usb: dwc2: fix kernel oops during driver probe
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50         DRM_FORMAT_C8,
51         DRM_FORMAT_RGB565,
52         DRM_FORMAT_XRGB1555,
53         DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB8888,
61         DRM_FORMAT_XBGR8888,
62         DRM_FORMAT_XRGB2101010,
63         DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_ARGB8888,
72         DRM_FORMAT_ABGR8888,
73         DRM_FORMAT_XRGB2101010,
74         DRM_FORMAT_XBGR2101010,
75         DRM_FORMAT_YUYV,
76         DRM_FORMAT_YVYU,
77         DRM_FORMAT_UYVY,
78         DRM_FORMAT_VYUY,
79 };
80
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83         DRM_FORMAT_ARGB8888,
84 };
85
86 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89                                 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91                                    struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94                                   struct intel_framebuffer *ifb,
95                                   struct drm_mode_fb_cmd2 *mode_cmd,
96                                   struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100                                          struct intel_link_m_n *m_n,
101                                          struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106                             const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112         struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114                            int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119
120 typedef struct {
121         int     min, max;
122 } intel_range_t;
123
124 typedef struct {
125         int     dot_limit;
126         int     p2_slow, p2_fast;
127 } intel_p2_t;
128
129 typedef struct intel_limit intel_limit_t;
130 struct intel_limit {
131         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
132         intel_p2_t          p2;
133 };
134
135 /* returns HPLL frequency in kHz */
136 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
137 {
138         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
139
140         /* Obtain SKU information */
141         mutex_lock(&dev_priv->sb_lock);
142         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
143                 CCK_FUSE_HPLL_FREQ_MASK;
144         mutex_unlock(&dev_priv->sb_lock);
145
146         return vco_freq[hpll_freq] * 1000;
147 }
148
149 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
150                                   const char *name, u32 reg)
151 {
152         u32 val;
153         int divider;
154
155         if (dev_priv->hpll_freq == 0)
156                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
157
158         mutex_lock(&dev_priv->sb_lock);
159         val = vlv_cck_read(dev_priv, reg);
160         mutex_unlock(&dev_priv->sb_lock);
161
162         divider = val & CCK_FREQUENCY_VALUES;
163
164         WARN((val & CCK_FREQUENCY_STATUS) !=
165              (divider << CCK_FREQUENCY_STATUS_SHIFT),
166              "%s change in progress\n", name);
167
168         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
169 }
170
171 int
172 intel_pch_rawclk(struct drm_device *dev)
173 {
174         struct drm_i915_private *dev_priv = dev->dev_private;
175
176         WARN_ON(!HAS_PCH_SPLIT(dev));
177
178         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
179 }
180
181 /* hrawclock is 1/4 the FSB frequency */
182 int intel_hrawclk(struct drm_device *dev)
183 {
184         struct drm_i915_private *dev_priv = dev->dev_private;
185         uint32_t clkcfg;
186
187         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
188         if (IS_VALLEYVIEW(dev))
189                 return 200;
190
191         clkcfg = I915_READ(CLKCFG);
192         switch (clkcfg & CLKCFG_FSB_MASK) {
193         case CLKCFG_FSB_400:
194                 return 100;
195         case CLKCFG_FSB_533:
196                 return 133;
197         case CLKCFG_FSB_667:
198                 return 166;
199         case CLKCFG_FSB_800:
200                 return 200;
201         case CLKCFG_FSB_1067:
202                 return 266;
203         case CLKCFG_FSB_1333:
204                 return 333;
205         /* these two are just a guess; one of them might be right */
206         case CLKCFG_FSB_1600:
207         case CLKCFG_FSB_1600_ALT:
208                 return 400;
209         default:
210                 return 133;
211         }
212 }
213
214 static void intel_update_czclk(struct drm_i915_private *dev_priv)
215 {
216         if (!IS_VALLEYVIEW(dev_priv))
217                 return;
218
219         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
220                                                       CCK_CZ_CLOCK_CONTROL);
221
222         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
223 }
224
225 static inline u32 /* units of 100MHz */
226 intel_fdi_link_freq(struct drm_device *dev)
227 {
228         if (IS_GEN5(dev)) {
229                 struct drm_i915_private *dev_priv = dev->dev_private;
230                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
231         } else
232                 return 27;
233 }
234
235 static const intel_limit_t intel_limits_i8xx_dac = {
236         .dot = { .min = 25000, .max = 350000 },
237         .vco = { .min = 908000, .max = 1512000 },
238         .n = { .min = 2, .max = 16 },
239         .m = { .min = 96, .max = 140 },
240         .m1 = { .min = 18, .max = 26 },
241         .m2 = { .min = 6, .max = 16 },
242         .p = { .min = 4, .max = 128 },
243         .p1 = { .min = 2, .max = 33 },
244         .p2 = { .dot_limit = 165000,
245                 .p2_slow = 4, .p2_fast = 2 },
246 };
247
248 static const intel_limit_t intel_limits_i8xx_dvo = {
249         .dot = { .min = 25000, .max = 350000 },
250         .vco = { .min = 908000, .max = 1512000 },
251         .n = { .min = 2, .max = 16 },
252         .m = { .min = 96, .max = 140 },
253         .m1 = { .min = 18, .max = 26 },
254         .m2 = { .min = 6, .max = 16 },
255         .p = { .min = 4, .max = 128 },
256         .p1 = { .min = 2, .max = 33 },
257         .p2 = { .dot_limit = 165000,
258                 .p2_slow = 4, .p2_fast = 4 },
259 };
260
261 static const intel_limit_t intel_limits_i8xx_lvds = {
262         .dot = { .min = 25000, .max = 350000 },
263         .vco = { .min = 908000, .max = 1512000 },
264         .n = { .min = 2, .max = 16 },
265         .m = { .min = 96, .max = 140 },
266         .m1 = { .min = 18, .max = 26 },
267         .m2 = { .min = 6, .max = 16 },
268         .p = { .min = 4, .max = 128 },
269         .p1 = { .min = 1, .max = 6 },
270         .p2 = { .dot_limit = 165000,
271                 .p2_slow = 14, .p2_fast = 7 },
272 };
273
274 static const intel_limit_t intel_limits_i9xx_sdvo = {
275         .dot = { .min = 20000, .max = 400000 },
276         .vco = { .min = 1400000, .max = 2800000 },
277         .n = { .min = 1, .max = 6 },
278         .m = { .min = 70, .max = 120 },
279         .m1 = { .min = 8, .max = 18 },
280         .m2 = { .min = 3, .max = 7 },
281         .p = { .min = 5, .max = 80 },
282         .p1 = { .min = 1, .max = 8 },
283         .p2 = { .dot_limit = 200000,
284                 .p2_slow = 10, .p2_fast = 5 },
285 };
286
287 static const intel_limit_t intel_limits_i9xx_lvds = {
288         .dot = { .min = 20000, .max = 400000 },
289         .vco = { .min = 1400000, .max = 2800000 },
290         .n = { .min = 1, .max = 6 },
291         .m = { .min = 70, .max = 120 },
292         .m1 = { .min = 8, .max = 18 },
293         .m2 = { .min = 3, .max = 7 },
294         .p = { .min = 7, .max = 98 },
295         .p1 = { .min = 1, .max = 8 },
296         .p2 = { .dot_limit = 112000,
297                 .p2_slow = 14, .p2_fast = 7 },
298 };
299
300
301 static const intel_limit_t intel_limits_g4x_sdvo = {
302         .dot = { .min = 25000, .max = 270000 },
303         .vco = { .min = 1750000, .max = 3500000},
304         .n = { .min = 1, .max = 4 },
305         .m = { .min = 104, .max = 138 },
306         .m1 = { .min = 17, .max = 23 },
307         .m2 = { .min = 5, .max = 11 },
308         .p = { .min = 10, .max = 30 },
309         .p1 = { .min = 1, .max = 3},
310         .p2 = { .dot_limit = 270000,
311                 .p2_slow = 10,
312                 .p2_fast = 10
313         },
314 };
315
316 static const intel_limit_t intel_limits_g4x_hdmi = {
317         .dot = { .min = 22000, .max = 400000 },
318         .vco = { .min = 1750000, .max = 3500000},
319         .n = { .min = 1, .max = 4 },
320         .m = { .min = 104, .max = 138 },
321         .m1 = { .min = 16, .max = 23 },
322         .m2 = { .min = 5, .max = 11 },
323         .p = { .min = 5, .max = 80 },
324         .p1 = { .min = 1, .max = 8},
325         .p2 = { .dot_limit = 165000,
326                 .p2_slow = 10, .p2_fast = 5 },
327 };
328
329 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
330         .dot = { .min = 20000, .max = 115000 },
331         .vco = { .min = 1750000, .max = 3500000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 104, .max = 138 },
334         .m1 = { .min = 17, .max = 23 },
335         .m2 = { .min = 5, .max = 11 },
336         .p = { .min = 28, .max = 112 },
337         .p1 = { .min = 2, .max = 8 },
338         .p2 = { .dot_limit = 0,
339                 .p2_slow = 14, .p2_fast = 14
340         },
341 };
342
343 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
344         .dot = { .min = 80000, .max = 224000 },
345         .vco = { .min = 1750000, .max = 3500000 },
346         .n = { .min = 1, .max = 3 },
347         .m = { .min = 104, .max = 138 },
348         .m1 = { .min = 17, .max = 23 },
349         .m2 = { .min = 5, .max = 11 },
350         .p = { .min = 14, .max = 42 },
351         .p1 = { .min = 2, .max = 6 },
352         .p2 = { .dot_limit = 0,
353                 .p2_slow = 7, .p2_fast = 7
354         },
355 };
356
357 static const intel_limit_t intel_limits_pineview_sdvo = {
358         .dot = { .min = 20000, .max = 400000},
359         .vco = { .min = 1700000, .max = 3500000 },
360         /* Pineview's Ncounter is a ring counter */
361         .n = { .min = 3, .max = 6 },
362         .m = { .min = 2, .max = 256 },
363         /* Pineview only has one combined m divider, which we treat as m2. */
364         .m1 = { .min = 0, .max = 0 },
365         .m2 = { .min = 0, .max = 254 },
366         .p = { .min = 5, .max = 80 },
367         .p1 = { .min = 1, .max = 8 },
368         .p2 = { .dot_limit = 200000,
369                 .p2_slow = 10, .p2_fast = 5 },
370 };
371
372 static const intel_limit_t intel_limits_pineview_lvds = {
373         .dot = { .min = 20000, .max = 400000 },
374         .vco = { .min = 1700000, .max = 3500000 },
375         .n = { .min = 3, .max = 6 },
376         .m = { .min = 2, .max = 256 },
377         .m1 = { .min = 0, .max = 0 },
378         .m2 = { .min = 0, .max = 254 },
379         .p = { .min = 7, .max = 112 },
380         .p1 = { .min = 1, .max = 8 },
381         .p2 = { .dot_limit = 112000,
382                 .p2_slow = 14, .p2_fast = 14 },
383 };
384
385 /* Ironlake / Sandybridge
386  *
387  * We calculate clock using (register_value + 2) for N/M1/M2, so here
388  * the range value for them is (actual_value - 2).
389  */
390 static const intel_limit_t intel_limits_ironlake_dac = {
391         .dot = { .min = 25000, .max = 350000 },
392         .vco = { .min = 1760000, .max = 3510000 },
393         .n = { .min = 1, .max = 5 },
394         .m = { .min = 79, .max = 127 },
395         .m1 = { .min = 12, .max = 22 },
396         .m2 = { .min = 5, .max = 9 },
397         .p = { .min = 5, .max = 80 },
398         .p1 = { .min = 1, .max = 8 },
399         .p2 = { .dot_limit = 225000,
400                 .p2_slow = 10, .p2_fast = 5 },
401 };
402
403 static const intel_limit_t intel_limits_ironlake_single_lvds = {
404         .dot = { .min = 25000, .max = 350000 },
405         .vco = { .min = 1760000, .max = 3510000 },
406         .n = { .min = 1, .max = 3 },
407         .m = { .min = 79, .max = 118 },
408         .m1 = { .min = 12, .max = 22 },
409         .m2 = { .min = 5, .max = 9 },
410         .p = { .min = 28, .max = 112 },
411         .p1 = { .min = 2, .max = 8 },
412         .p2 = { .dot_limit = 225000,
413                 .p2_slow = 14, .p2_fast = 14 },
414 };
415
416 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
417         .dot = { .min = 25000, .max = 350000 },
418         .vco = { .min = 1760000, .max = 3510000 },
419         .n = { .min = 1, .max = 3 },
420         .m = { .min = 79, .max = 127 },
421         .m1 = { .min = 12, .max = 22 },
422         .m2 = { .min = 5, .max = 9 },
423         .p = { .min = 14, .max = 56 },
424         .p1 = { .min = 2, .max = 8 },
425         .p2 = { .dot_limit = 225000,
426                 .p2_slow = 7, .p2_fast = 7 },
427 };
428
429 /* LVDS 100mhz refclk limits. */
430 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
431         .dot = { .min = 25000, .max = 350000 },
432         .vco = { .min = 1760000, .max = 3510000 },
433         .n = { .min = 1, .max = 2 },
434         .m = { .min = 79, .max = 126 },
435         .m1 = { .min = 12, .max = 22 },
436         .m2 = { .min = 5, .max = 9 },
437         .p = { .min = 28, .max = 112 },
438         .p1 = { .min = 2, .max = 8 },
439         .p2 = { .dot_limit = 225000,
440                 .p2_slow = 14, .p2_fast = 14 },
441 };
442
443 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
444         .dot = { .min = 25000, .max = 350000 },
445         .vco = { .min = 1760000, .max = 3510000 },
446         .n = { .min = 1, .max = 3 },
447         .m = { .min = 79, .max = 126 },
448         .m1 = { .min = 12, .max = 22 },
449         .m2 = { .min = 5, .max = 9 },
450         .p = { .min = 14, .max = 42 },
451         .p1 = { .min = 2, .max = 6 },
452         .p2 = { .dot_limit = 225000,
453                 .p2_slow = 7, .p2_fast = 7 },
454 };
455
456 static const intel_limit_t intel_limits_vlv = {
457          /*
458           * These are the data rate limits (measured in fast clocks)
459           * since those are the strictest limits we have. The fast
460           * clock and actual rate limits are more relaxed, so checking
461           * them would make no difference.
462           */
463         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
464         .vco = { .min = 4000000, .max = 6000000 },
465         .n = { .min = 1, .max = 7 },
466         .m1 = { .min = 2, .max = 3 },
467         .m2 = { .min = 11, .max = 156 },
468         .p1 = { .min = 2, .max = 3 },
469         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
470 };
471
472 static const intel_limit_t intel_limits_chv = {
473         /*
474          * These are the data rate limits (measured in fast clocks)
475          * since those are the strictest limits we have.  The fast
476          * clock and actual rate limits are more relaxed, so checking
477          * them would make no difference.
478          */
479         .dot = { .min = 25000 * 5, .max = 540000 * 5},
480         .vco = { .min = 4800000, .max = 6480000 },
481         .n = { .min = 1, .max = 1 },
482         .m1 = { .min = 2, .max = 2 },
483         .m2 = { .min = 24 << 22, .max = 175 << 22 },
484         .p1 = { .min = 2, .max = 4 },
485         .p2 = { .p2_slow = 1, .p2_fast = 14 },
486 };
487
488 static const intel_limit_t intel_limits_bxt = {
489         /* FIXME: find real dot limits */
490         .dot = { .min = 0, .max = INT_MAX },
491         .vco = { .min = 4800000, .max = 6700000 },
492         .n = { .min = 1, .max = 1 },
493         .m1 = { .min = 2, .max = 2 },
494         /* FIXME: find real m2 limits */
495         .m2 = { .min = 2 << 22, .max = 255 << 22 },
496         .p1 = { .min = 2, .max = 4 },
497         .p2 = { .p2_slow = 1, .p2_fast = 20 },
498 };
499
500 static bool
501 needs_modeset(struct drm_crtc_state *state)
502 {
503         return drm_atomic_crtc_needs_modeset(state);
504 }
505
506 /**
507  * Returns whether any output on the specified pipe is of the specified type
508  */
509 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
510 {
511         struct drm_device *dev = crtc->base.dev;
512         struct intel_encoder *encoder;
513
514         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
515                 if (encoder->type == type)
516                         return true;
517
518         return false;
519 }
520
521 /**
522  * Returns whether any output on the specified pipe will have the specified
523  * type after a staged modeset is complete, i.e., the same as
524  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
525  * encoder->crtc.
526  */
527 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
528                                       int type)
529 {
530         struct drm_atomic_state *state = crtc_state->base.state;
531         struct drm_connector *connector;
532         struct drm_connector_state *connector_state;
533         struct intel_encoder *encoder;
534         int i, num_connectors = 0;
535
536         for_each_connector_in_state(state, connector, connector_state, i) {
537                 if (connector_state->crtc != crtc_state->base.crtc)
538                         continue;
539
540                 num_connectors++;
541
542                 encoder = to_intel_encoder(connector_state->best_encoder);
543                 if (encoder->type == type)
544                         return true;
545         }
546
547         WARN_ON(num_connectors == 0);
548
549         return false;
550 }
551
552 static const intel_limit_t *
553 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
554 {
555         struct drm_device *dev = crtc_state->base.crtc->dev;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
559                 if (intel_is_dual_link_lvds(dev)) {
560                         if (refclk == 100000)
561                                 limit = &intel_limits_ironlake_dual_lvds_100m;
562                         else
563                                 limit = &intel_limits_ironlake_dual_lvds;
564                 } else {
565                         if (refclk == 100000)
566                                 limit = &intel_limits_ironlake_single_lvds_100m;
567                         else
568                                 limit = &intel_limits_ironlake_single_lvds;
569                 }
570         } else
571                 limit = &intel_limits_ironlake_dac;
572
573         return limit;
574 }
575
576 static const intel_limit_t *
577 intel_g4x_limit(struct intel_crtc_state *crtc_state)
578 {
579         struct drm_device *dev = crtc_state->base.crtc->dev;
580         const intel_limit_t *limit;
581
582         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
583                 if (intel_is_dual_link_lvds(dev))
584                         limit = &intel_limits_g4x_dual_channel_lvds;
585                 else
586                         limit = &intel_limits_g4x_single_channel_lvds;
587         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
588                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
589                 limit = &intel_limits_g4x_hdmi;
590         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
591                 limit = &intel_limits_g4x_sdvo;
592         } else /* The option is for other outputs */
593                 limit = &intel_limits_i9xx_sdvo;
594
595         return limit;
596 }
597
598 static const intel_limit_t *
599 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
600 {
601         struct drm_device *dev = crtc_state->base.crtc->dev;
602         const intel_limit_t *limit;
603
604         if (IS_BROXTON(dev))
605                 limit = &intel_limits_bxt;
606         else if (HAS_PCH_SPLIT(dev))
607                 limit = intel_ironlake_limit(crtc_state, refclk);
608         else if (IS_G4X(dev)) {
609                 limit = intel_g4x_limit(crtc_state);
610         } else if (IS_PINEVIEW(dev)) {
611                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
612                         limit = &intel_limits_pineview_lvds;
613                 else
614                         limit = &intel_limits_pineview_sdvo;
615         } else if (IS_CHERRYVIEW(dev)) {
616                 limit = &intel_limits_chv;
617         } else if (IS_VALLEYVIEW(dev)) {
618                 limit = &intel_limits_vlv;
619         } else if (!IS_GEN2(dev)) {
620                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
621                         limit = &intel_limits_i9xx_lvds;
622                 else
623                         limit = &intel_limits_i9xx_sdvo;
624         } else {
625                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
626                         limit = &intel_limits_i8xx_lvds;
627                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
628                         limit = &intel_limits_i8xx_dvo;
629                 else
630                         limit = &intel_limits_i8xx_dac;
631         }
632         return limit;
633 }
634
635 /*
636  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
637  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
638  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
639  * The helpers' return value is the rate of the clock that is fed to the
640  * display engine's pipe which can be the above fast dot clock rate or a
641  * divided-down version of it.
642  */
643 /* m1 is reserved as 0 in Pineview, n is a ring counter */
644 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
645 {
646         clock->m = clock->m2 + 2;
647         clock->p = clock->p1 * clock->p2;
648         if (WARN_ON(clock->n == 0 || clock->p == 0))
649                 return 0;
650         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
651         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
652
653         return clock->dot;
654 }
655
656 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
657 {
658         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
659 }
660
661 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
662 {
663         clock->m = i9xx_dpll_compute_m(clock);
664         clock->p = clock->p1 * clock->p2;
665         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
666                 return 0;
667         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
668         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
669
670         return clock->dot;
671 }
672
673 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
674 {
675         clock->m = clock->m1 * clock->m2;
676         clock->p = clock->p1 * clock->p2;
677         if (WARN_ON(clock->n == 0 || clock->p == 0))
678                 return 0;
679         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
680         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
681
682         return clock->dot / 5;
683 }
684
685 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
686 {
687         clock->m = clock->m1 * clock->m2;
688         clock->p = clock->p1 * clock->p2;
689         if (WARN_ON(clock->n == 0 || clock->p == 0))
690                 return 0;
691         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
692                         clock->n << 22);
693         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
694
695         return clock->dot / 5;
696 }
697
698 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
699 /**
700  * Returns whether the given set of divisors are valid for a given refclk with
701  * the given connectors.
702  */
703
704 static bool intel_PLL_is_valid(struct drm_device *dev,
705                                const intel_limit_t *limit,
706                                const intel_clock_t *clock)
707 {
708         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
709                 INTELPllInvalid("n out of range\n");
710         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
711                 INTELPllInvalid("p1 out of range\n");
712         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
713                 INTELPllInvalid("m2 out of range\n");
714         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
715                 INTELPllInvalid("m1 out of range\n");
716
717         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
718                 if (clock->m1 <= clock->m2)
719                         INTELPllInvalid("m1 <= m2\n");
720
721         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
722                 if (clock->p < limit->p.min || limit->p.max < clock->p)
723                         INTELPllInvalid("p out of range\n");
724                 if (clock->m < limit->m.min || limit->m.max < clock->m)
725                         INTELPllInvalid("m out of range\n");
726         }
727
728         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
729                 INTELPllInvalid("vco out of range\n");
730         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
731          * connector, etc., rather than just a single range.
732          */
733         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
734                 INTELPllInvalid("dot out of range\n");
735
736         return true;
737 }
738
739 static int
740 i9xx_select_p2_div(const intel_limit_t *limit,
741                    const struct intel_crtc_state *crtc_state,
742                    int target)
743 {
744         struct drm_device *dev = crtc_state->base.crtc->dev;
745
746         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
747                 /*
748                  * For LVDS just rely on its current settings for dual-channel.
749                  * We haven't figured out how to reliably set up different
750                  * single/dual channel state, if we even can.
751                  */
752                 if (intel_is_dual_link_lvds(dev))
753                         return limit->p2.p2_fast;
754                 else
755                         return limit->p2.p2_slow;
756         } else {
757                 if (target < limit->p2.dot_limit)
758                         return limit->p2.p2_slow;
759                 else
760                         return limit->p2.p2_fast;
761         }
762 }
763
764 static bool
765 i9xx_find_best_dpll(const intel_limit_t *limit,
766                     struct intel_crtc_state *crtc_state,
767                     int target, int refclk, intel_clock_t *match_clock,
768                     intel_clock_t *best_clock)
769 {
770         struct drm_device *dev = crtc_state->base.crtc->dev;
771         intel_clock_t clock;
772         int err = target;
773
774         memset(best_clock, 0, sizeof(*best_clock));
775
776         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
777
778         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
779              clock.m1++) {
780                 for (clock.m2 = limit->m2.min;
781                      clock.m2 <= limit->m2.max; clock.m2++) {
782                         if (clock.m2 >= clock.m1)
783                                 break;
784                         for (clock.n = limit->n.min;
785                              clock.n <= limit->n.max; clock.n++) {
786                                 for (clock.p1 = limit->p1.min;
787                                         clock.p1 <= limit->p1.max; clock.p1++) {
788                                         int this_err;
789
790                                         i9xx_calc_dpll_params(refclk, &clock);
791                                         if (!intel_PLL_is_valid(dev, limit,
792                                                                 &clock))
793                                                 continue;
794                                         if (match_clock &&
795                                             clock.p != match_clock->p)
796                                                 continue;
797
798                                         this_err = abs(clock.dot - target);
799                                         if (this_err < err) {
800                                                 *best_clock = clock;
801                                                 err = this_err;
802                                         }
803                                 }
804                         }
805                 }
806         }
807
808         return (err != target);
809 }
810
811 static bool
812 pnv_find_best_dpll(const intel_limit_t *limit,
813                    struct intel_crtc_state *crtc_state,
814                    int target, int refclk, intel_clock_t *match_clock,
815                    intel_clock_t *best_clock)
816 {
817         struct drm_device *dev = crtc_state->base.crtc->dev;
818         intel_clock_t clock;
819         int err = target;
820
821         memset(best_clock, 0, sizeof(*best_clock));
822
823         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
824
825         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
826              clock.m1++) {
827                 for (clock.m2 = limit->m2.min;
828                      clock.m2 <= limit->m2.max; clock.m2++) {
829                         for (clock.n = limit->n.min;
830                              clock.n <= limit->n.max; clock.n++) {
831                                 for (clock.p1 = limit->p1.min;
832                                         clock.p1 <= limit->p1.max; clock.p1++) {
833                                         int this_err;
834
835                                         pnv_calc_dpll_params(refclk, &clock);
836                                         if (!intel_PLL_is_valid(dev, limit,
837                                                                 &clock))
838                                                 continue;
839                                         if (match_clock &&
840                                             clock.p != match_clock->p)
841                                                 continue;
842
843                                         this_err = abs(clock.dot - target);
844                                         if (this_err < err) {
845                                                 *best_clock = clock;
846                                                 err = this_err;
847                                         }
848                                 }
849                         }
850                 }
851         }
852
853         return (err != target);
854 }
855
856 static bool
857 g4x_find_best_dpll(const intel_limit_t *limit,
858                    struct intel_crtc_state *crtc_state,
859                    int target, int refclk, intel_clock_t *match_clock,
860                    intel_clock_t *best_clock)
861 {
862         struct drm_device *dev = crtc_state->base.crtc->dev;
863         intel_clock_t clock;
864         int max_n;
865         bool found = false;
866         /* approximately equals target * 0.00585 */
867         int err_most = (target >> 8) + (target >> 9);
868
869         memset(best_clock, 0, sizeof(*best_clock));
870
871         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
872
873         max_n = limit->n.max;
874         /* based on hardware requirement, prefer smaller n to precision */
875         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
876                 /* based on hardware requirement, prefere larger m1,m2 */
877                 for (clock.m1 = limit->m1.max;
878                      clock.m1 >= limit->m1.min; clock.m1--) {
879                         for (clock.m2 = limit->m2.max;
880                              clock.m2 >= limit->m2.min; clock.m2--) {
881                                 for (clock.p1 = limit->p1.max;
882                                      clock.p1 >= limit->p1.min; clock.p1--) {
883                                         int this_err;
884
885                                         i9xx_calc_dpll_params(refclk, &clock);
886                                         if (!intel_PLL_is_valid(dev, limit,
887                                                                 &clock))
888                                                 continue;
889
890                                         this_err = abs(clock.dot - target);
891                                         if (this_err < err_most) {
892                                                 *best_clock = clock;
893                                                 err_most = this_err;
894                                                 max_n = clock.n;
895                                                 found = true;
896                                         }
897                                 }
898                         }
899                 }
900         }
901         return found;
902 }
903
904 /*
905  * Check if the calculated PLL configuration is more optimal compared to the
906  * best configuration and error found so far. Return the calculated error.
907  */
908 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
909                                const intel_clock_t *calculated_clock,
910                                const intel_clock_t *best_clock,
911                                unsigned int best_error_ppm,
912                                unsigned int *error_ppm)
913 {
914         /*
915          * For CHV ignore the error and consider only the P value.
916          * Prefer a bigger P value based on HW requirements.
917          */
918         if (IS_CHERRYVIEW(dev)) {
919                 *error_ppm = 0;
920
921                 return calculated_clock->p > best_clock->p;
922         }
923
924         if (WARN_ON_ONCE(!target_freq))
925                 return false;
926
927         *error_ppm = div_u64(1000000ULL *
928                                 abs(target_freq - calculated_clock->dot),
929                              target_freq);
930         /*
931          * Prefer a better P value over a better (smaller) error if the error
932          * is small. Ensure this preference for future configurations too by
933          * setting the error to 0.
934          */
935         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
936                 *error_ppm = 0;
937
938                 return true;
939         }
940
941         return *error_ppm + 10 < best_error_ppm;
942 }
943
944 static bool
945 vlv_find_best_dpll(const intel_limit_t *limit,
946                    struct intel_crtc_state *crtc_state,
947                    int target, int refclk, intel_clock_t *match_clock,
948                    intel_clock_t *best_clock)
949 {
950         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
951         struct drm_device *dev = crtc->base.dev;
952         intel_clock_t clock;
953         unsigned int bestppm = 1000000;
954         /* min update 19.2 MHz */
955         int max_n = min(limit->n.max, refclk / 19200);
956         bool found = false;
957
958         target *= 5; /* fast clock */
959
960         memset(best_clock, 0, sizeof(*best_clock));
961
962         /* based on hardware requirement, prefer smaller n to precision */
963         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
964                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
965                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
966                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
967                                 clock.p = clock.p1 * clock.p2;
968                                 /* based on hardware requirement, prefer bigger m1,m2 values */
969                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
970                                         unsigned int ppm;
971
972                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
973                                                                      refclk * clock.m1);
974
975                                         vlv_calc_dpll_params(refclk, &clock);
976
977                                         if (!intel_PLL_is_valid(dev, limit,
978                                                                 &clock))
979                                                 continue;
980
981                                         if (!vlv_PLL_is_optimal(dev, target,
982                                                                 &clock,
983                                                                 best_clock,
984                                                                 bestppm, &ppm))
985                                                 continue;
986
987                                         *best_clock = clock;
988                                         bestppm = ppm;
989                                         found = true;
990                                 }
991                         }
992                 }
993         }
994
995         return found;
996 }
997
998 static bool
999 chv_find_best_dpll(const intel_limit_t *limit,
1000                    struct intel_crtc_state *crtc_state,
1001                    int target, int refclk, intel_clock_t *match_clock,
1002                    intel_clock_t *best_clock)
1003 {
1004         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1005         struct drm_device *dev = crtc->base.dev;
1006         unsigned int best_error_ppm;
1007         intel_clock_t clock;
1008         uint64_t m2;
1009         int found = false;
1010
1011         memset(best_clock, 0, sizeof(*best_clock));
1012         best_error_ppm = 1000000;
1013
1014         /*
1015          * Based on hardware doc, the n always set to 1, and m1 always
1016          * set to 2.  If requires to support 200Mhz refclk, we need to
1017          * revisit this because n may not 1 anymore.
1018          */
1019         clock.n = 1, clock.m1 = 2;
1020         target *= 5;    /* fast clock */
1021
1022         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1023                 for (clock.p2 = limit->p2.p2_fast;
1024                                 clock.p2 >= limit->p2.p2_slow;
1025                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1026                         unsigned int error_ppm;
1027
1028                         clock.p = clock.p1 * clock.p2;
1029
1030                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1031                                         clock.n) << 22, refclk * clock.m1);
1032
1033                         if (m2 > INT_MAX/clock.m1)
1034                                 continue;
1035
1036                         clock.m2 = m2;
1037
1038                         chv_calc_dpll_params(refclk, &clock);
1039
1040                         if (!intel_PLL_is_valid(dev, limit, &clock))
1041                                 continue;
1042
1043                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1044                                                 best_error_ppm, &error_ppm))
1045                                 continue;
1046
1047                         *best_clock = clock;
1048                         best_error_ppm = error_ppm;
1049                         found = true;
1050                 }
1051         }
1052
1053         return found;
1054 }
1055
1056 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1057                         intel_clock_t *best_clock)
1058 {
1059         int refclk = i9xx_get_refclk(crtc_state, 0);
1060
1061         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1062                                   target_clock, refclk, NULL, best_clock);
1063 }
1064
1065 bool intel_crtc_active(struct drm_crtc *crtc)
1066 {
1067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1068
1069         /* Be paranoid as we can arrive here with only partial
1070          * state retrieved from the hardware during setup.
1071          *
1072          * We can ditch the adjusted_mode.crtc_clock check as soon
1073          * as Haswell has gained clock readout/fastboot support.
1074          *
1075          * We can ditch the crtc->primary->fb check as soon as we can
1076          * properly reconstruct framebuffers.
1077          *
1078          * FIXME: The intel_crtc->active here should be switched to
1079          * crtc->state->active once we have proper CRTC states wired up
1080          * for atomic.
1081          */
1082         return intel_crtc->active && crtc->primary->state->fb &&
1083                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1084 }
1085
1086 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1087                                              enum pipe pipe)
1088 {
1089         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1090         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1091
1092         return intel_crtc->config->cpu_transcoder;
1093 }
1094
1095 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1096 {
1097         struct drm_i915_private *dev_priv = dev->dev_private;
1098         u32 reg = PIPEDSL(pipe);
1099         u32 line1, line2;
1100         u32 line_mask;
1101
1102         if (IS_GEN2(dev))
1103                 line_mask = DSL_LINEMASK_GEN2;
1104         else
1105                 line_mask = DSL_LINEMASK_GEN3;
1106
1107         line1 = I915_READ(reg) & line_mask;
1108         msleep(5);
1109         line2 = I915_READ(reg) & line_mask;
1110
1111         return line1 == line2;
1112 }
1113
1114 /*
1115  * intel_wait_for_pipe_off - wait for pipe to turn off
1116  * @crtc: crtc whose pipe to wait for
1117  *
1118  * After disabling a pipe, we can't wait for vblank in the usual way,
1119  * spinning on the vblank interrupt status bit, since we won't actually
1120  * see an interrupt when the pipe is disabled.
1121  *
1122  * On Gen4 and above:
1123  *   wait for the pipe register state bit to turn off
1124  *
1125  * Otherwise:
1126  *   wait for the display line value to settle (it usually
1127  *   ends up stopping at the start of the next frame).
1128  *
1129  */
1130 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1131 {
1132         struct drm_device *dev = crtc->base.dev;
1133         struct drm_i915_private *dev_priv = dev->dev_private;
1134         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1135         enum pipe pipe = crtc->pipe;
1136
1137         if (INTEL_INFO(dev)->gen >= 4) {
1138                 int reg = PIPECONF(cpu_transcoder);
1139
1140                 /* Wait for the Pipe State to go off */
1141                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1142                              100))
1143                         WARN(1, "pipe_off wait timed out\n");
1144         } else {
1145                 /* Wait for the display line to settle */
1146                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1147                         WARN(1, "pipe_off wait timed out\n");
1148         }
1149 }
1150
1151 static const char *state_string(bool enabled)
1152 {
1153         return enabled ? "on" : "off";
1154 }
1155
1156 /* Only for pre-ILK configs */
1157 void assert_pll(struct drm_i915_private *dev_priv,
1158                 enum pipe pipe, bool state)
1159 {
1160         u32 val;
1161         bool cur_state;
1162
1163         val = I915_READ(DPLL(pipe));
1164         cur_state = !!(val & DPLL_VCO_ENABLE);
1165         I915_STATE_WARN(cur_state != state,
1166              "PLL state assertion failure (expected %s, current %s)\n",
1167              state_string(state), state_string(cur_state));
1168 }
1169
1170 /* XXX: the dsi pll is shared between MIPI DSI ports */
1171 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1172 {
1173         u32 val;
1174         bool cur_state;
1175
1176         mutex_lock(&dev_priv->sb_lock);
1177         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1178         mutex_unlock(&dev_priv->sb_lock);
1179
1180         cur_state = val & DSI_PLL_VCO_EN;
1181         I915_STATE_WARN(cur_state != state,
1182              "DSI PLL state assertion failure (expected %s, current %s)\n",
1183              state_string(state), state_string(cur_state));
1184 }
1185 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1186 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1187
1188 struct intel_shared_dpll *
1189 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1190 {
1191         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1192
1193         if (crtc->config->shared_dpll < 0)
1194                 return NULL;
1195
1196         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1197 }
1198
1199 /* For ILK+ */
1200 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1201                         struct intel_shared_dpll *pll,
1202                         bool state)
1203 {
1204         bool cur_state;
1205         struct intel_dpll_hw_state hw_state;
1206
1207         if (WARN (!pll,
1208                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1209                 return;
1210
1211         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1212         I915_STATE_WARN(cur_state != state,
1213              "%s assertion failure (expected %s, current %s)\n",
1214              pll->name, state_string(state), state_string(cur_state));
1215 }
1216
1217 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1218                           enum pipe pipe, bool state)
1219 {
1220         bool cur_state;
1221         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1222                                                                       pipe);
1223
1224         if (HAS_DDI(dev_priv->dev)) {
1225                 /* DDI does not have a specific FDI_TX register */
1226                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1227                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1228         } else {
1229                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1230                 cur_state = !!(val & FDI_TX_ENABLE);
1231         }
1232         I915_STATE_WARN(cur_state != state,
1233              "FDI TX state assertion failure (expected %s, current %s)\n",
1234              state_string(state), state_string(cur_state));
1235 }
1236 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1237 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1238
1239 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1240                           enum pipe pipe, bool state)
1241 {
1242         u32 val;
1243         bool cur_state;
1244
1245         val = I915_READ(FDI_RX_CTL(pipe));
1246         cur_state = !!(val & FDI_RX_ENABLE);
1247         I915_STATE_WARN(cur_state != state,
1248              "FDI RX state assertion failure (expected %s, current %s)\n",
1249              state_string(state), state_string(cur_state));
1250 }
1251 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1252 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1253
1254 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1255                                       enum pipe pipe)
1256 {
1257         u32 val;
1258
1259         /* ILK FDI PLL is always enabled */
1260         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1261                 return;
1262
1263         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1264         if (HAS_DDI(dev_priv->dev))
1265                 return;
1266
1267         val = I915_READ(FDI_TX_CTL(pipe));
1268         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1269 }
1270
1271 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1272                        enum pipe pipe, bool state)
1273 {
1274         u32 val;
1275         bool cur_state;
1276
1277         val = I915_READ(FDI_RX_CTL(pipe));
1278         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1279         I915_STATE_WARN(cur_state != state,
1280              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1281              state_string(state), state_string(cur_state));
1282 }
1283
1284 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1285                            enum pipe pipe)
1286 {
1287         struct drm_device *dev = dev_priv->dev;
1288         int pp_reg;
1289         u32 val;
1290         enum pipe panel_pipe = PIPE_A;
1291         bool locked = true;
1292
1293         if (WARN_ON(HAS_DDI(dev)))
1294                 return;
1295
1296         if (HAS_PCH_SPLIT(dev)) {
1297                 u32 port_sel;
1298
1299                 pp_reg = PCH_PP_CONTROL;
1300                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1301
1302                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1303                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1304                         panel_pipe = PIPE_B;
1305                 /* XXX: else fix for eDP */
1306         } else if (IS_VALLEYVIEW(dev)) {
1307                 /* presumably write lock depends on pipe, not port select */
1308                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1309                 panel_pipe = pipe;
1310         } else {
1311                 pp_reg = PP_CONTROL;
1312                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1313                         panel_pipe = PIPE_B;
1314         }
1315
1316         val = I915_READ(pp_reg);
1317         if (!(val & PANEL_POWER_ON) ||
1318             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1319                 locked = false;
1320
1321         I915_STATE_WARN(panel_pipe == pipe && locked,
1322              "panel assertion failure, pipe %c regs locked\n",
1323              pipe_name(pipe));
1324 }
1325
1326 static void assert_cursor(struct drm_i915_private *dev_priv,
1327                           enum pipe pipe, bool state)
1328 {
1329         struct drm_device *dev = dev_priv->dev;
1330         bool cur_state;
1331
1332         if (IS_845G(dev) || IS_I865G(dev))
1333                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1334         else
1335                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1336
1337         I915_STATE_WARN(cur_state != state,
1338              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1339              pipe_name(pipe), state_string(state), state_string(cur_state));
1340 }
1341 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1342 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1343
1344 void assert_pipe(struct drm_i915_private *dev_priv,
1345                  enum pipe pipe, bool state)
1346 {
1347         bool cur_state;
1348         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1349                                                                       pipe);
1350
1351         /* if we need the pipe quirk it must be always on */
1352         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1353             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1354                 state = true;
1355
1356         if (!intel_display_power_is_enabled(dev_priv,
1357                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1358                 cur_state = false;
1359         } else {
1360                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1361                 cur_state = !!(val & PIPECONF_ENABLE);
1362         }
1363
1364         I915_STATE_WARN(cur_state != state,
1365              "pipe %c assertion failure (expected %s, current %s)\n",
1366              pipe_name(pipe), state_string(state), state_string(cur_state));
1367 }
1368
1369 static void assert_plane(struct drm_i915_private *dev_priv,
1370                          enum plane plane, bool state)
1371 {
1372         u32 val;
1373         bool cur_state;
1374
1375         val = I915_READ(DSPCNTR(plane));
1376         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1377         I915_STATE_WARN(cur_state != state,
1378              "plane %c assertion failure (expected %s, current %s)\n",
1379              plane_name(plane), state_string(state), state_string(cur_state));
1380 }
1381
1382 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1383 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1384
1385 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1386                                    enum pipe pipe)
1387 {
1388         struct drm_device *dev = dev_priv->dev;
1389         int i;
1390
1391         /* Primary planes are fixed to pipes on gen4+ */
1392         if (INTEL_INFO(dev)->gen >= 4) {
1393                 u32 val = I915_READ(DSPCNTR(pipe));
1394                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1395                      "plane %c assertion failure, should be disabled but not\n",
1396                      plane_name(pipe));
1397                 return;
1398         }
1399
1400         /* Need to check both planes against the pipe */
1401         for_each_pipe(dev_priv, i) {
1402                 u32 val = I915_READ(DSPCNTR(i));
1403                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1404                         DISPPLANE_SEL_PIPE_SHIFT;
1405                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1406                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1407                      plane_name(i), pipe_name(pipe));
1408         }
1409 }
1410
1411 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1412                                     enum pipe pipe)
1413 {
1414         struct drm_device *dev = dev_priv->dev;
1415         int sprite;
1416
1417         if (INTEL_INFO(dev)->gen >= 9) {
1418                 for_each_sprite(dev_priv, pipe, sprite) {
1419                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1420                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1421                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1422                              sprite, pipe_name(pipe));
1423                 }
1424         } else if (IS_VALLEYVIEW(dev)) {
1425                 for_each_sprite(dev_priv, pipe, sprite) {
1426                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1427                         I915_STATE_WARN(val & SP_ENABLE,
1428                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1429                              sprite_name(pipe, sprite), pipe_name(pipe));
1430                 }
1431         } else if (INTEL_INFO(dev)->gen >= 7) {
1432                 u32 val = I915_READ(SPRCTL(pipe));
1433                 I915_STATE_WARN(val & SPRITE_ENABLE,
1434                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1435                      plane_name(pipe), pipe_name(pipe));
1436         } else if (INTEL_INFO(dev)->gen >= 5) {
1437                 u32 val = I915_READ(DVSCNTR(pipe));
1438                 I915_STATE_WARN(val & DVS_ENABLE,
1439                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1440                      plane_name(pipe), pipe_name(pipe));
1441         }
1442 }
1443
1444 static void assert_vblank_disabled(struct drm_crtc *crtc)
1445 {
1446         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1447                 drm_crtc_vblank_put(crtc);
1448 }
1449
1450 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1451 {
1452         u32 val;
1453         bool enabled;
1454
1455         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1456
1457         val = I915_READ(PCH_DREF_CONTROL);
1458         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1459                             DREF_SUPERSPREAD_SOURCE_MASK));
1460         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1461 }
1462
1463 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1464                                            enum pipe pipe)
1465 {
1466         u32 val;
1467         bool enabled;
1468
1469         val = I915_READ(PCH_TRANSCONF(pipe));
1470         enabled = !!(val & TRANS_ENABLE);
1471         I915_STATE_WARN(enabled,
1472              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1473              pipe_name(pipe));
1474 }
1475
1476 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1477                             enum pipe pipe, u32 port_sel, u32 val)
1478 {
1479         if ((val & DP_PORT_EN) == 0)
1480                 return false;
1481
1482         if (HAS_PCH_CPT(dev_priv->dev)) {
1483                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1484                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1485                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1486                         return false;
1487         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1488                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1489                         return false;
1490         } else {
1491                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1492                         return false;
1493         }
1494         return true;
1495 }
1496
1497 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1498                               enum pipe pipe, u32 val)
1499 {
1500         if ((val & SDVO_ENABLE) == 0)
1501                 return false;
1502
1503         if (HAS_PCH_CPT(dev_priv->dev)) {
1504                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1505                         return false;
1506         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1507                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1508                         return false;
1509         } else {
1510                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1511                         return false;
1512         }
1513         return true;
1514 }
1515
1516 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1517                               enum pipe pipe, u32 val)
1518 {
1519         if ((val & LVDS_PORT_EN) == 0)
1520                 return false;
1521
1522         if (HAS_PCH_CPT(dev_priv->dev)) {
1523                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1524                         return false;
1525         } else {
1526                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1527                         return false;
1528         }
1529         return true;
1530 }
1531
1532 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1533                               enum pipe pipe, u32 val)
1534 {
1535         if ((val & ADPA_DAC_ENABLE) == 0)
1536                 return false;
1537         if (HAS_PCH_CPT(dev_priv->dev)) {
1538                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1539                         return false;
1540         } else {
1541                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1542                         return false;
1543         }
1544         return true;
1545 }
1546
1547 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1548                                    enum pipe pipe, int reg, u32 port_sel)
1549 {
1550         u32 val = I915_READ(reg);
1551         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1552              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1553              reg, pipe_name(pipe));
1554
1555         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1556              && (val & DP_PIPEB_SELECT),
1557              "IBX PCH dp port still using transcoder B\n");
1558 }
1559
1560 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1561                                      enum pipe pipe, int reg)
1562 {
1563         u32 val = I915_READ(reg);
1564         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1565              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1566              reg, pipe_name(pipe));
1567
1568         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1569              && (val & SDVO_PIPE_B_SELECT),
1570              "IBX PCH hdmi port still using transcoder B\n");
1571 }
1572
1573 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1574                                       enum pipe pipe)
1575 {
1576         u32 val;
1577
1578         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1579         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1580         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1581
1582         val = I915_READ(PCH_ADPA);
1583         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1584              "PCH VGA enabled on transcoder %c, should be disabled\n",
1585              pipe_name(pipe));
1586
1587         val = I915_READ(PCH_LVDS);
1588         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1589              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1590              pipe_name(pipe));
1591
1592         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1593         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1594         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1595 }
1596
1597 static void vlv_enable_pll(struct intel_crtc *crtc,
1598                            const struct intel_crtc_state *pipe_config)
1599 {
1600         struct drm_device *dev = crtc->base.dev;
1601         struct drm_i915_private *dev_priv = dev->dev_private;
1602         int reg = DPLL(crtc->pipe);
1603         u32 dpll = pipe_config->dpll_hw_state.dpll;
1604
1605         assert_pipe_disabled(dev_priv, crtc->pipe);
1606
1607         /* No really, not for ILK+ */
1608         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1609
1610         /* PLL is protected by panel, make sure we can write it */
1611         if (IS_MOBILE(dev_priv->dev))
1612                 assert_panel_unlocked(dev_priv, crtc->pipe);
1613
1614         I915_WRITE(reg, dpll);
1615         POSTING_READ(reg);
1616         udelay(150);
1617
1618         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1619                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1620
1621         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1622         POSTING_READ(DPLL_MD(crtc->pipe));
1623
1624         /* We do this three times for luck */
1625         I915_WRITE(reg, dpll);
1626         POSTING_READ(reg);
1627         udelay(150); /* wait for warmup */
1628         I915_WRITE(reg, dpll);
1629         POSTING_READ(reg);
1630         udelay(150); /* wait for warmup */
1631         I915_WRITE(reg, dpll);
1632         POSTING_READ(reg);
1633         udelay(150); /* wait for warmup */
1634 }
1635
1636 static void chv_enable_pll(struct intel_crtc *crtc,
1637                            const struct intel_crtc_state *pipe_config)
1638 {
1639         struct drm_device *dev = crtc->base.dev;
1640         struct drm_i915_private *dev_priv = dev->dev_private;
1641         int pipe = crtc->pipe;
1642         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1643         u32 tmp;
1644
1645         assert_pipe_disabled(dev_priv, crtc->pipe);
1646
1647         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1648
1649         mutex_lock(&dev_priv->sb_lock);
1650
1651         /* Enable back the 10bit clock to display controller */
1652         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1653         tmp |= DPIO_DCLKP_EN;
1654         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1655
1656         mutex_unlock(&dev_priv->sb_lock);
1657
1658         /*
1659          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1660          */
1661         udelay(1);
1662
1663         /* Enable PLL */
1664         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1665
1666         /* Check PLL is locked */
1667         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1668                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1669
1670         /* not sure when this should be written */
1671         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1672         POSTING_READ(DPLL_MD(pipe));
1673 }
1674
1675 static int intel_num_dvo_pipes(struct drm_device *dev)
1676 {
1677         struct intel_crtc *crtc;
1678         int count = 0;
1679
1680         for_each_intel_crtc(dev, crtc)
1681                 count += crtc->base.state->active &&
1682                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1683
1684         return count;
1685 }
1686
1687 static void i9xx_enable_pll(struct intel_crtc *crtc)
1688 {
1689         struct drm_device *dev = crtc->base.dev;
1690         struct drm_i915_private *dev_priv = dev->dev_private;
1691         int reg = DPLL(crtc->pipe);
1692         u32 dpll = crtc->config->dpll_hw_state.dpll;
1693
1694         assert_pipe_disabled(dev_priv, crtc->pipe);
1695
1696         /* No really, not for ILK+ */
1697         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1698
1699         /* PLL is protected by panel, make sure we can write it */
1700         if (IS_MOBILE(dev) && !IS_I830(dev))
1701                 assert_panel_unlocked(dev_priv, crtc->pipe);
1702
1703         /* Enable DVO 2x clock on both PLLs if necessary */
1704         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1705                 /*
1706                  * It appears to be important that we don't enable this
1707                  * for the current pipe before otherwise configuring the
1708                  * PLL. No idea how this should be handled if multiple
1709                  * DVO outputs are enabled simultaneosly.
1710                  */
1711                 dpll |= DPLL_DVO_2X_MODE;
1712                 I915_WRITE(DPLL(!crtc->pipe),
1713                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1714         }
1715
1716         /*
1717          * Apparently we need to have VGA mode enabled prior to changing
1718          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1719          * dividers, even though the register value does change.
1720          */
1721         I915_WRITE(reg, 0);
1722
1723         I915_WRITE(reg, dpll);
1724
1725         /* Wait for the clocks to stabilize. */
1726         POSTING_READ(reg);
1727         udelay(150);
1728
1729         if (INTEL_INFO(dev)->gen >= 4) {
1730                 I915_WRITE(DPLL_MD(crtc->pipe),
1731                            crtc->config->dpll_hw_state.dpll_md);
1732         } else {
1733                 /* The pixel multiplier can only be updated once the
1734                  * DPLL is enabled and the clocks are stable.
1735                  *
1736                  * So write it again.
1737                  */
1738                 I915_WRITE(reg, dpll);
1739         }
1740
1741         /* We do this three times for luck */
1742         I915_WRITE(reg, dpll);
1743         POSTING_READ(reg);
1744         udelay(150); /* wait for warmup */
1745         I915_WRITE(reg, dpll);
1746         POSTING_READ(reg);
1747         udelay(150); /* wait for warmup */
1748         I915_WRITE(reg, dpll);
1749         POSTING_READ(reg);
1750         udelay(150); /* wait for warmup */
1751 }
1752
1753 /**
1754  * i9xx_disable_pll - disable a PLL
1755  * @dev_priv: i915 private structure
1756  * @pipe: pipe PLL to disable
1757  *
1758  * Disable the PLL for @pipe, making sure the pipe is off first.
1759  *
1760  * Note!  This is for pre-ILK only.
1761  */
1762 static void i9xx_disable_pll(struct intel_crtc *crtc)
1763 {
1764         struct drm_device *dev = crtc->base.dev;
1765         struct drm_i915_private *dev_priv = dev->dev_private;
1766         enum pipe pipe = crtc->pipe;
1767
1768         /* Disable DVO 2x clock on both PLLs if necessary */
1769         if (IS_I830(dev) &&
1770             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1771             !intel_num_dvo_pipes(dev)) {
1772                 I915_WRITE(DPLL(PIPE_B),
1773                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1774                 I915_WRITE(DPLL(PIPE_A),
1775                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1776         }
1777
1778         /* Don't disable pipe or pipe PLLs if needed */
1779         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1780             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1781                 return;
1782
1783         /* Make sure the pipe isn't still relying on us */
1784         assert_pipe_disabled(dev_priv, pipe);
1785
1786         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1787         POSTING_READ(DPLL(pipe));
1788 }
1789
1790 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1791 {
1792         u32 val;
1793
1794         /* Make sure the pipe isn't still relying on us */
1795         assert_pipe_disabled(dev_priv, pipe);
1796
1797         /*
1798          * Leave integrated clock source and reference clock enabled for pipe B.
1799          * The latter is needed for VGA hotplug / manual detection.
1800          */
1801         val = DPLL_VGA_MODE_DIS;
1802         if (pipe == PIPE_B)
1803                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1804         I915_WRITE(DPLL(pipe), val);
1805         POSTING_READ(DPLL(pipe));
1806
1807 }
1808
1809 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1810 {
1811         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1812         u32 val;
1813
1814         /* Make sure the pipe isn't still relying on us */
1815         assert_pipe_disabled(dev_priv, pipe);
1816
1817         /* Set PLL en = 0 */
1818         val = DPLL_SSC_REF_CLK_CHV |
1819                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1820         if (pipe != PIPE_A)
1821                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1822         I915_WRITE(DPLL(pipe), val);
1823         POSTING_READ(DPLL(pipe));
1824
1825         mutex_lock(&dev_priv->sb_lock);
1826
1827         /* Disable 10bit clock to display controller */
1828         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1829         val &= ~DPIO_DCLKP_EN;
1830         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1831
1832         mutex_unlock(&dev_priv->sb_lock);
1833 }
1834
1835 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1836                          struct intel_digital_port *dport,
1837                          unsigned int expected_mask)
1838 {
1839         u32 port_mask;
1840         int dpll_reg;
1841
1842         switch (dport->port) {
1843         case PORT_B:
1844                 port_mask = DPLL_PORTB_READY_MASK;
1845                 dpll_reg = DPLL(0);
1846                 break;
1847         case PORT_C:
1848                 port_mask = DPLL_PORTC_READY_MASK;
1849                 dpll_reg = DPLL(0);
1850                 expected_mask <<= 4;
1851                 break;
1852         case PORT_D:
1853                 port_mask = DPLL_PORTD_READY_MASK;
1854                 dpll_reg = DPIO_PHY_STATUS;
1855                 break;
1856         default:
1857                 BUG();
1858         }
1859
1860         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1861                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1862                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1863 }
1864
1865 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1866 {
1867         struct drm_device *dev = crtc->base.dev;
1868         struct drm_i915_private *dev_priv = dev->dev_private;
1869         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1870
1871         if (WARN_ON(pll == NULL))
1872                 return;
1873
1874         WARN_ON(!pll->config.crtc_mask);
1875         if (pll->active == 0) {
1876                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1877                 WARN_ON(pll->on);
1878                 assert_shared_dpll_disabled(dev_priv, pll);
1879
1880                 pll->mode_set(dev_priv, pll);
1881         }
1882 }
1883
1884 /**
1885  * intel_enable_shared_dpll - enable PCH PLL
1886  * @dev_priv: i915 private structure
1887  * @pipe: pipe PLL to enable
1888  *
1889  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1890  * drives the transcoder clock.
1891  */
1892 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1893 {
1894         struct drm_device *dev = crtc->base.dev;
1895         struct drm_i915_private *dev_priv = dev->dev_private;
1896         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1897
1898         if (WARN_ON(pll == NULL))
1899                 return;
1900
1901         if (WARN_ON(pll->config.crtc_mask == 0))
1902                 return;
1903
1904         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1905                       pll->name, pll->active, pll->on,
1906                       crtc->base.base.id);
1907
1908         if (pll->active++) {
1909                 WARN_ON(!pll->on);
1910                 assert_shared_dpll_enabled(dev_priv, pll);
1911                 return;
1912         }
1913         WARN_ON(pll->on);
1914
1915         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1916
1917         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1918         pll->enable(dev_priv, pll);
1919         pll->on = true;
1920 }
1921
1922 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1923 {
1924         struct drm_device *dev = crtc->base.dev;
1925         struct drm_i915_private *dev_priv = dev->dev_private;
1926         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1927
1928         /* PCH only available on ILK+ */
1929         if (INTEL_INFO(dev)->gen < 5)
1930                 return;
1931
1932         if (pll == NULL)
1933                 return;
1934
1935         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1936                 return;
1937
1938         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1939                       pll->name, pll->active, pll->on,
1940                       crtc->base.base.id);
1941
1942         if (WARN_ON(pll->active == 0)) {
1943                 assert_shared_dpll_disabled(dev_priv, pll);
1944                 return;
1945         }
1946
1947         assert_shared_dpll_enabled(dev_priv, pll);
1948         WARN_ON(!pll->on);
1949         if (--pll->active)
1950                 return;
1951
1952         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1953         pll->disable(dev_priv, pll);
1954         pll->on = false;
1955
1956         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1957 }
1958
1959 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1960                                            enum pipe pipe)
1961 {
1962         struct drm_device *dev = dev_priv->dev;
1963         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1964         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1965         uint32_t reg, val, pipeconf_val;
1966
1967         /* PCH only available on ILK+ */
1968         BUG_ON(!HAS_PCH_SPLIT(dev));
1969
1970         /* Make sure PCH DPLL is enabled */
1971         assert_shared_dpll_enabled(dev_priv,
1972                                    intel_crtc_to_shared_dpll(intel_crtc));
1973
1974         /* FDI must be feeding us bits for PCH ports */
1975         assert_fdi_tx_enabled(dev_priv, pipe);
1976         assert_fdi_rx_enabled(dev_priv, pipe);
1977
1978         if (HAS_PCH_CPT(dev)) {
1979                 /* Workaround: Set the timing override bit before enabling the
1980                  * pch transcoder. */
1981                 reg = TRANS_CHICKEN2(pipe);
1982                 val = I915_READ(reg);
1983                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1984                 I915_WRITE(reg, val);
1985         }
1986
1987         reg = PCH_TRANSCONF(pipe);
1988         val = I915_READ(reg);
1989         pipeconf_val = I915_READ(PIPECONF(pipe));
1990
1991         if (HAS_PCH_IBX(dev_priv->dev)) {
1992                 /*
1993                  * Make the BPC in transcoder be consistent with
1994                  * that in pipeconf reg. For HDMI we must use 8bpc
1995                  * here for both 8bpc and 12bpc.
