dd157add7492f14a1b0d476b510a7d81a2967e48
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define DIV_ROUND_CLOSEST_ULL(ll, d)    \
45         ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
46
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
51                                 struct intel_crtc_config *pipe_config);
52 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
53                                    struct intel_crtc_config *pipe_config);
54
55 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
56                           int x, int y, struct drm_framebuffer *old_fb);
57 static int intel_framebuffer_init(struct drm_device *dev,
58                                   struct intel_framebuffer *ifb,
59                                   struct drm_mode_fb_cmd2 *mode_cmd,
60                                   struct drm_i915_gem_object *obj);
61 static void intel_dp_set_m_n(struct intel_crtc *crtc);
62 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
63 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
64 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
65                                          struct intel_link_m_n *m_n);
66 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
67 static void haswell_set_pipeconf(struct drm_crtc *crtc);
68 static void intel_set_pipe_csc(struct drm_crtc *crtc);
69 static void vlv_prepare_pll(struct intel_crtc *crtc);
70
71 typedef struct {
72         int     min, max;
73 } intel_range_t;
74
75 typedef struct {
76         int     dot_limit;
77         int     p2_slow, p2_fast;
78 } intel_p2_t;
79
80 typedef struct intel_limit intel_limit_t;
81 struct intel_limit {
82         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
83         intel_p2_t          p2;
84 };
85
86 int
87 intel_pch_rawclk(struct drm_device *dev)
88 {
89         struct drm_i915_private *dev_priv = dev->dev_private;
90
91         WARN_ON(!HAS_PCH_SPLIT(dev));
92
93         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
94 }
95
96 static inline u32 /* units of 100MHz */
97 intel_fdi_link_freq(struct drm_device *dev)
98 {
99         if (IS_GEN5(dev)) {
100                 struct drm_i915_private *dev_priv = dev->dev_private;
101                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
102         } else
103                 return 27;
104 }
105
106 static const intel_limit_t intel_limits_i8xx_dac = {
107         .dot = { .min = 25000, .max = 350000 },
108         .vco = { .min = 908000, .max = 1512000 },
109         .n = { .min = 2, .max = 16 },
110         .m = { .min = 96, .max = 140 },
111         .m1 = { .min = 18, .max = 26 },
112         .m2 = { .min = 6, .max = 16 },
113         .p = { .min = 4, .max = 128 },
114         .p1 = { .min = 2, .max = 33 },
115         .p2 = { .dot_limit = 165000,
116                 .p2_slow = 4, .p2_fast = 2 },
117 };
118
119 static const intel_limit_t intel_limits_i8xx_dvo = {
120         .dot = { .min = 25000, .max = 350000 },
121         .vco = { .min = 908000, .max = 1512000 },
122         .n = { .min = 2, .max = 16 },
123         .m = { .min = 96, .max = 140 },
124         .m1 = { .min = 18, .max = 26 },
125         .m2 = { .min = 6, .max = 16 },
126         .p = { .min = 4, .max = 128 },
127         .p1 = { .min = 2, .max = 33 },
128         .p2 = { .dot_limit = 165000,
129                 .p2_slow = 4, .p2_fast = 4 },
130 };
131
132 static const intel_limit_t intel_limits_i8xx_lvds = {
133         .dot = { .min = 25000, .max = 350000 },
134         .vco = { .min = 908000, .max = 1512000 },
135         .n = { .min = 2, .max = 16 },
136         .m = { .min = 96, .max = 140 },
137         .m1 = { .min = 18, .max = 26 },
138         .m2 = { .min = 6, .max = 16 },
139         .p = { .min = 4, .max = 128 },
140         .p1 = { .min = 1, .max = 6 },
141         .p2 = { .dot_limit = 165000,
142                 .p2_slow = 14, .p2_fast = 7 },
143 };
144
145 static const intel_limit_t intel_limits_i9xx_sdvo = {
146         .dot = { .min = 20000, .max = 400000 },
147         .vco = { .min = 1400000, .max = 2800000 },
148         .n = { .min = 1, .max = 6 },
149         .m = { .min = 70, .max = 120 },
150         .m1 = { .min = 8, .max = 18 },
151         .m2 = { .min = 3, .max = 7 },
152         .p = { .min = 5, .max = 80 },
153         .p1 = { .min = 1, .max = 8 },
154         .p2 = { .dot_limit = 200000,
155                 .p2_slow = 10, .p2_fast = 5 },
156 };
157
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159         .dot = { .min = 20000, .max = 400000 },
160         .vco = { .min = 1400000, .max = 2800000 },
161         .n = { .min = 1, .max = 6 },
162         .m = { .min = 70, .max = 120 },
163         .m1 = { .min = 8, .max = 18 },
164         .m2 = { .min = 3, .max = 7 },
165         .p = { .min = 7, .max = 98 },
166         .p1 = { .min = 1, .max = 8 },
167         .p2 = { .dot_limit = 112000,
168                 .p2_slow = 14, .p2_fast = 7 },
169 };
170
171
172 static const intel_limit_t intel_limits_g4x_sdvo = {
173         .dot = { .min = 25000, .max = 270000 },
174         .vco = { .min = 1750000, .max = 3500000},
175         .n = { .min = 1, .max = 4 },
176         .m = { .min = 104, .max = 138 },
177         .m1 = { .min = 17, .max = 23 },
178         .m2 = { .min = 5, .max = 11 },
179         .p = { .min = 10, .max = 30 },
180         .p1 = { .min = 1, .max = 3},
181         .p2 = { .dot_limit = 270000,
182                 .p2_slow = 10,
183                 .p2_fast = 10
184         },
185 };
186
187 static const intel_limit_t intel_limits_g4x_hdmi = {
188         .dot = { .min = 22000, .max = 400000 },
189         .vco = { .min = 1750000, .max = 3500000},
190         .n = { .min = 1, .max = 4 },
191         .m = { .min = 104, .max = 138 },
192         .m1 = { .min = 16, .max = 23 },
193         .m2 = { .min = 5, .max = 11 },
194         .p = { .min = 5, .max = 80 },
195         .p1 = { .min = 1, .max = 8},
196         .p2 = { .dot_limit = 165000,
197                 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
201         .dot = { .min = 20000, .max = 115000 },
202         .vco = { .min = 1750000, .max = 3500000 },
203         .n = { .min = 1, .max = 3 },
204         .m = { .min = 104, .max = 138 },
205         .m1 = { .min = 17, .max = 23 },
206         .m2 = { .min = 5, .max = 11 },
207         .p = { .min = 28, .max = 112 },
208         .p1 = { .min = 2, .max = 8 },
209         .p2 = { .dot_limit = 0,
210                 .p2_slow = 14, .p2_fast = 14
211         },
212 };
213
214 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
215         .dot = { .min = 80000, .max = 224000 },
216         .vco = { .min = 1750000, .max = 3500000 },
217         .n = { .min = 1, .max = 3 },
218         .m = { .min = 104, .max = 138 },
219         .m1 = { .min = 17, .max = 23 },
220         .m2 = { .min = 5, .max = 11 },
221         .p = { .min = 14, .max = 42 },
222         .p1 = { .min = 2, .max = 6 },
223         .p2 = { .dot_limit = 0,
224                 .p2_slow = 7, .p2_fast = 7
225         },
226 };
227
228 static const intel_limit_t intel_limits_pineview_sdvo = {
229         .dot = { .min = 20000, .max = 400000},
230         .vco = { .min = 1700000, .max = 3500000 },
231         /* Pineview's Ncounter is a ring counter */
232         .n = { .min = 3, .max = 6 },
233         .m = { .min = 2, .max = 256 },
234         /* Pineview only has one combined m divider, which we treat as m2. */
235         .m1 = { .min = 0, .max = 0 },
236         .m2 = { .min = 0, .max = 254 },
237         .p = { .min = 5, .max = 80 },
238         .p1 = { .min = 1, .max = 8 },
239         .p2 = { .dot_limit = 200000,
240                 .p2_slow = 10, .p2_fast = 5 },
241 };
242
243 static const intel_limit_t intel_limits_pineview_lvds = {
244         .dot = { .min = 20000, .max = 400000 },
245         .vco = { .min = 1700000, .max = 3500000 },
246         .n = { .min = 3, .max = 6 },
247         .m = { .min = 2, .max = 256 },
248         .m1 = { .min = 0, .max = 0 },
249         .m2 = { .min = 0, .max = 254 },
250         .p = { .min = 7, .max = 112 },
251         .p1 = { .min = 1, .max = 8 },
252         .p2 = { .dot_limit = 112000,
253                 .p2_slow = 14, .p2_fast = 14 },
254 };
255
256 /* Ironlake / Sandybridge
257  *
258  * We calculate clock using (register_value + 2) for N/M1/M2, so here
259  * the range value for them is (actual_value - 2).
