
4827          * compute the final state we want first and check if we need to
4828          * make any changes at all.
4829          */
4830         final = val;
4831         final &= ~DREF_NONSPREAD_SOURCE_MASK;
4832         if (has_ck505)
4833                 final |= DREF_NONSPREAD_CK505_ENABLE;
4834         else
4835                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
4836
4837         final &= ~DREF_SSC_SOURCE_MASK;
4838         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4839         final &= ~DREF_SSC1_ENABLE;
4840
4841         if (has_panel) {
4842                 final |= DREF_SSC_SOURCE_ENABLE;
4843
4844                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
4845                         final |= DREF_SSC1_ENABLE;
4846
4847                 if (has_cpu_edp) {
4848                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
4849                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4850                         else
4851                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4852                 } else
4853                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4854         } else {
4855                 final |= DREF_SSC_SOURCE_DISABLE;
4856                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4857         }
4858
4859         if (final == val)
4860                 return;
4861
4862         /* Always enable nonspread source */
4863         val &= ~DREF_NONSPREAD_SOURCE_MASK;
4864
4865         if (has_ck505)
4866                 val |= DREF_NONSPREAD_CK505_ENABLE;
4867         else
4868                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
4869
4870         if (has_panel) {
4871                 val &= ~DREF_SSC_SOURCE_MASK;
4872                 val |= DREF_SSC_SOURCE_ENABLE;
4873
4874                 /* SSC must be turned on before enabling the CPU output  */
4875                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4876                         DRM_DEBUG_KMS("Using SSC on panel\n");
4877                         val |= DREF_SSC1_ENABLE;
4878                 } else
4879                         val &= ~DREF_SSC1_ENABLE;
4880
4881                 /* Get SSC going before enabling the outputs */
4882                 I915_WRITE(PCH_DREF_CONTROL, val);
4883                 POSTING_READ(PCH_DREF_CONTROL);
4884                 udelay(200);
4885
4886                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4887
4888                 /* Enable CPU source on CPU attached eDP */
4889                 if (has_cpu_edp) {
4890                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4891                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4892                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4893                         }
4894                         else
4895                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4896                 } else
4897                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4898
4899                 I915_WRITE(PCH_DREF_CONTROL, val);
4900                 POSTING_READ(PCH_DREF_CONTROL);
4901                 udelay(200);
4902         } else {
4903                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4904
4905                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4906
4907                 /* Turn off CPU output */
4908                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4909
4910                 I915_WRITE(PCH_DREF_CONTROL, val);
4911                 POSTING_READ(PCH_DREF_CONTROL);
4912                 udelay(200);
4913
4914                 /* Turn off the SSC source */
4915                 val &= ~DREF_SSC_SOURCE_MASK;
4916                 val |= DREF_SSC_SOURCE_DISABLE;
4917
4918                 /* Turn off SSC1 */
4919                 val &= ~DREF_SSC1_ENABLE;
4920
4921                 I915_WRITE(PCH_DREF_CONTROL, val);
4922                 POSTING_READ(PCH_DREF_CONTROL);
4923                 udelay(200);
4924         }
4925
4926         BUG_ON(val != final);
4927 }
4928
4929 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4930 static void lpt_init_pch_refclk(struct drm_device *dev)
4931 {
4932         struct drm_i915_private *dev_priv = dev->dev_private;
4933         struct drm_mode_config *mode_config = &dev->mode_config;
4934         struct intel_encoder *encoder;
4935         bool has_vga = false;
4936         bool is_sdv = false;
4937         u32 tmp;
4938
4939         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4940                 switch (encoder->type) {
4941                 case INTEL_OUTPUT_ANALOG:
4942                         has_vga = true;
4943                         break;
4944                 }
4945         }
4946
4947         if (!has_vga)
4948                 return;
4949
4950         mutex_lock(&dev_priv->dpio_lock);
4951
4952         /* XXX: Rip out SDV support once Haswell ships for real. */
4953         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4954                 is_sdv = true;
4955
4956         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4957         tmp &= ~SBI_SSCCTL_DISABLE;
4958         tmp |= SBI_SSCCTL_PATHALT;
4959         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4960
4961         udelay(24);
4962
4963         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4964         tmp &= ~SBI_SSCCTL_PATHALT;
4965         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4966
4967         if (!is_sdv) {
4968                 tmp = I915_READ(SOUTH_CHICKEN2);
4969                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4970                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4971
4972                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4973                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4974                         DRM_ERROR("FDI mPHY reset assert timeout\n");
4975
4976                 tmp = I915_READ(SOUTH_CHICKEN2);
4977                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4978                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4979
4980                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4981                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4982                                        100))
4983                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4984         }
4985
4986         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
4987         tmp &= ~(0xFF << 24);
4988         tmp |= (0x12 << 24);
4989         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
4990
4991         if (is_sdv) {
4992                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
4993                 tmp |= 0x7FFF;
4994                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
4995         }
4996
4997         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
4998         tmp |= (1 << 11);
4999         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5000
5001         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5002         tmp |= (1 << 11);
5003         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5004
5005         if (is_sdv) {
5006                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5007                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5008                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5009
5010                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5011                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5012                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5013
5014                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5015                 tmp |= (0x3F << 8);
5016                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5017
5018                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5019                 tmp |= (0x3F << 8);
5020                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5021         }
5022
5023         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5024         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5025         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5026
5027         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5028         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5029         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5030
5031         if (!is_sdv) {
5032                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5033                 tmp &= ~(7 << 13);
5034                 tmp |= (5 << 13);
5035                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5036
5037                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5038                 tmp &= ~(7 << 13);
5039                 tmp |= (5 << 13);
5040                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5041         }
5042
5043         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5044         tmp &= ~0xFF;
5045         tmp |= 0x1C;
5046         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5047
5048         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5049         tmp &= ~0xFF;
5050         tmp |= 0x1C;
5051         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5052
5053         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5054         tmp &= ~(0xFF << 16);
5055         tmp |= (0x1C << 16);
5056         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5057
5058         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5059         tmp &= ~(0xFF << 16);
5060         tmp |= (0x1C << 16);
5061         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5062
5063         if (!is_sdv) {
5064                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5065                 tmp |= (1 << 27);
5066                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5067
5068                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5069                 tmp |= (1 << 27);
5070                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5071
5072                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5073                 tmp &= ~(0xF << 28);
5074                 tmp |= (4 << 28);
5075                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5076
5077                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5078                 tmp &= ~(0xF << 28);
5079                 tmp |= (4 << 28);
5080                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5081         }
5082
5083         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5084         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5085         tmp |= SBI_DBUFF0_ENABLE;
5086         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5087
5088         mutex_unlock(&dev_priv->dpio_lock);
5089 }
5090
5091 /*
5092  * Initialize reference clocks when the driver loads
5093  */
5094 void intel_init_pch_refclk(struct drm_device *dev)
5095 {
5096         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5097                 ironlake_init_pch_refclk(dev);
5098         else if (HAS_PCH_LPT(dev))
5099                 lpt_init_pch_refclk(dev);
5100 }
5101
5102 static int ironlake_get_refclk(struct drm_crtc *crtc)
5103 {
5104         struct drm_device *dev = crtc->dev;
5105         struct drm_i915_private *dev_priv = dev->dev_private;
5106         struct intel_encoder *encoder;
5107         struct intel_encoder *edp_encoder = NULL;
5108         int num_connectors = 0;
5109         bool is_lvds = false;
5110
5111         for_each_encoder_on_crtc(dev, crtc, encoder) {
5112                 switch (encoder->type) {
5113                 case INTEL_OUTPUT_LVDS:
5114                         is_lvds = true;
5115                         break;
5116                 case INTEL_OUTPUT_EDP:
5117                         edp_encoder = encoder;
5118                         break;
5119                 }
5120                 num_connectors++;
5121         }
5122
5123         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5124                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5125                               dev_priv->lvds_ssc_freq);
5126                 return dev_priv->lvds_ssc_freq * 1000;
5127         }
5128
5129         return 120000;
5130 }
5131
5132 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5133                                   struct drm_display_mode *adjusted_mode,
5134                                   bool dither)
5135 {
5136         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5137         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5138         int pipe = intel_crtc->pipe;
5139         uint32_t val;
5140
5141         val = I915_READ(PIPECONF(pipe));
5142
5143         val &= ~PIPECONF_BPC_MASK;
5144         switch (intel_crtc->config.pipe_bpp) {
5145         case 18:
5146                 val |= PIPECONF_6BPC;
5147                 break;
5148         case 24:
5149                 val |= PIPECONF_8BPC;
5150                 break;
5151         case 30:
5152                 val |= PIPECONF_10BPC;
5153                 break;
5154         case 36:
5155                 val |= PIPECONF_12BPC;
5156                 break;
5157         default:
5158                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5159                 BUG();
5160         }
5161
5162         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5163         if (dither)
5164                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5165
5166         val &= ~PIPECONF_INTERLACE_MASK;
5167         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5168                 val |= PIPECONF_INTERLACED_ILK;
5169         else
5170                 val |= PIPECONF_PROGRESSIVE;
5171
5172         if (intel_crtc->config.limited_color_range)
5173                 val |= PIPECONF_COLOR_RANGE_SELECT;
5174         else
5175                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5176
5177         I915_WRITE(PIPECONF(pipe), val);
5178         POSTING_READ(PIPECONF(pipe));
5179 }
5180
5181 /*
5182  * Set up the pipe CSC unit.
5183  *
5184  * Currently only full range RGB to limited range RGB conversion
5185  * is supported, but eventually this should handle various
5186  * RGB<->YCbCr scenarios as well.
5187  */
5188 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5189 {
5190         struct drm_device *dev = crtc->dev;
5191         struct drm_i915_private *dev_priv = dev->dev_private;
5192         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5193         int pipe = intel_crtc->pipe;
5194         uint16_t coeff = 0x7800; /* 1.0 */
5195
5196         /*
5197          * TODO: Check what kind of values actually come out of the pipe
5198          * with these coeff/postoff values and adjust to get the best
5199          * accuracy. Perhaps we even need to take the bpc value into
5200          * consideration.
5201          */
5202
5203         if (intel_crtc->config.limited_color_range)
5204                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5205
5206         /*
5207          * GY/GU and RY/RU should be the other way around according
5208          * to BSpec, but reality doesn't agree. Just set them up in
5209          * a way that results in the correct picture.
5210          */
5211         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5212         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5213
5214         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5215         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5216
5217         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5218         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5219
5220         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5221         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5222         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5223
5224         if (INTEL_INFO(dev)->gen > 6) {
5225                 uint16_t postoff = 0;
5226
5227                 if (intel_crtc->config.limited_color_range)
5228                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5229
5230                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5231                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5232                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5233
5234                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5235         } else {
5236                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5237
5238                 if (intel_crtc->config.limited_color_range)
5239                         mode |= CSC_BLACK_SCREEN_OFFSET;
5240
5241                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5242         }
5243 }
5244
5245 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5246                                  struct drm_display_mode *adjusted_mode,
5247                                  bool dither)
5248 {
5249         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5250         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5251         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5252         uint32_t val;
5253
5254         val = I915_READ(PIPECONF(cpu_transcoder));
5255
5256         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5257         if (dither)
5258                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5259
5260         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5261         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5262                 val |= PIPECONF_INTERLACED_ILK;
5263         else
5264                 val |= PIPECONF_PROGRESSIVE;
5265
5266         I915_WRITE(PIPECONF(cpu_transcoder), val);
5267         POSTING_READ(PIPECONF(cpu_transcoder));
5268 }
5269
5270 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5271                                     struct drm_display_mode *adjusted_mode,
5272                                     intel_clock_t *clock,
5273                                     bool *has_reduced_clock,
5274                                     intel_clock_t *reduced_clock)
5275 {
5276         struct drm_device *dev = crtc->dev;
5277         struct drm_i915_private *dev_priv = dev->dev_private;
5278         struct intel_encoder *intel_encoder;
5279         int refclk;
5280         const intel_limit_t *limit;
5281         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5282
5283         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5284                 switch (intel_encoder->type) {
5285                 case INTEL_OUTPUT_LVDS:
5286                         is_lvds = true;
5287                         break;
5288                 case INTEL_OUTPUT_SDVO:
5289                 case INTEL_OUTPUT_HDMI:
5290                         is_sdvo = true;
5291                         if (intel_encoder->needs_tv_clock)
5292                                 is_tv = true;
5293                         break;
5294                 case INTEL_OUTPUT_TVOUT:
5295                         is_tv = true;
5296                         break;
5297                 }
5298         }
5299
5300         refclk = ironlake_get_refclk(crtc);
5301
5302         /*
5303          * Returns a set of divisors for the desired target clock with the given
5304          * refclk, or FALSE.  The returned values represent the clock equation:
5305          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5306          */
5307         limit = intel_limit(crtc, refclk);
5308         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5309                               clock);
5310         if (!ret)
5311                 return false;
5312
5313         if (is_lvds && dev_priv->lvds_downclock_avail) {
5314                 /*
5315                  * Ensure we match the reduced clock's P to the target clock.
5316                  * If the clocks don't match, we can't switch the display clock
5317                  * by using the FP0/FP1. In such case we will disable the LVDS
5318                  * downclock feature.
5319                 */
5320                 *has_reduced_clock = limit->find_pll(limit, crtc,
5321                                                      dev_priv->lvds_downclock,
5322                                                      refclk,
5323                                                      clock,
5324                                                      reduced_clock);
5325         }
5326
5327         if (is_sdvo && is_tv)
5328                 i9xx_adjust_sdvo_tv_clock(to_intel_crtc(crtc));
5329
5330         return true;
5331 }
5332
5333 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5334 {
5335         struct drm_i915_private *dev_priv = dev->dev_private;
5336         uint32_t temp;
5337
5338         temp = I915_READ(SOUTH_CHICKEN1);
5339         if (temp & FDI_BC_BIFURCATION_SELECT)
5340                 return;
5341
5342         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5343         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5344
5345         temp |= FDI_BC_BIFURCATION_SELECT;
5346         DRM_DEBUG_KMS("enabling fdi C rx\n");
5347         I915_WRITE(SOUTH_CHICKEN1, temp);
5348         POSTING_READ(SOUTH_CHICKEN1);
5349 }
5350
5351 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5352 {
5353         struct drm_device *dev = intel_crtc->base.dev;
5354         struct drm_i915_private *dev_priv = dev->dev_private;
5355         struct intel_crtc *pipe_B_crtc =
5356                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5357
5358         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5359                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5360         if (intel_crtc->fdi_lanes > 4) {
5361                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5362                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5363                 /* Clamp lanes to avoid programming the hw with bogus values. */
5364                 intel_crtc->fdi_lanes = 4;
5365
5366                 return false;
5367         }
5368
5369         if (INTEL_INFO(dev)->num_pipes == 2)
5370                 return true;
5371
5372         switch (intel_crtc->pipe) {
5373         case PIPE_A:
5374                 return true;
5375         case PIPE_B:
5376                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5377                     intel_crtc->fdi_lanes > 2) {
5378                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5379                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5380                         /* Clamp lanes to avoid programming the hw with bogus values. */
5381                         intel_crtc->fdi_lanes = 2;
5382
5383                         return false;
5384                 }
5385
5386                 if (intel_crtc->fdi_lanes > 2)
5387                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5388                 else
5389                         cpt_enable_fdi_bc_bifurcation(dev);
5390
5391                 return true;
5392         case PIPE_C:
5393                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5394                         if (intel_crtc->fdi_lanes > 2) {
5395                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5396                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5397                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5398                                 intel_crtc->fdi_lanes = 2;
5399
5400                                 return false;
5401                         }
5402                 } else {
5403                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5404                         return false;
5405                 }
5406
5407                 cpt_enable_fdi_bc_bifurcation(dev);
5408
5409                 return true;
5410         default:
5411                 BUG();
5412         }
5413 }
5414
5415 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5416 {
5417         /*
5418          * Account for spread spectrum to avoid
5419          * oversubscribing the link. Max center spread
5420          * is 2.5%; use 5% for safety's sake.
5421          */
5422         u32 bps = target_clock * bpp * 21 / 20;
5423         return bps / (link_bw * 8) + 1;
5424 }
5425
5426 void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5427                                   struct intel_link_m_n *m_n)
5428 {
5429         struct drm_device *dev = crtc->base.dev;
5430         struct drm_i915_private *dev_priv = dev->dev_private;
5431         int pipe = crtc->pipe;
5432
5433         I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5434         I915_WRITE(TRANSDATA_N1(pipe), m_n->gmch_n);
5435         I915_WRITE(TRANSDPLINK_M1(pipe), m_n->link_m);
5436         I915_WRITE(TRANSDPLINK_N1(pipe), m_n->link_n);
5437 }
5438
5439 void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5440                                   struct intel_link_m_n *m_n)
5441 {
5442         struct drm_device *dev = crtc->base.dev;
5443         struct drm_i915_private *dev_priv = dev->dev_private;
5444         int pipe = crtc->pipe;
5445         enum transcoder transcoder = crtc->config.cpu_transcoder;
5446
5447         if (INTEL_INFO(dev)->gen >= 5) {
5448                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5449                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5450                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5451                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5452         } else {
5453                 I915_WRITE(PIPE_GMCH_DATA_M(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5454                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n->gmch_n);
5455                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n->link_m);
5456                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n->link_n);
5457         }
5458 }
5459
5460 static void ironlake_fdi_set_m_n(struct drm_crtc *crtc)
5461 {
5462         struct drm_device *dev = crtc->dev;
5463         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5464         struct drm_display_mode *adjusted_mode =
5465                 &intel_crtc->config.adjusted_mode;
5466         struct intel_link_m_n m_n = {0};
5467         int target_clock, lane, link_bw;
5468
5469         /* FDI is a binary signal running at ~2.7GHz, encoding
5470          * each output octet as 10 bits. The actual frequency
5471          * is stored as a divider into a 100MHz clock, and the
5472          * mode pixel clock is stored in units of 1KHz.