1996                  */
1997                 val &= ~PIPECONF_BPC_MASK;
1998                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1999                         val |= PIPECONF_8BPC;
2000                 else
2001                         val |= pipeconf_val & PIPECONF_BPC_MASK;
2002         }
2003
2004         val &= ~TRANS_INTERLACE_MASK;
2005         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2006                 if (HAS_PCH_IBX(dev_priv->dev) &&
2007                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2008                         val |= TRANS_LEGACY_INTERLACED_ILK;
2009                 else
2010                         val |= TRANS_INTERLACED;
2011         else
2012                 val |= TRANS_PROGRESSIVE;
2013
2014         I915_WRITE(reg, val | TRANS_ENABLE);
2015         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2016                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2017 }
2018
2019 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2020                                       enum transcoder cpu_transcoder)
2021 {
2022         u32 val, pipeconf_val;
2023
2024         /* PCH only available on ILK+ */
2025         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2026
2027         /* FDI must be feeding us bits for PCH ports */
2028         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2029         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2030
2031         /* Workaround: set timing override bit. */
2032         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2033         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2034         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2035
2036         val = TRANS_ENABLE;
2037         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2038
2039         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2040             PIPECONF_INTERLACED_ILK)
2041                 val |= TRANS_INTERLACED;
2042         else
2043                 val |= TRANS_PROGRESSIVE;
2044
2045         I915_WRITE(LPT_TRANSCONF, val);
2046         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2047                 DRM_ERROR("Failed to enable PCH transcoder\n");
2048 }
2049
2050 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2051                                             enum pipe pipe)
2052 {
2053         struct drm_device *dev = dev_priv->dev;
2054         uint32_t reg, val;
2055
2056         /* FDI relies on the transcoder */
2057         assert_fdi_tx_disabled(dev_priv, pipe);
2058         assert_fdi_rx_disabled(dev_priv, pipe);
2059
2060         /* Ports must be off as well */
2061         assert_pch_ports_disabled(dev_priv, pipe);
2062
2063         reg = PCH_TRANSCONF(pipe);
2064         val = I915_READ(reg);
2065         val &= ~TRANS_ENABLE;
2066         I915_WRITE(reg, val);
2067         /* wait for PCH transcoder off, transcoder state */
2068         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2069                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2070
2071         if (!HAS_PCH_IBX(dev)) {
2072                 /* Workaround: Clear the timing override chicken bit again. */
2073                 reg = TRANS_CHICKEN2(pipe);
2074                 val = I915_READ(reg);
2075                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2076                 I915_WRITE(reg, val);
2077         }
2078 }
2079
2080 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2081 {
2082         u32 val;
2083
2084         val = I915_READ(LPT_TRANSCONF);
2085         val &= ~TRANS_ENABLE;
2086         I915_WRITE(LPT_TRANSCONF, val);
2087         /* wait for PCH transcoder off, transcoder state */
2088         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2089                 DRM_ERROR("Failed to disable PCH transcoder\n");
2090
2091         /* Workaround: clear timing override bit. */
2092         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2093         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2094         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2095 }
2096
2097 /**
2098  * intel_enable_pipe - enable a pipe, asserting requirements
2099  * @crtc: crtc responsible for the pipe
2100  *
2101  * Enable @crtc's pipe, making sure that various hardware specific requirements
2102  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2103  */
2104 static void intel_enable_pipe(struct intel_crtc *crtc)
2105 {
2106         struct drm_device *dev = crtc->base.dev;
2107         struct drm_i915_private *dev_priv = dev->dev_private;
2108         enum pipe pipe = crtc->pipe;
2109         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2110                                                                       pipe);
2111         enum pipe pch_transcoder;
2112         int reg;
2113         u32 val;
2114
2115         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2116
2117         assert_planes_disabled(dev_priv, pipe);
2118         assert_cursor_disabled(dev_priv, pipe);
2119         assert_sprites_disabled(dev_priv, pipe);
2120
2121         if (HAS_PCH_LPT(dev_priv->dev))
2122                 pch_transcoder = TRANSCODER_A;
2123         else
2124                 pch_transcoder = pipe;
2125
2126         /*
2127          * A pipe without a PLL won't actually be able to drive bits from
2128          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2129          * need the check.
2130          */
2131         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2132                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2133                         assert_dsi_pll_enabled(dev_priv);
2134                 else
2135                         assert_pll_enabled(dev_priv, pipe);
2136         else {
2137                 if (crtc->config->has_pch_encoder) {
2138                         /* if driving the PCH, we need FDI enabled */
2139                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2140                         assert_fdi_tx_pll_enabled(dev_priv,
2141                                                   (enum pipe) cpu_transcoder);
2142                 }
2143                 /* FIXME: assert CPU port conditions for SNB+ */
2144         }
2145
2146         reg = PIPECONF(cpu_transcoder);
2147         val = I915_READ(reg);
2148         if (val & PIPECONF_ENABLE) {
2149                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2150                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2151                 return;
2152         }
2153
2154         I915_WRITE(reg, val | PIPECONF_ENABLE);
2155         POSTING_READ(reg);
2156 }
2157
2158 /**
2159  * intel_disable_pipe - disable a pipe, asserting requirements
2160  * @crtc: crtc whose pipes is to be disabled
2161  *
2162  * Disable the pipe of @crtc, making sure that various hardware
2163  * specific requirements are met, if applicable, e.g. plane
2164  * disabled, panel fitter off, etc.
2165  *
2166  * Will wait until the pipe has shut down before returning.
2167  */
2168 static void intel_disable_pipe(struct intel_crtc *crtc)
2169 {
2170         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2171         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2172         enum pipe pipe = crtc->pipe;
2173         int reg;
2174         u32 val;
2175
2176         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2177
2178         /*
2179          * Make sure planes won't keep trying to pump pixels to us,
2180          * or we might hang the display.
2181          */
2182         assert_planes_disabled(dev_priv, pipe);
2183         assert_cursor_disabled(dev_priv, pipe);
2184         assert_sprites_disabled(dev_priv, pipe);
2185
2186         reg = PIPECONF(cpu_transcoder);
2187         val = I915_READ(reg);
2188         if ((val & PIPECONF_ENABLE) == 0)
2189                 return;
2190
2191         /*
2192          * Double wide has implications for planes
2193          * so best keep it disabled when not needed.
2194          */
2195         if (crtc->config->double_wide)
2196                 val &= ~PIPECONF_DOUBLE_WIDE;
2197
2198         /* Don't disable pipe or pipe PLLs if needed */
2199         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2200             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2201                 val &= ~PIPECONF_ENABLE;
2202
2203         I915_WRITE(reg, val);
2204         if ((val & PIPECONF_ENABLE) == 0)
2205                 intel_wait_for_pipe_off(crtc);
2206 }
2207
2208 static bool need_vtd_wa(struct drm_device *dev)
2209 {
2210 #ifdef CONFIG_INTEL_IOMMU
2211         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2212                 return true;
2213 #endif
2214         return false;
2215 }
2216
2217 unsigned int
2218 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2219                   uint64_t fb_format_modifier, unsigned int plane)
2220 {
2221         unsigned int tile_height;
2222         uint32_t pixel_bytes;
2223
2224         switch (fb_format_modifier) {
2225         case DRM_FORMAT_MOD_NONE:
2226                 tile_height = 1;
2227                 break;
2228         case I915_FORMAT_MOD_X_TILED:
2229                 tile_height = IS_GEN2(dev) ? 16 : 8;
2230                 break;
2231         case I915_FORMAT_MOD_Y_TILED:
2232                 tile_height = 32;
2233                 break;
2234         case I915_FORMAT_MOD_Yf_TILED:
2235                 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2236                 switch (pixel_bytes) {
2237                 default:
2238                 case 1:
2239                         tile_height = 64;
2240                         break;
2241                 case 2:
2242                 case 4:
2243                         tile_height = 32;
2244                         break;
2245                 case 8:
2246                         tile_height = 16;
2247                         break;
2248                 case 16:
2249                         WARN_ONCE(1,
2250                                   "128-bit pixels are not supported for display!");
2251                         tile_height = 16;
2252                         break;
2253                 }
2254                 break;
2255         default:
2256                 MISSING_CASE(fb_format_modifier);
2257                 tile_height = 1;
2258                 break;
2259         }
2260
2261         return tile_height;
2262 }
2263
2264 unsigned int
2265 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2266                       uint32_t pixel_format, uint64_t fb_format_modifier)
2267 {
2268         return ALIGN(height, intel_tile_height(dev, pixel_format,
2269                                                fb_format_modifier, 0));
2270 }
2271
2272 static int
2273 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2274                         const struct drm_plane_state *plane_state)
2275 {
2276         struct intel_rotation_info *info = &view->rotation_info;
2277         unsigned int tile_height, tile_pitch;
2278
2279         *view = i915_ggtt_view_normal;
2280
2281         if (!plane_state)
2282                 return 0;
2283
2284         if (!intel_rotation_90_or_270(plane_state->rotation))
2285                 return 0;
2286
2287         *view = i915_ggtt_view_rotated;
2288
2289         info->height = fb->height;
2290         info->pixel_format = fb->pixel_format;
2291         info->pitch = fb->pitches[0];
2292         info->uv_offset = fb->offsets[1];
2293         info->fb_modifier = fb->modifier[0];
2294
2295         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2296                                         fb->modifier[0], 0);
2297         tile_pitch = PAGE_SIZE / tile_height;
2298         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2299         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2300         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2301
2302         if (info->pixel_format == DRM_FORMAT_NV12) {
2303                 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2304                                                 fb->modifier[0], 1);
2305                 tile_pitch = PAGE_SIZE / tile_height;
2306                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2307                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2308                                                      tile_height);
2309                 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2310                                 PAGE_SIZE;
2311         }
2312
2313         return 0;
2314 }
2315
2316 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2317 {
2318         if (INTEL_INFO(dev_priv)->gen >= 9)
2319                 return 256 * 1024;
2320         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2321                  IS_VALLEYVIEW(dev_priv))
2322                 return 128 * 1024;
2323         else if (INTEL_INFO(dev_priv)->gen >= 4)
2324                 return 4 * 1024;
2325         else
2326                 return 0;
2327 }
2328
2329 int
2330 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2331                            struct drm_framebuffer *fb,
2332                            const struct drm_plane_state *plane_state,
2333                            struct intel_engine_cs *pipelined,
2334                            struct drm_i915_gem_request **pipelined_request)
2335 {
2336         struct drm_device *dev = fb->dev;
2337         struct drm_i915_private *dev_priv = dev->dev_private;
2338         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2339         struct i915_ggtt_view view;
2340         u32 alignment;
2341         int ret;
2342
2343         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2344
2345         switch (fb->modifier[0]) {
2346         case DRM_FORMAT_MOD_NONE:
2347                 alignment = intel_linear_alignment(dev_priv);
2348                 break;
2349         case I915_FORMAT_MOD_X_TILED:
2350                 if (INTEL_INFO(dev)->gen >= 9)
2351                         alignment = 256 * 1024;
2352                 else {
2353                         /* pin() will align the object as required by fence */
2354                         alignment = 0;
2355                 }
2356                 break;
2357         case I915_FORMAT_MOD_Y_TILED:
2358         case I915_FORMAT_MOD_Yf_TILED:
2359                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2360                           "Y tiling bo slipped through, driver bug!\n"))
2361                         return -EINVAL;
2362                 alignment = 1 * 1024 * 1024;
2363                 break;
2364         default:
2365                 MISSING_CASE(fb->modifier[0]);
2366                 return -EINVAL;
2367         }
2368
2369         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2370         if (ret)
2371                 return ret;
2372
2373         /* Note that the w/a also requires 64 PTE of padding following the
2374          * bo. We currently fill all unused PTE with the shadow page and so
2375          * we should always have valid PTE following the scanout preventing
2376          * the VT-d warning.
2377          */
2378         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2379                 alignment = 256 * 1024;
2380
2381         /*
2382          * Global gtt pte registers are special registers which actually forward
2383          * writes to a chunk of system memory. Which means that there is no risk
2384          * that the register values disappear as soon as we call
2385          * intel_runtime_pm_put(), so it is correct to wrap only the
2386          * pin/unpin/fence and not more.
2387          */
2388         intel_runtime_pm_get(dev_priv);
2389
2390         dev_priv->mm.interruptible = false;
2391         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2392                                                    pipelined_request, &view);
2393         if (ret)
2394                 goto err_interruptible;
2395
2396         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2397          * fence, whereas 965+ only requires a fence if using
2398          * framebuffer compression.  For simplicity, we always install
2399          * a fence as the cost is not that onerous.
2400          */
2401         if (view.type == I915_GGTT_VIEW_NORMAL) {
2402                 ret = i915_gem_object_get_fence(obj);
2403                 if (ret == -EDEADLK) {
2404                         /*
2405                          * -EDEADLK means there are no free fences
2406                          * no pending flips.
2407                          *
2408                          * This is propagated to atomic, but it uses
2409                          * -EDEADLK to force a locking recovery, so
2410                          * change the returned error to -EBUSY.
2411                          */
2412                         ret = -EBUSY;
2413                         goto err_unpin;
2414                 } else if (ret)
2415                         goto err_unpin;
2416
2417                 i915_gem_object_pin_fence(obj);
2418         }
2419
2420         dev_priv->mm.interruptible = true;
2421         intel_runtime_pm_put(dev_priv);
2422         return 0;
2423
2424 err_unpin:
2425         i915_gem_object_unpin_from_display_plane(obj, &view);
2426 err_interruptible:
2427         dev_priv->mm.interruptible = true;
2428         intel_runtime_pm_put(dev_priv);
2429         return ret;
2430 }
2431
2432 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2433                                const struct drm_plane_state *plane_state)
2434 {
2435         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2436         struct i915_ggtt_view view;
2437         int ret;
2438
2439         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2440
2441         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2442         WARN_ONCE(ret, "Couldn't get view from plane state!");
2443
2444         if (view.type == I915_GGTT_VIEW_NORMAL)
2445                 i915_gem_object_unpin_fence(obj);
2446
2447         i915_gem_object_unpin_from_display_plane(obj, &view);
2448 }
2449
2450 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2451  * is assumed to be a power-of-two. */
2452 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2453                                              int *x, int *y,
2454                                              unsigned int tiling_mode,
2455                                              unsigned int cpp,
2456                                              unsigned int pitch)
2457 {
2458         if (tiling_mode != I915_TILING_NONE) {
2459                 unsigned int tile_rows, tiles;
2460
2461                 tile_rows = *y / 8;
2462                 *y %= 8;
2463
2464                 tiles = *x / (512/cpp);
2465                 *x %= 512/cpp;
2466
2467                 return tile_rows * pitch * 8 + tiles * 4096;
2468         } else {
2469                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2470                 unsigned int offset;
2471
2472                 offset = *y * pitch + *x * cpp;
2473                 *y = (offset & alignment) / pitch;
2474                 *x = ((offset & alignment) - *y * pitch) / cpp;
2475                 return offset & ~alignment;
2476         }
2477 }
2478
2479 static int i9xx_format_to_fourcc(int format)
2480 {
2481         switch (format) {
2482         case DISPPLANE_8BPP:
2483                 return DRM_FORMAT_C8;
2484         case DISPPLANE_BGRX555:
2485                 return DRM_FORMAT_XRGB1555;
2486         case DISPPLANE_BGRX565:
2487                 return DRM_FORMAT_RGB565;
2488         default:
2489         case DISPPLANE_BGRX888:
2490                 return DRM_FORMAT_XRGB8888;
2491         case DISPPLANE_RGBX888:
2492                 return DRM_FORMAT_XBGR8888;
2493         case DISPPLANE_BGRX101010:
2494                 return DRM_FORMAT_XRGB2101010;
2495         case DISPPLANE_RGBX101010:
2496                 return DRM_FORMAT_XBGR2101010;
2497         }
2498 }
2499
2500 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2501 {
2502         switch (format) {
2503         case PLANE_CTL_FORMAT_RGB_565:
2504                 return DRM_FORMAT_RGB565;
2505         default:
2506         case PLANE_CTL_FORMAT_XRGB_8888:
2507                 if (rgb_order) {
2508                         if (alpha)
2509                                 return DRM_FORMAT_ABGR8888;
2510                         else
2511                                 return DRM_FORMAT_XBGR8888;
2512                 } else {
2513                         if (alpha)
2514                                 return DRM_FORMAT_ARGB8888;
2515                         else
2516                                 return DRM_FORMAT_XRGB8888;
2517                 }
2518         case PLANE_CTL_FORMAT_XRGB_2101010:
2519                 if (rgb_order)
2520                         return DRM_FORMAT_XBGR2101010;
2521                 else
2522                         return DRM_FORMAT_XRGB2101010;
2523         }
2524 }
2525
2526 static bool
2527 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2528                               struct intel_initial_plane_config *plane_config)
2529 {
2530         struct drm_device *dev = crtc->base.dev;
2531         struct drm_i915_private *dev_priv = to_i915(dev);
2532         struct drm_i915_gem_object *obj = NULL;
2533         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2534         struct drm_framebuffer *fb = &plane_config->fb->base;
2535         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2536         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2537                                     PAGE_SIZE);
2538
2539         size_aligned -= base_aligned;
2540
2541         if (plane_config->size == 0)
2542                 return false;
2543
2544         /* If the FB is too big, just don't use it since fbdev is not very
2545          * important and we should probably use that space with FBC or other
2546          * features. */
2547         if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2548                 return false;
2549
2550         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2551                                                              base_aligned,
2552                                                              base_aligned,
2553                                                              size_aligned);
2554         if (!obj)
2555                 return false;
2556
2557         obj->tiling_mode = plane_config->tiling;
2558         if (obj->tiling_mode == I915_TILING_X)
2559                 obj->stride = fb->pitches[0];
2560
2561         mode_cmd.pixel_format = fb->pixel_format;
2562         mode_cmd.width = fb->width;
2563         mode_cmd.height = fb->height;
2564         mode_cmd.pitches[0] = fb->pitches[0];
2565         mode_cmd.modifier[0] = fb->modifier[0];
2566         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2567
2568         mutex_lock(&dev->struct_mutex);
2569         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2570                                    &mode_cmd, obj)) {
2571                 DRM_DEBUG_KMS("intel fb init failed\n");
2572                 goto out_unref_obj;
2573         }
2574         mutex_unlock(&dev->struct_mutex);
2575
2576         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2577         return true;
2578
2579 out_unref_obj:
2580         drm_gem_object_unreference(&obj->base);
2581         mutex_unlock(&dev->struct_mutex);
2582         return false;
2583 }
2584
2585 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2586 static void
2587 update_state_fb(struct drm_plane *plane)
2588 {
2589         if (plane->fb == plane->state->fb)
2590                 return;
2591
2592         if (plane->state->fb)
2593                 drm_framebuffer_unreference(plane->state->fb);
2594         plane->state->fb = plane->fb;
2595         if (plane->state->fb)
2596                 drm_framebuffer_reference(plane->state->fb);
2597 }
2598
2599 static void
2600 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2601                              struct intel_initial_plane_config *plane_config)
2602 {
2603         struct drm_device *dev = intel_crtc->base.dev;
2604         struct drm_i915_private *dev_priv = dev->dev_private;
2605         struct drm_crtc *c;
2606         struct intel_crtc *i;
2607         struct drm_i915_gem_object *obj;
2608         struct drm_plane *primary = intel_crtc->base.primary;
2609         struct drm_plane_state *plane_state = primary->state;
2610         struct drm_framebuffer *fb;
2611
2612         if (!plane_config->fb)
2613                 return;
2614
2615         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2616                 fb = &plane_config->fb->base;
2617                 goto valid_fb;
2618         }
2619
2620         kfree(plane_config->fb);
2621
2622         /*
2623          * Failed to alloc the obj, check to see if we should share
2624          * an fb with another CRTC instead
2625          */
2626         for_each_crtc(dev, c) {
2627                 i = to_intel_crtc(c);
2628
2629                 if (c == &intel_crtc->base)
2630                         continue;
2631
2632                 if (!i->active)
2633                         continue;
2634
2635                 fb = c->primary->fb;
2636                 if (!fb)
2637                         continue;
2638
2639                 obj = intel_fb_obj(fb);
2640                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2641                         drm_framebuffer_reference(fb);
2642                         goto valid_fb;
2643                 }
2644         }
2645
2646         return;
2647
2648 valid_fb:
2649         plane_state->src_x = plane_state->src_y = 0;
2650         plane_state->src_w = fb->width << 16;
2651         plane_state->src_h = fb->height << 16;
2652
2653         plane_state->crtc_x = plane_state->src_y = 0;
2654         plane_state->crtc_w = fb->width;
2655         plane_state->crtc_h = fb->height;
2656
2657         obj = intel_fb_obj(fb);
2658         if (obj->tiling_mode != I915_TILING_NONE)
2659                 dev_priv->preserve_bios_swizzle = true;
2660
2661         drm_framebuffer_reference(fb);
2662         primary->fb = primary->state->fb = fb;
2663         primary->crtc = primary->state->crtc = &intel_crtc->base;
2664         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2665         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2666 }
2667
2668 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2669                                       struct drm_framebuffer *fb,
2670                                       int x, int y)
2671 {
2672         struct drm_device *dev = crtc->dev;
2673         struct drm_i915_private *dev_priv = dev->dev_private;
2674         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2675         struct drm_plane *primary = crtc->primary;
2676         bool visible = to_intel_plane_state(primary->state)->visible;
2677         struct drm_i915_gem_object *obj;
2678         int plane = intel_crtc->plane;
2679         unsigned long linear_offset;
2680         u32 dspcntr;
2681         u32 reg = DSPCNTR(plane);
2682         int pixel_size;
2683
2684         if (!visible || !fb) {
2685                 I915_WRITE(reg, 0);
2686                 if (INTEL_INFO(dev)->gen >= 4)
2687                         I915_WRITE(DSPSURF(plane), 0);
2688                 else
2689                         I915_WRITE(DSPADDR(plane), 0);
2690                 POSTING_READ(reg);
2691                 return;
2692         }
2693
2694         obj = intel_fb_obj(fb);
2695         if (WARN_ON(obj == NULL))
2696                 return;
2697
2698         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2699
2700         dspcntr = DISPPLANE_GAMMA_ENABLE;
2701
2702         dspcntr |= DISPLAY_PLANE_ENABLE;
2703
2704         if (INTEL_INFO(dev)->gen < 4) {
2705                 if (intel_crtc->pipe == PIPE_B)
2706                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2707
2708                 /* pipesrc and dspsize control the size that is scaled from,
2709                  * which should always be the user's requested size.
2710                  */
2711                 I915_WRITE(DSPSIZE(plane),
2712                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2713                            (intel_crtc->config->pipe_src_w - 1));
2714                 I915_WRITE(DSPPOS(plane), 0);
2715         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2716                 I915_WRITE(PRIMSIZE(plane),
2717                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2718                            (intel_crtc->config->pipe_src_w - 1));
2719                 I915_WRITE(PRIMPOS(plane), 0);
2720                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2721         }
2722
2723         switch (fb->pixel_format) {
2724         case DRM_FORMAT_C8:
2725                 dspcntr |= DISPPLANE_8BPP;
2726                 break;
2727         case DRM_FORMAT_XRGB1555:
2728                 dspcntr |= DISPPLANE_BGRX555;
2729                 break;
2730         case DRM_FORMAT_RGB565:
2731                 dspcntr |= DISPPLANE_BGRX565;
2732                 break;
2733         case DRM_FORMAT_XRGB8888:
2734                 dspcntr |= DISPPLANE_BGRX888;
2735                 break;
2736         case DRM_FORMAT_XBGR8888:
2737                 dspcntr |= DISPPLANE_RGBX888;
2738                 break;
2739         case DRM_FORMAT_XRGB2101010:
2740                 dspcntr |= DISPPLANE_BGRX101010;
2741                 break;
2742         case DRM_FORMAT_XBGR2101010:
2743                 dspcntr |= DISPPLANE_RGBX101010;
2744                 break;
2745         default:
2746                 BUG();
2747         }
2748
2749         if (INTEL_INFO(dev)->gen >= 4 &&
2750             obj->tiling_mode != I915_TILING_NONE)
2751                 dspcntr |= DISPPLANE_TILED;
2752
2753         if (IS_G4X(dev))
2754                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2755
2756         linear_offset = y * fb->pitches[0] + x * pixel_size;
2757
2758         if (INTEL_INFO(dev)->gen >= 4) {
2759                 intel_crtc->dspaddr_offset =
2760                         intel_gen4_compute_page_offset(dev_priv,
2761                                                        &x, &y, obj->tiling_mode,
2762                                                        pixel_size,
2763                                                        fb->pitches[0]);
2764                 linear_offset -= intel_crtc->dspaddr_offset;
2765         } else {
2766                 intel_crtc->dspaddr_offset = linear_offset;
2767         }
2768
2769         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2770                 dspcntr |= DISPPLANE_ROTATE_180;
2771
2772                 x += (intel_crtc->config->pipe_src_w - 1);
2773                 y += (intel_crtc->config->pipe_src_h - 1);
2774
2775                 /* Finding the last pixel of the last line of the display
2776                 data and adding to linear_offset*/
2777                 linear_offset +=
2778                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2779                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2780         }
2781
2782         intel_crtc->adjusted_x = x;
2783         intel_crtc->adjusted_y = y;
2784
2785         I915_WRITE(reg, dspcntr);
2786
2787         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2788         if (INTEL_INFO(dev)->gen >= 4) {
2789                 I915_WRITE(DSPSURF(plane),
2790                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2791                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2792                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2793         } else
2794                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2795         POSTING_READ(reg);
2796 }
2797
2798 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2799                                           struct drm_framebuffer *fb,
2800                                           int x, int y)
2801 {
2802         struct drm_device *dev = crtc->dev;
2803         struct drm_i915_private *dev_priv = dev->dev_private;
2804         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2805         struct drm_plane *primary = crtc->primary;
2806         bool visible = to_intel_plane_state(primary->state)->visible;
2807         struct drm_i915_gem_object *obj;
2808         int plane = intel_crtc->plane;
2809         unsigned long linear_offset;
2810         u32 dspcntr;
2811         u32 reg = DSPCNTR(plane);
2812         int pixel_size;
2813
2814         if (!visible || !fb) {
2815                 I915_WRITE(reg, 0);
2816                 I915_WRITE(DSPSURF(plane), 0);
2817                 POSTING_READ(reg);
2818                 return;
2819         }
2820
2821         obj = intel_fb_obj(fb);
2822         if (WARN_ON(obj == NULL))
2823                 return;
2824
2825         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2826
2827         dspcntr = DISPPLANE_GAMMA_ENABLE;
2828
2829         dspcntr |= DISPLAY_PLANE_ENABLE;
2830
2831         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2832                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2833
2834         switch (fb->pixel_format) {
2835         case DRM_FORMAT_C8:
2836                 dspcntr |= DISPPLANE_8BPP;
2837                 break;
2838         case DRM_FORMAT_RGB565:
2839                 dspcntr |= DISPPLANE_BGRX565;
2840                 break;
2841         case DRM_FORMAT_XRGB8888:
2842                 dspcntr |= DISPPLANE_BGRX888;
2843                 break;
2844         case DRM_FORMAT_XBGR8888:
2845                 dspcntr |= DISPPLANE_RGBX888;
2846                 break;
2847         case DRM_FORMAT_XRGB2101010:
2848                 dspcntr |= DISPPLANE_BGRX101010;
2849                 break;
2850         case DRM_FORMAT_XBGR2101010:
2851                 dspcntr |= DISPPLANE_RGBX101010;
2852                 break;
2853         default:
2854                 BUG();
2855         }
2856
2857         if (obj->tiling_mode != I915_TILING_NONE)
2858                 dspcntr |= DISPPLANE_TILED;
2859
2860         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2861                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2862
2863         linear_offset = y * fb->pitches[0] + x * pixel_size;
2864         intel_crtc->dspaddr_offset =
2865                 intel_gen4_compute_page_offset(dev_priv,
2866                                                &x, &y, obj->tiling_mode,
2867                                                pixel_size,
2868                                                fb->pitches[0]);
2869         linear_offset -= intel_crtc->dspaddr_offset;
2870         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2871                 dspcntr |= DISPPLANE_ROTATE_180;
2872
2873                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2874                         x += (intel_crtc->config->pipe_src_w - 1);
2875                         y += (intel_crtc->config->pipe_src_h - 1);
2876
2877                         /* Finding the last pixel of the last line of the display
2878                         data and adding to linear_offset*/
2879                         linear_offset +=
2880                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2881                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2882                 }
2883         }
2884
2885         intel_crtc->adjusted_x = x;
2886         intel_crtc->adjusted_y = y;
2887
2888         I915_WRITE(reg, dspcntr);
2889
2890         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2891         I915_WRITE(DSPSURF(plane),
2892                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2893         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2894                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2895         } else {
2896                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2897                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2898         }
2899         POSTING_READ(reg);
2900 }
2901
2902 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2903                               uint32_t pixel_format)
2904 {
2905         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2906
2907         /*
2908          * The stride is either expressed as a multiple of 64 bytes
2909          * chunks for linear buffers or in number of tiles for tiled
2910          * buffers.
2911          */
2912         switch (fb_modifier) {
2913         case DRM_FORMAT_MOD_NONE:
2914                 return 64;
2915         case I915_FORMAT_MOD_X_TILED:
2916                 if (INTEL_INFO(dev)->gen == 2)
2917                         return 128;
2918                 return 512;
2919         case I915_FORMAT_MOD_Y_TILED:
2920                 /* No need to check for old gens and Y tiling since this is
2921                  * about the display engine and those will be blocked before
2922                  * we get here.
2923                  */
2924                 return 128;
2925         case I915_FORMAT_MOD_Yf_TILED:
2926                 if (bits_per_pixel == 8)
2927                         return 64;
2928                 else
2929                         return 128;
2930         default:
2931                 MISSING_CASE(fb_modifier);
2932                 return 64;
2933         }
2934 }
2935
2936 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2937                                      struct drm_i915_gem_object *obj,
2938                                      unsigned int plane)
2939 {
2940         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2941         struct i915_vma *vma;
2942         unsigned char *offset;
2943
2944         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2945                 view = &i915_ggtt_view_rotated;
2946
2947         vma = i915_gem_obj_to_ggtt_view(obj, view);
2948         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2949                 view->type))
2950                 return -1;
2951
2952         offset = (unsigned char *)vma->node.start;
2953
2954         if (plane == 1) {
2955                 offset += vma->ggtt_view.rotation_info.uv_start_page *
2956                           PAGE_SIZE;
2957         }
2958
2959         return (unsigned long)offset;
2960 }
2961
2962 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2963 {
2964         struct drm_device *dev = intel_crtc->base.dev;
2965         struct drm_i915_private *dev_priv = dev->dev_private;
2966
2967         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2968         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2969         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2970 }
2971
2972 /*
2973  * This function detaches (aka. unbinds) unused scalers in hardware
2974  */
2975 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2976 {
2977         struct intel_crtc_scaler_state *scaler_state;
2978         int i;
2979
2980         scaler_state = &intel_crtc->config->scaler_state;
2981
2982         /* loop through and disable scalers that aren't in use */
2983         for (i = 0; i < intel_crtc->num_scalers; i++) {
2984                 if (!scaler_state->scalers[i].in_use)
2985                         skl_detach_scaler(intel_crtc, i);
2986         }
2987 }
2988
2989 u32 skl_plane_ctl_format(uint32_t pixel_format)
2990 {
2991         switch (pixel_format) {
2992         case DRM_FORMAT_C8:
2993                 return PLANE_CTL_FORMAT_INDEXED;
2994         case DRM_FORMAT_RGB565:
2995                 return PLANE_CTL_FORMAT_RGB_565;
2996         case DRM_FORMAT_XBGR8888:
2997                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2998         case DRM_FORMAT_XRGB8888:
2999                 return PLANE_CTL_FORMAT_XRGB_8888;
3000         /*
3001          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3002          * to be already pre-multiplied. We need to add a knob (or a different
3003          * DRM_FORMAT) for user-space to configure that.
3004          */
3005         case DRM_FORMAT_ABGR8888:
3006                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3007                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3008         case DRM_FORMAT_ARGB8888:
3009                 return PLANE_CTL_FORMAT_XRGB_8888 |
3010                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3011         case DRM_FORMAT_XRGB2101010:
3012                 return PLANE_CTL_FORMAT_XRGB_2101010;
3013         case DRM_FORMAT_XBGR2101010:
3014                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3015         case DRM_FORMAT_YUYV:
3016                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3017         case DRM_FORMAT_YVYU:
3018                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3019         case DRM_FORMAT_UYVY:
3020                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3021         case DRM_FORMAT_VYUY:
3022                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3023         default:
3024                 MISSING_CASE(pixel_format);
3025         }
3026
3027         return 0;
3028 }
3029
3030 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3031 {
3032         switch (fb_modifier) {
3033         case DRM_FORMAT_MOD_NONE:
3034                 break;
3035         case I915_FORMAT_MOD_X_TILED:
3036                 return PLANE_CTL_TILED_X;
3037         case I915_FORMAT_MOD_Y_TILED:
3038                 return PLANE_CTL_TILED_Y;
3039         case I915_FORMAT_MOD_Yf_TILED:
3040                 return PLANE_CTL_TILED_YF;
3041         default:
3042                 MISSING_CASE(fb_modifier);
3043         }
3044
3045         return 0;
3046 }
3047
3048 u32 skl_plane_ctl_rotation(unsigned int rotation)
3049 {
3050         switch (rotation) {
3051         case BIT(DRM_ROTATE_0):
3052                 break;
3053         /*
3054          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3055          * while i915 HW rotation is clockwise, thats why this swapping.
3056          */
3057         case BIT(DRM_ROTATE_90):
3058                 return PLANE_CTL_ROTATE_270;
3059         case BIT(DRM_ROTATE_180):
3060                 return PLANE_CTL_ROTATE_180;
3061         case BIT(DRM_ROTATE_270):
3062                 return PLANE_CTL_ROTATE_90;
3063         default:
3064                 MISSING_CASE(rotation);
3065         }
3066
3067         return 0;
3068 }
3069
3070 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3071                                          struct drm_framebuffer *fb,
3072                                          int x, int y)
3073 {
3074         struct drm_device *dev = crtc->dev;
3075         struct drm_i915_private *dev_priv = dev->dev_private;
3076         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3077         struct drm_plane *plane = crtc->primary;
3078         bool visible = to_intel_plane_state(plane->state)->visible;
3079         struct drm_i915_gem_object *obj;
3080         int pipe = intel_crtc->pipe;
3081         u32 plane_ctl, stride_div, stride;
3082         u32 tile_height, plane_offset, plane_size;
3083         unsigned int rotation;
3084         int x_offset, y_offset;
3085         unsigned long surf_addr;
3086         struct intel_crtc_state *crtc_state = intel_crtc->config;
3087         struct intel_plane_state *plane_state;
3088         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3089         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3090         int scaler_id = -1;
3091
3092         plane_state = to_intel_plane_state(plane->state);
3093
3094         if (!visible || !fb) {
3095                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3096                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3097                 POSTING_READ(PLANE_CTL(pipe, 0));
3098                 return;
3099         }
3100
3101         plane_ctl = PLANE_CTL_ENABLE |
3102                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3103                     PLANE_CTL_PIPE_CSC_ENABLE;
3104
3105         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3106         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3107         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3108
3109         rotation = plane->state->rotation;
3110         plane_ctl |= skl_plane_ctl_rotation(rotation);
3111
3112         obj = intel_fb_obj(fb);
3113         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3114                                                fb->pixel_format);
3115         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3116
3117         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3118
3119         scaler_id = plane_state->scaler_id;
3120         src_x = plane_state->src.x1 >> 16;
3121         src_y = plane_state->src.y1 >> 16;
3122         src_w = drm_rect_width(&plane_state->src) >> 16;
3123         src_h = drm_rect_height(&plane_state->src) >> 16;
3124         dst_x = plane_state->dst.x1;
3125         dst_y = plane_state->dst.y1;
3126         dst_w = drm_rect_width(&plane_state->dst);
3127         dst_h = drm_rect_height(&plane_state->dst);
3128
3129         WARN_ON(x != src_x || y != src_y);
3130
3131         if (intel_rotation_90_or_270(rotation)) {
3132                 /* stride = Surface height in tiles */
3133                 tile_height = intel_tile_height(dev, fb->pixel_format,
3134                                                 fb->modifier[0], 0);
3135                 stride = DIV_ROUND_UP(fb->height, tile_height);
3136                 x_offset = stride * tile_height - y - src_h;
3137                 y_offset = x;
3138                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3139         } else {
3140                 stride = fb->pitches[0] / stride_div;
3141                 x_offset = x;
3142                 y_offset = y;
3143                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3144         }
3145         plane_offset = y_offset << 16 | x_offset;
3146
3147         intel_crtc->adjusted_x = x_offset;
3148         intel_crtc->adjusted_y = y_offset;
3149
3150         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3151         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3152         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3153         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3154
3155         if (scaler_id >= 0) {
3156                 uint32_t ps_ctrl = 0;
3157
3158                 WARN_ON(!dst_w || !dst_h);
3159                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3160                         crtc_state->scaler_state.scalers[scaler_id].mode;
3161                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3162                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3163                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3164                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3165                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3166         } else {
3167                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3168         }
3169
3170         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3171
3172         POSTING_READ(PLANE_SURF(pipe, 0));
3173 }
3174
3175 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3176 static int
3177 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3178                            int x, int y, enum mode_set_atomic state)
3179 {
3180         struct drm_device *dev = crtc->dev;
3181         struct drm_i915_private *dev_priv = dev->dev_private;
3182
3183         if (dev_priv->fbc.disable_fbc)
3184                 dev_priv->fbc.disable_fbc(dev_priv);
3185
3186         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3187
3188         return 0;
3189 }
3190
3191 static void intel_complete_page_flips(struct drm_device *dev)
3192 {
3193         struct drm_crtc *crtc;
3194
3195         for_each_crtc(dev, crtc) {
3196                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3197                 enum plane plane = intel_crtc->plane;
3198
3199                 intel_prepare_page_flip(dev, plane);
3200                 intel_finish_page_flip_plane(dev, plane);
3201         }
3202 }
3203
3204 static void intel_update_primary_planes(struct drm_device *dev)
3205 {
3206         struct drm_crtc *crtc;
3207
3208         for_each_crtc(dev, crtc) {
3209                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3210                 struct intel_plane_state *plane_state;
3211
3212                 drm_modeset_lock_crtc(crtc, &plane->base);
3213
3214                 plane_state = to_intel_plane_state(plane->base.state);
3215
3216                 if (plane_state->base.fb)
3217                         plane->commit_plane(&plane->base, plane_state);
3218
3219                 drm_modeset_unlock_crtc(crtc);
3220         }
3221 }
3222
3223 void intel_prepare_reset(struct drm_device *dev)
3224 {
3225         /* no reset support for gen2 */
3226         if (IS_GEN2(dev))
3227                 return;
3228
3229         /* reset doesn't touch the display */
3230         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3231                 return;
3232
3233         drm_modeset_lock_all(dev);
3234         /*
3235          * Disabling the crtcs gracefully seems nicer. Also the
3236          * g33 docs say we should at least disable all the planes.
3237          */
3238         intel_display_suspend(dev);
3239 }
3240
3241 void intel_finish_reset(struct drm_device *dev)
3242 {
3243         struct drm_i915_private *dev_priv = to_i915(dev);
3244
3245         /*
3246          * Flips in the rings will be nuked by the reset,
3247          * so complete all pending flips so that user space
3248          * will get its events and not get stuck.
3249          */
3250         intel_complete_page_flips(dev);
3251
3252         /* no reset support for gen2 */
3253         if (IS_GEN2(dev))
3254                 return;
3255
3256         /* reset doesn't touch the display */
3257         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3258                 /*
3259                  * Flips in the rings have been nuked by the reset,
3260                  * so update the base address of all primary
3261                  * planes to the the last fb to make sure we're
3262                  * showing the correct fb after a reset.
3263                  *
3264                  * FIXME: Atomic will make this obsolete since we won't schedule
3265                  * CS-based flips (which might get lost in gpu resets) any more.
3266                  */
3267                 intel_update_primary_planes(dev);
3268                 return;
3269         }
3270
3271         /*
3272          * The display has been reset as well,
3273          * so need a full re-initialization.
3274          */
3275         intel_runtime_pm_disable_interrupts(dev_priv);
3276         intel_runtime_pm_enable_interrupts(dev_priv);
3277
3278         intel_modeset_init_hw(dev);
3279
3280         spin_lock_irq(&dev_priv->irq_lock);
3281         if (dev_priv->display.hpd_irq_setup)
3282                 dev_priv->display.hpd_irq_setup(dev);
3283         spin_unlock_irq(&dev_priv->irq_lock);
3284
3285         intel_display_resume(dev);
3286
3287         intel_hpd_init(dev_priv);
3288
3289         drm_modeset_unlock_all(dev);
3290 }
3291
3292 static void
3293 intel_finish_fb(struct drm_framebuffer *old_fb)
3294 {
3295         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3296         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3297         bool was_interruptible = dev_priv->mm.interruptible;
3298         int ret;
3299
3300         /* Big Hammer, we also need to ensure that any pending
3301          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3302          * current scanout is retired before unpinning the old
3303          * framebuffer. Note that we rely on userspace rendering
3304          * into the buffer attached to the pipe they are waiting
3305          * on. If not, userspace generates a GPU hang with IPEHR
3306          * point to the MI_WAIT_FOR_EVENT.
3307          *
3308          * This should only fail upon a hung GPU, in which case we
3309          * can safely continue.
3310          */
3311         dev_priv->mm.interruptible = false;
3312         ret = i915_gem_object_wait_rendering(obj, true);
3313         dev_priv->mm.interruptible = was_interruptible;
3314
3315         WARN_ON(ret);
3316 }
3317
3318 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3319 {
3320         struct drm_device *dev = crtc->dev;
3321         struct drm_i915_private *dev_priv = dev->dev_private;
3322         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3323         bool pending;
3324
3325         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3326             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3327                 return false;
3328
3329         spin_lock_irq(&dev->event_lock);
3330         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3331         spin_unlock_irq(&dev->event_lock);
3332
3333         return pending;
3334 }
3335
3336 static void intel_update_pipe_config(struct intel_crtc *crtc,
3337                                      struct intel_crtc_state *old_crtc_state)
3338 {
3339         struct drm_device *dev = crtc->base.dev;
3340         struct drm_i915_private *dev_priv = dev->dev_private;
3341         struct intel_crtc_state *pipe_config =
3342                 to_intel_crtc_state(crtc->base.state);
3343
3344         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3345         crtc->base.mode = crtc->base.state->mode;
3346
3347         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3348                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3349                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3350
3351         if (HAS_DDI(dev))
3352                 intel_set_pipe_csc(&crtc->base);
3353
3354         /*
3355          * Update pipe size and adjust fitter if needed: the reason for this is
3356          * that in compute_mode_changes we check the native mode (not the pfit
3357          * mode) to see if we can flip rather than do a full mode set. In the
3358          * fastboot case, we'll flip, but if we don't update the pipesrc and
3359          * pfit state, we'll end up with a big fb scanned out into the wrong
3360          * sized surface.
3361          */
3362
3363         I915_WRITE(PIPESRC(crtc->pipe),
3364                    ((pipe_config->pipe_src_w - 1) << 16) |
3365                    (pipe_config->pipe_src_h - 1));
3366
3367         /* on skylake this is done by detaching scalers */
3368         if (INTEL_INFO(dev)->gen >= 9) {
3369                 skl_detach_scalers(crtc);
3370
3371                 if (pipe_config->pch_pfit.enabled)
3372                         skylake_pfit_enable(crtc);
3373         } else if (HAS_PCH_SPLIT(dev)) {
3374                 if (pipe_config->pch_pfit.enabled)
3375                         ironlake_pfit_enable(crtc);
3376                 else if (old_crtc_state->pch_pfit.enabled)
3377                         ironlake_pfit_disable(crtc, true);
3378         }
3379 }
3380
3381 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3382 {
3383         struct drm_device *dev = crtc->dev;
3384         struct drm_i915_private *dev_priv = dev->dev_private;
3385         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3386         int pipe = intel_crtc->pipe;
3387         u32 reg, temp;
3388
3389         /* enable normal train */
3390         reg = FDI_TX_CTL(pipe);
3391         temp = I915_READ(reg);
3392         if (IS_IVYBRIDGE(dev)) {
3393                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3394                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3395         } else {
3396                 temp &= ~FDI_LINK_TRAIN_NONE;
3397                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3398         }
3399         I915_WRITE(reg, temp);
3400
3401         reg = FDI_RX_CTL(pipe);
3402         temp = I915_READ(reg);
3403         if (HAS_PCH_CPT(dev)) {
3404                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3405                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3406         } else {
3407                 temp &= ~FDI_LINK_TRAIN_NONE;
3408                 temp |= FDI_LINK_TRAIN_NONE;
3409         }
3410         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3411
3412         /* wait one idle pattern time */
3413         POSTING_READ(reg);
3414         udelay(1000);
3415
3416         /* IVB wants error correction enabled */
3417         if (IS_IVYBRIDGE(dev))
3418                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3419                            FDI_FE_ERRC_ENABLE);
3420 }
3421
3422 /* The FDI link training functions for ILK/Ibexpeak. */
3423 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3424 {
3425         struct drm_device *dev = crtc->dev;
3426         struct drm_i915_private *dev_priv = dev->dev_private;
3427         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3428         int pipe = intel_crtc->pipe;
3429         u32 reg, temp, tries;
3430
3431         /* FDI needs bits from pipe first */
3432         assert_pipe_enabled(dev_priv, pipe);
3433
3434         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3435            for train result */
3436         reg = FDI_RX_IMR(pipe);
3437         temp = I915_READ(reg);
3438         temp &= ~FDI_RX_SYMBOL_LOCK;
3439         temp &= ~FDI_RX_BIT_LOCK;
3440         I915_WRITE(reg, temp);
3441         I915_READ(reg);
3442         udelay(150);
3443
3444         /* enable CPU FDI TX and PCH FDI RX */
3445         reg = FDI_TX_CTL(pipe);
3446         temp = I915_READ(reg);
3447         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3448         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3449         temp &= ~FDI_LINK_TRAIN_NONE;
3450         temp |= FDI_LINK_TRAIN_PATTERN_1;
3451         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3452
3453         reg = FDI_RX_CTL(pipe);
3454         temp = I915_READ(reg);
3455         temp &= ~FDI_LINK_TRAIN_NONE;
3456         temp |= FDI_LINK_TRAIN_PATTERN_1;
3457         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3458
3459         POSTING_READ(reg);
3460         udelay(150);
3461
3462         /* Ironlake workaround, enable clock pointer after FDI enable*/
3463         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3464         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3465                    FDI_RX_PHASE_SYNC_POINTER_EN);
3466
3467         reg = FDI_RX_IIR(pipe);
3468         for (tries = 0; tries < 5; tries++) {
3469                 temp = I915_READ(reg);
3470                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3471
3472                 if ((temp & FDI_RX_BIT_LOCK)) {
3473                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3474                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3475                         break;
3476                 }
3477         }
3478         if (tries == 5)
3479                 DRM_ERROR("FDI train 1 fail!\n");
3480
3481         /* Train 2 */
3482         reg = FDI_TX_CTL(pipe);
3483         temp = I915_READ(reg);
3484         temp &= ~FDI_LINK_TRAIN_NONE;
3485         temp |= FDI_LINK_TRAIN_PATTERN_2;
3486         I915_WRITE(reg, temp);
3487
3488         reg = FDI_RX_CTL(pipe);
3489         temp = I915_READ(reg);
3490         temp &= ~FDI_LINK_TRAIN_NONE;
3491         temp |= FDI_LINK_TRAIN_PATTERN_2;
3492         I915_WRITE(reg, temp);
3493
3494         POSTING_READ(reg);
3495         udelay(150);
3496
3497         reg = FDI_RX_IIR(pipe);
3498         for (tries = 0; tries < 5; tries++) {
3499                 temp = I915_READ(reg);
3500                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3501
3502                 if (temp & FDI_RX_SYMBOL_LOCK) {
3503                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3504                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3505                         break;
3506                 }
3507         }
3508         if (tries == 5)
3509                 DRM_ERROR("FDI train 2 fail!\n");
3510
3511         DRM_DEBUG_KMS("FDI train done\n");
3512
3513 }
3514
3515 static const int snb_b_fdi_train_param[] = {
3516         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3517         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3518         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3519         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3520 };
3521
3522 /* The FDI link training functions for SNB/Cougarpoint. */
3523 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3524 {
3525         struct drm_device *dev = crtc->dev;
3526         struct drm_i915_private *dev_priv = dev->dev_private;
3527         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3528         int pipe = intel_crtc->pipe;
3529         u32 reg, temp, i, retry;
3530
3531         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3532            for train result */
3533         reg = FDI_RX_IMR(pipe);
3534         temp = I915_READ(reg);
3535         temp &= ~FDI_RX_SYMBOL_LOCK;
3536         temp &= ~FDI_RX_BIT_LOCK;
3537         I915_WRITE(reg, temp);
3538
3539         POSTING_READ(reg);
3540         udelay(150);
3541
3542         /* enable CPU FDI TX and PCH FDI RX */
3543         reg = FDI_TX_CTL(pipe);
3544         temp = I915_READ(reg);
3545         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3546         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3547         temp &= ~FDI_LINK_TRAIN_NONE;
3548         temp |= FDI_LINK_TRAIN_PATTERN_1;
3549         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3550         /* SNB-B */
3551         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3552         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3553
3554         I915_WRITE(FDI_RX_MISC(pipe),
3555                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3556
3557         reg = FDI_RX_CTL(pipe);
3558         temp = I915_READ(reg);
3559         if (HAS_PCH_CPT(dev)) {
3560                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3561                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3562         } else {
3563                 temp &= ~FDI_LINK_TRAIN_NONE;
3564                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3565         }
3566         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3567
3568         POSTING_READ(reg);
3569         udelay(150);
3570
3571         for (i = 0; i < 4; i++) {
3572                 reg = FDI_TX_CTL(pipe);
3573                 temp = I915_READ(reg);
3574                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3575                 temp |= snb_b_fdi_train_param[i];
3576                 I915_WRITE(reg, temp);
3577
3578                 POSTING_READ(reg);
3579                 udelay(500);
3580
3581                 for (retry = 0; retry < 5; retry++) {
3582                         reg = FDI_RX_IIR(pipe);
3583                         temp = I915_READ(reg);
3584                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3585                         if (temp & FDI_RX_BIT_LOCK) {
3586                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3587                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3588                                 break;
3589                         }
3590                         udelay(50);
3591                 }
3592                 if (retry < 5)
3593                         break;
3594         }
3595         if (i == 4)
3596                 DRM_ERROR("FDI train 1 fail!\n");
3597
3598         /* Train 2 */
3599         reg = FDI_TX_CTL(pipe);
3600         temp = I915_READ(reg);
3601         temp &= ~FDI_LINK_TRAIN_NONE;
3602         temp |= FDI_LINK_TRAIN_PATTERN_2;
3603         if (IS_GEN6(dev)) {
3604                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3605                 /* SNB-B */
3606                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3607         }
3608         I915_WRITE(reg, temp);
3609
3610         reg = FDI_RX_CTL(pipe);
3611         temp = I915_READ(reg);
3612         if (HAS_PCH_CPT(dev)) {
3613                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3614                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3615         } else {
3616                 temp &= ~FDI_LINK_TRAIN_NONE;
3617                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3618         }
3619         I915_WRITE(reg, temp);
3620
3621         POSTING_READ(reg);
3622         udelay(150);
3623
3624         for (i = 0; i < 4; i++) {
3625                 reg = FDI_TX_CTL(pipe);
3626                 temp = I915_READ(reg);
3627                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3628                 temp |= snb_b_fdi_train_param[i];
3629                 I915_WRITE(reg, temp);
3630
3631                 POSTING_READ(reg);
3632                 udelay(500);
3633
3634                 for (retry = 0; retry < 5; retry++) {
3635                         reg = FDI_RX_IIR(pipe);
3636                         temp = I915_READ(reg);
3637                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3638                         if (temp & FDI_RX_SYMBOL_LOCK) {
3639                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3640                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3641                                 break;
3642                         }
3643                         udelay(50);
3644                 }
3645                 if (retry < 5)
3646                         break;
3647         }
3648         if (i == 4)
3649                 DRM_ERROR("FDI train 2 fail!\n");
3650
3651         DRM_DEBUG_KMS("FDI train done.\n");
3652 }
3653
3654 /* Manual link training for Ivy Bridge A0 parts */
3655 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3656 {
3657         struct drm_device *dev = crtc->dev;
3658         struct drm_i915_private *dev_priv = dev->dev_private;
3659         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3660         int pipe = intel_crtc->pipe;
3661         u32 reg, temp, i, j;
3662
3663         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3664            for train result */
3665         reg = FDI_RX_IMR(pipe);
3666         temp = I915_READ(reg);
3667         temp &= ~FDI_RX_SYMBOL_LOCK;
3668         temp &= ~FDI_RX_BIT_LOCK;
3669         I915_WRITE(reg, temp);
3670
3671         POSTING_READ(reg);
3672         udelay(150);
3673
3674         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3675                       I915_READ(FDI_RX_IIR(pipe)));
3676
3677         /* Try each vswing and preemphasis setting twice before moving on */
3678         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3679                 /* disable first in case we need to retry */
3680                 reg = FDI_TX_CTL(pipe);
3681                 temp = I915_READ(reg);
3682                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3683                 temp &= ~FDI_TX_ENABLE;
3684                 I915_WRITE(reg, temp);
3685
3686                 reg = FDI_RX_CTL(pipe);
3687                 temp = I915_READ(reg);
3688                 temp &= ~FDI_LINK_TRAIN_AUTO;
3689                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3690                 temp &= ~FDI_RX_ENABLE;
3691                 I915_WRITE(reg, temp);
3692
3693                 /* enable CPU FDI TX and PCH FDI RX */
3694                 reg = FDI_TX_CTL(pipe);
3695                 temp = I915_READ(reg);
3696                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3697                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3698                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3699                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3700                 temp |= snb_b_fdi_train_param[j/2];
3701                 temp |= FDI_COMPOSITE_SYNC;
3702                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3703
3704                 I915_WRITE(FDI_RX_MISC(pipe),
3705                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3706
3707                 reg = FDI_RX_CTL(pipe);
3708                 temp = I915_READ(reg);
3709                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3710                 temp |= FDI_COMPOSITE_SYNC;
3711                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3712
3713                 POSTING_READ(reg);
3714                 udelay(1); /* should be 0.5us */
3715
3716                 for (i = 0; i < 4; i++) {
3717                         reg = FDI_RX_IIR(pipe);
3718                         temp = I915_READ(reg);
3719                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3720
3721                         if (temp & FDI_RX_BIT_LOCK ||
3722                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3723                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3724                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3725                                               i);
3726                                 break;
3727                         }
3728                         udelay(1); /* should be 0.5us */
3729                 }
3730                 if (i == 4) {
3731                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3732                         continue;
3733                 }
3734
3735                 /* Train 2 */
3736                 reg = FDI_TX_CTL(pipe);
3737                 temp = I915_READ(reg);
3738                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3739                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3740                 I915_WRITE(reg, temp);
3741
3742                 reg = FDI_RX_CTL(pipe);
3743                 temp = I915_READ(reg);
3744                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3745                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3746                 I915_WRITE(reg, temp);
3747
3748                 POSTING_READ(reg);
3749                 udelay(2); /* should be 1.5us */
3750
3751                 for (i = 0; i < 4; i++) {
3752                         reg = FDI_RX_IIR(pipe);
3753                         temp = I915_READ(reg);
3754                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3755
3756                         if (temp & FDI_RX_SYMBOL_LOCK ||
3757                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3758                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3759                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3760                                               i);
3761                                 goto train_done;
3762                         }
3763                         udelay(2); /* should be 1.5us */
3764                 }
3765                 if (i == 4)
3766                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3767         }
3768
3769 train_done:
3770         DRM_DEBUG_KMS("FDI train done.\n");
3771 }
3772
3773 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3774 {
3775         struct drm_device *dev = intel_crtc->base.dev;
3776         struct drm_i915_private *dev_priv = dev->dev_private;
3777         int pipe = intel_crtc->pipe;
3778         u32 reg, temp;
3779
3780
3781         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3782         reg = FDI_RX_CTL(pipe);
3783         temp = I915_READ(reg);
3784         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3785         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3786         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3787         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3788
3789         POSTING_READ(reg);
3790         udelay(200);
3791
3792         /* Switch from Rawclk to PCDclk */
3793         temp = I915_READ(reg);
3794         I915_WRITE(reg, temp | FDI_PCDCLK);
3795
3796         POSTING_READ(reg);
3797         udelay(200);
3798
3799         /* Enable CPU FDI TX PLL, always on for Ironlake */
3800         reg = FDI_TX_CTL(pipe);
3801         temp = I915_READ(reg);
3802         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3803                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3804
3805                 POSTING_READ(reg);
3806                 udelay(100);
3807         }
3808 }
3809
3810 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3811 {
3812         struct drm_device *dev = intel_crtc->base.dev;
3813         struct drm_i915_private *dev_priv = dev->dev_private;
3814         int pipe = intel_crtc->pipe;
3815         u32 reg, temp;
3816
3817         /* Switch from PCDclk to Rawclk */
3818         reg = FDI_RX_CTL(pipe);
3819         temp = I915_READ(reg);
3820         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3821
3822         /* Disable CPU FDI TX PLL */
3823         reg = FDI_TX_CTL(pipe);
3824         temp = I915_READ(reg);
3825         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3826
3827         POSTING_READ(reg);
3828         udelay(100);
3829
3830         reg = FDI_RX_CTL(pipe);
3831         temp = I915_READ(reg);
3832         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3833
3834         /* Wait for the clocks to turn off. */
3835         POSTING_READ(reg);
3836         udelay(100);
3837 }
3838
3839 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3840 {
3841         struct drm_device *dev = crtc->dev;
3842         struct drm_i915_private *dev_priv = dev->dev_private;
3843         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3844         int pipe = intel_crtc->pipe;
3845         u32 reg, temp;
3846
3847         /* disable CPU FDI tx and PCH FDI rx */
3848         reg = FDI_TX_CTL(pipe);
3849         temp = I915_READ(reg);
3850         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3851         POSTING_READ(reg);
3852
3853         reg = FDI_RX_CTL(pipe);
3854         temp = I915_READ(reg);
3855         temp &= ~(0x7 << 16);
3856         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3857         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3858
3859         POSTING_READ(reg);
3860         udelay(100);
3861
3862         /* Ironlake workaround, disable clock pointer after downing FDI */
3863         if (HAS_PCH_IBX(dev))
3864                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3865
3866         /* still set train pattern 1 */
3867         reg = FDI_TX_CTL(pipe);
3868         temp = I915_READ(reg);
3869         temp &= ~FDI_LINK_TRAIN_NONE;
3870         temp |= FDI_LINK_TRAIN_PATTERN_1;
3871         I915_WRITE(reg, temp);
3872
3873         reg = FDI_RX_CTL(pipe);
3874         temp = I915_READ(reg);
3875         if (HAS_PCH_CPT(dev)) {
3876                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3877                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3878         } else {
3879                 temp &= ~FDI_LINK_TRAIN_NONE;
3880                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3881         }
3882         /* BPC in FDI rx is consistent with that in PIPECONF */
3883         temp &= ~(0x07 << 16);
3884         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3885         I915_WRITE(reg, temp);
3886
3887         POSTING_READ(reg);
3888         udelay(100);
3889 }
3890
3891 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3892 {
3893         struct intel_crtc *crtc;
3894
3895         /* Note that we don't need to be called with mode_config.lock here
3896          * as our list of CRTC objects is static for the lifetime of the
3897          * device and so cannot disappear as we iterate. Similarly, we can
3898          * happily treat the predicates as racy, atomic checks as userspace
3899          * cannot claim and pin a new fb without at least acquring the
3900          * struct_mutex and so serialising with us.