260  */
261 static const intel_limit_t intel_limits_ironlake_dac = {
262         .dot = { .min = 25000, .max = 350000 },
263         .vco = { .min = 1760000, .max = 3510000 },
264         .n = { .min = 1, .max = 5 },
265         .m = { .min = 79, .max = 127 },
266         .m1 = { .min = 12, .max = 22 },
267         .m2 = { .min = 5, .max = 9 },
268         .p = { .min = 5, .max = 80 },
269         .p1 = { .min = 1, .max = 8 },
270         .p2 = { .dot_limit = 225000,
271                 .p2_slow = 10, .p2_fast = 5 },
272 };
273
274 static const intel_limit_t intel_limits_ironlake_single_lvds = {
275         .dot = { .min = 25000, .max = 350000 },
276         .vco = { .min = 1760000, .max = 3510000 },
277         .n = { .min = 1, .max = 3 },
278         .m = { .min = 79, .max = 118 },
279         .m1 = { .min = 12, .max = 22 },
280         .m2 = { .min = 5, .max = 9 },
281         .p = { .min = 28, .max = 112 },
282         .p1 = { .min = 2, .max = 8 },
283         .p2 = { .dot_limit = 225000,
284                 .p2_slow = 14, .p2_fast = 14 },
285 };
286
287 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
288         .dot = { .min = 25000, .max = 350000 },
289         .vco = { .min = 1760000, .max = 3510000 },
290         .n = { .min = 1, .max = 3 },
291         .m = { .min = 79, .max = 127 },
292         .m1 = { .min = 12, .max = 22 },
293         .m2 = { .min = 5, .max = 9 },
294         .p = { .min = 14, .max = 56 },
295         .p1 = { .min = 2, .max = 8 },
296         .p2 = { .dot_limit = 225000,
297                 .p2_slow = 7, .p2_fast = 7 },
298 };
299
300 /* LVDS 100mhz refclk limits. */
301 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
302         .dot = { .min = 25000, .max = 350000 },
303         .vco = { .min = 1760000, .max = 3510000 },
304         .n = { .min = 1, .max = 2 },
305         .m = { .min = 79, .max = 126 },
306         .m1 = { .min = 12, .max = 22 },
307         .m2 = { .min = 5, .max = 9 },
308         .p = { .min = 28, .max = 112 },
309         .p1 = { .min = 2, .max = 8 },
310         .p2 = { .dot_limit = 225000,
311                 .p2_slow = 14, .p2_fast = 14 },
312 };
313
314 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
315         .dot = { .min = 25000, .max = 350000 },
316         .vco = { .min = 1760000, .max = 3510000 },
317         .n = { .min = 1, .max = 3 },
318         .m = { .min = 79, .max = 126 },
319         .m1 = { .min = 12, .max = 22 },
320         .m2 = { .min = 5, .max = 9 },
321         .p = { .min = 14, .max = 42 },
322         .p1 = { .min = 2, .max = 6 },
323         .p2 = { .dot_limit = 225000,
324                 .p2_slow = 7, .p2_fast = 7 },
325 };
326
327 static const intel_limit_t intel_limits_vlv = {
328          /*
329           * These are the data rate limits (measured in fast clocks)
330           * since those are the strictest limits we have. The fast
331           * clock and actual rate limits are more relaxed, so checking
332           * them would make no difference.
333           */
334         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
335         .vco = { .min = 4000000, .max = 6000000 },
336         .n = { .min = 1, .max = 7 },
337         .m1 = { .min = 2, .max = 3 },
338         .m2 = { .min = 11, .max = 156 },
339         .p1 = { .min = 2, .max = 3 },
340         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
341 };
342
343 static const intel_limit_t intel_limits_chv = {
344         /*
345          * These are the data rate limits (measured in fast clocks)
346          * since those are the strictest limits we have.  The fast
347          * clock and actual rate limits are more relaxed, so checking
348          * them would make no difference.
349          */
350         .dot = { .min = 25000 * 5, .max = 540000 * 5},
351         .vco = { .min = 4860000, .max = 6700000 },
352         .n = { .min = 1, .max = 1 },
353         .m1 = { .min = 2, .max = 2 },
354         .m2 = { .min = 24 << 22, .max = 175 << 22 },
355         .p1 = { .min = 2, .max = 4 },
356         .p2 = { .p2_slow = 1, .p2_fast = 14 },
357 };
358
359 static void vlv_clock(int refclk, intel_clock_t *clock)
360 {
361         clock->m = clock->m1 * clock->m2;
362         clock->p = clock->p1 * clock->p2;
363         if (WARN_ON(clock->n == 0 || clock->p == 0))
364                 return;
365         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
366         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
367 }
368
369 /**
370  * Returns whether any output on the specified pipe is of the specified type
371  */
372 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
373 {
374         struct drm_device *dev = crtc->dev;
375         struct intel_encoder *encoder;
376
377         for_each_encoder_on_crtc(dev, crtc, encoder)
378                 if (encoder->type == type)
379                         return true;
380
381         return false;
382 }
383
384 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
385                                                 int refclk)
386 {
387         struct drm_device *dev = crtc->dev;
388         const intel_limit_t *limit;
389
390         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
391                 if (intel_is_dual_link_lvds(dev)) {
392                         if (refclk == 100000)
393                                 limit = &intel_limits_ironlake_dual_lvds_100m;
394                         else
395                                 limit = &intel_limits_ironlake_dual_lvds;
396                 } else {
397                         if (refclk == 100000)
398                                 limit = &intel_limits_ironlake_single_lvds_100m;
399                         else
400                                 limit = &intel_limits_ironlake_single_lvds;
401                 }
402         } else
403                 limit = &intel_limits_ironlake_dac;
404
405         return limit;
406 }
407
408 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
409 {
410         struct drm_device *dev = crtc->dev;
411         const intel_limit_t *limit;
412
413         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
414                 if (intel_is_dual_link_lvds(dev))
415                         limit = &intel_limits_g4x_dual_channel_lvds;
416                 else
417                         limit = &intel_limits_g4x_single_channel_lvds;
418         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
419                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
420                 limit = &intel_limits_g4x_hdmi;
421         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
422                 limit = &intel_limits_g4x_sdvo;
423         } else /* The option is for other outputs */
424                 limit = &intel_limits_i9xx_sdvo;
425
426         return limit;
427 }
428
429 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
430 {
431         struct drm_device *dev = crtc->dev;
432         const intel_limit_t *limit;
433
434         if (HAS_PCH_SPLIT(dev))
435                 limit = intel_ironlake_limit(crtc, refclk);
436         else if (IS_G4X(dev)) {
437                 limit = intel_g4x_limit(crtc);
438         } else if (IS_PINEVIEW(dev)) {
439                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
440                         limit = &intel_limits_pineview_lvds;
441                 else
442                         limit = &intel_limits_pineview_sdvo;
443         } else if (IS_CHERRYVIEW(dev)) {
444                 limit = &intel_limits_chv;
445         } else if (IS_VALLEYVIEW(dev)) {
446                 limit = &intel_limits_vlv;
447         } else if (!IS_GEN2(dev)) {
448                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
449                         limit = &intel_limits_i9xx_lvds;
450                 else
451                         limit = &intel_limits_i9xx_sdvo;
452         } else {
453                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
454                         limit = &intel_limits_i8xx_lvds;
455                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
456                         limit = &intel_limits_i8xx_dvo;
457                 else
458                         limit = &intel_limits_i8xx_dac;
459         }
460         return limit;
461 }
462
463 /* m1 is reserved as 0 in Pineview, n is a ring counter */
464 static void pineview_clock(int refclk, intel_clock_t *clock)
465 {
466         clock->m = clock->m2 + 2;
467         clock->p = clock->p1 * clock->p2;
468         if (WARN_ON(clock->n == 0 || clock->p == 0))
469                 return;
470         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
471         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
472 }
473
474 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
475 {
476         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
477 }
478
479 static void i9xx_clock(int refclk, intel_clock_t *clock)
480 {
481         clock->m = i9xx_dpll_compute_m(clock);
482         clock->p = clock->p1 * clock->p2;
483         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
484                 return;
485         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
486         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
487 }
488
489 static void chv_clock(int refclk, intel_clock_t *clock)
490 {
491         clock->m = clock->m1 * clock->m2;
492         clock->p = clock->p1 * clock->p2;
493         if (WARN_ON(clock->n == 0 || clock->p == 0))
494                 return;
495         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
496                         clock->n << 22);
497         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
498 }
499
500 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
501 /**
502  * Returns whether the given set of divisors are valid for a given refclk with
503  * the given connectors.
504  */
505
506 static bool intel_PLL_is_valid(struct drm_device *dev,
507                                const intel_limit_t *limit,
508                                const intel_clock_t *clock)
509 {
510         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
511                 INTELPllInvalid("n out of range\n");
512         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
513                 INTELPllInvalid("p1 out of range\n");
514         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
515                 INTELPllInvalid("m2 out of range\n");
516         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
517                 INTELPllInvalid("m1 out of range\n");
518
519         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
520                 if (clock->m1 <= clock->m2)
521                         INTELPllInvalid("m1 <= m2\n");
522
523         if (!IS_VALLEYVIEW(dev)) {
524                 if (clock->p < limit->p.min || limit->p.max < clock->p)
525                         INTELPllInvalid("p out of range\n");
526                 if (clock->m < limit->m.min || limit->m.max < clock->m)
527                         INTELPllInvalid("m out of range\n");
528         }
529
530         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
531                 INTELPllInvalid("vco out of range\n");
532         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
533          * connector, etc., rather than just a single range.
534          */
535         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
536                 INTELPllInvalid("dot out of range\n");
537
538         return true;
539 }
540
541 static bool
542 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
543                     int target, int refclk, intel_clock_t *match_clock,
544                     intel_clock_t *best_clock)
545 {
546         struct drm_device *dev = crtc->dev;
547         intel_clock_t clock;
548         int err = target;
549
550         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
551                 /*
552                  * For LVDS just rely on its current settings for dual-channel.
553                  * We haven't figured out how to reliably set up different
554                  * single/dual channel state, if we even can.
555                  */
556                 if (intel_is_dual_link_lvds(dev))
557                         clock.p2 = limit->p2.p2_fast;
558                 else
559                         clock.p2 = limit->p2.p2_slow;
560         } else {
561                 if (target < limit->p2.dot_limit)
562                         clock.p2 = limit->p2.p2_slow;
563                 else
564                         clock.p2 = limit->p2.p2_fast;
565         }
566
567         memset(best_clock, 0, sizeof(*best_clock));
568
569         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
570              clock.m1++) {
571                 for (clock.m2 = limit->m2.min;
572                      clock.m2 <= limit->m2.max; clock.m2++) {
573                         if (clock.m2 >= clock.m1)
574                                 break;
575                         for (clock.n = limit->n.min;
576                              clock.n <= limit->n.max; clock.n++) {
577                                 for (clock.p1 = limit->p1.min;
578                                         clock.p1 <= limit->p1.max; clock.p1++) {
579                                         int this_err;
580
581                                         i9xx_clock(refclk, &clock);
582                                         if (!intel_PLL_is_valid(dev, limit,
583                                                                 &clock))
584                                                 continue;
585                                         if (match_clock &&
586                                             clock.p != match_clock->p)
587                                                 continue;
588
589                                         this_err = abs(clock.dot - target);
590                                         if (this_err < err) {
591                                                 *best_clock = clock;
592                                                 err = this_err;
593                                         }
594                                 }
595                         }
596                 }
597         }
598
599         return (err != target);
600 }
601
602 static bool
603 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
604                    int target, int refclk, intel_clock_t *match_clock,
605                    intel_clock_t *best_clock)
606 {
607         struct drm_device *dev = crtc->dev;
608         intel_clock_t clock;
609         int err = target;
610
611         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
612                 /*
613                  * For LVDS just rely on its current settings for dual-channel.