5473          * Hence the bw of each lane in terms of the mode signal
5474          * is:
5475          */
5476         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5477
5478         if (intel_crtc->config.pixel_target_clock)
5479                 target_clock = intel_crtc->config.pixel_target_clock;
5480         else
5481                 target_clock = adjusted_mode->clock;
5482
5483         lane = ironlake_get_lanes_required(target_clock, link_bw,
5484                                            intel_crtc->config.pipe_bpp);
5485
5486         intel_crtc->fdi_lanes = lane;
5487
5488         if (intel_crtc->config.pixel_multiplier > 1)
5489                 link_bw *= intel_crtc->config.pixel_multiplier;
5490         intel_link_compute_m_n(intel_crtc->config.pipe_bpp, lane, target_clock,
5491                                link_bw, &m_n);
5492
5493         intel_cpu_transcoder_set_m_n(intel_crtc, &m_n);
5494 }
5495
5496 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5497                                       intel_clock_t *clock, u32 *fp,
5498                                       intel_clock_t *reduced_clock, u32 *fp2)
5499 {
5500         struct drm_crtc *crtc = &intel_crtc->base;
5501         struct drm_device *dev = crtc->dev;
5502         struct drm_i915_private *dev_priv = dev->dev_private;
5503         struct intel_encoder *intel_encoder;
5504         uint32_t dpll;
5505         int factor, num_connectors = 0;
5506         bool is_lvds = false, is_sdvo = false, is_tv = false;
5507
5508         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5509                 switch (intel_encoder->type) {
5510                 case INTEL_OUTPUT_LVDS:
5511                         is_lvds = true;
5512                         break;
5513                 case INTEL_OUTPUT_SDVO:
5514                 case INTEL_OUTPUT_HDMI:
5515                         is_sdvo = true;
5516                         if (intel_encoder->needs_tv_clock)
5517                                 is_tv = true;
5518                         break;
5519                 case INTEL_OUTPUT_TVOUT:
5520                         is_tv = true;
5521                         break;
5522                 }
5523
5524                 num_connectors++;
5525         }
5526
5527         /* Enable autotuning of the PLL clock (if permissible) */
5528         factor = 21;
5529         if (is_lvds) {
5530                 if ((intel_panel_use_ssc(dev_priv) &&
5531                      dev_priv->lvds_ssc_freq == 100) ||
5532                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5533                         factor = 25;
5534         } else if (is_sdvo && is_tv)
5535                 factor = 20;
5536
5537         if (clock->m < factor * clock->n)
5538                 *fp |= FP_CB_TUNE;
5539
5540         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5541                 *fp2 |= FP_CB_TUNE;
5542
5543         dpll = 0;
5544
5545         if (is_lvds)
5546                 dpll |= DPLLB_MODE_LVDS;
5547         else
5548                 dpll |= DPLLB_MODE_DAC_SERIAL;
5549         if (is_sdvo) {
5550                 if (intel_crtc->config.pixel_multiplier > 1) {
5551                         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5552                                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5553                 }
5554                 dpll |= DPLL_DVO_HIGH_SPEED;
5555         }
5556         if (intel_crtc->config.has_dp_encoder &&
5557             intel_crtc->config.has_pch_encoder)
5558                 dpll |= DPLL_DVO_HIGH_SPEED;
5559
5560         /* compute bitmask from p1 value */
5561         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5562         /* also FPA1 */
5563         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5564
5565         switch (clock->p2) {
5566         case 5:
5567                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5568                 break;
5569         case 7:
5570                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5571                 break;
5572         case 10:
5573                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5574                 break;
5575         case 14:
5576                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5577                 break;
5578         }
5579
5580         if (is_sdvo && is_tv)
5581                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5582         else if (is_tv)
5583                 /* XXX: just matching BIOS for now */
5584                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5585                 dpll |= 3;
5586         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5587                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5588         else
5589                 dpll |= PLL_REF_INPUT_DREFCLK;
5590
5591         return dpll;
5592 }
5593
5594 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5595                                   int x, int y,
5596                                   struct drm_framebuffer *fb)
5597 {
5598         struct drm_device *dev = crtc->dev;
5599         struct drm_i915_private *dev_priv = dev->dev_private;
5600         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5601         struct drm_display_mode *adjusted_mode =
5602                 &intel_crtc->config.adjusted_mode;
5603         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5604         int pipe = intel_crtc->pipe;
5605         int plane = intel_crtc->plane;
5606         int num_connectors = 0;
5607         intel_clock_t clock, reduced_clock;
5608         u32 dpll, fp = 0, fp2 = 0;
5609         bool ok, has_reduced_clock = false;
5610         bool is_lvds = false;
5611         struct intel_encoder *encoder;
5612         int ret;
5613         bool dither, fdi_config_ok;
5614
5615         for_each_encoder_on_crtc(dev, crtc, encoder) {
5616                 switch (encoder->type) {
5617                 case INTEL_OUTPUT_LVDS:
5618                         is_lvds = true;
5619                         break;
5620                 }
5621
5622                 num_connectors++;
5623         }
5624
5625         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5626              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5627
5628         intel_crtc->config.cpu_transcoder = pipe;
5629
5630         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5631                                      &has_reduced_clock, &reduced_clock);
5632         if (!ok) {
5633                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5634                 return -EINVAL;
5635         }
5636         /* Compat-code for transition, will disappear. */
5637         if (!intel_crtc->config.clock_set) {
5638                 intel_crtc->config.dpll.n = clock.n;
5639                 intel_crtc->config.dpll.m1 = clock.m1;
5640                 intel_crtc->config.dpll.m2 = clock.m2;
5641                 intel_crtc->config.dpll.p1 = clock.p1;
5642                 intel_crtc->config.dpll.p2 = clock.p2;
5643         }
5644
5645         /* Ensure that the cursor is valid for the new mode before changing... */
5646         intel_crtc_update_cursor(crtc, true);
5647
5648         /* determine panel color depth */
5649         dither = intel_crtc->config.dither;
5650         if (is_lvds && dev_priv->lvds_dither)
5651                 dither = true;
5652
5653         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5654         if (has_reduced_clock)
5655                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5656                         reduced_clock.m2;
5657
5658         dpll = ironlake_compute_dpll(intel_crtc, &clock, &fp, &reduced_clock,
5659                                      has_reduced_clock ? &fp2 : NULL);
5660
5661         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5662         drm_mode_debug_printmodeline(mode);
5663
5664         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5665         if (intel_crtc->config.has_pch_encoder) {
5666                 struct intel_pch_pll *pll;
5667
5668                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5669                 if (pll == NULL) {
5670                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5671                                          pipe);
5672                         return -EINVAL;
5673                 }
5674         } else
5675                 intel_put_pch_pll(intel_crtc);
5676
5677         if (intel_crtc->config.has_dp_encoder)
5678                 intel_dp_set_m_n(intel_crtc);
5679
5680         for_each_encoder_on_crtc(dev, crtc, encoder)
5681                 if (encoder->pre_pll_enable)
5682                         encoder->pre_pll_enable(encoder);
5683
5684         if (intel_crtc->pch_pll) {
5685                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5686
5687                 /* Wait for the clocks to stabilize. */
5688                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5689                 udelay(150);
5690
5691                 /* The pixel multiplier can only be updated once the
5692                  * DPLL is enabled and the clocks are stable.
5693                  *
5694                  * So write it again.
5695                  */
5696                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5697         }
5698
5699         intel_crtc->lowfreq_avail = false;
5700         if (intel_crtc->pch_pll) {
5701                 if (is_lvds && has_reduced_clock && i915_powersave) {
5702                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5703                         intel_crtc->lowfreq_avail = true;
5704                 } else {
5705                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5706                 }
5707         }
5708
5709         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5710
5711         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5712          * ironlake_check_fdi_lanes. */
5713         intel_crtc->fdi_lanes = 0;
5714         if (intel_crtc->config.has_pch_encoder)
5715                 ironlake_fdi_set_m_n(crtc);
5716
5717         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5718
5719         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5720
5721         intel_wait_for_vblank(dev, pipe);
5722
5723         /* Set up the display plane register */
5724         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5725         POSTING_READ(DSPCNTR(plane));
5726
5727         ret = intel_pipe_set_base(crtc, x, y, fb);
5728
5729         intel_update_watermarks(dev);
5730
5731         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5732
5733         return fdi_config_ok ? ret : -EINVAL;
5734 }
5735
5736 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5737                                      struct intel_crtc_config *pipe_config)
5738 {
5739         struct drm_device *dev = crtc->base.dev;
5740         struct drm_i915_private *dev_priv = dev->dev_private;
5741         uint32_t tmp;
5742
5743         tmp = I915_READ(PIPECONF(crtc->pipe));
5744         if (!(tmp & PIPECONF_ENABLE))
5745                 return false;
5746
5747         if (I915_READ(TRANSCONF(crtc->pipe)) & TRANS_ENABLE)
5748                 pipe_config->has_pch_encoder = true;
5749
5750         return true;
5751 }
5752
5753 static void haswell_modeset_global_resources(struct drm_device *dev)
5754 {
5755         struct drm_i915_private *dev_priv = dev->dev_private;
5756         bool enable = false;
5757         struct intel_crtc *crtc;
5758         struct intel_encoder *encoder;
5759
5760         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5761                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5762                         enable = true;
5763                 /* XXX: Should check for edp transcoder here, but thanks to init
5764                  * sequence that's not yet available. Just in case desktop eDP
5765                  * on PORT D is possible on haswell, too. */
5766         }
5767
5768         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5769                             base.head) {
5770                 if (encoder->type != INTEL_OUTPUT_EDP &&
5771                     encoder->connectors_active)
5772                         enable = true;
5773         }
5774
5775         /* Even the eDP panel fitter is outside the always-on well. */
5776         if (dev_priv->pch_pf_size)
5777                 enable = true;
5778
5779         intel_set_power_well(dev, enable);
5780 }
5781
5782 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5783                                  int x, int y,
5784                                  struct drm_framebuffer *fb)
5785 {
5786         struct drm_device *dev = crtc->dev;
5787         struct drm_i915_private *dev_priv = dev->dev_private;
5788         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5789         struct drm_display_mode *adjusted_mode =
5790                 &intel_crtc->config.adjusted_mode;
5791         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5792         int pipe = intel_crtc->pipe;
5793         int plane = intel_crtc->plane;
5794         int num_connectors = 0;
5795         bool is_cpu_edp = false;
5796         struct intel_encoder *encoder;
5797         int ret;
5798         bool dither;
5799
5800         for_each_encoder_on_crtc(dev, crtc, encoder) {
5801                 switch (encoder->type) {
5802                 case INTEL_OUTPUT_EDP:
5803                         if (!intel_encoder_is_pch_edp(&encoder->base))
5804                                 is_cpu_edp = true;
5805                         break;
5806                 }
5807
5808                 num_connectors++;
5809         }
5810
5811         if (is_cpu_edp)
5812                 intel_crtc->config.cpu_transcoder = TRANSCODER_EDP;
5813         else
5814                 intel_crtc->config.cpu_transcoder = pipe;
5815
5816         /* We are not sure yet this won't happen. */
5817         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5818              INTEL_PCH_TYPE(dev));
5819
5820         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5821              num_connectors, pipe_name(pipe));
5822
5823         WARN_ON(I915_READ(PIPECONF(intel_crtc->config.cpu_transcoder)) &
5824                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5825
5826         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5827
5828         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5829                 return -EINVAL;
5830
5831         /* Ensure that the cursor is valid for the new mode before changing... */
5832         intel_crtc_update_cursor(crtc, true);
5833
5834         /* determine panel color depth */
5835         dither = intel_crtc->config.dither;
5836
5837         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5838         drm_mode_debug_printmodeline(mode);
5839
5840         if (intel_crtc->config.has_dp_encoder)
5841                 intel_dp_set_m_n(intel_crtc);
5842
5843         intel_crtc->lowfreq_avail = false;
5844
5845         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5846
5847         if (intel_crtc->config.has_pch_encoder)
5848                 ironlake_fdi_set_m_n(crtc);
5849
5850         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5851
5852         intel_set_pipe_csc(crtc);
5853
5854         /* Set up the display plane register */
5855         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5856         POSTING_READ(DSPCNTR(plane));
5857
5858         ret = intel_pipe_set_base(crtc, x, y, fb);
5859
5860         intel_update_watermarks(dev);
5861
5862         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5863
5864         return ret;
5865 }
5866
5867 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5868                                     struct intel_crtc_config *pipe_config)
5869 {
5870         struct drm_device *dev = crtc->base.dev;
5871         struct drm_i915_private *dev_priv = dev->dev_private;
5872         uint32_t tmp;
5873
5874         tmp = I915_READ(PIPECONF(crtc->config.cpu_transcoder));
5875         if (!(tmp & PIPECONF_ENABLE))
5876                 return false;
5877
5878         /*
5879          * aswell has only FDI/PCH transcoder A. It is which is connected to
5880          * DDI E. So just check whether this pipe is wired to DDI E and whether
5881          * the PCH transcoder is on.
5882          */
5883         tmp = I915_READ(TRANS_DDI_FUNC_CTL(crtc->pipe));
5884         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5885             I915_READ(TRANSCONF(PIPE_A)) & TRANS_ENABLE)
5886                 pipe_config->has_pch_encoder = true;
5887
5888
5889         return true;
5890 }
5891
5892 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5893                                int x, int y,
5894                                struct drm_framebuffer *fb)
5895 {
5896         struct drm_device *dev = crtc->dev;
5897         struct drm_i915_private *dev_priv = dev->dev_private;
5898         struct drm_encoder_helper_funcs *encoder_funcs;
5899         struct intel_encoder *encoder;
5900         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5901         struct drm_display_mode *adjusted_mode =
5902                 &intel_crtc->config.adjusted_mode;
5903         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5904         int pipe = intel_crtc->pipe;
5905         int ret;
5906
5907         drm_vblank_pre_modeset(dev, pipe);
5908
5909         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
5910
5911         drm_vblank_post_modeset(dev, pipe);
5912
5913         if (ret != 0)
5914                 return ret;
5915
5916         for_each_encoder_on_crtc(dev, crtc, encoder) {
5917                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5918                         encoder->base.base.id,
5919                         drm_get_encoder_name(&encoder->base),
5920                         mode->base.id, mode->name);
5921                 if (encoder->mode_set) {
5922                         encoder->mode_set(encoder);
5923                 } else {
5924                         encoder_funcs = encoder->base.helper_private;
5925                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5926                 }
5927         }
5928
5929         return 0;
5930 }
5931
5932 static bool intel_eld_uptodate(struct drm_connector *connector,
5933                                int reg_eldv, uint32_t bits_eldv,
5934                                int reg_elda, uint32_t bits_elda,
5935                                int reg_edid)
5936 {
5937         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5938         uint8_t *eld = connector->eld;
5939         uint32_t i;
5940
5941         i = I915_READ(reg_eldv);
5942         i &= bits_eldv;
5943
5944         if (!eld[0])
5945                 return !i;
5946
5947         if (!i)
5948                 return false;
5949
5950         i = I915_READ(reg_elda);
5951         i &= ~bits_elda;
5952         I915_WRITE(reg_elda, i);
5953
5954         for (i = 0; i < eld[2]; i++)
5955                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5956                         return false;
5957
5958         return true;
5959 }
5960
5961 static void g4x_write_eld(struct drm_connector *connector,
5962                           struct drm_crtc *crtc)
5963 {
5964         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5965         uint8_t *eld = connector->eld;
5966         uint32_t eldv;
5967         uint32_t len;
5968         uint32_t i;
5969
5970         i = I915_READ(G4X_AUD_VID_DID);
5971
5972         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5973                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5974         else
5975                 eldv = G4X_ELDV_DEVCTG;
5976
5977         if (intel_eld_uptodate(connector,
5978                                G4X_AUD_CNTL_ST, eldv,
5979                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5980                                G4X_HDMIW_HDMIEDID))
5981                 return;
5982
5983         i = I915_READ(G4X_AUD_CNTL_ST);
5984         i &= ~(eldv | G4X_ELD_ADDR);
5985         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5986         I915_WRITE(G4X_AUD_CNTL_ST, i);
5987
5988         if (!eld[0])
5989                 return;
5990
5991         len = min_t(uint8_t, eld[2], len);
5992         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5993         for (i = 0; i < len; i++)
5994                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5995
5996         i = I915_READ(G4X_AUD_CNTL_ST);
5997         i |= eldv;
5998         I915_WRITE(G4X_AUD_CNTL_ST, i);
5999 }
6000
6001 static void haswell_write_eld(struct drm_connector *connector,
6002                                      struct drm_crtc *crtc)
6003 {
6004         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6005         uint8_t *eld = connector->eld;
6006         struct drm_device *dev = crtc->dev;
6007         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6008         uint32_t eldv;
6009         uint32_t i;
6010         int len;
6011         int pipe = to_intel_crtc(crtc)->pipe;
6012         int tmp;
6013
6014         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6015         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6016         int aud_config = HSW_AUD_CFG(pipe);
6017         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6018
6019
6020         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6021
6022         /* Audio output enable */
6023         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6024         tmp = I915_READ(aud_cntrl_st2);
6025         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6026         I915_WRITE(aud_cntrl_st2, tmp);
6027
6028         /* Wait for 1 vertical blank */
6029         intel_wait_for_vblank(dev, pipe);
6030
6031         /* Set ELD valid state */
6032         tmp = I915_READ(aud_cntrl_st2);
6033         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6034         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6035         I915_WRITE(aud_cntrl_st2, tmp);
6036         tmp = I915_READ(aud_cntrl_st2);
6037         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6038
6039         /* Enable HDMI mode */
6040         tmp = I915_READ(aud_config);
6041         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6042         /* clear N_programing_enable and N_value_index */
6043         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6044         I915_WRITE(aud_config, tmp);
6045
6046         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6047
6048         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6049         intel_crtc->eld_vld = true;
6050
6051         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6052                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6053                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6054                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6055         } else
6056                 I915_WRITE(aud_config, 0);
6057
6058         if (intel_eld_uptodate(connector,
6059                                aud_cntrl_st2, eldv,
6060                                aud_cntl_st, IBX_ELD_ADDRESS,
6061                                hdmiw_hdmiedid))
6062                 return;
6063
6064         i = I915_READ(aud_cntrl_st2);
6065         i &= ~eldv;
6066         I915_WRITE(aud_cntrl_st2, i);
6067
6068         if (!eld[0])
6069                 return;
6070
6071         i = I915_READ(aud_cntl_st);
6072         i &= ~IBX_ELD_ADDRESS;
6073         I915_WRITE(aud_cntl_st, i);
6074         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6075         DRM_DEBUG_DRIVER("port num:%d\n", i);
6076
6077         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6078         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6079         for (i = 0; i < len; i++)
6080                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6081
6082         i = I915_READ(aud_cntrl_st2);
6083         i |= eldv;
6084         I915_WRITE(aud_cntrl_st2, i);
6085
6086 }
6087
6088 static void ironlake_write_eld(struct drm_connector *connector,
6089                                      struct drm_crtc *crtc)
6090 {
6091         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6092         uint8_t *eld = connector->eld;
6093         uint32_t eldv;
6094         uint32_t i;
6095         int len;
6096         int hdmiw_hdmiedid;
6097         int aud_config;
6098         int aud_cntl_st;
6099         int aud_cntrl_st2;
6100         int pipe = to_intel_crtc(crtc)->pipe;
6101
6102         if (HAS_PCH_IBX(connector->dev)) {
6103                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6104                 aud_config = IBX_AUD_CFG(pipe);
6105                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6106                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6107         } else {
6108                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6109                 aud_config = CPT_AUD_CFG(pipe);
6110                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6111                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6112         }
6113
6114         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6115
6116         i = I915_READ(aud_cntl_st);
6117         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6118         if (!i) {
6119                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6120                 /* operate blindly on all ports */
6121                 eldv = IBX_ELD_VALIDB;
6122                 eldv |= IBX_ELD_VALIDB << 4;
6123                 eldv |= IBX_ELD_VALIDB << 8;
6124         } else {
6125                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6126                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6127         }
6128
6129         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6130                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6131                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6132                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6133         } else
6134                 I915_WRITE(aud_config, 0);
6135
6136         if (intel_eld_uptodate(connector,
6137                                aud_cntrl_st2, eldv,
6138                                aud_cntl_st, IBX_ELD_ADDRESS,
6139                                hdmiw_hdmiedid))
6140                 return;
6141
6142         i = I915_READ(aud_cntrl_st2);
6143         i &= ~eldv;
6144         I915_WRITE(aud_cntrl_st2, i);
6145
6146         if (!eld[0])
6147                 return;
6148
6149         i = I915_READ(aud_cntl_st);
6150         i &= ~IBX_ELD_ADDRESS;
6151         I915_WRITE(aud_cntl_st, i);
6152
6153         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6154         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6155         for (i = 0; i < len; i++)
6156                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6157
6158         i = I915_READ(aud_cntrl_st2);
6159         i |= eldv;
6160         I915_WRITE(aud_cntrl_st2, i);
6161 }
6162
6163 void intel_write_eld(struct drm_encoder *encoder,
6164                      struct drm_display_mode *mode)
6165 {
6166         struct drm_crtc *crtc = encoder->crtc;
6167         struct drm_connector *connector;
6168         struct drm_device *dev = encoder->dev;
6169         struct drm_i915_private *dev_priv = dev->dev_private;
6170
6171         connector = drm_select_eld(encoder, mode);
6172         if (!connector)
6173                 return;
6174
6175         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6176                          connector->base.id,
6177                          drm_get_connector_name(connector),
6178                          connector->encoder->base.id,
6179                          drm_get_encoder_name(connector->encoder));
6180
6181         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6182
6183         if (dev_priv->display.write_eld)
6184                 dev_priv->display.write_eld(connector, crtc);
6185 }
6186
6187 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6188 void intel_crtc_load_lut(struct drm_crtc *crtc)
6189 {
6190         struct drm_device *dev = crtc->dev;
6191         struct drm_i915_private *dev_priv = dev->dev_private;
6192         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6193         int palreg = PALETTE(intel_crtc->pipe);
6194         int i;
6195
6196         /* The clocks have to be on to load the palette. */
6197         if (!crtc->enabled || !intel_crtc->active)
6198                 return;
6199
6200         /* use legacy palette for Ironlake */
6201         if (HAS_PCH_SPLIT(dev))
6202                 palreg = LGC_PALETTE(intel_crtc->pipe);
6203
6204         for (i = 0; i < 256; i++) {
6205                 I915_WRITE(palreg + 4 * i,
6206                            (intel_crtc->lut_r[i] << 16) |
6207                            (intel_crtc->lut_g[i] << 8) |
6208                            intel_crtc->lut_b[i]);
6209         }
6210 }
6211
6212 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6213 {
6214         struct drm_device *dev = crtc->dev;
6215         struct drm_i915_private *dev_priv = dev->dev_private;
6216         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6217         bool visible = base != 0;
6218         u32 cntl;
6219
6220         if (intel_crtc->cursor_visible == visible)
6221                 return;
6222
6223         cntl = I915_READ(_CURACNTR);
6224         if (visible) {
6225                 /* On these chipsets we can only modify the base whilst
6226                  * the cursor is disabled.