3901          */
3902         for_each_intel_crtc(dev, crtc) {
3903                 if (atomic_read(&crtc->unpin_work_count) == 0)
3904                         continue;
3905
3906                 if (crtc->unpin_work)
3907                         intel_wait_for_vblank(dev, crtc->pipe);
3908
3909                 return true;
3910         }
3911
3912         return false;
3913 }
3914
3915 static void page_flip_completed(struct intel_crtc *intel_crtc)
3916 {
3917         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3918         struct intel_unpin_work *work = intel_crtc->unpin_work;
3919
3920         /* ensure that the unpin work is consistent wrt ->pending. */
3921         smp_rmb();
3922         intel_crtc->unpin_work = NULL;
3923
3924         if (work->event)
3925                 drm_send_vblank_event(intel_crtc->base.dev,
3926                                       intel_crtc->pipe,
3927                                       work->event);
3928
3929         drm_crtc_vblank_put(&intel_crtc->base);
3930
3931         wake_up_all(&dev_priv->pending_flip_queue);
3932         queue_work(dev_priv->wq, &work->work);
3933
3934         trace_i915_flip_complete(intel_crtc->plane,
3935                                  work->pending_flip_obj);
3936 }
3937
3938 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3939 {
3940         struct drm_device *dev = crtc->dev;
3941         struct drm_i915_private *dev_priv = dev->dev_private;
3942
3943         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3944         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3945                                        !intel_crtc_has_pending_flip(crtc),
3946                                        60*HZ) == 0)) {
3947                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3948
3949                 spin_lock_irq(&dev->event_lock);
3950                 if (intel_crtc->unpin_work) {
3951                         WARN_ONCE(1, "Removing stuck page flip\n");
3952                         page_flip_completed(intel_crtc);
3953                 }
3954                 spin_unlock_irq(&dev->event_lock);
3955         }
3956
3957         if (crtc->primary->fb) {
3958                 mutex_lock(&dev->struct_mutex);
3959                 intel_finish_fb(crtc->primary->fb);
3960                 mutex_unlock(&dev->struct_mutex);
3961         }
3962 }
3963
3964 /* Program iCLKIP clock to the desired frequency */
3965 static void lpt_program_iclkip(struct drm_crtc *crtc)
3966 {
3967         struct drm_device *dev = crtc->dev;
3968         struct drm_i915_private *dev_priv = dev->dev_private;
3969         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3970         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3971         u32 temp;
3972
3973         mutex_lock(&dev_priv->sb_lock);
3974
3975         /* It is necessary to ungate the pixclk gate prior to programming
3976          * the divisors, and gate it back when it is done.
3977          */
3978         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3979
3980         /* Disable SSCCTL */
3981         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3982                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3983                                 SBI_SSCCTL_DISABLE,
3984                         SBI_ICLK);
3985
3986         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3987         if (clock == 20000) {
3988                 auxdiv = 1;
3989                 divsel = 0x41;
3990                 phaseinc = 0x20;
3991         } else {
3992                 /* The iCLK virtual clock root frequency is in MHz,
3993                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3994                  * divisors, it is necessary to divide one by another, so we
3995                  * convert the virtual clock precision to KHz here for higher
3996                  * precision.
3997                  */
3998                 u32 iclk_virtual_root_freq = 172800 * 1000;
3999                 u32 iclk_pi_range = 64;
4000                 u32 desired_divisor, msb_divisor_value, pi_value;
4001
4002                 desired_divisor = (iclk_virtual_root_freq / clock);
4003                 msb_divisor_value = desired_divisor / iclk_pi_range;
4004                 pi_value = desired_divisor % iclk_pi_range;
4005
4006                 auxdiv = 0;
4007                 divsel = msb_divisor_value - 2;
4008                 phaseinc = pi_value;
4009         }
4010
4011         /* This should not happen with any sane values */
4012         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4013                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4014         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4015                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4016
4017         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4018                         clock,
4019                         auxdiv,
4020                         divsel,
4021                         phasedir,
4022                         phaseinc);
4023
4024         /* Program SSCDIVINTPHASE6 */
4025         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4026         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4027         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4028         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4029         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4030         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4031         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4032         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4033
4034         /* Program SSCAUXDIV */
4035         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4036         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4037         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4038         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4039
4040         /* Enable modulator and associated divider */
4041         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4042         temp &= ~SBI_SSCCTL_DISABLE;
4043         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4044
4045         /* Wait for initialization time */
4046         udelay(24);
4047
4048         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4049
4050         mutex_unlock(&dev_priv->sb_lock);
4051 }
4052
4053 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4054                                                 enum pipe pch_transcoder)
4055 {
4056         struct drm_device *dev = crtc->base.dev;
4057         struct drm_i915_private *dev_priv = dev->dev_private;
4058         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4059
4060         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4061                    I915_READ(HTOTAL(cpu_transcoder)));
4062         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4063                    I915_READ(HBLANK(cpu_transcoder)));
4064         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4065                    I915_READ(HSYNC(cpu_transcoder)));
4066
4067         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4068                    I915_READ(VTOTAL(cpu_transcoder)));
4069         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4070                    I915_READ(VBLANK(cpu_transcoder)));
4071         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4072                    I915_READ(VSYNC(cpu_transcoder)));
4073         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4074                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4075 }
4076
4077 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4078 {
4079         struct drm_i915_private *dev_priv = dev->dev_private;
4080         uint32_t temp;
4081
4082         temp = I915_READ(SOUTH_CHICKEN1);
4083         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4084                 return;
4085
4086         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4087         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4088
4089         temp &= ~FDI_BC_BIFURCATION_SELECT;
4090         if (enable)
4091                 temp |= FDI_BC_BIFURCATION_SELECT;
4092
4093         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4094         I915_WRITE(SOUTH_CHICKEN1, temp);
4095         POSTING_READ(SOUTH_CHICKEN1);
4096 }
4097
4098 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4099 {
4100         struct drm_device *dev = intel_crtc->base.dev;
4101
4102         switch (intel_crtc->pipe) {
4103         case PIPE_A:
4104                 break;
4105         case PIPE_B:
4106                 if (intel_crtc->config->fdi_lanes > 2)
4107                         cpt_set_fdi_bc_bifurcation(dev, false);
4108                 else
4109                         cpt_set_fdi_bc_bifurcation(dev, true);
4110
4111                 break;
4112         case PIPE_C:
4113                 cpt_set_fdi_bc_bifurcation(dev, true);
4114
4115                 break;
4116         default:
4117                 BUG();
4118         }
4119 }
4120
4121 /*
4122  * Enable PCH resources required for PCH ports:
4123  *   - PCH PLLs
4124  *   - FDI training & RX/TX
4125  *   - update transcoder timings
4126  *   - DP transcoding bits
4127  *   - transcoder
4128  */
4129 static void ironlake_pch_enable(struct drm_crtc *crtc)
4130 {
4131         struct drm_device *dev = crtc->dev;
4132         struct drm_i915_private *dev_priv = dev->dev_private;
4133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4134         int pipe = intel_crtc->pipe;
4135         u32 reg, temp;
4136
4137         assert_pch_transcoder_disabled(dev_priv, pipe);
4138
4139         if (IS_IVYBRIDGE(dev))
4140                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4141
4142         /* Write the TU size bits before fdi link training, so that error
4143          * detection works. */
4144         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4145                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4146
4147         /* For PCH output, training FDI link */
4148         dev_priv->display.fdi_link_train(crtc);
4149
4150         /* We need to program the right clock selection before writing the pixel
4151          * mutliplier into the DPLL. */
4152         if (HAS_PCH_CPT(dev)) {
4153                 u32 sel;
4154
4155                 temp = I915_READ(PCH_DPLL_SEL);
4156                 temp |= TRANS_DPLL_ENABLE(pipe);
4157                 sel = TRANS_DPLLB_SEL(pipe);
4158                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4159                         temp |= sel;
4160                 else
4161                         temp &= ~sel;
4162                 I915_WRITE(PCH_DPLL_SEL, temp);
4163         }
4164
4165         /* XXX: pch pll's can be enabled any time before we enable the PCH
4166          * transcoder, and we actually should do this to not upset any PCH
4167          * transcoder that already use the clock when we share it.
4168          *
4169          * Note that enable_shared_dpll tries to do the right thing, but
4170          * get_shared_dpll unconditionally resets the pll - we need that to have
4171          * the right LVDS enable sequence. */
4172         intel_enable_shared_dpll(intel_crtc);
4173
4174         /* set transcoder timing, panel must allow it */
4175         assert_panel_unlocked(dev_priv, pipe);
4176         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4177
4178         intel_fdi_normal_train(crtc);
4179
4180         /* For PCH DP, enable TRANS_DP_CTL */
4181         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4182                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4183                 reg = TRANS_DP_CTL(pipe);
4184                 temp = I915_READ(reg);
4185                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4186                           TRANS_DP_SYNC_MASK |
4187                           TRANS_DP_BPC_MASK);
4188                 temp |= TRANS_DP_OUTPUT_ENABLE;
4189                 temp |= bpc << 9; /* same format but at 11:9 */
4190
4191                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4192                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4193                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4194                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4195
4196                 switch (intel_trans_dp_port_sel(crtc)) {
4197                 case PCH_DP_B:
4198                         temp |= TRANS_DP_PORT_SEL_B;
4199                         break;
4200                 case PCH_DP_C:
4201                         temp |= TRANS_DP_PORT_SEL_C;
4202                         break;
4203                 case PCH_DP_D:
4204                         temp |= TRANS_DP_PORT_SEL_D;
4205                         break;
4206                 default:
4207                         BUG();
4208                 }
4209
4210                 I915_WRITE(reg, temp);
4211         }
4212
4213         ironlake_enable_pch_transcoder(dev_priv, pipe);
4214 }
4215
4216 static void lpt_pch_enable(struct drm_crtc *crtc)
4217 {
4218         struct drm_device *dev = crtc->dev;
4219         struct drm_i915_private *dev_priv = dev->dev_private;
4220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4221         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4222
4223         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4224
4225         lpt_program_iclkip(crtc);
4226
4227         /* Set transcoder timing. */
4228         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4229
4230         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4231 }
4232
4233 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4234                                                 struct intel_crtc_state *crtc_state)
4235 {
4236         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4237         struct intel_shared_dpll *pll;
4238         struct intel_shared_dpll_config *shared_dpll;
4239         enum intel_dpll_id i;
4240
4241         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4242
4243         if (HAS_PCH_IBX(dev_priv->dev)) {
4244                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4245                 i = (enum intel_dpll_id) crtc->pipe;
4246                 pll = &dev_priv->shared_dplls[i];
4247
4248                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4249                               crtc->base.base.id, pll->name);
4250
4251                 WARN_ON(shared_dpll[i].crtc_mask);
4252
4253                 goto found;
4254         }
4255
4256         if (IS_BROXTON(dev_priv->dev)) {
4257                 /* PLL is attached to port in bxt */
4258                 struct intel_encoder *encoder;
4259                 struct intel_digital_port *intel_dig_port;
4260
4261                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4262                 if (WARN_ON(!encoder))
4263                         return NULL;
4264
4265                 intel_dig_port = enc_to_dig_port(&encoder->base);
4266                 /* 1:1 mapping between ports and PLLs */
4267                 i = (enum intel_dpll_id)intel_dig_port->port;
4268                 pll = &dev_priv->shared_dplls[i];
4269                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4270                         crtc->base.base.id, pll->name);
4271                 WARN_ON(shared_dpll[i].crtc_mask);
4272
4273                 goto found;
4274         }
4275
4276         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4277                 pll = &dev_priv->shared_dplls[i];
4278
4279                 /* Only want to check enabled timings first */
4280                 if (shared_dpll[i].crtc_mask == 0)
4281                         continue;
4282
4283                 if (memcmp(&crtc_state->dpll_hw_state,
4284                            &shared_dpll[i].hw_state,
4285                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4286                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4287                                       crtc->base.base.id, pll->name,
4288                                       shared_dpll[i].crtc_mask,
4289                                       pll->active);
4290                         goto found;
4291                 }
4292         }
4293
4294         /* Ok no matching timings, maybe there's a free one? */
4295         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4296                 pll = &dev_priv->shared_dplls[i];
4297                 if (shared_dpll[i].crtc_mask == 0) {
4298                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4299                                       crtc->base.base.id, pll->name);
4300                         goto found;
4301                 }
4302         }
4303
4304         return NULL;
4305
4306 found:
4307         if (shared_dpll[i].crtc_mask == 0)
4308                 shared_dpll[i].hw_state =
4309                         crtc_state->dpll_hw_state;
4310
4311         crtc_state->shared_dpll = i;
4312         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4313                          pipe_name(crtc->pipe));
4314
4315         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4316
4317         return pll;
4318 }
4319
4320 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4321 {
4322         struct drm_i915_private *dev_priv = to_i915(state->dev);
4323         struct intel_shared_dpll_config *shared_dpll;
4324         struct intel_shared_dpll *pll;
4325         enum intel_dpll_id i;
4326
4327         if (!to_intel_atomic_state(state)->dpll_set)
4328                 return;
4329
4330         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4331         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4332                 pll = &dev_priv->shared_dplls[i];
4333                 pll->config = shared_dpll[i];
4334         }
4335 }
4336
4337 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4338 {
4339         struct drm_i915_private *dev_priv = dev->dev_private;
4340         int dslreg = PIPEDSL(pipe);
4341         u32 temp;
4342
4343         temp = I915_READ(dslreg);
4344         udelay(500);
4345         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4346                 if (wait_for(I915_READ(dslreg) != temp, 5))
4347                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4348         }
4349 }
4350
4351 static int
4352 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4353                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4354                   int src_w, int src_h, int dst_w, int dst_h)
4355 {
4356         struct intel_crtc_scaler_state *scaler_state =
4357                 &crtc_state->scaler_state;
4358         struct intel_crtc *intel_crtc =
4359                 to_intel_crtc(crtc_state->base.crtc);
4360         int need_scaling;
4361
4362         need_scaling = intel_rotation_90_or_270(rotation) ?
4363                 (src_h != dst_w || src_w != dst_h):
4364                 (src_w != dst_w || src_h != dst_h);
4365
4366         /*
4367          * if plane is being disabled or scaler is no more required or force detach
4368          *  - free scaler binded to this plane/crtc
4369          *  - in order to do this, update crtc->scaler_usage
4370          *
4371          * Here scaler state in crtc_state is set free so that
4372          * scaler can be assigned to other user. Actual register
4373          * update to free the scaler is done in plane/panel-fit programming.
4374          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4375          */
4376         if (force_detach || !need_scaling) {
4377                 if (*scaler_id >= 0) {
4378                         scaler_state->scaler_users &= ~(1 << scaler_user);
4379                         scaler_state->scalers[*scaler_id].in_use = 0;
4380
4381                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4382                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4383                                 intel_crtc->pipe, scaler_user, *scaler_id,
4384                                 scaler_state->scaler_users);
4385                         *scaler_id = -1;
4386                 }
4387                 return 0;
4388         }
4389
4390         /* range checks */
4391         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4392                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4393
4394                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4395                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4396                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4397                         "size is out of scaler range\n",
4398                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4399                 return -EINVAL;
4400         }
4401
4402         /* mark this plane as a scaler user in crtc_state */
4403         scaler_state->scaler_users |= (1 << scaler_user);
4404         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4405                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4406                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4407                 scaler_state->scaler_users);
4408
4409         return 0;
4410 }
4411
4412 /**
4413  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4414  *
4415  * @state: crtc's scaler state
4416  *
4417  * Return
4418  *     0 - scaler_usage updated successfully
4419  *    error - requested scaling cannot be supported or other error condition
4420  */
4421 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4422 {
4423         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4424         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4425
4426         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4427                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4428
4429         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4430                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4431                 state->pipe_src_w, state->pipe_src_h,
4432                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4433 }
4434
4435 /**
4436  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4437  *
4438  * @state: crtc's scaler state
4439  * @plane_state: atomic plane state to update
4440  *
4441  * Return
4442  *     0 - scaler_usage updated successfully
4443  *    error - requested scaling cannot be supported or other error condition
4444  */
4445 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4446                                    struct intel_plane_state *plane_state)
4447 {
4448
4449         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4450         struct intel_plane *intel_plane =
4451                 to_intel_plane(plane_state->base.plane);
4452         struct drm_framebuffer *fb = plane_state->base.fb;
4453         int ret;
4454
4455         bool force_detach = !fb || !plane_state->visible;
4456
4457         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4458                       intel_plane->base.base.id, intel_crtc->pipe,
4459                       drm_plane_index(&intel_plane->base));
4460
4461         ret = skl_update_scaler(crtc_state, force_detach,
4462                                 drm_plane_index(&intel_plane->base),
4463                                 &plane_state->scaler_id,
4464                                 plane_state->base.rotation,
4465                                 drm_rect_width(&plane_state->src) >> 16,
4466                                 drm_rect_height(&plane_state->src) >> 16,
4467                                 drm_rect_width(&plane_state->dst),
4468                                 drm_rect_height(&plane_state->dst));
4469
4470         if (ret || plane_state->scaler_id < 0)
4471                 return ret;
4472
4473         /* check colorkey */
4474         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4475                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4476                               intel_plane->base.base.id);
4477                 return -EINVAL;
4478         }
4479
4480         /* Check src format */
4481         switch (fb->pixel_format) {
4482         case DRM_FORMAT_RGB565:
4483         case DRM_FORMAT_XBGR8888:
4484         case DRM_FORMAT_XRGB8888:
4485         case DRM_FORMAT_ABGR8888:
4486         case DRM_FORMAT_ARGB8888:
4487         case DRM_FORMAT_XRGB2101010:
4488         case DRM_FORMAT_XBGR2101010:
4489         case DRM_FORMAT_YUYV:
4490         case DRM_FORMAT_YVYU:
4491         case DRM_FORMAT_UYVY:
4492         case DRM_FORMAT_VYUY:
4493                 break;
4494         default:
4495                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4496                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4497                 return -EINVAL;
4498         }
4499
4500         return 0;
4501 }
4502
4503 static void skylake_scaler_disable(struct intel_crtc *crtc)
4504 {
4505         int i;
4506
4507         for (i = 0; i < crtc->num_scalers; i++)
4508                 skl_detach_scaler(crtc, i);
4509 }
4510
4511 static void skylake_pfit_enable(struct intel_crtc *crtc)
4512 {
4513         struct drm_device *dev = crtc->base.dev;
4514         struct drm_i915_private *dev_priv = dev->dev_private;
4515         int pipe = crtc->pipe;
4516         struct intel_crtc_scaler_state *scaler_state =
4517                 &crtc->config->scaler_state;
4518
4519         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4520
4521         if (crtc->config->pch_pfit.enabled) {
4522                 int id;
4523
4524                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4525                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4526                         return;
4527                 }
4528
4529                 id = scaler_state->scaler_id;
4530                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4531                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4532                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4533                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4534
4535                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4536         }
4537 }
4538
4539 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4540 {
4541         struct drm_device *dev = crtc->base.dev;
4542         struct drm_i915_private *dev_priv = dev->dev_private;
4543         int pipe = crtc->pipe;
4544
4545         if (crtc->config->pch_pfit.enabled) {
4546                 /* Force use of hard-coded filter coefficients
4547                  * as some pre-programmed values are broken,
4548                  * e.g. x201.
4549                  */
4550                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4551                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4552                                                  PF_PIPE_SEL_IVB(pipe));
4553                 else
4554                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4555                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4556                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4557         }
4558 }
4559
4560 void hsw_enable_ips(struct intel_crtc *crtc)
4561 {
4562         struct drm_device *dev = crtc->base.dev;
4563         struct drm_i915_private *dev_priv = dev->dev_private;
4564
4565         if (!crtc->config->ips_enabled)
4566                 return;
4567
4568         /* We can only enable IPS after we enable a plane and wait for a vblank */
4569         intel_wait_for_vblank(dev, crtc->pipe);
4570
4571         assert_plane_enabled(dev_priv, crtc->plane);
4572         if (IS_BROADWELL(dev)) {
4573                 mutex_lock(&dev_priv->rps.hw_lock);
4574                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4575                 mutex_unlock(&dev_priv->rps.hw_lock);
4576                 /* Quoting Art Runyan: "its not safe to expect any particular
4577                  * value in IPS_CTL bit 31 after enabling IPS through the
4578                  * mailbox." Moreover, the mailbox may return a bogus state,
4579                  * so we need to just enable it and continue on.
4580                  */
4581         } else {
4582                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4583                 /* The bit only becomes 1 in the next vblank, so this wait here
4584                  * is essentially intel_wait_for_vblank. If we don't have this
4585                  * and don't wait for vblanks until the end of crtc_enable, then
4586                  * the HW state readout code will complain that the expected
4587                  * IPS_CTL value is not the one we read. */
4588                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4589                         DRM_ERROR("Timed out waiting for IPS enable\n");
4590         }
4591 }
4592
4593 void hsw_disable_ips(struct intel_crtc *crtc)
4594 {
4595         struct drm_device *dev = crtc->base.dev;
4596         struct drm_i915_private *dev_priv = dev->dev_private;
4597
4598         if (!crtc->config->ips_enabled)
4599                 return;
4600
4601         assert_plane_enabled(dev_priv, crtc->plane);
4602         if (IS_BROADWELL(dev)) {
4603                 mutex_lock(&dev_priv->rps.hw_lock);
4604                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4605                 mutex_unlock(&dev_priv->rps.hw_lock);
4606                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4607                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4608                         DRM_ERROR("Timed out waiting for IPS disable\n");
4609         } else {
4610                 I915_WRITE(IPS_CTL, 0);
4611                 POSTING_READ(IPS_CTL);
4612         }
4613
4614         /* We need to wait for a vblank before we can disable the plane. */
4615         intel_wait_for_vblank(dev, crtc->pipe);
4616 }
4617
4618 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4619 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4620 {
4621         struct drm_device *dev = crtc->dev;
4622         struct drm_i915_private *dev_priv = dev->dev_private;
4623         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4624         enum pipe pipe = intel_crtc->pipe;
4625         int i;
4626         bool reenable_ips = false;
4627
4628         /* The clocks have to be on to load the palette. */
4629         if (!crtc->state->active)
4630                 return;
4631
4632         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4633                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4634                         assert_dsi_pll_enabled(dev_priv);
4635                 else
4636                         assert_pll_enabled(dev_priv, pipe);
4637         }
4638
4639         /* Workaround : Do not read or write the pipe palette/gamma data while
4640          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4641          */
4642         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4643             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4644              GAMMA_MODE_MODE_SPLIT)) {
4645                 hsw_disable_ips(intel_crtc);
4646                 reenable_ips = true;
4647         }
4648
4649         for (i = 0; i < 256; i++) {
4650                 u32 palreg;
4651
4652                 if (HAS_GMCH_DISPLAY(dev))
4653                         palreg = PALETTE(pipe, i);
4654                 else
4655                         palreg = LGC_PALETTE(pipe, i);
4656
4657                 I915_WRITE(palreg,
4658                            (intel_crtc->lut_r[i] << 16) |
4659                            (intel_crtc->lut_g[i] << 8) |
4660                            intel_crtc->lut_b[i]);
4661         }
4662
4663         if (reenable_ips)
4664                 hsw_enable_ips(intel_crtc);
4665 }
4666
4667 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4668 {
4669         if (intel_crtc->overlay) {
4670                 struct drm_device *dev = intel_crtc->base.dev;
4671                 struct drm_i915_private *dev_priv = dev->dev_private;
4672
4673                 mutex_lock(&dev->struct_mutex);
4674                 dev_priv->mm.interruptible = false;
4675                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4676                 dev_priv->mm.interruptible = true;
4677                 mutex_unlock(&dev->struct_mutex);
4678         }
4679
4680         /* Let userspace switch the overlay on again. In most cases userspace
4681          * has to recompute where to put it anyway.
4682          */
4683 }
4684
4685 /**
4686  * intel_post_enable_primary - Perform operations after enabling primary plane
4687  * @crtc: the CRTC whose primary plane was just enabled
4688  *
4689  * Performs potentially sleeping operations that must be done after the primary
4690  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4691  * called due to an explicit primary plane update, or due to an implicit
4692  * re-enable that is caused when a sprite plane is updated to no longer
4693  * completely hide the primary plane.
4694  */
4695 static void
4696 intel_post_enable_primary(struct drm_crtc *crtc)
4697 {
4698         struct drm_device *dev = crtc->dev;
4699         struct drm_i915_private *dev_priv = dev->dev_private;
4700         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4701         int pipe = intel_crtc->pipe;
4702
4703         /*
4704          * BDW signals flip done immediately if the plane
4705          * is disabled, even if the plane enable is already
4706          * armed to occur at the next vblank :(
4707          */
4708         if (IS_BROADWELL(dev))
4709                 intel_wait_for_vblank(dev, pipe);
4710
4711         /*
4712          * FIXME IPS should be fine as long as one plane is
4713          * enabled, but in practice it seems to have problems
4714          * when going from primary only to sprite only and vice
4715          * versa.
4716          */
4717         hsw_enable_ips(intel_crtc);
4718
4719         /*
4720          * Gen2 reports pipe underruns whenever all planes are disabled.
4721          * So don't enable underrun reporting before at least some planes
4722          * are enabled.
4723          * FIXME: Need to fix the logic to work when we turn off all planes
4724          * but leave the pipe running.
4725          */
4726         if (IS_GEN2(dev))
4727                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4728
4729         /* Underruns don't raise interrupts, so check manually. */
4730         if (HAS_GMCH_DISPLAY(dev))
4731                 i9xx_check_fifo_underruns(dev_priv);
4732 }
4733
4734 /**
4735  * intel_pre_disable_primary - Perform operations before disabling primary plane
4736  * @crtc: the CRTC whose primary plane is to be disabled
4737  *
4738  * Performs potentially sleeping operations that must be done before the
4739  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4740  * be called due to an explicit primary plane update, or due to an implicit
4741  * disable that is caused when a sprite plane completely hides the primary
4742  * plane.
4743  */
4744 static void
4745 intel_pre_disable_primary(struct drm_crtc *crtc)
4746 {
4747         struct drm_device *dev = crtc->dev;
4748         struct drm_i915_private *dev_priv = dev->dev_private;
4749         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4750         int pipe = intel_crtc->pipe;
4751
4752         /*
4753          * Gen2 reports pipe underruns whenever all planes are disabled.
4754          * So diasble underrun reporting before all the planes get disabled.
4755          * FIXME: Need to fix the logic to work when we turn off all planes
4756          * but leave the pipe running.
4757          */
4758         if (IS_GEN2(dev))
4759                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4760
4761         /*
4762          * Vblank time updates from the shadow to live plane control register
4763          * are blocked if the memory self-refresh mode is active at that
4764          * moment. So to make sure the plane gets truly disabled, disable
4765          * first the self-refresh mode. The self-refresh enable bit in turn
4766          * will be checked/applied by the HW only at the next frame start
4767          * event which is after the vblank start event, so we need to have a
4768          * wait-for-vblank between disabling the plane and the pipe.
4769          */
4770         if (HAS_GMCH_DISPLAY(dev)) {
4771                 intel_set_memory_cxsr(dev_priv, false);
4772                 dev_priv->wm.vlv.cxsr = false;
4773                 intel_wait_for_vblank(dev, pipe);
4774         }
4775
4776         /*
4777          * FIXME IPS should be fine as long as one plane is
4778          * enabled, but in practice it seems to have problems
4779          * when going from primary only to sprite only and vice
4780          * versa.
4781          */
4782         hsw_disable_ips(intel_crtc);
4783 }
4784
4785 static void intel_post_plane_update(struct intel_crtc *crtc)
4786 {
4787         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4788         struct drm_device *dev = crtc->base.dev;
4789         struct drm_i915_private *dev_priv = dev->dev_private;
4790         struct drm_plane *plane;
4791
4792         if (atomic->wait_vblank)
4793                 intel_wait_for_vblank(dev, crtc->pipe);
4794
4795         intel_frontbuffer_flip(dev, atomic->fb_bits);
4796
4797         if (atomic->disable_cxsr)
4798                 crtc->wm.cxsr_allowed = true;
4799
4800         if (crtc->atomic.update_wm_post)
4801                 intel_update_watermarks(&crtc->base);
4802
4803         if (atomic->update_fbc)
4804                 intel_fbc_update(dev_priv);
4805
4806         if (atomic->post_enable_primary)
4807                 intel_post_enable_primary(&crtc->base);
4808
4809         drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4810                 intel_update_sprite_watermarks(plane, &crtc->base,
4811                                                0, 0, 0, false, false);
4812
4813         memset(atomic, 0, sizeof(*atomic));
4814 }
4815
4816 static void intel_pre_plane_update(struct intel_crtc *crtc)
4817 {
4818         struct drm_device *dev = crtc->base.dev;
4819         struct drm_i915_private *dev_priv = dev->dev_private;
4820         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4821         struct drm_plane *p;
4822
4823         /* Track fb's for any planes being disabled */
4824         drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4825                 struct intel_plane *plane = to_intel_plane(p);
4826
4827                 mutex_lock(&dev->struct_mutex);
4828                 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4829                                   plane->frontbuffer_bit);
4830                 mutex_unlock(&dev->struct_mutex);
4831         }
4832
4833         if (atomic->wait_for_flips)
4834                 intel_crtc_wait_for_pending_flips(&crtc->base);
4835
4836         if (atomic->disable_fbc)
4837                 intel_fbc_disable_crtc(crtc);
4838
4839         if (crtc->atomic.disable_ips)
4840                 hsw_disable_ips(crtc);
4841
4842         if (atomic->pre_disable_primary)
4843                 intel_pre_disable_primary(&crtc->base);
4844
4845         if (atomic->disable_cxsr) {
4846                 crtc->wm.cxsr_allowed = false;
4847                 intel_set_memory_cxsr(dev_priv, false);
4848         }
4849 }
4850
4851 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4852 {
4853         struct drm_device *dev = crtc->dev;
4854         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4855         struct drm_plane *p;
4856         int pipe = intel_crtc->pipe;
4857
4858         intel_crtc_dpms_overlay_disable(intel_crtc);
4859
4860         drm_for_each_plane_mask(p, dev, plane_mask)
4861                 to_intel_plane(p)->disable_plane(p, crtc);
4862
4863         /*
4864          * FIXME: Once we grow proper nuclear flip support out of this we need
4865          * to compute the mask of flip planes precisely. For the time being
4866          * consider this a flip to a NULL plane.
4867          */
4868         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4869 }
4870
4871 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4872 {
4873         struct drm_device *dev = crtc->dev;
4874         struct drm_i915_private *dev_priv = dev->dev_private;
4875         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4876         struct intel_encoder *encoder;
4877         int pipe = intel_crtc->pipe;
4878
4879         if (WARN_ON(intel_crtc->active))
4880                 return;
4881
4882         if (intel_crtc->config->has_pch_encoder)
4883                 intel_prepare_shared_dpll(intel_crtc);
4884
4885         if (intel_crtc->config->has_dp_encoder)
4886                 intel_dp_set_m_n(intel_crtc, M1_N1);
4887
4888         intel_set_pipe_timings(intel_crtc);
4889
4890         if (intel_crtc->config->has_pch_encoder) {
4891                 intel_cpu_transcoder_set_m_n(intel_crtc,
4892                                      &intel_crtc->config->fdi_m_n, NULL);
4893         }
4894
4895         ironlake_set_pipeconf(crtc);
4896
4897         intel_crtc->active = true;
4898
4899         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4900         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4901
4902         for_each_encoder_on_crtc(dev, crtc, encoder)
4903                 if (encoder->pre_enable)
4904                         encoder->pre_enable(encoder);
4905
4906         if (intel_crtc->config->has_pch_encoder) {
4907                 /* Note: FDI PLL enabling _must_ be done before we enable the
4908                  * cpu pipes, hence this is separate from all the other fdi/pch
4909                  * enabling. */
4910                 ironlake_fdi_pll_enable(intel_crtc);
4911         } else {
4912                 assert_fdi_tx_disabled(dev_priv, pipe);
4913                 assert_fdi_rx_disabled(dev_priv, pipe);
4914         }
4915
4916         ironlake_pfit_enable(intel_crtc);
4917
4918         /*
4919          * On ILK+ LUT must be loaded before the pipe is running but with
4920          * clocks enabled
4921          */
4922         intel_crtc_load_lut(crtc);
4923
4924         intel_update_watermarks(crtc);
4925         intel_enable_pipe(intel_crtc);
4926
4927         if (intel_crtc->config->has_pch_encoder)
4928                 ironlake_pch_enable(crtc);
4929
4930         assert_vblank_disabled(crtc);
4931         drm_crtc_vblank_on(crtc);
4932
4933         for_each_encoder_on_crtc(dev, crtc, encoder)
4934                 encoder->enable(encoder);
4935
4936         if (HAS_PCH_CPT(dev))
4937                 cpt_verify_modeset(dev, intel_crtc->pipe);
4938 }
4939
4940 /* IPS only exists on ULT machines and is tied to pipe A. */
4941 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4942 {
4943         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4944 }
4945
4946 static void haswell_crtc_enable(struct drm_crtc *crtc)
4947 {
4948         struct drm_device *dev = crtc->dev;
4949         struct drm_i915_private *dev_priv = dev->dev_private;
4950         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4951         struct intel_encoder *encoder;
4952         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4953         struct intel_crtc_state *pipe_config =
4954                 to_intel_crtc_state(crtc->state);
4955         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4956
4957         if (WARN_ON(intel_crtc->active))
4958                 return;
4959
4960         if (intel_crtc_to_shared_dpll(intel_crtc))
4961                 intel_enable_shared_dpll(intel_crtc);
4962
4963         if (intel_crtc->config->has_dp_encoder)
4964                 intel_dp_set_m_n(intel_crtc, M1_N1);
4965
4966         intel_set_pipe_timings(intel_crtc);
4967
4968         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4969                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4970                            intel_crtc->config->pixel_multiplier - 1);
4971         }
4972
4973         if (intel_crtc->config->has_pch_encoder) {
4974                 intel_cpu_transcoder_set_m_n(intel_crtc,
4975                                      &intel_crtc->config->fdi_m_n, NULL);
4976         }
4977
4978         haswell_set_pipeconf(crtc);
4979
4980         intel_set_pipe_csc(crtc);
4981
4982         intel_crtc->active = true;
4983
4984         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4985         for_each_encoder_on_crtc(dev, crtc, encoder) {
4986                 if (encoder->pre_pll_enable)
4987                         encoder->pre_pll_enable(encoder);
4988                 if (encoder->pre_enable)
4989                         encoder->pre_enable(encoder);
4990         }
4991
4992         if (intel_crtc->config->has_pch_encoder) {
4993                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4994                                                       true);
4995                 dev_priv->display.fdi_link_train(crtc);
4996         }
4997
4998         if (!is_dsi)
4999                 intel_ddi_enable_pipe_clock(intel_crtc);
5000
5001         if (INTEL_INFO(dev)->gen >= 9)
5002                 skylake_pfit_enable(intel_crtc);
5003         else
5004                 ironlake_pfit_enable(intel_crtc);
5005
5006         /*
5007          * On ILK+ LUT must be loaded before the pipe is running but with
5008          * clocks enabled
5009          */
5010         intel_crtc_load_lut(crtc);
5011
5012         intel_ddi_set_pipe_settings(crtc);
5013         if (!is_dsi)
5014                 intel_ddi_enable_transcoder_func(crtc);
5015
5016         intel_update_watermarks(crtc);
5017         intel_enable_pipe(intel_crtc);
5018
5019         if (intel_crtc->config->has_pch_encoder)
5020                 lpt_pch_enable(crtc);
5021
5022         if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
5023                 intel_ddi_set_vc_payload_alloc(crtc, true);
5024
5025         assert_vblank_disabled(crtc);
5026         drm_crtc_vblank_on(crtc);
5027
5028         for_each_encoder_on_crtc(dev, crtc, encoder) {
5029                 encoder->enable(encoder);
5030                 intel_opregion_notify_encoder(encoder, true);
5031         }
5032
5033         /* If we change the relative order between pipe/planes enabling, we need
5034          * to change the workaround. */
5035         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5036         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5037                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5038                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5039         }
5040 }
5041
5042 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5043 {
5044         struct drm_device *dev = crtc->base.dev;
5045         struct drm_i915_private *dev_priv = dev->dev_private;
5046         int pipe = crtc->pipe;
5047
5048         /* To avoid upsetting the power well on haswell only disable the pfit if
5049          * it's in use. The hw state code will make sure we get this right. */
5050         if (force || crtc->config->pch_pfit.enabled) {
5051                 I915_WRITE(PF_CTL(pipe), 0);
5052                 I915_WRITE(PF_WIN_POS(pipe), 0);
5053                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5054         }
5055 }
5056
5057 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5058 {
5059         struct drm_device *dev = crtc->dev;
5060         struct drm_i915_private *dev_priv = dev->dev_private;
5061         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5062         struct intel_encoder *encoder;
5063         int pipe = intel_crtc->pipe;
5064         u32 reg, temp;
5065
5066         for_each_encoder_on_crtc(dev, crtc, encoder)
5067                 encoder->disable(encoder);
5068
5069         drm_crtc_vblank_off(crtc);
5070         assert_vblank_disabled(crtc);
5071
5072         if (intel_crtc->config->has_pch_encoder)
5073                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5074
5075         intel_disable_pipe(intel_crtc);
5076
5077         ironlake_pfit_disable(intel_crtc, false);
5078
5079         if (intel_crtc->config->has_pch_encoder)
5080                 ironlake_fdi_disable(crtc);
5081
5082         for_each_encoder_on_crtc(dev, crtc, encoder)
5083                 if (encoder->post_disable)
5084                         encoder->post_disable(encoder);
5085
5086         if (intel_crtc->config->has_pch_encoder) {
5087                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5088
5089                 if (HAS_PCH_CPT(dev)) {
5090                         /* disable TRANS_DP_CTL */
5091                         reg = TRANS_DP_CTL(pipe);
5092                         temp = I915_READ(reg);
5093                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5094                                   TRANS_DP_PORT_SEL_MASK);
5095                         temp |= TRANS_DP_PORT_SEL_NONE;
5096                         I915_WRITE(reg, temp);
5097
5098                         /* disable DPLL_SEL */
5099                         temp = I915_READ(PCH_DPLL_SEL);
5100                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5101                         I915_WRITE(PCH_DPLL_SEL, temp);
5102                 }
5103
5104                 ironlake_fdi_pll_disable(intel_crtc);
5105         }
5106 }
5107
5108 static void haswell_crtc_disable(struct drm_crtc *crtc)
5109 {
5110         struct drm_device *dev = crtc->dev;
5111         struct drm_i915_private *dev_priv = dev->dev_private;
5112         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5113         struct intel_encoder *encoder;
5114         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5115         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5116
5117         for_each_encoder_on_crtc(dev, crtc, encoder) {
5118                 intel_opregion_notify_encoder(encoder, false);
5119                 encoder->disable(encoder);
5120         }
5121
5122         drm_crtc_vblank_off(crtc);
5123         assert_vblank_disabled(crtc);
5124
5125         if (intel_crtc->config->has_pch_encoder)
5126                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5127                                                       false);
5128         intel_disable_pipe(intel_crtc);
5129
5130         if (intel_crtc->config->dp_encoder_is_mst)
5131                 intel_ddi_set_vc_payload_alloc(crtc, false);
5132
5133         if (!is_dsi)
5134                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5135
5136         if (INTEL_INFO(dev)->gen >= 9)
5137                 skylake_scaler_disable(intel_crtc);
5138         else
5139                 ironlake_pfit_disable(intel_crtc, false);
5140
5141         if (!is_dsi)
5142                 intel_ddi_disable_pipe_clock(intel_crtc);
5143
5144         if (intel_crtc->config->has_pch_encoder) {
5145                 lpt_disable_pch_transcoder(dev_priv);
5146                 intel_ddi_fdi_disable(crtc);
5147         }
5148
5149         for_each_encoder_on_crtc(dev, crtc, encoder)
5150                 if (encoder->post_disable)
5151                         encoder->post_disable(encoder);
5152 }
5153
5154 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5155 {
5156         struct drm_device *dev = crtc->base.dev;
5157         struct drm_i915_private *dev_priv = dev->dev_private;
5158         struct intel_crtc_state *pipe_config = crtc->config;
5159
5160         if (!pipe_config->gmch_pfit.control)
5161                 return;
5162
5163         /*
5164          * The panel fitter should only be adjusted whilst the pipe is disabled,
5165          * according to register description and PRM.
5166          */
5167         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5168         assert_pipe_disabled(dev_priv, crtc->pipe);
5169
5170         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5171         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5172
5173         /* Border color in case we don't scale up to the full screen. Black by
5174          * default, change to something else for debugging. */
5175         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5176 }
5177
5178 static enum intel_display_power_domain port_to_power_domain(enum port port)
5179 {
5180         switch (port) {
5181         case PORT_A:
5182                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5183         case PORT_B:
5184                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5185         case PORT_C:
5186                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5187         case PORT_D:
5188                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5189         case PORT_E:
5190                 return POWER_DOMAIN_PORT_DDI_E_2_LANES;
5191         default:
5192                 WARN_ON_ONCE(1);
5193                 return POWER_DOMAIN_PORT_OTHER;
5194         }
5195 }
5196
5197 #define for_each_power_domain(domain, mask)                             \
5198         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5199                 if ((1 << (domain)) & (mask))
5200
5201 enum intel_display_power_domain
5202 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5203 {
5204         struct drm_device *dev = intel_encoder->base.dev;
5205         struct intel_digital_port *intel_dig_port;
5206
5207         switch (intel_encoder->type) {
5208         case INTEL_OUTPUT_UNKNOWN:
5209                 /* Only DDI platforms should ever use this output type */
5210                 WARN_ON_ONCE(!HAS_DDI(dev));
5211         case INTEL_OUTPUT_DISPLAYPORT:
5212         case INTEL_OUTPUT_HDMI:
5213         case INTEL_OUTPUT_EDP:
5214                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5215                 return port_to_power_domain(intel_dig_port->port);
5216         case INTEL_OUTPUT_DP_MST:
5217                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5218                 return port_to_power_domain(intel_dig_port->port);
5219         case INTEL_OUTPUT_ANALOG:
5220                 return POWER_DOMAIN_PORT_CRT;
5221         case INTEL_OUTPUT_DSI:
5222                 return POWER_DOMAIN_PORT_DSI;
5223         default:
5224                 return POWER_DOMAIN_PORT_OTHER;
5225         }
5226 }
5227
5228 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5229 {
5230         struct drm_device *dev = crtc->dev;
5231         struct intel_encoder *intel_encoder;
5232         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5233         enum pipe pipe = intel_crtc->pipe;
5234         unsigned long mask;
5235         enum transcoder transcoder;
5236
5237         if (!crtc->state->active)
5238                 return 0;
5239
5240         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5241
5242         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5243         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5244         if (intel_crtc->config->pch_pfit.enabled ||
5245             intel_crtc->config->pch_pfit.force_thru)
5246                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5247
5248         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5249                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5250
5251         return mask;
5252 }
5253
5254 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5255 {
5256         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5257         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5258         enum intel_display_power_domain domain;
5259         unsigned long domains, new_domains, old_domains;
5260
5261         old_domains = intel_crtc->enabled_power_domains;
5262         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5263
5264         domains = new_domains & ~old_domains;
5265
5266         for_each_power_domain(domain, domains)
5267                 intel_display_power_get(dev_priv, domain);
5268
5269         return old_domains & ~new_domains;
5270 }
5271
5272 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5273                                       unsigned long domains)
5274 {
5275         enum intel_display_power_domain domain;
5276
5277         for_each_power_domain(domain, domains)
5278                 intel_display_power_put(dev_priv, domain);
5279 }
5280
5281 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5282 {
5283         struct drm_device *dev = state->dev;
5284         struct drm_i915_private *dev_priv = dev->dev_private;
5285         unsigned long put_domains[I915_MAX_PIPES] = {};
5286         struct drm_crtc_state *crtc_state;
5287         struct drm_crtc *crtc;
5288         int i;
5289
5290         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5291                 if (needs_modeset(crtc->state))
5292                         put_domains[to_intel_crtc(crtc)->pipe] =
5293                                 modeset_get_crtc_power_domains(crtc);
5294         }
5295
5296         if (dev_priv->display.modeset_commit_cdclk) {
5297                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5298
5299                 if (cdclk != dev_priv->cdclk_freq &&
5300                     !WARN_ON(!state->allow_modeset))
5301                         dev_priv->display.modeset_commit_cdclk(state);
5302         }
5303
5304         for (i = 0; i < I915_MAX_PIPES; i++)
5305                 if (put_domains[i])
5306                         modeset_put_power_domains(dev_priv, put_domains[i]);
5307 }
5308
5309 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5310 {
5311         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5312
5313         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5314             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5315                 return max_cdclk_freq;
5316         else if (IS_CHERRYVIEW(dev_priv))
5317                 return max_cdclk_freq*95/100;
5318         else if (INTEL_INFO(dev_priv)->gen < 4)
5319                 return 2*max_cdclk_freq*90/100;
5320         else
5321                 return max_cdclk_freq*90/100;
5322 }
5323
5324 static void intel_update_max_cdclk(struct drm_device *dev)
5325 {
5326         struct drm_i915_private *dev_priv = dev->dev_private;
5327
5328         if (IS_SKYLAKE(dev)) {
5329                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5330
5331                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5332                         dev_priv->max_cdclk_freq = 675000;
5333                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5334                         dev_priv->max_cdclk_freq = 540000;
5335                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5336                         dev_priv->max_cdclk_freq = 450000;
5337                 else
5338                         dev_priv->max_cdclk_freq = 337500;
5339         } else if (IS_BROADWELL(dev))  {
5340                 /*
5341                  * FIXME with extra cooling we can allow
5342                  * 540 MHz for ULX and 675 Mhz for ULT.
5343                  * How can we know if extra cooling is
5344                  * available? PCI ID, VTB, something else?
5345                  */
5346                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5347                         dev_priv->max_cdclk_freq = 450000;
5348                 else if (IS_BDW_ULX(dev))
5349                         dev_priv->max_cdclk_freq = 450000;
5350                 else if (IS_BDW_ULT(dev))
5351                         dev_priv->max_cdclk_freq = 540000;
5352                 else
5353                         dev_priv->max_cdclk_freq = 675000;
5354         } else if (IS_CHERRYVIEW(dev)) {
5355                 dev_priv->max_cdclk_freq = 320000;
5356         } else if (IS_VALLEYVIEW(dev)) {
5357                 dev_priv->max_cdclk_freq = 400000;
5358         } else {
5359                 /* otherwise assume cdclk is fixed */
5360                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5361         }
5362
5363         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5364
5365         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5366                          dev_priv->max_cdclk_freq);
5367
5368         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5369                          dev_priv->max_dotclk_freq);
5370 }
5371
5372 static void intel_update_cdclk(struct drm_device *dev)
5373 {
5374         struct drm_i915_private *dev_priv = dev->dev_private;
5375
5376         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5377         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5378                          dev_priv->cdclk_freq);
5379
5380         /*
5381          * Program the gmbus_freq based on the cdclk frequency.
5382          * BSpec erroneously claims we should aim for 4MHz, but
5383          * in fact 1MHz is the correct frequency.
5384          */
5385         if (IS_VALLEYVIEW(dev)) {
5386                 /*
5387                  * Program the gmbus_freq based on the cdclk frequency.
5388                  * BSpec erroneously claims we should aim for 4MHz, but
5389                  * in fact 1MHz is the correct frequency.
5390                  */
5391                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5392         }
5393
5394         if (dev_priv->max_cdclk_freq == 0)
5395                 intel_update_max_cdclk(dev);
5396 }
5397
5398 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5399 {
5400         struct drm_i915_private *dev_priv = dev->dev_private;
5401         uint32_t divider;
5402         uint32_t ratio;
5403         uint32_t current_freq;
5404         int ret;
5405
5406         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5407         switch (frequency) {
5408         case 144000:
5409                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5410                 ratio = BXT_DE_PLL_RATIO(60);
5411                 break;
5412         case 288000:
5413                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5414                 ratio = BXT_DE_PLL_RATIO(60);
5415                 break;
5416         case 384000:
5417                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5418                 ratio = BXT_DE_PLL_RATIO(60);
5419                 break;
5420         case 576000:
5421                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5422                 ratio = BXT_DE_PLL_RATIO(60);
5423                 break;
5424         case 624000:
5425                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5426                 ratio = BXT_DE_PLL_RATIO(65);
5427                 break;
5428         case 19200:
5429                 /*
5430                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5431                  * to suppress GCC warning.
5432                  */
5433                 ratio = 0;
5434                 divider = 0;
5435                 break;
5436         default:
5437                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5438
5439                 return;
5440         }
5441
5442         mutex_lock(&dev_priv->rps.hw_lock);
5443         /* Inform power controller of upcoming frequency change */
5444         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5445                                       0x80000000);
5446         mutex_unlock(&dev_priv->rps.hw_lock);
5447
5448         if (ret) {
5449                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5450                           ret, frequency);
5451                 return;
5452         }
5453
5454         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5455         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5456         current_freq = current_freq * 500 + 1000;
5457
5458         /*
5459          * DE PLL has to be disabled when
5460          * - setting to 19.2MHz (bypass, PLL isn't used)
5461          * - before setting to 624MHz (PLL needs toggling)
5462          * - before setting to any frequency from 624MHz (PLL needs toggling)
5463          */
5464         if (frequency == 19200 || frequency == 624000 ||
5465             current_freq == 624000) {
5466                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5467                 /* Timeout 200us */
5468                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5469                              1))
5470                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5471         }
5472
5473         if (frequency != 19200) {
5474                 uint32_t val;
5475
5476                 val = I915_READ(BXT_DE_PLL_CTL);
5477                 val &= ~BXT_DE_PLL_RATIO_MASK;
5478                 val |= ratio;
5479                 I915_WRITE(BXT_DE_PLL_CTL, val);
5480
5481                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5482                 /* Timeout 200us */
5483                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5484                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5485
5486                 val = I915_READ(CDCLK_CTL);
5487                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5488                 val |= divider;
5489                 /*
5490                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5491                  * enable otherwise.
5492                  */
5493                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5494                 if (frequency >= 500000)
5495                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5496
5497                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5498                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5499                 val |= (frequency - 1000) / 500;
5500                 I915_WRITE(CDCLK_CTL, val);
5501         }
5502
5503         mutex_lock(&dev_priv->rps.hw_lock);
5504         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5505                                       DIV_ROUND_UP(frequency, 25000));
5506         mutex_unlock(&dev_priv->rps.hw_lock);
5507
5508         if (ret) {
5509                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5510                           ret, frequency);
5511                 return;
5512         }
5513
5514         intel_update_cdclk(dev);
5515 }
5516
5517 void broxton_init_cdclk(struct drm_device *dev)
5518 {
5519         struct drm_i915_private *dev_priv = dev->dev_private;
5520         uint32_t val;
5521
5522         /*
5523          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5524          * or else the reset will hang because there is no PCH to respond.
5525          * Move the handshake programming to initialization sequence.
5526          * Previously was left up to BIOS.
5527          */
5528         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5529         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5530         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5531
5532         /* Enable PG1 for cdclk */
5533         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5534
5535         /* check if cd clock is enabled */
5536         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5537                 DRM_DEBUG_KMS("Display already initialized\n");
5538                 return;
5539         }
5540
5541         /*
5542          * FIXME:
5543          * - The initial CDCLK needs to be read from VBT.
5544          *   Need to make this change after VBT has changes for BXT.
5545          * - check if setting the max (or any) cdclk freq is really necessary
5546          *   here, it belongs to modeset time
5547          */
5548         broxton_set_cdclk(dev, 624000);
5549
5550         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5551         POSTING_READ(DBUF_CTL);
5552
5553         udelay(10);
5554
5555         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5556                 DRM_ERROR("DBuf power enable timeout!\n");
5557 }
5558
5559 void broxton_uninit_cdclk(struct drm_device *dev)
5560 {
5561         struct drm_i915_private *dev_priv = dev->dev_private;
5562
5563         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5564         POSTING_READ(DBUF_CTL);
5565
5566         udelay(10);
5567
5568         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5569                 DRM_ERROR("DBuf power disable timeout!\n");
5570
5571         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5572         broxton_set_cdclk(dev, 19200);
5573
5574         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5575 }
5576
5577 static const struct skl_cdclk_entry {
5578         unsigned int freq;
5579         unsigned int vco;
5580 } skl_cdclk_frequencies[] = {
5581         { .freq = 308570, .vco = 8640 },
5582         { .freq = 337500, .vco = 8100 },
5583         { .freq = 432000, .vco = 8640 },
5584         { .freq = 450000, .vco = 8100 },
5585         { .freq = 540000, .vco = 8100 },
5586         { .freq = 617140, .vco = 8640 },
5587         { .freq = 675000, .vco = 8100 },
5588 };
5589
5590 static unsigned int skl_cdclk_decimal(unsigned int freq)
5591 {
5592         return (freq - 1000) / 500;
5593 }
5594
5595 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5596 {
5597         unsigned int i;
5598
5599         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5600                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5601
5602                 if (e->freq == freq)
5603                         return e->vco;
5604         }
5605
5606         return 8100;
5607 }
5608
5609 static void
5610 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5611 {
5612         unsigned int min_freq;
5613         u32 val;
5614
5615         /* select the minimum CDCLK before enabling DPLL 0 */
5616         val = I915_READ(CDCLK_CTL);
5617         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5618         val |= CDCLK_FREQ_337_308;
5619
5620         if (required_vco == 8640)
5621                 min_freq = 308570;
5622         else
5623                 min_freq = 337500;
5624
5625         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5626
5627         I915_WRITE(CDCLK_CTL, val);
5628         POSTING_READ(CDCLK_CTL);
5629
5630         /*
5631          * We always enable DPLL0 with the lowest link rate possible, but still
5632          * taking into account the VCO required to operate the eDP panel at the
5633          * desired frequency. The usual DP link rates operate with a VCO of
5634          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5635          * The modeset code is responsible for the selection of the exact link
5636          * rate later on, with the constraint of choosing a frequency that
5637          * works with required_vco.
5638          */
5639         val = I915_READ(DPLL_CTRL1);
5640
5641         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5642                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5643         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5644         if (required_vco == 8640)
5645                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5646                                             SKL_DPLL0);
5647         else
5648                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5649                                             SKL_DPLL0);
5650
5651         I915_WRITE(DPLL_CTRL1, val);
5652         POSTING_READ(DPLL_CTRL1);
5653
5654         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5655
5656         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5657                 DRM_ERROR("DPLL0 not locked\n");
5658 }
5659
5660 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5661 {
5662         int ret;
5663         u32 val;
5664
5665         /* inform PCU we want to change CDCLK */
5666         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5667         mutex_lock(&dev_priv->rps.hw_lock);
5668         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5669         mutex_unlock(&dev_priv->rps.hw_lock);
5670
5671         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5672 }
5673
5674 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5675 {
5676         unsigned int i;
5677
5678         for (i = 0; i < 15; i++) {
5679                 if (skl_cdclk_pcu_ready(dev_priv))
5680                         return true;
5681                 udelay(10);
5682         }
5683
5684         return false;
5685 }
5686
5687 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5688 {
5689         struct drm_device *dev = dev_priv->dev;
5690         u32 freq_select, pcu_ack;
5691
5692         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5693
5694         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5695                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5696                 return;
5697         }
5698
5699         /* set CDCLK_CTL */
5700         switch(freq) {
5701         case 450000:
5702         case 432000:
5703                 freq_select = CDCLK_FREQ_450_432;
5704                 pcu_ack = 1;
5705                 break;
5706         case 540000:
5707                 freq_select = CDCLK_FREQ_540;
5708                 pcu_ack = 2;
5709                 break;
5710         case 308570:
5711         case 337500:
5712         default:
5713                 freq_select = CDCLK_FREQ_337_308;
5714                 pcu_ack = 0;
5715                 break;
5716         case 617140:
5717         case 675000:
5718                 freq_select = CDCLK_FREQ_675_617;
5719                 pcu_ack = 3;
5720                 break;
5721         }
5722
5723         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5724         POSTING_READ(CDCLK_CTL);
5725
5726         /* inform PCU of the change */
5727         mutex_lock(&dev_priv->rps.hw_lock);
5728         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5729         mutex_unlock(&dev_priv->rps.hw_lock);
5730
5731         intel_update_cdclk(dev);
5732 }
5733
5734 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5735 {
5736         /* disable DBUF power */
5737         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5738         POSTING_READ(DBUF_CTL);
5739
5740         udelay(10);
5741
5742         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5743                 DRM_ERROR("DBuf power disable timeout\n");
5744
5745         /*
5746          * DMC assumes ownership of LCPLL and will get confused if we touch it.