614                  * We haven't figured out how to reliably set up different
615                  * single/dual channel state, if we even can.
616                  */
617                 if (intel_is_dual_link_lvds(dev))
618                         clock.p2 = limit->p2.p2_fast;
619                 else
620                         clock.p2 = limit->p2.p2_slow;
621         } else {
622                 if (target < limit->p2.dot_limit)
623                         clock.p2 = limit->p2.p2_slow;
624                 else
625                         clock.p2 = limit->p2.p2_fast;
626         }
627
628         memset(best_clock, 0, sizeof(*best_clock));
629
630         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
631              clock.m1++) {
632                 for (clock.m2 = limit->m2.min;
633                      clock.m2 <= limit->m2.max; clock.m2++) {
634                         for (clock.n = limit->n.min;
635                              clock.n <= limit->n.max; clock.n++) {
636                                 for (clock.p1 = limit->p1.min;
637                                         clock.p1 <= limit->p1.max; clock.p1++) {
638                                         int this_err;
639
640                                         pineview_clock(refclk, &clock);
641                                         if (!intel_PLL_is_valid(dev, limit,
642                                                                 &clock))
643                                                 continue;
644                                         if (match_clock &&
645                                             clock.p != match_clock->p)
646                                                 continue;
647
648                                         this_err = abs(clock.dot - target);
649                                         if (this_err < err) {
650                                                 *best_clock = clock;
651                                                 err = this_err;
652                                         }
653                                 }
654                         }
655                 }
656         }
657
658         return (err != target);
659 }
660
661 static bool
662 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
663                    int target, int refclk, intel_clock_t *match_clock,
664                    intel_clock_t *best_clock)
665 {
666         struct drm_device *dev = crtc->dev;
667         intel_clock_t clock;
668         int max_n;
669         bool found;
670         /* approximately equals target * 0.00585 */
671         int err_most = (target >> 8) + (target >> 9);
672         found = false;
673
674         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
675                 if (intel_is_dual_link_lvds(dev))
676                         clock.p2 = limit->p2.p2_fast;
677                 else
678                         clock.p2 = limit->p2.p2_slow;
679         } else {
680                 if (target < limit->p2.dot_limit)
681                         clock.p2 = limit->p2.p2_slow;
682                 else
683                         clock.p2 = limit->p2.p2_fast;
684         }
685
686         memset(best_clock, 0, sizeof(*best_clock));
687         max_n = limit->n.max;
688         /* based on hardware requirement, prefer smaller n to precision */
689         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
690                 /* based on hardware requirement, prefere larger m1,m2 */
691                 for (clock.m1 = limit->m1.max;
692                      clock.m1 >= limit->m1.min; clock.m1--) {
693                         for (clock.m2 = limit->m2.max;
694                              clock.m2 >= limit->m2.min; clock.m2--) {
695                                 for (clock.p1 = limit->p1.max;
696                                      clock.p1 >= limit->p1.min; clock.p1--) {
697                                         int this_err;
698
699                                         i9xx_clock(refclk, &clock);
700                                         if (!intel_PLL_is_valid(dev, limit,
701                                                                 &clock))
702                                                 continue;
703
704                                         this_err = abs(clock.dot - target);
705                                         if (this_err < err_most) {
706                                                 *best_clock = clock;
707                                                 err_most = this_err;
708                                                 max_n = clock.n;
709                                                 found = true;
710                                         }
711                                 }
712                         }
713                 }
714         }
715         return found;
716 }
717
718 static bool
719 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
720                    int target, int refclk, intel_clock_t *match_clock,
721                    intel_clock_t *best_clock)
722 {
723         struct drm_device *dev = crtc->dev;
724         intel_clock_t clock;
725         unsigned int bestppm = 1000000;
726         /* min update 19.2 MHz */
727         int max_n = min(limit->n.max, refclk / 19200);
728         bool found = false;
729
730         target *= 5; /* fast clock */
731
732         memset(best_clock, 0, sizeof(*best_clock));
733
734         /* based on hardware requirement, prefer smaller n to precision */
735         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
737                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
738                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
739                                 clock.p = clock.p1 * clock.p2;
740                                 /* based on hardware requirement, prefer bigger m1,m2 values */
741                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
742                                         unsigned int ppm, diff;
743
744                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
745                                                                      refclk * clock.m1);
746
747                                         vlv_clock(refclk, &clock);
748
749                                         if (!intel_PLL_is_valid(dev, limit,
750                                                                 &clock))
751                                                 continue;
752
753                                         diff = abs(clock.dot - target);
754                                         ppm = div_u64(1000000ULL * diff, target);
755
756                                         if (ppm < 100 && clock.p > best_clock->p) {
757                                                 bestppm = 0;
758                                                 *best_clock = clock;
759                                                 found = true;
760                                         }
761
762                                         if (bestppm >= 10 && ppm < bestppm - 10) {
763                                                 bestppm = ppm;
764                                                 *best_clock = clock;
765                                                 found = true;
766                                         }
767                                 }
768                         }
769                 }
770         }
771
772         return found;
773 }
774
775 static bool
776 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
777                    int target, int refclk, intel_clock_t *match_clock,
778                    intel_clock_t *best_clock)
779 {
780         struct drm_device *dev = crtc->dev;
781         intel_clock_t clock;
782         uint64_t m2;
783         int found = false;
784
785         memset(best_clock, 0, sizeof(*best_clock));
786
787         /*
788          * Based on hardware doc, the n always set to 1, and m1 always
789          * set to 2.  If requires to support 200Mhz refclk, we need to
790          * revisit this because n may not 1 anymore.
791          */
792         clock.n = 1, clock.m1 = 2;
793         target *= 5;    /* fast clock */
794
795         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
796                 for (clock.p2 = limit->p2.p2_fast;
797                                 clock.p2 >= limit->p2.p2_slow;
798                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
799
800                         clock.p = clock.p1 * clock.p2;
801
802                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
803                                         clock.n) << 22, refclk * clock.m1);
804
805                         if (m2 > INT_MAX/clock.m1)
806                                 continue;
807
808                         clock.m2 = m2;
809
810                         chv_clock(refclk, &clock);
811
812                         if (!intel_PLL_is_valid(dev, limit, &clock))
813                                 continue;
814
815                         /* based on hardware requirement, prefer bigger p
816                          */
817                         if (clock.p > best_clock->p) {
818                                 *best_clock = clock;
819                                 found = true;
820                         }
821                 }
822         }
823
824         return found;
825 }
826
827 bool intel_crtc_active(struct drm_crtc *crtc)
828 {
829         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
830
831         /* Be paranoid as we can arrive here with only partial
832          * state retrieved from the hardware during setup.
833          *
834          * We can ditch the adjusted_mode.crtc_clock check as soon
835          * as Haswell has gained clock readout/fastboot support.
836          *
837          * We can ditch the crtc->primary->fb check as soon as we can
838          * properly reconstruct framebuffers.
839          */
840         return intel_crtc->active && crtc->primary->fb &&
841                 intel_crtc->config.adjusted_mode.crtc_clock;
842 }
843
844 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
845                                              enum pipe pipe)
846 {
847         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
848         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
849
850         return intel_crtc->config.cpu_transcoder;
851 }
852
853 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
854 {
855         struct drm_i915_private *dev_priv = dev->dev_private;
856         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
857
858         frame = I915_READ(frame_reg);
859
860         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
861                 WARN(1, "vblank wait timed out\n");
862 }
863
864 /**
865  * intel_wait_for_vblank - wait for vblank on a given pipe
866  * @dev: drm device
867  * @pipe: pipe to wait for
868  *
869  * Wait for vblank to occur on a given pipe.  Needed for various bits of
870  * mode setting code.
871  */
872 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
873 {
874         struct drm_i915_private *dev_priv = dev->dev_private;
875         int pipestat_reg = PIPESTAT(pipe);
876
877         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
878                 g4x_wait_for_vblank(dev, pipe);
879                 return;
880         }
881
882         /* Clear existing vblank status. Note this will clear any other
883          * sticky status fields as well.
884          *
885          * This races with i915_driver_irq_handler() with the result
886          * that either function could miss a vblank event.  Here it is not
887          * fatal, as we will either wait upon the next vblank interrupt or
888          * timeout.  Generally speaking intel_wait_for_vblank() is only
889          * called during modeset at which time the GPU should be idle and
890          * should *not* be performing page flips and thus not waiting on
891          * vblanks...
892          * Currently, the result of us stealing a vblank from the irq
893          * handler is that a single frame will be skipped during swapbuffers.
894          */
895         I915_WRITE(pipestat_reg,
896                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
897
898         /* Wait for vblank interrupt bit to set */
899         if (wait_for(I915_READ(pipestat_reg) &
900                      PIPE_VBLANK_INTERRUPT_STATUS,
901                      50))
902                 DRM_DEBUG_KMS("vblank wait timed out\n");
903 }
904
905 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
906 {
907         struct drm_i915_private *dev_priv = dev->dev_private;
908         u32 reg = PIPEDSL(pipe);
909         u32 line1, line2;
910         u32 line_mask;
911
912         if (IS_GEN2(dev))
913                 line_mask = DSL_LINEMASK_GEN2;
914         else
915                 line_mask = DSL_LINEMASK_GEN3;
916
917         line1 = I915_READ(reg) & line_mask;
918         mdelay(5);
919         line2 = I915_READ(reg) & line_mask;
920
921         return line1 == line2;
922 }
923
924 /*
925  * intel_wait_for_pipe_off - wait for pipe to turn off
926  * @dev: drm device
927  * @pipe: pipe to wait for
928  *
929  * After disabling a pipe, we can't wait for vblank in the usual way,
930  * spinning on the vblank interrupt status bit, since we won't actually
931  * see an interrupt when the pipe is disabled.
932  *
933  * On Gen4 and above:
934  *   wait for the pipe register state bit to turn off
935  *
936  * Otherwise:
937  *   wait for the display line value to settle (it usually
938  *   ends up stopping at the start of the next frame).