6227                  */
6228                 I915_WRITE(_CURABASE, base);
6229
6230                 cntl &= ~(CURSOR_FORMAT_MASK);
6231                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6232                 cntl |= CURSOR_ENABLE |
6233                         CURSOR_GAMMA_ENABLE |
6234                         CURSOR_FORMAT_ARGB;
6235         } else
6236                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6237         I915_WRITE(_CURACNTR, cntl);
6238
6239         intel_crtc->cursor_visible = visible;
6240 }
6241
6242 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6243 {
6244         struct drm_device *dev = crtc->dev;
6245         struct drm_i915_private *dev_priv = dev->dev_private;
6246         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6247         int pipe = intel_crtc->pipe;
6248         bool visible = base != 0;
6249
6250         if (intel_crtc->cursor_visible != visible) {
6251                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6252                 if (base) {
6253                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6254                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6255                         cntl |= pipe << 28; /* Connect to correct pipe */
6256                 } else {
6257                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6258                         cntl |= CURSOR_MODE_DISABLE;
6259                 }
6260                 I915_WRITE(CURCNTR(pipe), cntl);
6261
6262                 intel_crtc->cursor_visible = visible;
6263         }
6264         /* and commit changes on next vblank */
6265         I915_WRITE(CURBASE(pipe), base);
6266 }
6267
6268 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6269 {
6270         struct drm_device *dev = crtc->dev;
6271         struct drm_i915_private *dev_priv = dev->dev_private;
6272         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6273         int pipe = intel_crtc->pipe;
6274         bool visible = base != 0;
6275
6276         if (intel_crtc->cursor_visible != visible) {
6277                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6278                 if (base) {
6279                         cntl &= ~CURSOR_MODE;
6280                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6281                 } else {
6282                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6283                         cntl |= CURSOR_MODE_DISABLE;
6284                 }
6285                 if (IS_HASWELL(dev))
6286                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6287                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6288
6289                 intel_crtc->cursor_visible = visible;
6290         }
6291         /* and commit changes on next vblank */
6292         I915_WRITE(CURBASE_IVB(pipe), base);
6293 }
6294
6295 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6296 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6297                                      bool on)
6298 {
6299         struct drm_device *dev = crtc->dev;
6300         struct drm_i915_private *dev_priv = dev->dev_private;
6301         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6302         int pipe = intel_crtc->pipe;
6303         int x = intel_crtc->cursor_x;
6304         int y = intel_crtc->cursor_y;
6305         u32 base, pos;
6306         bool visible;
6307
6308         pos = 0;
6309
6310         if (on && crtc->enabled && crtc->fb) {
6311                 base = intel_crtc->cursor_addr;
6312                 if (x > (int) crtc->fb->width)
6313                         base = 0;
6314
6315                 if (y > (int) crtc->fb->height)
6316                         base = 0;
6317         } else
6318                 base = 0;
6319
6320         if (x < 0) {
6321                 if (x + intel_crtc->cursor_width < 0)
6322                         base = 0;
6323
6324                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6325                 x = -x;
6326         }
6327         pos |= x << CURSOR_X_SHIFT;
6328
6329         if (y < 0) {
6330                 if (y + intel_crtc->cursor_height < 0)
6331                         base = 0;
6332
6333                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6334                 y = -y;
6335         }
6336         pos |= y << CURSOR_Y_SHIFT;
6337
6338         visible = base != 0;
6339         if (!visible && !intel_crtc->cursor_visible)
6340                 return;
6341
6342         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6343                 I915_WRITE(CURPOS_IVB(pipe), pos);
6344                 ivb_update_cursor(crtc, base);
6345         } else {
6346                 I915_WRITE(CURPOS(pipe), pos);
6347                 if (IS_845G(dev) || IS_I865G(dev))
6348                         i845_update_cursor(crtc, base);
6349                 else
6350                         i9xx_update_cursor(crtc, base);
6351         }
6352 }
6353
6354 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6355                                  struct drm_file *file,
6356                                  uint32_t handle,
6357                                  uint32_t width, uint32_t height)
6358 {
6359         struct drm_device *dev = crtc->dev;
6360         struct drm_i915_private *dev_priv = dev->dev_private;
6361         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6362         struct drm_i915_gem_object *obj;
6363         uint32_t addr;
6364         int ret;
6365
6366         /* if we want to turn off the cursor ignore width and height */
6367         if (!handle) {
6368                 DRM_DEBUG_KMS("cursor off\n");
6369                 addr = 0;
6370                 obj = NULL;
6371                 mutex_lock(&dev->struct_mutex);
6372                 goto finish;
6373         }
6374
6375         /* Currently we only support 64x64 cursors */
6376         if (width != 64 || height != 64) {
6377                 DRM_ERROR("we currently only support 64x64 cursors\n");
6378                 return -EINVAL;
6379         }
6380
6381         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6382         if (&obj->base == NULL)
6383                 return -ENOENT;
6384
6385         if (obj->base.size < width * height * 4) {
6386                 DRM_ERROR("buffer is to small\n");
6387                 ret = -ENOMEM;
6388                 goto fail;
6389         }
6390
6391         /* we only need to pin inside GTT if cursor is non-phy */
6392         mutex_lock(&dev->struct_mutex);
6393         if (!dev_priv->info->cursor_needs_physical) {
6394                 unsigned alignment;
6395
6396                 if (obj->tiling_mode) {
6397                         DRM_ERROR("cursor cannot be tiled\n");
6398                         ret = -EINVAL;
6399                         goto fail_locked;
6400                 }
6401
6402                 /* Note that the w/a also requires 2 PTE of padding following
6403                  * the bo. We currently fill all unused PTE with the shadow
6404                  * page and so we should always have valid PTE following the
6405                  * cursor preventing the VT-d warning.
6406                  */
6407                 alignment = 0;
6408                 if (need_vtd_wa(dev))
6409                         alignment = 64*1024;
6410
6411                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6412                 if (ret) {
6413                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6414                         goto fail_locked;
6415                 }
6416
6417                 ret = i915_gem_object_put_fence(obj);
6418                 if (ret) {
6419                         DRM_ERROR("failed to release fence for cursor");
6420                         goto fail_unpin;
6421                 }
6422
6423                 addr = obj->gtt_offset;
6424         } else {
6425                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6426                 ret = i915_gem_attach_phys_object(dev, obj,
6427                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6428                                                   align);
6429                 if (ret) {
6430                         DRM_ERROR("failed to attach phys object\n");
6431                         goto fail_locked;
6432                 }
6433                 addr = obj->phys_obj->handle->busaddr;
6434         }
6435
6436         if (IS_GEN2(dev))
6437                 I915_WRITE(CURSIZE, (height << 12) | width);
6438
6439  finish:
6440         if (intel_crtc->cursor_bo) {
6441                 if (dev_priv->info->cursor_needs_physical) {
6442                         if (intel_crtc->cursor_bo != obj)
6443                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6444                 } else
6445                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6446                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6447         }
6448
6449         mutex_unlock(&dev->struct_mutex);
6450
6451         intel_crtc->cursor_addr = addr;
6452         intel_crtc->cursor_bo = obj;
6453         intel_crtc->cursor_width = width;
6454         intel_crtc->cursor_height = height;
6455
6456         intel_crtc_update_cursor(crtc, true);
6457
6458         return 0;
6459 fail_unpin:
6460         i915_gem_object_unpin(obj);
6461 fail_locked:
6462         mutex_unlock(&dev->struct_mutex);
6463 fail:
6464         drm_gem_object_unreference_unlocked(&obj->base);
6465         return ret;
6466 }
6467
6468 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6469 {
6470         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6471
6472         intel_crtc->cursor_x = x;
6473         intel_crtc->cursor_y = y;
6474
6475         intel_crtc_update_cursor(crtc, true);
6476
6477         return 0;
6478 }
6479
6480 /** Sets the color ramps on behalf of RandR */
6481 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6482                                  u16 blue, int regno)
6483 {
6484         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6485
6486         intel_crtc->lut_r[regno] = red >> 8;
6487         intel_crtc->lut_g[regno] = green >> 8;
6488         intel_crtc->lut_b[regno] = blue >> 8;
6489 }
6490
6491 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6492                              u16 *blue, int regno)
6493 {
6494         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6495
6496         *red = intel_crtc->lut_r[regno] << 8;
6497         *green = intel_crtc->lut_g[regno] << 8;
6498         *blue = intel_crtc->lut_b[regno] << 8;
6499 }
6500
6501 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6502                                  u16 *blue, uint32_t start, uint32_t size)
6503 {
6504         int end = (start + size > 256) ? 256 : start + size, i;
6505         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6506
6507         for (i = start; i < end; i++) {
6508                 intel_crtc->lut_r[i] = red[i] >> 8;
6509                 intel_crtc->lut_g[i] = green[i] >> 8;
6510                 intel_crtc->lut_b[i] = blue[i] >> 8;
6511         }
6512
6513         intel_crtc_load_lut(crtc);
6514 }
6515
6516 /* VESA 640x480x72Hz mode to set on the pipe */
6517 static struct drm_display_mode load_detect_mode = {
6518         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6519                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6520 };
6521
6522 static struct drm_framebuffer *
6523 intel_framebuffer_create(struct drm_device *dev,
6524                          struct drm_mode_fb_cmd2 *mode_cmd,
6525                          struct drm_i915_gem_object *obj)
6526 {
6527         struct intel_framebuffer *intel_fb;
6528         int ret;
6529
6530         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6531         if (!intel_fb) {
6532                 drm_gem_object_unreference_unlocked(&obj->base);
6533                 return ERR_PTR(-ENOMEM);
6534         }
6535
6536         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6537         if (ret) {
6538                 drm_gem_object_unreference_unlocked(&obj->base);
6539                 kfree(intel_fb);
6540                 return ERR_PTR(ret);
6541         }
6542
6543         return &intel_fb->base;
6544 }
6545
6546 static u32
6547 intel_framebuffer_pitch_for_width(int width, int bpp)
6548 {
6549         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6550         return ALIGN(pitch, 64);
6551 }
6552
6553 static u32
6554 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6555 {
6556         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6557         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6558 }
6559
6560 static struct drm_framebuffer *
6561 intel_framebuffer_create_for_mode(struct drm_device *dev,
6562                                   struct drm_display_mode *mode,
6563                                   int depth, int bpp)
6564 {
6565         struct drm_i915_gem_object *obj;
6566         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6567
6568         obj = i915_gem_alloc_object(dev,
6569                                     intel_framebuffer_size_for_mode(mode, bpp));
6570         if (obj == NULL)
6571                 return ERR_PTR(-ENOMEM);
6572
6573         mode_cmd.width = mode->hdisplay;
6574         mode_cmd.height = mode->vdisplay;
6575         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6576                                                                 bpp);
6577         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6578
6579         return intel_framebuffer_create(dev, &mode_cmd, obj);
6580 }
6581
6582 static struct drm_framebuffer *
6583 mode_fits_in_fbdev(struct drm_device *dev,
6584                    struct drm_display_mode *mode)
6585 {
6586         struct drm_i915_private *dev_priv = dev->dev_private;
6587         struct drm_i915_gem_object *obj;
6588         struct drm_framebuffer *fb;
6589
6590         if (dev_priv->fbdev == NULL)
6591                 return NULL;
6592
6593         obj = dev_priv->fbdev->ifb.obj;
6594         if (obj == NULL)
6595                 return NULL;
6596
6597         fb = &dev_priv->fbdev->ifb.base;
6598         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6599                                                                fb->bits_per_pixel))
6600                 return NULL;
6601
6602         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6603                 return NULL;
6604
6605         return fb;
6606 }
6607
6608 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6609                                 struct drm_display_mode *mode,
6610                                 struct intel_load_detect_pipe *old)
6611 {
6612         struct intel_crtc *intel_crtc;
6613         struct intel_encoder *intel_encoder =
6614                 intel_attached_encoder(connector);
6615         struct drm_crtc *possible_crtc;
6616         struct drm_encoder *encoder = &intel_encoder->base;
6617         struct drm_crtc *crtc = NULL;
6618         struct drm_device *dev = encoder->dev;
6619         struct drm_framebuffer *fb;
6620         int i = -1;
6621
6622         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6623                       connector->base.id, drm_get_connector_name(connector),
6624                       encoder->base.id, drm_get_encoder_name(encoder));
6625
6626         /*
6627          * Algorithm gets a little messy:
6628          *
6629          *   - if the connector already has an assigned crtc, use it (but make
6630          *     sure it's on first)
6631          *
6632          *   - try to find the first unused crtc that can drive this connector,
6633          *     and use that if we find one
6634          */
6635
6636         /* See if we already have a CRTC for this connector */
6637         if (encoder->crtc) {
6638                 crtc = encoder->crtc;
6639
6640                 mutex_lock(&crtc->mutex);
6641
6642                 old->dpms_mode = connector->dpms;
6643                 old->load_detect_temp = false;
6644
6645                 /* Make sure the crtc and connector are running */
6646                 if (connector->dpms != DRM_MODE_DPMS_ON)
6647                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6648
6649                 return true;
6650         }
6651
6652         /* Find an unused one (if possible) */
6653         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6654                 i++;
6655                 if (!(encoder->possible_crtcs & (1 << i)))
6656                         continue;
6657                 if (!possible_crtc->enabled) {
6658                         crtc = possible_crtc;
6659                         break;
6660                 }
6661         }
6662
6663         /*
6664          * If we didn't find an unused CRTC, don't use any.