5747          */
5748         if (dev_priv->csr.dmc_payload) {
5749                 /* disable DPLL0 */
5750                 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
5751                                         ~LCPLL_PLL_ENABLE);
5752                 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5753                         DRM_ERROR("Couldn't disable DPLL0\n");
5754         }
5755
5756         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5757 }
5758
5759 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5760 {
5761         u32 val;
5762         unsigned int required_vco;
5763
5764         /* enable PCH reset handshake */
5765         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5766         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5767
5768         /* enable PG1 and Misc I/O */
5769         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5770
5771         /* DPLL0 not enabled (happens on early BIOS versions) */
5772         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5773                 /* enable DPLL0 */
5774                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5775                 skl_dpll0_enable(dev_priv, required_vco);
5776         }
5777
5778         /* set CDCLK to the frequency the BIOS chose */
5779         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5780
5781         /* enable DBUF power */
5782         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5783         POSTING_READ(DBUF_CTL);
5784
5785         udelay(10);
5786
5787         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5788                 DRM_ERROR("DBuf power enable timeout\n");
5789 }
5790
5791 /* Adjust CDclk dividers to allow high res or save power if possible */
5792 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5793 {
5794         struct drm_i915_private *dev_priv = dev->dev_private;
5795         u32 val, cmd;
5796
5797         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5798                                         != dev_priv->cdclk_freq);
5799
5800         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5801                 cmd = 2;
5802         else if (cdclk == 266667)
5803                 cmd = 1;
5804         else
5805                 cmd = 0;
5806
5807         mutex_lock(&dev_priv->rps.hw_lock);
5808         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5809         val &= ~DSPFREQGUAR_MASK;
5810         val |= (cmd << DSPFREQGUAR_SHIFT);
5811         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5812         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5813                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5814                      50)) {
5815                 DRM_ERROR("timed out waiting for CDclk change\n");
5816         }
5817         mutex_unlock(&dev_priv->rps.hw_lock);
5818
5819         mutex_lock(&dev_priv->sb_lock);
5820
5821         if (cdclk == 400000) {
5822                 u32 divider;
5823
5824                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5825
5826                 /* adjust cdclk divider */
5827                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5828                 val &= ~CCK_FREQUENCY_VALUES;
5829                 val |= divider;
5830                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5831
5832                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5833                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5834                              50))
5835                         DRM_ERROR("timed out waiting for CDclk change\n");
5836         }
5837
5838         /* adjust self-refresh exit latency value */
5839         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5840         val &= ~0x7f;
5841
5842         /*
5843          * For high bandwidth configs, we set a higher latency in the bunit
5844          * so that the core display fetch happens in time to avoid underruns.
5845          */
5846         if (cdclk == 400000)
5847                 val |= 4500 / 250; /* 4.5 usec */
5848         else
5849                 val |= 3000 / 250; /* 3.0 usec */
5850         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5851
5852         mutex_unlock(&dev_priv->sb_lock);
5853
5854         intel_update_cdclk(dev);
5855 }
5856
5857 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5858 {
5859         struct drm_i915_private *dev_priv = dev->dev_private;
5860         u32 val, cmd;
5861
5862         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5863                                                 != dev_priv->cdclk_freq);
5864
5865         switch (cdclk) {
5866         case 333333:
5867         case 320000:
5868         case 266667:
5869         case 200000:
5870                 break;
5871         default:
5872                 MISSING_CASE(cdclk);
5873                 return;
5874         }
5875
5876         /*
5877          * Specs are full of misinformation, but testing on actual
5878          * hardware has shown that we just need to write the desired
5879          * CCK divider into the Punit register.
5880          */
5881         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5882
5883         mutex_lock(&dev_priv->rps.hw_lock);
5884         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5885         val &= ~DSPFREQGUAR_MASK_CHV;
5886         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5887         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5888         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5889                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5890                      50)) {
5891                 DRM_ERROR("timed out waiting for CDclk change\n");
5892         }
5893         mutex_unlock(&dev_priv->rps.hw_lock);
5894
5895         intel_update_cdclk(dev);
5896 }
5897
5898 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5899                                  int max_pixclk)
5900 {
5901         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5902         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5903
5904         /*
5905          * Really only a few cases to deal with, as only 4 CDclks are supported:
5906          *   200MHz
5907          *   267MHz
5908          *   320/333MHz (depends on HPLL freq)
5909          *   400MHz (VLV only)
5910          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5911          * of the lower bin and adjust if needed.
5912          *
5913          * We seem to get an unstable or solid color picture at 200MHz.
5914          * Not sure what's wrong. For now use 200MHz only when all pipes
5915          * are off.
5916          */
5917         if (!IS_CHERRYVIEW(dev_priv) &&
5918             max_pixclk > freq_320*limit/100)
5919                 return 400000;
5920         else if (max_pixclk > 266667*limit/100)
5921                 return freq_320;
5922         else if (max_pixclk > 0)
5923                 return 266667;
5924         else
5925                 return 200000;
5926 }
5927
5928 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5929                               int max_pixclk)
5930 {
5931         /*
5932          * FIXME:
5933          * - remove the guardband, it's not needed on BXT
5934          * - set 19.2MHz bypass frequency if there are no active pipes
5935          */
5936         if (max_pixclk > 576000*9/10)
5937                 return 624000;
5938         else if (max_pixclk > 384000*9/10)
5939                 return 576000;
5940         else if (max_pixclk > 288000*9/10)
5941                 return 384000;
5942         else if (max_pixclk > 144000*9/10)
5943                 return 288000;
5944         else
5945                 return 144000;
5946 }
5947
5948 /* Compute the max pixel clock for new configuration. Uses atomic state if
5949  * that's non-NULL, look at current state otherwise. */
5950 static int intel_mode_max_pixclk(struct drm_device *dev,
5951                                  struct drm_atomic_state *state)
5952 {
5953         struct intel_crtc *intel_crtc;
5954         struct intel_crtc_state *crtc_state;
5955         int max_pixclk = 0;
5956
5957         for_each_intel_crtc(dev, intel_crtc) {
5958                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5959                 if (IS_ERR(crtc_state))
5960                         return PTR_ERR(crtc_state);
5961
5962                 if (!crtc_state->base.enable)
5963                         continue;
5964
5965                 max_pixclk = max(max_pixclk,
5966                                  crtc_state->base.adjusted_mode.crtc_clock);
5967         }
5968
5969         return max_pixclk;
5970 }
5971
5972 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5973 {
5974         struct drm_device *dev = state->dev;
5975         struct drm_i915_private *dev_priv = dev->dev_private;
5976         int max_pixclk = intel_mode_max_pixclk(dev, state);
5977
5978         if (max_pixclk < 0)
5979                 return max_pixclk;
5980
5981         to_intel_atomic_state(state)->cdclk =
5982                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5983
5984         return 0;
5985 }
5986
5987 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5988 {
5989         struct drm_device *dev = state->dev;
5990         struct drm_i915_private *dev_priv = dev->dev_private;
5991         int max_pixclk = intel_mode_max_pixclk(dev, state);
5992
5993         if (max_pixclk < 0)
5994                 return max_pixclk;
5995
5996         to_intel_atomic_state(state)->cdclk =
5997                 broxton_calc_cdclk(dev_priv, max_pixclk);
5998
5999         return 0;
6000 }
6001
6002 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6003 {
6004         unsigned int credits, default_credits;
6005
6006         if (IS_CHERRYVIEW(dev_priv))
6007                 default_credits = PFI_CREDIT(12);
6008         else
6009                 default_credits = PFI_CREDIT(8);
6010
6011         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6012                 /* CHV suggested value is 31 or 63 */
6013                 if (IS_CHERRYVIEW(dev_priv))
6014                         credits = PFI_CREDIT_63;
6015                 else
6016                         credits = PFI_CREDIT(15);
6017         } else {
6018                 credits = default_credits;
6019         }
6020
6021         /*
6022          * WA - write default credits before re-programming
6023          * FIXME: should we also set the resend bit here?
6024          */
6025         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6026                    default_credits);
6027
6028         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6029                    credits | PFI_CREDIT_RESEND);
6030
6031         /*
6032          * FIXME is this guaranteed to clear
6033          * immediately or should we poll for it?
6034          */
6035         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6036 }
6037
6038 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6039 {
6040         struct drm_device *dev = old_state->dev;
6041         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6042         struct drm_i915_private *dev_priv = dev->dev_private;
6043
6044         /*
6045          * FIXME: We can end up here with all power domains off, yet
6046          * with a CDCLK frequency other than the minimum. To account
6047          * for this take the PIPE-A power domain, which covers the HW
6048          * blocks needed for the following programming. This can be
6049          * removed once it's guaranteed that we get here either with
6050          * the minimum CDCLK set, or the required power domains
6051          * enabled.
6052          */
6053         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6054
6055         if (IS_CHERRYVIEW(dev))
6056                 cherryview_set_cdclk(dev, req_cdclk);
6057         else
6058                 valleyview_set_cdclk(dev, req_cdclk);
6059
6060         vlv_program_pfi_credits(dev_priv);
6061
6062         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6063 }
6064
6065 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6066 {
6067         struct drm_device *dev = crtc->dev;
6068         struct drm_i915_private *dev_priv = to_i915(dev);
6069         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6070         struct intel_encoder *encoder;
6071         int pipe = intel_crtc->pipe;
6072         bool is_dsi;
6073
6074         if (WARN_ON(intel_crtc->active))
6075                 return;
6076
6077         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6078
6079         if (intel_crtc->config->has_dp_encoder)
6080                 intel_dp_set_m_n(intel_crtc, M1_N1);
6081
6082         intel_set_pipe_timings(intel_crtc);
6083
6084         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6085                 struct drm_i915_private *dev_priv = dev->dev_private;
6086
6087                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6088                 I915_WRITE(CHV_CANVAS(pipe), 0);
6089         }
6090
6091         i9xx_set_pipeconf(intel_crtc);
6092
6093         intel_crtc->active = true;
6094
6095         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6096
6097         for_each_encoder_on_crtc(dev, crtc, encoder)
6098                 if (encoder->pre_pll_enable)
6099                         encoder->pre_pll_enable(encoder);
6100
6101         if (!is_dsi) {
6102                 if (IS_CHERRYVIEW(dev)) {
6103                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6104                         chv_enable_pll(intel_crtc, intel_crtc->config);
6105                 } else {
6106                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6107                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6108                 }
6109         }
6110
6111         for_each_encoder_on_crtc(dev, crtc, encoder)
6112                 if (encoder->pre_enable)
6113                         encoder->pre_enable(encoder);
6114
6115         i9xx_pfit_enable(intel_crtc);
6116
6117         intel_crtc_load_lut(crtc);
6118
6119         intel_enable_pipe(intel_crtc);
6120
6121         assert_vblank_disabled(crtc);
6122         drm_crtc_vblank_on(crtc);
6123
6124         for_each_encoder_on_crtc(dev, crtc, encoder)
6125                 encoder->enable(encoder);
6126 }
6127
6128 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6129 {
6130         struct drm_device *dev = crtc->base.dev;
6131         struct drm_i915_private *dev_priv = dev->dev_private;
6132
6133         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6134         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6135 }
6136
6137 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6138 {
6139         struct drm_device *dev = crtc->dev;
6140         struct drm_i915_private *dev_priv = to_i915(dev);
6141         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6142         struct intel_encoder *encoder;
6143         int pipe = intel_crtc->pipe;
6144
6145         if (WARN_ON(intel_crtc->active))
6146                 return;
6147
6148         i9xx_set_pll_dividers(intel_crtc);
6149
6150         if (intel_crtc->config->has_dp_encoder)
6151                 intel_dp_set_m_n(intel_crtc, M1_N1);
6152
6153         intel_set_pipe_timings(intel_crtc);
6154
6155         i9xx_set_pipeconf(intel_crtc);
6156
6157         intel_crtc->active = true;
6158
6159         if (!IS_GEN2(dev))
6160                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6161
6162         for_each_encoder_on_crtc(dev, crtc, encoder)
6163                 if (encoder->pre_enable)
6164                         encoder->pre_enable(encoder);
6165
6166         i9xx_enable_pll(intel_crtc);
6167
6168         i9xx_pfit_enable(intel_crtc);
6169
6170         intel_crtc_load_lut(crtc);
6171
6172         intel_update_watermarks(crtc);
6173         intel_enable_pipe(intel_crtc);
6174
6175         assert_vblank_disabled(crtc);
6176         drm_crtc_vblank_on(crtc);
6177
6178         for_each_encoder_on_crtc(dev, crtc, encoder)
6179                 encoder->enable(encoder);
6180 }
6181
6182 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6183 {
6184         struct drm_device *dev = crtc->base.dev;
6185         struct drm_i915_private *dev_priv = dev->dev_private;
6186
6187         if (!crtc->config->gmch_pfit.control)
6188                 return;
6189
6190         assert_pipe_disabled(dev_priv, crtc->pipe);
6191
6192         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6193                          I915_READ(PFIT_CONTROL));
6194         I915_WRITE(PFIT_CONTROL, 0);
6195 }
6196
6197 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6198 {
6199         struct drm_device *dev = crtc->dev;
6200         struct drm_i915_private *dev_priv = dev->dev_private;
6201         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6202         struct intel_encoder *encoder;
6203         int pipe = intel_crtc->pipe;
6204
6205         /*
6206          * On gen2 planes are double buffered but the pipe isn't, so we must
6207          * wait for planes to fully turn off before disabling the pipe.
6208          * We also need to wait on all gmch platforms because of the
6209          * self-refresh mode constraint explained above.
6210          */
6211         intel_wait_for_vblank(dev, pipe);
6212
6213         for_each_encoder_on_crtc(dev, crtc, encoder)
6214                 encoder->disable(encoder);
6215
6216         drm_crtc_vblank_off(crtc);
6217         assert_vblank_disabled(crtc);
6218
6219         intel_disable_pipe(intel_crtc);
6220
6221         i9xx_pfit_disable(intel_crtc);
6222
6223         for_each_encoder_on_crtc(dev, crtc, encoder)
6224                 if (encoder->post_disable)
6225                         encoder->post_disable(encoder);
6226
6227         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6228                 if (IS_CHERRYVIEW(dev))
6229                         chv_disable_pll(dev_priv, pipe);
6230                 else if (IS_VALLEYVIEW(dev))
6231                         vlv_disable_pll(dev_priv, pipe);
6232                 else
6233                         i9xx_disable_pll(intel_crtc);
6234         }
6235
6236         for_each_encoder_on_crtc(dev, crtc, encoder)
6237                 if (encoder->post_pll_disable)
6238                         encoder->post_pll_disable(encoder);
6239
6240         if (!IS_GEN2(dev))
6241                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6242 }
6243
6244 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6245 {
6246         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6247         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6248         enum intel_display_power_domain domain;
6249         unsigned long domains;
6250
6251         if (!intel_crtc->active)
6252                 return;
6253
6254         if (to_intel_plane_state(crtc->primary->state)->visible) {
6255                 intel_crtc_wait_for_pending_flips(crtc);
6256                 intel_pre_disable_primary(crtc);
6257         }
6258
6259         intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6260         dev_priv->display.crtc_disable(crtc);
6261         intel_crtc->active = false;
6262         intel_update_watermarks(crtc);
6263         intel_disable_shared_dpll(intel_crtc);
6264
6265         domains = intel_crtc->enabled_power_domains;
6266         for_each_power_domain(domain, domains)
6267                 intel_display_power_put(dev_priv, domain);
6268         intel_crtc->enabled_power_domains = 0;
6269 }
6270
6271 /*
6272  * turn all crtc's off, but do not adjust state
6273  * This has to be paired with a call to intel_modeset_setup_hw_state.
6274  */
6275 int intel_display_suspend(struct drm_device *dev)
6276 {
6277         struct drm_mode_config *config = &dev->mode_config;
6278         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6279         struct drm_atomic_state *state;
6280         struct drm_crtc *crtc;
6281         unsigned crtc_mask = 0;
6282         int ret = 0;
6283
6284         if (WARN_ON(!ctx))
6285                 return 0;
6286
6287         lockdep_assert_held(&ctx->ww_ctx);
6288         state = drm_atomic_state_alloc(dev);
6289         if (WARN_ON(!state))
6290                 return -ENOMEM;
6291
6292         state->acquire_ctx = ctx;
6293         state->allow_modeset = true;
6294
6295         for_each_crtc(dev, crtc) {
6296                 struct drm_crtc_state *crtc_state =
6297                         drm_atomic_get_crtc_state(state, crtc);
6298
6299                 ret = PTR_ERR_OR_ZERO(crtc_state);
6300                 if (ret)
6301                         goto free;
6302
6303                 if (!crtc_state->active)
6304                         continue;
6305
6306                 crtc_state->active = false;
6307                 crtc_mask |= 1 << drm_crtc_index(crtc);
6308         }
6309
6310         if (crtc_mask) {
6311                 ret = drm_atomic_commit(state);
6312
6313                 if (!ret) {
6314                         for_each_crtc(dev, crtc)
6315                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6316                                         crtc->state->active = true;
6317
6318                         return ret;
6319                 }
6320         }
6321
6322 free:
6323         if (ret)
6324                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6325         drm_atomic_state_free(state);
6326         return ret;
6327 }
6328
6329 void intel_encoder_destroy(struct drm_encoder *encoder)
6330 {
6331         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6332
6333         drm_encoder_cleanup(encoder);
6334         kfree(intel_encoder);
6335 }
6336
6337 /* Cross check the actual hw state with our own modeset state tracking (and it's
6338  * internal consistency). */
6339 static void intel_connector_check_state(struct intel_connector *connector)
6340 {
6341         struct drm_crtc *crtc = connector->base.state->crtc;
6342
6343         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6344                       connector->base.base.id,
6345                       connector->base.name);
6346
6347         if (connector->get_hw_state(connector)) {
6348                 struct intel_encoder *encoder = connector->encoder;
6349                 struct drm_connector_state *conn_state = connector->base.state;
6350
6351                 I915_STATE_WARN(!crtc,
6352                          "connector enabled without attached crtc\n");
6353
6354                 if (!crtc)
6355                         return;
6356
6357                 I915_STATE_WARN(!crtc->state->active,
6358                       "connector is active, but attached crtc isn't\n");
6359
6360                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6361                         return;
6362
6363                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6364                         "atomic encoder doesn't match attached encoder\n");
6365
6366                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6367                         "attached encoder crtc differs from connector crtc\n");
6368         } else {
6369                 I915_STATE_WARN(crtc && crtc->state->active,
6370                         "attached crtc is active, but connector isn't\n");
6371                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6372                         "best encoder set without crtc!\n");
6373         }
6374 }
6375
6376 int intel_connector_init(struct intel_connector *connector)
6377 {
6378         struct drm_connector_state *connector_state;
6379
6380         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6381         if (!connector_state)
6382                 return -ENOMEM;
6383
6384         connector->base.state = connector_state;
6385         return 0;
6386 }
6387
6388 struct intel_connector *intel_connector_alloc(void)
6389 {
6390         struct intel_connector *connector;
6391
6392         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6393         if (!connector)
6394                 return NULL;
6395
6396         if (intel_connector_init(connector) < 0) {
6397                 kfree(connector);
6398                 return NULL;
6399         }
6400
6401         return connector;
6402 }
6403
6404 /* Simple connector->get_hw_state implementation for encoders that support only
6405  * one connector and no cloning and hence the encoder state determines the state
6406  * of the connector. */
6407 bool intel_connector_get_hw_state(struct intel_connector *connector)
6408 {
6409         enum pipe pipe = 0;
6410         struct intel_encoder *encoder = connector->encoder;
6411
6412         return encoder->get_hw_state(encoder, &pipe);
6413 }
6414
6415 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6416 {
6417         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6418                 return crtc_state->fdi_lanes;
6419
6420         return 0;
6421 }
6422
6423 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6424                                      struct intel_crtc_state *pipe_config)
6425 {
6426         struct drm_atomic_state *state = pipe_config->base.state;
6427         struct intel_crtc *other_crtc;
6428         struct intel_crtc_state *other_crtc_state;
6429
6430         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6431                       pipe_name(pipe), pipe_config->fdi_lanes);
6432         if (pipe_config->fdi_lanes > 4) {
6433                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6434                               pipe_name(pipe), pipe_config->fdi_lanes);
6435                 return -EINVAL;
6436         }
6437
6438         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6439                 if (pipe_config->fdi_lanes > 2) {
6440                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6441                                       pipe_config->fdi_lanes);
6442                         return -EINVAL;
6443                 } else {
6444                         return 0;
6445                 }
6446         }
6447
6448         if (INTEL_INFO(dev)->num_pipes == 2)
6449                 return 0;
6450
6451         /* Ivybridge 3 pipe is really complicated */
6452         switch (pipe) {
6453         case PIPE_A:
6454                 return 0;
6455         case PIPE_B:
6456                 if (pipe_config->fdi_lanes <= 2)
6457                         return 0;
6458
6459                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6460                 other_crtc_state =
6461                         intel_atomic_get_crtc_state(state, other_crtc);
6462                 if (IS_ERR(other_crtc_state))
6463                         return PTR_ERR(other_crtc_state);
6464
6465                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6466                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6467                                       pipe_name(pipe), pipe_config->fdi_lanes);
6468                         return -EINVAL;
6469                 }
6470                 return 0;
6471         case PIPE_C:
6472                 if (pipe_config->fdi_lanes > 2) {
6473                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6474                                       pipe_name(pipe), pipe_config->fdi_lanes);
6475                         return -EINVAL;
6476                 }
6477
6478                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6479                 other_crtc_state =
6480                         intel_atomic_get_crtc_state(state, other_crtc);
6481                 if (IS_ERR(other_crtc_state))
6482                         return PTR_ERR(other_crtc_state);
6483
6484                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6485                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6486                         return -EINVAL;
6487                 }
6488                 return 0;
6489         default:
6490                 BUG();
6491         }
6492 }
6493
6494 #define RETRY 1
6495 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6496                                        struct intel_crtc_state *pipe_config)
6497 {
6498         struct drm_device *dev = intel_crtc->base.dev;
6499         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6500         int lane, link_bw, fdi_dotclock, ret;
6501         bool needs_recompute = false;
6502
6503 retry:
6504         /* FDI is a binary signal running at ~2.7GHz, encoding
6505          * each output octet as 10 bits. The actual frequency
6506          * is stored as a divider into a 100MHz clock, and the
6507          * mode pixel clock is stored in units of 1KHz.
6508          * Hence the bw of each lane in terms of the mode signal
6509          * is:
6510          */
6511         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6512
6513         fdi_dotclock = adjusted_mode->crtc_clock;
6514
6515         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6516                                            pipe_config->pipe_bpp);
6517
6518         pipe_config->fdi_lanes = lane;
6519
6520         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6521                                link_bw, &pipe_config->fdi_m_n);
6522
6523         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6524                                        intel_crtc->pipe, pipe_config);
6525         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6526                 pipe_config->pipe_bpp -= 2*3;
6527                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6528                               pipe_config->pipe_bpp);
6529                 needs_recompute = true;
6530                 pipe_config->bw_constrained = true;
6531
6532                 goto retry;
6533         }
6534
6535         if (needs_recompute)
6536                 return RETRY;
6537
6538         return ret;
6539 }
6540
6541 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6542                                      struct intel_crtc_state *pipe_config)
6543 {
6544         if (pipe_config->pipe_bpp > 24)
6545                 return false;
6546
6547         /* HSW can handle pixel rate up to cdclk? */
6548         if (IS_HASWELL(dev_priv->dev))
6549                 return true;
6550
6551         /*
6552          * We compare against max which means we must take
6553          * the increased cdclk requirement into account when
6554          * calculating the new cdclk.
6555          *
6556          * Should measure whether using a lower cdclk w/o IPS
6557          */
6558         return ilk_pipe_pixel_rate(pipe_config) <=
6559                 dev_priv->max_cdclk_freq * 95 / 100;
6560 }
6561
6562 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6563                                    struct intel_crtc_state *pipe_config)
6564 {
6565         struct drm_device *dev = crtc->base.dev;
6566         struct drm_i915_private *dev_priv = dev->dev_private;
6567
6568         pipe_config->ips_enabled = i915.enable_ips &&
6569                 hsw_crtc_supports_ips(crtc) &&
6570                 pipe_config_supports_ips(dev_priv, pipe_config);
6571 }
6572
6573 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6574                                      struct intel_crtc_state *pipe_config)
6575 {
6576         struct drm_device *dev = crtc->base.dev;
6577         struct drm_i915_private *dev_priv = dev->dev_private;
6578         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6579
6580         /* FIXME should check pixel clock limits on all platforms */
6581         if (INTEL_INFO(dev)->gen < 4) {
6582                 int clock_limit = dev_priv->max_cdclk_freq;
6583
6584                 /*
6585                  * Enable pixel doubling when the dot clock
6586                  * is > 90% of the (display) core speed.
6587                  *
6588                  * GDG double wide on either pipe,
6589                  * otherwise pipe A only.
6590                  */
6591                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6592                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6593                         clock_limit *= 2;
6594                         pipe_config->double_wide = true;
6595                 }
6596
6597                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6598                         return -EINVAL;
6599         }
6600
6601         /*
6602          * Pipe horizontal size must be even in:
6603          * - DVO ganged mode
6604          * - LVDS dual channel mode
6605          * - Double wide pipe
6606          */
6607         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6608              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6609                 pipe_config->pipe_src_w &= ~1;
6610
6611         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6612          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6613          */
6614         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6615                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6616                 return -EINVAL;
6617
6618         if (HAS_IPS(dev))
6619                 hsw_compute_ips_config(crtc, pipe_config);
6620
6621         if (pipe_config->has_pch_encoder)
6622                 return ironlake_fdi_compute_config(crtc, pipe_config);
6623
6624         return 0;
6625 }
6626
6627 static int skylake_get_display_clock_speed(struct drm_device *dev)
6628 {
6629         struct drm_i915_private *dev_priv = to_i915(dev);
6630         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6631         uint32_t cdctl = I915_READ(CDCLK_CTL);
6632         uint32_t linkrate;
6633
6634         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6635                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6636
6637         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6638                 return 540000;
6639
6640         linkrate = (I915_READ(DPLL_CTRL1) &
6641                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6642
6643         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6644             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6645                 /* vco 8640 */
6646                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6647                 case CDCLK_FREQ_450_432:
6648                         return 432000;
6649                 case CDCLK_FREQ_337_308:
6650                         return 308570;
6651                 case CDCLK_FREQ_675_617:
6652                         return 617140;
6653                 default:
6654                         WARN(1, "Unknown cd freq selection\n");
6655                 }
6656         } else {
6657                 /* vco 8100 */
6658                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6659                 case CDCLK_FREQ_450_432:
6660                         return 450000;
6661                 case CDCLK_FREQ_337_308:
6662                         return 337500;
6663                 case CDCLK_FREQ_675_617:
6664                         return 675000;
6665                 default:
6666                         WARN(1, "Unknown cd freq selection\n");
6667                 }
6668         }
6669
6670         /* error case, do as if DPLL0 isn't enabled */
6671         return 24000;
6672 }
6673
6674 static int broxton_get_display_clock_speed(struct drm_device *dev)
6675 {
6676         struct drm_i915_private *dev_priv = to_i915(dev);
6677         uint32_t cdctl = I915_READ(CDCLK_CTL);
6678         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6679         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6680         int cdclk;
6681
6682         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6683                 return 19200;
6684
6685         cdclk = 19200 * pll_ratio / 2;
6686
6687         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6688         case BXT_CDCLK_CD2X_DIV_SEL_1:
6689                 return cdclk;  /* 576MHz or 624MHz */
6690         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6691                 return cdclk * 2 / 3; /* 384MHz */
6692         case BXT_CDCLK_CD2X_DIV_SEL_2:
6693                 return cdclk / 2; /* 288MHz */
6694         case BXT_CDCLK_CD2X_DIV_SEL_4:
6695                 return cdclk / 4; /* 144MHz */
6696         }
6697
6698         /* error case, do as if DE PLL isn't enabled */
6699         return 19200;
6700 }
6701
6702 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6703 {
6704         struct drm_i915_private *dev_priv = dev->dev_private;
6705         uint32_t lcpll = I915_READ(LCPLL_CTL);
6706         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6707
6708         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6709                 return 800000;
6710         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6711                 return 450000;
6712         else if (freq == LCPLL_CLK_FREQ_450)
6713                 return 450000;
6714         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6715                 return 540000;
6716         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6717                 return 337500;
6718         else
6719                 return 675000;
6720 }
6721
6722 static int haswell_get_display_clock_speed(struct drm_device *dev)
6723 {
6724         struct drm_i915_private *dev_priv = dev->dev_private;
6725         uint32_t lcpll = I915_READ(LCPLL_CTL);
6726         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6727
6728         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6729                 return 800000;
6730         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6731                 return 450000;
6732         else if (freq == LCPLL_CLK_FREQ_450)
6733                 return 450000;
6734         else if (IS_HSW_ULT(dev))
6735                 return 337500;
6736         else
6737                 return 540000;
6738 }
6739
6740 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6741 {
6742         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6743                                       CCK_DISPLAY_CLOCK_CONTROL);
6744 }
6745
6746 static int ilk_get_display_clock_speed(struct drm_device *dev)
6747 {
6748         return 450000;
6749 }
6750
6751 static int i945_get_display_clock_speed(struct drm_device *dev)
6752 {
6753         return 400000;
6754 }
6755
6756 static int i915_get_display_clock_speed(struct drm_device *dev)
6757 {
6758         return 333333;
6759 }
6760
6761 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6762 {
6763         return 200000;
6764 }
6765
6766 static int pnv_get_display_clock_speed(struct drm_device *dev)
6767 {
6768         u16 gcfgc = 0;
6769
6770         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6771
6772         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6773         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6774                 return 266667;
6775         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6776                 return 333333;
6777         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6778                 return 444444;
6779         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6780                 return 200000;
6781         default:
6782                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6783         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6784                 return 133333;
6785         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6786                 return 166667;
6787         }
6788 }
6789
6790 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6791 {
6792         u16 gcfgc = 0;
6793
6794         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6795
6796         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6797                 return 133333;
6798         else {
6799                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6800                 case GC_DISPLAY_CLOCK_333_MHZ:
6801                         return 333333;
6802                 default:
6803                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6804                         return 190000;
6805                 }
6806         }
6807 }
6808
6809 static int i865_get_display_clock_speed(struct drm_device *dev)
6810 {
6811         return 266667;
6812 }
6813
6814 static int i85x_get_display_clock_speed(struct drm_device *dev)
6815 {
6816         u16 hpllcc = 0;
6817
6818         /*
6819          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6820          * encoding is different :(
6821          * FIXME is this the right way to detect 852GM/852GMV?
6822          */
6823         if (dev->pdev->revision == 0x1)
6824                 return 133333;
6825
6826         pci_bus_read_config_word(dev->pdev->bus,
6827                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6828
6829         /* Assume that the hardware is in the high speed state.  This
6830          * should be the default.
6831          */
6832         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6833         case GC_CLOCK_133_200:
6834         case GC_CLOCK_133_200_2:
6835         case GC_CLOCK_100_200:
6836                 return 200000;
6837         case GC_CLOCK_166_250:
6838                 return 250000;
6839         case GC_CLOCK_100_133:
6840                 return 133333;
6841         case GC_CLOCK_133_266:
6842         case GC_CLOCK_133_266_2:
6843         case GC_CLOCK_166_266:
6844                 return 266667;
6845         }
6846
6847         /* Shouldn't happen */
6848         return 0;
6849 }
6850
6851 static int i830_get_display_clock_speed(struct drm_device *dev)
6852 {
6853         return 133333;
6854 }
6855
6856 static unsigned int intel_hpll_vco(struct drm_device *dev)
6857 {
6858         struct drm_i915_private *dev_priv = dev->dev_private;
6859         static const unsigned int blb_vco[8] = {
6860                 [0] = 3200000,
6861                 [1] = 4000000,
6862                 [2] = 5333333,
6863                 [3] = 4800000,
6864                 [4] = 6400000,
6865         };
6866         static const unsigned int pnv_vco[8] = {
6867                 [0] = 3200000,
6868                 [1] = 4000000,
6869                 [2] = 5333333,
6870                 [3] = 4800000,
6871                 [4] = 2666667,
6872         };
6873         static const unsigned int cl_vco[8] = {
6874                 [0] = 3200000,
6875                 [1] = 4000000,
6876                 [2] = 5333333,
6877                 [3] = 6400000,
6878                 [4] = 3333333,
6879                 [5] = 3566667,
6880                 [6] = 4266667,
6881         };
6882         static const unsigned int elk_vco[8] = {
6883                 [0] = 3200000,
6884                 [1] = 4000000,
6885                 [2] = 5333333,
6886                 [3] = 4800000,
6887         };
6888         static const unsigned int ctg_vco[8] = {
6889                 [0] = 3200000,
6890                 [1] = 4000000,
6891                 [2] = 5333333,
6892                 [3] = 6400000,
6893                 [4] = 2666667,
6894                 [5] = 4266667,
6895         };
6896         const unsigned int *vco_table;
6897         unsigned int vco;
6898         uint8_t tmp = 0;
6899
6900         /* FIXME other chipsets? */
6901         if (IS_GM45(dev))
6902                 vco_table = ctg_vco;
6903         else if (IS_G4X(dev))
6904                 vco_table = elk_vco;
6905         else if (IS_CRESTLINE(dev))
6906                 vco_table = cl_vco;
6907         else if (IS_PINEVIEW(dev))
6908                 vco_table = pnv_vco;
6909         else if (IS_G33(dev))
6910                 vco_table = blb_vco;
6911         else
6912                 return 0;
6913
6914         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6915
6916         vco = vco_table[tmp & 0x7];
6917         if (vco == 0)
6918                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6919         else
6920                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6921
6922         return vco;
6923 }
6924
6925 static int gm45_get_display_clock_speed(struct drm_device *dev)
6926 {
6927         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6928         uint16_t tmp = 0;
6929
6930         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6931
6932         cdclk_sel = (tmp >> 12) & 0x1;
6933
6934         switch (vco) {
6935         case 2666667:
6936         case 4000000:
6937         case 5333333:
6938                 return cdclk_sel ? 333333 : 222222;
6939         case 3200000:
6940                 return cdclk_sel ? 320000 : 228571;
6941         default:
6942                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6943                 return 222222;
6944         }
6945 }
6946
6947 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6948 {
6949         static const uint8_t div_3200[] = { 16, 10,  8 };
6950         static const uint8_t div_4000[] = { 20, 12, 10 };
6951         static const uint8_t div_5333[] = { 24, 16, 14 };
6952         const uint8_t *div_table;
6953         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6954         uint16_t tmp = 0;
6955
6956         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6957
6958         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6959
6960         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6961                 goto fail;
6962
6963         switch (vco) {
6964         case 3200000:
6965                 div_table = div_3200;
6966                 break;
6967         case 4000000:
6968                 div_table = div_4000;
6969                 break;
6970         case 5333333:
6971                 div_table = div_5333;
6972                 break;
6973         default:
6974                 goto fail;
6975         }
6976
6977         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6978
6979 fail:
6980         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6981         return 200000;
6982 }
6983
6984 static int g33_get_display_clock_speed(struct drm_device *dev)
6985 {
6986         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6987         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6988         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6989         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6990         const uint8_t *div_table;
6991         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6992         uint16_t tmp = 0;
6993
6994         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6995
6996         cdclk_sel = (tmp >> 4) & 0x7;
6997
6998         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6999                 goto fail;
7000
7001         switch (vco) {
7002         case 3200000:
7003                 div_table = div_3200;
7004                 break;
7005         case 4000000:
7006                 div_table = div_4000;
7007                 break;
7008         case 4800000:
7009                 div_table = div_4800;
7010                 break;
7011         case 5333333:
7012                 div_table = div_5333;
7013                 break;
7014         default:
7015                 goto fail;
7016         }
7017
7018         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7019
7020 fail:
7021         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7022         return 190476;
7023 }
7024
7025 static void
7026 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7027 {
7028         while (*num > DATA_LINK_M_N_MASK ||
7029                *den > DATA_LINK_M_N_MASK) {
7030                 *num >>= 1;
7031                 *den >>= 1;
7032         }
7033 }
7034
7035 static void compute_m_n(unsigned int m, unsigned int n,
7036                         uint32_t *ret_m, uint32_t *ret_n)
7037 {
7038         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7039         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7040         intel_reduce_m_n_ratio(ret_m, ret_n);
7041 }
7042
7043 void
7044 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7045                        int pixel_clock, int link_clock,
7046                        struct intel_link_m_n *m_n)
7047 {
7048         m_n->tu = 64;
7049
7050         compute_m_n(bits_per_pixel * pixel_clock,
7051                     link_clock * nlanes * 8,
7052                     &m_n->gmch_m, &m_n->gmch_n);
7053
7054         compute_m_n(pixel_clock, link_clock,
7055                     &m_n->link_m, &m_n->link_n);
7056 }
7057
7058 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7059 {
7060         if (i915.panel_use_ssc >= 0)
7061                 return i915.panel_use_ssc != 0;
7062         return dev_priv->vbt.lvds_use_ssc
7063                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7064 }
7065
7066 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7067                            int num_connectors)
7068 {
7069         struct drm_device *dev = crtc_state->base.crtc->dev;
7070         struct drm_i915_private *dev_priv = dev->dev_private;
7071         int refclk;
7072
7073         WARN_ON(!crtc_state->base.state);
7074
7075         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7076                 refclk = 100000;
7077         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7078             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7079                 refclk = dev_priv->vbt.lvds_ssc_freq;
7080                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7081         } else if (!IS_GEN2(dev)) {
7082                 refclk = 96000;
7083         } else {
7084                 refclk = 48000;
7085         }
7086
7087         return refclk;
7088 }
7089
7090 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7091 {
7092         return (1 << dpll->n) << 16 | dpll->m2;
7093 }
7094
7095 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7096 {
7097         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7098 }
7099
7100 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7101                                      struct intel_crtc_state *crtc_state,
7102                                      intel_clock_t *reduced_clock)
7103 {
7104         struct drm_device *dev = crtc->base.dev;
7105         u32 fp, fp2 = 0;
7106
7107         if (IS_PINEVIEW(dev)) {
7108                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7109                 if (reduced_clock)
7110                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7111         } else {
7112                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7113                 if (reduced_clock)
7114                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7115         }
7116
7117         crtc_state->dpll_hw_state.fp0 = fp;
7118
7119         crtc->lowfreq_avail = false;
7120         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7121             reduced_clock) {
7122                 crtc_state->dpll_hw_state.fp1 = fp2;
7123                 crtc->lowfreq_avail = true;
7124         } else {
7125                 crtc_state->dpll_hw_state.fp1 = fp;
7126         }
7127 }
7128
7129 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7130                 pipe)
7131 {
7132         u32 reg_val;
7133
7134         /*
7135          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7136          * and set it to a reasonable value instead.
7137          */
7138         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7139         reg_val &= 0xffffff00;
7140         reg_val |= 0x00000030;
7141         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7142
7143         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7144         reg_val &= 0x8cffffff;
7145         reg_val = 0x8c000000;
7146         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7147
7148         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7149         reg_val &= 0xffffff00;
7150         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7151
7152         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7153         reg_val &= 0x00ffffff;
7154         reg_val |= 0xb0000000;
7155         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7156 }
7157
7158 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7159                                          struct intel_link_m_n *m_n)
7160 {
7161         struct drm_device *dev = crtc->base.dev;
7162         struct drm_i915_private *dev_priv = dev->dev_private;
7163         int pipe = crtc->pipe;
7164
7165         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7166         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7167         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7168         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7169 }
7170
7171 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7172                                          struct intel_link_m_n *m_n,
7173                                          struct intel_link_m_n *m2_n2)
7174 {
7175         struct drm_device *dev = crtc->base.dev;
7176         struct drm_i915_private *dev_priv = dev->dev_private;
7177         int pipe = crtc->pipe;
7178         enum transcoder transcoder = crtc->config->cpu_transcoder;
7179
7180         if (INTEL_INFO(dev)->gen >= 5) {
7181                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7182                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7183                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7184                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7185                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7186                  * for gen < 8) and if DRRS is supported (to make sure the
7187                  * registers are not unnecessarily accessed).
7188                  */
7189                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7190                         crtc->config->has_drrs) {
7191                         I915_WRITE(PIPE_DATA_M2(transcoder),
7192                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7193                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7194                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7195                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7196                 }
7197         } else {
7198                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7199                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7200                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7201                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7202         }
7203 }
7204
7205 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7206 {
7207         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7208
7209         if (m_n == M1_N1) {
7210                 dp_m_n = &crtc->config->dp_m_n;
7211                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7212         } else if (m_n == M2_N2) {
7213
7214                 /*
7215                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7216                  * needs to be programmed into M1_N1.
7217                  */
7218                 dp_m_n = &crtc->config->dp_m2_n2;
7219         } else {
7220                 DRM_ERROR("Unsupported divider value\n");
7221                 return;
7222         }
7223
7224         if (crtc->config->has_pch_encoder)
7225                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7226         else
7227                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7228 }
7229
7230 static void vlv_compute_dpll(struct intel_crtc *crtc,
7231                              struct intel_crtc_state *pipe_config)
7232 {
7233         u32 dpll, dpll_md;
7234
7235         /*
7236          * Enable DPIO clock input. We should never disable the reference
7237          * clock for pipe B, since VGA hotplug / manual detection depends
7238          * on it.
7239          */
7240         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7241                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7242         /* We should never disable this, set it here for state tracking */
7243         if (crtc->pipe == PIPE_B)
7244                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7245         dpll |= DPLL_VCO_ENABLE;
7246         pipe_config->dpll_hw_state.dpll = dpll;
7247
7248         dpll_md = (pipe_config->pixel_multiplier - 1)
7249                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7250         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7251 }
7252
7253 static void vlv_prepare_pll(struct intel_crtc *crtc,
7254                             const struct intel_crtc_state *pipe_config)
7255 {
7256         struct drm_device *dev = crtc->base.dev;
7257         struct drm_i915_private *dev_priv = dev->dev_private;
7258         int pipe = crtc->pipe;
7259         u32 mdiv;
7260         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7261         u32 coreclk, reg_val;
7262
7263         mutex_lock(&dev_priv->sb_lock);
7264
7265         bestn = pipe_config->dpll.n;
7266         bestm1 = pipe_config->dpll.m1;
7267         bestm2 = pipe_config->dpll.m2;
7268         bestp1 = pipe_config->dpll.p1;
7269         bestp2 = pipe_config->dpll.p2;
7270
7271         /* See eDP HDMI DPIO driver vbios notes doc */
7272
7273         /* PLL B needs special handling */
7274         if (pipe == PIPE_B)
7275                 vlv_pllb_recal_opamp(dev_priv, pipe);
7276
7277         /* Set up Tx target for periodic Rcomp update */
7278         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7279
7280         /* Disable target IRef on PLL */
7281         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7282         reg_val &= 0x00ffffff;
7283         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7284
7285         /* Disable fast lock */
7286         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7287
7288         /* Set idtafcrecal before PLL is enabled */
7289         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7290         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7291         mdiv |= ((bestn << DPIO_N_SHIFT));
7292         mdiv |= (1 << DPIO_K_SHIFT);
7293
7294         /*
7295          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7296          * but we don't support that).
7297          * Note: don't use the DAC post divider as it seems unstable.
7298          */
7299         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7300         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7301
7302         mdiv |= DPIO_ENABLE_CALIBRATION;
7303         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7304
7305         /* Set HBR and RBR LPF coefficients */
7306         if (pipe_config->port_clock == 162000 ||
7307             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7308             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7309                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7310                                  0x009f0003);
7311         else
7312                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7313                                  0x00d0000f);
7314
7315         if (pipe_config->has_dp_encoder) {
7316                 /* Use SSC source */
7317                 if (pipe == PIPE_A)
7318                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7319                                          0x0df40000);
7320                 else
7321                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7322                                          0x0df70000);
7323         } else { /* HDMI or VGA */
7324                 /* Use bend source */
7325                 if (pipe == PIPE_A)
7326                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7327                                          0x0df70000);
7328                 else
7329                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7330                                          0x0df40000);
7331         }
7332
7333         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7334         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7335         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7336             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7337                 coreclk |= 0x01000000;
7338         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7339
7340         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7341         mutex_unlock(&dev_priv->sb_lock);
7342 }
7343
7344 static void chv_compute_dpll(struct intel_crtc *crtc,
7345                              struct intel_crtc_state *pipe_config)
7346 {
7347         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7348                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7349                 DPLL_VCO_ENABLE;
7350         if (crtc->pipe != PIPE_A)
7351                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7352
7353         pipe_config->dpll_hw_state.dpll_md =
7354                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7355 }
7356
7357 static void chv_prepare_pll(struct intel_crtc *crtc,
7358                             const struct intel_crtc_state *pipe_config)
7359 {
7360         struct drm_device *dev = crtc->base.dev;
7361         struct drm_i915_private *dev_priv = dev->dev_private;
7362         int pipe = crtc->pipe;
7363         int dpll_reg = DPLL(crtc->pipe);
7364         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7365         u32 loopfilter, tribuf_calcntr;
7366         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7367         u32 dpio_val;
7368         int vco;
7369
7370         bestn = pipe_config->dpll.n;
7371         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7372         bestm1 = pipe_config->dpll.m1;
7373         bestm2 = pipe_config->dpll.m2 >> 22;
7374         bestp1 = pipe_config->dpll.p1;
7375         bestp2 = pipe_config->dpll.p2;
7376         vco = pipe_config->dpll.vco;
7377         dpio_val = 0;
7378         loopfilter = 0;
7379
7380         /*
7381          * Enable Refclk and SSC
7382          */
7383         I915_WRITE(dpll_reg,
7384                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7385
7386         mutex_lock(&dev_priv->sb_lock);
7387
7388         /* p1 and p2 divider */
7389         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7390                         5 << DPIO_CHV_S1_DIV_SHIFT |
7391                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7392                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7393                         1 << DPIO_CHV_K_DIV_SHIFT);
7394
7395         /* Feedback post-divider - m2 */
7396         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7397
7398         /* Feedback refclk divider - n and m1 */
7399         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7400                         DPIO_CHV_M1_DIV_BY_2 |
7401                         1 << DPIO_CHV_N_DIV_SHIFT);
7402
7403         /* M2 fraction division */
7404         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7405
7406         /* M2 fraction division enable */
7407         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7408         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7409         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7410         if (bestm2_frac)
7411                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7412         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7413
7414         /* Program digital lock detect threshold */
7415         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7416         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7417                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7418         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7419         if (!bestm2_frac)
7420                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7421         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7422
7423         /* Loop filter */
7424         if (vco == 5400000) {
7425                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7426                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7427                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7428                 tribuf_calcntr = 0x9;
7429         } else if (vco <= 6200000) {
7430                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7431                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7432                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7433                 tribuf_calcntr = 0x9;
7434         } else if (vco <= 6480000) {
7435                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7436                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7437                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7438                 tribuf_calcntr = 0x8;
7439         } else {
7440                 /* Not supported. Apply the same limits as in the max case */
7441                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7442                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7443                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7444                 tribuf_calcntr = 0;
7445         }
7446         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7447
7448         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7449         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7450         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7451         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7452
7453         /* AFC Recal */
7454         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7455                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7456                         DPIO_AFC_RECAL);
7457
7458         mutex_unlock(&dev_priv->sb_lock);
7459 }
7460
7461 /**
7462  * vlv_force_pll_on - forcibly enable just the PLL
7463  * @dev_priv: i915 private structure
7464  * @pipe: pipe PLL to enable
7465  * @dpll: PLL configuration
7466  *
7467  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7468  * in cases where we need the PLL enabled even when @pipe is not going to
7469  * be enabled.
7470  */
7471 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7472                       const struct dpll *dpll)
7473 {
7474         struct intel_crtc *crtc =
7475                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7476         struct intel_crtc_state pipe_config = {
7477                 .base.crtc = &crtc->base,
7478                 .pixel_multiplier = 1,
7479                 .dpll = *dpll,
7480         };
7481
7482         if (IS_CHERRYVIEW(dev)) {
7483                 chv_compute_dpll(crtc, &pipe_config);
7484                 chv_prepare_pll(crtc, &pipe_config);
7485                 chv_enable_pll(crtc, &pipe_config);
7486         } else {
7487                 vlv_compute_dpll(crtc, &pipe_config);
7488                 vlv_prepare_pll(crtc, &pipe_config);
7489                 vlv_enable_pll(crtc, &pipe_config);
7490         }
7491 }
7492
7493 /**
7494  * vlv_force_pll_off - forcibly disable just the PLL
7495  * @dev_priv: i915 private structure
7496  * @pipe: pipe PLL to disable
7497  *
7498  * Disable the PLL for @pipe. To be used in cases where we need
7499  * the PLL enabled even when @pipe is not going to be enabled.
7500  */
7501 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7502 {
7503         if (IS_CHERRYVIEW(dev))
7504                 chv_disable_pll(to_i915(dev), pipe);
7505         else
7506                 vlv_disable_pll(to_i915(dev), pipe);
7507 }
7508
7509 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7510                               struct intel_crtc_state *crtc_state,
7511                               intel_clock_t *reduced_clock,
7512                               int num_connectors)
7513 {
7514         struct drm_device *dev = crtc->base.dev;
7515         struct drm_i915_private *dev_priv = dev->dev_private;
7516         u32 dpll;
7517         bool is_sdvo;
7518         struct dpll *clock = &crtc_state->dpll;
7519
7520         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7521
7522         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7523                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7524
7525         dpll = DPLL_VGA_MODE_DIS;
7526
7527         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7528                 dpll |= DPLLB_MODE_LVDS;
7529         else
7530                 dpll |= DPLLB_MODE_DAC_SERIAL;
7531
7532         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7533                 dpll |= (crtc_state->pixel_multiplier - 1)
7534                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7535         }
7536
7537         if (is_sdvo)
7538                 dpll |= DPLL_SDVO_HIGH_SPEED;
7539
7540         if (crtc_state->has_dp_encoder)
7541                 dpll |= DPLL_SDVO_HIGH_SPEED;
7542
7543         /* compute bitmask from p1 value */
7544         if (IS_PINEVIEW(dev))
7545                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7546         else {
7547                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7548                 if (IS_G4X(dev) && reduced_clock)
7549                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7550         }
7551         switch (clock->p2) {
7552         case 5:
7553                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7554                 break;
7555         case 7:
7556                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7557                 break;
7558         case 10:
7559                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7560                 break;
7561         case 14:
7562                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7563                 break;
7564         }
7565         if (INTEL_INFO(dev)->gen >= 4)
7566                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7567
7568         if (crtc_state->sdvo_tv_clock)
7569                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7570         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7571                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7572                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7573         else
7574                 dpll |= PLL_REF_INPUT_DREFCLK;
7575
7576         dpll |= DPLL_VCO_ENABLE;
7577         crtc_state->dpll_hw_state.dpll = dpll;
7578
7579         if (INTEL_INFO(dev)->gen >= 4) {
7580                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7581                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7582                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7583         }
7584 }
7585
7586 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7587                               struct intel_crtc_state *crtc_state,
7588                               intel_clock_t *reduced_clock,
7589                               int num_connectors)
7590 {
7591         struct drm_device *dev = crtc->base.dev;
7592         struct drm_i915_private *dev_priv = dev->dev_private;
7593         u32 dpll;
7594         struct dpll *clock = &crtc_state->dpll;
7595
7596         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7597
7598         dpll = DPLL_VGA_MODE_DIS;
7599
7600         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7601                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7602         } else {
7603                 if (clock->p1 == 2)
7604                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7605                 else
7606                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7607                 if (clock->p2 == 4)
7608                         dpll |= PLL_P2_DIVIDE_BY_4;
7609         }
7610
7611         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7612                 dpll |= DPLL_DVO_2X_MODE;
7613
7614         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7615                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7616                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7617         else
7618                 dpll |= PLL_REF_INPUT_DREFCLK;
7619
7620         dpll |= DPLL_VCO_ENABLE;
7621         crtc_state->dpll_hw_state.dpll = dpll;
7622 }
7623
7624 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7625 {
7626         struct drm_device *dev = intel_crtc->base.dev;
7627         struct drm_i915_private *dev_priv = dev->dev_private;
7628         enum pipe pipe = intel_crtc->pipe;
7629         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7630         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7631         uint32_t crtc_vtotal, crtc_vblank_end;
7632         int vsyncshift = 0;
7633
7634         /* We need to be careful not to changed the adjusted mode, for otherwise
7635          * the hw state checker will get angry at the mismatch. */
7636         crtc_vtotal = adjusted_mode->crtc_vtotal;
7637         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7638
7639         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7640                 /* the chip adds 2 halflines automatically */
7641                 crtc_vtotal -= 1;
7642                 crtc_vblank_end -= 1;
7643
7644                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7645                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7646                 else
7647                         vsyncshift = adjusted_mode->crtc_hsync_start -
7648                                 adjusted_mode->crtc_htotal / 2;
7649                 if (vsyncshift < 0)
7650                         vsyncshift += adjusted_mode->crtc_htotal;
7651         }
7652
7653         if (INTEL_INFO(dev)->gen > 3)
7654                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7655
7656         I915_WRITE(HTOTAL(cpu_transcoder),
7657                    (adjusted_mode->crtc_hdisplay - 1) |
7658                    ((adjusted_mode->crtc_htotal - 1) << 16));
7659         I915_WRITE(HBLANK(cpu_transcoder),
7660                    (adjusted_mode->crtc_hblank_start - 1) |
7661                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7662         I915_WRITE(HSYNC(cpu_transcoder),
7663                    (adjusted_mode->crtc_hsync_start - 1) |
7664                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7665
7666         I915_WRITE(VTOTAL(cpu_transcoder),
7667                    (adjusted_mode->crtc_vdisplay - 1) |
7668                    ((crtc_vtotal - 1) << 16));
7669         I915_WRITE(VBLANK(cpu_transcoder),
7670                    (adjusted_mode->crtc_vblank_start - 1) |
7671                    ((crtc_vblank_end - 1) << 16));
7672         I915_WRITE(VSYNC(cpu_transcoder),
7673                    (adjusted_mode->crtc_vsync_start - 1) |
7674                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7675
7676         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7677          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7678          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7679          * bits. */
7680         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7681             (pipe == PIPE_B || pipe == PIPE_C))
7682                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7683
7684         /* pipesrc controls the size that is scaled from, which should
7685          * always be the user's requested size.
7686          */
7687         I915_WRITE(PIPESRC(pipe),
7688                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7689                    (intel_crtc->config->pipe_src_h - 1));
7690 }
7691
7692 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7693                                    struct intel_crtc_state *pipe_config)
7694 {
7695         struct drm_device *dev = crtc->base.dev;
7696         struct drm_i915_private *dev_priv = dev->dev_private;
7697         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7698         uint32_t tmp;
7699
7700         tmp = I915_READ(HTOTAL(cpu_transcoder));
7701         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7702         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7703         tmp = I915_READ(HBLANK(cpu_transcoder));
7704         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7705         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7706         tmp = I915_READ(HSYNC(cpu_transcoder));
7707         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7708         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7709
7710         tmp = I915_READ(VTOTAL(cpu_transcoder));
7711         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7712         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7713         tmp = I915_READ(VBLANK(cpu_transcoder));
7714         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7715         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7716         tmp = I915_READ(VSYNC(cpu_transcoder));
7717         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7718         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7719
7720         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7721                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7722                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7723                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7724         }
7725
7726         tmp = I915_READ(PIPESRC(crtc->pipe));
7727         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7728         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7729
7730         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7731         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7732 }
7733
7734 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7735                                  struct intel_crtc_state *pipe_config)
7736 {
7737         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7738         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7739         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7740         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7741
7742         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7743         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7744         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7745         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7746
7747         mode->flags = pipe_config->base.adjusted_mode.flags;
7748         mode->type = DRM_MODE_TYPE_DRIVER;
7749
7750         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7751         mode->flags |= pipe_config->base.adjusted_mode.flags;
7752
7753         mode->hsync = drm_mode_hsync(mode);
7754         mode->vrefresh = drm_mode_vrefresh(mode);
7755         drm_mode_set_name(mode);
7756 }
7757
7758 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7759 {
7760         struct drm_device *dev = intel_crtc->base.dev;
7761         struct drm_i915_private *dev_priv = dev->dev_private;
7762         uint32_t pipeconf;
7763
7764         pipeconf = 0;
7765
7766         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7767             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7768                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7769
7770         if (intel_crtc->config->double_wide)
7771                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7772
7773         /* only g4x and later have fancy bpc/dither controls */
7774         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7775                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7776                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7777                         pipeconf |= PIPECONF_DITHER_EN |
7778                                     PIPECONF_DITHER_TYPE_SP;
7779
7780                 switch (intel_crtc->config->pipe_bpp) {
7781                 case 18:
7782                         pipeconf |= PIPECONF_6BPC;
7783                         break;
7784                 case 24:
7785                         pipeconf |= PIPECONF_8BPC;
7786                         break;
7787                 case 30:
7788                         pipeconf |= PIPECONF_10BPC;
7789                         break;
7790                 default:
7791                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7792                         BUG();
7793                 }
7794         }
7795
7796         if (HAS_PIPE_CXSR(dev)) {
7797                 if (intel_crtc->lowfreq_avail) {
7798                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7799                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7800                 } else {
7801                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7802                 }
7803         }
7804
7805         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7806                 if (INTEL_INFO(dev)->gen < 4 ||
7807                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7808                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7809                 else
7810                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7811         } else
7812                 pipeconf |= PIPECONF_PROGRESSIVE;
7813
7814         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7815                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7816
7817         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7818         POSTING_READ(PIPECONF(intel_crtc->pipe));
7819 }
7820
7821 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7822                                    struct intel_crtc_state *crtc_state)
7823 {
7824         struct drm_device *dev = crtc->base.dev;
7825         struct drm_i915_private *dev_priv = dev->dev_private;
7826         int refclk, num_connectors = 0;
7827         intel_clock_t clock;
7828         bool ok;
7829         bool is_dsi = false;
7830         struct intel_encoder *encoder;
7831         const intel_limit_t *limit;
7832         struct drm_atomic_state *state = crtc_state->base.state;
7833         struct drm_connector *connector;
7834         struct drm_connector_state *connector_state;
7835         int i;
7836
7837         memset(&crtc_state->dpll_hw_state, 0,
7838                sizeof(crtc_state->dpll_hw_state));
7839
7840         for_each_connector_in_state(state, connector, connector_state, i) {
7841                 if (connector_state->crtc != &crtc->base)
7842                         continue;
7843
7844                 encoder = to_intel_encoder(connector_state->best_encoder);
7845
7846                 switch (encoder->type) {
7847                 case INTEL_OUTPUT_DSI:
7848                         is_dsi = true;
7849                         break;
7850                 default:
7851                         break;
7852                 }
7853
7854                 num_connectors++;
7855         }
7856
7857         if (is_dsi)
7858                 return 0;
7859
7860         if (!crtc_state->clock_set) {
7861                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7862
7863                 /*
7864                  * Returns a set of divisors for the desired target clock with
7865                  * the given refclk, or FALSE.  The returned values represent
7866                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7867                  * 2) / p1 / p2.