939  *
940  */
941 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
942 {
943         struct drm_i915_private *dev_priv = dev->dev_private;
944         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
945                                                                       pipe);
946
947         if (INTEL_INFO(dev)->gen >= 4) {
948                 int reg = PIPECONF(cpu_transcoder);
949
950                 /* Wait for the Pipe State to go off */
951                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
952                              100))
953                         WARN(1, "pipe_off wait timed out\n");
954         } else {
955                 /* Wait for the display line to settle */
956                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
957                         WARN(1, "pipe_off wait timed out\n");
958         }
959 }
960
961 /*
962  * ibx_digital_port_connected - is the specified port connected?
963  * @dev_priv: i915 private structure
964  * @port: the port to test
965  *
966  * Returns true if @port is connected, false otherwise.
967  */
968 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
969                                 struct intel_digital_port *port)
970 {
971         u32 bit;
972
973         if (HAS_PCH_IBX(dev_priv->dev)) {
974                 switch (port->port) {
975                 case PORT_B:
976                         bit = SDE_PORTB_HOTPLUG;
977                         break;
978                 case PORT_C:
979                         bit = SDE_PORTC_HOTPLUG;
980                         break;
981                 case PORT_D:
982                         bit = SDE_PORTD_HOTPLUG;
983                         break;
984                 default:
985                         return true;
986                 }
987         } else {
988                 switch (port->port) {
989                 case PORT_B:
990                         bit = SDE_PORTB_HOTPLUG_CPT;
991                         break;
992                 case PORT_C:
993                         bit = SDE_PORTC_HOTPLUG_CPT;
994                         break;
995                 case PORT_D:
996                         bit = SDE_PORTD_HOTPLUG_CPT;
997                         break;
998                 default:
999                         return true;
1000                 }
1001         }
1002
1003         return I915_READ(SDEISR) & bit;
1004 }
1005
1006 static const char *state_string(bool enabled)
1007 {
1008         return enabled ? "on" : "off";
1009 }
1010
1011 /* Only for pre-ILK configs */
1012 void assert_pll(struct drm_i915_private *dev_priv,
1013                 enum pipe pipe, bool state)
1014 {
1015         int reg;
1016         u32 val;
1017         bool cur_state;
1018
1019         reg = DPLL(pipe);
1020         val = I915_READ(reg);
1021         cur_state = !!(val & DPLL_VCO_ENABLE);
1022         WARN(cur_state != state,
1023              "PLL state assertion failure (expected %s, current %s)\n",
1024              state_string(state), state_string(cur_state));
1025 }
1026
1027 /* XXX: the dsi pll is shared between MIPI DSI ports */
1028 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1029 {
1030         u32 val;
1031         bool cur_state;
1032
1033         mutex_lock(&dev_priv->dpio_lock);
1034         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1035         mutex_unlock(&dev_priv->dpio_lock);
1036
1037         cur_state = val & DSI_PLL_VCO_EN;
1038         WARN(cur_state != state,
1039              "DSI PLL state assertion failure (expected %s, current %s)\n",
1040              state_string(state), state_string(cur_state));
1041 }
1042 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1043 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1044
1045 struct intel_shared_dpll *
1046 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1047 {
1048         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1049
1050         if (crtc->config.shared_dpll < 0)
1051                 return NULL;
1052
1053         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1054 }
1055
1056 /* For ILK+ */
1057 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1058                         struct intel_shared_dpll *pll,
1059                         bool state)
1060 {
1061         bool cur_state;
1062         struct intel_dpll_hw_state hw_state;
1063
1064         if (HAS_PCH_LPT(dev_priv->dev)) {
1065                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1066                 return;
1067         }
1068
1069         if (WARN (!pll,
1070                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1071                 return;
1072
1073         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074         WARN(cur_state != state,
1075              "%s assertion failure (expected %s, current %s)\n",
1076              pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080                           enum pipe pipe, bool state)
1081 {
1082         int reg;
1083         u32 val;
1084         bool cur_state;
1085         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086                                                                       pipe);
1087
1088         if (HAS_DDI(dev_priv->dev)) {
1089                 /* DDI does not have a specific FDI_TX register */
1090                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091                 val = I915_READ(reg);
1092                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093         } else {
1094                 reg = FDI_TX_CTL(pipe);
1095                 val = I915_READ(reg);
1096                 cur_state = !!(val & FDI_TX_ENABLE);
1097         }
1098         WARN(cur_state != state,
1099              "FDI TX state assertion failure (expected %s, current %s)\n",
1100              state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106                           enum pipe pipe, bool state)
1107 {
1108         int reg;
1109         u32 val;
1110         bool cur_state;
1111
1112         reg = FDI_RX_CTL(pipe);
1113         val = I915_READ(reg);
1114         cur_state = !!(val & FDI_RX_ENABLE);
1115         WARN(cur_state != state,
1116              "FDI RX state assertion failure (expected %s, current %s)\n",
1117              state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123                                       enum pipe pipe)
1124 {
1125         int reg;
1126         u32 val;
1127
1128         /* ILK FDI PLL is always enabled */
1129         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130                 return;
1131
1132         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133         if (HAS_DDI(dev_priv->dev))
1134                 return;
1135
1136         reg = FDI_TX_CTL(pipe);
1137         val = I915_READ(reg);
1138         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142                        enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155
1156 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157                                   enum pipe pipe)
1158 {
1159         int pp_reg, lvds_reg;
1160         u32 val;
1161         enum pipe panel_pipe = PIPE_A;
1162         bool locked = true;
1163
1164         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1165                 pp_reg = PCH_PP_CONTROL;
1166                 lvds_reg = PCH_LVDS;
1167         } else {
1168                 pp_reg = PP_CONTROL;
1169                 lvds_reg = LVDS;
1170         }
1171
1172         val = I915_READ(pp_reg);
1173         if (!(val & PANEL_POWER_ON) ||
1174             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1175                 locked = false;
1176
1177         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1178                 panel_pipe = PIPE_B;
1179
1180         WARN(panel_pipe == pipe && locked,
1181              "panel assertion failure, pipe %c regs locked\n",
1182              pipe_name(pipe));
1183 }
1184
1185 static void assert_cursor(struct drm_i915_private *dev_priv,
1186                           enum pipe pipe, bool state)
1187 {
1188         struct drm_device *dev = dev_priv->dev;
1189         bool cur_state;
1190
1191         if (IS_845G(dev) || IS_I865G(dev))
1192                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1193         else
1194                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1195
1196         WARN(cur_state != state,
1197              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1198              pipe_name(pipe), state_string(state), state_string(cur_state));
1199 }
1200 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1201 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1202
1203 void assert_pipe(struct drm_i915_private *dev_priv,
1204                  enum pipe pipe, bool state)
1205 {
1206         int reg;
1207         u32 val;
1208         bool cur_state;
1209         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1210                                                                       pipe);
1211
1212         /* if we need the pipe A quirk it must be always on */
1213         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1214                 state = true;
1215
1216         if (!intel_display_power_enabled(dev_priv,
1217                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1218                 cur_state = false;
1219         } else {
1220                 reg = PIPECONF(cpu_transcoder);
1221                 val = I915_READ(reg);
1222                 cur_state = !!(val & PIPECONF_ENABLE);
1223         }
1224
1225         WARN(cur_state != state,
1226              "pipe %c assertion failure (expected %s, current %s)\n",
1227              pipe_name(pipe), state_string(state), state_string(cur_state));
1228 }
1229
1230 static void assert_plane(struct drm_i915_private *dev_priv,
1231                          enum plane plane, bool state)
1232 {
1233         int reg;
1234         u32 val;
1235         bool cur_state;
1236
1237         reg = DSPCNTR(plane);
1238         val = I915_READ(reg);
1239         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1240         WARN(cur_state != state,
1241              "plane %c assertion failure (expected %s, current %s)\n",
1242              plane_name(plane), state_string(state), state_string(cur_state));
1243 }
1244
1245 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1246 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1247
1248 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1249                                    enum pipe pipe)
1250 {
1251         struct drm_device *dev = dev_priv->dev;
1252         int reg, i;
1253         u32 val;
1254         int cur_pipe;
1255
1256         /* Primary planes are fixed to pipes on gen4+ */
1257         if (INTEL_INFO(dev)->gen >= 4) {
1258                 reg = DSPCNTR(pipe);
1259                 val = I915_READ(reg);
1260                 WARN(val & DISPLAY_PLANE_ENABLE,
1261                      "plane %c assertion failure, should be disabled but not\n",
1262                      plane_name(pipe));
1263                 return;
1264         }
1265
1266         /* Need to check both planes against the pipe */
1267         for_each_pipe(i) {
1268                 reg = DSPCNTR(i);
1269                 val = I915_READ(reg);
1270                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1271                         DISPPLANE_SEL_PIPE_SHIFT;
1272                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1273                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1274                      plane_name(i), pipe_name(pipe));
1275         }
1276 }
1277
1278 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1279                                     enum pipe pipe)
1280 {
1281         struct drm_device *dev = dev_priv->dev;
1282         int reg, sprite;
1283         u32 val;
1284
1285         if (IS_VALLEYVIEW(dev)) {
1286                 for_each_sprite(pipe, sprite) {
1287                         reg = SPCNTR(pipe, sprite);
1288                         val = I915_READ(reg);
1289                         WARN(val & SP_ENABLE,
1290                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1291                              sprite_name(pipe, sprite), pipe_name(pipe));
1292                 }
1293         } else if (INTEL_INFO(dev)->gen >= 7) {
1294                 reg = SPRCTL(pipe);
1295                 val = I915_READ(reg);
1296                 WARN(val & SPRITE_ENABLE,
1297                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1298                      plane_name(pipe), pipe_name(pipe));
1299         } else if (INTEL_INFO(dev)->gen >= 5) {
1300                 reg = DVSCNTR(pipe);
1301                 val = I915_READ(reg);
1302                 WARN(val & DVS_ENABLE,
1303                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1304                      plane_name(pipe), pipe_name(pipe));
1305         }
1306 }
1307
1308 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1309 {
1310         u32 val;
1311         bool enabled;
1312
1313         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1314
1315         val = I915_READ(PCH_DREF_CONTROL);
1316         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1317                             DREF_SUPERSPREAD_SOURCE_MASK));
1318         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1319 }
1320
1321 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1322                                            enum pipe pipe)
1323 {
1324         int reg;
1325         u32 val;
1326         bool enabled;
1327
1328         reg = PCH_TRANSCONF(pipe);
1329         val = I915_READ(reg);
1330         enabled = !!(val & TRANS_ENABLE);