6665          */
6666         if (!crtc) {
6667                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6668                 return false;
6669         }
6670
6671         mutex_lock(&crtc->mutex);
6672         intel_encoder->new_crtc = to_intel_crtc(crtc);
6673         to_intel_connector(connector)->new_encoder = intel_encoder;
6674
6675         intel_crtc = to_intel_crtc(crtc);
6676         old->dpms_mode = connector->dpms;
6677         old->load_detect_temp = true;
6678         old->release_fb = NULL;
6679
6680         if (!mode)
6681                 mode = &load_detect_mode;
6682
6683         /* We need a framebuffer large enough to accommodate all accesses
6684          * that the plane may generate whilst we perform load detection.
6685          * We can not rely on the fbcon either being present (we get called
6686          * during its initialisation to detect all boot displays, or it may
6687          * not even exist) or that it is large enough to satisfy the
6688          * requested mode.
6689          */
6690         fb = mode_fits_in_fbdev(dev, mode);
6691         if (fb == NULL) {
6692                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6693                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6694                 old->release_fb = fb;
6695         } else
6696                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6697         if (IS_ERR(fb)) {
6698                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6699                 mutex_unlock(&crtc->mutex);
6700                 return false;
6701         }
6702
6703         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6704                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6705                 if (old->release_fb)
6706                         old->release_fb->funcs->destroy(old->release_fb);
6707                 mutex_unlock(&crtc->mutex);
6708                 return false;
6709         }
6710
6711         /* let the connector get through one full cycle before testing */
6712         intel_wait_for_vblank(dev, intel_crtc->pipe);
6713         return true;
6714 }
6715
6716 void intel_release_load_detect_pipe(struct drm_connector *connector,
6717                                     struct intel_load_detect_pipe *old)
6718 {
6719         struct intel_encoder *intel_encoder =
6720                 intel_attached_encoder(connector);
6721         struct drm_encoder *encoder = &intel_encoder->base;
6722         struct drm_crtc *crtc = encoder->crtc;
6723
6724         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6725                       connector->base.id, drm_get_connector_name(connector),
6726                       encoder->base.id, drm_get_encoder_name(encoder));
6727
6728         if (old->load_detect_temp) {
6729                 to_intel_connector(connector)->new_encoder = NULL;
6730                 intel_encoder->new_crtc = NULL;
6731                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6732
6733                 if (old->release_fb) {
6734                         drm_framebuffer_unregister_private(old->release_fb);
6735                         drm_framebuffer_unreference(old->release_fb);
6736                 }
6737
6738                 mutex_unlock(&crtc->mutex);
6739                 return;
6740         }
6741
6742         /* Switch crtc and encoder back off if necessary */
6743         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6744                 connector->funcs->dpms(connector, old->dpms_mode);
6745
6746         mutex_unlock(&crtc->mutex);
6747 }
6748
6749 /* Returns the clock of the currently programmed mode of the given pipe. */
6750 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6751 {
6752         struct drm_i915_private *dev_priv = dev->dev_private;
6753         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6754         int pipe = intel_crtc->pipe;
6755         u32 dpll = I915_READ(DPLL(pipe));
6756         u32 fp;
6757         intel_clock_t clock;
6758
6759         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6760                 fp = I915_READ(FP0(pipe));
6761         else
6762                 fp = I915_READ(FP1(pipe));
6763
6764         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6765         if (IS_PINEVIEW(dev)) {
6766                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6767                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6768         } else {
6769                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6770                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6771         }
6772
6773         if (!IS_GEN2(dev)) {
6774                 if (IS_PINEVIEW(dev))
6775                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6776                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6777                 else
6778                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6779                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6780
6781                 switch (dpll & DPLL_MODE_MASK) {
6782                 case DPLLB_MODE_DAC_SERIAL:
6783                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6784                                 5 : 10;
6785                         break;
6786                 case DPLLB_MODE_LVDS:
6787                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6788                                 7 : 14;
6789                         break;
6790                 default:
6791                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6792                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6793                         return 0;
6794                 }
6795
6796                 /* XXX: Handle the 100Mhz refclk */
6797                 intel_clock(dev, 96000, &clock);
6798         } else {
6799                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6800
6801                 if (is_lvds) {
6802                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6803                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6804                         clock.p2 = 14;
6805
6806                         if ((dpll & PLL_REF_INPUT_MASK) ==
6807                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6808                                 /* XXX: might not be 66MHz */
6809                                 intel_clock(dev, 66000, &clock);
6810                         } else
6811                                 intel_clock(dev, 48000, &clock);
6812                 } else {
6813                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6814                                 clock.p1 = 2;
6815                         else {
6816                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6817                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6818                         }
6819                         if (dpll & PLL_P2_DIVIDE_BY_4)
6820                                 clock.p2 = 4;
6821                         else
6822                                 clock.p2 = 2;
6823
6824                         intel_clock(dev, 48000, &clock);
6825                 }
6826         }
6827
6828         /* XXX: It would be nice to validate the clocks, but we can't reuse
6829          * i830PllIsValid() because it relies on the xf86_config connector
6830          * configuration being accurate, which it isn't necessarily.
6831          */
6832
6833         return clock.dot;
6834 }
6835
6836 /** Returns the currently programmed mode of the given pipe. */
6837 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6838                                              struct drm_crtc *crtc)
6839 {
6840         struct drm_i915_private *dev_priv = dev->dev_private;
6841         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6842         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6843         struct drm_display_mode *mode;
6844         int htot = I915_READ(HTOTAL(cpu_transcoder));
6845         int hsync = I915_READ(HSYNC(cpu_transcoder));
6846         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6847         int vsync = I915_READ(VSYNC(cpu_transcoder));
6848
6849         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6850         if (!mode)
6851                 return NULL;
6852
6853         mode->clock = intel_crtc_clock_get(dev, crtc);
6854         mode->hdisplay = (htot & 0xffff) + 1;
6855         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6856         mode->hsync_start = (hsync & 0xffff) + 1;
6857         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6858         mode->vdisplay = (vtot & 0xffff) + 1;
6859         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6860         mode->vsync_start = (vsync & 0xffff) + 1;
6861         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6862
6863         drm_mode_set_name(mode);
6864
6865         return mode;
6866 }
6867
6868 static void intel_increase_pllclock(struct drm_crtc *crtc)
6869 {
6870         struct drm_device *dev = crtc->dev;
6871         drm_i915_private_t *dev_priv = dev->dev_private;
6872         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6873         int pipe = intel_crtc->pipe;
6874         int dpll_reg = DPLL(pipe);
6875         int dpll;
6876
6877         if (HAS_PCH_SPLIT(dev))
6878                 return;
6879
6880         if (!dev_priv->lvds_downclock_avail)
6881                 return;
6882
6883         dpll = I915_READ(dpll_reg);
6884         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6885                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6886
6887                 assert_panel_unlocked(dev_priv, pipe);
6888
6889                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6890                 I915_WRITE(dpll_reg, dpll);
6891                 intel_wait_for_vblank(dev, pipe);
6892
6893                 dpll = I915_READ(dpll_reg);
6894                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6895                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6896         }
6897 }
6898
6899 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6900 {
6901         struct drm_device *dev = crtc->dev;
6902         drm_i915_private_t *dev_priv = dev->dev_private;
6903         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6904
6905         if (HAS_PCH_SPLIT(dev))
6906                 return;
6907
6908         if (!dev_priv->lvds_downclock_avail)
6909                 return;
6910
6911         /*
6912          * Since this is called by a timer, we should never get here in
6913          * the manual case.
6914          */
6915         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6916                 int pipe = intel_crtc->pipe;
6917                 int dpll_reg = DPLL(pipe);
6918                 int dpll;
6919
6920                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6921
6922                 assert_panel_unlocked(dev_priv, pipe);
6923
6924                 dpll = I915_READ(dpll_reg);
6925                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6926                 I915_WRITE(dpll_reg, dpll);
6927                 intel_wait_for_vblank(dev, pipe);
6928                 dpll = I915_READ(dpll_reg);
6929                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6930                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6931         }
6932
6933 }
6934
6935 void intel_mark_busy(struct drm_device *dev)
6936 {
6937         i915_update_gfx_val(dev->dev_private);
6938 }
6939
6940 void intel_mark_idle(struct drm_device *dev)
6941 {
6942         struct drm_crtc *crtc;
6943
6944         if (!i915_powersave)
6945                 return;
6946
6947         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6948                 if (!crtc->fb)
6949                         continue;
6950
6951                 intel_decrease_pllclock(crtc);
6952         }
6953 }
6954
6955 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6956 {
6957         struct drm_device *dev = obj->base.dev;
6958         struct drm_crtc *crtc;
6959
6960         if (!i915_powersave)
6961                 return;
6962
6963         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6964                 if (!crtc->fb)
6965                         continue;
6966
6967                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6968                         intel_increase_pllclock(crtc);
6969         }
6970 }
6971
6972 static void intel_crtc_destroy(struct drm_crtc *crtc)
6973 {
6974         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6975         struct drm_device *dev = crtc->dev;
6976         struct intel_unpin_work *work;
6977         unsigned long flags;
6978
6979         spin_lock_irqsave(&dev->event_lock, flags);
6980         work = intel_crtc->unpin_work;
6981         intel_crtc->unpin_work = NULL;
6982         spin_unlock_irqrestore(&dev->event_lock, flags);
6983
6984         if (work) {
6985                 cancel_work_sync(&work->work);
6986                 kfree(work);
6987         }
6988
6989         drm_crtc_cleanup(crtc);
6990
6991         kfree(intel_crtc);
6992 }
6993
6994 static void intel_unpin_work_fn(struct work_struct *__work)
6995 {
6996         struct intel_unpin_work *work =
6997                 container_of(__work, struct intel_unpin_work, work);
6998         struct drm_device *dev = work->crtc->dev;
6999
7000         mutex_lock(&dev->struct_mutex);
7001         intel_unpin_fb_obj(work->old_fb_obj);
7002         drm_gem_object_unreference(&work->pending_flip_obj->base);
7003         drm_gem_object_unreference(&work->old_fb_obj->base);
7004
7005         intel_update_fbc(dev);
7006         mutex_unlock(&dev->struct_mutex);
7007
7008         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7009         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7010
7011         kfree(work);
7012 }
7013
7014 static void do_intel_finish_page_flip(struct drm_device *dev,
7015                                       struct drm_crtc *crtc)
7016 {
7017         drm_i915_private_t *dev_priv = dev->dev_private;
7018         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7019         struct intel_unpin_work *work;
7020         unsigned long flags;
7021
7022         /* Ignore early vblank irqs */
7023         if (intel_crtc == NULL)
7024                 return;
7025
7026         spin_lock_irqsave(&dev->event_lock, flags);
7027         work = intel_crtc->unpin_work;
7028
7029         /* Ensure we don't miss a work->pending update ... */
7030         smp_rmb();
7031
7032         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7033                 spin_unlock_irqrestore(&dev->event_lock, flags);
7034                 return;
7035         }
7036
7037         /* and that the unpin work is consistent wrt ->pending. */
7038         smp_rmb();
7039
7040         intel_crtc->unpin_work = NULL;
7041
7042         if (work->event)
7043                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7044
7045         drm_vblank_put(dev, intel_crtc->pipe);
7046
7047         spin_unlock_irqrestore(&dev->event_lock, flags);
7048
7049         wake_up_all(&dev_priv->pending_flip_queue);
7050
7051         queue_work(dev_priv->wq, &work->work);
7052
7053         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7054 }
7055
7056 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7057 {
7058         drm_i915_private_t *dev_priv = dev->dev_private;
7059         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7060
7061         do_intel_finish_page_flip(dev, crtc);
7062 }
7063
7064 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7065 {
7066         drm_i915_private_t *dev_priv = dev->dev_private;
7067         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7068
7069         do_intel_finish_page_flip(dev, crtc);
7070 }
7071
7072 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7073 {
7074         drm_i915_private_t *dev_priv = dev->dev_private;
7075         struct intel_crtc *intel_crtc =
7076                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7077         unsigned long flags;
7078
7079         /* NB: An MMIO update of the plane base pointer will also
7080          * generate a page-flip completion irq, i.e. every modeset
7081          * is also accompanied by a spurious intel_prepare_page_flip().
7082          */
7083         spin_lock_irqsave(&dev->event_lock, flags);
7084         if (intel_crtc->unpin_work)
7085                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7086         spin_unlock_irqrestore(&dev->event_lock, flags);
7087 }
7088
7089 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7090 {
7091         /* Ensure that the work item is consistent when activating it ... */
7092         smp_wmb();
7093         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7094         /* and that it is marked active as soon as the irq could fire. */
7095         smp_wmb();
7096 }
7097
7098 static int intel_gen2_queue_flip(struct drm_device *dev,
7099                                  struct drm_crtc *crtc,
7100                                  struct drm_framebuffer *fb,
7101                                  struct drm_i915_gem_object *obj)
7102 {
7103         struct drm_i915_private *dev_priv = dev->dev_private;
7104         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7105         u32 flip_mask;
7106         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7107         int ret;
7108
7109         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7110         if (ret)
7111                 goto err;
7112
7113         ret = intel_ring_begin(ring, 6);
7114         if (ret)
7115                 goto err_unpin;
7116
7117         /* Can't queue multiple flips, so wait for the previous
7118          * one to finish before executing the next.
7119          */
7120         if (intel_crtc->plane)
7121                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7122         else
7123                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7124         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7125         intel_ring_emit(ring, MI_NOOP);
7126         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7127                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7128         intel_ring_emit(ring, fb->pitches[0]);
7129         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7130         intel_ring_emit(ring, 0); /* aux display base address, unused */
7131
7132         intel_mark_page_flip_active(intel_crtc);
7133         intel_ring_advance(ring);
7134         return 0;
7135
7136 err_unpin:
7137         intel_unpin_fb_obj(obj);
7138 err:
7139         return ret;
7140 }
7141
7142 static int intel_gen3_queue_flip(struct drm_device *dev,
7143                                  struct drm_crtc *crtc,
7144                                  struct drm_framebuffer *fb,
7145                                  struct drm_i915_gem_object *obj)
7146 {
7147         struct drm_i915_private *dev_priv = dev->dev_private;
7148         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7149         u32 flip_mask;
7150         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7151         int ret;
7152
7153         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7154         if (ret)
7155                 goto err;
7156
7157         ret = intel_ring_begin(ring, 6);
7158         if (ret)
7159                 goto err_unpin;
7160
7161         if (intel_crtc->plane)
7162                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7163         else
7164                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7165         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7166         intel_ring_emit(ring, MI_NOOP);
7167         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7168                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7169         intel_ring_emit(ring, fb->pitches[0]);
7170         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7171         intel_ring_emit(ring, MI_NOOP);
7172
7173         intel_mark_page_flip_active(intel_crtc);
7174         intel_ring_advance(ring);
7175         return 0;
7176
7177 err_unpin:
7178         intel_unpin_fb_obj(obj);
7179 err:
7180         return ret;
7181 }
7182
7183 static int intel_gen4_queue_flip(struct drm_device *dev,
7184                                  struct drm_crtc *crtc,
7185                                  struct drm_framebuffer *fb,
7186                                  struct drm_i915_gem_object *obj)
7187 {
7188         struct drm_i915_private *dev_priv = dev->dev_private;
7189         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7190         uint32_t pf, pipesrc;
7191         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7192         int ret;
7193
7194         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7195         if (ret)
7196                 goto err;
7197
7198         ret = intel_ring_begin(ring, 4);
7199         if (ret)
7200                 goto err_unpin;
7201
7202         /* i965+ uses the linear or tiled offsets from the
7203          * Display Registers (which do not change across a page-flip)
7204          * so we need only reprogram the base address.
7205          */
7206         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7207                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7208         intel_ring_emit(ring, fb->pitches[0]);
7209         intel_ring_emit(ring,
7210                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7211                         obj->tiling_mode);
7212
7213         /* XXX Enabling the panel-fitter across page-flip is so far
7214          * untested on non-native modes, so ignore it for now.
7215          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7216          */
7217         pf = 0;
7218         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7219         intel_ring_emit(ring, pf | pipesrc);
7220
7221         intel_mark_page_flip_active(intel_crtc);
7222         intel_ring_advance(ring);
7223         return 0;
7224
7225 err_unpin:
7226         intel_unpin_fb_obj(obj);
7227 err:
7228         return ret;
7229 }
7230
7231 static int intel_gen6_queue_flip(struct drm_device *dev,
7232                                  struct drm_crtc *crtc,
7233                                  struct drm_framebuffer *fb,
7234                                  struct drm_i915_gem_object *obj)
7235 {
7236         struct drm_i915_private *dev_priv = dev->dev_private;
7237         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7238         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7239         uint32_t pf, pipesrc;
7240         int ret;
7241
7242         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7243         if (ret)
7244                 goto err;
7245
7246         ret = intel_ring_begin(ring, 4);
7247         if (ret)
7248                 goto err_unpin;
7249
7250         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7251                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7252         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7253         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7254
7255         /* Contrary to the suggestions in the documentation,
7256          * "Enable Panel Fitter" does not seem to be required when page
7257          * flipping with a non-native mode, and worse causes a normal
7258          * modeset to fail.
7259          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7260          */
7261         pf = 0;
7262         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7263         intel_ring_emit(ring, pf | pipesrc);
7264
7265         intel_mark_page_flip_active(intel_crtc);
7266         intel_ring_advance(ring);
7267         return 0;
7268
7269 err_unpin:
7270         intel_unpin_fb_obj(obj);
7271 err:
7272         return ret;
7273 }
7274
7275 /*
7276  * On gen7 we currently use the blit ring because (in early silicon at least)
7277  * the render ring doesn't give us interrpts for page flip completion, which
7278  * means clients will hang after the first flip is queued.  Fortunately the
7279  * blit ring generates interrupts properly, so use it instead.