7868                  */
7869                 limit = intel_limit(crtc_state, refclk);
7870                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7871                                                  crtc_state->port_clock,
7872                                                  refclk, NULL, &clock);
7873                 if (!ok) {
7874                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7875                         return -EINVAL;
7876                 }
7877
7878                 /* Compat-code for transition, will disappear. */
7879                 crtc_state->dpll.n = clock.n;
7880                 crtc_state->dpll.m1 = clock.m1;
7881                 crtc_state->dpll.m2 = clock.m2;
7882                 crtc_state->dpll.p1 = clock.p1;
7883                 crtc_state->dpll.p2 = clock.p2;
7884         }
7885
7886         if (IS_GEN2(dev)) {
7887                 i8xx_compute_dpll(crtc, crtc_state, NULL,
7888                                   num_connectors);
7889         } else if (IS_CHERRYVIEW(dev)) {
7890                 chv_compute_dpll(crtc, crtc_state);
7891         } else if (IS_VALLEYVIEW(dev)) {
7892                 vlv_compute_dpll(crtc, crtc_state);
7893         } else {
7894                 i9xx_compute_dpll(crtc, crtc_state, NULL,
7895                                   num_connectors);
7896         }
7897
7898         return 0;
7899 }
7900
7901 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7902                                  struct intel_crtc_state *pipe_config)
7903 {
7904         struct drm_device *dev = crtc->base.dev;
7905         struct drm_i915_private *dev_priv = dev->dev_private;
7906         uint32_t tmp;
7907
7908         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7909                 return;
7910
7911         tmp = I915_READ(PFIT_CONTROL);
7912         if (!(tmp & PFIT_ENABLE))
7913                 return;
7914
7915         /* Check whether the pfit is attached to our pipe. */
7916         if (INTEL_INFO(dev)->gen < 4) {
7917                 if (crtc->pipe != PIPE_B)
7918                         return;
7919         } else {
7920                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7921                         return;
7922         }
7923
7924         pipe_config->gmch_pfit.control = tmp;
7925         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7926         if (INTEL_INFO(dev)->gen < 5)
7927                 pipe_config->gmch_pfit.lvds_border_bits =
7928                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7929 }
7930
7931 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7932                                struct intel_crtc_state *pipe_config)
7933 {
7934         struct drm_device *dev = crtc->base.dev;
7935         struct drm_i915_private *dev_priv = dev->dev_private;
7936         int pipe = pipe_config->cpu_transcoder;
7937         intel_clock_t clock;
7938         u32 mdiv;
7939         int refclk = 100000;
7940
7941         /* In case of MIPI DPLL will not even be used */
7942         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7943                 return;
7944
7945         mutex_lock(&dev_priv->sb_lock);
7946         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7947         mutex_unlock(&dev_priv->sb_lock);
7948
7949         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7950         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7951         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7952         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7953         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7954
7955         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7956 }
7957
7958 static void
7959 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7960                               struct intel_initial_plane_config *plane_config)
7961 {
7962         struct drm_device *dev = crtc->base.dev;
7963         struct drm_i915_private *dev_priv = dev->dev_private;
7964         u32 val, base, offset;
7965         int pipe = crtc->pipe, plane = crtc->plane;
7966         int fourcc, pixel_format;
7967         unsigned int aligned_height;
7968         struct drm_framebuffer *fb;
7969         struct intel_framebuffer *intel_fb;
7970
7971         val = I915_READ(DSPCNTR(plane));
7972         if (!(val & DISPLAY_PLANE_ENABLE))
7973                 return;
7974
7975         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7976         if (!intel_fb) {
7977                 DRM_DEBUG_KMS("failed to alloc fb\n");
7978                 return;
7979         }
7980
7981         fb = &intel_fb->base;
7982
7983         if (INTEL_INFO(dev)->gen >= 4) {
7984                 if (val & DISPPLANE_TILED) {
7985                         plane_config->tiling = I915_TILING_X;
7986                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7987                 }
7988         }
7989
7990         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7991         fourcc = i9xx_format_to_fourcc(pixel_format);
7992         fb->pixel_format = fourcc;
7993         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7994
7995         if (INTEL_INFO(dev)->gen >= 4) {
7996                 if (plane_config->tiling)
7997                         offset = I915_READ(DSPTILEOFF(plane));
7998                 else
7999                         offset = I915_READ(DSPLINOFF(plane));
8000                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8001         } else {
8002                 base = I915_READ(DSPADDR(plane));
8003         }
8004         plane_config->base = base;
8005
8006         val = I915_READ(PIPESRC(pipe));
8007         fb->width = ((val >> 16) & 0xfff) + 1;
8008         fb->height = ((val >> 0) & 0xfff) + 1;
8009
8010         val = I915_READ(DSPSTRIDE(pipe));
8011         fb->pitches[0] = val & 0xffffffc0;
8012
8013         aligned_height = intel_fb_align_height(dev, fb->height,
8014                                                fb->pixel_format,
8015                                                fb->modifier[0]);
8016
8017         plane_config->size = fb->pitches[0] * aligned_height;
8018
8019         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8020                       pipe_name(pipe), plane, fb->width, fb->height,
8021                       fb->bits_per_pixel, base, fb->pitches[0],
8022                       plane_config->size);
8023
8024         plane_config->fb = intel_fb;
8025 }
8026
8027 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8028                                struct intel_crtc_state *pipe_config)
8029 {
8030         struct drm_device *dev = crtc->base.dev;
8031         struct drm_i915_private *dev_priv = dev->dev_private;
8032         int pipe = pipe_config->cpu_transcoder;
8033         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8034         intel_clock_t clock;
8035         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8036         int refclk = 100000;
8037
8038         mutex_lock(&dev_priv->sb_lock);
8039         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8040         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8041         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8042         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8043         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8044         mutex_unlock(&dev_priv->sb_lock);
8045
8046         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8047         clock.m2 = (pll_dw0 & 0xff) << 22;
8048         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8049                 clock.m2 |= pll_dw2 & 0x3fffff;
8050         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8051         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8052         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8053
8054         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8055 }
8056
8057 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8058                                  struct intel_crtc_state *pipe_config)
8059 {
8060         struct drm_device *dev = crtc->base.dev;
8061         struct drm_i915_private *dev_priv = dev->dev_private;
8062         uint32_t tmp;
8063
8064         if (!intel_display_power_is_enabled(dev_priv,
8065                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8066                 return false;
8067
8068         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8069         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8070
8071         tmp = I915_READ(PIPECONF(crtc->pipe));
8072         if (!(tmp & PIPECONF_ENABLE))
8073                 return false;
8074
8075         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8076                 switch (tmp & PIPECONF_BPC_MASK) {
8077                 case PIPECONF_6BPC:
8078                         pipe_config->pipe_bpp = 18;
8079                         break;
8080                 case PIPECONF_8BPC:
8081                         pipe_config->pipe_bpp = 24;
8082                         break;
8083                 case PIPECONF_10BPC:
8084                         pipe_config->pipe_bpp = 30;
8085                         break;
8086                 default:
8087                         break;
8088                 }
8089         }
8090
8091         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8092                 pipe_config->limited_color_range = true;
8093
8094         if (INTEL_INFO(dev)->gen < 4)
8095                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8096
8097         intel_get_pipe_timings(crtc, pipe_config);
8098
8099         i9xx_get_pfit_config(crtc, pipe_config);
8100
8101         if (INTEL_INFO(dev)->gen >= 4) {
8102                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8103                 pipe_config->pixel_multiplier =
8104                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8105                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8106                 pipe_config->dpll_hw_state.dpll_md = tmp;
8107         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8108                 tmp = I915_READ(DPLL(crtc->pipe));
8109                 pipe_config->pixel_multiplier =
8110                         ((tmp & SDVO_MULTIPLIER_MASK)
8111                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8112         } else {
8113                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8114                  * port and will be fixed up in the encoder->get_config
8115                  * function. */
8116                 pipe_config->pixel_multiplier = 1;
8117         }
8118         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8119         if (!IS_VALLEYVIEW(dev)) {
8120                 /*
8121                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8122                  * on 830. Filter it out here so that we don't
8123                  * report errors due to that.
8124                  */
8125                 if (IS_I830(dev))
8126                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8127
8128                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8129                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8130         } else {
8131                 /* Mask out read-only status bits. */
8132                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8133                                                      DPLL_PORTC_READY_MASK |
8134                                                      DPLL_PORTB_READY_MASK);
8135         }
8136
8137         if (IS_CHERRYVIEW(dev))
8138                 chv_crtc_clock_get(crtc, pipe_config);
8139         else if (IS_VALLEYVIEW(dev))
8140                 vlv_crtc_clock_get(crtc, pipe_config);
8141         else
8142                 i9xx_crtc_clock_get(crtc, pipe_config);
8143
8144         /*
8145          * Normally the dotclock is filled in by the encoder .get_config()
8146          * but in case the pipe is enabled w/o any ports we need a sane
8147          * default.
8148          */
8149         pipe_config->base.adjusted_mode.crtc_clock =
8150                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8151
8152         return true;
8153 }
8154
8155 static void ironlake_init_pch_refclk(struct drm_device *dev)
8156 {
8157         struct drm_i915_private *dev_priv = dev->dev_private;
8158         struct intel_encoder *encoder;
8159         u32 val, final;
8160         bool has_lvds = false;
8161         bool has_cpu_edp = false;
8162         bool has_panel = false;
8163         bool has_ck505 = false;
8164         bool can_ssc = false;
8165
8166         /* We need to take the global config into account */
8167         for_each_intel_encoder(dev, encoder) {
8168                 switch (encoder->type) {
8169                 case INTEL_OUTPUT_LVDS:
8170                         has_panel = true;
8171                         has_lvds = true;
8172                         break;
8173                 case INTEL_OUTPUT_EDP:
8174                         has_panel = true;
8175                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8176                                 has_cpu_edp = true;
8177                         break;
8178                 default:
8179                         break;
8180                 }
8181         }
8182
8183         if (HAS_PCH_IBX(dev)) {
8184                 has_ck505 = dev_priv->vbt.display_clock_mode;
8185                 can_ssc = has_ck505;
8186         } else {
8187                 has_ck505 = false;
8188                 can_ssc = true;
8189         }
8190
8191         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8192                       has_panel, has_lvds, has_ck505);
8193
8194         /* Ironlake: try to setup display ref clock before DPLL
8195          * enabling. This is only under driver's control after
8196          * PCH B stepping, previous chipset stepping should be
8197          * ignoring this setting.
8198          */
8199         val = I915_READ(PCH_DREF_CONTROL);
8200
8201         /* As we must carefully and slowly disable/enable each source in turn,
8202          * compute the final state we want first and check if we need to
8203          * make any changes at all.
8204          */
8205         final = val;
8206         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8207         if (has_ck505)
8208                 final |= DREF_NONSPREAD_CK505_ENABLE;
8209         else
8210                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8211
8212         final &= ~DREF_SSC_SOURCE_MASK;
8213         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8214         final &= ~DREF_SSC1_ENABLE;
8215
8216         if (has_panel) {
8217                 final |= DREF_SSC_SOURCE_ENABLE;
8218
8219                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8220                         final |= DREF_SSC1_ENABLE;
8221
8222                 if (has_cpu_edp) {
8223                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8224                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8225                         else
8226                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8227                 } else
8228                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8229         } else {
8230                 final |= DREF_SSC_SOURCE_DISABLE;
8231                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8232         }
8233
8234         if (final == val)
8235                 return;
8236
8237         /* Always enable nonspread source */
8238         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8239
8240         if (has_ck505)
8241                 val |= DREF_NONSPREAD_CK505_ENABLE;
8242         else
8243                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8244
8245         if (has_panel) {
8246                 val &= ~DREF_SSC_SOURCE_MASK;
8247                 val |= DREF_SSC_SOURCE_ENABLE;
8248
8249                 /* SSC must be turned on before enabling the CPU output  */
8250                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8251                         DRM_DEBUG_KMS("Using SSC on panel\n");
8252                         val |= DREF_SSC1_ENABLE;
8253                 } else
8254                         val &= ~DREF_SSC1_ENABLE;
8255
8256                 /* Get SSC going before enabling the outputs */
8257                 I915_WRITE(PCH_DREF_CONTROL, val);
8258                 POSTING_READ(PCH_DREF_CONTROL);
8259                 udelay(200);
8260
8261                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8262
8263                 /* Enable CPU source on CPU attached eDP */
8264                 if (has_cpu_edp) {
8265                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8266                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8267                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8268                         } else
8269                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8270                 } else
8271                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8272
8273                 I915_WRITE(PCH_DREF_CONTROL, val);
8274                 POSTING_READ(PCH_DREF_CONTROL);
8275                 udelay(200);
8276         } else {
8277                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8278
8279                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8280
8281                 /* Turn off CPU output */
8282                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8283
8284                 I915_WRITE(PCH_DREF_CONTROL, val);
8285                 POSTING_READ(PCH_DREF_CONTROL);
8286                 udelay(200);
8287
8288                 /* Turn off the SSC source */
8289                 val &= ~DREF_SSC_SOURCE_MASK;
8290                 val |= DREF_SSC_SOURCE_DISABLE;
8291
8292                 /* Turn off SSC1 */
8293                 val &= ~DREF_SSC1_ENABLE;
8294
8295                 I915_WRITE(PCH_DREF_CONTROL, val);
8296                 POSTING_READ(PCH_DREF_CONTROL);
8297                 udelay(200);
8298         }
8299
8300         BUG_ON(val != final);
8301 }
8302
8303 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8304 {
8305         uint32_t tmp;
8306
8307         tmp = I915_READ(SOUTH_CHICKEN2);
8308         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8309         I915_WRITE(SOUTH_CHICKEN2, tmp);
8310
8311         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8312                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8313                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8314
8315         tmp = I915_READ(SOUTH_CHICKEN2);
8316         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8317         I915_WRITE(SOUTH_CHICKEN2, tmp);
8318
8319         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8320                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8321                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8322 }
8323
8324 /* WaMPhyProgramming:hsw */
8325 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8326 {
8327         uint32_t tmp;
8328
8329         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8330         tmp &= ~(0xFF << 24);
8331         tmp |= (0x12 << 24);
8332         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8333
8334         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8335         tmp |= (1 << 11);
8336         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8337
8338         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8339         tmp |= (1 << 11);
8340         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8341
8342         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8343         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8344         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8345
8346         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8347         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8348         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8349
8350         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8351         tmp &= ~(7 << 13);
8352         tmp |= (5 << 13);
8353         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8354
8355         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8356         tmp &= ~(7 << 13);
8357         tmp |= (5 << 13);
8358         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8359
8360         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8361         tmp &= ~0xFF;
8362         tmp |= 0x1C;
8363         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8364
8365         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8366         tmp &= ~0xFF;
8367         tmp |= 0x1C;
8368         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8369
8370         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8371         tmp &= ~(0xFF << 16);
8372         tmp |= (0x1C << 16);
8373         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8374
8375         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8376         tmp &= ~(0xFF << 16);
8377         tmp |= (0x1C << 16);
8378         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8379
8380         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8381         tmp |= (1 << 27);
8382         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8383
8384         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8385         tmp |= (1 << 27);
8386         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8387
8388         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8389         tmp &= ~(0xF << 28);
8390         tmp |= (4 << 28);
8391         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8392
8393         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8394         tmp &= ~(0xF << 28);
8395         tmp |= (4 << 28);
8396         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8397 }
8398
8399 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8400  * Programming" based on the parameters passed:
8401  * - Sequence to enable CLKOUT_DP
8402  * - Sequence to enable CLKOUT_DP without spread
8403  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8404  */
8405 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8406                                  bool with_fdi)
8407 {
8408         struct drm_i915_private *dev_priv = dev->dev_private;
8409         uint32_t reg, tmp;
8410
8411         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8412                 with_spread = true;
8413         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8414                 with_fdi = false;
8415
8416         mutex_lock(&dev_priv->sb_lock);
8417
8418         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8419         tmp &= ~SBI_SSCCTL_DISABLE;
8420         tmp |= SBI_SSCCTL_PATHALT;
8421         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8422
8423         udelay(24);
8424
8425         if (with_spread) {
8426                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8427                 tmp &= ~SBI_SSCCTL_PATHALT;
8428                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8429
8430                 if (with_fdi) {
8431                         lpt_reset_fdi_mphy(dev_priv);
8432                         lpt_program_fdi_mphy(dev_priv);
8433                 }
8434         }
8435
8436         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8437         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8438         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8439         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8440
8441         mutex_unlock(&dev_priv->sb_lock);
8442 }
8443
8444 /* Sequence to disable CLKOUT_DP */
8445 static void lpt_disable_clkout_dp(struct drm_device *dev)
8446 {
8447         struct drm_i915_private *dev_priv = dev->dev_private;
8448         uint32_t reg, tmp;
8449
8450         mutex_lock(&dev_priv->sb_lock);
8451
8452         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8453         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8454         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8455         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8456
8457         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8458         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8459                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8460                         tmp |= SBI_SSCCTL_PATHALT;
8461                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8462                         udelay(32);
8463                 }
8464                 tmp |= SBI_SSCCTL_DISABLE;
8465                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8466         }
8467
8468         mutex_unlock(&dev_priv->sb_lock);
8469 }
8470
8471 static void lpt_init_pch_refclk(struct drm_device *dev)
8472 {
8473         struct intel_encoder *encoder;
8474         bool has_vga = false;
8475
8476         for_each_intel_encoder(dev, encoder) {
8477                 switch (encoder->type) {
8478                 case INTEL_OUTPUT_ANALOG:
8479                         has_vga = true;
8480                         break;
8481                 default:
8482                         break;
8483                 }
8484         }
8485
8486         if (has_vga)
8487                 lpt_enable_clkout_dp(dev, true, true);
8488         else
8489                 lpt_disable_clkout_dp(dev);
8490 }
8491
8492 /*
8493  * Initialize reference clocks when the driver loads
8494  */
8495 void intel_init_pch_refclk(struct drm_device *dev)
8496 {
8497         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8498                 ironlake_init_pch_refclk(dev);
8499         else if (HAS_PCH_LPT(dev))
8500                 lpt_init_pch_refclk(dev);
8501 }
8502
8503 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8504 {
8505         struct drm_device *dev = crtc_state->base.crtc->dev;
8506         struct drm_i915_private *dev_priv = dev->dev_private;
8507         struct drm_atomic_state *state = crtc_state->base.state;
8508         struct drm_connector *connector;
8509         struct drm_connector_state *connector_state;
8510         struct intel_encoder *encoder;
8511         int num_connectors = 0, i;
8512         bool is_lvds = false;
8513
8514         for_each_connector_in_state(state, connector, connector_state, i) {
8515                 if (connector_state->crtc != crtc_state->base.crtc)
8516                         continue;
8517
8518                 encoder = to_intel_encoder(connector_state->best_encoder);
8519
8520                 switch (encoder->type) {
8521                 case INTEL_OUTPUT_LVDS:
8522                         is_lvds = true;
8523                         break;
8524                 default:
8525                         break;
8526                 }
8527                 num_connectors++;
8528         }
8529
8530         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8531                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8532                               dev_priv->vbt.lvds_ssc_freq);
8533                 return dev_priv->vbt.lvds_ssc_freq;
8534         }
8535
8536         return 120000;
8537 }
8538
8539 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8540 {
8541         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8542         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8543         int pipe = intel_crtc->pipe;
8544         uint32_t val;
8545
8546         val = 0;
8547
8548         switch (intel_crtc->config->pipe_bpp) {
8549         case 18:
8550                 val |= PIPECONF_6BPC;
8551                 break;
8552         case 24:
8553                 val |= PIPECONF_8BPC;
8554                 break;
8555         case 30:
8556                 val |= PIPECONF_10BPC;
8557                 break;
8558         case 36:
8559                 val |= PIPECONF_12BPC;
8560                 break;
8561         default:
8562                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8563                 BUG();
8564         }
8565
8566         if (intel_crtc->config->dither)
8567                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8568
8569         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8570                 val |= PIPECONF_INTERLACED_ILK;
8571         else
8572                 val |= PIPECONF_PROGRESSIVE;
8573
8574         if (intel_crtc->config->limited_color_range)
8575                 val |= PIPECONF_COLOR_RANGE_SELECT;
8576
8577         I915_WRITE(PIPECONF(pipe), val);
8578         POSTING_READ(PIPECONF(pipe));
8579 }
8580
8581 /*
8582  * Set up the pipe CSC unit.
8583  *
8584  * Currently only full range RGB to limited range RGB conversion
8585  * is supported, but eventually this should handle various
8586  * RGB<->YCbCr scenarios as well.
8587  */
8588 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8589 {
8590         struct drm_device *dev = crtc->dev;
8591         struct drm_i915_private *dev_priv = dev->dev_private;
8592         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8593         int pipe = intel_crtc->pipe;
8594         uint16_t coeff = 0x7800; /* 1.0 */
8595
8596         /*
8597          * TODO: Check what kind of values actually come out of the pipe
8598          * with these coeff/postoff values and adjust to get the best
8599          * accuracy. Perhaps we even need to take the bpc value into
8600          * consideration.
8601          */
8602
8603         if (intel_crtc->config->limited_color_range)
8604                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8605
8606         /*
8607          * GY/GU and RY/RU should be the other way around according
8608          * to BSpec, but reality doesn't agree. Just set them up in
8609          * a way that results in the correct picture.
8610          */
8611         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8612         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8613
8614         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8615         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8616
8617         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8618         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8619
8620         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8621         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8622         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8623
8624         if (INTEL_INFO(dev)->gen > 6) {
8625                 uint16_t postoff = 0;
8626
8627                 if (intel_crtc->config->limited_color_range)
8628                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8629
8630                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8631                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8632                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8633
8634                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8635         } else {
8636                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8637
8638                 if (intel_crtc->config->limited_color_range)
8639                         mode |= CSC_BLACK_SCREEN_OFFSET;
8640
8641                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8642         }
8643 }
8644
8645 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8646 {
8647         struct drm_device *dev = crtc->dev;
8648         struct drm_i915_private *dev_priv = dev->dev_private;
8649         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8650         enum pipe pipe = intel_crtc->pipe;
8651         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8652         uint32_t val;
8653
8654         val = 0;
8655
8656         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8657                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8658
8659         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8660                 val |= PIPECONF_INTERLACED_ILK;
8661         else
8662                 val |= PIPECONF_PROGRESSIVE;
8663
8664         I915_WRITE(PIPECONF(cpu_transcoder), val);
8665         POSTING_READ(PIPECONF(cpu_transcoder));
8666
8667         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8668         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8669
8670         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8671                 val = 0;
8672
8673                 switch (intel_crtc->config->pipe_bpp) {
8674                 case 18:
8675                         val |= PIPEMISC_DITHER_6_BPC;
8676                         break;
8677                 case 24:
8678                         val |= PIPEMISC_DITHER_8_BPC;
8679                         break;
8680                 case 30:
8681                         val |= PIPEMISC_DITHER_10_BPC;
8682                         break;
8683                 case 36:
8684                         val |= PIPEMISC_DITHER_12_BPC;
8685                         break;
8686                 default:
8687                         /* Case prevented by pipe_config_set_bpp. */
8688                         BUG();
8689                 }
8690
8691                 if (intel_crtc->config->dither)
8692                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8693
8694                 I915_WRITE(PIPEMISC(pipe), val);
8695         }
8696 }
8697
8698 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8699                                     struct intel_crtc_state *crtc_state,
8700                                     intel_clock_t *clock,
8701                                     bool *has_reduced_clock,
8702                                     intel_clock_t *reduced_clock)
8703 {
8704         struct drm_device *dev = crtc->dev;
8705         struct drm_i915_private *dev_priv = dev->dev_private;
8706         int refclk;
8707         const intel_limit_t *limit;
8708         bool ret;
8709
8710         refclk = ironlake_get_refclk(crtc_state);
8711
8712         /*
8713          * Returns a set of divisors for the desired target clock with the given
8714          * refclk, or FALSE.  The returned values represent the clock equation:
8715          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8716          */
8717         limit = intel_limit(crtc_state, refclk);
8718         ret = dev_priv->display.find_dpll(limit, crtc_state,
8719                                           crtc_state->port_clock,
8720                                           refclk, NULL, clock);
8721         if (!ret)
8722                 return false;
8723
8724         return true;
8725 }
8726
8727 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8728 {
8729         /*
8730          * Account for spread spectrum to avoid
8731          * oversubscribing the link. Max center spread
8732          * is 2.5%; use 5% for safety's sake.
8733          */
8734         u32 bps = target_clock * bpp * 21 / 20;
8735         return DIV_ROUND_UP(bps, link_bw * 8);
8736 }
8737
8738 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8739 {
8740         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8741 }
8742
8743 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8744                                       struct intel_crtc_state *crtc_state,
8745                                       u32 *fp,
8746                                       intel_clock_t *reduced_clock, u32 *fp2)
8747 {
8748         struct drm_crtc *crtc = &intel_crtc->base;
8749         struct drm_device *dev = crtc->dev;
8750         struct drm_i915_private *dev_priv = dev->dev_private;
8751         struct drm_atomic_state *state = crtc_state->base.state;
8752         struct drm_connector *connector;
8753         struct drm_connector_state *connector_state;
8754         struct intel_encoder *encoder;
8755         uint32_t dpll;
8756         int factor, num_connectors = 0, i;
8757         bool is_lvds = false, is_sdvo = false;
8758
8759         for_each_connector_in_state(state, connector, connector_state, i) {
8760                 if (connector_state->crtc != crtc_state->base.crtc)
8761                         continue;
8762
8763                 encoder = to_intel_encoder(connector_state->best_encoder);
8764
8765                 switch (encoder->type) {
8766                 case INTEL_OUTPUT_LVDS:
8767                         is_lvds = true;
8768                         break;
8769                 case INTEL_OUTPUT_SDVO:
8770                 case INTEL_OUTPUT_HDMI:
8771                         is_sdvo = true;
8772                         break;
8773                 default:
8774                         break;
8775                 }
8776
8777                 num_connectors++;
8778         }
8779
8780         /* Enable autotuning of the PLL clock (if permissible) */
8781         factor = 21;
8782         if (is_lvds) {
8783                 if ((intel_panel_use_ssc(dev_priv) &&
8784                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8785                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8786                         factor = 25;
8787         } else if (crtc_state->sdvo_tv_clock)
8788                 factor = 20;
8789
8790         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8791                 *fp |= FP_CB_TUNE;
8792
8793         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8794                 *fp2 |= FP_CB_TUNE;
8795
8796         dpll = 0;
8797
8798         if (is_lvds)
8799                 dpll |= DPLLB_MODE_LVDS;
8800         else
8801                 dpll |= DPLLB_MODE_DAC_SERIAL;
8802
8803         dpll |= (crtc_state->pixel_multiplier - 1)
8804                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8805
8806         if (is_sdvo)
8807                 dpll |= DPLL_SDVO_HIGH_SPEED;
8808         if (crtc_state->has_dp_encoder)
8809                 dpll |= DPLL_SDVO_HIGH_SPEED;
8810
8811         /* compute bitmask from p1 value */
8812         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8813         /* also FPA1 */
8814         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8815
8816         switch (crtc_state->dpll.p2) {
8817         case 5:
8818                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8819                 break;
8820         case 7:
8821                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8822                 break;
8823         case 10:
8824                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8825                 break;
8826         case 14:
8827                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8828                 break;
8829         }
8830
8831         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8832                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8833         else
8834                 dpll |= PLL_REF_INPUT_DREFCLK;
8835
8836         return dpll | DPLL_VCO_ENABLE;
8837 }
8838
8839 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8840                                        struct intel_crtc_state *crtc_state)
8841 {
8842         struct drm_device *dev = crtc->base.dev;
8843         intel_clock_t clock, reduced_clock;
8844         u32 dpll = 0, fp = 0, fp2 = 0;
8845         bool ok, has_reduced_clock = false;
8846         bool is_lvds = false;
8847         struct intel_shared_dpll *pll;
8848
8849         memset(&crtc_state->dpll_hw_state, 0,
8850                sizeof(crtc_state->dpll_hw_state));
8851
8852         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8853
8854         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8855              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8856
8857         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8858                                      &has_reduced_clock, &reduced_clock);
8859         if (!ok && !crtc_state->clock_set) {
8860                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8861                 return -EINVAL;
8862         }
8863         /* Compat-code for transition, will disappear. */
8864         if (!crtc_state->clock_set) {
8865                 crtc_state->dpll.n = clock.n;
8866                 crtc_state->dpll.m1 = clock.m1;
8867                 crtc_state->dpll.m2 = clock.m2;
8868                 crtc_state->dpll.p1 = clock.p1;
8869                 crtc_state->dpll.p2 = clock.p2;
8870         }
8871
8872         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8873         if (crtc_state->has_pch_encoder) {
8874                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8875                 if (has_reduced_clock)
8876                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8877
8878                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8879                                              &fp, &reduced_clock,
8880                                              has_reduced_clock ? &fp2 : NULL);
8881
8882                 crtc_state->dpll_hw_state.dpll = dpll;
8883                 crtc_state->dpll_hw_state.fp0 = fp;
8884                 if (has_reduced_clock)
8885                         crtc_state->dpll_hw_state.fp1 = fp2;
8886                 else
8887                         crtc_state->dpll_hw_state.fp1 = fp;
8888
8889                 pll = intel_get_shared_dpll(crtc, crtc_state);
8890                 if (pll == NULL) {
8891                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8892                                          pipe_name(crtc->pipe));
8893                         return -EINVAL;
8894                 }
8895         }
8896
8897         if (is_lvds && has_reduced_clock)
8898                 crtc->lowfreq_avail = true;
8899         else
8900                 crtc->lowfreq_avail = false;
8901
8902         return 0;
8903 }
8904
8905 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8906                                          struct intel_link_m_n *m_n)
8907 {
8908         struct drm_device *dev = crtc->base.dev;
8909         struct drm_i915_private *dev_priv = dev->dev_private;
8910         enum pipe pipe = crtc->pipe;
8911
8912         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8913         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8914         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8915                 & ~TU_SIZE_MASK;
8916         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8917         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8918                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8919 }
8920
8921 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8922                                          enum transcoder transcoder,
8923                                          struct intel_link_m_n *m_n,
8924                                          struct intel_link_m_n *m2_n2)
8925 {
8926         struct drm_device *dev = crtc->base.dev;
8927         struct drm_i915_private *dev_priv = dev->dev_private;
8928         enum pipe pipe = crtc->pipe;
8929
8930         if (INTEL_INFO(dev)->gen >= 5) {
8931                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8932                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8933                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8934                         & ~TU_SIZE_MASK;
8935                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8936                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8937                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8938                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8939                  * gen < 8) and if DRRS is supported (to make sure the
8940                  * registers are not unnecessarily read).
8941                  */
8942                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8943                         crtc->config->has_drrs) {
8944                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8945                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8946                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8947                                         & ~TU_SIZE_MASK;
8948                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8949                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8950                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8951                 }
8952         } else {
8953                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8954                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8955                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8956                         & ~TU_SIZE_MASK;
8957                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8958                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8959                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8960         }
8961 }
8962
8963 void intel_dp_get_m_n(struct intel_crtc *crtc,
8964                       struct intel_crtc_state *pipe_config)
8965 {
8966         if (pipe_config->has_pch_encoder)
8967                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8968         else
8969                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8970                                              &pipe_config->dp_m_n,
8971                                              &pipe_config->dp_m2_n2);
8972 }
8973
8974 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8975                                         struct intel_crtc_state *pipe_config)
8976 {
8977         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8978                                      &pipe_config->fdi_m_n, NULL);
8979 }
8980
8981 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8982                                     struct intel_crtc_state *pipe_config)
8983 {
8984         struct drm_device *dev = crtc->base.dev;
8985         struct drm_i915_private *dev_priv = dev->dev_private;
8986         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8987         uint32_t ps_ctrl = 0;
8988         int id = -1;
8989         int i;
8990
8991         /* find scaler attached to this pipe */
8992         for (i = 0; i < crtc->num_scalers; i++) {
8993                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8994                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8995                         id = i;
8996                         pipe_config->pch_pfit.enabled = true;
8997                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8998                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8999                         break;
9000                 }
9001         }
9002
9003         scaler_state->scaler_id = id;
9004         if (id >= 0) {
9005                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9006         } else {
9007                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9008         }
9009 }
9010
9011 static void
9012 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9013                                  struct intel_initial_plane_config *plane_config)
9014 {
9015         struct drm_device *dev = crtc->base.dev;
9016         struct drm_i915_private *dev_priv = dev->dev_private;
9017         u32 val, base, offset, stride_mult, tiling;
9018         int pipe = crtc->pipe;
9019         int fourcc, pixel_format;
9020         unsigned int aligned_height;
9021         struct drm_framebuffer *fb;
9022         struct intel_framebuffer *intel_fb;
9023
9024         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9025         if (!intel_fb) {
9026                 DRM_DEBUG_KMS("failed to alloc fb\n");
9027                 return;
9028         }
9029
9030         fb = &intel_fb->base;
9031
9032         val = I915_READ(PLANE_CTL(pipe, 0));
9033         if (!(val & PLANE_CTL_ENABLE))
9034                 goto error;
9035
9036         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9037         fourcc = skl_format_to_fourcc(pixel_format,
9038                                       val & PLANE_CTL_ORDER_RGBX,
9039                                       val & PLANE_CTL_ALPHA_MASK);
9040         fb->pixel_format = fourcc;
9041         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9042
9043         tiling = val & PLANE_CTL_TILED_MASK;
9044         switch (tiling) {
9045         case PLANE_CTL_TILED_LINEAR:
9046                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9047                 break;
9048         case PLANE_CTL_TILED_X:
9049                 plane_config->tiling = I915_TILING_X;
9050                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9051                 break;
9052         case PLANE_CTL_TILED_Y:
9053                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9054                 break;
9055         case PLANE_CTL_TILED_YF:
9056                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9057                 break;
9058         default:
9059                 MISSING_CASE(tiling);
9060                 goto error;
9061         }
9062
9063         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9064         plane_config->base = base;
9065
9066         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9067
9068         val = I915_READ(PLANE_SIZE(pipe, 0));
9069         fb->height = ((val >> 16) & 0xfff) + 1;
9070         fb->width = ((val >> 0) & 0x1fff) + 1;
9071
9072         val = I915_READ(PLANE_STRIDE(pipe, 0));
9073         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9074                                                 fb->pixel_format);
9075         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9076
9077         aligned_height = intel_fb_align_height(dev, fb->height,
9078                                                fb->pixel_format,
9079                                                fb->modifier[0]);
9080
9081         plane_config->size = fb->pitches[0] * aligned_height;
9082
9083         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9084                       pipe_name(pipe), fb->width, fb->height,
9085                       fb->bits_per_pixel, base, fb->pitches[0],
9086                       plane_config->size);
9087
9088         plane_config->fb = intel_fb;
9089         return;
9090
9091 error:
9092         kfree(fb);
9093 }
9094
9095 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9096                                      struct intel_crtc_state *pipe_config)
9097 {
9098         struct drm_device *dev = crtc->base.dev;
9099         struct drm_i915_private *dev_priv = dev->dev_private;
9100         uint32_t tmp;
9101
9102         tmp = I915_READ(PF_CTL(crtc->pipe));
9103
9104         if (tmp & PF_ENABLE) {
9105                 pipe_config->pch_pfit.enabled = true;
9106                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9107                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9108
9109                 /* We currently do not free assignements of panel fitters on
9110                  * ivb/hsw (since we don't use the higher upscaling modes which
9111                  * differentiates them) so just WARN about this case for now. */
9112                 if (IS_GEN7(dev)) {
9113                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9114                                 PF_PIPE_SEL_IVB(crtc->pipe));
9115                 }
9116         }
9117 }
9118
9119 static void
9120 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9121                                   struct intel_initial_plane_config *plane_config)
9122 {
9123         struct drm_device *dev = crtc->base.dev;
9124         struct drm_i915_private *dev_priv = dev->dev_private;
9125         u32 val, base, offset;
9126         int pipe = crtc->pipe;
9127         int fourcc, pixel_format;
9128         unsigned int aligned_height;
9129         struct drm_framebuffer *fb;
9130         struct intel_framebuffer *intel_fb;
9131
9132         val = I915_READ(DSPCNTR(pipe));
9133         if (!(val & DISPLAY_PLANE_ENABLE))
9134                 return;
9135
9136         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9137         if (!intel_fb) {
9138                 DRM_DEBUG_KMS("failed to alloc fb\n");
9139                 return;
9140         }
9141
9142         fb = &intel_fb->base;
9143
9144         if (INTEL_INFO(dev)->gen >= 4) {
9145                 if (val & DISPPLANE_TILED) {
9146                         plane_config->tiling = I915_TILING_X;
9147                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9148                 }
9149         }
9150
9151         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9152         fourcc = i9xx_format_to_fourcc(pixel_format);
9153         fb->pixel_format = fourcc;
9154         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9155
9156         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9157         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9158                 offset = I915_READ(DSPOFFSET(pipe));
9159         } else {
9160                 if (plane_config->tiling)
9161                         offset = I915_READ(DSPTILEOFF(pipe));
9162                 else
9163                         offset = I915_READ(DSPLINOFF(pipe));
9164         }
9165         plane_config->base = base;
9166
9167         val = I915_READ(PIPESRC(pipe));
9168         fb->width = ((val >> 16) & 0xfff) + 1;
9169         fb->height = ((val >> 0) & 0xfff) + 1;
9170
9171         val = I915_READ(DSPSTRIDE(pipe));
9172         fb->pitches[0] = val & 0xffffffc0;
9173
9174         aligned_height = intel_fb_align_height(dev, fb->height,
9175                                                fb->pixel_format,
9176                                                fb->modifier[0]);
9177
9178         plane_config->size = fb->pitches[0] * aligned_height;
9179
9180         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9181                       pipe_name(pipe), fb->width, fb->height,
9182                       fb->bits_per_pixel, base, fb->pitches[0],
9183                       plane_config->size);
9184
9185         plane_config->fb = intel_fb;
9186 }
9187
9188 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9189                                      struct intel_crtc_state *pipe_config)
9190 {
9191         struct drm_device *dev = crtc->base.dev;
9192         struct drm_i915_private *dev_priv = dev->dev_private;
9193         uint32_t tmp;
9194
9195         if (!intel_display_power_is_enabled(dev_priv,
9196                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9197                 return false;
9198
9199         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9200         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9201
9202         tmp = I915_READ(PIPECONF(crtc->pipe));
9203         if (!(tmp & PIPECONF_ENABLE))
9204                 return false;
9205
9206         switch (tmp & PIPECONF_BPC_MASK) {
9207         case PIPECONF_6BPC:
9208                 pipe_config->pipe_bpp = 18;
9209                 break;
9210         case PIPECONF_8BPC:
9211                 pipe_config->pipe_bpp = 24;
9212                 break;
9213         case PIPECONF_10BPC:
9214                 pipe_config->pipe_bpp = 30;
9215                 break;
9216         case PIPECONF_12BPC:
9217                 pipe_config->pipe_bpp = 36;
9218                 break;
9219         default:
9220                 break;
9221         }
9222
9223         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9224                 pipe_config->limited_color_range = true;
9225
9226         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9227                 struct intel_shared_dpll *pll;
9228
9229                 pipe_config->has_pch_encoder = true;
9230
9231                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9232                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9233                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9234
9235                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9236
9237                 if (HAS_PCH_IBX(dev_priv->dev)) {
9238                         pipe_config->shared_dpll =
9239                                 (enum intel_dpll_id) crtc->pipe;
9240                 } else {
9241                         tmp = I915_READ(PCH_DPLL_SEL);
9242                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9243                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9244                         else
9245                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9246                 }
9247
9248                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9249
9250                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9251                                            &pipe_config->dpll_hw_state));
9252
9253                 tmp = pipe_config->dpll_hw_state.dpll;
9254                 pipe_config->pixel_multiplier =
9255                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9256                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9257
9258                 ironlake_pch_clock_get(crtc, pipe_config);
9259         } else {
9260                 pipe_config->pixel_multiplier = 1;
9261         }
9262
9263         intel_get_pipe_timings(crtc, pipe_config);
9264
9265         ironlake_get_pfit_config(crtc, pipe_config);
9266
9267         return true;
9268 }
9269
9270 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9271 {
9272         struct drm_device *dev = dev_priv->dev;
9273         struct intel_crtc *crtc;
9274
9275         for_each_intel_crtc(dev, crtc)
9276                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9277                      pipe_name(crtc->pipe));
9278
9279         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9280         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9281         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9282         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9283         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9284         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9285              "CPU PWM1 enabled\n");
9286         if (IS_HASWELL(dev))
9287                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9288                      "CPU PWM2 enabled\n");
9289         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9290              "PCH PWM1 enabled\n");
9291         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9292              "Utility pin enabled\n");
9293         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9294
9295         /*
9296          * In theory we can still leave IRQs enabled, as long as only the HPD
9297          * interrupts remain enabled. We used to check for that, but since it's
9298          * gen-specific and since we only disable LCPLL after we fully disable
9299          * the interrupts, the check below should be enough.
9300          */
9301         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9302 }
9303
9304 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9305 {
9306         struct drm_device *dev = dev_priv->dev;
9307
9308         if (IS_HASWELL(dev))
9309                 return I915_READ(D_COMP_HSW);
9310         else
9311                 return I915_READ(D_COMP_BDW);
9312 }
9313
9314 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9315 {
9316         struct drm_device *dev = dev_priv->dev;
9317
9318         if (IS_HASWELL(dev)) {
9319                 mutex_lock(&dev_priv->rps.hw_lock);
9320                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9321                                             val))
9322                         DRM_ERROR("Failed to write to D_COMP\n");
9323                 mutex_unlock(&dev_priv->rps.hw_lock);
9324         } else {
9325                 I915_WRITE(D_COMP_BDW, val);
9326                 POSTING_READ(D_COMP_BDW);
9327         }
9328 }
9329
9330 /*
9331  * This function implements pieces of two sequences from BSpec:
9332  * - Sequence for display software to disable LCPLL
9333  * - Sequence for display software to allow package C8+
9334  * The steps implemented here are just the steps that actually touch the LCPLL
9335  * register. Callers should take care of disabling all the display engine
9336  * functions, doing the mode unset, fixing interrupts, etc.
9337  */
9338 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9339                               bool switch_to_fclk, bool allow_power_down)
9340 {
9341         uint32_t val;
9342
9343         assert_can_disable_lcpll(dev_priv);
9344
9345         val = I915_READ(LCPLL_CTL);
9346
9347         if (switch_to_fclk) {
9348                 val |= LCPLL_CD_SOURCE_FCLK;
9349                 I915_WRITE(LCPLL_CTL, val);
9350
9351                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9352                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9353                         DRM_ERROR("Switching to FCLK failed\n");
9354
9355                 val = I915_READ(LCPLL_CTL);
9356         }
9357
9358         val |= LCPLL_PLL_DISABLE;
9359         I915_WRITE(LCPLL_CTL, val);
9360         POSTING_READ(LCPLL_CTL);
9361
9362         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9363                 DRM_ERROR("LCPLL still locked\n");
9364
9365         val = hsw_read_dcomp(dev_priv);
9366         val |= D_COMP_COMP_DISABLE;
9367         hsw_write_dcomp(dev_priv, val);
9368         ndelay(100);
9369
9370         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9371                      1))
9372                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9373
9374         if (allow_power_down) {
9375                 val = I915_READ(LCPLL_CTL);
9376                 val |= LCPLL_POWER_DOWN_ALLOW;
9377                 I915_WRITE(LCPLL_CTL, val);
9378                 POSTING_READ(LCPLL_CTL);
9379         }
9380 }
9381
9382 /*
9383  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9384  * source.
9385  */
9386 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9387 {
9388         uint32_t val;
9389
9390         val = I915_READ(LCPLL_CTL);
9391
9392         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9393                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9394                 return;
9395
9396         /*
9397          * Make sure we're not on PC8 state before disabling PC8, otherwise
9398          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9399          */
9400         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9401
9402         if (val & LCPLL_POWER_DOWN_ALLOW) {
9403                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9404                 I915_WRITE(LCPLL_CTL, val);
9405                 POSTING_READ(LCPLL_CTL);
9406         }
9407
9408         val = hsw_read_dcomp(dev_priv);
9409         val |= D_COMP_COMP_FORCE;
9410         val &= ~D_COMP_COMP_DISABLE;
9411         hsw_write_dcomp(dev_priv, val);
9412
9413         val = I915_READ(LCPLL_CTL);
9414         val &= ~LCPLL_PLL_DISABLE;
9415         I915_WRITE(LCPLL_CTL, val);
9416
9417         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9418                 DRM_ERROR("LCPLL not locked yet\n");
9419
9420         if (val & LCPLL_CD_SOURCE_FCLK) {
9421                 val = I915_READ(LCPLL_CTL);
9422                 val &= ~LCPLL_CD_SOURCE_FCLK;
9423                 I915_WRITE(LCPLL_CTL, val);
9424
9425                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9426                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9427                         DRM_ERROR("Switching back to LCPLL failed\n");
9428         }
9429
9430         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9431         intel_update_cdclk(dev_priv->dev);
9432 }
9433
9434 /*
9435  * Package states C8 and deeper are really deep PC states that can only be
9436  * reached when all the devices on the system allow it, so even if the graphics
9437  * device allows PC8+, it doesn't mean the system will actually get to these
9438  * states. Our driver only allows PC8+ when going into runtime PM.
9439  *
9440  * The requirements for PC8+ are that all the outputs are disabled, the power
9441  * well is disabled and most interrupts are disabled, and these are also
9442  * requirements for runtime PM. When these conditions are met, we manually do
9443  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9444  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9445  * hang the machine.
9446  *
9447  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9448  * the state of some registers, so when we come back from PC8+ we need to
9449  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9450  * need to take care of the registers kept by RC6. Notice that this happens even
9451  * if we don't put the device in PCI D3 state (which is what currently happens
9452  * because of the runtime PM support).
9453  *
9454  * For more, read "Display Sequences for Package C8" on the hardware
9455  * documentation.
9456  */
9457 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9458 {
9459         struct drm_device *dev = dev_priv->dev;
9460         uint32_t val;
9461
9462         DRM_DEBUG_KMS("Enabling package C8+\n");
9463
9464         if (HAS_PCH_LPT_LP(dev)) {
9465                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9466                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9467                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9468         }
9469
9470         lpt_disable_clkout_dp(dev);
9471         hsw_disable_lcpll(dev_priv, true, true);
9472 }
9473
9474 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9475 {
9476         struct drm_device *dev = dev_priv->dev;
9477         uint32_t val;
9478
9479         DRM_DEBUG_KMS("Disabling package C8+\n");
9480
9481         hsw_restore_lcpll(dev_priv);
9482         lpt_init_pch_refclk(dev);
9483
9484         if (HAS_PCH_LPT_LP(dev)) {
9485                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9486                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9487                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9488         }
9489
9490         intel_prepare_ddi(dev);
9491 }
9492
9493 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9494 {
9495         struct drm_device *dev = old_state->dev;
9496         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9497
9498         broxton_set_cdclk(dev, req_cdclk);
9499 }
9500
9501 /* compute the max rate for new configuration */
9502 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9503 {
9504         struct intel_crtc *intel_crtc;
9505         struct intel_crtc_state *crtc_state;
9506         int max_pixel_rate = 0;
9507
9508         for_each_intel_crtc(state->dev, intel_crtc) {
9509                 int pixel_rate;
9510
9511                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9512                 if (IS_ERR(crtc_state))
9513                         return PTR_ERR(crtc_state);
9514
9515                 if (!crtc_state->base.enable)
9516                         continue;
9517
9518                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9519
9520                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9521                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9522                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9523
9524                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9525         }
9526
9527         return max_pixel_rate;
9528 }
9529
9530 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9531 {
9532         struct drm_i915_private *dev_priv = dev->dev_private;
9533         uint32_t val, data;
9534         int ret;
9535
9536         if (WARN((I915_READ(LCPLL_CTL) &
9537                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9538                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9539                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9540                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9541                  "trying to change cdclk frequency with cdclk not enabled\n"))
9542                 return;
9543
9544         mutex_lock(&dev_priv->rps.hw_lock);
9545         ret = sandybridge_pcode_write(dev_priv,
9546                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9547         mutex_unlock(&dev_priv->rps.hw_lock);
9548         if (ret) {
9549                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9550                 return;
9551         }
9552
9553         val = I915_READ(LCPLL_CTL);
9554         val |= LCPLL_CD_SOURCE_FCLK;
9555         I915_WRITE(LCPLL_CTL, val);
9556
9557         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9558                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9559                 DRM_ERROR("Switching to FCLK failed\n");
9560
9561         val = I915_READ(LCPLL_CTL);
9562         val &= ~LCPLL_CLK_FREQ_MASK;
9563
9564         switch (cdclk) {
9565         case 450000:
9566                 val |= LCPLL_CLK_FREQ_450;
9567                 data = 0;
9568                 break;
9569         case 540000:
9570                 val |= LCPLL_CLK_FREQ_54O_BDW;
9571                 data = 1;
9572                 break;
9573         case 337500:
9574                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9575                 data = 2;
9576                 break;
9577         case 675000:
9578                 val |= LCPLL_CLK_FREQ_675_BDW;
9579                 data = 3;
9580                 break;
9581         default:
9582                 WARN(1, "invalid cdclk frequency\n");
9583                 return;
9584         }
9585
9586         I915_WRITE(LCPLL_CTL, val);
9587
9588         val = I915_READ(LCPLL_CTL);
9589         val &= ~LCPLL_CD_SOURCE_FCLK;
9590         I915_WRITE(LCPLL_CTL, val);
9591
9592         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9593                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9594                 DRM_ERROR("Switching back to LCPLL failed\n");
9595
9596         mutex_lock(&dev_priv->rps.hw_lock);
9597         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9598         mutex_unlock(&dev_priv->rps.hw_lock);
9599
9600         intel_update_cdclk(dev);
9601
9602         WARN(cdclk != dev_priv->cdclk_freq,
9603              "cdclk requested %d kHz but got %d kHz\n",
9604              cdclk, dev_priv->cdclk_freq);
9605 }
9606
9607 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9608 {
9609         struct drm_i915_private *dev_priv = to_i915(state->dev);
9610         int max_pixclk = ilk_max_pixel_rate(state);
9611         int cdclk;
9612
9613         /*
9614          * FIXME should also account for plane ratio
9615          * once 64bpp pixel formats are supported.
9616          */
9617         if (max_pixclk > 540000)
9618                 cdclk = 675000;
9619         else if (max_pixclk > 450000)
9620                 cdclk = 540000;
9621         else if (max_pixclk > 337500)
9622                 cdclk = 450000;
9623         else
9624                 cdclk = 337500;
9625
9626         /*
9627          * FIXME move the cdclk caclulation to
9628          * compute_config() so we can fail gracegully.
9629          */
9630         if (cdclk > dev_priv->max_cdclk_freq) {
9631                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9632                           cdclk, dev_priv->max_cdclk_freq);
9633                 cdclk = dev_priv->max_cdclk_freq;
9634         }
9635
9636         to_intel_atomic_state(state)->cdclk = cdclk;
9637
9638         return 0;
9639 }
9640
9641 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9642 {
9643         struct drm_device *dev = old_state->dev;
9644         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9645
9646         broadwell_set_cdclk(dev, req_cdclk);
9647 }
9648
9649 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9650                                       struct intel_crtc_state *crtc_state)
9651 {
9652         if (!intel_ddi_pll_select(crtc, crtc_state))
9653                 return -EINVAL;
9654
9655         crtc->lowfreq_avail = false;
9656
9657         return 0;
9658 }
9659
9660 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9661                                 enum port port,
9662                                 struct intel_crtc_state *pipe_config)
9663 {
9664         switch (port) {
9665         case PORT_A:
9666                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9667                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9668                 break;
9669         case PORT_B:
9670                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9671                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9672                 break;
9673         case PORT_C:
9674                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9675                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9676                 break;
9677         default:
9678                 DRM_ERROR("Incorrect port type\n");
9679         }
9680 }
9681
9682 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9683                                 enum port port,
9684                                 struct intel_crtc_state *pipe_config)
9685 {
9686         u32 temp, dpll_ctl1;
9687
9688         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9689         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9690
9691         switch (pipe_config->ddi_pll_sel) {
9692         case SKL_DPLL0:
9693                 /*
9694                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9695                  * of the shared DPLL framework and thus needs to be read out
9696                  * separately
9697                  */
9698                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9699                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9700                 break;
9701         case SKL_DPLL1:
9702                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9703                 break;
9704         case SKL_DPLL2:
9705                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9706                 break;
9707         case SKL_DPLL3:
9708                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9709                 break;
9710         }
9711 }
9712
9713 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9714                                 enum port port,
9715                                 struct intel_crtc_state *pipe_config)
9716 {
9717         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9718
9719         switch (pipe_config->ddi_pll_sel) {
9720         case PORT_CLK_SEL_WRPLL1:
9721                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9722                 break;
9723         case PORT_CLK_SEL_WRPLL2:
9724                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9725                 break;
9726         }
9727 }
9728
9729 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9730                                        struct intel_crtc_state *pipe_config)
9731 {
9732         struct drm_device *dev = crtc->base.dev;
9733         struct drm_i915_private *dev_priv = dev->dev_private;
9734         struct intel_shared_dpll *pll;
9735         enum port port;
9736         uint32_t tmp;
9737
9738         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9739
9740         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9741
9742         if (IS_SKYLAKE(dev))
9743                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9744         else if (IS_BROXTON(dev))
9745                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9746         else
9747                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9748
9749         if (pipe_config->shared_dpll >= 0) {
9750                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9751
9752                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9753                                            &pipe_config->dpll_hw_state));
9754         }
9755
9756         /*
9757          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9758          * DDI E. So just check whether this pipe is wired to DDI E and whether
9759          * the PCH transcoder is on.
9760          */
9761         if (INTEL_INFO(dev)->gen < 9 &&
9762             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9763                 pipe_config->has_pch_encoder = true;
9764
9765                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9766                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9767                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9768
9769                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9770         }
9771 }
9772
9773 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9774                                     struct intel_crtc_state *pipe_config)
9775 {
9776         struct drm_device *dev = crtc->base.dev;
9777         struct drm_i915_private *dev_priv = dev->dev_private;
9778         enum intel_display_power_domain pfit_domain;
9779         uint32_t tmp;
9780
9781         if (!intel_display_power_is_enabled(dev_priv,
9782                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9783                 return false;
9784
9785         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9786         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9787
9788         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9789         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9790                 enum pipe trans_edp_pipe;
9791                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9792                 default:
9793                         WARN(1, "unknown pipe linked to edp transcoder\n");
9794                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9795                 case TRANS_DDI_EDP_INPUT_A_ON:
9796                         trans_edp_pipe = PIPE_A;
9797                         break;
9798                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9799                         trans_edp_pipe = PIPE_B;
9800                         break;
9801                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9802                         trans_edp_pipe = PIPE_C;
9803                         break;
9804                 }
9805
9806                 if (trans_edp_pipe == crtc->pipe)
9807                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9808         }
9809
9810         if (!intel_display_power_is_enabled(dev_priv,
9811                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9812                 return false;
9813
9814         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9815         if (!(tmp & PIPECONF_ENABLE))
9816                 return false;
9817
9818         haswell_get_ddi_port_state(crtc, pipe_config);
9819
9820         intel_get_pipe_timings(crtc, pipe_config);
9821
9822         if (INTEL_INFO(dev)->gen >= 9) {
9823                 skl_init_scalers(dev, crtc, pipe_config);
9824         }
9825
9826         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9827
9828         if (INTEL_INFO(dev)->gen >= 9) {
9829                 pipe_config->scaler_state.scaler_id = -1;
9830                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9831         }
9832
9833         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9834                 if (INTEL_INFO(dev)->gen >= 9)
9835                         skylake_get_pfit_config(crtc, pipe_config);
9836                 else
9837                         ironlake_get_pfit_config(crtc, pipe_config);
9838         }
9839
9840         if (IS_HASWELL(dev))
9841                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9842                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9843
9844         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9845                 pipe_config->pixel_multiplier =
9846                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9847         } else {
9848                 pipe_config->pixel_multiplier = 1;
9849         }
9850
9851         return true;
9852 }
9853
9854 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9855 {
9856         struct drm_device *dev = crtc->dev;
9857         struct drm_i915_private *dev_priv = dev->dev_private;
9858         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9859         uint32_t cntl = 0, size = 0;
9860
9861         if (base) {
9862                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9863                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9864                 unsigned int stride = roundup_pow_of_two(width) * 4;
9865
9866                 switch (stride) {
9867                 default:
9868                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9869                                   width, stride);
9870                         stride = 256;
9871                         /* fallthrough */
9872                 case 256:
9873                 case 512:
9874                 case 1024:
9875                 case 2048:
9876                         break;
9877                 }
9878
9879                 cntl |= CURSOR_ENABLE |
9880                         CURSOR_GAMMA_ENABLE |
9881                         CURSOR_FORMAT_ARGB |
9882                         CURSOR_STRIDE(stride);
9883
9884                 size = (height << 12) | width;
9885         }
9886
9887         if (intel_crtc->cursor_cntl != 0 &&
9888             (intel_crtc->cursor_base != base ||
9889              intel_crtc->cursor_size != size ||
9890              intel_crtc->cursor_cntl != cntl)) {
9891                 /* On these chipsets we can only modify the base/size/stride
9892                  * whilst the cursor is disabled.
9893                  */
9894                 I915_WRITE(CURCNTR(PIPE_A), 0);
9895                 POSTING_READ(CURCNTR(PIPE_A));
9896                 intel_crtc->cursor_cntl = 0;
9897         }
9898
9899         if (intel_crtc->cursor_base != base) {
9900                 I915_WRITE(CURBASE(PIPE_A), base);
9901                 intel_crtc->cursor_base = base;
9902         }
9903
9904         if (intel_crtc->cursor_size != size) {
9905                 I915_WRITE(CURSIZE, size);
9906                 intel_crtc->cursor_size = size;
9907         }
9908
9909         if (intel_crtc->cursor_cntl != cntl) {
9910                 I915_WRITE(CURCNTR(PIPE_A), cntl);
9911                 POSTING_READ(CURCNTR(PIPE_A));
9912                 intel_crtc->cursor_cntl = cntl;
9913         }
9914 }
9915
9916 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9917 {
9918         struct drm_device *dev = crtc->dev;
9919         struct drm_i915_private *dev_priv = dev->dev_private;
9920         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9921         int pipe = intel_crtc->pipe;
9922         uint32_t cntl;
9923
9924         cntl = 0;
9925         if (base) {
9926                 cntl = MCURSOR_GAMMA_ENABLE;
9927                 switch (intel_crtc->base.cursor->state->crtc_w) {
9928                         case 64:
9929                                 cntl |= CURSOR_MODE_64_ARGB_AX;
9930                                 break;
9931                         case 128:
9932                                 cntl |= CURSOR_MODE_128_ARGB_AX;
9933                                 break;
9934                         case 256:
9935                                 cntl |= CURSOR_MODE_256_ARGB_AX;
9936                                 break;
9937                         default:
9938                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9939                                 return;
9940                 }
9941                 cntl |= pipe << 28; /* Connect to correct pipe */
9942
9943                 if (HAS_DDI(dev))
9944                         cntl |= CURSOR_PIPE_CSC_ENABLE;
9945         }
9946
9947         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9948                 cntl |= CURSOR_ROTATE_180;
9949
9950         if (intel_crtc->cursor_cntl != cntl) {
9951                 I915_WRITE(CURCNTR(pipe), cntl);
9952                 POSTING_READ(CURCNTR(pipe));
9953                 intel_crtc->cursor_cntl = cntl;
9954         }
9955
9956         /* and commit changes on next vblank */
9957         I915_WRITE(CURBASE(pipe), base);
9958         POSTING_READ(CURBASE(pipe));
9959
9960         intel_crtc->cursor_base = base;
9961 }
9962
9963 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9964 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9965                                      bool on)
9966 {
9967         struct drm_device *dev = crtc->dev;
9968         struct drm_i915_private *dev_priv = dev->dev_private;
9969         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9970         int pipe = intel_crtc->pipe;
9971         struct drm_plane_state *cursor_state = crtc->cursor->state;
9972         int x = cursor_state->crtc_x;
9973         int y = cursor_state->crtc_y;
9974         u32 base = 0, pos = 0;
9975
9976         if (on)
9977                 base = intel_crtc->cursor_addr;
9978
9979         if (x >= intel_crtc->config->pipe_src_w)
9980                 base = 0;
9981
9982         if (y >= intel_crtc->config->pipe_src_h)
9983                 base = 0;
9984
9985         if (x < 0) {
9986                 if (x + cursor_state->crtc_w <= 0)
9987                         base = 0;
9988
9989                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9990                 x = -x;
9991         }
9992         pos |= x << CURSOR_X_SHIFT;
9993
9994         if (y < 0) {
9995                 if (y + cursor_state->crtc_h <= 0)
9996                         base = 0;
9997
9998                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9999                 y = -y;
10000         }
10001         pos |= y << CURSOR_Y_SHIFT;
10002
10003         if (base == 0 && intel_crtc->cursor_base == 0)
10004                 return;
10005
10006         I915_WRITE(CURPOS(pipe), pos);
10007
10008         /* ILK+ do this automagically */
10009         if (HAS_GMCH_DISPLAY(dev) &&
10010             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10011                 base += (cursor_state->crtc_h *
10012                          cursor_state->crtc_w - 1) * 4;
10013         }
10014
10015         if (IS_845G(dev) || IS_I865G(dev))
10016                 i845_update_cursor(crtc, base);
10017         else
10018                 i9xx_update_cursor(crtc, base);
10019 }
10020
10021 static bool cursor_size_ok(struct drm_device *dev,
10022                            uint32_t width, uint32_t height)
10023 {
10024         if (width == 0 || height == 0)
10025                 return false;
10026
10027         /*
10028          * 845g/865g are special in that they are only limited by
10029          * the width of their cursors, the height is arbitrary up to
10030          * the precision of the register. Everything else requires
10031          * square cursors, limited to a few power-of-two sizes.