1331         WARN(enabled,
1332              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1333              pipe_name(pipe));
1334 }
1335
1336 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1337                             enum pipe pipe, u32 port_sel, u32 val)
1338 {
1339         if ((val & DP_PORT_EN) == 0)
1340                 return false;
1341
1342         if (HAS_PCH_CPT(dev_priv->dev)) {
1343                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1344                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1345                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1346                         return false;
1347         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1348                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1349                         return false;
1350         } else {
1351                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1352                         return false;
1353         }
1354         return true;
1355 }
1356
1357 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1358                               enum pipe pipe, u32 val)
1359 {
1360         if ((val & SDVO_ENABLE) == 0)
1361                 return false;
1362
1363         if (HAS_PCH_CPT(dev_priv->dev)) {
1364                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1365                         return false;
1366         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1367                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1368                         return false;
1369         } else {
1370                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1371                         return false;
1372         }
1373         return true;
1374 }
1375
1376 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1377                               enum pipe pipe, u32 val)
1378 {
1379         if ((val & LVDS_PORT_EN) == 0)
1380                 return false;
1381
1382         if (HAS_PCH_CPT(dev_priv->dev)) {
1383                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1384                         return false;
1385         } else {
1386                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1387                         return false;
1388         }
1389         return true;
1390 }
1391
1392 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1393                               enum pipe pipe, u32 val)
1394 {
1395         if ((val & ADPA_DAC_ENABLE) == 0)
1396                 return false;
1397         if (HAS_PCH_CPT(dev_priv->dev)) {
1398                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1399                         return false;
1400         } else {
1401                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1402                         return false;
1403         }
1404         return true;
1405 }
1406
1407 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1408                                    enum pipe pipe, int reg, u32 port_sel)
1409 {
1410         u32 val = I915_READ(reg);
1411         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1412              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1413              reg, pipe_name(pipe));
1414
1415         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1416              && (val & DP_PIPEB_SELECT),
1417              "IBX PCH dp port still using transcoder B\n");
1418 }
1419
1420 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1421                                      enum pipe pipe, int reg)
1422 {
1423         u32 val = I915_READ(reg);
1424         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1425              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1426              reg, pipe_name(pipe));
1427
1428         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1429              && (val & SDVO_PIPE_B_SELECT),
1430              "IBX PCH hdmi port still using transcoder B\n");
1431 }
1432
1433 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1434                                       enum pipe pipe)
1435 {
1436         int reg;
1437         u32 val;
1438
1439         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1440         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1441         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1442
1443         reg = PCH_ADPA;
1444         val = I915_READ(reg);
1445         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1446              "PCH VGA enabled on transcoder %c, should be disabled\n",
1447              pipe_name(pipe));
1448
1449         reg = PCH_LVDS;
1450         val = I915_READ(reg);
1451         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1452              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1453              pipe_name(pipe));
1454
1455         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1456         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1457         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1458 }
1459
1460 static void intel_init_dpio(struct drm_device *dev)
1461 {
1462         struct drm_i915_private *dev_priv = dev->dev_private;
1463
1464         if (!IS_VALLEYVIEW(dev))
1465                 return;
1466
1467         /*
1468          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1469          * CHV x1 PHY (DP/HDMI D)
1470          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1471          */
1472         if (IS_CHERRYVIEW(dev)) {
1473                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1474                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1475         } else {
1476                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1477         }
1478 }
1479
1480 static void intel_reset_dpio(struct drm_device *dev)
1481 {
1482         struct drm_i915_private *dev_priv = dev->dev_private;
1483
1484         if (!IS_VALLEYVIEW(dev))
1485                 return;
1486
1487         /*
1488          * Enable the CRI clock source so we can get at the display and the
1489          * reference clock for VGA hotplug / manual detection.
1490          */
1491         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1492                    DPLL_REFA_CLK_ENABLE_VLV |
1493                    DPLL_INTEGRATED_CRI_CLK_VLV);
1494
1495         if (IS_CHERRYVIEW(dev)) {
1496                 enum dpio_phy phy;
1497                 u32 val;
1498
1499                 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1500                         /* Poll for phypwrgood signal */
1501                         if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1502                                                 PHY_POWERGOOD(phy), 1))
1503                                 DRM_ERROR("Display PHY %d is not power up\n", phy);
1504
1505                         /*
1506                          * Deassert common lane reset for PHY.
1507                          *
1508                          * This should only be done on init and resume from S3
1509                          * with both PLLs disabled, or we risk losing DPIO and
1510                          * PLL synchronization.
1511                          */
1512                         val = I915_READ(DISPLAY_PHY_CONTROL);
1513                         I915_WRITE(DISPLAY_PHY_CONTROL,
1514                                 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1515                 }
1516
1517         } else {
1518                 /*
1519                  * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1520                  *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1521                  *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1522                  *   b. The other bits such as sfr settings / modesel may all
1523                  *      be set to 0.
1524                  *
1525                  * This should only be done on init and resume from S3 with
1526                  * both PLLs disabled, or we risk losing DPIO and PLL
1527                  * synchronization.
1528                  */
1529                 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1530         }
1531 }
1532
1533 static void vlv_enable_pll(struct intel_crtc *crtc)
1534 {
1535         struct drm_device *dev = crtc->base.dev;
1536         struct drm_i915_private *dev_priv = dev->dev_private;
1537         int reg = DPLL(crtc->pipe);
1538         u32 dpll = crtc->config.dpll_hw_state.dpll;
1539
1540         assert_pipe_disabled(dev_priv, crtc->pipe);
1541
1542         /* No really, not for ILK+ */
1543         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1544
1545         /* PLL is protected by panel, make sure we can write it */
1546         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1547                 assert_panel_unlocked(dev_priv, crtc->pipe);
1548
1549         I915_WRITE(reg, dpll);
1550         POSTING_READ(reg);
1551         udelay(150);
1552
1553         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1554                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1555
1556         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1557         POSTING_READ(DPLL_MD(crtc->pipe));
1558
1559         /* We do this three times for luck */
1560         I915_WRITE(reg, dpll);
1561         POSTING_READ(reg);
1562         udelay(150); /* wait for warmup */
1563         I915_WRITE(reg, dpll);
1564         POSTING_READ(reg);
1565         udelay(150); /* wait for warmup */
1566         I915_WRITE(reg, dpll);
1567         POSTING_READ(reg);
1568         udelay(150); /* wait for warmup */
1569 }
1570
1571 static void chv_enable_pll(struct intel_crtc *crtc)
1572 {
1573         struct drm_device *dev = crtc->base.dev;
1574         struct drm_i915_private *dev_priv = dev->dev_private;
1575         int pipe = crtc->pipe;
1576         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1577         u32 tmp;
1578
1579         assert_pipe_disabled(dev_priv, crtc->pipe);
1580
1581         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1582
1583         mutex_lock(&dev_priv->dpio_lock);
1584
1585         /* Enable back the 10bit clock to display controller */
1586         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1587         tmp |= DPIO_DCLKP_EN;
1588         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1589
1590         /*
1591          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1592          */
1593         udelay(1);
1594
1595         /* Enable PLL */
1596         I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1597
1598         /* Check PLL is locked */
1599         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1600                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1601
1602         /* not sure when this should be written */
1603         I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1604         POSTING_READ(DPLL_MD(pipe));
1605
1606         mutex_unlock(&dev_priv->dpio_lock);
1607 }
1608
1609 static void i9xx_enable_pll(struct intel_crtc *crtc)
1610 {
1611         struct drm_device *dev = crtc->base.dev;
1612         struct drm_i915_private *dev_priv = dev->dev_private;
1613         int reg = DPLL(crtc->pipe);
1614         u32 dpll = crtc->config.dpll_hw_state.dpll;
1615
1616         assert_pipe_disabled(dev_priv, crtc->pipe);
1617
1618         /* No really, not for ILK+ */
1619         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1620
1621         /* PLL is protected by panel, make sure we can write it */
1622         if (IS_MOBILE(dev) && !IS_I830(dev))
1623                 assert_panel_unlocked(dev_priv, crtc->pipe);
1624
1625         I915_WRITE(reg, dpll);
1626
1627         /* Wait for the clocks to stabilize. */
1628         POSTING_READ(reg);
1629         udelay(150);
1630
1631         if (INTEL_INFO(dev)->gen >= 4) {
1632                 I915_WRITE(DPLL_MD(crtc->pipe),
1633                            crtc->config.dpll_hw_state.dpll_md);
1634         } else {
1635                 /* The pixel multiplier can only be updated once the
1636                  * DPLL is enabled and the clocks are stable.
1637                  *
1638                  * So write it again.
1639                  */
1640                 I915_WRITE(reg, dpll);
1641         }
1642
1643         /* We do this three times for luck */
1644         I915_WRITE(reg, dpll);
1645         POSTING_READ(reg);
1646         udelay(150); /* wait for warmup */
1647         I915_WRITE(reg, dpll);
1648         POSTING_READ(reg);
1649         udelay(150); /* wait for warmup */
1650         I915_WRITE(reg, dpll);
1651         POSTING_READ(reg);
1652         udelay(150); /* wait for warmup */
1653 }
1654
1655 /**
1656  * i9xx_disable_pll - disable a PLL
1657  * @dev_priv: i915 private structure
1658  * @pipe: pipe PLL to disable
1659  *
1660  * Disable the PLL for @pipe, making sure the pipe is off first.
1661  *
1662  * Note!  This is for pre-ILK only.
1663  */
1664 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1665 {
1666         /* Don't disable pipe A or pipe A PLLs if needed */
1667         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1668                 return;
1669
1670         /* Make sure the pipe isn't still relying on us */
1671         assert_pipe_disabled(dev_priv, pipe);
1672
1673         I915_WRITE(DPLL(pipe), 0);
1674         POSTING_READ(DPLL(pipe));
1675 }
1676
1677 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1678 {
1679         u32 val = 0;
1680
1681         /* Make sure the pipe isn't still relying on us */
1682         assert_pipe_disabled(dev_priv, pipe);
1683
1684         /*
1685          * Leave integrated clock source and reference clock enabled for pipe B.