7280  */
7281 static int intel_gen7_queue_flip(struct drm_device *dev,
7282                                  struct drm_crtc *crtc,
7283                                  struct drm_framebuffer *fb,
7284                                  struct drm_i915_gem_object *obj)
7285 {
7286         struct drm_i915_private *dev_priv = dev->dev_private;
7287         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7288         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7289         uint32_t plane_bit = 0;
7290         int ret;
7291
7292         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7293         if (ret)
7294                 goto err;
7295
7296         switch(intel_crtc->plane) {
7297         case PLANE_A:
7298                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7299                 break;
7300         case PLANE_B:
7301                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7302                 break;
7303         case PLANE_C:
7304                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7305                 break;
7306         default:
7307                 WARN_ONCE(1, "unknown plane in flip command\n");
7308                 ret = -ENODEV;
7309                 goto err_unpin;
7310         }
7311
7312         ret = intel_ring_begin(ring, 4);
7313         if (ret)
7314                 goto err_unpin;
7315
7316         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7317         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7318         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7319         intel_ring_emit(ring, (MI_NOOP));
7320
7321         intel_mark_page_flip_active(intel_crtc);
7322         intel_ring_advance(ring);
7323         return 0;
7324
7325 err_unpin:
7326         intel_unpin_fb_obj(obj);
7327 err:
7328         return ret;
7329 }
7330
7331 static int intel_default_queue_flip(struct drm_device *dev,
7332                                     struct drm_crtc *crtc,
7333                                     struct drm_framebuffer *fb,
7334                                     struct drm_i915_gem_object *obj)
7335 {
7336         return -ENODEV;
7337 }
7338
7339 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7340                                 struct drm_framebuffer *fb,
7341                                 struct drm_pending_vblank_event *event)
7342 {
7343         struct drm_device *dev = crtc->dev;
7344         struct drm_i915_private *dev_priv = dev->dev_private;
7345         struct drm_framebuffer *old_fb = crtc->fb;
7346         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7347         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7348         struct intel_unpin_work *work;
7349         unsigned long flags;
7350         int ret;
7351
7352         /* Can't change pixel format via MI display flips. */
7353         if (fb->pixel_format != crtc->fb->pixel_format)
7354                 return -EINVAL;
7355
7356         /*
7357          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7358          * Note that pitch changes could also affect these register.
7359          */
7360         if (INTEL_INFO(dev)->gen > 3 &&
7361             (fb->offsets[0] != crtc->fb->offsets[0] ||
7362              fb->pitches[0] != crtc->fb->pitches[0]))
7363                 return -EINVAL;
7364
7365         work = kzalloc(sizeof *work, GFP_KERNEL);
7366         if (work == NULL)
7367                 return -ENOMEM;
7368
7369         work->event = event;
7370         work->crtc = crtc;
7371         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7372         INIT_WORK(&work->work, intel_unpin_work_fn);
7373
7374         ret = drm_vblank_get(dev, intel_crtc->pipe);
7375         if (ret)
7376                 goto free_work;
7377
7378         /* We borrow the event spin lock for protecting unpin_work */
7379         spin_lock_irqsave(&dev->event_lock, flags);
7380         if (intel_crtc->unpin_work) {
7381                 spin_unlock_irqrestore(&dev->event_lock, flags);
7382                 kfree(work);
7383                 drm_vblank_put(dev, intel_crtc->pipe);
7384
7385                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7386                 return -EBUSY;
7387         }
7388         intel_crtc->unpin_work = work;
7389         spin_unlock_irqrestore(&dev->event_lock, flags);
7390
7391         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7392                 flush_workqueue(dev_priv->wq);
7393
7394         ret = i915_mutex_lock_interruptible(dev);
7395         if (ret)
7396                 goto cleanup;
7397
7398         /* Reference the objects for the scheduled work. */
7399         drm_gem_object_reference(&work->old_fb_obj->base);
7400         drm_gem_object_reference(&obj->base);
7401
7402         crtc->fb = fb;
7403
7404         work->pending_flip_obj = obj;
7405
7406         work->enable_stall_check = true;
7407
7408         atomic_inc(&intel_crtc->unpin_work_count);
7409         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7410
7411         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7412         if (ret)
7413                 goto cleanup_pending;
7414
7415         intel_disable_fbc(dev);
7416         intel_mark_fb_busy(obj);
7417         mutex_unlock(&dev->struct_mutex);
7418
7419         trace_i915_flip_request(intel_crtc->plane, obj);
7420
7421         return 0;
7422
7423 cleanup_pending:
7424         atomic_dec(&intel_crtc->unpin_work_count);
7425         crtc->fb = old_fb;
7426         drm_gem_object_unreference(&work->old_fb_obj->base);
7427         drm_gem_object_unreference(&obj->base);
7428         mutex_unlock(&dev->struct_mutex);
7429
7430 cleanup:
7431         spin_lock_irqsave(&dev->event_lock, flags);
7432         intel_crtc->unpin_work = NULL;
7433         spin_unlock_irqrestore(&dev->event_lock, flags);
7434
7435         drm_vblank_put(dev, intel_crtc->pipe);
7436 free_work:
7437         kfree(work);
7438
7439         return ret;
7440 }
7441
7442 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7443         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7444         .load_lut = intel_crtc_load_lut,
7445 };
7446
7447 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7448 {
7449         struct intel_encoder *other_encoder;
7450         struct drm_crtc *crtc = &encoder->new_crtc->base;
7451
7452         if (WARN_ON(!crtc))
7453                 return false;
7454
7455         list_for_each_entry(other_encoder,
7456                             &crtc->dev->mode_config.encoder_list,
7457                             base.head) {
7458
7459                 if (&other_encoder->new_crtc->base != crtc ||
7460                     encoder == other_encoder)
7461                         continue;
7462                 else
7463                         return true;
7464         }
7465
7466         return false;
7467 }
7468
7469 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7470                                   struct drm_crtc *crtc)
7471 {
7472         struct drm_device *dev;
7473         struct drm_crtc *tmp;
7474         int crtc_mask = 1;
7475
7476         WARN(!crtc, "checking null crtc?\n");
7477
7478         dev = crtc->dev;
7479
7480         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7481                 if (tmp == crtc)
7482                         break;
7483                 crtc_mask <<= 1;
7484         }
7485
7486         if (encoder->possible_crtcs & crtc_mask)
7487                 return true;
7488         return false;
7489 }
7490
7491 /**
7492  * intel_modeset_update_staged_output_state
7493  *
7494  * Updates the staged output configuration state, e.g. after we've read out the
7495  * current hw state.
7496  */
7497 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7498 {
7499         struct intel_encoder *encoder;
7500         struct intel_connector *connector;
7501
7502         list_for_each_entry(connector, &dev->mode_config.connector_list,
7503                             base.head) {
7504                 connector->new_encoder =
7505                         to_intel_encoder(connector->base.encoder);
7506         }
7507
7508         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7509                             base.head) {
7510                 encoder->new_crtc =
7511                         to_intel_crtc(encoder->base.crtc);
7512         }
7513 }
7514
7515 /**
7516  * intel_modeset_commit_output_state
7517  *
7518  * This function copies the stage display pipe configuration to the real one.
7519  */
7520 static void intel_modeset_commit_output_state(struct drm_device *dev)
7521 {
7522         struct intel_encoder *encoder;
7523         struct intel_connector *connector;
7524
7525         list_for_each_entry(connector, &dev->mode_config.connector_list,
7526                             base.head) {
7527                 connector->base.encoder = &connector->new_encoder->base;
7528         }
7529
7530         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7531                             base.head) {
7532                 encoder->base.crtc = &encoder->new_crtc->base;
7533         }
7534 }
7535
7536 static int
7537 pipe_config_set_bpp(struct drm_crtc *crtc,
7538                     struct drm_framebuffer *fb,
7539                     struct intel_crtc_config *pipe_config)
7540 {
7541         struct drm_device *dev = crtc->dev;
7542         struct drm_connector *connector;
7543         int bpp;
7544
7545         switch (fb->pixel_format) {
7546         case DRM_FORMAT_C8:
7547                 bpp = 8*3; /* since we go through a colormap */
7548                 break;
7549         case DRM_FORMAT_XRGB1555:
7550         case DRM_FORMAT_ARGB1555:
7551                 /* checked in intel_framebuffer_init already */
7552                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7553                         return -EINVAL;
7554         case DRM_FORMAT_RGB565:
7555                 bpp = 6*3; /* min is 18bpp */
7556                 break;
7557         case DRM_FORMAT_XBGR8888:
7558         case DRM_FORMAT_ABGR8888:
7559                 /* checked in intel_framebuffer_init already */
7560                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7561                         return -EINVAL;
7562         case DRM_FORMAT_XRGB8888:
7563         case DRM_FORMAT_ARGB8888:
7564                 bpp = 8*3;
7565                 break;
7566         case DRM_FORMAT_XRGB2101010:
7567         case DRM_FORMAT_ARGB2101010:
7568         case DRM_FORMAT_XBGR2101010:
7569         case DRM_FORMAT_ABGR2101010:
7570                 /* checked in intel_framebuffer_init already */
7571                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7572                         return -EINVAL;
7573                 bpp = 10*3;
7574                 break;
7575         /* TODO: gen4+ supports 16 bpc floating point, too. */
7576         default:
7577                 DRM_DEBUG_KMS("unsupported depth\n");
7578                 return -EINVAL;
7579         }
7580
7581         pipe_config->pipe_bpp = bpp;
7582
7583         /* Clamp display bpp to EDID value */
7584         list_for_each_entry(connector, &dev->mode_config.connector_list,
7585                             head) {
7586                 if (connector->encoder && connector->encoder->crtc != crtc)
7587                         continue;
7588
7589                 /* Don't use an invalid EDID bpc value */
7590                 if (connector->display_info.bpc &&
7591                     connector->display_info.bpc * 3 < bpp) {
7592                         DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7593                                       bpp, connector->display_info.bpc*3);
7594                         pipe_config->pipe_bpp = connector->display_info.bpc*3;
7595                 }
7596         }
7597
7598         return bpp;
7599 }
7600
7601 static struct intel_crtc_config *
7602 intel_modeset_pipe_config(struct drm_crtc *crtc,
7603                           struct drm_framebuffer *fb,
7604                           struct drm_display_mode *mode)
7605 {
7606         struct drm_device *dev = crtc->dev;
7607         struct drm_encoder_helper_funcs *encoder_funcs;
7608         struct intel_encoder *encoder;
7609         struct intel_crtc_config *pipe_config;
7610         int plane_bpp;
7611
7612         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7613         if (!pipe_config)
7614                 return ERR_PTR(-ENOMEM);
7615
7616         drm_mode_copy(&pipe_config->adjusted_mode, mode);
7617         drm_mode_copy(&pipe_config->requested_mode, mode);
7618
7619         plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7620         if (plane_bpp < 0)
7621                 goto fail;
7622
7623         /* Pass our mode to the connectors and the CRTC to give them a chance to
7624          * adjust it according to limitations or connector properties, and also
7625          * a chance to reject the mode entirely.
7626          */
7627         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7628                             base.head) {
7629
7630                 if (&encoder->new_crtc->base != crtc)
7631                         continue;
7632
7633                 if (encoder->compute_config) {
7634                         if (!(encoder->compute_config(encoder, pipe_config))) {
7635                                 DRM_DEBUG_KMS("Encoder config failure\n");
7636                                 goto fail;
7637                         }
7638
7639                         continue;
7640                 }
7641
7642                 encoder_funcs = encoder->base.helper_private;
7643                 if (!(encoder_funcs->mode_fixup(&encoder->base,
7644                                                 &pipe_config->requested_mode,
7645                                                 &pipe_config->adjusted_mode))) {
7646                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7647                         goto fail;
7648                 }
7649         }
7650
7651         if (!(intel_crtc_compute_config(crtc, pipe_config))) {
7652                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7653                 goto fail;
7654         }
7655         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7656
7657         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7658         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7659                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7660
7661         return pipe_config;
7662 fail:
7663         kfree(pipe_config);
7664         return ERR_PTR(-EINVAL);
7665 }
7666
7667 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7668  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7669 static void
7670 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7671                              unsigned *prepare_pipes, unsigned *disable_pipes)
7672 {
7673         struct intel_crtc *intel_crtc;
7674         struct drm_device *dev = crtc->dev;
7675         struct intel_encoder *encoder;
7676         struct intel_connector *connector;
7677         struct drm_crtc *tmp_crtc;
7678
7679         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7680
7681         /* Check which crtcs have changed outputs connected to them, these need
7682          * to be part of the prepare_pipes mask. We don't (yet) support global
7683          * modeset across multiple crtcs, so modeset_pipes will only have one
7684          * bit set at most. */
7685         list_for_each_entry(connector, &dev->mode_config.connector_list,
7686                             base.head) {
7687                 if (connector->base.encoder == &connector->new_encoder->base)
7688                         continue;
7689
7690                 if (connector->base.encoder) {
7691                         tmp_crtc = connector->base.encoder->crtc;
7692
7693                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7694                 }
7695
7696                 if (connector->new_encoder)
7697                         *prepare_pipes |=
7698                                 1 << connector->new_encoder->new_crtc->pipe;
7699         }
7700
7701         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7702                             base.head) {
7703                 if (encoder->base.crtc == &encoder->new_crtc->base)
7704                         continue;
7705
7706                 if (encoder->base.crtc) {
7707                         tmp_crtc = encoder->base.crtc;
7708
7709                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7710                 }
7711
7712                 if (encoder->new_crtc)
7713                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7714         }
7715
7716         /* Check for any pipes that will be fully disabled ... */
7717         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7718                             base.head) {
7719                 bool used = false;
7720
7721                 /* Don't try to disable disabled crtcs. */
7722                 if (!intel_crtc->base.enabled)
7723                         continue;
7724
7725                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7726                                     base.head) {
7727                         if (encoder->new_crtc == intel_crtc)
7728                                 used = true;
7729                 }
7730
7731                 if (!used)
7732                         *disable_pipes |= 1 << intel_crtc->pipe;
7733         }
7734
7735
7736         /* set_mode is also used to update properties on life display pipes. */
7737         intel_crtc = to_intel_crtc(crtc);
7738         if (crtc->enabled)
7739                 *prepare_pipes |= 1 << intel_crtc->pipe;
7740
7741         /*
7742          * For simplicity do a full modeset on any pipe where the output routing
7743          * changed. We could be more clever, but that would require us to be
7744          * more careful with calling the relevant encoder->mode_set functions.
7745          */
7746         if (*prepare_pipes)
7747                 *modeset_pipes = *prepare_pipes;
7748
7749         /* ... and mask these out. */
7750         *modeset_pipes &= ~(*disable_pipes);
7751         *prepare_pipes &= ~(*disable_pipes);
7752
7753         /*
7754          * HACK: We don't (yet) fully support global modesets. intel_set_config
7755          * obies this rule, but the modeset restore mode of
7756          * intel_modeset_setup_hw_state does not.
7757          */
7758         *modeset_pipes &= 1 << intel_crtc->pipe;
7759         *prepare_pipes &= 1 << intel_crtc->pipe;
7760 }
7761
7762 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7763 {
7764         struct drm_encoder *encoder;
7765         struct drm_device *dev = crtc->dev;
7766
7767         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7768                 if (encoder->crtc == crtc)
7769                         return true;
7770
7771         return false;
7772 }
7773
7774 static void
7775 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7776 {
7777         struct intel_encoder *intel_encoder;
7778         struct intel_crtc *intel_crtc;
7779         struct drm_connector *connector;
7780
7781         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7782                             base.head) {
7783                 if (!intel_encoder->base.crtc)
7784                         continue;
7785
7786                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7787
7788                 if (prepare_pipes & (1 << intel_crtc->pipe))
7789                         intel_encoder->connectors_active = false;
7790         }
7791
7792         intel_modeset_commit_output_state(dev);
7793
7794         /* Update computed state. */
7795         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7796                             base.head) {
7797                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7798         }
7799
7800         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7801                 if (!connector->encoder || !connector->encoder->crtc)
7802                         continue;
7803
7804                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7805
7806                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7807                         struct drm_property *dpms_property =
7808                                 dev->mode_config.dpms_property;
7809
7810                         connector->dpms = DRM_MODE_DPMS_ON;
7811                         drm_object_property_set_value(&connector->base,
7812                                                          dpms_property,
7813                                                          DRM_MODE_DPMS_ON);
7814
7815                         intel_encoder = to_intel_encoder(connector->encoder);
7816                         intel_encoder->connectors_active = true;
7817                 }
7818         }
7819
7820 }
7821
7822 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7823         list_for_each_entry((intel_crtc), \
7824                             &(dev)->mode_config.crtc_list, \
7825                             base.head) \
7826                 if (mask & (1 <<(intel_crtc)->pipe)) \
7827
7828 static bool
7829 intel_pipe_config_compare(struct intel_crtc_config *current_config,
7830                           struct intel_crtc_config *pipe_config)
7831 {
7832         if (current_config->has_pch_encoder != pipe_config->has_pch_encoder) {
7833                 DRM_ERROR("mismatch in has_pch_encoder "
7834                           "(expected %i, found %i)\n",
7835                           current_config->has_pch_encoder,
7836                           pipe_config->has_pch_encoder);
7837                 return false;
7838         }
7839
7840         return true;
7841 }
7842
7843 void
7844 intel_modeset_check_state(struct drm_device *dev)
7845 {
7846         drm_i915_private_t *dev_priv = dev->dev_private;
7847         struct intel_crtc *crtc;
7848         struct intel_encoder *encoder;
7849         struct intel_connector *connector;
7850         struct intel_crtc_config pipe_config;
7851
7852         list_for_each_entry(connector, &dev->mode_config.connector_list,
7853                             base.head) {
7854                 /* This also checks the encoder/connector hw state with the
7855                  * ->get_hw_state callbacks. */
7856                 intel_connector_check_state(connector);
7857
7858                 WARN(&connector->new_encoder->base != connector->base.encoder,
7859                      "connector's staged encoder doesn't match current encoder\n");
7860         }
7861
7862         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7863                             base.head) {
7864                 bool enabled = false;
7865                 bool active = false;
7866                 enum pipe pipe, tracked_pipe;
7867
7868                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7869                               encoder->base.base.id,
7870                               drm_get_encoder_name(&encoder->base));
7871
7872                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7873                      "encoder's stage crtc doesn't match current crtc\n");
7874                 WARN(encoder->connectors_active && !encoder->base.crtc,
7875                      "encoder's active_connectors set, but no crtc\n");
7876
7877                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7878                                     base.head) {
7879                         if (connector->base.encoder != &encoder->base)
7880                                 continue;
7881                         enabled = true;
7882                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7883                                 active = true;
7884                 }
7885                 WARN(!!encoder->base.crtc != enabled,
7886                      "encoder's enabled state mismatch "
7887                      "(expected %i, found %i)\n",
7888                      !!encoder->base.crtc, enabled);
7889                 WARN(active && !encoder->base.crtc,
7890                      "active encoder with no crtc\n");
7891
7892                 WARN(encoder->connectors_active != active,
7893                      "encoder's computed active state doesn't match tracked active state "
7894                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7895
7896                 active = encoder->get_hw_state(encoder, &pipe);
7897                 WARN(active != encoder->connectors_active,
7898                      "encoder's hw state doesn't match sw tracking "
7899                      "(expected %i, found %i)\n",
7900                      encoder->connectors_active, active);
7901
7902                 if (!encoder->base.crtc)
7903                         continue;
7904
7905                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7906                 WARN(active && pipe != tracked_pipe,
7907                      "active encoder's pipe doesn't match"
7908                      "(expected %i, found %i)\n",
7909                      tracked_pipe, pipe);
7910
7911         }
7912
7913         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7914                             base.head) {
7915                 bool enabled = false;
7916                 bool active = false;
7917
7918                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7919                               crtc->base.base.id);
7920
7921                 WARN(crtc->active && !crtc->base.enabled,
7922                      "active crtc, but not enabled in sw tracking\n");
7923
7924                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7925                                     base.head) {
7926                         if (encoder->base.crtc != &crtc->base)
7927                                 continue;
7928                         enabled = true;
7929                         if (encoder->connectors_active)
7930                                 active = true;
7931                 }
7932                 WARN(active != crtc->active,
7933                      "crtc's computed active state doesn't match tracked active state "
7934                      "(expected %i, found %i)\n", active, crtc->active);
7935                 WARN(enabled != crtc->base.enabled,
7936                      "crtc's computed enabled state doesn't match tracked enabled state "
7937                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7938
7939                 memset(&pipe_config, 0, sizeof(pipe_config));
7940                 active = dev_priv->display.get_pipe_config(crtc,
7941                                                            &pipe_config);
7942
7943                 /* hw state is inconsistent with the pipe A quirk */
7944                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
7945                         active = crtc->active;
7946
7947                 WARN(crtc->active != active,
7948                      "crtc active state doesn't match with hw state "
7949                      "(expected %i, found %i)\n", crtc->active, active);
7950
7951                 WARN(active &&
7952                      !intel_pipe_config_compare(&crtc->config, &pipe_config),
7953                      "pipe state doesn't match!\n");
7954         }
7955 }
7956
7957 static int __intel_set_mode(struct drm_crtc *crtc,
7958                             struct drm_display_mode *mode,
7959                             int x, int y, struct drm_framebuffer *fb)
7960 {
7961         struct drm_device *dev = crtc->dev;
7962         drm_i915_private_t *dev_priv = dev->dev_private;
7963         struct drm_display_mode *saved_mode, *saved_hwmode;
7964         struct intel_crtc_config *pipe_config = NULL;
7965         struct intel_crtc *intel_crtc;
7966         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7967         int ret = 0;
7968
7969         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7970         if (!saved_mode)
7971                 return -ENOMEM;
7972         saved_hwmode = saved_mode + 1;
7973
7974         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7975                                      &prepare_pipes, &disable_pipes);
7976
7977         *saved_hwmode = crtc->hwmode;
7978         *saved_mode = crtc->mode;
7979
7980         /* Hack: Because we don't (yet) support global modeset on multiple
7981          * crtcs, we don't keep track of the new mode for more than one crtc.