10032          */
10033         if (IS_845G(dev) || IS_I865G(dev)) {
10034                 if ((width & 63) != 0)
10035                         return false;
10036
10037                 if (width > (IS_845G(dev) ? 64 : 512))
10038                         return false;
10039
10040                 if (height > 1023)
10041                         return false;
10042         } else {
10043                 switch (width | height) {
10044                 case 256:
10045                 case 128:
10046                         if (IS_GEN2(dev))
10047                                 return false;
10048                 case 64:
10049                         break;
10050                 default:
10051                         return false;
10052                 }
10053         }
10054
10055         return true;
10056 }
10057
10058 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10059                                  u16 *blue, uint32_t start, uint32_t size)
10060 {
10061         int end = (start + size > 256) ? 256 : start + size, i;
10062         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10063
10064         for (i = start; i < end; i++) {
10065                 intel_crtc->lut_r[i] = red[i] >> 8;
10066                 intel_crtc->lut_g[i] = green[i] >> 8;
10067                 intel_crtc->lut_b[i] = blue[i] >> 8;
10068         }
10069
10070         intel_crtc_load_lut(crtc);
10071 }
10072
10073 /* VESA 640x480x72Hz mode to set on the pipe */
10074 static struct drm_display_mode load_detect_mode = {
10075         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10076                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10077 };
10078
10079 struct drm_framebuffer *
10080 __intel_framebuffer_create(struct drm_device *dev,
10081                            struct drm_mode_fb_cmd2 *mode_cmd,
10082                            struct drm_i915_gem_object *obj)
10083 {
10084         struct intel_framebuffer *intel_fb;
10085         int ret;
10086
10087         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10088         if (!intel_fb) {
10089                 drm_gem_object_unreference(&obj->base);
10090                 return ERR_PTR(-ENOMEM);
10091         }
10092
10093         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10094         if (ret)
10095                 goto err;
10096
10097         return &intel_fb->base;
10098 err:
10099         drm_gem_object_unreference(&obj->base);
10100         kfree(intel_fb);
10101
10102         return ERR_PTR(ret);
10103 }
10104
10105 static struct drm_framebuffer *
10106 intel_framebuffer_create(struct drm_device *dev,
10107                          struct drm_mode_fb_cmd2 *mode_cmd,
10108                          struct drm_i915_gem_object *obj)
10109 {
10110         struct drm_framebuffer *fb;
10111         int ret;
10112
10113         ret = i915_mutex_lock_interruptible(dev);
10114         if (ret)
10115                 return ERR_PTR(ret);
10116         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10117         mutex_unlock(&dev->struct_mutex);
10118
10119         return fb;
10120 }
10121
10122 static u32
10123 intel_framebuffer_pitch_for_width(int width, int bpp)
10124 {
10125         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10126         return ALIGN(pitch, 64);
10127 }
10128
10129 static u32
10130 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10131 {
10132         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10133         return PAGE_ALIGN(pitch * mode->vdisplay);
10134 }
10135
10136 static struct drm_framebuffer *
10137 intel_framebuffer_create_for_mode(struct drm_device *dev,
10138                                   struct drm_display_mode *mode,
10139                                   int depth, int bpp)
10140 {
10141         struct drm_i915_gem_object *obj;
10142         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10143
10144         obj = i915_gem_alloc_object(dev,
10145                                     intel_framebuffer_size_for_mode(mode, bpp));
10146         if (obj == NULL)
10147                 return ERR_PTR(-ENOMEM);
10148
10149         mode_cmd.width = mode->hdisplay;
10150         mode_cmd.height = mode->vdisplay;
10151         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10152                                                                 bpp);
10153         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10154
10155         return intel_framebuffer_create(dev, &mode_cmd, obj);
10156 }
10157
10158 static struct drm_framebuffer *
10159 mode_fits_in_fbdev(struct drm_device *dev,
10160                    struct drm_display_mode *mode)
10161 {
10162 #ifdef CONFIG_DRM_FBDEV_EMULATION
10163         struct drm_i915_private *dev_priv = dev->dev_private;
10164         struct drm_i915_gem_object *obj;
10165         struct drm_framebuffer *fb;
10166
10167         if (!dev_priv->fbdev)
10168                 return NULL;
10169
10170         if (!dev_priv->fbdev->fb)
10171                 return NULL;
10172
10173         obj = dev_priv->fbdev->fb->obj;
10174         BUG_ON(!obj);
10175
10176         fb = &dev_priv->fbdev->fb->base;
10177         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10178                                                                fb->bits_per_pixel))
10179                 return NULL;
10180
10181         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10182                 return NULL;
10183
10184         return fb;
10185 #else
10186         return NULL;
10187 #endif
10188 }
10189
10190 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10191                                            struct drm_crtc *crtc,
10192                                            struct drm_display_mode *mode,
10193                                            struct drm_framebuffer *fb,
10194                                            int x, int y)
10195 {
10196         struct drm_plane_state *plane_state;
10197         int hdisplay, vdisplay;
10198         int ret;
10199
10200         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10201         if (IS_ERR(plane_state))
10202                 return PTR_ERR(plane_state);
10203
10204         if (mode)
10205                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10206         else
10207                 hdisplay = vdisplay = 0;
10208
10209         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10210         if (ret)
10211                 return ret;
10212         drm_atomic_set_fb_for_plane(plane_state, fb);
10213         plane_state->crtc_x = 0;
10214         plane_state->crtc_y = 0;
10215         plane_state->crtc_w = hdisplay;
10216         plane_state->crtc_h = vdisplay;
10217         plane_state->src_x = x << 16;
10218         plane_state->src_y = y << 16;
10219         plane_state->src_w = hdisplay << 16;
10220         plane_state->src_h = vdisplay << 16;
10221
10222         return 0;
10223 }
10224
10225 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10226                                 struct drm_display_mode *mode,
10227                                 struct intel_load_detect_pipe *old,
10228                                 struct drm_modeset_acquire_ctx *ctx)
10229 {
10230         struct intel_crtc *intel_crtc;
10231         struct intel_encoder *intel_encoder =
10232                 intel_attached_encoder(connector);
10233         struct drm_crtc *possible_crtc;
10234         struct drm_encoder *encoder = &intel_encoder->base;
10235         struct drm_crtc *crtc = NULL;
10236         struct drm_device *dev = encoder->dev;
10237         struct drm_framebuffer *fb;
10238         struct drm_mode_config *config = &dev->mode_config;
10239         struct drm_atomic_state *state = NULL;
10240         struct drm_connector_state *connector_state;
10241         struct intel_crtc_state *crtc_state;
10242         int ret, i = -1;
10243
10244         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10245                       connector->base.id, connector->name,
10246                       encoder->base.id, encoder->name);
10247
10248 retry:
10249         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10250         if (ret)
10251                 goto fail;
10252
10253         /*
10254          * Algorithm gets a little messy:
10255          *
10256          *   - if the connector already has an assigned crtc, use it (but make
10257          *     sure it's on first)
10258          *
10259          *   - try to find the first unused crtc that can drive this connector,
10260          *     and use that if we find one
10261          */
10262
10263         /* See if we already have a CRTC for this connector */
10264         if (encoder->crtc) {
10265                 crtc = encoder->crtc;
10266
10267                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10268                 if (ret)
10269                         goto fail;
10270                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10271                 if (ret)
10272                         goto fail;
10273
10274                 old->dpms_mode = connector->dpms;
10275                 old->load_detect_temp = false;
10276
10277                 /* Make sure the crtc and connector are running */
10278                 if (connector->dpms != DRM_MODE_DPMS_ON)
10279                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10280
10281                 return true;
10282         }
10283
10284         /* Find an unused one (if possible) */
10285         for_each_crtc(dev, possible_crtc) {
10286                 i++;
10287                 if (!(encoder->possible_crtcs & (1 << i)))
10288                         continue;
10289                 if (possible_crtc->state->enable)
10290                         continue;
10291
10292                 crtc = possible_crtc;
10293                 break;
10294         }
10295
10296         /*
10297          * If we didn't find an unused CRTC, don't use any.
10298          */
10299         if (!crtc) {
10300                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10301                 goto fail;
10302         }
10303
10304         ret = drm_modeset_lock(&crtc->mutex, ctx);
10305         if (ret)
10306                 goto fail;
10307         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10308         if (ret)
10309                 goto fail;
10310
10311         intel_crtc = to_intel_crtc(crtc);
10312         old->dpms_mode = connector->dpms;
10313         old->load_detect_temp = true;
10314         old->release_fb = NULL;
10315
10316         state = drm_atomic_state_alloc(dev);
10317         if (!state)
10318                 return false;
10319
10320         state->acquire_ctx = ctx;
10321
10322         connector_state = drm_atomic_get_connector_state(state, connector);
10323         if (IS_ERR(connector_state)) {
10324                 ret = PTR_ERR(connector_state);
10325                 goto fail;
10326         }
10327
10328         connector_state->crtc = crtc;
10329         connector_state->best_encoder = &intel_encoder->base;
10330
10331         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10332         if (IS_ERR(crtc_state)) {
10333                 ret = PTR_ERR(crtc_state);
10334                 goto fail;
10335         }
10336
10337         crtc_state->base.active = crtc_state->base.enable = true;
10338
10339         if (!mode)
10340                 mode = &load_detect_mode;
10341
10342         /* We need a framebuffer large enough to accommodate all accesses
10343          * that the plane may generate whilst we perform load detection.
10344          * We can not rely on the fbcon either being present (we get called
10345          * during its initialisation to detect all boot displays, or it may
10346          * not even exist) or that it is large enough to satisfy the
10347          * requested mode.
10348          */
10349         fb = mode_fits_in_fbdev(dev, mode);
10350         if (fb == NULL) {
10351                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10352                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10353                 old->release_fb = fb;
10354         } else
10355                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10356         if (IS_ERR(fb)) {
10357                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10358                 goto fail;
10359         }
10360
10361         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10362         if (ret)
10363                 goto fail;
10364
10365         drm_mode_copy(&crtc_state->base.mode, mode);
10366
10367         if (drm_atomic_commit(state)) {
10368                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10369                 if (old->release_fb)
10370                         old->release_fb->funcs->destroy(old->release_fb);
10371                 goto fail;
10372         }
10373         crtc->primary->crtc = crtc;
10374
10375         /* let the connector get through one full cycle before testing */
10376         intel_wait_for_vblank(dev, intel_crtc->pipe);
10377         return true;
10378
10379 fail:
10380         drm_atomic_state_free(state);
10381         state = NULL;
10382
10383         if (ret == -EDEADLK) {
10384                 drm_modeset_backoff(ctx);
10385                 goto retry;
10386         }
10387
10388         return false;
10389 }
10390
10391 void intel_release_load_detect_pipe(struct drm_connector *connector,
10392                                     struct intel_load_detect_pipe *old,
10393                                     struct drm_modeset_acquire_ctx *ctx)
10394 {
10395         struct drm_device *dev = connector->dev;
10396         struct intel_encoder *intel_encoder =
10397                 intel_attached_encoder(connector);
10398         struct drm_encoder *encoder = &intel_encoder->base;
10399         struct drm_crtc *crtc = encoder->crtc;
10400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10401         struct drm_atomic_state *state;
10402         struct drm_connector_state *connector_state;
10403         struct intel_crtc_state *crtc_state;
10404         int ret;
10405
10406         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10407                       connector->base.id, connector->name,
10408                       encoder->base.id, encoder->name);
10409
10410         if (old->load_detect_temp) {
10411                 state = drm_atomic_state_alloc(dev);
10412                 if (!state)
10413                         goto fail;
10414
10415                 state->acquire_ctx = ctx;
10416
10417                 connector_state = drm_atomic_get_connector_state(state, connector);
10418                 if (IS_ERR(connector_state))
10419                         goto fail;
10420
10421                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10422                 if (IS_ERR(crtc_state))
10423                         goto fail;
10424
10425                 connector_state->best_encoder = NULL;
10426                 connector_state->crtc = NULL;
10427
10428                 crtc_state->base.enable = crtc_state->base.active = false;
10429
10430                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10431                                                       0, 0);
10432                 if (ret)
10433                         goto fail;
10434
10435                 ret = drm_atomic_commit(state);
10436                 if (ret)
10437                         goto fail;
10438
10439                 if (old->release_fb) {
10440                         drm_framebuffer_unregister_private(old->release_fb);
10441                         drm_framebuffer_unreference(old->release_fb);
10442                 }
10443
10444                 return;
10445         }
10446
10447         /* Switch crtc and encoder back off if necessary */
10448         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10449                 connector->funcs->dpms(connector, old->dpms_mode);
10450
10451         return;
10452 fail:
10453         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10454         drm_atomic_state_free(state);
10455 }
10456
10457 static int i9xx_pll_refclk(struct drm_device *dev,
10458                            const struct intel_crtc_state *pipe_config)
10459 {
10460         struct drm_i915_private *dev_priv = dev->dev_private;
10461         u32 dpll = pipe_config->dpll_hw_state.dpll;
10462
10463         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10464                 return dev_priv->vbt.lvds_ssc_freq;
10465         else if (HAS_PCH_SPLIT(dev))
10466                 return 120000;
10467         else if (!IS_GEN2(dev))
10468                 return 96000;
10469         else
10470                 return 48000;
10471 }
10472
10473 /* Returns the clock of the currently programmed mode of the given pipe. */
10474 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10475                                 struct intel_crtc_state *pipe_config)
10476 {
10477         struct drm_device *dev = crtc->base.dev;
10478         struct drm_i915_private *dev_priv = dev->dev_private;
10479         int pipe = pipe_config->cpu_transcoder;
10480         u32 dpll = pipe_config->dpll_hw_state.dpll;
10481         u32 fp;
10482         intel_clock_t clock;
10483         int port_clock;
10484         int refclk = i9xx_pll_refclk(dev, pipe_config);
10485
10486         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10487                 fp = pipe_config->dpll_hw_state.fp0;
10488         else
10489                 fp = pipe_config->dpll_hw_state.fp1;
10490
10491         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10492         if (IS_PINEVIEW(dev)) {
10493                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10494                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10495         } else {
10496                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10497                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10498         }
10499
10500         if (!IS_GEN2(dev)) {
10501                 if (IS_PINEVIEW(dev))
10502                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10503                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10504                 else
10505                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10506                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10507
10508                 switch (dpll & DPLL_MODE_MASK) {
10509                 case DPLLB_MODE_DAC_SERIAL:
10510                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10511                                 5 : 10;
10512                         break;
10513                 case DPLLB_MODE_LVDS:
10514                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10515                                 7 : 14;
10516                         break;
10517                 default:
10518                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10519                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10520                         return;
10521                 }
10522
10523                 if (IS_PINEVIEW(dev))
10524                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10525                 else
10526                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10527         } else {
10528                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10529                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10530
10531                 if (is_lvds) {
10532                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10533                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10534
10535                         if (lvds & LVDS_CLKB_POWER_UP)
10536                                 clock.p2 = 7;
10537                         else
10538                                 clock.p2 = 14;
10539                 } else {
10540                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10541                                 clock.p1 = 2;
10542                         else {
10543                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10544                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10545                         }
10546                         if (dpll & PLL_P2_DIVIDE_BY_4)
10547                                 clock.p2 = 4;
10548                         else
10549                                 clock.p2 = 2;
10550                 }
10551
10552                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10553         }
10554
10555         /*
10556          * This value includes pixel_multiplier. We will use
10557          * port_clock to compute adjusted_mode.crtc_clock in the
10558          * encoder's get_config() function.
10559          */
10560         pipe_config->port_clock = port_clock;
10561 }
10562
10563 int intel_dotclock_calculate(int link_freq,
10564                              const struct intel_link_m_n *m_n)
10565 {
10566         /*
10567          * The calculation for the data clock is:
10568          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10569          * But we want to avoid losing precison if possible, so:
10570          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10571          *
10572          * and the link clock is simpler:
10573          * link_clock = (m * link_clock) / n
10574          */
10575
10576         if (!m_n->link_n)
10577                 return 0;
10578
10579         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10580 }
10581
10582 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10583                                    struct intel_crtc_state *pipe_config)
10584 {
10585         struct drm_device *dev = crtc->base.dev;
10586
10587         /* read out port_clock from the DPLL */
10588         i9xx_crtc_clock_get(crtc, pipe_config);
10589
10590         /*
10591          * This value does not include pixel_multiplier.
10592          * We will check that port_clock and adjusted_mode.crtc_clock
10593          * agree once we know their relationship in the encoder's
10594          * get_config() function.
10595          */
10596         pipe_config->base.adjusted_mode.crtc_clock =
10597                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10598                                          &pipe_config->fdi_m_n);
10599 }
10600
10601 /** Returns the currently programmed mode of the given pipe. */
10602 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10603                                              struct drm_crtc *crtc)
10604 {
10605         struct drm_i915_private *dev_priv = dev->dev_private;
10606         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10607         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10608         struct drm_display_mode *mode;
10609         struct intel_crtc_state pipe_config;
10610         int htot = I915_READ(HTOTAL(cpu_transcoder));
10611         int hsync = I915_READ(HSYNC(cpu_transcoder));
10612         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10613         int vsync = I915_READ(VSYNC(cpu_transcoder));
10614         enum pipe pipe = intel_crtc->pipe;
10615
10616         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10617         if (!mode)
10618                 return NULL;
10619
10620         /*
10621          * Construct a pipe_config sufficient for getting the clock info
10622          * back out of crtc_clock_get.
10623          *
10624          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10625          * to use a real value here instead.
10626          */
10627         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10628         pipe_config.pixel_multiplier = 1;
10629         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10630         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10631         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10632         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10633
10634         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10635         mode->hdisplay = (htot & 0xffff) + 1;
10636         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10637         mode->hsync_start = (hsync & 0xffff) + 1;
10638         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10639         mode->vdisplay = (vtot & 0xffff) + 1;
10640         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10641         mode->vsync_start = (vsync & 0xffff) + 1;
10642         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10643
10644         drm_mode_set_name(mode);
10645
10646         return mode;
10647 }
10648
10649 void intel_mark_busy(struct drm_device *dev)
10650 {
10651         struct drm_i915_private *dev_priv = dev->dev_private;
10652
10653         if (dev_priv->mm.busy)
10654                 return;
10655
10656         intel_runtime_pm_get(dev_priv);
10657         i915_update_gfx_val(dev_priv);
10658         if (INTEL_INFO(dev)->gen >= 6)
10659                 gen6_rps_busy(dev_priv);
10660         dev_priv->mm.busy = true;
10661 }
10662
10663 void intel_mark_idle(struct drm_device *dev)
10664 {
10665         struct drm_i915_private *dev_priv = dev->dev_private;
10666
10667         if (!dev_priv->mm.busy)
10668                 return;
10669
10670         dev_priv->mm.busy = false;
10671
10672         if (INTEL_INFO(dev)->gen >= 6)
10673                 gen6_rps_idle(dev->dev_private);
10674
10675         intel_runtime_pm_put(dev_priv);
10676 }
10677
10678 static void intel_crtc_destroy(struct drm_crtc *crtc)
10679 {
10680         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10681         struct drm_device *dev = crtc->dev;
10682         struct intel_unpin_work *work;
10683
10684         spin_lock_irq(&dev->event_lock);
10685         work = intel_crtc->unpin_work;
10686         intel_crtc->unpin_work = NULL;
10687         spin_unlock_irq(&dev->event_lock);
10688
10689         if (work) {
10690                 cancel_work_sync(&work->work);
10691                 kfree(work);
10692         }
10693
10694         drm_crtc_cleanup(crtc);
10695
10696         kfree(intel_crtc);
10697 }
10698
10699 static void intel_unpin_work_fn(struct work_struct *__work)
10700 {
10701         struct intel_unpin_work *work =
10702                 container_of(__work, struct intel_unpin_work, work);
10703         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10704         struct drm_device *dev = crtc->base.dev;
10705         struct drm_plane *primary = crtc->base.primary;
10706
10707         mutex_lock(&dev->struct_mutex);
10708         intel_unpin_fb_obj(work->old_fb, primary->state);
10709         drm_gem_object_unreference(&work->pending_flip_obj->base);
10710
10711         if (work->flip_queued_req)
10712                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10713         mutex_unlock(&dev->struct_mutex);
10714
10715         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10716         drm_framebuffer_unreference(work->old_fb);
10717
10718         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10719         atomic_dec(&crtc->unpin_work_count);
10720
10721         kfree(work);
10722 }
10723
10724 static void do_intel_finish_page_flip(struct drm_device *dev,
10725                                       struct drm_crtc *crtc)
10726 {
10727         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10728         struct intel_unpin_work *work;
10729         unsigned long flags;
10730
10731         /* Ignore early vblank irqs */
10732         if (intel_crtc == NULL)
10733                 return;
10734
10735         /*
10736          * This is called both by irq handlers and the reset code (to complete
10737          * lost pageflips) so needs the full irqsave spinlocks.
10738          */
10739         spin_lock_irqsave(&dev->event_lock, flags);
10740         work = intel_crtc->unpin_work;
10741
10742         /* Ensure we don't miss a work->pending update ... */
10743         smp_rmb();
10744
10745         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10746                 spin_unlock_irqrestore(&dev->event_lock, flags);
10747                 return;
10748         }
10749
10750         page_flip_completed(intel_crtc);
10751
10752         spin_unlock_irqrestore(&dev->event_lock, flags);
10753 }
10754
10755 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10756 {
10757         struct drm_i915_private *dev_priv = dev->dev_private;
10758         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10759
10760         do_intel_finish_page_flip(dev, crtc);
10761 }
10762
10763 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10764 {
10765         struct drm_i915_private *dev_priv = dev->dev_private;
10766         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10767
10768         do_intel_finish_page_flip(dev, crtc);
10769 }
10770
10771 /* Is 'a' after or equal to 'b'? */
10772 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10773 {
10774         return !((a - b) & 0x80000000);
10775 }
10776
10777 static bool page_flip_finished(struct intel_crtc *crtc)
10778 {
10779         struct drm_device *dev = crtc->base.dev;
10780         struct drm_i915_private *dev_priv = dev->dev_private;
10781
10782         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10783             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10784                 return true;
10785
10786         /*
10787          * The relevant registers doen't exist on pre-ctg.
10788          * As the flip done interrupt doesn't trigger for mmio
10789          * flips on gmch platforms, a flip count check isn't
10790          * really needed there. But since ctg has the registers,
10791          * include it in the check anyway.
10792          */
10793         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10794                 return true;
10795
10796         /*
10797          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10798          * used the same base address. In that case the mmio flip might
10799          * have completed, but the CS hasn't even executed the flip yet.
10800          *
10801          * A flip count check isn't enough as the CS might have updated
10802          * the base address just after start of vblank, but before we
10803          * managed to process the interrupt. This means we'd complete the
10804          * CS flip too soon.
10805          *
10806          * Combining both checks should get us a good enough result. It may
10807          * still happen that the CS flip has been executed, but has not
10808          * yet actually completed. But in case the base address is the same
10809          * anyway, we don't really care.
10810          */
10811         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10812                 crtc->unpin_work->gtt_offset &&
10813                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10814                                     crtc->unpin_work->flip_count);
10815 }
10816
10817 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10818 {
10819         struct drm_i915_private *dev_priv = dev->dev_private;
10820         struct intel_crtc *intel_crtc =
10821                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10822         unsigned long flags;
10823
10824
10825         /*
10826          * This is called both by irq handlers and the reset code (to complete
10827          * lost pageflips) so needs the full irqsave spinlocks.
10828          *
10829          * NB: An MMIO update of the plane base pointer will also
10830          * generate a page-flip completion irq, i.e. every modeset
10831          * is also accompanied by a spurious intel_prepare_page_flip().
10832          */
10833         spin_lock_irqsave(&dev->event_lock, flags);
10834         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10835                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10836         spin_unlock_irqrestore(&dev->event_lock, flags);
10837 }
10838
10839 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10840 {
10841         /* Ensure that the work item is consistent when activating it ... */
10842         smp_wmb();
10843         atomic_set(&work->pending, INTEL_FLIP_PENDING);
10844         /* and that it is marked active as soon as the irq could fire. */
10845         smp_wmb();
10846 }
10847
10848 static int intel_gen2_queue_flip(struct drm_device *dev,
10849                                  struct drm_crtc *crtc,
10850                                  struct drm_framebuffer *fb,
10851                                  struct drm_i915_gem_object *obj,
10852                                  struct drm_i915_gem_request *req,
10853                                  uint32_t flags)
10854 {
10855         struct intel_engine_cs *ring = req->ring;
10856         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10857         u32 flip_mask;
10858         int ret;
10859
10860         ret = intel_ring_begin(req, 6);
10861         if (ret)
10862                 return ret;
10863
10864         /* Can't queue multiple flips, so wait for the previous
10865          * one to finish before executing the next.
10866          */
10867         if (intel_crtc->plane)
10868                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10869         else
10870                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10871         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10872         intel_ring_emit(ring, MI_NOOP);
10873         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10874                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10875         intel_ring_emit(ring, fb->pitches[0]);
10876         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10877         intel_ring_emit(ring, 0); /* aux display base address, unused */
10878
10879         intel_mark_page_flip_active(intel_crtc->unpin_work);
10880         return 0;
10881 }
10882
10883 static int intel_gen3_queue_flip(struct drm_device *dev,
10884                                  struct drm_crtc *crtc,
10885                                  struct drm_framebuffer *fb,
10886                                  struct drm_i915_gem_object *obj,
10887                                  struct drm_i915_gem_request *req,
10888                                  uint32_t flags)
10889 {
10890         struct intel_engine_cs *ring = req->ring;
10891         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10892         u32 flip_mask;
10893         int ret;
10894
10895         ret = intel_ring_begin(req, 6);
10896         if (ret)
10897                 return ret;
10898
10899         if (intel_crtc->plane)
10900                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10901         else
10902                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10903         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10904         intel_ring_emit(ring, MI_NOOP);
10905         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10906                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10907         intel_ring_emit(ring, fb->pitches[0]);
10908         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10909         intel_ring_emit(ring, MI_NOOP);
10910
10911         intel_mark_page_flip_active(intel_crtc->unpin_work);
10912         return 0;
10913 }
10914
10915 static int intel_gen4_queue_flip(struct drm_device *dev,
10916                                  struct drm_crtc *crtc,
10917                                  struct drm_framebuffer *fb,
10918                                  struct drm_i915_gem_object *obj,
10919                                  struct drm_i915_gem_request *req,
10920                                  uint32_t flags)
10921 {
10922         struct intel_engine_cs *ring = req->ring;
10923         struct drm_i915_private *dev_priv = dev->dev_private;
10924         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10925         uint32_t pf, pipesrc;
10926         int ret;
10927
10928         ret = intel_ring_begin(req, 4);
10929         if (ret)
10930                 return ret;
10931
10932         /* i965+ uses the linear or tiled offsets from the
10933          * Display Registers (which do not change across a page-flip)
10934          * so we need only reprogram the base address.
10935          */
10936         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10937                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10938         intel_ring_emit(ring, fb->pitches[0]);
10939         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10940                         obj->tiling_mode);
10941
10942         /* XXX Enabling the panel-fitter across page-flip is so far
10943          * untested on non-native modes, so ignore it for now.
10944          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10945          */
10946         pf = 0;
10947         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10948         intel_ring_emit(ring, pf | pipesrc);
10949
10950         intel_mark_page_flip_active(intel_crtc->unpin_work);
10951         return 0;
10952 }
10953
10954 static int intel_gen6_queue_flip(struct drm_device *dev,
10955                                  struct drm_crtc *crtc,
10956                                  struct drm_framebuffer *fb,
10957                                  struct drm_i915_gem_object *obj,
10958                                  struct drm_i915_gem_request *req,
10959                                  uint32_t flags)
10960 {
10961         struct intel_engine_cs *ring = req->ring;
10962         struct drm_i915_private *dev_priv = dev->dev_private;
10963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10964         uint32_t pf, pipesrc;
10965         int ret;
10966
10967         ret = intel_ring_begin(req, 4);
10968         if (ret)
10969                 return ret;
10970
10971         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10972                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10973         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10974         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10975
10976         /* Contrary to the suggestions in the documentation,
10977          * "Enable Panel Fitter" does not seem to be required when page
10978          * flipping with a non-native mode, and worse causes a normal
10979          * modeset to fail.
10980          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10981          */
10982         pf = 0;
10983         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10984         intel_ring_emit(ring, pf | pipesrc);
10985
10986         intel_mark_page_flip_active(intel_crtc->unpin_work);
10987         return 0;
10988 }
10989
10990 static int intel_gen7_queue_flip(struct drm_device *dev,
10991                                  struct drm_crtc *crtc,
10992                                  struct drm_framebuffer *fb,
10993                                  struct drm_i915_gem_object *obj,
10994                                  struct drm_i915_gem_request *req,
10995                                  uint32_t flags)
10996 {
10997         struct intel_engine_cs *ring = req->ring;
10998         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10999         uint32_t plane_bit = 0;
11000         int len, ret;
11001
11002         switch (intel_crtc->plane) {
11003         case PLANE_A:
11004                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11005                 break;
11006         case PLANE_B:
11007                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11008                 break;
11009         case PLANE_C:
11010                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11011                 break;
11012         default:
11013                 WARN_ONCE(1, "unknown plane in flip command\n");
11014                 return -ENODEV;
11015         }
11016
11017         len = 4;
11018         if (ring->id == RCS) {
11019                 len += 6;
11020                 /*
11021                  * On Gen 8, SRM is now taking an extra dword to accommodate
11022                  * 48bits addresses, and we need a NOOP for the batch size to
11023                  * stay even.
11024                  */
11025                 if (IS_GEN8(dev))
11026                         len += 2;
11027         }
11028
11029         /*
11030          * BSpec MI_DISPLAY_FLIP for IVB:
11031          * "The full packet must be contained within the same cache line."
11032          *
11033          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11034          * cacheline, if we ever start emitting more commands before
11035          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11036          * then do the cacheline alignment, and finally emit the
11037          * MI_DISPLAY_FLIP.
11038          */
11039         ret = intel_ring_cacheline_align(req);
11040         if (ret)
11041                 return ret;
11042
11043         ret = intel_ring_begin(req, len);
11044         if (ret)
11045                 return ret;
11046
11047         /* Unmask the flip-done completion message. Note that the bspec says that
11048          * we should do this for both the BCS and RCS, and that we must not unmask
11049          * more than one flip event at any time (or ensure that one flip message
11050          * can be sent by waiting for flip-done prior to queueing new flips).
11051          * Experimentation says that BCS works despite DERRMR masking all
11052          * flip-done completion events and that unmasking all planes at once
11053          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11054          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11055          */
11056         if (ring->id == RCS) {
11057                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11058                 intel_ring_emit(ring, DERRMR);
11059                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11060                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11061                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11062                 if (IS_GEN8(dev))
11063                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11064                                               MI_SRM_LRM_GLOBAL_GTT);
11065                 else
11066                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11067                                               MI_SRM_LRM_GLOBAL_GTT);
11068                 intel_ring_emit(ring, DERRMR);
11069                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11070                 if (IS_GEN8(dev)) {
11071                         intel_ring_emit(ring, 0);
11072                         intel_ring_emit(ring, MI_NOOP);
11073                 }
11074         }
11075
11076         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11077         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11078         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11079         intel_ring_emit(ring, (MI_NOOP));
11080
11081         intel_mark_page_flip_active(intel_crtc->unpin_work);
11082         return 0;
11083 }
11084
11085 static bool use_mmio_flip(struct intel_engine_cs *ring,
11086                           struct drm_i915_gem_object *obj)
11087 {
11088         /*
11089          * This is not being used for older platforms, because
11090          * non-availability of flip done interrupt forces us to use
11091          * CS flips. Older platforms derive flip done using some clever
11092          * tricks involving the flip_pending status bits and vblank irqs.
11093          * So using MMIO flips there would disrupt this mechanism.
11094          */
11095
11096         if (ring == NULL)
11097                 return true;
11098
11099         if (INTEL_INFO(ring->dev)->gen < 5)
11100                 return false;
11101
11102         if (i915.use_mmio_flip < 0)
11103                 return false;
11104         else if (i915.use_mmio_flip > 0)
11105                 return true;
11106         else if (i915.enable_execlists)
11107                 return true;
11108         else
11109                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11110 }
11111
11112 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11113                              struct intel_unpin_work *work)
11114 {
11115         struct drm_device *dev = intel_crtc->base.dev;
11116         struct drm_i915_private *dev_priv = dev->dev_private;
11117         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11118         const enum pipe pipe = intel_crtc->pipe;
11119         u32 ctl, stride;
11120
11121         ctl = I915_READ(PLANE_CTL(pipe, 0));
11122         ctl &= ~PLANE_CTL_TILED_MASK;
11123         switch (fb->modifier[0]) {
11124         case DRM_FORMAT_MOD_NONE:
11125                 break;
11126         case I915_FORMAT_MOD_X_TILED:
11127                 ctl |= PLANE_CTL_TILED_X;
11128                 break;
11129         case I915_FORMAT_MOD_Y_TILED:
11130                 ctl |= PLANE_CTL_TILED_Y;
11131                 break;
11132         case I915_FORMAT_MOD_Yf_TILED:
11133                 ctl |= PLANE_CTL_TILED_YF;
11134                 break;
11135         default:
11136                 MISSING_CASE(fb->modifier[0]);
11137         }
11138
11139         /*
11140          * The stride is either expressed as a multiple of 64 bytes chunks for
11141          * linear buffers or in number of tiles for tiled buffers.
11142          */
11143         stride = fb->pitches[0] /
11144                  intel_fb_stride_alignment(dev, fb->modifier[0],
11145                                            fb->pixel_format);
11146
11147         /*
11148          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11149          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11150          */
11151         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11152         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11153
11154         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11155         POSTING_READ(PLANE_SURF(pipe, 0));
11156 }
11157
11158 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11159                              struct intel_unpin_work *work)
11160 {
11161         struct drm_device *dev = intel_crtc->base.dev;
11162         struct drm_i915_private *dev_priv = dev->dev_private;
11163         struct intel_framebuffer *intel_fb =
11164                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11165         struct drm_i915_gem_object *obj = intel_fb->obj;
11166         u32 dspcntr;
11167         u32 reg;
11168
11169         reg = DSPCNTR(intel_crtc->plane);
11170         dspcntr = I915_READ(reg);
11171
11172         if (obj->tiling_mode != I915_TILING_NONE)
11173                 dspcntr |= DISPPLANE_TILED;
11174         else
11175                 dspcntr &= ~DISPPLANE_TILED;
11176
11177         I915_WRITE(reg, dspcntr);
11178
11179         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11180         POSTING_READ(DSPSURF(intel_crtc->plane));
11181 }
11182
11183 /*
11184  * XXX: This is the temporary way to update the plane registers until we get
11185  * around to using the usual plane update functions for MMIO flips
11186  */
11187 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11188 {
11189         struct intel_crtc *crtc = mmio_flip->crtc;
11190         struct intel_unpin_work *work;
11191
11192         spin_lock_irq(&crtc->base.dev->event_lock);
11193         work = crtc->unpin_work;
11194         spin_unlock_irq(&crtc->base.dev->event_lock);
11195         if (work == NULL)
11196                 return;
11197
11198         intel_mark_page_flip_active(work);
11199
11200         intel_pipe_update_start(crtc);
11201
11202         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11203                 skl_do_mmio_flip(crtc, work);
11204         else
11205                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11206                 ilk_do_mmio_flip(crtc, work);
11207
11208         intel_pipe_update_end(crtc);
11209 }
11210
11211 static void intel_mmio_flip_work_func(struct work_struct *work)
11212 {
11213         struct intel_mmio_flip *mmio_flip =
11214                 container_of(work, struct intel_mmio_flip, work);
11215
11216         if (mmio_flip->req) {
11217                 WARN_ON(__i915_wait_request(mmio_flip->req,
11218                                             mmio_flip->crtc->reset_counter,
11219                                             false, NULL,
11220                                             &mmio_flip->i915->rps.mmioflips));
11221                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11222         }
11223
11224         intel_do_mmio_flip(mmio_flip);
11225         kfree(mmio_flip);
11226 }
11227
11228 static int intel_queue_mmio_flip(struct drm_device *dev,
11229                                  struct drm_crtc *crtc,
11230                                  struct drm_framebuffer *fb,
11231                                  struct drm_i915_gem_object *obj,
11232                                  struct intel_engine_cs *ring,
11233                                  uint32_t flags)
11234 {
11235         struct intel_mmio_flip *mmio_flip;
11236
11237         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11238         if (mmio_flip == NULL)
11239                 return -ENOMEM;
11240
11241         mmio_flip->i915 = to_i915(dev);
11242         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11243         mmio_flip->crtc = to_intel_crtc(crtc);
11244
11245         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11246         schedule_work(&mmio_flip->work);
11247
11248         return 0;
11249 }
11250
11251 static int intel_default_queue_flip(struct drm_device *dev,
11252                                     struct drm_crtc *crtc,
11253                                     struct drm_framebuffer *fb,
11254                                     struct drm_i915_gem_object *obj,
11255                                     struct drm_i915_gem_request *req,
11256                                     uint32_t flags)
11257 {
11258         return -ENODEV;
11259 }
11260
11261 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11262                                          struct drm_crtc *crtc)
11263 {
11264         struct drm_i915_private *dev_priv = dev->dev_private;
11265         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11266         struct intel_unpin_work *work = intel_crtc->unpin_work;
11267         u32 addr;
11268
11269         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11270                 return true;
11271
11272         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11273                 return false;
11274
11275         if (!work->enable_stall_check)
11276                 return false;
11277
11278         if (work->flip_ready_vblank == 0) {
11279                 if (work->flip_queued_req &&
11280                     !i915_gem_request_completed(work->flip_queued_req, true))
11281                         return false;
11282
11283                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11284         }
11285
11286         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11287                 return false;
11288
11289         /* Potential stall - if we see that the flip has happened,
11290          * assume a missed interrupt. */
11291         if (INTEL_INFO(dev)->gen >= 4)
11292                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11293         else
11294                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11295
11296         /* There is a potential issue here with a false positive after a flip
11297          * to the same address. We could address this by checking for a
11298          * non-incrementing frame counter.
11299          */
11300         return addr == work->gtt_offset;
11301 }
11302
11303 void intel_check_page_flip(struct drm_device *dev, int pipe)
11304 {
11305         struct drm_i915_private *dev_priv = dev->dev_private;
11306         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11307         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11308         struct intel_unpin_work *work;
11309
11310         WARN_ON(!in_interrupt());
11311
11312         if (crtc == NULL)
11313                 return;
11314
11315         spin_lock(&dev->event_lock);
11316         work = intel_crtc->unpin_work;
11317         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11318                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11319                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11320                 page_flip_completed(intel_crtc);
11321                 work = NULL;
11322         }
11323         if (work != NULL &&
11324             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11325                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11326         spin_unlock(&dev->event_lock);
11327 }
11328
11329 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11330                                 struct drm_framebuffer *fb,
11331                                 struct drm_pending_vblank_event *event,
11332                                 uint32_t page_flip_flags)
11333 {
11334         struct drm_device *dev = crtc->dev;
11335         struct drm_i915_private *dev_priv = dev->dev_private;
11336         struct drm_framebuffer *old_fb = crtc->primary->fb;
11337         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11338         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11339         struct drm_plane *primary = crtc->primary;
11340         enum pipe pipe = intel_crtc->pipe;
11341         struct intel_unpin_work *work;
11342         struct intel_engine_cs *ring;
11343         bool mmio_flip;
11344         struct drm_i915_gem_request *request = NULL;
11345         int ret;
11346
11347         /*
11348          * drm_mode_page_flip_ioctl() should already catch this, but double
11349          * check to be safe.  In the future we may enable pageflipping from
11350          * a disabled primary plane.
11351          */
11352         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11353                 return -EBUSY;
11354
11355         /* Can't change pixel format via MI display flips. */
11356         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11357                 return -EINVAL;
11358
11359         /*
11360          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11361          * Note that pitch changes could also affect these register.
11362          */
11363         if (INTEL_INFO(dev)->gen > 3 &&
11364             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11365              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11366                 return -EINVAL;
11367
11368         if (i915_terminally_wedged(&dev_priv->gpu_error))
11369                 goto out_hang;
11370
11371         work = kzalloc(sizeof(*work), GFP_KERNEL);
11372         if (work == NULL)
11373                 return -ENOMEM;
11374
11375         work->event = event;
11376         work->crtc = crtc;
11377         work->old_fb = old_fb;
11378         INIT_WORK(&work->work, intel_unpin_work_fn);
11379
11380         ret = drm_crtc_vblank_get(crtc);
11381         if (ret)
11382                 goto free_work;
11383
11384         /* We borrow the event spin lock for protecting unpin_work */
11385         spin_lock_irq(&dev->event_lock);
11386         if (intel_crtc->unpin_work) {
11387                 /* Before declaring the flip queue wedged, check if
11388                  * the hardware completed the operation behind our backs.
11389                  */
11390                 if (__intel_pageflip_stall_check(dev, crtc)) {
11391                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11392                         page_flip_completed(intel_crtc);
11393                 } else {
11394                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11395                         spin_unlock_irq(&dev->event_lock);
11396
11397                         drm_crtc_vblank_put(crtc);
11398                         kfree(work);
11399                         return -EBUSY;
11400                 }
11401         }
11402         intel_crtc->unpin_work = work;
11403         spin_unlock_irq(&dev->event_lock);
11404
11405         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11406                 flush_workqueue(dev_priv->wq);
11407
11408         /* Reference the objects for the scheduled work. */
11409         drm_framebuffer_reference(work->old_fb);
11410         drm_gem_object_reference(&obj->base);
11411
11412         crtc->primary->fb = fb;
11413         update_state_fb(crtc->primary);
11414
11415         work->pending_flip_obj = obj;
11416
11417         ret = i915_mutex_lock_interruptible(dev);
11418         if (ret)
11419                 goto cleanup;
11420
11421         atomic_inc(&intel_crtc->unpin_work_count);
11422         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11423
11424         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11425                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11426
11427         if (IS_VALLEYVIEW(dev)) {
11428                 ring = &dev_priv->ring[BCS];
11429                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11430                         /* vlv: DISPLAY_FLIP fails to change tiling */
11431                         ring = NULL;
11432         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11433                 ring = &dev_priv->ring[BCS];
11434         } else if (INTEL_INFO(dev)->gen >= 7) {
11435                 ring = i915_gem_request_get_ring(obj->last_write_req);
11436                 if (ring == NULL || ring->id != RCS)
11437                         ring = &dev_priv->ring[BCS];
11438         } else {
11439                 ring = &dev_priv->ring[RCS];
11440         }
11441
11442         mmio_flip = use_mmio_flip(ring, obj);
11443
11444         /* When using CS flips, we want to emit semaphores between rings.
11445          * However, when using mmio flips we will create a task to do the
11446          * synchronisation, so all we want here is to pin the framebuffer
11447          * into the display plane and skip any waits.
11448          */
11449         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11450                                          crtc->primary->state,
11451                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11452         if (ret)
11453                 goto cleanup_pending;
11454
11455         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11456                                                   obj, 0);
11457         work->gtt_offset += intel_crtc->dspaddr_offset;
11458
11459         if (mmio_flip) {
11460                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11461                                             page_flip_flags);
11462                 if (ret)
11463                         goto cleanup_unpin;
11464
11465                 i915_gem_request_assign(&work->flip_queued_req,
11466                                         obj->last_write_req);
11467         } else {
11468                 if (!request) {
11469                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11470                         if (ret)
11471                                 goto cleanup_unpin;
11472                 }
11473
11474                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11475                                                    page_flip_flags);
11476                 if (ret)
11477                         goto cleanup_unpin;
11478
11479                 i915_gem_request_assign(&work->flip_queued_req, request);
11480         }
11481
11482         if (request)
11483                 i915_add_request_no_flush(request);
11484
11485         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11486         work->enable_stall_check = true;
11487
11488         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11489                           to_intel_plane(primary)->frontbuffer_bit);
11490         mutex_unlock(&dev->struct_mutex);
11491
11492         intel_fbc_disable_crtc(intel_crtc);
11493         intel_frontbuffer_flip_prepare(dev,
11494                                        to_intel_plane(primary)->frontbuffer_bit);
11495
11496         trace_i915_flip_request(intel_crtc->plane, obj);
11497
11498         return 0;
11499
11500 cleanup_unpin:
11501         intel_unpin_fb_obj(fb, crtc->primary->state);
11502 cleanup_pending:
11503         if (request)
11504                 i915_gem_request_cancel(request);
11505         atomic_dec(&intel_crtc->unpin_work_count);
11506         mutex_unlock(&dev->struct_mutex);
11507 cleanup:
11508         crtc->primary->fb = old_fb;
11509         update_state_fb(crtc->primary);
11510
11511         drm_gem_object_unreference_unlocked(&obj->base);
11512         drm_framebuffer_unreference(work->old_fb);
11513
11514         spin_lock_irq(&dev->event_lock);
11515         intel_crtc->unpin_work = NULL;
11516         spin_unlock_irq(&dev->event_lock);
11517
11518         drm_crtc_vblank_put(crtc);
11519 free_work:
11520         kfree(work);
11521
11522         if (ret == -EIO) {
11523                 struct drm_atomic_state *state;
11524                 struct drm_plane_state *plane_state;
11525
11526 out_hang:
11527                 state = drm_atomic_state_alloc(dev);
11528                 if (!state)
11529                         return -ENOMEM;
11530                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11531
11532 retry:
11533                 plane_state = drm_atomic_get_plane_state(state, primary);
11534                 ret = PTR_ERR_OR_ZERO(plane_state);
11535                 if (!ret) {
11536                         drm_atomic_set_fb_for_plane(plane_state, fb);
11537
11538                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11539                         if (!ret)
11540                                 ret = drm_atomic_commit(state);
11541                 }
11542
11543                 if (ret == -EDEADLK) {
11544                         drm_modeset_backoff(state->acquire_ctx);
11545                         drm_atomic_state_clear(state);
11546                         goto retry;
11547                 }
11548
11549                 if (ret)
11550                         drm_atomic_state_free(state);
11551
11552                 if (ret == 0 && event) {
11553                         spin_lock_irq(&dev->event_lock);
11554                         drm_send_vblank_event(dev, pipe, event);
11555                         spin_unlock_irq(&dev->event_lock);
11556                 }
11557         }
11558         return ret;
11559 }
11560
11561
11562 /**
11563  * intel_wm_need_update - Check whether watermarks need updating
11564  * @plane: drm plane
11565  * @state: new plane state
11566  *
11567  * Check current plane state versus the new one to determine whether
11568  * watermarks need to be recalculated.
11569  *
11570  * Returns true or false.
11571  */
11572 static bool intel_wm_need_update(struct drm_plane *plane,
11573                                  struct drm_plane_state *state)
11574 {
11575         /* Update watermarks on tiling changes. */
11576         if (!plane->state->fb || !state->fb ||
11577             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11578             plane->state->rotation != state->rotation)
11579                 return true;
11580
11581         if (plane->state->crtc_w != state->crtc_w)
11582                 return true;
11583
11584         return false;
11585 }
11586
11587 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11588                                     struct drm_plane_state *plane_state)
11589 {
11590         struct drm_crtc *crtc = crtc_state->crtc;
11591         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11592         struct drm_plane *plane = plane_state->plane;
11593         struct drm_device *dev = crtc->dev;
11594         struct drm_i915_private *dev_priv = dev->dev_private;
11595         struct intel_plane_state *old_plane_state =
11596                 to_intel_plane_state(plane->state);
11597         int idx = intel_crtc->base.base.id, ret;
11598         int i = drm_plane_index(plane);
11599         bool mode_changed = needs_modeset(crtc_state);
11600         bool was_crtc_enabled = crtc->state->active;
11601         bool is_crtc_enabled = crtc_state->active;
11602
11603         bool turn_off, turn_on, visible, was_visible;
11604         struct drm_framebuffer *fb = plane_state->fb;
11605
11606         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11607             plane->type != DRM_PLANE_TYPE_CURSOR) {
11608                 ret = skl_update_scaler_plane(
11609                         to_intel_crtc_state(crtc_state),
11610                         to_intel_plane_state(plane_state));
11611                 if (ret)
11612                         return ret;
11613         }
11614
11615         /*
11616          * Disabling a plane is always okay; we just need to update
11617          * fb tracking in a special way since cleanup_fb() won't
11618          * get called by the plane helpers.
11619          */
11620         if (old_plane_state->base.fb && !fb)
11621                 intel_crtc->atomic.disabled_planes |= 1 << i;
11622
11623         was_visible = old_plane_state->visible;
11624         visible = to_intel_plane_state(plane_state)->visible;
11625
11626         if (!was_crtc_enabled && WARN_ON(was_visible))
11627                 was_visible = false;
11628
11629         if (!is_crtc_enabled && WARN_ON(visible))
11630                 visible = false;
11631
11632         if (!was_visible && !visible)
11633                 return 0;
11634
11635         turn_off = was_visible && (!visible || mode_changed);
11636         turn_on = visible && (!was_visible || mode_changed);
11637
11638         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11639                          plane->base.id, fb ? fb->base.id : -1);
11640
11641         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11642                          plane->base.id, was_visible, visible,
11643                          turn_off, turn_on, mode_changed);
11644
11645         if (turn_on) {
11646                 intel_crtc->atomic.update_wm_pre = true;
11647                 /* must disable cxsr around plane enable/disable */
11648                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11649                         intel_crtc->atomic.disable_cxsr = true;
11650                         /* to potentially re-enable cxsr */
11651                         intel_crtc->atomic.wait_vblank = true;
11652                         intel_crtc->atomic.update_wm_post = true;
11653                 }
11654         } else if (turn_off) {
11655                 intel_crtc->atomic.update_wm_post = true;
11656                 /* must disable cxsr around plane enable/disable */
11657                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11658                         if (is_crtc_enabled)
11659                                 intel_crtc->atomic.wait_vblank = true;
11660                         intel_crtc->atomic.disable_cxsr = true;
11661                 }
11662         } else if (intel_wm_need_update(plane, plane_state)) {
11663                 intel_crtc->atomic.update_wm_pre = true;
11664         }
11665
11666         if (visible || was_visible)
11667                 intel_crtc->atomic.fb_bits |=
11668                         to_intel_plane(plane)->frontbuffer_bit;
11669
11670         switch (plane->type) {
11671         case DRM_PLANE_TYPE_PRIMARY:
11672                 intel_crtc->atomic.wait_for_flips = true;
11673                 intel_crtc->atomic.pre_disable_primary = turn_off;
11674                 intel_crtc->atomic.post_enable_primary = turn_on;
11675
11676                 if (turn_off) {
11677                         /*
11678                          * FIXME: Actually if we will still have any other
11679                          * plane enabled on the pipe we could let IPS enabled
11680                          * still, but for now lets consider that when we make
11681                          * primary invisible by setting DSPCNTR to 0 on
11682                          * update_primary_plane function IPS needs to be
11683                          * disable.
11684                          */
11685                         intel_crtc->atomic.disable_ips = true;
11686
11687                         intel_crtc->atomic.disable_fbc = true;
11688                 }
11689
11690                 /*
11691                  * FBC does not work on some platforms for rotated
11692                  * planes, so disable it when rotation is not 0 and
11693                  * update it when rotation is set back to 0.
11694                  *
11695                  * FIXME: This is redundant with the fbc update done in
11696                  * the primary plane enable function except that that
11697                  * one is done too late. We eventually need to unify
11698                  * this.