1686          * The latter is needed for VGA hotplug / manual detection.
1687          */
1688         if (pipe == PIPE_B)
1689                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1690         I915_WRITE(DPLL(pipe), val);
1691         POSTING_READ(DPLL(pipe));
1692
1693 }
1694
1695 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1696 {
1697         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1698         u32 val;
1699
1700         /* Make sure the pipe isn't still relying on us */
1701         assert_pipe_disabled(dev_priv, pipe);
1702
1703         /* Set PLL en = 0 */
1704         val = DPLL_SSC_REF_CLOCK_CHV;
1705         if (pipe != PIPE_A)
1706                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1707         I915_WRITE(DPLL(pipe), val);
1708         POSTING_READ(DPLL(pipe));
1709
1710         mutex_lock(&dev_priv->dpio_lock);
1711
1712         /* Disable 10bit clock to display controller */
1713         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1714         val &= ~DPIO_DCLKP_EN;
1715         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1716
1717         mutex_unlock(&dev_priv->dpio_lock);
1718 }
1719
1720 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1721                 struct intel_digital_port *dport)
1722 {
1723         u32 port_mask;
1724         int dpll_reg;
1725
1726         switch (dport->port) {
1727         case PORT_B:
1728                 port_mask = DPLL_PORTB_READY_MASK;
1729                 dpll_reg = DPLL(0);
1730                 break;
1731         case PORT_C:
1732                 port_mask = DPLL_PORTC_READY_MASK;
1733                 dpll_reg = DPLL(0);
1734                 break;
1735         case PORT_D:
1736                 port_mask = DPLL_PORTD_READY_MASK;
1737                 dpll_reg = DPIO_PHY_STATUS;
1738                 break;
1739         default:
1740                 BUG();
1741         }
1742
1743         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1744                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1745                      port_name(dport->port), I915_READ(dpll_reg));
1746 }
1747
1748 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1749 {
1750         struct drm_device *dev = crtc->base.dev;
1751         struct drm_i915_private *dev_priv = dev->dev_private;
1752         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1753
1754         WARN_ON(!pll->refcount);
1755         if (pll->active == 0) {
1756                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1757                 WARN_ON(pll->on);
1758                 assert_shared_dpll_disabled(dev_priv, pll);
1759
1760                 pll->mode_set(dev_priv, pll);
1761         }
1762 }
1763
1764 /**
1765  * intel_enable_shared_dpll - enable PCH PLL
1766  * @dev_priv: i915 private structure
1767  * @pipe: pipe PLL to enable
1768  *
1769  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1770  * drives the transcoder clock.
1771  */
1772 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1773 {
1774         struct drm_device *dev = crtc->base.dev;
1775         struct drm_i915_private *dev_priv = dev->dev_private;
1776         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1777
1778         if (WARN_ON(pll == NULL))
1779                 return;
1780
1781         if (WARN_ON(pll->refcount == 0))
1782                 return;
1783
1784         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1785                       pll->name, pll->active, pll->on,
1786                       crtc->base.base.id);
1787
1788         if (pll->active++) {
1789                 WARN_ON(!pll->on);
1790                 assert_shared_dpll_enabled(dev_priv, pll);
1791                 return;
1792         }
1793         WARN_ON(pll->on);
1794
1795         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1796         pll->enable(dev_priv, pll);
1797         pll->on = true;
1798 }
1799
1800 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1801 {
1802         struct drm_device *dev = crtc->base.dev;
1803         struct drm_i915_private *dev_priv = dev->dev_private;
1804         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806         /* PCH only available on ILK+ */
1807         BUG_ON(INTEL_INFO(dev)->gen < 5);
1808         if (WARN_ON(pll == NULL))
1809                return;
1810
1811         if (WARN_ON(pll->refcount == 0))
1812                 return;
1813
1814         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1815                       pll->name, pll->active, pll->on,
1816                       crtc->base.base.id);
1817
1818         if (WARN_ON(pll->active == 0)) {
1819                 assert_shared_dpll_disabled(dev_priv, pll);
1820                 return;
1821         }
1822
1823         assert_shared_dpll_enabled(dev_priv, pll);
1824         WARN_ON(!pll->on);
1825         if (--pll->active)
1826                 return;
1827
1828         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1829         pll->disable(dev_priv, pll);
1830         pll->on = false;
1831 }
1832
1833 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1834                                            enum pipe pipe)
1835 {
1836         struct drm_device *dev = dev_priv->dev;
1837         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1838         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1839         uint32_t reg, val, pipeconf_val;
1840
1841         /* PCH only available on ILK+ */
1842         BUG_ON(INTEL_INFO(dev)->gen < 5);
1843
1844         /* Make sure PCH DPLL is enabled */
1845         assert_shared_dpll_enabled(dev_priv,
1846                                    intel_crtc_to_shared_dpll(intel_crtc));
1847
1848         /* FDI must be feeding us bits for PCH ports */
1849         assert_fdi_tx_enabled(dev_priv, pipe);
1850         assert_fdi_rx_enabled(dev_priv, pipe);
1851
1852         if (HAS_PCH_CPT(dev)) {
1853                 /* Workaround: Set the timing override bit before enabling the
1854                  * pch transcoder. */
1855                 reg = TRANS_CHICKEN2(pipe);
1856                 val = I915_READ(reg);
1857                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1858                 I915_WRITE(reg, val);
1859         }
1860
1861         reg = PCH_TRANSCONF(pipe);
1862         val = I915_READ(reg);
1863         pipeconf_val = I915_READ(PIPECONF(pipe));
1864
1865         if (HAS_PCH_IBX(dev_priv->dev)) {
1866                 /*
1867                  * make the BPC in transcoder be consistent with
1868                  * that in pipeconf reg.
1869                  */
1870                 val &= ~PIPECONF_BPC_MASK;
1871                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1872         }
1873
1874         val &= ~TRANS_INTERLACE_MASK;
1875         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1876                 if (HAS_PCH_IBX(dev_priv->dev) &&
1877                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1878                         val |= TRANS_LEGACY_INTERLACED_ILK;
1879                 else
1880                         val |= TRANS_INTERLACED;
1881         else
1882                 val |= TRANS_PROGRESSIVE;
1883
1884         I915_WRITE(reg, val | TRANS_ENABLE);
1885         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1886                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1887 }
1888
1889 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1890                                       enum transcoder cpu_transcoder)
1891 {
1892         u32 val, pipeconf_val;
1893
1894         /* PCH only available on ILK+ */
1895         BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1896
1897         /* FDI must be feeding us bits for PCH ports */
1898         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1899         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1900
1901         /* Workaround: set timing override bit. */
1902         val = I915_READ(_TRANSA_CHICKEN2);
1903         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1904         I915_WRITE(_TRANSA_CHICKEN2, val);
1905
1906         val = TRANS_ENABLE;
1907         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1908
1909         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1910             PIPECONF_INTERLACED_ILK)
1911                 val |= TRANS_INTERLACED;
1912         else
1913                 val |= TRANS_PROGRESSIVE;
1914
1915         I915_WRITE(LPT_TRANSCONF, val);
1916         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1917                 DRM_ERROR("Failed to enable PCH transcoder\n");
1918 }
1919
1920 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1921                                             enum pipe pipe)
1922 {
1923         struct drm_device *dev = dev_priv->dev;
1924         uint32_t reg, val;
1925
1926         /* FDI relies on the transcoder */
1927         assert_fdi_tx_disabled(dev_priv, pipe);
1928         assert_fdi_rx_disabled(dev_priv, pipe);
1929
1930         /* Ports must be off as well */
1931         assert_pch_ports_disabled(dev_priv, pipe);
1932
1933         reg = PCH_TRANSCONF(pipe);
1934         val = I915_READ(reg);
1935         val &= ~TRANS_ENABLE;
1936         I915_WRITE(reg, val);
1937         /* wait for PCH transcoder off, transcoder state */
1938         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1939                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1940
1941         if (!HAS_PCH_IBX(dev)) {
1942                 /* Workaround: Clear the timing override chicken bit again. */
1943                 reg = TRANS_CHICKEN2(pipe);
1944                 val = I915_READ(reg);
1945                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1946                 I915_WRITE(reg, val);
1947         }
1948 }
1949
1950 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1951 {
1952         u32 val;
1953
1954         val = I915_READ(LPT_TRANSCONF);
1955         val &= ~TRANS_ENABLE;
1956         I915_WRITE(LPT_TRANSCONF, val);
1957         /* wait for PCH transcoder off, transcoder state */
1958         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1959                 DRM_ERROR("Failed to disable PCH transcoder\n");
1960
1961         /* Workaround: clear timing override bit. */
1962         val = I915_READ(_TRANSA_CHICKEN2);
1963         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1964         I915_WRITE(_TRANSA_CHICKEN2, val);
1965 }
1966
1967 /**
1968  * intel_enable_pipe - enable a pipe, asserting requirements
1969  * @crtc: crtc responsible for the pipe
1970  *
1971  * Enable @crtc's pipe, making sure that various hardware specific requirements
1972  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1973  */
1974 static void intel_enable_pipe(struct intel_crtc *crtc)
1975 {
1976         struct drm_device *dev = crtc->base.dev;
1977         struct drm_i915_private *dev_priv = dev->dev_private;
1978         enum pipe pipe = crtc->pipe;
1979         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1980                                                                       pipe);
1981         enum pipe pch_transcoder;
1982         int reg;
1983         u32 val;
1984
1985         assert_planes_disabled(dev_priv, pipe);
1986         assert_cursor_disabled(dev_priv, pipe);
1987         assert_sprites_disabled(dev_priv, pipe);
1988
1989         if (HAS_PCH_LPT(dev_priv->dev))
1990                 pch_transcoder = TRANSCODER_A;
1991         else
1992                 pch_transcoder = pipe;
1993
1994         /*
1995          * A pipe without a PLL won't actually be able to drive bits from
1996          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1997          * need the check.