7982          * Hence simply check whether any bit is set in modeset_pipes in all the
7983          * pieces of code that are not yet converted to deal with mutliple crtcs
7984          * changing their mode at the same time. */
7985         if (modeset_pipes) {
7986                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
7987                 if (IS_ERR(pipe_config)) {
7988                         ret = PTR_ERR(pipe_config);
7989                         pipe_config = NULL;
7990
7991                         goto out;
7992                 }
7993         }
7994
7995         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7996                       modeset_pipes, prepare_pipes, disable_pipes);
7997
7998         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7999                 intel_crtc_disable(&intel_crtc->base);
8000
8001         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8002                 if (intel_crtc->base.enabled)
8003                         dev_priv->display.crtc_disable(&intel_crtc->base);
8004         }
8005
8006         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8007          * to set it here already despite that we pass it down the callchain.
8008          */
8009         if (modeset_pipes) {
8010                 enum transcoder tmp = to_intel_crtc(crtc)->config.cpu_transcoder;
8011                 crtc->mode = *mode;
8012                 /* mode_set/enable/disable functions rely on a correct pipe
8013                  * config. */
8014                 to_intel_crtc(crtc)->config = *pipe_config;
8015                 to_intel_crtc(crtc)->config.cpu_transcoder = tmp;
8016         }
8017
8018         /* Only after disabling all output pipelines that will be changed can we
8019          * update the the output configuration. */
8020         intel_modeset_update_state(dev, prepare_pipes);
8021
8022         if (dev_priv->display.modeset_global_resources)
8023                 dev_priv->display.modeset_global_resources(dev);
8024
8025         /* Set up the DPLL and any encoders state that needs to adjust or depend
8026          * on the DPLL.
8027          */
8028         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8029                 ret = intel_crtc_mode_set(&intel_crtc->base,
8030                                           x, y, fb);
8031                 if (ret)
8032                         goto done;
8033         }
8034
8035         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8036         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8037                 dev_priv->display.crtc_enable(&intel_crtc->base);
8038
8039         if (modeset_pipes) {
8040                 /* Store real post-adjustment hardware mode. */
8041                 crtc->hwmode = pipe_config->adjusted_mode;
8042
8043                 /* Calculate and store various constants which
8044                  * are later needed by vblank and swap-completion
8045                  * timestamping. They are derived from true hwmode.
8046                  */
8047                 drm_calc_timestamping_constants(crtc);
8048         }
8049
8050         /* FIXME: add subpixel order */
8051 done:
8052         if (ret && crtc->enabled) {
8053                 crtc->hwmode = *saved_hwmode;
8054                 crtc->mode = *saved_mode;
8055         }
8056
8057 out:
8058         kfree(pipe_config);
8059         kfree(saved_mode);
8060         return ret;
8061 }
8062
8063 int intel_set_mode(struct drm_crtc *crtc,
8064                      struct drm_display_mode *mode,
8065                      int x, int y, struct drm_framebuffer *fb)
8066 {
8067         int ret;
8068
8069         ret = __intel_set_mode(crtc, mode, x, y, fb);
8070
8071         if (ret == 0)
8072                 intel_modeset_check_state(crtc->dev);
8073
8074         return ret;
8075 }
8076
8077 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8078 {
8079         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8080 }
8081
8082 #undef for_each_intel_crtc_masked
8083
8084 static void intel_set_config_free(struct intel_set_config *config)
8085 {
8086         if (!config)
8087                 return;
8088
8089         kfree(config->save_connector_encoders);
8090         kfree(config->save_encoder_crtcs);
8091         kfree(config);
8092 }
8093
8094 static int intel_set_config_save_state(struct drm_device *dev,
8095                                        struct intel_set_config *config)
8096 {
8097         struct drm_encoder *encoder;
8098         struct drm_connector *connector;
8099         int count;
8100
8101         config->save_encoder_crtcs =
8102                 kcalloc(dev->mode_config.num_encoder,
8103                         sizeof(struct drm_crtc *), GFP_KERNEL);
8104         if (!config->save_encoder_crtcs)
8105                 return -ENOMEM;
8106
8107         config->save_connector_encoders =
8108                 kcalloc(dev->mode_config.num_connector,
8109                         sizeof(struct drm_encoder *), GFP_KERNEL);
8110         if (!config->save_connector_encoders)
8111                 return -ENOMEM;
8112
8113         /* Copy data. Note that driver private data is not affected.
8114          * Should anything bad happen only the expected state is
8115          * restored, not the drivers personal bookkeeping.
8116          */
8117         count = 0;
8118         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8119                 config->save_encoder_crtcs[count++] = encoder->crtc;
8120         }
8121
8122         count = 0;
8123         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8124                 config->save_connector_encoders[count++] = connector->encoder;
8125         }
8126
8127         return 0;
8128 }
8129
8130 static void intel_set_config_restore_state(struct drm_device *dev,
8131                                            struct intel_set_config *config)
8132 {
8133         struct intel_encoder *encoder;
8134         struct intel_connector *connector;
8135         int count;
8136
8137         count = 0;
8138         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8139                 encoder->new_crtc =
8140                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8141         }
8142
8143         count = 0;
8144         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8145                 connector->new_encoder =
8146                         to_intel_encoder(config->save_connector_encoders[count++]);
8147         }
8148 }
8149
8150 static bool
8151 is_crtc_connector_off(struct drm_mode_set *set)
8152 {
8153         int i;
8154
8155         if (set->num_connectors == 0)
8156                 return false;
8157
8158         if (WARN_ON(set->connectors == NULL))
8159                 return false;
8160
8161         for (i = 0; i < set->num_connectors; i++)
8162                 if (set->connectors[i]->encoder &&
8163                     set->connectors[i]->encoder->crtc == set->crtc &&
8164                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
8165                         return true;
8166
8167         return false;
8168 }
8169
8170 static void
8171 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8172                                       struct intel_set_config *config)
8173 {
8174
8175         /* We should be able to check here if the fb has the same properties
8176          * and then just flip_or_move it */
8177         if (is_crtc_connector_off(set)) {
8178                 config->mode_changed = true;
8179         } else if (set->crtc->fb != set->fb) {
8180                 /* If we have no fb then treat it as a full mode set */
8181                 if (set->crtc->fb == NULL) {
8182                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8183                         config->mode_changed = true;
8184                 } else if (set->fb == NULL) {
8185                         config->mode_changed = true;
8186                 } else if (set->fb->pixel_format !=
8187                            set->crtc->fb->pixel_format) {
8188                         config->mode_changed = true;
8189                 } else {
8190                         config->fb_changed = true;
8191                 }
8192         }
8193
8194         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8195                 config->fb_changed = true;
8196
8197         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8198                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8199                 drm_mode_debug_printmodeline(&set->crtc->mode);
8200                 drm_mode_debug_printmodeline(set->mode);
8201                 config->mode_changed = true;
8202         }
8203 }
8204
8205 static int
8206 intel_modeset_stage_output_state(struct drm_device *dev,
8207                                  struct drm_mode_set *set,
8208                                  struct intel_set_config *config)
8209 {
8210         struct drm_crtc *new_crtc;
8211         struct intel_connector *connector;
8212         struct intel_encoder *encoder;
8213         int count, ro;
8214
8215         /* The upper layers ensure that we either disable a crtc or have a list
8216          * of connectors. For paranoia, double-check this. */
8217         WARN_ON(!set->fb && (set->num_connectors != 0));
8218         WARN_ON(set->fb && (set->num_connectors == 0));
8219
8220         count = 0;
8221         list_for_each_entry(connector, &dev->mode_config.connector_list,
8222                             base.head) {
8223                 /* Otherwise traverse passed in connector list and get encoders
8224                  * for them. */
8225                 for (ro = 0; ro < set->num_connectors; ro++) {
8226                         if (set->connectors[ro] == &connector->base) {
8227                                 connector->new_encoder = connector->encoder;
8228                                 break;
8229                         }
8230                 }
8231
8232                 /* If we disable the crtc, disable all its connectors. Also, if
8233                  * the connector is on the changing crtc but not on the new
8234                  * connector list, disable it. */
8235                 if ((!set->fb || ro == set->num_connectors) &&
8236                     connector->base.encoder &&
8237                     connector->base.encoder->crtc == set->crtc) {
8238                         connector->new_encoder = NULL;
8239
8240                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8241                                 connector->base.base.id,
8242                                 drm_get_connector_name(&connector->base));
8243                 }
8244
8245
8246                 if (&connector->new_encoder->base != connector->base.encoder) {
8247                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8248                         config->mode_changed = true;
8249                 }
8250         }
8251         /* connector->new_encoder is now updated for all connectors. */
8252
8253         /* Update crtc of enabled connectors. */
8254         count = 0;
8255         list_for_each_entry(connector, &dev->mode_config.connector_list,
8256                             base.head) {
8257                 if (!connector->new_encoder)
8258                         continue;
8259
8260                 new_crtc = connector->new_encoder->base.crtc;
8261
8262                 for (ro = 0; ro < set->num_connectors; ro++) {
8263                         if (set->connectors[ro] == &connector->base)
8264                                 new_crtc = set->crtc;
8265                 }
8266
8267                 /* Make sure the new CRTC will work with the encoder */
8268                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8269                                            new_crtc)) {
8270                         return -EINVAL;
8271                 }
8272                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8273
8274                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8275                         connector->base.base.id,
8276                         drm_get_connector_name(&connector->base),
8277                         new_crtc->base.id);
8278         }
8279
8280         /* Check for any encoders that needs to be disabled. */
8281         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8282                             base.head) {
8283                 list_for_each_entry(connector,
8284                                     &dev->mode_config.connector_list,
8285                                     base.head) {
8286                         if (connector->new_encoder == encoder) {
8287                                 WARN_ON(!connector->new_encoder->new_crtc);
8288
8289                                 goto next_encoder;
8290                         }
8291                 }
8292                 encoder->new_crtc = NULL;
8293 next_encoder:
8294                 /* Only now check for crtc changes so we don't miss encoders
8295                  * that will be disabled. */
8296                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8297                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8298                         config->mode_changed = true;
8299                 }
8300         }
8301         /* Now we've also updated encoder->new_crtc for all encoders. */
8302
8303         return 0;
8304 }
8305
8306 static int intel_crtc_set_config(struct drm_mode_set *set)
8307 {
8308         struct drm_device *dev;
8309         struct drm_mode_set save_set;
8310         struct intel_set_config *config;
8311         int ret;
8312
8313         BUG_ON(!set);
8314         BUG_ON(!set->crtc);
8315         BUG_ON(!set->crtc->helper_private);
8316
8317         /* Enforce sane interface api - has been abused by the fb helper. */
8318         BUG_ON(!set->mode && set->fb);
8319         BUG_ON(set->fb && set->num_connectors == 0);
8320
8321         if (set->fb) {
8322                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8323                                 set->crtc->base.id, set->fb->base.id,
8324                                 (int)set->num_connectors, set->x, set->y);
8325         } else {
8326                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8327         }
8328
8329         dev = set->crtc->dev;
8330
8331         ret = -ENOMEM;
8332         config = kzalloc(sizeof(*config), GFP_KERNEL);
8333         if (!config)
8334                 goto out_config;
8335
8336         ret = intel_set_config_save_state(dev, config);
8337         if (ret)
8338                 goto out_config;
8339
8340         save_set.crtc = set->crtc;
8341         save_set.mode = &set->crtc->mode;
8342         save_set.x = set->crtc->x;
8343         save_set.y = set->crtc->y;
8344         save_set.fb = set->crtc->fb;
8345
8346         /* Compute whether we need a full modeset, only an fb base update or no
8347          * change at all. In the future we might also check whether only the
8348          * mode changed, e.g. for LVDS where we only change the panel fitter in
8349          * such cases. */
8350         intel_set_config_compute_mode_changes(set, config);
8351
8352         ret = intel_modeset_stage_output_state(dev, set, config);
8353         if (ret)
8354                 goto fail;
8355
8356         if (config->mode_changed) {
8357                 if (set->mode) {
8358                         DRM_DEBUG_KMS("attempting to set mode from"
8359                                         " userspace\n");
8360                         drm_mode_debug_printmodeline(set->mode);
8361                 }
8362
8363                 ret = intel_set_mode(set->crtc, set->mode,
8364                                      set->x, set->y, set->fb);
8365         } else if (config->fb_changed) {
8366                 intel_crtc_wait_for_pending_flips(set->crtc);
8367
8368                 ret = intel_pipe_set_base(set->crtc,
8369                                           set->x, set->y, set->fb);
8370         }
8371
8372         if (ret) {
8373                 DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8374                           set->crtc->base.id, ret);
8375 fail:
8376                 intel_set_config_restore_state(dev, config);
8377
8378                 /* Try to restore the config */
8379                 if (config->mode_changed &&
8380                     intel_set_mode(save_set.crtc, save_set.mode,
8381                                    save_set.x, save_set.y, save_set.fb))
8382                         DRM_ERROR("failed to restore config after modeset failure\n");
8383         }
8384
8385 out_config:
8386         intel_set_config_free(config);
8387         return ret;
8388 }
8389
8390 static const struct drm_crtc_funcs intel_crtc_funcs = {
8391         .cursor_set = intel_crtc_cursor_set,
8392         .cursor_move = intel_crtc_cursor_move,
8393         .gamma_set = intel_crtc_gamma_set,
8394         .set_config = intel_crtc_set_config,
8395         .destroy = intel_crtc_destroy,
8396         .page_flip = intel_crtc_page_flip,
8397 };
8398
8399 static void intel_cpu_pll_init(struct drm_device *dev)
8400 {
8401         if (HAS_DDI(dev))
8402                 intel_ddi_pll_init(dev);
8403 }
8404
8405 static void intel_pch_pll_init(struct drm_device *dev)
8406 {
8407         drm_i915_private_t *dev_priv = dev->dev_private;
8408         int i;
8409
8410         if (dev_priv->num_pch_pll == 0) {
8411                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8412                 return;
8413         }
8414
8415         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8416                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8417                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8418                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8419         }
8420 }
8421
8422 static void intel_crtc_init(struct drm_device *dev, int pipe)
8423 {
8424         drm_i915_private_t *dev_priv = dev->dev_private;
8425         struct intel_crtc *intel_crtc;
8426         int i;
8427
8428         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8429         if (intel_crtc == NULL)
8430                 return;
8431
8432         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8433
8434         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8435         for (i = 0; i < 256; i++) {
8436                 intel_crtc->lut_r[i] = i;
8437                 intel_crtc->lut_g[i] = i;
8438                 intel_crtc->lut_b[i] = i;
8439         }
8440
8441         /* Swap pipes & planes for FBC on pre-965 */
8442         intel_crtc->pipe = pipe;
8443         intel_crtc->plane = pipe;
8444         intel_crtc->config.cpu_transcoder = pipe;
8445         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8446                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8447                 intel_crtc->plane = !pipe;
8448         }
8449
8450         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8451                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8452         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8453         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8454
8455         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8456 }
8457
8458 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8459                                 struct drm_file *file)
8460 {
8461         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8462         struct drm_mode_object *drmmode_obj;