11699                  */
11700
11701                 if (visible &&
11702                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11703                     dev_priv->fbc.crtc == intel_crtc &&
11704                     plane_state->rotation != BIT(DRM_ROTATE_0))
11705                         intel_crtc->atomic.disable_fbc = true;
11706
11707                 /*
11708                  * BDW signals flip done immediately if the plane
11709                  * is disabled, even if the plane enable is already
11710                  * armed to occur at the next vblank :(
11711                  */
11712                 if (turn_on && IS_BROADWELL(dev))
11713                         intel_crtc->atomic.wait_vblank = true;
11714
11715                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11716                 break;
11717         case DRM_PLANE_TYPE_CURSOR:
11718                 break;
11719         case DRM_PLANE_TYPE_OVERLAY:
11720                 if (turn_off && !mode_changed) {
11721                         intel_crtc->atomic.wait_vblank = true;
11722                         intel_crtc->atomic.update_sprite_watermarks |=
11723                                 1 << i;
11724                 }
11725         }
11726         return 0;
11727 }
11728
11729 static bool encoders_cloneable(const struct intel_encoder *a,
11730                                const struct intel_encoder *b)
11731 {
11732         /* masks could be asymmetric, so check both ways */
11733         return a == b || (a->cloneable & (1 << b->type) &&
11734                           b->cloneable & (1 << a->type));
11735 }
11736
11737 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11738                                          struct intel_crtc *crtc,
11739                                          struct intel_encoder *encoder)
11740 {
11741         struct intel_encoder *source_encoder;
11742         struct drm_connector *connector;
11743         struct drm_connector_state *connector_state;
11744         int i;
11745
11746         for_each_connector_in_state(state, connector, connector_state, i) {
11747                 if (connector_state->crtc != &crtc->base)
11748                         continue;
11749
11750                 source_encoder =
11751                         to_intel_encoder(connector_state->best_encoder);
11752                 if (!encoders_cloneable(encoder, source_encoder))
11753                         return false;
11754         }
11755
11756         return true;
11757 }
11758
11759 static bool check_encoder_cloning(struct drm_atomic_state *state,
11760                                   struct intel_crtc *crtc)
11761 {
11762         struct intel_encoder *encoder;
11763         struct drm_connector *connector;
11764         struct drm_connector_state *connector_state;
11765         int i;
11766
11767         for_each_connector_in_state(state, connector, connector_state, i) {
11768                 if (connector_state->crtc != &crtc->base)
11769                         continue;
11770
11771                 encoder = to_intel_encoder(connector_state->best_encoder);
11772                 if (!check_single_encoder_cloning(state, crtc, encoder))
11773                         return false;
11774         }
11775
11776         return true;
11777 }
11778
11779 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11780                                    struct drm_crtc_state *crtc_state)
11781 {
11782         struct drm_device *dev = crtc->dev;
11783         struct drm_i915_private *dev_priv = dev->dev_private;
11784         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11785         struct intel_crtc_state *pipe_config =
11786                 to_intel_crtc_state(crtc_state);
11787         struct drm_atomic_state *state = crtc_state->state;
11788         int ret;
11789         bool mode_changed = needs_modeset(crtc_state);
11790
11791         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11792                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11793                 return -EINVAL;
11794         }
11795
11796         if (mode_changed && !crtc_state->active)
11797                 intel_crtc->atomic.update_wm_post = true;
11798
11799         if (mode_changed && crtc_state->enable &&
11800             dev_priv->display.crtc_compute_clock &&
11801             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11802                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11803                                                            pipe_config);
11804                 if (ret)
11805                         return ret;
11806         }
11807
11808         ret = 0;
11809         if (INTEL_INFO(dev)->gen >= 9) {
11810                 if (mode_changed)
11811                         ret = skl_update_scaler_crtc(pipe_config);
11812
11813                 if (!ret)
11814                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11815                                                          pipe_config);
11816         }
11817
11818         return ret;
11819 }
11820
11821 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11822         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11823         .load_lut = intel_crtc_load_lut,
11824         .atomic_begin = intel_begin_crtc_commit,
11825         .atomic_flush = intel_finish_crtc_commit,
11826         .atomic_check = intel_crtc_atomic_check,
11827 };
11828
11829 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11830 {
11831         struct intel_connector *connector;
11832
11833         for_each_intel_connector(dev, connector) {
11834                 if (connector->base.encoder) {
11835                         connector->base.state->best_encoder =
11836                                 connector->base.encoder;
11837                         connector->base.state->crtc =
11838                                 connector->base.encoder->crtc;
11839                 } else {
11840                         connector->base.state->best_encoder = NULL;
11841                         connector->base.state->crtc = NULL;
11842                 }
11843         }
11844 }
11845
11846 static void
11847 connected_sink_compute_bpp(struct intel_connector *connector,
11848                            struct intel_crtc_state *pipe_config)
11849 {
11850         int bpp = pipe_config->pipe_bpp;
11851
11852         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11853                 connector->base.base.id,
11854                 connector->base.name);
11855
11856         /* Don't use an invalid EDID bpc value */
11857         if (connector->base.display_info.bpc &&
11858             connector->base.display_info.bpc * 3 < bpp) {
11859                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11860                               bpp, connector->base.display_info.bpc*3);
11861                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11862         }
11863
11864         /* Clamp bpp to 8 on screens without EDID 1.4 */
11865         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11866                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11867                               bpp);
11868                 pipe_config->pipe_bpp = 24;
11869         }
11870 }
11871
11872 static int
11873 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11874                           struct intel_crtc_state *pipe_config)
11875 {
11876         struct drm_device *dev = crtc->base.dev;
11877         struct drm_atomic_state *state;
11878         struct drm_connector *connector;
11879         struct drm_connector_state *connector_state;
11880         int bpp, i;
11881
11882         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11883                 bpp = 10*3;
11884         else if (INTEL_INFO(dev)->gen >= 5)
11885                 bpp = 12*3;
11886         else
11887                 bpp = 8*3;
11888
11889
11890         pipe_config->pipe_bpp = bpp;
11891
11892         state = pipe_config->base.state;
11893
11894         /* Clamp display bpp to EDID value */
11895         for_each_connector_in_state(state, connector, connector_state, i) {
11896                 if (connector_state->crtc != &crtc->base)
11897                         continue;
11898
11899                 connected_sink_compute_bpp(to_intel_connector(connector),
11900                                            pipe_config);
11901         }
11902
11903         return bpp;
11904 }
11905
11906 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11907 {
11908         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11909                         "type: 0x%x flags: 0x%x\n",
11910                 mode->crtc_clock,
11911                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11912                 mode->crtc_hsync_end, mode->crtc_htotal,
11913                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11914                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11915 }
11916
11917 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11918                                    struct intel_crtc_state *pipe_config,
11919                                    const char *context)
11920 {
11921         struct drm_device *dev = crtc->base.dev;
11922         struct drm_plane *plane;
11923         struct intel_plane *intel_plane;
11924         struct intel_plane_state *state;
11925         struct drm_framebuffer *fb;
11926
11927         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11928                       context, pipe_config, pipe_name(crtc->pipe));
11929
11930         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11931         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11932                       pipe_config->pipe_bpp, pipe_config->dither);
11933         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11934                       pipe_config->has_pch_encoder,
11935                       pipe_config->fdi_lanes,
11936                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11937                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11938                       pipe_config->fdi_m_n.tu);
11939         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11940                       pipe_config->has_dp_encoder,
11941                       pipe_config->lane_count,
11942                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11943                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11944                       pipe_config->dp_m_n.tu);
11945
11946         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11947                       pipe_config->has_dp_encoder,
11948                       pipe_config->lane_count,
11949                       pipe_config->dp_m2_n2.gmch_m,
11950                       pipe_config->dp_m2_n2.gmch_n,
11951                       pipe_config->dp_m2_n2.link_m,
11952                       pipe_config->dp_m2_n2.link_n,
11953                       pipe_config->dp_m2_n2.tu);
11954
11955         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11956                       pipe_config->has_audio,
11957                       pipe_config->has_infoframe);
11958
11959         DRM_DEBUG_KMS("requested mode:\n");
11960         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11961         DRM_DEBUG_KMS("adjusted mode:\n");
11962         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11963         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11964         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11965         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11966                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11967         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11968                       crtc->num_scalers,
11969                       pipe_config->scaler_state.scaler_users,
11970                       pipe_config->scaler_state.scaler_id);
11971         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11972                       pipe_config->gmch_pfit.control,
11973                       pipe_config->gmch_pfit.pgm_ratios,
11974                       pipe_config->gmch_pfit.lvds_border_bits);
11975         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11976                       pipe_config->pch_pfit.pos,
11977                       pipe_config->pch_pfit.size,
11978                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11979         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11980         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11981
11982         if (IS_BROXTON(dev)) {
11983                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
11984                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11985                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
11986                               pipe_config->ddi_pll_sel,
11987                               pipe_config->dpll_hw_state.ebb0,
11988                               pipe_config->dpll_hw_state.ebb4,
11989                               pipe_config->dpll_hw_state.pll0,
11990                               pipe_config->dpll_hw_state.pll1,
11991                               pipe_config->dpll_hw_state.pll2,
11992                               pipe_config->dpll_hw_state.pll3,
11993                               pipe_config->dpll_hw_state.pll6,
11994                               pipe_config->dpll_hw_state.pll8,
11995                               pipe_config->dpll_hw_state.pll9,
11996                               pipe_config->dpll_hw_state.pll10,
11997                               pipe_config->dpll_hw_state.pcsdw12);
11998         } else if (IS_SKYLAKE(dev)) {
11999                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12000                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12001                               pipe_config->ddi_pll_sel,
12002                               pipe_config->dpll_hw_state.ctrl1,
12003                               pipe_config->dpll_hw_state.cfgcr1,
12004                               pipe_config->dpll_hw_state.cfgcr2);
12005         } else if (HAS_DDI(dev)) {
12006                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
12007                               pipe_config->ddi_pll_sel,
12008                               pipe_config->dpll_hw_state.wrpll);
12009         } else {
12010                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12011                               "fp0: 0x%x, fp1: 0x%x\n",
12012                               pipe_config->dpll_hw_state.dpll,
12013                               pipe_config->dpll_hw_state.dpll_md,
12014                               pipe_config->dpll_hw_state.fp0,
12015                               pipe_config->dpll_hw_state.fp1);
12016         }
12017
12018         DRM_DEBUG_KMS("planes on this crtc\n");
12019         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12020                 intel_plane = to_intel_plane(plane);
12021                 if (intel_plane->pipe != crtc->pipe)
12022                         continue;
12023
12024                 state = to_intel_plane_state(plane->state);
12025                 fb = state->base.fb;
12026                 if (!fb) {
12027                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12028                                 "disabled, scaler_id = %d\n",
12029                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12030                                 plane->base.id, intel_plane->pipe,
12031                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12032                                 drm_plane_index(plane), state->scaler_id);
12033                         continue;
12034                 }
12035
12036                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12037                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12038                         plane->base.id, intel_plane->pipe,
12039                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12040                         drm_plane_index(plane));
12041                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12042                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12043                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12044                         state->scaler_id,
12045                         state->src.x1 >> 16, state->src.y1 >> 16,
12046                         drm_rect_width(&state->src) >> 16,
12047                         drm_rect_height(&state->src) >> 16,
12048                         state->dst.x1, state->dst.y1,
12049                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12050         }
12051 }
12052
12053 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12054 {
12055         struct drm_device *dev = state->dev;
12056         struct intel_encoder *encoder;
12057         struct drm_connector *connector;
12058         struct drm_connector_state *connector_state;
12059         unsigned int used_ports = 0;
12060         int i;
12061
12062         /*
12063          * Walk the connector list instead of the encoder
12064          * list to detect the problem on ddi platforms
12065          * where there's just one encoder per digital port.
12066          */
12067         for_each_connector_in_state(state, connector, connector_state, i) {
12068                 if (!connector_state->best_encoder)
12069                         continue;
12070
12071                 encoder = to_intel_encoder(connector_state->best_encoder);
12072
12073                 WARN_ON(!connector_state->crtc);
12074
12075                 switch (encoder->type) {
12076                         unsigned int port_mask;
12077                 case INTEL_OUTPUT_UNKNOWN:
12078                         if (WARN_ON(!HAS_DDI(dev)))
12079                                 break;
12080                 case INTEL_OUTPUT_DISPLAYPORT:
12081                 case INTEL_OUTPUT_HDMI:
12082                 case INTEL_OUTPUT_EDP:
12083                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12084
12085                         /* the same port mustn't appear more than once */
12086                         if (used_ports & port_mask)
12087                                 return false;
12088
12089                         used_ports |= port_mask;
12090                 default:
12091                         break;
12092                 }
12093         }
12094
12095         return true;
12096 }
12097
12098 static void
12099 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12100 {
12101         struct drm_crtc_state tmp_state;
12102         struct intel_crtc_scaler_state scaler_state;
12103         struct intel_dpll_hw_state dpll_hw_state;
12104         enum intel_dpll_id shared_dpll;
12105         uint32_t ddi_pll_sel;
12106         bool force_thru;
12107
12108         /* FIXME: before the switch to atomic started, a new pipe_config was
12109          * kzalloc'd. Code that depends on any field being zero should be
12110          * fixed, so that the crtc_state can be safely duplicated. For now,
12111          * only fields that are know to not cause problems are preserved. */
12112
12113         tmp_state = crtc_state->base;
12114         scaler_state = crtc_state->scaler_state;
12115         shared_dpll = crtc_state->shared_dpll;
12116         dpll_hw_state = crtc_state->dpll_hw_state;
12117         ddi_pll_sel = crtc_state->ddi_pll_sel;
12118         force_thru = crtc_state->pch_pfit.force_thru;
12119
12120         memset(crtc_state, 0, sizeof *crtc_state);
12121
12122         crtc_state->base = tmp_state;
12123         crtc_state->scaler_state = scaler_state;
12124         crtc_state->shared_dpll = shared_dpll;
12125         crtc_state->dpll_hw_state = dpll_hw_state;
12126         crtc_state->ddi_pll_sel = ddi_pll_sel;
12127         crtc_state->pch_pfit.force_thru = force_thru;
12128 }
12129
12130 static int
12131 intel_modeset_pipe_config(struct drm_crtc *crtc,
12132                           struct intel_crtc_state *pipe_config)
12133 {
12134         struct drm_atomic_state *state = pipe_config->base.state;
12135         struct intel_encoder *encoder;
12136         struct drm_connector *connector;
12137         struct drm_connector_state *connector_state;
12138         int base_bpp, ret = -EINVAL;
12139         int i;
12140         bool retry = true;
12141
12142         clear_intel_crtc_state(pipe_config);
12143
12144         pipe_config->cpu_transcoder =
12145                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12146
12147         /*
12148          * Sanitize sync polarity flags based on requested ones. If neither
12149          * positive or negative polarity is requested, treat this as meaning
12150          * negative polarity.
12151          */
12152         if (!(pipe_config->base.adjusted_mode.flags &
12153               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12154                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12155
12156         if (!(pipe_config->base.adjusted_mode.flags &
12157               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12158                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12159
12160         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12161                                              pipe_config);
12162         if (base_bpp < 0)
12163                 goto fail;
12164
12165         /*
12166          * Determine the real pipe dimensions. Note that stereo modes can
12167          * increase the actual pipe size due to the frame doubling and
12168          * insertion of additional space for blanks between the frame. This
12169          * is stored in the crtc timings. We use the requested mode to do this
12170          * computation to clearly distinguish it from the adjusted mode, which
12171          * can be changed by the connectors in the below retry loop.
12172          */
12173         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12174                                &pipe_config->pipe_src_w,
12175                                &pipe_config->pipe_src_h);
12176
12177 encoder_retry:
12178         /* Ensure the port clock defaults are reset when retrying. */
12179         pipe_config->port_clock = 0;
12180         pipe_config->pixel_multiplier = 1;
12181
12182         /* Fill in default crtc timings, allow encoders to overwrite them. */
12183         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12184                               CRTC_STEREO_DOUBLE);
12185
12186         /* Pass our mode to the connectors and the CRTC to give them a chance to
12187          * adjust it according to limitations or connector properties, and also
12188          * a chance to reject the mode entirely.
12189          */
12190         for_each_connector_in_state(state, connector, connector_state, i) {
12191                 if (connector_state->crtc != crtc)
12192                         continue;
12193
12194                 encoder = to_intel_encoder(connector_state->best_encoder);
12195
12196                 if (!(encoder->compute_config(encoder, pipe_config))) {
12197                         DRM_DEBUG_KMS("Encoder config failure\n");
12198                         goto fail;
12199                 }
12200         }
12201
12202         /* Set default port clock if not overwritten by the encoder. Needs to be
12203          * done afterwards in case the encoder adjusts the mode. */
12204         if (!pipe_config->port_clock)
12205                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12206                         * pipe_config->pixel_multiplier;
12207
12208         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12209         if (ret < 0) {
12210                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12211                 goto fail;
12212         }
12213
12214         if (ret == RETRY) {
12215                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12216                         ret = -EINVAL;
12217                         goto fail;
12218                 }
12219
12220                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12221                 retry = false;
12222                 goto encoder_retry;
12223         }
12224
12225         /* Dithering seems to not pass-through bits correctly when it should, so
12226          * only enable it on 6bpc panels. */
12227         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12228         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12229                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12230
12231 fail:
12232         return ret;
12233 }
12234
12235 static void
12236 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12237 {
12238         struct drm_crtc *crtc;
12239         struct drm_crtc_state *crtc_state;
12240         int i;
12241
12242         /* Double check state. */
12243         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12244                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12245
12246                 /* Update hwmode for vblank functions */
12247                 if (crtc->state->active)
12248                         crtc->hwmode = crtc->state->adjusted_mode;
12249                 else
12250                         crtc->hwmode.crtc_clock = 0;
12251         }
12252 }
12253
12254 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12255 {
12256         int diff;
12257
12258         if (clock1 == clock2)
12259                 return true;
12260
12261         if (!clock1 || !clock2)
12262                 return false;
12263
12264         diff = abs(clock1 - clock2);
12265
12266         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12267                 return true;
12268
12269         return false;
12270 }
12271
12272 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12273         list_for_each_entry((intel_crtc), \
12274                             &(dev)->mode_config.crtc_list, \
12275                             base.head) \
12276                 if (mask & (1 <<(intel_crtc)->pipe))
12277
12278 static bool
12279 intel_compare_m_n(unsigned int m, unsigned int n,
12280                   unsigned int m2, unsigned int n2,
12281                   bool exact)
12282 {
12283         if (m == m2 && n == n2)
12284                 return true;
12285
12286         if (exact || !m || !n || !m2 || !n2)
12287                 return false;
12288
12289         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12290
12291         if (m > m2) {
12292                 while (m > m2) {
12293                         m2 <<= 1;
12294                         n2 <<= 1;
12295                 }
12296         } else if (m < m2) {
12297                 while (m < m2) {
12298                         m <<= 1;
12299                         n <<= 1;
12300                 }
12301         }
12302
12303         return m == m2 && n == n2;
12304 }
12305
12306 static bool
12307 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12308                        struct intel_link_m_n *m2_n2,
12309                        bool adjust)
12310 {
12311         if (m_n->tu == m2_n2->tu &&
12312             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12313                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12314             intel_compare_m_n(m_n->link_m, m_n->link_n,
12315                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12316                 if (adjust)
12317                         *m2_n2 = *m_n;
12318
12319                 return true;
12320         }
12321
12322         return false;
12323 }
12324
12325 static bool
12326 intel_pipe_config_compare(struct drm_device *dev,
12327                           struct intel_crtc_state *current_config,
12328                           struct intel_crtc_state *pipe_config,
12329                           bool adjust)
12330 {
12331         bool ret = true;
12332
12333 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12334         do { \
12335                 if (!adjust) \
12336                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12337                 else \
12338                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12339         } while (0)
12340
12341 #define PIPE_CONF_CHECK_X(name) \
12342         if (current_config->name != pipe_config->name) { \
12343                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12344                           "(expected 0x%08x, found 0x%08x)\n", \
12345                           current_config->name, \
12346                           pipe_config->name); \
12347                 ret = false; \
12348         }
12349
12350 #define PIPE_CONF_CHECK_I(name) \
12351         if (current_config->name != pipe_config->name) { \
12352                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12353                           "(expected %i, found %i)\n", \
12354                           current_config->name, \
12355                           pipe_config->name); \
12356                 ret = false; \
12357         }
12358
12359 #define PIPE_CONF_CHECK_M_N(name) \
12360         if (!intel_compare_link_m_n(&current_config->name, \
12361                                     &pipe_config->name,\
12362                                     adjust)) { \
12363                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12364                           "(expected tu %i gmch %i/%i link %i/%i, " \
12365                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12366                           current_config->name.tu, \
12367                           current_config->name.gmch_m, \
12368                           current_config->name.gmch_n, \
12369                           current_config->name.link_m, \
12370                           current_config->name.link_n, \
12371                           pipe_config->name.tu, \
12372                           pipe_config->name.gmch_m, \
12373                           pipe_config->name.gmch_n, \
12374                           pipe_config->name.link_m, \
12375                           pipe_config->name.link_n); \
12376                 ret = false; \
12377         }
12378
12379 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12380         if (!intel_compare_link_m_n(&current_config->name, \
12381                                     &pipe_config->name, adjust) && \
12382             !intel_compare_link_m_n(&current_config->alt_name, \
12383                                     &pipe_config->name, adjust)) { \
12384                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12385                           "(expected tu %i gmch %i/%i link %i/%i, " \
12386                           "or tu %i gmch %i/%i link %i/%i, " \
12387                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12388                           current_config->name.tu, \
12389                           current_config->name.gmch_m, \
12390                           current_config->name.gmch_n, \
12391                           current_config->name.link_m, \
12392                           current_config->name.link_n, \
12393                           current_config->alt_name.tu, \
12394                           current_config->alt_name.gmch_m, \
12395                           current_config->alt_name.gmch_n, \
12396                           current_config->alt_name.link_m, \
12397                           current_config->alt_name.link_n, \
12398                           pipe_config->name.tu, \
12399                           pipe_config->name.gmch_m, \
12400                           pipe_config->name.gmch_n, \
12401                           pipe_config->name.link_m, \
12402                           pipe_config->name.link_n); \
12403                 ret = false; \
12404         }
12405
12406 /* This is required for BDW+ where there is only one set of registers for
12407  * switching between high and low RR.
12408  * This macro can be used whenever a comparison has to be made between one
12409  * hw state and multiple sw state variables.
12410  */
12411 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12412         if ((current_config->name != pipe_config->name) && \
12413                 (current_config->alt_name != pipe_config->name)) { \
12414                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12415                                   "(expected %i or %i, found %i)\n", \
12416                                   current_config->name, \
12417                                   current_config->alt_name, \
12418                                   pipe_config->name); \
12419                         ret = false; \
12420         }
12421
12422 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12423         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12424                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12425                           "(expected %i, found %i)\n", \
12426                           current_config->name & (mask), \
12427                           pipe_config->name & (mask)); \
12428                 ret = false; \
12429         }
12430
12431 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12432         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12433                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12434                           "(expected %i, found %i)\n", \
12435                           current_config->name, \
12436                           pipe_config->name); \
12437                 ret = false; \
12438         }
12439
12440 #define PIPE_CONF_QUIRK(quirk)  \
12441         ((current_config->quirks | pipe_config->quirks) & (quirk))
12442
12443         PIPE_CONF_CHECK_I(cpu_transcoder);
12444
12445         PIPE_CONF_CHECK_I(has_pch_encoder);
12446         PIPE_CONF_CHECK_I(fdi_lanes);
12447         PIPE_CONF_CHECK_M_N(fdi_m_n);
12448
12449         PIPE_CONF_CHECK_I(has_dp_encoder);
12450         PIPE_CONF_CHECK_I(lane_count);
12451
12452         if (INTEL_INFO(dev)->gen < 8) {
12453                 PIPE_CONF_CHECK_M_N(dp_m_n);
12454
12455                 PIPE_CONF_CHECK_I(has_drrs);
12456                 if (current_config->has_drrs)
12457                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12458         } else
12459                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12460
12461         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12462         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12463         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12464         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12465         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12466         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12467
12468         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12469         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12470         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12471         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12472         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12473         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12474
12475         PIPE_CONF_CHECK_I(pixel_multiplier);
12476         PIPE_CONF_CHECK_I(has_hdmi_sink);
12477         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12478             IS_VALLEYVIEW(dev))
12479                 PIPE_CONF_CHECK_I(limited_color_range);
12480         PIPE_CONF_CHECK_I(has_infoframe);
12481
12482         PIPE_CONF_CHECK_I(has_audio);
12483
12484         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12485                               DRM_MODE_FLAG_INTERLACE);
12486
12487         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12488                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12489                                       DRM_MODE_FLAG_PHSYNC);
12490                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12491                                       DRM_MODE_FLAG_NHSYNC);
12492                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12493                                       DRM_MODE_FLAG_PVSYNC);
12494                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12495                                       DRM_MODE_FLAG_NVSYNC);
12496         }
12497
12498         PIPE_CONF_CHECK_X(gmch_pfit.control);
12499         /* pfit ratios are autocomputed by the hw on gen4+ */
12500         if (INTEL_INFO(dev)->gen < 4)
12501                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12502         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12503
12504         if (!adjust) {
12505                 PIPE_CONF_CHECK_I(pipe_src_w);
12506                 PIPE_CONF_CHECK_I(pipe_src_h);
12507
12508                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12509                 if (current_config->pch_pfit.enabled) {
12510                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12511                         PIPE_CONF_CHECK_X(pch_pfit.size);
12512                 }
12513
12514                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12515         }
12516
12517         /* BDW+ don't expose a synchronous way to read the state */
12518         if (IS_HASWELL(dev))
12519                 PIPE_CONF_CHECK_I(ips_enabled);
12520
12521         PIPE_CONF_CHECK_I(double_wide);
12522
12523         PIPE_CONF_CHECK_X(ddi_pll_sel);
12524
12525         PIPE_CONF_CHECK_I(shared_dpll);
12526         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12527         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12528         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12529         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12530         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12531         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12532         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12533         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12534
12535         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12536                 PIPE_CONF_CHECK_I(pipe_bpp);
12537
12538         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12539         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12540
12541 #undef PIPE_CONF_CHECK_X
12542 #undef PIPE_CONF_CHECK_I
12543 #undef PIPE_CONF_CHECK_I_ALT
12544 #undef PIPE_CONF_CHECK_FLAGS
12545 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12546 #undef PIPE_CONF_QUIRK
12547 #undef INTEL_ERR_OR_DBG_KMS
12548
12549         return ret;
12550 }
12551
12552 static void check_wm_state(struct drm_device *dev)
12553 {
12554         struct drm_i915_private *dev_priv = dev->dev_private;
12555         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12556         struct intel_crtc *intel_crtc;
12557         int plane;
12558
12559         if (INTEL_INFO(dev)->gen < 9)
12560                 return;
12561
12562         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12563         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12564
12565         for_each_intel_crtc(dev, intel_crtc) {
12566                 struct skl_ddb_entry *hw_entry, *sw_entry;
12567                 const enum pipe pipe = intel_crtc->pipe;
12568
12569                 if (!intel_crtc->active)
12570                         continue;
12571
12572                 /* planes */
12573                 for_each_plane(dev_priv, pipe, plane) {
12574                         hw_entry = &hw_ddb.plane[pipe][plane];
12575                         sw_entry = &sw_ddb->plane[pipe][plane];
12576
12577                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12578                                 continue;
12579
12580                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12581                                   "(expected (%u,%u), found (%u,%u))\n",
12582                                   pipe_name(pipe), plane + 1,
12583                                   sw_entry->start, sw_entry->end,
12584                                   hw_entry->start, hw_entry->end);
12585                 }
12586
12587                 /* cursor */
12588                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12589                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12590
12591                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12592                         continue;
12593
12594                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12595                           "(expected (%u,%u), found (%u,%u))\n",
12596                           pipe_name(pipe),
12597                           sw_entry->start, sw_entry->end,
12598                           hw_entry->start, hw_entry->end);
12599         }
12600 }
12601
12602 static void
12603 check_connector_state(struct drm_device *dev,
12604                       struct drm_atomic_state *old_state)
12605 {
12606         struct drm_connector_state *old_conn_state;
12607         struct drm_connector *connector;
12608         int i;
12609
12610         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12611                 struct drm_encoder *encoder = connector->encoder;
12612                 struct drm_connector_state *state = connector->state;
12613
12614                 /* This also checks the encoder/connector hw state with the
12615                  * ->get_hw_state callbacks. */
12616                 intel_connector_check_state(to_intel_connector(connector));
12617
12618                 I915_STATE_WARN(state->best_encoder != encoder,
12619                      "connector's atomic encoder doesn't match legacy encoder\n");
12620         }
12621 }
12622
12623 static void
12624 check_encoder_state(struct drm_device *dev)
12625 {
12626         struct intel_encoder *encoder;
12627         struct intel_connector *connector;
12628
12629         for_each_intel_encoder(dev, encoder) {
12630                 bool enabled = false;
12631                 enum pipe pipe;
12632
12633                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12634                               encoder->base.base.id,
12635                               encoder->base.name);
12636
12637                 for_each_intel_connector(dev, connector) {
12638                         if (connector->base.state->best_encoder != &encoder->base)
12639                                 continue;
12640                         enabled = true;
12641
12642                         I915_STATE_WARN(connector->base.state->crtc !=
12643                                         encoder->base.crtc,
12644                              "connector's crtc doesn't match encoder crtc\n");
12645                 }
12646
12647                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12648                      "encoder's enabled state mismatch "
12649                      "(expected %i, found %i)\n",
12650                      !!encoder->base.crtc, enabled);
12651
12652                 if (!encoder->base.crtc) {
12653                         bool active;
12654
12655                         active = encoder->get_hw_state(encoder, &pipe);
12656                         I915_STATE_WARN(active,
12657                              "encoder detached but still enabled on pipe %c.\n",
12658                              pipe_name(pipe));
12659                 }
12660         }
12661 }
12662
12663 static void
12664 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12665 {
12666         struct drm_i915_private *dev_priv = dev->dev_private;
12667         struct intel_encoder *encoder;
12668         struct drm_crtc_state *old_crtc_state;
12669         struct drm_crtc *crtc;
12670         int i;
12671
12672         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12673                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12674                 struct intel_crtc_state *pipe_config, *sw_config;
12675                 bool active;
12676
12677                 if (!needs_modeset(crtc->state) &&
12678                     !to_intel_crtc_state(crtc->state)->update_pipe)
12679                         continue;
12680
12681                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12682                 pipe_config = to_intel_crtc_state(old_crtc_state);
12683                 memset(pipe_config, 0, sizeof(*pipe_config));
12684                 pipe_config->base.crtc = crtc;
12685                 pipe_config->base.state = old_state;
12686
12687                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12688                               crtc->base.id);
12689
12690                 active = dev_priv->display.get_pipe_config(intel_crtc,
12691                                                            pipe_config);
12692
12693                 /* hw state is inconsistent with the pipe quirk */
12694                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12695                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12696                         active = crtc->state->active;
12697
12698                 I915_STATE_WARN(crtc->state->active != active,
12699                      "crtc active state doesn't match with hw state "
12700                      "(expected %i, found %i)\n", crtc->state->active, active);
12701
12702                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12703                      "transitional active state does not match atomic hw state "
12704                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12705
12706                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12707                         enum pipe pipe;
12708
12709                         active = encoder->get_hw_state(encoder, &pipe);
12710                         I915_STATE_WARN(active != crtc->state->active,
12711                                 "[ENCODER:%i] active %i with crtc active %i\n",
12712                                 encoder->base.base.id, active, crtc->state->active);
12713
12714                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12715                                         "Encoder connected to wrong pipe %c\n",
12716                                         pipe_name(pipe));
12717
12718                         if (active)
12719                                 encoder->get_config(encoder, pipe_config);
12720                 }
12721
12722                 if (!crtc->state->active)
12723                         continue;
12724
12725                 sw_config = to_intel_crtc_state(crtc->state);
12726                 if (!intel_pipe_config_compare(dev, sw_config,
12727                                                pipe_config, false)) {
12728                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12729                         intel_dump_pipe_config(intel_crtc, pipe_config,
12730                                                "[hw state]");
12731                         intel_dump_pipe_config(intel_crtc, sw_config,
12732                                                "[sw state]");
12733                 }
12734         }
12735 }
12736
12737 static void
12738 check_shared_dpll_state(struct drm_device *dev)
12739 {
12740         struct drm_i915_private *dev_priv = dev->dev_private;
12741         struct intel_crtc *crtc;
12742         struct intel_dpll_hw_state dpll_hw_state;
12743         int i;
12744
12745         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12746                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12747                 int enabled_crtcs = 0, active_crtcs = 0;
12748                 bool active;
12749
12750                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12751
12752                 DRM_DEBUG_KMS("%s\n", pll->name);
12753
12754                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12755
12756                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12757                      "more active pll users than references: %i vs %i\n",
12758                      pll->active, hweight32(pll->config.crtc_mask));
12759                 I915_STATE_WARN(pll->active && !pll->on,
12760                      "pll in active use but not on in sw tracking\n");
12761                 I915_STATE_WARN(pll->on && !pll->active,
12762                      "pll in on but not on in use in sw tracking\n");
12763                 I915_STATE_WARN(pll->on != active,
12764                      "pll on state mismatch (expected %i, found %i)\n",
12765                      pll->on, active);
12766
12767                 for_each_intel_crtc(dev, crtc) {
12768                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12769                                 enabled_crtcs++;
12770                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12771                                 active_crtcs++;
12772                 }
12773                 I915_STATE_WARN(pll->active != active_crtcs,
12774                      "pll active crtcs mismatch (expected %i, found %i)\n",
12775                      pll->active, active_crtcs);
12776                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12777                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12778                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12779
12780                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12781                                        sizeof(dpll_hw_state)),
12782                      "pll hw state mismatch\n");
12783         }
12784 }
12785
12786 static void
12787 intel_modeset_check_state(struct drm_device *dev,
12788                           struct drm_atomic_state *old_state)
12789 {
12790         check_wm_state(dev);
12791         check_connector_state(dev, old_state);
12792         check_encoder_state(dev);
12793         check_crtc_state(dev, old_state);
12794         check_shared_dpll_state(dev);
12795 }
12796
12797 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12798                                      int dotclock)
12799 {
12800         /*
12801          * FDI already provided one idea for the dotclock.
12802          * Yell if the encoder disagrees.
12803          */
12804         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12805              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12806              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12807 }
12808
12809 static void update_scanline_offset(struct intel_crtc *crtc)
12810 {
12811         struct drm_device *dev = crtc->base.dev;
12812
12813         /*
12814          * The scanline counter increments at the leading edge of hsync.
12815          *
12816          * On most platforms it starts counting from vtotal-1 on the
12817          * first active line. That means the scanline counter value is
12818          * always one less than what we would expect. Ie. just after
12819          * start of vblank, which also occurs at start of hsync (on the
12820          * last active line), the scanline counter will read vblank_start-1.
12821          *
12822          * On gen2 the scanline counter starts counting from 1 instead
12823          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12824          * to keep the value positive), instead of adding one.
12825          *
12826          * On HSW+ the behaviour of the scanline counter depends on the output
12827          * type. For DP ports it behaves like most other platforms, but on HDMI
12828          * there's an extra 1 line difference. So we need to add two instead of
12829          * one to the value.
12830          */
12831         if (IS_GEN2(dev)) {
12832                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12833                 int vtotal;
12834
12835                 vtotal = adjusted_mode->crtc_vtotal;
12836                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12837                         vtotal /= 2;
12838
12839                 crtc->scanline_offset = vtotal - 1;
12840         } else if (HAS_DDI(dev) &&
12841                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12842                 crtc->scanline_offset = 2;
12843         } else
12844                 crtc->scanline_offset = 1;
12845 }
12846
12847 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12848 {
12849         struct drm_device *dev = state->dev;
12850         struct drm_i915_private *dev_priv = to_i915(dev);
12851         struct intel_shared_dpll_config *shared_dpll = NULL;
12852         struct intel_crtc *intel_crtc;
12853         struct intel_crtc_state *intel_crtc_state;
12854         struct drm_crtc *crtc;
12855         struct drm_crtc_state *crtc_state;
12856         int i;
12857
12858         if (!dev_priv->display.crtc_compute_clock)
12859                 return;
12860
12861         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12862                 int dpll;
12863
12864                 intel_crtc = to_intel_crtc(crtc);
12865                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12866                 dpll = intel_crtc_state->shared_dpll;
12867
12868                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12869                         continue;
12870
12871                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12872
12873                 if (!shared_dpll)
12874                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
12875
12876                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12877         }
12878 }
12879
12880 /*
12881  * This implements the workaround described in the "notes" section of the mode
12882  * set sequence documentation. When going from no pipes or single pipe to
12883  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12884  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12885  */
12886 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12887 {
12888         struct drm_crtc_state *crtc_state;
12889         struct intel_crtc *intel_crtc;
12890         struct drm_crtc *crtc;
12891         struct intel_crtc_state *first_crtc_state = NULL;
12892         struct intel_crtc_state *other_crtc_state = NULL;
12893         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12894         int i;
12895
12896         /* look at all crtc's that are going to be enabled in during modeset */
12897         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12898                 intel_crtc = to_intel_crtc(crtc);
12899
12900                 if (!crtc_state->active || !needs_modeset(crtc_state))
12901                         continue;
12902
12903                 if (first_crtc_state) {
12904                         other_crtc_state = to_intel_crtc_state(crtc_state);
12905                         break;
12906                 } else {
12907                         first_crtc_state = to_intel_crtc_state(crtc_state);
12908                         first_pipe = intel_crtc->pipe;
12909                 }
12910         }
12911
12912         /* No workaround needed? */
12913         if (!first_crtc_state)
12914                 return 0;
12915
12916         /* w/a possibly needed, check how many crtc's are already enabled. */
12917         for_each_intel_crtc(state->dev, intel_crtc) {
12918                 struct intel_crtc_state *pipe_config;
12919
12920                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12921                 if (IS_ERR(pipe_config))
12922                         return PTR_ERR(pipe_config);
12923
12924                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12925
12926                 if (!pipe_config->base.active ||
12927                     needs_modeset(&pipe_config->base))
12928                         continue;
12929
12930                 /* 2 or more enabled crtcs means no need for w/a */
12931                 if (enabled_pipe != INVALID_PIPE)
12932                         return 0;
12933
12934                 enabled_pipe = intel_crtc->pipe;
12935         }
12936
12937         if (enabled_pipe != INVALID_PIPE)
12938                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12939         else if (other_crtc_state)
12940                 other_crtc_state->hsw_workaround_pipe = first_pipe;
12941
12942         return 0;
12943 }
12944
12945 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12946 {
12947         struct drm_crtc *crtc;
12948         struct drm_crtc_state *crtc_state;
12949         int ret = 0;
12950
12951         /* add all active pipes to the state */
12952         for_each_crtc(state->dev, crtc) {
12953                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12954                 if (IS_ERR(crtc_state))
12955                         return PTR_ERR(crtc_state);
12956
12957                 if (!crtc_state->active || needs_modeset(crtc_state))
12958                         continue;
12959
12960                 crtc_state->mode_changed = true;
12961
12962                 ret = drm_atomic_add_affected_connectors(state, crtc);
12963                 if (ret)
12964                         break;
12965
12966                 ret = drm_atomic_add_affected_planes(state, crtc);
12967                 if (ret)
12968                         break;
12969         }
12970
12971         return ret;
12972 }
12973
12974 static int intel_modeset_checks(struct drm_atomic_state *state)
12975 {
12976         struct drm_device *dev = state->dev;
12977         struct drm_i915_private *dev_priv = dev->dev_private;
12978         int ret;
12979
12980         if (!check_digital_port_conflicts(state)) {
12981                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12982                 return -EINVAL;
12983         }
12984
12985         /*
12986          * See if the config requires any additional preparation, e.g.
12987          * to adjust global state with pipes off.  We need to do this
12988          * here so we can get the modeset_pipe updated config for the new
12989          * mode set on this crtc.  For other crtcs we need to use the
12990          * adjusted_mode bits in the crtc directly.
12991          */
12992         if (dev_priv->display.modeset_calc_cdclk) {
12993                 unsigned int cdclk;
12994
12995                 ret = dev_priv->display.modeset_calc_cdclk(state);
12996
12997                 cdclk = to_intel_atomic_state(state)->cdclk;
12998                 if (!ret && cdclk != dev_priv->cdclk_freq)
12999                         ret = intel_modeset_all_pipes(state);
13000
13001                 if (ret < 0)
13002                         return ret;
13003         } else
13004                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13005
13006         intel_modeset_clear_plls(state);
13007
13008         if (IS_HASWELL(dev))
13009                 return haswell_mode_set_planes_workaround(state);
13010
13011         return 0;
13012 }
13013
13014 /**
13015  * intel_atomic_check - validate state object
13016  * @dev: drm device
13017  * @state: state to validate
13018  */
13019 static int intel_atomic_check(struct drm_device *dev,
13020                               struct drm_atomic_state *state)
13021 {
13022         struct drm_crtc *crtc;
13023         struct drm_crtc_state *crtc_state;
13024         int ret, i;
13025         bool any_ms = false;
13026
13027         ret = drm_atomic_helper_check_modeset(dev, state);
13028         if (ret)
13029                 return ret;
13030
13031         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13032                 struct intel_crtc_state *pipe_config =
13033                         to_intel_crtc_state(crtc_state);
13034
13035                 /* Catch I915_MODE_FLAG_INHERITED */
13036                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13037                         crtc_state->mode_changed = true;
13038
13039                 if (!crtc_state->enable) {
13040                         if (needs_modeset(crtc_state))
13041                                 any_ms = true;
13042                         continue;
13043                 }
13044
13045                 if (!needs_modeset(crtc_state))
13046                         continue;
13047
13048                 /* FIXME: For only active_changed we shouldn't need to do any
13049                  * state recomputation at all. */
13050
13051                 ret = drm_atomic_add_affected_connectors(state, crtc);
13052                 if (ret)
13053                         return ret;
13054
13055                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13056                 if (ret)
13057                         return ret;
13058
13059                 if (intel_pipe_config_compare(state->dev,
13060                                         to_intel_crtc_state(crtc->state),
13061                                         pipe_config, true)) {
13062                         crtc_state->mode_changed = false;
13063                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13064                 }
13065
13066                 if (needs_modeset(crtc_state)) {
13067                         any_ms = true;
13068
13069                         ret = drm_atomic_add_affected_planes(state, crtc);
13070                         if (ret)
13071                                 return ret;
13072                 }
13073
13074                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13075                                        needs_modeset(crtc_state) ?
13076                                        "[modeset]" : "[fastset]");
13077         }
13078
13079         if (any_ms) {
13080                 ret = intel_modeset_checks(state);
13081
13082                 if (ret)
13083                         return ret;
13084         } else
13085                 to_intel_atomic_state(state)->cdclk =
13086                         to_i915(state->dev)->cdclk_freq;
13087
13088         return drm_atomic_helper_check_planes(state->dev, state);
13089 }
13090
13091 /**
13092  * intel_atomic_commit - commit validated state object
13093  * @dev: DRM device
13094  * @state: the top-level driver state object
13095  * @async: asynchronous commit
13096  *
13097  * This function commits a top-level state object that has been validated
13098  * with drm_atomic_helper_check().
13099  *
13100  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13101  * we can only handle plane-related operations and do not yet support
13102  * asynchronous commit.
13103  *
13104  * RETURNS
13105  * Zero for success or -errno.
13106  */
13107 static int intel_atomic_commit(struct drm_device *dev,
13108                                struct drm_atomic_state *state,
13109                                bool async)
13110 {
13111         struct drm_i915_private *dev_priv = dev->dev_private;
13112         struct drm_crtc *crtc;
13113         struct drm_crtc_state *crtc_state;
13114         int ret = 0;
13115         int i;
13116         bool any_ms = false;
13117
13118         if (async) {
13119                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13120                 return -EINVAL;
13121         }
13122
13123         ret = drm_atomic_helper_prepare_planes(dev, state);
13124         if (ret)
13125                 return ret;
13126
13127         drm_atomic_helper_swap_state(dev, state);
13128
13129         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13130                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13131
13132                 if (!needs_modeset(crtc->state))
13133                         continue;
13134
13135                 any_ms = true;
13136                 intel_pre_plane_update(intel_crtc);
13137
13138                 if (crtc_state->active) {
13139                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13140                         dev_priv->display.crtc_disable(crtc);
13141                         intel_crtc->active = false;
13142                         intel_disable_shared_dpll(intel_crtc);
13143                 }
13144         }
13145
13146         /* Only after disabling all output pipelines that will be changed can we
13147          * update the the output configuration. */
13148         intel_modeset_update_crtc_state(state);
13149
13150         if (any_ms) {
13151                 intel_shared_dpll_commit(state);
13152
13153                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13154                 modeset_update_crtc_power_domains(state);
13155         }
13156
13157         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13158         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13159                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13160                 bool modeset = needs_modeset(crtc->state);
13161                 bool update_pipe = !modeset &&
13162                         to_intel_crtc_state(crtc->state)->update_pipe;
13163                 unsigned long put_domains = 0;
13164
13165                 if (modeset && crtc->state->active) {
13166                         update_scanline_offset(to_intel_crtc(crtc));
13167                         dev_priv->display.crtc_enable(crtc);
13168                 }
13169
13170                 if (update_pipe) {
13171                         put_domains = modeset_get_crtc_power_domains(crtc);
13172
13173                         /* make sure intel_modeset_check_state runs */
13174                         any_ms = true;
13175                 }
13176
13177                 if (!modeset)
13178                         intel_pre_plane_update(intel_crtc);
13179
13180                 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13181
13182                 if (put_domains)
13183                         modeset_put_power_domains(dev_priv, put_domains);
13184
13185                 intel_post_plane_update(intel_crtc);
13186         }
13187
13188         /* FIXME: add subpixel order */
13189
13190         drm_atomic_helper_wait_for_vblanks(dev, state);
13191         drm_atomic_helper_cleanup_planes(dev, state);
13192
13193         if (any_ms)
13194                 intel_modeset_check_state(dev, state);
13195
13196         drm_atomic_state_free(state);
13197
13198         return 0;
13199 }
13200
13201 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13202 {
13203         struct drm_device *dev = crtc->dev;
13204         struct drm_atomic_state *state;
13205         struct drm_crtc_state *crtc_state;
13206         int ret;
13207
13208         state = drm_atomic_state_alloc(dev);
13209         if (!state) {
13210                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13211                               crtc->base.id);
13212                 return;
13213         }
13214
13215         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13216
13217 retry:
13218         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13219         ret = PTR_ERR_OR_ZERO(crtc_state);
13220         if (!ret) {
13221                 if (!crtc_state->active)
13222                         goto out;
13223
13224                 crtc_state->mode_changed = true;
13225                 ret = drm_atomic_commit(state);
13226         }
13227
13228         if (ret == -EDEADLK) {
13229                 drm_atomic_state_clear(state);
13230                 drm_modeset_backoff(state->acquire_ctx);
13231                 goto retry;
13232         }
13233
13234         if (ret)
13235 out:
13236                 drm_atomic_state_free(state);
13237 }
13238
13239 #undef for_each_intel_crtc_masked
13240
13241 static const struct drm_crtc_funcs intel_crtc_funcs = {
13242         .gamma_set = intel_crtc_gamma_set,
13243         .set_config = drm_atomic_helper_set_config,
13244         .destroy = intel_crtc_destroy,
13245         .page_flip = intel_crtc_page_flip,
13246         .atomic_duplicate_state = intel_crtc_duplicate_state,
13247         .atomic_destroy_state = intel_crtc_destroy_state,
13248 };
13249
13250 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13251                                       struct intel_shared_dpll *pll,
13252                                       struct intel_dpll_hw_state *hw_state)
13253 {
13254         uint32_t val;
13255
13256         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13257                 return false;
13258
13259         val = I915_READ(PCH_DPLL(pll->id));
13260         hw_state->dpll = val;
13261         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13262         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13263
13264         return val & DPLL_VCO_ENABLE;
13265 }
13266
13267 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13268                                   struct intel_shared_dpll *pll)
13269 {
13270         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13271         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13272 }
13273
13274 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13275                                 struct intel_shared_dpll *pll)
13276 {
13277         /* PCH refclock must be enabled first */
13278         ibx_assert_pch_refclk_enabled(dev_priv);
13279
13280         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13281
13282         /* Wait for the clocks to stabilize. */
13283         POSTING_READ(PCH_DPLL(pll->id));
13284         udelay(150);
13285
13286         /* The pixel multiplier can only be updated once the
13287          * DPLL is enabled and the clocks are stable.
13288          *
13289          * So write it again.
13290          */
13291         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13292         POSTING_READ(PCH_DPLL(pll->id));
13293         udelay(200);
13294 }
13295
13296 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13297                                  struct intel_shared_dpll *pll)
13298 {
13299         struct drm_device *dev = dev_priv->dev;
13300         struct intel_crtc *crtc;
13301
13302         /* Make sure no transcoder isn't still depending on us. */
13303         for_each_intel_crtc(dev, crtc) {
13304                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13305                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13306         }
13307
13308         I915_WRITE(PCH_DPLL(pll->id), 0);
13309         POSTING_READ(PCH_DPLL(pll->id));
13310         udelay(200);
13311 }
13312
13313 static char *ibx_pch_dpll_names[] = {
13314         "PCH DPLL A",
13315         "PCH DPLL B",
13316 };
13317
13318 static void ibx_pch_dpll_init(struct drm_device *dev)
13319 {
13320         struct drm_i915_private *dev_priv = dev->dev_private;
13321         int i;
13322
13323         dev_priv->num_shared_dpll = 2;
13324
13325         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13326                 dev_priv->shared_dplls[i].id = i;
13327                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13328                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13329                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13330                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13331                 dev_priv->shared_dplls[i].get_hw_state =
13332                         ibx_pch_dpll_get_hw_state;
13333         }
13334 }
13335
13336 static void intel_shared_dpll_init(struct drm_device *dev)
13337 {
13338         struct drm_i915_private *dev_priv = dev->dev_private;
13339
13340         if (HAS_DDI(dev))
13341                 intel_ddi_pll_init(dev);
13342         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13343                 ibx_pch_dpll_init(dev);
13344         else
13345                 dev_priv->num_shared_dpll = 0;
13346
13347         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13348 }
13349
13350 /**
13351  * intel_prepare_plane_fb - Prepare fb for usage on plane
13352  * @plane: drm plane to prepare for
13353  * @fb: framebuffer to prepare for presentation
13354  *
13355  * Prepares a framebuffer for usage on a display plane.  Generally this
13356  * involves pinning the underlying object and updating the frontbuffer tracking
13357  * bits.  Some older platforms need special physical address handling for
13358  * cursor planes.
13359  *
13360  * Returns 0 on success, negative error code on failure.
13361  */
13362 int
13363 intel_prepare_plane_fb(struct drm_plane *plane,
13364                        const struct drm_plane_state *new_state)
13365 {
13366         struct drm_device *dev = plane->dev;
13367         struct drm_framebuffer *fb = new_state->fb;
13368         struct intel_plane *intel_plane = to_intel_plane(plane);
13369         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13370         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13371         int ret = 0;
13372
13373         if (!obj)
13374                 return 0;
13375
13376         mutex_lock(&dev->struct_mutex);
13377
13378         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13379             INTEL_INFO(dev)->cursor_needs_physical) {
13380                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13381                 ret = i915_gem_object_attach_phys(obj, align);
13382                 if (ret)
13383                         DRM_DEBUG_KMS("failed to attach phys object\n");
13384         } else {
13385                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13386         }
13387
13388         if (ret == 0)
13389                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13390
13391         mutex_unlock(&dev->struct_mutex);
13392
13393         return ret;
13394 }
13395
13396 /**
13397  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13398  * @plane: drm plane to clean up for
13399  * @fb: old framebuffer that was on plane
13400  *
13401  * Cleans up a framebuffer that has just been removed from a plane.
13402  */
13403 void
13404 intel_cleanup_plane_fb(struct drm_plane *plane,
13405                        const struct drm_plane_state *old_state)
13406 {
13407         struct drm_device *dev = plane->dev;
13408         struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
13409
13410         if (!obj)
13411                 return;
13412
13413         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13414             !INTEL_INFO(dev)->cursor_needs_physical) {
13415                 mutex_lock(&dev->struct_mutex);
13416                 intel_unpin_fb_obj(old_state->fb, old_state);
13417                 mutex_unlock(&dev->struct_mutex);
13418         }
13419 }
13420
13421 int
13422 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13423 {
13424         int max_scale;
13425         struct drm_device *dev;
13426         struct drm_i915_private *dev_priv;
13427         int crtc_clock, cdclk;
13428
13429         if (!intel_crtc || !crtc_state)
13430                 return DRM_PLANE_HELPER_NO_SCALING;
13431
13432         dev = intel_crtc->base.dev;
13433         dev_priv = dev->dev_private;
13434         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13435         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13436
13437         if (!crtc_clock || !cdclk)
13438                 return DRM_PLANE_HELPER_NO_SCALING;
13439
13440         /*
13441          * skl max scale is lower of:
13442          *    close to 3 but not 3, -1 is for that purpose
13443          *            or
13444          *    cdclk/crtc_clock
13445          */
13446         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13447
13448         return max_scale;
13449 }
13450
13451 static int
13452 intel_check_primary_plane(struct drm_plane *plane,
13453                           struct intel_crtc_state *crtc_state,
13454                           struct intel_plane_state *state)
13455 {
13456         struct drm_crtc *crtc = state->base.crtc;
13457         struct drm_framebuffer *fb = state->base.fb;
13458         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13459         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13460         bool can_position = false;
13461
13462         /* use scaler when colorkey is not required */
13463         if (INTEL_INFO(plane->dev)->gen >= 9 &&
13464             state->ckey.flags == I915_SET_COLORKEY_NONE) {
13465                 min_scale = 1;
13466                 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13467                 can_position = true;
13468         }
13469
13470         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13471                                              &state->dst, &state->clip,
13472                                              min_scale, max_scale,
13473                                              can_position, true,
13474                                              &state->visible);
13475 }
13476
13477 static void
13478 intel_commit_primary_plane(struct drm_plane *plane,
13479                            struct intel_plane_state *state)
13480 {
13481         struct drm_crtc *crtc = state->base.crtc;
13482         struct drm_framebuffer *fb = state->base.fb;
13483         struct drm_device *dev = plane->dev;
13484         struct drm_i915_private *dev_priv = dev->dev_private;
13485         struct intel_crtc *intel_crtc;
13486         struct drm_rect *src = &state->src;
13487
13488         crtc = crtc ? crtc : plane->crtc;
13489         intel_crtc = to_intel_crtc(crtc);
13490
13491         plane->fb = fb;
13492         crtc->x = src->x1 >> 16;
13493         crtc->y = src->y1 >> 16;
13494
13495         if (!crtc->state->active)
13496                 return;
13497
13498         dev_priv->display.update_primary_plane(crtc, fb,
13499                                                state->src.x1 >> 16,
13500                                                state->src.y1 >> 16);
13501 }
13502
13503 static void
13504 intel_disable_primary_plane(struct drm_plane *plane,
13505                             struct drm_crtc *crtc)
13506 {
13507         struct drm_device *dev = plane->dev;
13508         struct drm_i915_private *dev_priv = dev->dev_private;
13509
13510         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13511 }
13512
13513 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13514                                     struct drm_crtc_state *old_crtc_state)
13515 {
13516         struct drm_device *dev = crtc->dev;
13517         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13518         struct intel_crtc_state *old_intel_state =
13519                 to_intel_crtc_state(old_crtc_state);
13520         bool modeset = needs_modeset(crtc->state);
13521
13522         if (intel_crtc->atomic.update_wm_pre)
13523                 intel_update_watermarks(crtc);
13524
13525         /* Perform vblank evasion around commit operation */
13526         if (crtc->state->active)
13527                 intel_pipe_update_start(intel_crtc);
13528
13529         if (modeset)
13530                 return;
13531
13532         if (to_intel_crtc_state(crtc->state)->update_pipe)
13533                 intel_update_pipe_config(intel_crtc, old_intel_state);
13534         else if (INTEL_INFO(dev)->gen >= 9)
13535                 skl_detach_scalers(intel_crtc);
13536 }
13537
13538 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13539                                      struct drm_crtc_state *old_crtc_state)
13540 {
13541         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13542
13543         if (crtc->state->active)
13544                 intel_pipe_update_end(intel_crtc);
13545 }
13546
13547 /**
13548  * intel_plane_destroy - destroy a plane
13549  * @plane: plane to destroy
13550  *
13551  * Common destruction function for all types of planes (primary, cursor,
13552  * sprite).
13553  */
13554 void intel_plane_destroy(struct drm_plane *plane)
13555 {
13556         struct intel_plane *intel_plane = to_intel_plane(plane);
13557         drm_plane_cleanup(plane);
13558         kfree(intel_plane);
13559 }
13560
13561 const struct drm_plane_funcs intel_plane_funcs = {
13562         .update_plane = drm_atomic_helper_update_plane,
13563         .disable_plane = drm_atomic_helper_disable_plane,
13564         .destroy = intel_plane_destroy,
13565         .set_property = drm_atomic_helper_plane_set_property,
13566         .atomic_get_property = intel_plane_atomic_get_property,
13567         .atomic_set_property = intel_plane_atomic_set_property,
13568         .atomic_duplicate_state = intel_plane_duplicate_state,
13569         .atomic_destroy_state = intel_plane_destroy_state,
13570
13571 };
13572
13573 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13574                                                     int pipe)
13575 {
13576         struct intel_plane *primary;
13577         struct intel_plane_state *state;
13578         const uint32_t *intel_primary_formats;
13579         unsigned int num_formats;
13580
13581         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13582         if (primary == NULL)
13583                 return NULL;
13584
13585         state = intel_create_plane_state(&primary->base);
13586         if (!state) {
13587                 kfree(primary);
13588                 return NULL;
13589         }
13590         primary->base.state = &state->base;
13591
13592         primary->can_scale = false;
13593         primary->max_downscale = 1;
13594         if (INTEL_INFO(dev)->gen >= 9) {
13595                 primary->can_scale = true;
13596                 state->scaler_id = -1;
13597         }
13598         primary->pipe = pipe;
13599         primary->plane = pipe;
13600         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13601         primary->check_plane = intel_check_primary_plane;
13602         primary->commit_plane = intel_commit_primary_plane;
13603         primary->disable_plane = intel_disable_primary_plane;
13604         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13605                 primary->plane = !pipe;
13606
13607         if (INTEL_INFO(dev)->gen >= 9) {
13608                 intel_primary_formats = skl_primary_formats;
13609                 num_formats = ARRAY_SIZE(skl_primary_formats);
13610         } else if (INTEL_INFO(dev)->gen >= 4) {
13611                 intel_primary_formats = i965_primary_formats;
13612                 num_formats = ARRAY_SIZE(i965_primary_formats);
13613         } else {
13614                 intel_primary_formats = i8xx_primary_formats;
13615                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13616         }
13617
13618         drm_universal_plane_init(dev, &primary->base, 0,
13619                                  &intel_plane_funcs,
13620                                  intel_primary_formats, num_formats,
13621                                  DRM_PLANE_TYPE_PRIMARY);
13622
13623         if (INTEL_INFO(dev)->gen >= 4)
13624                 intel_create_rotation_property(dev, primary);
13625
13626         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13627
13628         return &primary->base;
13629 }
13630
13631 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13632 {
13633         if (!dev->mode_config.rotation_property) {
13634                 unsigned long flags = BIT(DRM_ROTATE_0) |
13635                         BIT(DRM_ROTATE_180);
13636
13637                 if (INTEL_INFO(dev)->gen >= 9)
13638                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13639
13640                 dev->mode_config.rotation_property =
13641                         drm_mode_create_rotation_property(dev, flags);
13642         }
13643         if (dev->mode_config.rotation_property)
13644                 drm_object_attach_property(&plane->base.base,
13645                                 dev->mode_config.rotation_property,
13646                                 plane->base.state->rotation);
13647 }
13648
13649 static int
13650 intel_check_cursor_plane(struct drm_plane *plane,
13651                          struct intel_crtc_state *crtc_state,
13652                          struct intel_plane_state *state)
13653 {
13654         struct drm_crtc *crtc = crtc_state->base.crtc;
13655         struct drm_framebuffer *fb = state->base.fb;
13656         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13657         unsigned stride;
13658         int ret;
13659
13660         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13661                                             &state->dst, &state->clip,
13662                                             DRM_PLANE_HELPER_NO_SCALING,
13663                                             DRM_PLANE_HELPER_NO_SCALING,
13664                                             true, true, &state->visible);
13665         if (ret)
13666                 return ret;
13667
13668         /* if we want to turn off the cursor ignore width and height */
13669         if (!obj)
13670                 return 0;
13671
13672         /* Check for which cursor types we support */
13673         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13674                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13675                           state->base.crtc_w, state->base.crtc_h);
13676                 return -EINVAL;
13677         }
13678
13679         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13680         if (obj->base.size < stride * state->base.crtc_h) {
13681                 DRM_DEBUG_KMS("buffer is too small\n");
13682                 return -ENOMEM;
13683         }
13684
13685         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13686                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13687                 return -EINVAL;
13688         }
13689
13690         return 0;
13691 }
13692
13693 static void
13694 intel_disable_cursor_plane(struct drm_plane *plane,
13695                            struct drm_crtc *crtc)
13696 {
13697         intel_crtc_update_cursor(crtc, false);
13698 }
13699
13700 static void
13701 intel_commit_cursor_plane(struct drm_plane *plane,
13702                           struct intel_plane_state *state)
13703 {
13704         struct drm_crtc *crtc = state->base.crtc;
13705         struct drm_device *dev = plane->dev;
13706         struct intel_crtc *intel_crtc;
13707         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13708         uint32_t addr;
13709
13710         crtc = crtc ? crtc : plane->crtc;
13711         intel_crtc = to_intel_crtc(crtc);
13712
13713         if (intel_crtc->cursor_bo == obj)
13714                 goto update;
13715
13716         if (!obj)
13717                 addr = 0;
13718         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13719                 addr = i915_gem_obj_ggtt_offset(obj);
13720         else
13721                 addr = obj->phys_handle->busaddr;
13722
13723         intel_crtc->cursor_addr = addr;
13724         intel_crtc->cursor_bo = obj;
13725
13726 update:
13727         if (crtc->state->active)
13728                 intel_crtc_update_cursor(crtc, state->visible);
13729 }
13730
13731 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13732                                                    int pipe)
13733 {
13734         struct intel_plane *cursor;
13735         struct intel_plane_state *state;
13736
13737         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13738         if (cursor == NULL)
13739                 return NULL;
13740
13741         state = intel_create_plane_state(&cursor->base);
13742         if (!state) {
13743                 kfree(cursor);
13744                 return NULL;
13745         }
13746         cursor->base.state = &state->base;
13747
13748         cursor->can_scale = false;
13749         cursor->max_downscale = 1;
13750         cursor->pipe = pipe;
13751         cursor->plane = pipe;
13752         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13753         cursor->check_plane = intel_check_cursor_plane;
13754         cursor->commit_plane = intel_commit_cursor_plane;
13755         cursor->disable_plane = intel_disable_cursor_plane;
13756
13757         drm_universal_plane_init(dev, &cursor->base, 0,
13758                                  &intel_plane_funcs,
13759                                  intel_cursor_formats,
13760                                  ARRAY_SIZE(intel_cursor_formats),
13761                                  DRM_PLANE_TYPE_CURSOR);
13762
13763         if (INTEL_INFO(dev)->gen >= 4) {
13764                 if (!dev->mode_config.rotation_property)
13765                         dev->mode_config.rotation_property =
13766                                 drm_mode_create_rotation_property(dev,
13767                                                         BIT(DRM_ROTATE_0) |
13768                                                         BIT(DRM_ROTATE_180));
13769                 if (dev->mode_config.rotation_property)
13770                         drm_object_attach_property(&cursor->base.base,
13771                                 dev->mode_config.rotation_property,
13772                                 state->base.rotation);
13773         }
13774
13775         if (INTEL_INFO(dev)->gen >=9)
13776                 state->scaler_id = -1;
13777
13778         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13779
13780         return &cursor->base;
13781 }
13782
13783 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13784         struct intel_crtc_state *crtc_state)
13785 {
13786         int i;
13787         struct intel_scaler *intel_scaler;
13788         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13789
13790         for (i = 0; i < intel_crtc->num_scalers; i++) {
13791                 intel_scaler = &scaler_state->scalers[i];
13792                 intel_scaler->in_use = 0;
13793                 intel_scaler->mode = PS_SCALER_MODE_DYN;
13794         }
13795
13796         scaler_state->scaler_id = -1;
13797 }
13798
13799 static void intel_crtc_init(struct drm_device *dev, int pipe)
13800 {
13801         struct drm_i915_private *dev_priv = dev->dev_private;
13802         struct intel_crtc *intel_crtc;
13803         struct intel_crtc_state *crtc_state = NULL;
13804         struct drm_plane *primary = NULL;
13805         struct drm_plane *cursor = NULL;
13806         int i, ret;
13807
13808         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13809         if (intel_crtc == NULL)
13810                 return;
13811
13812         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13813         if (!crtc_state)
13814                 goto fail;
13815         intel_crtc->config = crtc_state;
13816         intel_crtc->base.state = &crtc_state->base;
13817         crtc_state->base.crtc = &intel_crtc->base;
13818
13819         /* initialize shared scalers */
13820         if (INTEL_INFO(dev)->gen >= 9) {
13821                 if (pipe == PIPE_C)
13822                         intel_crtc->num_scalers = 1;
13823                 else
13824                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
13825
13826                 skl_init_scalers(dev, intel_crtc, crtc_state);
13827         }
13828
13829         primary = intel_primary_plane_create(dev, pipe);
13830         if (!primary)
13831                 goto fail;
13832
13833         cursor = intel_cursor_plane_create(dev, pipe);
13834         if (!cursor)
13835                 goto fail;
13836
13837         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13838                                         cursor, &intel_crtc_funcs);
13839         if (ret)
13840                 goto fail;
13841
13842         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13843         for (i = 0; i < 256; i++) {
13844                 intel_crtc->lut_r[i] = i;
13845                 intel_crtc->lut_g[i] = i;
13846                 intel_crtc->lut_b[i] = i;
13847         }
13848
13849         /*
13850          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13851          * is hooked to pipe B. Hence we want plane A feeding pipe B.