1998          */
1999         if (!HAS_PCH_SPLIT(dev_priv->dev))
2000                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2001                         assert_dsi_pll_enabled(dev_priv);
2002                 else
2003                         assert_pll_enabled(dev_priv, pipe);
2004         else {
2005                 if (crtc->config.has_pch_encoder) {
2006                         /* if driving the PCH, we need FDI enabled */
2007                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2008                         assert_fdi_tx_pll_enabled(dev_priv,
2009                                                   (enum pipe) cpu_transcoder);
2010                 }
2011                 /* FIXME: assert CPU port conditions for SNB+ */
2012         }
2013
2014         reg = PIPECONF(cpu_transcoder);
2015         val = I915_READ(reg);
2016         if (val & PIPECONF_ENABLE) {
2017                 WARN_ON(!(pipe == PIPE_A &&
2018                           dev_priv->quirks & QUIRK_PIPEA_FORCE));
2019                 return;
2020         }
2021
2022         I915_WRITE(reg, val | PIPECONF_ENABLE);
2023         POSTING_READ(reg);
2024 }
2025
2026 /**
2027  * intel_disable_pipe - disable a pipe, asserting requirements
2028  * @dev_priv: i915 private structure
2029  * @pipe: pipe to disable
2030  *
2031  * Disable @pipe, making sure that various hardware specific requirements
2032  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2033  *
2034  * @pipe should be %PIPE_A or %PIPE_B.
2035  *
2036  * Will wait until the pipe has shut down before returning.
2037  */
2038 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2039                                enum pipe pipe)
2040 {
2041         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2042                                                                       pipe);
2043         int reg;
2044         u32 val;
2045
2046         /*
2047          * Make sure planes won't keep trying to pump pixels to us,
2048          * or we might hang the display.
2049          */
2050         assert_planes_disabled(dev_priv, pipe);
2051         assert_cursor_disabled(dev_priv, pipe);
2052         assert_sprites_disabled(dev_priv, pipe);
2053
2054         /* Don't disable pipe A or pipe A PLLs if needed */
2055         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2056                 return;
2057
2058         reg = PIPECONF(cpu_transcoder);
2059         val = I915_READ(reg);
2060         if ((val & PIPECONF_ENABLE) == 0)
2061                 return;
2062
2063         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2064         intel_wait_for_pipe_off(dev_priv->dev, pipe);
2065 }
2066
2067 /*
2068  * Plane regs are double buffered, going from enabled->disabled needs a
2069  * trigger in order to latch.  The display address reg provides this.
2070  */
2071 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2072                                enum plane plane)
2073 {
2074         struct drm_device *dev = dev_priv->dev;
2075         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2076
2077         I915_WRITE(reg, I915_READ(reg));
2078         POSTING_READ(reg);
2079 }
2080
2081 /**
2082  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2083  * @dev_priv: i915 private structure
2084  * @plane: plane to enable
2085  * @pipe: pipe being fed
2086  *
2087  * Enable @plane on @pipe, making sure that @pipe is running first.
2088  */
2089 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2090                                           enum plane plane, enum pipe pipe)
2091 {
2092         struct intel_crtc *intel_crtc =
2093                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2094         int reg;
2095         u32 val;
2096
2097         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2098         assert_pipe_enabled(dev_priv, pipe);
2099
2100         if (intel_crtc->primary_enabled)
2101                 return;
2102
2103         intel_crtc->primary_enabled = true;
2104
2105         reg = DSPCNTR(plane);
2106         val = I915_READ(reg);
2107         WARN_ON(val & DISPLAY_PLANE_ENABLE);
2108
2109         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
2110         intel_flush_primary_plane(dev_priv, plane);
2111 }
2112
2113 /**
2114  * intel_disable_primary_hw_plane - disable the primary hardware plane
2115  * @dev_priv: i915 private structure
2116  * @plane: plane to disable
2117  * @pipe: pipe consuming the data
2118  *
2119  * Disable @plane; should be an independent operation.
2120  */
2121 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2122                                            enum plane plane, enum pipe pipe)
2123 {
2124         struct intel_crtc *intel_crtc =
2125                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2126         int reg;
2127         u32 val;
2128
2129         if (!intel_crtc->primary_enabled)
2130                 return;
2131
2132         intel_crtc->primary_enabled = false;
2133
2134         reg = DSPCNTR(plane);
2135         val = I915_READ(reg);
2136         WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2137
2138         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
2139         intel_flush_primary_plane(dev_priv, plane);
2140 }
2141
2142 static bool need_vtd_wa(struct drm_device *dev)
2143 {
2144 #ifdef CONFIG_INTEL_IOMMU
2145         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2146                 return true;
2147 #endif
2148         return false;
2149 }
2150
2151 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2152 {
2153         int tile_height;
2154
2155         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2156         return ALIGN(height, tile_height);
2157 }
2158
2159 int
2160 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2161                            struct drm_i915_gem_object *obj,
2162                            struct intel_ring_buffer *pipelined)
2163 {
2164         struct drm_i915_private *dev_priv = dev->dev_private;
2165         u32 alignment;
2166         int ret;
2167
2168         switch (obj->tiling_mode) {
2169         case I915_TILING_NONE:
2170                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2171                         alignment = 128 * 1024;
2172                 else if (INTEL_INFO(dev)->gen >= 4)
2173                         alignment = 4 * 1024;
2174                 else
2175                         alignment = 64 * 1024;
2176                 break;
2177         case I915_TILING_X:
2178                 /* pin() will align the object as required by fence */
2179                 alignment = 0;
2180                 break;
2181         case I915_TILING_Y:
2182                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2183                 return -EINVAL;
2184         default:
2185                 BUG();
2186         }
2187
2188         /* Note that the w/a also requires 64 PTE of padding following the
2189          * bo. We currently fill all unused PTE with the shadow page and so
2190          * we should always have valid PTE following the scanout preventing
2191          * the VT-d warning.
2192          */
2193         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2194                 alignment = 256 * 1024;
2195
2196         dev_priv->mm.interruptible = false;
2197         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2198         if (ret)
2199                 goto err_interruptible;
2200
2201         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2202          * fence, whereas 965+ only requires a fence if using
2203          * framebuffer compression.  For simplicity, we always install
2204          * a fence as the cost is not that onerous.
2205          */
2206         ret = i915_gem_object_get_fence(obj);
2207         if (ret)
2208                 goto err_unpin;
2209
2210         i915_gem_object_pin_fence(obj);
2211
2212         dev_priv->mm.interruptible = true;
2213         return 0;
2214
2215 err_unpin:
2216         i915_gem_object_unpin_from_display_plane(obj);
2217 err_interruptible:
2218         dev_priv->mm.interruptible = true;
2219         return ret;
2220 }
2221
2222 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2223 {
2224         i915_gem_object_unpin_fence(obj);
2225         i915_gem_object_unpin_from_display_plane(obj);
2226 }
2227
2228 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2229  * is assumed to be a power-of-two. */
2230 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2231                                              unsigned int tiling_mode,
2232                                              unsigned int cpp,
2233                                              unsigned int pitch)
2234 {
2235         if (tiling_mode != I915_TILING_NONE) {
2236                 unsigned int tile_rows, tiles;
2237
2238                 tile_rows = *y / 8;
2239                 *y %= 8;
2240
2241                 tiles = *x / (512/cpp);
2242                 *x %= 512/cpp;
2243
2244                 return tile_rows * pitch * 8 + tiles * 4096;
2245         } else {
2246                 unsigned int offset;
2247
2248                 offset = *y * pitch + *x * cpp;
2249                 *y = 0;
2250                 *x = (offset & 4095) / cpp;
2251                 return offset & -4096;
2252         }
2253 }
2254
2255 int intel_format_to_fourcc(int format)
2256 {
2257         switch (format) {
2258         case DISPPLANE_8BPP:
2259                 return DRM_FORMAT_C8;
2260         case DISPPLANE_BGRX555:
2261                 return DRM_FORMAT_XRGB1555;
2262         case DISPPLANE_BGRX565:
2263                 return DRM_FORMAT_RGB565;
2264         default:
2265         case DISPPLANE_BGRX888:
2266                 return DRM_FORMAT_XRGB8888;
2267         case DISPPLANE_RGBX888:
2268                 return DRM_FORMAT_XBGR8888;
2269         case DISPPLANE_BGRX101010:
2270                 return DRM_FORMAT_XRGB2101010;
2271         case DISPPLANE_RGBX101010:
2272                 return DRM_FORMAT_XBGR2101010;
2273         }
2274 }
2275
2276 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2277                                   struct intel_plane_config *plane_config)
2278 {
2279         struct drm_device *dev = crtc->base.dev;
2280         struct drm_i915_gem_object *obj = NULL;
2281         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2282         u32 base = plane_config->base;
2283
2284         if (plane_config->size == 0)
2285                 return false;
2286
2287         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2288                                                              plane_config->size);
2289         if (!obj)
2290                 return false;
2291
2292         if (plane_config->tiled) {
2293                 obj->tiling_mode = I915_TILING_X;
2294                 obj->stride = crtc->base.primary->fb->pitches[0];
2295         }
2296
2297         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2298         mode_cmd.width = crtc->base.primary->fb->width;
2299         mode_cmd.height = crtc->base.primary->fb->height;
2300         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2301
2302         mutex_lock(&dev->struct_mutex);
2303
2304         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2305                                    &mode_cmd, obj)) {
2306                 DRM_DEBUG_KMS("intel fb init failed\n");
2307                 goto out_unref_obj;
2308         }
2309
2310         mutex_unlock(&dev->struct_mutex);
2311
2312         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2313         return true;
2314
2315 out_unref_obj:
2316         drm_gem_object_unreference(&obj->base);
2317         mutex_unlock(&dev->struct_mutex);
2318         return false;
2319 }
2320
2321 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2322                                  struct intel_plane_config *plane_config)
2323 {
2324         struct drm_device *dev = intel_crtc->base.dev;
2325         struct drm_crtc *c;
2326         struct intel_crtc *i;
2327         struct intel_framebuffer *fb;
2328
2329         if (!intel_crtc->base.primary->fb)
2330                 return;
2331
2332         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2333                 return;
2334
2335         kfree(intel_crtc->base.primary->fb);
2336         intel_crtc->base.primary->fb = NULL;
2337
2338         /*
2339          * Failed to alloc the obj, check to see if we should share
2340          * an fb with another CRTC instead
2341          */
2342         for_each_crtc(dev, c) {