8463         struct intel_crtc *crtc;
8464
8465         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8466                 return -ENODEV;
8467
8468         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8469                         DRM_MODE_OBJECT_CRTC);
8470
8471         if (!drmmode_obj) {
8472                 DRM_ERROR("no such CRTC id\n");
8473                 return -EINVAL;
8474         }
8475
8476         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8477         pipe_from_crtc_id->pipe = crtc->pipe;
8478
8479         return 0;
8480 }
8481
8482 static int intel_encoder_clones(struct intel_encoder *encoder)
8483 {
8484         struct drm_device *dev = encoder->base.dev;
8485         struct intel_encoder *source_encoder;
8486         int index_mask = 0;
8487         int entry = 0;
8488
8489         list_for_each_entry(source_encoder,
8490                             &dev->mode_config.encoder_list, base.head) {
8491
8492                 if (encoder == source_encoder)
8493                         index_mask |= (1 << entry);
8494
8495                 /* Intel hw has only one MUX where enocoders could be cloned. */
8496                 if (encoder->cloneable && source_encoder->cloneable)
8497                         index_mask |= (1 << entry);
8498
8499                 entry++;
8500         }
8501
8502         return index_mask;
8503 }
8504
8505 static bool has_edp_a(struct drm_device *dev)
8506 {
8507         struct drm_i915_private *dev_priv = dev->dev_private;
8508
8509         if (!IS_MOBILE(dev))
8510                 return false;
8511
8512         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8513                 return false;
8514
8515         if (IS_GEN5(dev) &&
8516             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8517                 return false;
8518
8519         return true;
8520 }
8521
8522 static void intel_setup_outputs(struct drm_device *dev)
8523 {
8524         struct drm_i915_private *dev_priv = dev->dev_private;
8525         struct intel_encoder *encoder;
8526         bool dpd_is_edp = false;
8527         bool has_lvds;
8528
8529         has_lvds = intel_lvds_init(dev);
8530         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8531                 /* disable the panel fitter on everything but LVDS */
8532                 I915_WRITE(PFIT_CONTROL, 0);
8533         }
8534
8535         if (!IS_ULT(dev))
8536                 intel_crt_init(dev);
8537
8538         if (HAS_DDI(dev)) {
8539                 int found;
8540
8541                 /* Haswell uses DDI functions to detect digital outputs */
8542                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8543                 /* DDI A only supports eDP */
8544                 if (found)
8545                         intel_ddi_init(dev, PORT_A);
8546
8547                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8548                  * register */
8549                 found = I915_READ(SFUSE_STRAP);
8550
8551                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8552                         intel_ddi_init(dev, PORT_B);
8553                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8554                         intel_ddi_init(dev, PORT_C);
8555                 if (found & SFUSE_STRAP_DDID_DETECTED)
8556                         intel_ddi_init(dev, PORT_D);
8557         } else if (HAS_PCH_SPLIT(dev)) {
8558                 int found;
8559                 dpd_is_edp = intel_dpd_is_edp(dev);
8560
8561                 if (has_edp_a(dev))
8562                         intel_dp_init(dev, DP_A, PORT_A);
8563
8564                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8565                         /* PCH SDVOB multiplex with HDMIB */
8566                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8567                         if (!found)
8568                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8569                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8570                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8571                 }
8572
8573                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8574                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8575
8576                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8577                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8578
8579                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8580                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8581
8582                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8583                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8584         } else if (IS_VALLEYVIEW(dev)) {
8585                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8586                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8587                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8588
8589                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8590                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8591                                         PORT_B);
8592                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8593                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8594                 }
8595         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8596                 bool found = false;
8597
8598                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8599                         DRM_DEBUG_KMS("probing SDVOB\n");
8600                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8601                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8602                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8603                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8604                         }
8605
8606                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8607                                 DRM_DEBUG_KMS("probing DP_B\n");
8608                                 intel_dp_init(dev, DP_B, PORT_B);
8609                         }
8610                 }
8611
8612                 /* Before G4X SDVOC doesn't have its own detect register */
8613
8614                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8615                         DRM_DEBUG_KMS("probing SDVOC\n");
8616                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8617                 }
8618
8619                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8620
8621                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8622                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8623                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8624                         }
8625                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8626                                 DRM_DEBUG_KMS("probing DP_C\n");
8627                                 intel_dp_init(dev, DP_C, PORT_C);
8628                         }
8629                 }
8630
8631                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8632                     (I915_READ(DP_D) & DP_DETECTED)) {
8633                         DRM_DEBUG_KMS("probing DP_D\n");
8634                         intel_dp_init(dev, DP_D, PORT_D);
8635                 }
8636         } else if (IS_GEN2(dev))
8637                 intel_dvo_init(dev);
8638
8639         if (SUPPORTS_TV(dev))
8640                 intel_tv_init(dev);
8641
8642         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8643                 encoder->base.possible_crtcs = encoder->crtc_mask;
8644                 encoder->base.possible_clones =
8645                         intel_encoder_clones(encoder);
8646         }
8647
8648         intel_init_pch_refclk(dev);
8649
8650         drm_helper_move_panel_connectors_to_head(dev);
8651 }
8652
8653 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8654 {
8655         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8656
8657         drm_framebuffer_cleanup(fb);
8658         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8659
8660         kfree(intel_fb);
8661 }
8662
8663 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8664                                                 struct drm_file *file,
8665                                                 unsigned int *handle)
8666 {
8667         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8668         struct drm_i915_gem_object *obj = intel_fb->obj;
8669
8670         return drm_gem_handle_create(file, &obj->base, handle);
8671 }
8672
8673 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8674         .destroy = intel_user_framebuffer_destroy,
8675         .create_handle = intel_user_framebuffer_create_handle,
8676 };
8677
8678 int intel_framebuffer_init(struct drm_device *dev,
8679                            struct intel_framebuffer *intel_fb,
8680                            struct drm_mode_fb_cmd2 *mode_cmd,
8681                            struct drm_i915_gem_object *obj)
8682 {
8683         int ret;
8684
8685         if (obj->tiling_mode == I915_TILING_Y) {
8686                 DRM_DEBUG("hardware does not support tiling Y\n");
8687                 return -EINVAL;
8688         }
8689
8690         if (mode_cmd->pitches[0] & 63) {
8691                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8692                           mode_cmd->pitches[0]);
8693                 return -EINVAL;
8694         }
8695
8696         /* FIXME <= Gen4 stride limits are bit unclear */
8697         if (mode_cmd->pitches[0] > 32768) {
8698                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8699                           mode_cmd->pitches[0]);
8700                 return -EINVAL;
8701         }
8702
8703         if (obj->tiling_mode != I915_TILING_NONE &&
8704             mode_cmd->pitches[0] != obj->stride) {
8705                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8706                           mode_cmd->pitches[0], obj->stride);
8707                 return -EINVAL;
8708         }
8709
8710         /* Reject formats not supported by any plane early. */
8711         switch (mode_cmd->pixel_format) {
8712         case DRM_FORMAT_C8:
8713         case DRM_FORMAT_RGB565:
8714         case DRM_FORMAT_XRGB8888:
8715         case DRM_FORMAT_ARGB8888:
8716                 break;
8717         case DRM_FORMAT_XRGB1555:
8718         case DRM_FORMAT_ARGB1555:
8719                 if (INTEL_INFO(dev)->gen > 3) {
8720                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8721                         return -EINVAL;
8722                 }
8723                 break;
8724         case DRM_FORMAT_XBGR8888:
8725         case DRM_FORMAT_ABGR8888:
8726         case DRM_FORMAT_XRGB2101010:
8727         case DRM_FORMAT_ARGB2101010:
8728         case DRM_FORMAT_XBGR2101010:
8729         case DRM_FORMAT_ABGR2101010:
8730                 if (INTEL_INFO(dev)->gen < 4) {
8731                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8732                         return -EINVAL;
8733                 }
8734                 break;
8735         case DRM_FORMAT_YUYV:
8736         case DRM_FORMAT_UYVY:
8737         case DRM_FORMAT_YVYU:
8738         case DRM_FORMAT_VYUY:
8739                 if (INTEL_INFO(dev)->gen < 5) {
8740                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8741                         return -EINVAL;
8742                 }
8743                 break;
8744         default:
8745                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8746                 return -EINVAL;
8747         }
8748
8749         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8750         if (mode_cmd->offsets[0] != 0)
8751                 return -EINVAL;
8752
8753         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8754         intel_fb->obj = obj;
8755
8756         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8757         if (ret) {
8758                 DRM_ERROR("framebuffer init failed %d\n", ret);
8759                 return ret;
8760         }
8761
8762         return 0;
8763 }
8764
8765 static struct drm_framebuffer *
8766 intel_user_framebuffer_create(struct drm_device *dev,
8767                               struct drm_file *filp,
8768                               struct drm_mode_fb_cmd2 *mode_cmd)
8769 {
8770         struct drm_i915_gem_object *obj;
8771
8772         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8773                                                 mode_cmd->handles[0]));
8774         if (&obj->base == NULL)
8775                 return ERR_PTR(-ENOENT);
8776
8777         return intel_framebuffer_create(dev, mode_cmd, obj);
8778 }
8779
8780 static const struct drm_mode_config_funcs intel_mode_funcs = {
8781         .fb_create = intel_user_framebuffer_create,
8782         .output_poll_changed = intel_fb_output_poll_changed,
8783 };
8784
8785 /* Set up chip specific display functions */
8786 static void intel_init_display(struct drm_device *dev)
8787 {
8788         struct drm_i915_private *dev_priv = dev->dev_private;
8789
8790         if (HAS_DDI(dev)) {
8791                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
8792                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8793                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8794                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8795                 dev_priv->display.off = haswell_crtc_off;
8796                 dev_priv->display.update_plane = ironlake_update_plane;
8797         } else if (HAS_PCH_SPLIT(dev)) {
8798                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
8799                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8800                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8801                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8802                 dev_priv->display.off = ironlake_crtc_off;
8803                 dev_priv->display.update_plane = ironlake_update_plane;
8804         } else {
8805                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
8806                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8807                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8808                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8809                 dev_priv->display.off = i9xx_crtc_off;
8810                 dev_priv->display.update_plane = i9xx_update_plane;
8811         }
8812
8813         /* Returns the core display clock speed */
8814         if (IS_VALLEYVIEW(dev))
8815                 dev_priv->display.get_display_clock_speed =
8816                         valleyview_get_display_clock_speed;
8817         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8818                 dev_priv->display.get_display_clock_speed =
8819                         i945_get_display_clock_speed;
8820         else if (IS_I915G(dev))
8821                 dev_priv->display.get_display_clock_speed =
8822                         i915_get_display_clock_speed;
8823         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8824                 dev_priv->display.get_display_clock_speed =
8825                         i9xx_misc_get_display_clock_speed;
8826         else if (IS_I915GM(dev))
8827                 dev_priv->display.get_display_clock_speed =
8828                         i915gm_get_display_clock_speed;
8829         else if (IS_I865G(dev))
8830                 dev_priv->display.get_display_clock_speed =
8831                         i865_get_display_clock_speed;
8832         else if (IS_I85X(dev))
8833                 dev_priv->display.get_display_clock_speed =
8834                         i855_get_display_clock_speed;
8835         else /* 852, 830 */
8836                 dev_priv->display.get_display_clock_speed =
8837                         i830_get_display_clock_speed;
8838
8839         if (HAS_PCH_SPLIT(dev)) {
8840                 if (IS_GEN5(dev)) {
8841                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8842                         dev_priv->display.write_eld = ironlake_write_eld;
8843                 } else if (IS_GEN6(dev)) {
8844                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8845                         dev_priv->display.write_eld = ironlake_write_eld;
8846                 } else if (IS_IVYBRIDGE(dev)) {
8847                         /* FIXME: detect B0+ stepping and use auto training */
8848                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8849                         dev_priv->display.write_eld = ironlake_write_eld;
8850                         dev_priv->display.modeset_global_resources =
8851                                 ivb_modeset_global_resources;
8852                 } else if (IS_HASWELL(dev)) {
8853                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8854                         dev_priv->display.write_eld = haswell_write_eld;
8855                         dev_priv->display.modeset_global_resources =
8856                                 haswell_modeset_global_resources;
8857                 }
8858         } else if (IS_G4X(dev)) {
8859                 dev_priv->display.write_eld = g4x_write_eld;
8860         }
8861
8862         /* Default just returns -ENODEV to indicate unsupported */
8863         dev_priv->display.queue_flip = intel_default_queue_flip;
8864
8865         switch (INTEL_INFO(dev)->gen) {
8866         case 2:
8867                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8868                 break;
8869
8870         case 3:
8871                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8872                 break;
8873
8874         case 4:
8875         case 5:
8876                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8877                 break;
8878
8879         case 6:
8880                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8881                 break;
8882         case 7:
8883                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8884                 break;
8885         }
8886 }
8887
8888 /*
8889  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8890  * resume, or other times.  This quirk makes sure that's the case for
8891  * affected systems.
8892  */
8893 static void quirk_pipea_force(struct drm_device *dev)
8894 {
8895         struct drm_i915_private *dev_priv = dev->dev_private;
8896
8897         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8898         DRM_INFO("applying pipe a force quirk\n");
8899 }
8900
8901 /*
8902  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8903  */
8904 static void quirk_ssc_force_disable(struct drm_device *dev)
8905 {
8906         struct drm_i915_private *dev_priv = dev->dev_private;
8907         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8908         DRM_INFO("applying lvds SSC disable quirk\n");
8909 }
8910
8911 /*
8912  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8913  * brightness value
8914  */
8915 static void quirk_invert_brightness(struct drm_device *dev)
8916 {
8917         struct drm_i915_private *dev_priv = dev->dev_private;
8918         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8919         DRM_INFO("applying inverted panel brightness quirk\n");
8920 }
8921
8922 /*
8923  * Some machines (Dell XPS13) suffer broken backlight controls if
8924  * BLM_PCH_PWM_ENABLE is set.