13852          */
13853         intel_crtc->pipe = pipe;
13854         intel_crtc->plane = pipe;
13855         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13856                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13857                 intel_crtc->plane = !pipe;
13858         }
13859
13860         intel_crtc->cursor_base = ~0;
13861         intel_crtc->cursor_cntl = ~0;
13862         intel_crtc->cursor_size = ~0;
13863
13864         intel_crtc->wm.cxsr_allowed = true;
13865
13866         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13867                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13868         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13869         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13870
13871         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13872
13873         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13874         return;
13875
13876 fail:
13877         if (primary)
13878                 drm_plane_cleanup(primary);
13879         if (cursor)
13880                 drm_plane_cleanup(cursor);
13881         kfree(crtc_state);
13882         kfree(intel_crtc);
13883 }
13884
13885 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13886 {
13887         struct drm_encoder *encoder = connector->base.encoder;
13888         struct drm_device *dev = connector->base.dev;
13889
13890         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13891
13892         if (!encoder || WARN_ON(!encoder->crtc))
13893                 return INVALID_PIPE;
13894
13895         return to_intel_crtc(encoder->crtc)->pipe;
13896 }
13897
13898 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13899                                 struct drm_file *file)
13900 {
13901         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13902         struct drm_crtc *drmmode_crtc;
13903         struct intel_crtc *crtc;
13904
13905         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13906
13907         if (!drmmode_crtc) {
13908                 DRM_ERROR("no such CRTC id\n");
13909                 return -ENOENT;
13910         }
13911
13912         crtc = to_intel_crtc(drmmode_crtc);
13913         pipe_from_crtc_id->pipe = crtc->pipe;
13914
13915         return 0;
13916 }
13917
13918 static int intel_encoder_clones(struct intel_encoder *encoder)
13919 {
13920         struct drm_device *dev = encoder->base.dev;
13921         struct intel_encoder *source_encoder;
13922         int index_mask = 0;
13923         int entry = 0;
13924
13925         for_each_intel_encoder(dev, source_encoder) {
13926                 if (encoders_cloneable(encoder, source_encoder))
13927                         index_mask |= (1 << entry);
13928
13929                 entry++;
13930         }
13931
13932         return index_mask;
13933 }
13934
13935 static bool has_edp_a(struct drm_device *dev)
13936 {
13937         struct drm_i915_private *dev_priv = dev->dev_private;
13938
13939         if (!IS_MOBILE(dev))
13940                 return false;
13941
13942         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13943                 return false;
13944
13945         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13946                 return false;
13947
13948         return true;
13949 }
13950
13951 static bool intel_crt_present(struct drm_device *dev)
13952 {
13953         struct drm_i915_private *dev_priv = dev->dev_private;
13954
13955         if (INTEL_INFO(dev)->gen >= 9)
13956                 return false;
13957
13958         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13959                 return false;
13960
13961         if (IS_CHERRYVIEW(dev))
13962                 return false;
13963
13964         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13965                 return false;
13966
13967         return true;
13968 }
13969
13970 static void intel_setup_outputs(struct drm_device *dev)
13971 {
13972         struct drm_i915_private *dev_priv = dev->dev_private;
13973         struct intel_encoder *encoder;
13974         bool dpd_is_edp = false;
13975
13976         intel_lvds_init(dev);
13977
13978         if (intel_crt_present(dev))
13979                 intel_crt_init(dev);
13980
13981         if (IS_BROXTON(dev)) {
13982                 /*
13983                  * FIXME: Broxton doesn't support port detection via the
13984                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13985                  * detect the ports.
13986                  */
13987                 intel_ddi_init(dev, PORT_A);
13988                 intel_ddi_init(dev, PORT_B);
13989                 intel_ddi_init(dev, PORT_C);
13990         } else if (HAS_DDI(dev)) {
13991                 int found;
13992
13993                 /*
13994                  * Haswell uses DDI functions to detect digital outputs.
13995                  * On SKL pre-D0 the strap isn't connected, so we assume
13996                  * it's there.
13997                  */
13998                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
13999                 /* WaIgnoreDDIAStrap: skl */
14000                 if (found || IS_SKYLAKE(dev))
14001                         intel_ddi_init(dev, PORT_A);
14002
14003                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14004                  * register */
14005                 found = I915_READ(SFUSE_STRAP);
14006
14007                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14008                         intel_ddi_init(dev, PORT_B);
14009                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14010                         intel_ddi_init(dev, PORT_C);
14011                 if (found & SFUSE_STRAP_DDID_DETECTED)
14012                         intel_ddi_init(dev, PORT_D);
14013                 /*
14014                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14015                  */
14016                 if (IS_SKYLAKE(dev) &&
14017                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14018                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14019                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14020                         intel_ddi_init(dev, PORT_E);
14021
14022         } else if (HAS_PCH_SPLIT(dev)) {
14023                 int found;
14024                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14025
14026                 if (has_edp_a(dev))
14027                         intel_dp_init(dev, DP_A, PORT_A);
14028
14029                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14030                         /* PCH SDVOB multiplex with HDMIB */
14031                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
14032                         if (!found)
14033                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14034                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14035                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14036                 }
14037
14038                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14039                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14040
14041                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14042                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14043
14044                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14045                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14046
14047                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14048                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14049         } else if (IS_VALLEYVIEW(dev)) {
14050                 /*
14051                  * The DP_DETECTED bit is the latched state of the DDC
14052                  * SDA pin at boot. However since eDP doesn't require DDC
14053                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14054                  * eDP ports may have been muxed to an alternate function.
14055                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14056                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14057                  * detect eDP ports.
14058                  */
14059                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14060                     !intel_dp_is_edp(dev, PORT_B))
14061                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14062                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14063                     intel_dp_is_edp(dev, PORT_B))
14064                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14065
14066                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14067                     !intel_dp_is_edp(dev, PORT_C))
14068                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14069                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14070                     intel_dp_is_edp(dev, PORT_C))
14071                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14072
14073                 if (IS_CHERRYVIEW(dev)) {
14074                         /* eDP not supported on port D, so don't check VBT */
14075                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14076                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14077                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14078                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14079                 }
14080
14081                 intel_dsi_init(dev);
14082         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14083                 bool found = false;
14084
14085                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14086                         DRM_DEBUG_KMS("probing SDVOB\n");
14087                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14088                         if (!found && IS_G4X(dev)) {
14089                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14090                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14091                         }
14092
14093                         if (!found && IS_G4X(dev))
14094                                 intel_dp_init(dev, DP_B, PORT_B);
14095                 }
14096
14097                 /* Before G4X SDVOC doesn't have its own detect register */
14098
14099                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14100                         DRM_DEBUG_KMS("probing SDVOC\n");
14101                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14102                 }
14103
14104                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14105
14106                         if (IS_G4X(dev)) {
14107                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14108                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14109                         }
14110                         if (IS_G4X(dev))
14111                                 intel_dp_init(dev, DP_C, PORT_C);
14112                 }
14113
14114                 if (IS_G4X(dev) &&
14115                     (I915_READ(DP_D) & DP_DETECTED))
14116                         intel_dp_init(dev, DP_D, PORT_D);
14117         } else if (IS_GEN2(dev))
14118                 intel_dvo_init(dev);
14119
14120         if (SUPPORTS_TV(dev))
14121                 intel_tv_init(dev);
14122
14123         intel_psr_init(dev);
14124
14125         for_each_intel_encoder(dev, encoder) {
14126                 encoder->base.possible_crtcs = encoder->crtc_mask;
14127                 encoder->base.possible_clones =
14128                         intel_encoder_clones(encoder);
14129         }
14130
14131         intel_init_pch_refclk(dev);
14132
14133         drm_helper_move_panel_connectors_to_head(dev);
14134 }
14135
14136 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14137 {
14138         struct drm_device *dev = fb->dev;
14139         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14140
14141         drm_framebuffer_cleanup(fb);
14142         mutex_lock(&dev->struct_mutex);
14143         WARN_ON(!intel_fb->obj->framebuffer_references--);
14144         drm_gem_object_unreference(&intel_fb->obj->base);
14145         mutex_unlock(&dev->struct_mutex);
14146         kfree(intel_fb);
14147 }
14148
14149 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14150                                                 struct drm_file *file,
14151                                                 unsigned int *handle)
14152 {
14153         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14154         struct drm_i915_gem_object *obj = intel_fb->obj;
14155
14156         if (obj->userptr.mm) {
14157                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14158                 return -EINVAL;
14159         }
14160
14161         return drm_gem_handle_create(file, &obj->base, handle);
14162 }
14163
14164 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14165                                         struct drm_file *file,
14166                                         unsigned flags, unsigned color,
14167                                         struct drm_clip_rect *clips,
14168                                         unsigned num_clips)
14169 {
14170         struct drm_device *dev = fb->dev;
14171         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14172         struct drm_i915_gem_object *obj = intel_fb->obj;
14173
14174         mutex_lock(&dev->struct_mutex);
14175         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14176         mutex_unlock(&dev->struct_mutex);
14177
14178         return 0;
14179 }
14180
14181 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14182         .destroy = intel_user_framebuffer_destroy,
14183         .create_handle = intel_user_framebuffer_create_handle,
14184         .dirty = intel_user_framebuffer_dirty,
14185 };
14186
14187 static
14188 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14189                          uint32_t pixel_format)
14190 {
14191         u32 gen = INTEL_INFO(dev)->gen;
14192
14193         if (gen >= 9) {
14194                 /* "The stride in bytes must not exceed the of the size of 8K
14195                  *  pixels and 32K bytes."
14196                  */
14197                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14198         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14199                 return 32*1024;
14200         } else if (gen >= 4) {
14201                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14202                         return 16*1024;
14203                 else
14204                         return 32*1024;
14205         } else if (gen >= 3) {
14206                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14207                         return 8*1024;
14208                 else
14209                         return 16*1024;
14210         } else {
14211                 /* XXX DSPC is limited to 4k tiled */
14212                 return 8*1024;
14213         }
14214 }
14215
14216 static int intel_framebuffer_init(struct drm_device *dev,
14217                                   struct intel_framebuffer *intel_fb,
14218                                   struct drm_mode_fb_cmd2 *mode_cmd,
14219                                   struct drm_i915_gem_object *obj)
14220 {
14221         unsigned int aligned_height;
14222         int ret;
14223         u32 pitch_limit, stride_alignment;
14224
14225         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14226
14227         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14228                 /* Enforce that fb modifier and tiling mode match, but only for
14229                  * X-tiled. This is needed for FBC. */
14230                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14231                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14232                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14233                         return -EINVAL;
14234                 }
14235         } else {
14236                 if (obj->tiling_mode == I915_TILING_X)
14237                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14238                 else if (obj->tiling_mode == I915_TILING_Y) {
14239                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14240                         return -EINVAL;
14241                 }
14242         }
14243
14244         /* Passed in modifier sanity checking. */
14245         switch (mode_cmd->modifier[0]) {
14246         case I915_FORMAT_MOD_Y_TILED:
14247         case I915_FORMAT_MOD_Yf_TILED:
14248                 if (INTEL_INFO(dev)->gen < 9) {
14249                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14250                                   mode_cmd->modifier[0]);
14251                         return -EINVAL;
14252                 }
14253         case DRM_FORMAT_MOD_NONE:
14254         case I915_FORMAT_MOD_X_TILED:
14255                 break;
14256         default:
14257                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14258                           mode_cmd->modifier[0]);
14259                 return -EINVAL;
14260         }
14261
14262         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14263                                                      mode_cmd->pixel_format);
14264         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14265                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14266                           mode_cmd->pitches[0], stride_alignment);
14267                 return -EINVAL;
14268         }
14269
14270         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14271                                            mode_cmd->pixel_format);
14272         if (mode_cmd->pitches[0] > pitch_limit) {
14273                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14274                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14275                           "tiled" : "linear",
14276                           mode_cmd->pitches[0], pitch_limit);
14277                 return -EINVAL;
14278         }
14279
14280         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14281             mode_cmd->pitches[0] != obj->stride) {
14282                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14283                           mode_cmd->pitches[0], obj->stride);
14284                 return -EINVAL;
14285         }
14286
14287         /* Reject formats not supported by any plane early. */
14288         switch (mode_cmd->pixel_format) {
14289         case DRM_FORMAT_C8:
14290         case DRM_FORMAT_RGB565:
14291         case DRM_FORMAT_XRGB8888:
14292         case DRM_FORMAT_ARGB8888:
14293                 break;
14294         case DRM_FORMAT_XRGB1555:
14295                 if (INTEL_INFO(dev)->gen > 3) {
14296                         DRM_DEBUG("unsupported pixel format: %s\n",
14297                                   drm_get_format_name(mode_cmd->pixel_format));
14298                         return -EINVAL;
14299                 }
14300                 break;
14301         case DRM_FORMAT_ABGR8888:
14302                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14303                         DRM_DEBUG("unsupported pixel format: %s\n",
14304                                   drm_get_format_name(mode_cmd->pixel_format));
14305                         return -EINVAL;
14306                 }
14307                 break;
14308         case DRM_FORMAT_XBGR8888:
14309         case DRM_FORMAT_XRGB2101010:
14310         case DRM_FORMAT_XBGR2101010:
14311                 if (INTEL_INFO(dev)->gen < 4) {
14312                         DRM_DEBUG("unsupported pixel format: %s\n",
14313                                   drm_get_format_name(mode_cmd->pixel_format));
14314                         return -EINVAL;
14315                 }
14316                 break;
14317         case DRM_FORMAT_ABGR2101010:
14318                 if (!IS_VALLEYVIEW(dev)) {
14319                         DRM_DEBUG("unsupported pixel format: %s\n",
14320                                   drm_get_format_name(mode_cmd->pixel_format));
14321                         return -EINVAL;
14322                 }
14323                 break;
14324         case DRM_FORMAT_YUYV:
14325         case DRM_FORMAT_UYVY:
14326         case DRM_FORMAT_YVYU:
14327         case DRM_FORMAT_VYUY:
14328                 if (INTEL_INFO(dev)->gen < 5) {
14329                         DRM_DEBUG("unsupported pixel format: %s\n",
14330                                   drm_get_format_name(mode_cmd->pixel_format));
14331                         return -EINVAL;
14332                 }
14333                 break;
14334         default:
14335                 DRM_DEBUG("unsupported pixel format: %s\n",
14336                           drm_get_format_name(mode_cmd->pixel_format));
14337                 return -EINVAL;
14338         }
14339
14340         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14341         if (mode_cmd->offsets[0] != 0)
14342                 return -EINVAL;
14343
14344         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14345                                                mode_cmd->pixel_format,
14346                                                mode_cmd->modifier[0]);
14347         /* FIXME drm helper for size checks (especially planar formats)? */
14348         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14349                 return -EINVAL;
14350
14351         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14352         intel_fb->obj = obj;
14353         intel_fb->obj->framebuffer_references++;
14354
14355         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14356         if (ret) {
14357                 DRM_ERROR("framebuffer init failed %d\n", ret);
14358                 return ret;
14359         }
14360
14361         return 0;
14362 }
14363
14364 static struct drm_framebuffer *
14365 intel_user_framebuffer_create(struct drm_device *dev,
14366                               struct drm_file *filp,
14367                               struct drm_mode_fb_cmd2 *mode_cmd)
14368 {
14369         struct drm_i915_gem_object *obj;
14370
14371         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14372                                                 mode_cmd->handles[0]));
14373         if (&obj->base == NULL)
14374                 return ERR_PTR(-ENOENT);
14375
14376         return intel_framebuffer_create(dev, mode_cmd, obj);
14377 }
14378
14379 #ifndef CONFIG_DRM_FBDEV_EMULATION
14380 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14381 {
14382 }
14383 #endif
14384
14385 static const struct drm_mode_config_funcs intel_mode_funcs = {
14386         .fb_create = intel_user_framebuffer_create,
14387         .output_poll_changed = intel_fbdev_output_poll_changed,
14388         .atomic_check = intel_atomic_check,
14389         .atomic_commit = intel_atomic_commit,
14390         .atomic_state_alloc = intel_atomic_state_alloc,
14391         .atomic_state_clear = intel_atomic_state_clear,
14392 };
14393
14394 /* Set up chip specific display functions */
14395 static void intel_init_display(struct drm_device *dev)
14396 {
14397         struct drm_i915_private *dev_priv = dev->dev_private;
14398
14399         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14400                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14401         else if (IS_CHERRYVIEW(dev))
14402                 dev_priv->display.find_dpll = chv_find_best_dpll;
14403         else if (IS_VALLEYVIEW(dev))
14404                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14405         else if (IS_PINEVIEW(dev))
14406                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14407         else
14408                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14409
14410         if (INTEL_INFO(dev)->gen >= 9) {
14411                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14412                 dev_priv->display.get_initial_plane_config =
14413                         skylake_get_initial_plane_config;
14414                 dev_priv->display.crtc_compute_clock =
14415                         haswell_crtc_compute_clock;
14416                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14417                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14418                 dev_priv->display.update_primary_plane =
14419                         skylake_update_primary_plane;
14420         } else if (HAS_DDI(dev)) {
14421                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14422                 dev_priv->display.get_initial_plane_config =
14423                         ironlake_get_initial_plane_config;
14424                 dev_priv->display.crtc_compute_clock =
14425                         haswell_crtc_compute_clock;
14426                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14427                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14428                 dev_priv->display.update_primary_plane =
14429                         ironlake_update_primary_plane;
14430         } else if (HAS_PCH_SPLIT(dev)) {
14431                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14432                 dev_priv->display.get_initial_plane_config =
14433                         ironlake_get_initial_plane_config;
14434                 dev_priv->display.crtc_compute_clock =
14435                         ironlake_crtc_compute_clock;
14436                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14437                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14438                 dev_priv->display.update_primary_plane =
14439                         ironlake_update_primary_plane;
14440         } else if (IS_VALLEYVIEW(dev)) {
14441                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14442                 dev_priv->display.get_initial_plane_config =
14443                         i9xx_get_initial_plane_config;
14444                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14445                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14446                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14447                 dev_priv->display.update_primary_plane =
14448                         i9xx_update_primary_plane;
14449         } else {
14450                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14451                 dev_priv->display.get_initial_plane_config =
14452                         i9xx_get_initial_plane_config;
14453                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14454                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14455                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14456                 dev_priv->display.update_primary_plane =
14457                         i9xx_update_primary_plane;
14458         }
14459
14460         /* Returns the core display clock speed */
14461         if (IS_SKYLAKE(dev))
14462                 dev_priv->display.get_display_clock_speed =
14463                         skylake_get_display_clock_speed;
14464         else if (IS_BROXTON(dev))
14465                 dev_priv->display.get_display_clock_speed =
14466                         broxton_get_display_clock_speed;
14467         else if (IS_BROADWELL(dev))
14468                 dev_priv->display.get_display_clock_speed =
14469                         broadwell_get_display_clock_speed;
14470         else if (IS_HASWELL(dev))
14471                 dev_priv->display.get_display_clock_speed =
14472                         haswell_get_display_clock_speed;
14473         else if (IS_VALLEYVIEW(dev))
14474                 dev_priv->display.get_display_clock_speed =
14475                         valleyview_get_display_clock_speed;
14476         else if (IS_GEN5(dev))
14477                 dev_priv->display.get_display_clock_speed =
14478                         ilk_get_display_clock_speed;
14479         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14480                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14481                 dev_priv->display.get_display_clock_speed =
14482                         i945_get_display_clock_speed;
14483         else if (IS_GM45(dev))
14484                 dev_priv->display.get_display_clock_speed =
14485                         gm45_get_display_clock_speed;
14486         else if (IS_CRESTLINE(dev))
14487                 dev_priv->display.get_display_clock_speed =
14488                         i965gm_get_display_clock_speed;
14489         else if (IS_PINEVIEW(dev))
14490                 dev_priv->display.get_display_clock_speed =
14491                         pnv_get_display_clock_speed;
14492         else if (IS_G33(dev) || IS_G4X(dev))
14493                 dev_priv->display.get_display_clock_speed =
14494                         g33_get_display_clock_speed;
14495         else if (IS_I915G(dev))
14496                 dev_priv->display.get_display_clock_speed =
14497                         i915_get_display_clock_speed;
14498         else if (IS_I945GM(dev) || IS_845G(dev))
14499                 dev_priv->display.get_display_clock_speed =
14500                         i9xx_misc_get_display_clock_speed;
14501         else if (IS_PINEVIEW(dev))
14502                 dev_priv->display.get_display_clock_speed =
14503                         pnv_get_display_clock_speed;
14504         else if (IS_I915GM(dev))
14505                 dev_priv->display.get_display_clock_speed =
14506                         i915gm_get_display_clock_speed;
14507         else if (IS_I865G(dev))
14508                 dev_priv->display.get_display_clock_speed =
14509                         i865_get_display_clock_speed;
14510         else if (IS_I85X(dev))
14511                 dev_priv->display.get_display_clock_speed =
14512                         i85x_get_display_clock_speed;
14513         else { /* 830 */
14514                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14515                 dev_priv->display.get_display_clock_speed =
14516                         i830_get_display_clock_speed;
14517         }
14518
14519         if (IS_GEN5(dev)) {
14520                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14521         } else if (IS_GEN6(dev)) {
14522                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14523         } else if (IS_IVYBRIDGE(dev)) {
14524                 /* FIXME: detect B0+ stepping and use auto training */
14525                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14526         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14527                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14528                 if (IS_BROADWELL(dev)) {
14529                         dev_priv->display.modeset_commit_cdclk =
14530                                 broadwell_modeset_commit_cdclk;
14531                         dev_priv->display.modeset_calc_cdclk =
14532                                 broadwell_modeset_calc_cdclk;
14533                 }
14534         } else if (IS_VALLEYVIEW(dev)) {
14535                 dev_priv->display.modeset_commit_cdclk =
14536                         valleyview_modeset_commit_cdclk;
14537                 dev_priv->display.modeset_calc_cdclk =
14538                         valleyview_modeset_calc_cdclk;
14539         } else if (IS_BROXTON(dev)) {
14540                 dev_priv->display.modeset_commit_cdclk =
14541                         broxton_modeset_commit_cdclk;
14542                 dev_priv->display.modeset_calc_cdclk =
14543                         broxton_modeset_calc_cdclk;
14544         }
14545
14546         switch (INTEL_INFO(dev)->gen) {
14547         case 2:
14548                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14549                 break;
14550
14551         case 3:
14552                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14553                 break;
14554
14555         case 4:
14556         case 5:
14557                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14558                 break;
14559
14560         case 6:
14561                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14562                 break;
14563         case 7:
14564         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14565                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14566                 break;
14567         case 9:
14568                 /* Drop through - unsupported since execlist only. */
14569         default:
14570                 /* Default just returns -ENODEV to indicate unsupported */
14571                 dev_priv->display.queue_flip = intel_default_queue_flip;
14572         }
14573
14574         mutex_init(&dev_priv->pps_mutex);
14575 }
14576
14577 /*
14578  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14579  * resume, or other times.  This quirk makes sure that's the case for
14580  * affected systems.
14581  */
14582 static void quirk_pipea_force(struct drm_device *dev)
14583 {
14584         struct drm_i915_private *dev_priv = dev->dev_private;
14585
14586         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14587         DRM_INFO("applying pipe a force quirk\n");
14588 }
14589
14590 static void quirk_pipeb_force(struct drm_device *dev)
14591 {
14592         struct drm_i915_private *dev_priv = dev->dev_private;
14593
14594         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14595         DRM_INFO("applying pipe b force quirk\n");
14596 }
14597
14598 /*
14599  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14600  */
14601 static void quirk_ssc_force_disable(struct drm_device *dev)
14602 {
14603         struct drm_i915_private *dev_priv = dev->dev_private;
14604         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14605         DRM_INFO("applying lvds SSC disable quirk\n");
14606 }
14607
14608 /*
14609  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14610  * brightness value
14611  */
14612 static void quirk_invert_brightness(struct drm_device *dev)
14613 {
14614         struct drm_i915_private *dev_priv = dev->dev_private;
14615         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14616         DRM_INFO("applying inverted panel brightness quirk\n");
14617 }
14618
14619 /* Some VBT's incorrectly indicate no backlight is present */
14620 static void quirk_backlight_present(struct drm_device *dev)
14621 {
14622         struct drm_i915_private *dev_priv = dev->dev_private;
14623         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14624         DRM_INFO("applying backlight present quirk\n");
14625 }
14626
14627 struct intel_quirk {
14628         int device;
14629         int subsystem_vendor;
14630         int subsystem_device;
14631         void (*hook)(struct drm_device *dev);
14632 };
14633
14634 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14635 struct intel_dmi_quirk {
14636         void (*hook)(struct drm_device *dev);
14637         const struct dmi_system_id (*dmi_id_list)[];
14638 };
14639
14640 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14641 {
14642         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14643         return 1;
14644 }
14645
14646 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14647         {
14648                 .dmi_id_list = &(const struct dmi_system_id[]) {
14649                         {
14650                                 .callback = intel_dmi_reverse_brightness,
14651                                 .ident = "NCR Corporation",
14652                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14653                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14654                                 },
14655                         },
14656                         { }  /* terminating entry */
14657                 },
14658                 .hook = quirk_invert_brightness,
14659         },
14660 };
14661
14662 static struct intel_quirk intel_quirks[] = {
14663         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14664         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14665
14666         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14667         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14668
14669         /* 830 needs to leave pipe A & dpll A up */
14670         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14671
14672         /* 830 needs to leave pipe B & dpll B up */
14673         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14674
14675         /* Lenovo U160 cannot use SSC on LVDS */
14676         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14677
14678         /* Sony Vaio Y cannot use SSC on LVDS */
14679         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14680
14681         /* Acer Aspire 5734Z must invert backlight brightness */
14682         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14683
14684         /* Acer/eMachines G725 */
14685         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14686
14687         /* Acer/eMachines e725 */
14688         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14689
14690         /* Acer/Packard Bell NCL20 */
14691         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14692
14693         /* Acer Aspire 4736Z */
14694         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14695
14696         /* Acer Aspire 5336 */
14697         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14698
14699         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14700         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14701
14702         /* Acer C720 Chromebook (Core i3 4005U) */
14703         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14704
14705         /* Apple Macbook 2,1 (Core 2 T7400) */
14706         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14707
14708         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14709         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14710
14711         /* HP Chromebook 14 (Celeron 2955U) */
14712         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14713
14714         /* Dell Chromebook 11 */
14715         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14716
14717         /* Dell Chromebook 11 (2015 version) */
14718         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14719 };
14720
14721 static void intel_init_quirks(struct drm_device *dev)
14722 {
14723         struct pci_dev *d = dev->pdev;
14724         int i;
14725
14726         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14727                 struct intel_quirk *q = &intel_quirks[i];
14728
14729                 if (d->device == q->device &&
14730                     (d->subsystem_vendor == q->subsystem_vendor ||
14731                      q->subsystem_vendor == PCI_ANY_ID) &&
14732                     (d->subsystem_device == q->subsystem_device ||
14733                      q->subsystem_device == PCI_ANY_ID))
14734                         q->hook(dev);
14735         }
14736         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14737                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14738                         intel_dmi_quirks[i].hook(dev);
14739         }
14740 }
14741
14742 /* Disable the VGA plane that we never use */
14743 static void i915_disable_vga(struct drm_device *dev)
14744 {
14745         struct drm_i915_private *dev_priv = dev->dev_private;
14746         u8 sr1;
14747         u32 vga_reg = i915_vgacntrl_reg(dev);
14748
14749         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14750         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14751         outb(SR01, VGA_SR_INDEX);
14752         sr1 = inb(VGA_SR_DATA);
14753         outb(sr1 | 1<<5, VGA_SR_DATA);
14754         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14755         udelay(300);
14756
14757         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14758         POSTING_READ(vga_reg);
14759 }
14760
14761 void intel_modeset_init_hw(struct drm_device *dev)
14762 {
14763         intel_update_cdclk(dev);
14764         intel_prepare_ddi(dev);
14765         intel_init_clock_gating(dev);
14766         intel_enable_gt_powersave(dev);
14767 }
14768
14769 void intel_modeset_init(struct drm_device *dev)
14770 {
14771         struct drm_i915_private *dev_priv = dev->dev_private;
14772         int sprite, ret;
14773         enum pipe pipe;
14774         struct intel_crtc *crtc;
14775
14776         drm_mode_config_init(dev);
14777
14778         dev->mode_config.min_width = 0;
14779         dev->mode_config.min_height = 0;
14780
14781         dev->mode_config.preferred_depth = 24;
14782         dev->mode_config.prefer_shadow = 1;
14783
14784         dev->mode_config.allow_fb_modifiers = true;
14785
14786         dev->mode_config.funcs = &intel_mode_funcs;
14787
14788         intel_init_quirks(dev);
14789
14790         intel_init_pm(dev);
14791
14792         if (INTEL_INFO(dev)->num_pipes == 0)
14793                 return;
14794
14795         /*
14796          * There may be no VBT; and if the BIOS enabled SSC we can
14797          * just keep using it to avoid unnecessary flicker.  Whereas if the
14798          * BIOS isn't using it, don't assume it will work even if the VBT
14799          * indicates as much.
14800          */
14801         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
14802                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14803                                             DREF_SSC1_ENABLE);
14804
14805                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14806                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14807                                      bios_lvds_use_ssc ? "en" : "dis",
14808                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14809                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14810                 }
14811         }
14812
14813         intel_init_display(dev);
14814         intel_init_audio(dev);
14815
14816         if (IS_GEN2(dev)) {
14817                 dev->mode_config.max_width = 2048;
14818                 dev->mode_config.max_height = 2048;
14819         } else if (IS_GEN3(dev)) {
14820                 dev->mode_config.max_width = 4096;
14821                 dev->mode_config.max_height = 4096;
14822         } else {
14823                 dev->mode_config.max_width = 8192;
14824                 dev->mode_config.max_height = 8192;
14825         }
14826
14827         if (IS_845G(dev) || IS_I865G(dev)) {
14828                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14829                 dev->mode_config.cursor_height = 1023;
14830         } else if (IS_GEN2(dev)) {
14831                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14832                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14833         } else {
14834                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14835                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14836         }
14837
14838         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14839
14840         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14841                       INTEL_INFO(dev)->num_pipes,
14842                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14843
14844         for_each_pipe(dev_priv, pipe) {
14845                 intel_crtc_init(dev, pipe);
14846                 for_each_sprite(dev_priv, pipe, sprite) {
14847                         ret = intel_plane_init(dev, pipe, sprite);
14848                         if (ret)
14849                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14850                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
14851                 }
14852         }
14853
14854         intel_update_czclk(dev_priv);
14855         intel_update_cdclk(dev);
14856
14857         intel_shared_dpll_init(dev);
14858
14859         /* Just disable it once at startup */
14860         i915_disable_vga(dev);
14861         intel_setup_outputs(dev);
14862
14863         /* Just in case the BIOS is doing something questionable. */
14864         intel_fbc_disable(dev_priv);
14865
14866         drm_modeset_lock_all(dev);
14867         intel_modeset_setup_hw_state(dev);
14868         drm_modeset_unlock_all(dev);
14869
14870         for_each_intel_crtc(dev, crtc) {
14871                 struct intel_initial_plane_config plane_config = {};
14872
14873                 if (!crtc->active)
14874                         continue;
14875
14876                 /*
14877                  * Note that reserving the BIOS fb up front prevents us
14878                  * from stuffing other stolen allocations like the ring
14879                  * on top.  This prevents some ugliness at boot time, and
14880                  * can even allow for smooth boot transitions if the BIOS
14881                  * fb is large enough for the active pipe configuration.
14882                  */
14883                 dev_priv->display.get_initial_plane_config(crtc,
14884                                                            &plane_config);
14885
14886                 /*
14887                  * If the fb is shared between multiple heads, we'll
14888                  * just get the first one.
14889                  */
14890                 intel_find_initial_plane_obj(crtc, &plane_config);
14891         }
14892 }
14893
14894 static void intel_enable_pipe_a(struct drm_device *dev)
14895 {
14896         struct intel_connector *connector;
14897         struct drm_connector *crt = NULL;
14898         struct intel_load_detect_pipe load_detect_temp;
14899         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14900
14901         /* We can't just switch on the pipe A, we need to set things up with a
14902          * proper mode and output configuration. As a gross hack, enable pipe A
14903          * by enabling the load detect pipe once. */
14904         for_each_intel_connector(dev, connector) {
14905                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14906                         crt = &connector->base;
14907                         break;
14908                 }
14909         }
14910
14911         if (!crt)
14912                 return;
14913
14914         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14915                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14916 }
14917
14918 static bool
14919 intel_check_plane_mapping(struct intel_crtc *crtc)
14920 {
14921         struct drm_device *dev = crtc->base.dev;
14922         struct drm_i915_private *dev_priv = dev->dev_private;
14923         u32 val;
14924
14925         if (INTEL_INFO(dev)->num_pipes == 1)
14926                 return true;
14927
14928         val = I915_READ(DSPCNTR(!crtc->plane));
14929
14930         if ((val & DISPLAY_PLANE_ENABLE) &&
14931             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14932                 return false;
14933
14934         return true;
14935 }
14936
14937 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
14938 {
14939         struct drm_device *dev = crtc->base.dev;
14940         struct intel_encoder *encoder;
14941
14942         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14943                 return true;
14944
14945         return false;
14946 }
14947
14948 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14949 {
14950         struct drm_device *dev = crtc->base.dev;
14951         struct drm_i915_private *dev_priv = dev->dev_private;
14952         u32 reg;
14953
14954         /* Clear any frame start delays used for debugging left by the BIOS */
14955         reg = PIPECONF(crtc->config->cpu_transcoder);
14956         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14957
14958         /* restore vblank interrupts to correct state */
14959         drm_crtc_vblank_reset(&crtc->base);
14960         if (crtc->active) {
14961                 struct intel_plane *plane;
14962
14963                 drm_crtc_vblank_on(&crtc->base);
14964
14965                 /* Disable everything but the primary plane */
14966                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
14967                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
14968                                 continue;
14969
14970                         plane->disable_plane(&plane->base, &crtc->base);
14971                 }
14972         }
14973
14974         /* We need to sanitize the plane -> pipe mapping first because this will
14975          * disable the crtc (and hence change the state) if it is wrong. Note
14976          * that gen4+ has a fixed plane -> pipe mapping.  */
14977         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14978                 bool plane;
14979
14980                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14981                               crtc->base.base.id);
14982
14983                 /* Pipe has the wrong plane attached and the plane is active.
14984                  * Temporarily change the plane mapping and disable everything
14985                  * ...  */
14986                 plane = crtc->plane;
14987                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
14988                 crtc->plane = !plane;
14989                 intel_crtc_disable_noatomic(&crtc->base);
14990                 crtc->plane = plane;
14991         }
14992
14993         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14994             crtc->pipe == PIPE_A && !crtc->active) {
14995                 /* BIOS forgot to enable pipe A, this mostly happens after
14996                  * resume. Force-enable the pipe to fix this, the update_dpms
14997                  * call below we restore the pipe to the right state, but leave
14998                  * the required bits on. */
14999                 intel_enable_pipe_a(dev);
15000         }
15001
15002         /* Adjust the state of the output pipe according to whether we
15003          * have active connectors/encoders. */
15004         if (!intel_crtc_has_encoders(crtc))
15005                 intel_crtc_disable_noatomic(&crtc->base);
15006
15007         if (crtc->active != crtc->base.state->active) {
15008                 struct intel_encoder *encoder;
15009
15010                 /* This can happen either due to bugs in the get_hw_state
15011                  * functions or because of calls to intel_crtc_disable_noatomic,
15012                  * or because the pipe is force-enabled due to the
15013                  * pipe A quirk. */
15014                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15015                               crtc->base.base.id,
15016                               crtc->base.state->enable ? "enabled" : "disabled",
15017                               crtc->active ? "enabled" : "disabled");
15018
15019                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15020                 crtc->base.state->active = crtc->active;
15021                 crtc->base.enabled = crtc->active;
15022
15023                 /* Because we only establish the connector -> encoder ->
15024                  * crtc links if something is active, this means the
15025                  * crtc is now deactivated. Break the links. connector
15026                  * -> encoder links are only establish when things are
15027                  *  actually up, hence no need to break them. */
15028                 WARN_ON(crtc->active);
15029
15030                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15031                         encoder->base.crtc = NULL;
15032         }
15033
15034         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15035                 /*
15036                  * We start out with underrun reporting disabled to avoid races.
15037                  * For correct bookkeeping mark this on active crtcs.
15038                  *
15039                  * Also on gmch platforms we dont have any hardware bits to
15040                  * disable the underrun reporting. Which means we need to start
15041                  * out with underrun reporting disabled also on inactive pipes,
15042                  * since otherwise we'll complain about the garbage we read when
15043                  * e.g. coming up after runtime pm.
15044                  *
15045                  * No protection against concurrent access is required - at
15046                  * worst a fifo underrun happens which also sets this to false.
15047                  */
15048                 crtc->cpu_fifo_underrun_disabled = true;
15049                 crtc->pch_fifo_underrun_disabled = true;
15050         }
15051 }
15052
15053 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15054 {
15055         struct intel_connector *connector;
15056         struct drm_device *dev = encoder->base.dev;
15057         bool active = false;
15058
15059         /* We need to check both for a crtc link (meaning that the
15060          * encoder is active and trying to read from a pipe) and the
15061          * pipe itself being active. */
15062         bool has_active_crtc = encoder->base.crtc &&
15063                 to_intel_crtc(encoder->base.crtc)->active;
15064
15065         for_each_intel_connector(dev, connector) {
15066                 if (connector->base.encoder != &encoder->base)
15067                         continue;
15068
15069                 active = true;
15070                 break;
15071         }
15072
15073         if (active && !has_active_crtc) {
15074                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15075                               encoder->base.base.id,
15076                               encoder->base.name);
15077
15078                 /* Connector is active, but has no active pipe. This is
15079                  * fallout from our resume register restoring. Disable
15080                  * the encoder manually again. */
15081                 if (encoder->base.crtc) {
15082                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15083                                       encoder->base.base.id,
15084                                       encoder->base.name);
15085                         encoder->disable(encoder);
15086                         if (encoder->post_disable)
15087                                 encoder->post_disable(encoder);
15088                 }
15089                 encoder->base.crtc = NULL;
15090
15091                 /* Inconsistent output/port/pipe state happens presumably due to
15092                  * a bug in one of the get_hw_state functions. Or someplace else
15093                  * in our code, like the register restore mess on resume. Clamp
15094                  * things to off as a safer default. */
15095                 for_each_intel_connector(dev, connector) {
15096                         if (connector->encoder != encoder)
15097                                 continue;
15098                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15099                         connector->base.encoder = NULL;
15100                 }
15101         }
15102         /* Enabled encoders without active connectors will be fixed in
15103          * the crtc fixup. */
15104 }
15105
15106 void i915_redisable_vga_power_on(struct drm_device *dev)
15107 {
15108         struct drm_i915_private *dev_priv = dev->dev_private;
15109         u32 vga_reg = i915_vgacntrl_reg(dev);
15110
15111         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15112                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15113                 i915_disable_vga(dev);
15114         }
15115 }
15116
15117 void i915_redisable_vga(struct drm_device *dev)
15118 {
15119         struct drm_i915_private *dev_priv = dev->dev_private;
15120
15121         /* This function can be called both from intel_modeset_setup_hw_state or
15122          * at a very early point in our resume sequence, where the power well
15123          * structures are not yet restored. Since this function is at a very
15124          * paranoid "someone might have enabled VGA while we were not looking"
15125          * level, just check if the power well is enabled instead of trying to
15126          * follow the "don't touch the power well if we don't need it" policy
15127          * the rest of the driver uses. */
15128         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15129                 return;
15130
15131         i915_redisable_vga_power_on(dev);
15132 }
15133
15134 static bool primary_get_hw_state(struct intel_plane *plane)
15135 {
15136         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15137
15138         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15139 }
15140
15141 /* FIXME read out full plane state for all planes */
15142 static void readout_plane_state(struct intel_crtc *crtc)
15143 {
15144         struct drm_plane *primary = crtc->base.primary;
15145         struct intel_plane_state *plane_state =
15146                 to_intel_plane_state(primary->state);
15147
15148         plane_state->visible =
15149                 primary_get_hw_state(to_intel_plane(primary));
15150
15151         if (plane_state->visible)
15152                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15153 }
15154
15155 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15156 {
15157         struct drm_i915_private *dev_priv = dev->dev_private;
15158         enum pipe pipe;
15159         struct intel_crtc *crtc;
15160         struct intel_encoder *encoder;
15161         struct intel_connector *connector;
15162         int i;
15163
15164         for_each_intel_crtc(dev, crtc) {
15165                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15166                 memset(crtc->config, 0, sizeof(*crtc->config));
15167                 crtc->config->base.crtc = &crtc->base;
15168
15169                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15170                                                                  crtc->config);
15171
15172                 crtc->base.state->active = crtc->active;
15173                 crtc->base.enabled = crtc->active;
15174
15175                 readout_plane_state(crtc);
15176
15177                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15178                               crtc->base.base.id,
15179                               crtc->active ? "enabled" : "disabled");
15180         }
15181
15182         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15183                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15184
15185                 pll->on = pll->get_hw_state(dev_priv, pll,
15186                                             &pll->config.hw_state);
15187                 pll->active = 0;
15188                 pll->config.crtc_mask = 0;
15189                 for_each_intel_crtc(dev, crtc) {
15190                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15191                                 pll->active++;
15192                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15193                         }
15194                 }
15195
15196                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15197                               pll->name, pll->config.crtc_mask, pll->on);
15198
15199                 if (pll->config.crtc_mask)
15200                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15201         }
15202
15203         for_each_intel_encoder(dev, encoder) {
15204                 pipe = 0;
15205
15206                 if (encoder->get_hw_state(encoder, &pipe)) {
15207                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15208                         encoder->base.crtc = &crtc->base;
15209                         encoder->get_config(encoder, crtc->config);
15210                 } else {
15211                         encoder->base.crtc = NULL;
15212                 }
15213
15214                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15215                               encoder->base.base.id,
15216                               encoder->base.name,
15217                               encoder->base.crtc ? "enabled" : "disabled",
15218                               pipe_name(pipe));
15219         }
15220
15221         for_each_intel_connector(dev, connector) {
15222                 if (connector->get_hw_state(connector)) {
15223                         connector->base.dpms = DRM_MODE_DPMS_ON;
15224                         connector->base.encoder = &connector->encoder->base;
15225                 } else {
15226                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15227                         connector->base.encoder = NULL;
15228                 }
15229                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15230                               connector->base.base.id,
15231                               connector->base.name,
15232                               connector->base.encoder ? "enabled" : "disabled");
15233         }
15234
15235         for_each_intel_crtc(dev, crtc) {
15236                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15237
15238                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15239                 if (crtc->base.state->active) {
15240                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15241                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15242                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15243
15244                         /*
15245                          * The initial mode needs to be set in order to keep
15246                          * the atomic core happy. It wants a valid mode if the
15247                          * crtc's enabled, so we do the above call.
15248                          *
15249                          * At this point some state updated by the connectors
15250                          * in their ->detect() callback has not run yet, so
15251                          * no recalculation can be done yet.
15252                          *
15253                          * Even if we could do a recalculation and modeset
15254                          * right now it would cause a double modeset if
15255                          * fbdev or userspace chooses a different initial mode.
15256                          *
15257                          * If that happens, someone indicated they wanted a
15258                          * mode change, which means it's safe to do a full
15259                          * recalculation.
15260                          */
15261                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15262
15263                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15264                         update_scanline_offset(crtc);
15265                 }
15266         }
15267 }
15268
15269 /* Scan out the current hw modeset state,
15270  * and sanitizes it to the current state
15271  */
15272 static void
15273 intel_modeset_setup_hw_state(struct drm_device *dev)
15274 {
15275         struct drm_i915_private *dev_priv = dev->dev_private;
15276         enum pipe pipe;
15277         struct intel_crtc *crtc;
15278         struct intel_encoder *encoder;
15279         int i;
15280
15281         intel_modeset_readout_hw_state(dev);
15282
15283         /* HW state is read out, now we need to sanitize this mess. */
15284         for_each_intel_encoder(dev, encoder) {
15285                 intel_sanitize_encoder(encoder);
15286         }
15287
15288         for_each_pipe(dev_priv, pipe) {
15289                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15290                 intel_sanitize_crtc(crtc);
15291                 intel_dump_pipe_config(crtc, crtc->config,
15292                                        "[setup_hw_state]");
15293         }
15294
15295         intel_modeset_update_connector_atomic_state(dev);
15296
15297         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15298                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15299
15300                 if (!pll->on || pll->active)
15301                         continue;
15302
15303                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15304
15305                 pll->disable(dev_priv, pll);
15306                 pll->on = false;
15307         }
15308
15309         if (IS_VALLEYVIEW(dev))
15310                 vlv_wm_get_hw_state(dev);
15311         else if (IS_GEN9(dev))
15312                 skl_wm_get_hw_state(dev);
15313         else if (HAS_PCH_SPLIT(dev))
15314                 ilk_wm_get_hw_state(dev);
15315
15316         for_each_intel_crtc(dev, crtc) {
15317                 unsigned long put_domains;
15318
15319                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15320                 if (WARN_ON(put_domains))
15321                         modeset_put_power_domains(dev_priv, put_domains);
15322         }
15323         intel_display_set_init_power(dev_priv, false);
15324 }
15325
15326 void intel_display_resume(struct drm_device *dev)
15327 {
15328         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15329         struct intel_connector *conn;
15330         struct intel_plane *plane;
15331         struct drm_crtc *crtc;
15332         int ret;
15333
15334         if (!state)
15335                 return;
15336
15337         state->acquire_ctx = dev->mode_config.acquire_ctx;
15338
15339         /* preserve complete old state, including dpll */
15340         intel_atomic_get_shared_dpll_state(state);
15341
15342         for_each_crtc(dev, crtc) {
15343                 struct drm_crtc_state *crtc_state =
15344                         drm_atomic_get_crtc_state(state, crtc);
15345
15346                 ret = PTR_ERR_OR_ZERO(crtc_state);
15347                 if (ret)
15348                         goto err;
15349
15350                 /* force a restore */
15351                 crtc_state->mode_changed = true;
15352         }
15353
15354         for_each_intel_plane(dev, plane) {
15355                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15356                 if (ret)
15357                         goto err;
15358         }
15359
15360         for_each_intel_connector(dev, conn) {
15361                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15362                 if (ret)
15363                         goto err;
15364         }
15365
15366         intel_modeset_setup_hw_state(dev);
15367
15368         i915_redisable_vga(dev);
15369         ret = drm_atomic_commit(state);
15370         if (!ret)
15371                 return;
15372
15373 err:
15374         DRM_ERROR("Restoring old state failed with %i\n", ret);
15375         drm_atomic_state_free(state);
15376 }
15377
15378 void intel_modeset_gem_init(struct drm_device *dev)
15379 {
15380         struct drm_crtc *c;
15381         struct drm_i915_gem_object *obj;
15382         int ret;
15383
15384         mutex_lock(&dev->struct_mutex);
15385         intel_init_gt_powersave(dev);
15386         mutex_unlock(&dev->struct_mutex);
15387
15388         intel_modeset_init_hw(dev);
15389
15390         intel_setup_overlay(dev);
15391
15392         /*
15393          * Make sure any fbs we allocated at startup are properly
15394          * pinned & fenced.  When we do the allocation it's too early
15395          * for this.
15396          */
15397         for_each_crtc(dev, c) {
15398                 obj = intel_fb_obj(c->primary->fb);
15399                 if (obj == NULL)
15400                         continue;
15401
15402                 mutex_lock(&dev->struct_mutex);
15403                 ret = intel_pin_and_fence_fb_obj(c->primary,
15404                                                  c->primary->fb,
15405                                                  c->primary->state,
15406                                                  NULL, NULL);
15407                 mutex_unlock(&dev->struct_mutex);
15408                 if (ret) {
15409                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15410                                   to_intel_crtc(c)->pipe);
15411                         drm_framebuffer_unreference(c->primary->fb);
15412                         c->primary->fb = NULL;
15413                         c->primary->crtc = c->primary->state->crtc = NULL;
15414                         update_state_fb(c->primary);
15415                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15416                 }
15417         }
15418
15419         intel_backlight_register(dev);
15420 }
15421
15422 void intel_connector_unregister(struct intel_connector *intel_connector)
15423 {
15424         struct drm_connector *connector = &intel_connector->base;
15425
15426         intel_panel_destroy_backlight(connector);
15427         drm_connector_unregister(connector);
15428 }
15429
15430 void intel_modeset_cleanup(struct drm_device *dev)
15431 {
15432         struct drm_i915_private *dev_priv = dev->dev_private;
15433         struct drm_connector *connector;
15434
15435         intel_disable_gt_powersave(dev);
15436
15437         intel_backlight_unregister(dev);
15438
15439         /*
15440          * Interrupts and polling as the first thing to avoid creating havoc.
15441          * Too much stuff here (turning of connectors, ...) would
15442          * experience fancy races otherwise.
15443          */
15444         intel_irq_uninstall(dev_priv);
15445
15446         /*
15447          * Due to the hpd irq storm handling the hotplug work can re-arm the
15448          * poll handlers. Hence disable polling after hpd handling is shut down.
15449          */
15450         drm_kms_helper_poll_fini(dev);
15451
15452         intel_unregister_dsm_handler();
15453
15454         intel_fbc_disable(dev_priv);
15455
15456         /* flush any delayed tasks or pending work */
15457         flush_scheduled_work();
15458
15459         /* destroy the backlight and sysfs files before encoders/connectors */
15460         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15461                 struct intel_connector *intel_connector;
15462
15463                 intel_connector = to_intel_connector(connector);
15464                 intel_connector->unregister(intel_connector);
15465         }
15466
15467         drm_mode_config_cleanup(dev);
15468
15469         intel_cleanup_overlay(dev);
15470
15471         mutex_lock(&dev->struct_mutex);
15472         intel_cleanup_gt_powersave(dev);
15473         mutex_unlock(&dev->struct_mutex);
15474 }
15475
15476 /*
15477  * Return which encoder is currently attached for connector.
15478  */
15479 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15480 {
15481         return &intel_attached_encoder(connector)->base;
15482 }
15483
15484 void intel_connector_attach_encoder(struct intel_connector *connector,
15485                                     struct intel_encoder *encoder)
15486 {
15487         connector->encoder = encoder;
15488         drm_mode_connector_attach_encoder(&connector->base,
15489                                           &encoder->base);
15490 }
15491
15492 /*
15493  * set vga decode state - true == enable VGA decode
15494  */
15495 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15496 {
15497         struct drm_i915_private *dev_priv = dev->dev_private;
15498         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15499         u16 gmch_ctrl;
15500
15501         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15502                 DRM_ERROR("failed to read control word\n");
15503                 return -EIO;
15504         }
15505
15506         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15507                 return 0;
15508
15509         if (state)
15510                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15511         else
15512                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15513
15514         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15515                 DRM_ERROR("failed to write control word\n");
15516                 return -EIO;
15517         }
15518
15519         return 0;
15520 }
15521
15522 struct intel_display_error_state {
15523
15524         u32 power_well_driver;
15525
15526         int num_transcoders;
15527
15528         struct intel_cursor_error_state {
15529                 u32 control;
15530                 u32 position;
15531                 u32 base;
15532                 u32 size;
15533         } cursor[I915_MAX_PIPES];
15534
15535         struct intel_pipe_error_state {
15536                 bool power_domain_on;
15537                 u32 source;
15538                 u32 stat;
15539         } pipe[I915_MAX_PIPES];
15540
15541         struct intel_plane_error_state {
15542                 u32 control;
15543                 u32 stride;
15544                 u32 size;
15545                 u32 pos;
15546                 u32 addr;
15547                 u32 surface;
15548                 u32 tile_offset;
15549         } plane[I915_MAX_PIPES];
15550
15551         struct intel_transcoder_error_state {
15552                 bool power_domain_on;
15553                 enum transcoder cpu_transcoder;
15554
15555                 u32 conf;
15556
15557                 u32 htotal;
15558                 u32 hblank;
15559                 u32 hsync;
15560                 u32 vtotal;
15561                 u32 vblank;
15562                 u32 vsync;
15563         } transcoder[4];
15564 };
15565
15566 struct intel_display_error_state *
15567 intel_display_capture_error_state(struct drm_device *dev)
15568 {
15569         struct drm_i915_private *dev_priv = dev->dev_private;
15570         struct intel_display_error_state *error;
15571         int transcoders[] = {
15572                 TRANSCODER_A,
15573                 TRANSCODER_B,
15574                 TRANSCODER_C,
15575                 TRANSCODER_EDP,
15576         };
15577         int i;
15578
15579         if (INTEL_INFO(dev)->num_pipes == 0)
15580                 return NULL;
15581
15582         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15583         if (error == NULL)
15584                 return NULL;
15585
15586         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15587                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15588
15589         for_each_pipe(dev_priv, i) {
15590                 error->pipe[i].power_domain_on =
15591                         __intel_display_power_is_enabled(dev_priv,
15592                                                          POWER_DOMAIN_PIPE(i));
15593                 if (!error->pipe[i].power_domain_on)
15594                         continue;
15595
15596                 error->cursor[i].control = I915_READ(CURCNTR(i));
15597                 error->cursor[i].position = I915_READ(CURPOS(i));
15598                 error->cursor[i].base = I915_READ(CURBASE(i));
15599
15600                 error->plane[i].control = I915_READ(DSPCNTR(i));
15601                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15602                 if (INTEL_INFO(dev)->gen <= 3) {
15603                         error->plane[i].size = I915_READ(DSPSIZE(i));
15604                         error->plane[i].pos = I915_READ(DSPPOS(i));
15605                 }
15606                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15607                         error->plane[i].addr = I915_READ(DSPADDR(i));
15608                 if (INTEL_INFO(dev)->gen >= 4) {
15609                         error->plane[i].surface = I915_READ(DSPSURF(i));
15610                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15611                 }
15612
15613                 error->pipe[i].source = I915_READ(PIPESRC(i));
15614
15615                 if (HAS_GMCH_DISPLAY(dev))
15616                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15617         }
15618
15619         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15620         if (HAS_DDI(dev_priv->dev))
15621                 error->num_transcoders++; /* Account for eDP. */
15622
15623         for (i = 0; i < error->num_transcoders; i++) {
15624                 enum transcoder cpu_transcoder = transcoders[i];
15625
15626                 error->transcoder[i].power_domain_on =
15627                         __intel_display_power_is_enabled(dev_priv,
15628                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15629                 if (!error->transcoder[i].power_domain_on)
15630                         continue;
15631
15632                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15633
15634                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15635                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15636                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15637                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15638                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15639                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15640                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15641         }
15642
15643         return error;
15644 }
15645
15646 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15647
15648 void
15649 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15650                                 struct drm_device *dev,
15651                                 struct intel_display_error_state *error)
15652 {
15653         struct drm_i915_private *dev_priv = dev->dev_private;
15654         int i;
15655
15656         if (!error)
15657                 return;
15658
15659         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15660         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15661                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15662                            error->power_well_driver);
15663         for_each_pipe(dev_priv, i) {
15664                 err_printf(m, "Pipe [%d]:\n", i);
15665                 err_printf(m, "  Power: %s\n",
15666                            error->pipe[i].power_domain_on ? "on" : "off");
15667                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15668                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15669
15670                 err_printf(m, "Plane [%d]:\n", i);
15671                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15672                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15673                 if (INTEL_INFO(dev)->gen <= 3) {
15674                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15675                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15676                 }
15677                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15678                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15679                 if (INTEL_INFO(dev)->gen >= 4) {
15680                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15681                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15682                 }
15683
15684                 err_printf(m, "Cursor [%d]:\n", i);
15685                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15686                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15687                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15688         }
15689
15690         for (i = 0; i < error->num_transcoders; i++) {
15691                 err_printf(m, "CPU transcoder: %c\n",
15692                            transcoder_name(error->transcoder[i].cpu_transcoder));
15693                 err_printf(m, "  Power: %s\n",
15694                            error->transcoder[i].power_domain_on ? "on" : "off");
15695                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15696                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15697                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15698                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15699                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15700                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15701                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15702         }
15703 }
15704
15705 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15706 {
15707         struct intel_crtc *crtc;
15708
15709         for_each_intel_crtc(dev, crtc) {
15710                 struct intel_unpin_work *work;
15711
15712                 spin_lock_irq(&dev->event_lock);
15713
15714                 work = crtc->unpin_work;
15715
15716                 if (work && work->event &&
15717                     work->event->base.file_priv == file) {
15718                         kfree(work->event);
15719                         work->event = NULL;
15720                 }
15721
15722                 spin_unlock_irq(&dev->event_lock);
15723         }
15724 }