8925  */
8926 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
8927 {
8928         struct drm_i915_private *dev_priv = dev->dev_private;
8929         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
8930         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
8931 }
8932
8933 struct intel_quirk {
8934         int device;
8935         int subsystem_vendor;
8936         int subsystem_device;
8937         void (*hook)(struct drm_device *dev);
8938 };
8939
8940 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8941 struct intel_dmi_quirk {
8942         void (*hook)(struct drm_device *dev);
8943         const struct dmi_system_id (*dmi_id_list)[];
8944 };
8945
8946 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8947 {
8948         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8949         return 1;
8950 }
8951
8952 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8953         {
8954                 .dmi_id_list = &(const struct dmi_system_id[]) {
8955                         {
8956                                 .callback = intel_dmi_reverse_brightness,
8957                                 .ident = "NCR Corporation",
8958                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8959                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8960                                 },
8961                         },
8962                         { }  /* terminating entry */
8963                 },
8964                 .hook = quirk_invert_brightness,
8965         },
8966 };
8967
8968 static struct intel_quirk intel_quirks[] = {
8969         /* HP Mini needs pipe A force quirk (LP: #322104) */
8970         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8971
8972         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8973         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8974
8975         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8976         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8977
8978         /* 830/845 need to leave pipe A & dpll A up */
8979         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8980         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8981
8982         /* Lenovo U160 cannot use SSC on LVDS */
8983         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8984
8985         /* Sony Vaio Y cannot use SSC on LVDS */
8986         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8987
8988         /* Acer Aspire 5734Z must invert backlight brightness */
8989         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8990
8991         /* Acer/eMachines G725 */
8992         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8993
8994         /* Acer/eMachines e725 */
8995         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8996
8997         /* Acer/Packard Bell NCL20 */
8998         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8999
9000         /* Acer Aspire 4736Z */
9001         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9002
9003         /* Dell XPS13 HD Sandy Bridge */
9004         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
9005         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
9006         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
9007 };
9008
9009 static void intel_init_quirks(struct drm_device *dev)
9010 {
9011         struct pci_dev *d = dev->pdev;
9012         int i;
9013
9014         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9015                 struct intel_quirk *q = &intel_quirks[i];
9016
9017                 if (d->device == q->device &&
9018                     (d->subsystem_vendor == q->subsystem_vendor ||
9019                      q->subsystem_vendor == PCI_ANY_ID) &&
9020                     (d->subsystem_device == q->subsystem_device ||
9021                      q->subsystem_device == PCI_ANY_ID))
9022                         q->hook(dev);
9023         }
9024         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9025                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9026                         intel_dmi_quirks[i].hook(dev);
9027         }
9028 }
9029
9030 /* Disable the VGA plane that we never use */
9031 static void i915_disable_vga(struct drm_device *dev)
9032 {
9033         struct drm_i915_private *dev_priv = dev->dev_private;
9034         u8 sr1;
9035         u32 vga_reg = i915_vgacntrl_reg(dev);
9036
9037         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9038         outb(SR01, VGA_SR_INDEX);
9039         sr1 = inb(VGA_SR_DATA);
9040         outb(sr1 | 1<<5, VGA_SR_DATA);
9041         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9042         udelay(300);
9043
9044         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9045         POSTING_READ(vga_reg);
9046 }
9047
9048 void intel_modeset_init_hw(struct drm_device *dev)
9049 {
9050         intel_init_power_well(dev);
9051
9052         intel_prepare_ddi(dev);
9053
9054         intel_init_clock_gating(dev);
9055
9056         mutex_lock(&dev->struct_mutex);
9057         intel_enable_gt_powersave(dev);
9058         mutex_unlock(&dev->struct_mutex);
9059 }
9060
9061 void intel_modeset_init(struct drm_device *dev)
9062 {
9063         struct drm_i915_private *dev_priv = dev->dev_private;
9064         int i, j, ret;
9065
9066         drm_mode_config_init(dev);
9067
9068         dev->mode_config.min_width = 0;
9069         dev->mode_config.min_height = 0;
9070
9071         dev->mode_config.preferred_depth = 24;
9072         dev->mode_config.prefer_shadow = 1;
9073
9074         dev->mode_config.funcs = &intel_mode_funcs;
9075
9076         intel_init_quirks(dev);
9077
9078         intel_init_pm(dev);
9079
9080         if (INTEL_INFO(dev)->num_pipes == 0)
9081                 return;
9082
9083         intel_init_display(dev);
9084
9085         if (IS_GEN2(dev)) {
9086                 dev->mode_config.max_width = 2048;
9087                 dev->mode_config.max_height = 2048;
9088         } else if (IS_GEN3(dev)) {
9089                 dev->mode_config.max_width = 4096;
9090                 dev->mode_config.max_height = 4096;
9091         } else {
9092                 dev->mode_config.max_width = 8192;
9093                 dev->mode_config.max_height = 8192;
9094         }
9095         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9096
9097         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9098                       INTEL_INFO(dev)->num_pipes,
9099                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9100
9101         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9102                 intel_crtc_init(dev, i);
9103                 for (j = 0; j < dev_priv->num_plane; j++) {
9104                         ret = intel_plane_init(dev, i, j);
9105                         if (ret)
9106                                 DRM_DEBUG_KMS("pipe %d plane %d init failed: %d\n",
9107                                               i, j, ret);
9108                 }
9109         }
9110
9111         intel_cpu_pll_init(dev);
9112         intel_pch_pll_init(dev);
9113
9114         /* Just disable it once at startup */
9115         i915_disable_vga(dev);
9116         intel_setup_outputs(dev);
9117
9118         /* Just in case the BIOS is doing something questionable. */
9119         intel_disable_fbc(dev);
9120 }
9121
9122 static void
9123 intel_connector_break_all_links(struct intel_connector *connector)
9124 {
9125         connector->base.dpms = DRM_MODE_DPMS_OFF;
9126         connector->base.encoder = NULL;
9127         connector->encoder->connectors_active = false;
9128         connector->encoder->base.crtc = NULL;
9129 }
9130
9131 static void intel_enable_pipe_a(struct drm_device *dev)
9132 {
9133         struct intel_connector *connector;
9134         struct drm_connector *crt = NULL;
9135         struct intel_load_detect_pipe load_detect_temp;
9136
9137         /* We can't just switch on the pipe A, we need to set things up with a
9138          * proper mode and output configuration. As a gross hack, enable pipe A
9139          * by enabling the load detect pipe once. */
9140         list_for_each_entry(connector,
9141                             &dev->mode_config.connector_list,
9142                             base.head) {
9143                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9144                         crt = &connector->base;
9145                         break;
9146                 }
9147         }
9148
9149         if (!crt)
9150                 return;
9151
9152         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9153                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9154
9155
9156 }
9157
9158 static bool
9159 intel_check_plane_mapping(struct intel_crtc *crtc)
9160 {
9161         struct drm_device *dev = crtc->base.dev;
9162         struct drm_i915_private *dev_priv = dev->dev_private;
9163         u32 reg, val;
9164
9165         if (INTEL_INFO(dev)->num_pipes == 1)
9166                 return true;
9167
9168         reg = DSPCNTR(!crtc->plane);
9169         val = I915_READ(reg);
9170
9171         if ((val & DISPLAY_PLANE_ENABLE) &&
9172             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9173                 return false;
9174
9175         return true;
9176 }
9177
9178 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9179 {
9180         struct drm_device *dev = crtc->base.dev;
9181         struct drm_i915_private *dev_priv = dev->dev_private;
9182         u32 reg;
9183
9184         /* Clear any frame start delays used for debugging left by the BIOS */
9185         reg = PIPECONF(crtc->config.cpu_transcoder);
9186         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9187
9188         /* We need to sanitize the plane -> pipe mapping first because this will
9189          * disable the crtc (and hence change the state) if it is wrong. Note
9190          * that gen4+ has a fixed plane -> pipe mapping.  */
9191         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9192                 struct intel_connector *connector;
9193                 bool plane;
9194
9195                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9196                               crtc->base.base.id);
9197
9198                 /* Pipe has the wrong plane attached and the plane is active.
9199                  * Temporarily change the plane mapping and disable everything
9200                  * ...  */
9201                 plane = crtc->plane;
9202                 crtc->plane = !plane;
9203                 dev_priv->display.crtc_disable(&crtc->base);
9204                 crtc->plane = plane;
9205
9206                 /* ... and break all links. */
9207                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9208                                     base.head) {
9209                         if (connector->encoder->base.crtc != &crtc->base)
9210                                 continue;
9211
9212                         intel_connector_break_all_links(connector);
9213                 }
9214
9215                 WARN_ON(crtc->active);
9216                 crtc->base.enabled = false;
9217         }
9218
9219         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9220             crtc->pipe == PIPE_A && !crtc->active) {
9221                 /* BIOS forgot to enable pipe A, this mostly happens after
9222                  * resume. Force-enable the pipe to fix this, the update_dpms
9223                  * call below we restore the pipe to the right state, but leave
9224                  * the required bits on. */
9225                 intel_enable_pipe_a(dev);
9226         }
9227
9228         /* Adjust the state of the output pipe according to whether we
9229          * have active connectors/encoders. */
9230         intel_crtc_update_dpms(&crtc->base);
9231
9232         if (crtc->active != crtc->base.enabled) {
9233                 struct intel_encoder *encoder;
9234
9235                 /* This can happen either due to bugs in the get_hw_state
9236                  * functions or because the pipe is force-enabled due to the
9237                  * pipe A quirk. */
9238                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9239                               crtc->base.base.id,
9240                               crtc->base.enabled ? "enabled" : "disabled",
9241                               crtc->active ? "enabled" : "disabled");
9242
9243                 crtc->base.enabled = crtc->active;
9244
9245                 /* Because we only establish the connector -> encoder ->
9246                  * crtc links if something is active, this means the
9247                  * crtc is now deactivated. Break the links. connector
9248                  * -> encoder links are only establish when things are
9249                  *  actually up, hence no need to break them. */
9250                 WARN_ON(crtc->active);
9251
9252                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9253                         WARN_ON(encoder->connectors_active);
9254                         encoder->base.crtc = NULL;
9255                 }
9256         }
9257 }
9258
9259 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9260 {
9261         struct intel_connector *connector;
9262         struct drm_device *dev = encoder->base.dev;
9263
9264         /* We need to check both for a crtc link (meaning that the
9265          * encoder is active and trying to read from a pipe) and the
9266          * pipe itself being active. */
9267         bool has_active_crtc = encoder->base.crtc &&
9268                 to_intel_crtc(encoder->base.crtc)->active;
9269
9270         if (encoder->connectors_active && !has_active_crtc) {
9271                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9272                               encoder->base.base.id,
9273                               drm_get_encoder_name(&encoder->base));
9274
9275                 /* Connector is active, but has no active pipe. This is
9276                  * fallout from our resume register restoring. Disable
9277                  * the encoder manually again. */
9278                 if (encoder->base.crtc) {
9279                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9280                                       encoder->base.base.id,
9281                                       drm_get_encoder_name(&encoder->base));
9282                         encoder->disable(encoder);
9283                 }
9284
9285                 /* Inconsistent output/port/pipe state happens presumably due to
9286                  * a bug in one of the get_hw_state functions. Or someplace else
9287                  * in our code, like the register restore mess on resume. Clamp
9288                  * things to off as a safer default. */
9289                 list_for_each_entry(connector,
9290                                     &dev->mode_config.connector_list,
9291                                     base.head) {
9292                         if (connector->encoder != encoder)
9293                                 continue;
9294
9295                         intel_connector_break_all_links(connector);
9296                 }
9297         }
9298         /* Enabled encoders without active connectors will be fixed in
9299          * the crtc fixup. */
9300 }
9301
9302 void i915_redisable_vga(struct drm_device *dev)
9303 {
9304         struct drm_i915_private *dev_priv = dev->dev_private;
9305         u32 vga_reg = i915_vgacntrl_reg(dev);
9306
9307         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9308                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9309                 i915_disable_vga(dev);
9310         }
9311 }
9312
9313 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9314  * and i915 state tracking structures. */
9315 void intel_modeset_setup_hw_state(struct drm_device *dev,
9316                                   bool force_restore)
9317 {
9318         struct drm_i915_private *dev_priv = dev->dev_private;
9319         enum pipe pipe;
9320         u32 tmp;
9321         struct drm_plane *plane;
9322         struct intel_crtc *crtc;
9323         struct intel_encoder *encoder;
9324         struct intel_connector *connector;
9325
9326         if (HAS_DDI(dev)) {
9327                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9328
9329                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9330                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9331                         case TRANS_DDI_EDP_INPUT_A_ON:
9332                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9333                                 pipe = PIPE_A;
9334                                 break;
9335                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9336                                 pipe = PIPE_B;
9337                                 break;
9338                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9339                                 pipe = PIPE_C;
9340                                 break;
9341                         default:
9342                                 /* A bogus value has been programmed, disable
9343                                  * the transcoder */
9344                                 WARN(1, "Bogus eDP source %08x\n", tmp);
9345                                 intel_ddi_disable_transcoder_func(dev_priv,
9346                                                 TRANSCODER_EDP);
9347                                 goto setup_pipes;
9348                         }
9349
9350                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9351                         crtc->config.cpu_transcoder = TRANSCODER_EDP;
9352
9353                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9354                                       pipe_name(pipe));
9355                 }
9356         }
9357
9358 setup_pipes:
9359         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9360                             base.head) {
9361                 enum transcoder tmp = crtc->config.cpu_transcoder;
9362                 memset(&crtc->config, 0, sizeof(crtc->config));
9363                 crtc->config.cpu_transcoder = tmp;
9364
9365                 crtc->active = dev_priv->display.get_pipe_config(crtc,
9366                                                                  &crtc->config);
9367
9368                 crtc->base.enabled = crtc->active;
9369
9370                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9371                               crtc->base.base.id,
9372                               crtc->active ? "enabled" : "disabled");
9373         }
9374
9375         if (HAS_DDI(dev))
9376                 intel_ddi_setup_hw_pll_state(dev);
9377
9378         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9379                             base.head) {
9380                 pipe = 0;
9381
9382                 if (encoder->get_hw_state(encoder, &pipe)) {
9383                         encoder->base.crtc =
9384                                 dev_priv->pipe_to_crtc_mapping[pipe];
9385                 } else {
9386                         encoder->base.crtc = NULL;
9387                 }
9388
9389                 encoder->connectors_active = false;
9390                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9391                               encoder->base.base.id,
9392                               drm_get_encoder_name(&encoder->base),
9393                               encoder->base.crtc ? "enabled" : "disabled",
9394                               pipe);
9395         }
9396
9397         list_for_each_entry(connector, &dev->mode_config.connector_list,
9398                             base.head) {
9399                 if (connector->get_hw_state(connector)) {
9400                         connector->base.dpms = DRM_MODE_DPMS_ON;
9401                         connector->encoder->connectors_active = true;
9402                         connector->base.encoder = &connector->encoder->base;
9403                 } else {
9404                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9405                         connector->base.encoder = NULL;
9406                 }
9407                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9408                               connector->base.base.id,
9409                               drm_get_connector_name(&connector->base),
9410                               connector->base.encoder ? "enabled" : "disabled");
9411         }
9412
9413         /* HW state is read out, now we need to sanitize this mess. */
9414         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9415                             base.head) {
9416                 intel_sanitize_encoder(encoder);
9417         }
9418
9419         for_each_pipe(pipe) {
9420                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9421                 intel_sanitize_crtc(crtc);
9422         }
9423
9424         if (force_restore) {
9425                 /*
9426                  * We need to use raw interfaces for restoring state to avoid
9427                  * checking (bogus) intermediate states.
9428                  */
9429                 for_each_pipe(pipe) {
9430                         struct drm_crtc *crtc =
9431                                 dev_priv->pipe_to_crtc_mapping[pipe];
9432
9433                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9434                                          crtc->fb);
9435                 }
9436                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9437                         intel_plane_restore(plane);
9438
9439                 i915_redisable_vga(dev);
9440         } else {
9441                 intel_modeset_update_staged_output_state(dev);
9442         }
9443
9444         intel_modeset_check_state(dev);
9445
9446         drm_mode_config_reset(dev);
9447 }
9448
9449 void intel_modeset_gem_init(struct drm_device *dev)
9450 {
9451         intel_modeset_init_hw(dev);
9452
9453         intel_setup_overlay(dev);
9454
9455         intel_modeset_setup_hw_state(dev, false);
9456 }
9457
9458 void intel_modeset_cleanup(struct drm_device *dev)
9459 {
9460         struct drm_i915_private *dev_priv = dev->dev_private;
9461         struct drm_crtc *crtc;
9462         struct intel_crtc *intel_crtc;
9463
9464         drm_kms_helper_poll_fini(dev);
9465         mutex_lock(&dev->struct_mutex);
9466
9467         intel_unregister_dsm_handler();
9468
9469
9470         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9471                 /* Skip inactive CRTCs */
9472                 if (!crtc->fb)
9473                         continue;
9474
9475                 intel_crtc = to_intel_crtc(crtc);
9476                 intel_increase_pllclock(crtc);
9477         }
9478
9479         intel_disable_fbc(dev);
9480
9481         intel_disable_gt_powersave(dev);
9482
9483         ironlake_teardown_rc6(dev);
9484
9485         if (IS_VALLEYVIEW(dev))
9486                 vlv_init_dpio(dev);
9487
9488         mutex_unlock(&dev->struct_mutex);
9489
9490         /* Disable the irq before mode object teardown, for the irq might
9491          * enqueue unpin/hotplug work. */
9492         drm_irq_uninstall(dev);
9493         cancel_work_sync(&dev_priv->hotplug_work);
9494         cancel_work_sync(&dev_priv->rps.work);
9495
9496         /* flush any delayed tasks or pending work */
9497         flush_scheduled_work();
9498
9499         /* destroy backlight, if any, before the connectors */
9500         intel_panel_destroy_backlight(dev);
9501
9502         drm_mode_config_cleanup(dev);
9503
9504         intel_cleanup_overlay(dev);
9505 }
9506
9507 /*
9508  * Return which encoder is currently attached for connector.
9509  */
9510 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9511 {
9512         return &intel_attached_encoder(connector)->base;
9513 }
9514
9515 void intel_connector_attach_encoder(struct intel_connector *connector,
9516                                     struct intel_encoder *encoder)
9517 {
9518         connector->encoder = encoder;
9519         drm_mode_connector_attach_encoder(&connector->base,
9520                                           &encoder->base);
9521 }
9522
9523 /*
9524  * set vga decode state - true == enable VGA decode
9525  */
9526 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9527 {
9528         struct drm_i915_private *dev_priv = dev->dev_private;
9529         u16 gmch_ctrl;
9530
9531         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9532         if (state)
9533                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9534         else
9535                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9536         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9537         return 0;
9538 }
9539
9540 #ifdef CONFIG_DEBUG_FS
9541 #include <linux/seq_file.h>
9542
9543 struct intel_display_error_state {
9544         struct intel_cursor_error_state {
9545                 u32 control;
9546                 u32 position;
9547                 u32 base;
9548                 u32 size;
9549         } cursor[I915_MAX_PIPES];
9550
9551         struct intel_pipe_error_state {
9552                 u32 conf;
9553                 u32 source;
9554
9555                 u32 htotal;
9556                 u32 hblank;
9557                 u32 hsync;
9558                 u32 vtotal;
9559                 u32 vblank;
9560                 u32 vsync;
9561         } pipe[I915_MAX_PIPES];
9562
9563         struct intel_plane_error_state {
9564                 u32 control;
9565                 u32 stride;
9566                 u32 size;
9567                 u32 pos;
9568                 u32 addr;
9569                 u32 surface;
9570                 u32 tile_offset;
9571         } plane[I915_MAX_PIPES];
9572 };
9573
9574 struct intel_display_error_state *
9575 intel_display_capture_error_state(struct drm_device *dev)
9576 {
9577         drm_i915_private_t *dev_priv = dev->dev_private;
9578         struct intel_display_error_state *error;
9579         enum transcoder cpu_transcoder;
9580         int i;
9581
9582         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9583         if (error == NULL)
9584                 return NULL;
9585
9586         for_each_pipe(i) {
9587                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9588
9589                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9590                         error->cursor[i].control = I915_READ(CURCNTR(i));
9591                         error->cursor[i].position = I915_READ(CURPOS(i));
9592                         error->cursor[i].base = I915_READ(CURBASE(i));
9593                 } else {
9594                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9595                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9596                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9597                 }
9598
9599                 error->plane[i].control = I915_READ(DSPCNTR(i));
9600                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9601                 if (INTEL_INFO(dev)->gen <= 3) {
9602                         error->plane[i].size = I915_READ(DSPSIZE(i));
9603                         error->plane[i].pos = I915_READ(DSPPOS(i));
9604                 }
9605                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9606                         error->plane[i].addr = I915_READ(DSPADDR(i));
9607                 if (INTEL_INFO(dev)->gen >= 4) {
9608                         error->plane[i].surface = I915_READ(DSPSURF(i));
9609                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9610                 }
9611
9612                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9613                 error->pipe[i].source = I915_READ(PIPESRC(i));
9614                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9615                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9616                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9617                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9618                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9619                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9620         }
9621
9622         return error;
9623 }
9624
9625 void
9626 intel_display_print_error_state(struct seq_file *m,
9627                                 struct drm_device *dev,
9628                                 struct intel_display_error_state *error)
9629 {
9630         int i;
9631
9632         seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9633         for_each_pipe(i) {
9634                 seq_printf(m, "Pipe [%d]:\n", i);
9635                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9636                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9637                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9638                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9639                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9640                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9641                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9642                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9643
9644                 seq_printf(m, "Plane [%d]:\n", i);
9645                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9646                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9647                 if (INTEL_INFO(dev)->gen <= 3) {
9648                         seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9649                         seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9650                 }
9651                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9652                         seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9653                 if (INTEL_INFO(dev)->gen >= 4) {
9654                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9655                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9656                 }
9657
9658                 seq_printf(m, "Cursor [%d]:\n", i);
9659                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9660                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9661                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9662         }
9663 }
9664 #endif