2343                 i = to_intel_crtc(c);
2344
2345                 if (c == &intel_crtc->base)
2346                         continue;
2347
2348                 if (!i->active || !c->primary->fb)
2349                         continue;
2350
2351                 fb = to_intel_framebuffer(c->primary->fb);
2352                 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
2353                         drm_framebuffer_reference(c->primary->fb);
2354                         intel_crtc->base.primary->fb = c->primary->fb;
2355                         break;
2356                 }
2357         }
2358 }
2359
2360 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2361                                       struct drm_framebuffer *fb,
2362                                       int x, int y)
2363 {
2364         struct drm_device *dev = crtc->dev;
2365         struct drm_i915_private *dev_priv = dev->dev_private;
2366         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2367         struct intel_framebuffer *intel_fb;
2368         struct drm_i915_gem_object *obj;
2369         int plane = intel_crtc->plane;
2370         unsigned long linear_offset;
2371         u32 dspcntr;
2372         u32 reg;
2373
2374         intel_fb = to_intel_framebuffer(fb);
2375         obj = intel_fb->obj;
2376
2377         reg = DSPCNTR(plane);
2378         dspcntr = I915_READ(reg);
2379         /* Mask out pixel format bits in case we change it */
2380         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2381         switch (fb->pixel_format) {
2382         case DRM_FORMAT_C8:
2383                 dspcntr |= DISPPLANE_8BPP;
2384                 break;
2385         case DRM_FORMAT_XRGB1555:
2386         case DRM_FORMAT_ARGB1555:
2387                 dspcntr |= DISPPLANE_BGRX555;
2388                 break;
2389         case DRM_FORMAT_RGB565:
2390                 dspcntr |= DISPPLANE_BGRX565;
2391                 break;
2392         case DRM_FORMAT_XRGB8888:
2393         case DRM_FORMAT_ARGB8888:
2394                 dspcntr |= DISPPLANE_BGRX888;
2395                 break;
2396         case DRM_FORMAT_XBGR8888:
2397         case DRM_FORMAT_ABGR8888:
2398                 dspcntr |= DISPPLANE_RGBX888;
2399                 break;
2400         case DRM_FORMAT_XRGB2101010:
2401         case DRM_FORMAT_ARGB2101010:
2402                 dspcntr |= DISPPLANE_BGRX101010;
2403                 break;
2404         case DRM_FORMAT_XBGR2101010:
2405         case DRM_FORMAT_ABGR2101010:
2406                 dspcntr |= DISPPLANE_RGBX101010;
2407                 break;
2408         default:
2409                 BUG();
2410         }
2411
2412         if (INTEL_INFO(dev)->gen >= 4) {
2413                 if (obj->tiling_mode != I915_TILING_NONE)
2414                         dspcntr |= DISPPLANE_TILED;
2415                 else
2416                         dspcntr &= ~DISPPLANE_TILED;
2417         }
2418
2419         if (IS_G4X(dev))
2420                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2421
2422         I915_WRITE(reg, dspcntr);
2423
2424         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2425
2426         if (INTEL_INFO(dev)->gen >= 4) {
2427                 intel_crtc->dspaddr_offset =
2428                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2429                                                        fb->bits_per_pixel / 8,
2430                                                        fb->pitches[0]);
2431                 linear_offset -= intel_crtc->dspaddr_offset;
2432         } else {
2433                 intel_crtc->dspaddr_offset = linear_offset;
2434         }
2435
2436         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2437                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2438                       fb->pitches[0]);
2439         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2440         if (INTEL_INFO(dev)->gen >= 4) {
2441                 I915_WRITE(DSPSURF(plane),
2442                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2443                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2444                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2445         } else
2446                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2447         POSTING_READ(reg);
2448 }
2449
2450 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2451                                           struct drm_framebuffer *fb,
2452                                           int x, int y)
2453 {
2454         struct drm_device *dev = crtc->dev;
2455         struct drm_i915_private *dev_priv = dev->dev_private;
2456         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2457         struct intel_framebuffer *intel_fb;
2458         struct drm_i915_gem_object *obj;
2459         int plane = intel_crtc->plane;
2460         unsigned long linear_offset;
2461         u32 dspcntr;
2462         u32 reg;
2463
2464         intel_fb = to_intel_framebuffer(fb);
2465         obj = intel_fb->obj;
2466
2467         reg = DSPCNTR(plane);
2468         dspcntr = I915_READ(reg);
2469         /* Mask out pixel format bits in case we change it */
2470         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2471         switch (fb->pixel_format) {
2472         case DRM_FORMAT_C8:
2473                 dspcntr |= DISPPLANE_8BPP;
2474                 break;
2475         case DRM_FORMAT_RGB565:
2476                 dspcntr |= DISPPLANE_BGRX565;
2477                 break;
2478         case DRM_FORMAT_XRGB8888:
2479         case DRM_FORMAT_ARGB8888:
2480                 dspcntr |= DISPPLANE_BGRX888;
2481                 break;
2482         case DRM_FORMAT_XBGR8888:
2483         case DRM_FORMAT_ABGR8888:
2484                 dspcntr |= DISPPLANE_RGBX888;
2485                 break;
2486         case DRM_FORMAT_XRGB2101010:
2487         case DRM_FORMAT_ARGB2101010:
2488                 dspcntr |= DISPPLANE_BGRX101010;
2489                 break;
2490         case DRM_FORMAT_XBGR2101010:
2491         case DRM_FORMAT_ABGR2101010:
2492                 dspcntr |= DISPPLANE_RGBX101010;
2493                 break;
2494         default:
2495                 BUG();
2496         }
2497
2498         if (obj->tiling_mode != I915_TILING_NONE)
2499                 dspcntr |= DISPPLANE_TILED;
2500         else
2501                 dspcntr &= ~DISPPLANE_TILED;
2502
2503         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2504                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2505         else
2506                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2507
2508         I915_WRITE(reg, dspcntr);
2509
2510         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2511         intel_crtc->dspaddr_offset =
2512                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2513                                                fb->bits_per_pixel / 8,
2514                                                fb->pitches[0]);
2515         linear_offset -= intel_crtc->dspaddr_offset;
2516
2517         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2518                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2519                       fb->pitches[0]);
2520         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2521         I915_WRITE(DSPSURF(plane),
2522                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2523         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2524                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2525         } else {
2526                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2527                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2528         }
2529         POSTING_READ(reg);
2530 }
2531
2532 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2533 static int
2534 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2535                            int x, int y, enum mode_set_atomic state)
2536 {
2537         struct drm_device *dev = crtc->dev;
2538         struct drm_i915_private *dev_priv = dev->dev_private;
2539
2540         if (dev_priv->display.disable_fbc)
2541                 dev_priv->display.disable_fbc(dev);
2542         intel_increase_pllclock(crtc);
2543
2544         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2545
2546         return 0;
2547 }
2548
2549 void intel_display_handle_reset(struct drm_device *dev)
2550 {
2551         struct drm_i915_private *dev_priv = dev->dev_private;
2552         struct drm_crtc *crtc;
2553
2554         /*
2555          * Flips in the rings have been nuked by the reset,
2556          * so complete all pending flips so that user space
2557          * will get its events and not get stuck.
2558          *
2559          * Also update the base address of all primary
2560          * planes to the the last fb to make sure we're
2561          * showing the correct fb after a reset.
2562          *
2563          * Need to make two loops over the crtcs so that we
2564          * don't try to grab a crtc mutex before the
2565          * pending_flip_queue really got woken up.
2566          */
2567
2568         for_each_crtc(dev, crtc) {
2569                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2570                 enum plane plane = intel_crtc->plane;
2571
2572                 intel_prepare_page_flip(dev, plane);
2573                 intel_finish_page_flip_plane(dev, plane);
2574         }
2575
2576         for_each_crtc(dev, crtc) {
2577                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2578
2579                 mutex_lock(&crtc->mutex);
2580                 /*
2581                  * FIXME: Once we have proper support for primary planes (and
2582                  * disabling them without disabling the entire crtc) allow again
2583                  * a NULL crtc->primary->fb.
2584                  */
2585                 if (intel_crtc->active && crtc->primary->fb)
2586                         dev_priv->display.update_primary_plane(crtc,
2587                                                                crtc->primary->fb,
2588                                                                crtc->x,
2589                                                                crtc->y);
2590                 mutex_unlock(&crtc->mutex);
2591         }
2592 }
2593
2594 static int
2595 intel_finish_fb(struct drm_framebuffer *old_fb)
2596 {
2597         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2598         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2599         bool was_interruptible = dev_priv->mm.interruptible;
2600         int ret;
2601
2602         /* Big Hammer, we also need to ensure that any pending
2603          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2604          * current scanout is retired before unpinning the old
2605          * framebuffer.
2606          *
2607          * This should only fail upon a hung GPU, in which case we
2608          * can safely continue.
2609          */
2610         dev_priv->mm.interruptible = false;
2611         ret = i915_gem_object_finish_gpu(obj);
2612         dev_priv->mm.interruptible = was_interruptible;
2613
2614         return ret;
2615 }
2616
2617 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2618 {
2619         struct drm_device *dev = crtc->dev;
2620         struct drm_i915_private *dev_priv = dev->dev_private;
2621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2622         unsigned long flags;
2623         bool pending;
2624
2625         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2626             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2627                 return false;
2628
2629         spin_lock_irqsave(&dev->event_lock, flags);
2630         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2631         spin_unlock_irqrestore(&dev->event_lock, flags);
2632
2633         return pending;
2634 }
2635
2636 static int
2637 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2638                     struct drm_framebuffer *fb)
2639 {
2640         struct drm_device *dev = crtc->dev;
2641         struct drm_i915_private *dev_priv = dev->dev_private;
2642         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2643         struct drm_framebuffer *old_fb;
2644         int ret;
2645
2646         if (intel_crtc_has_pending_flip(crtc)) {
2647                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2648                 return -EBUSY;
2649         }
2650
2651         /* no fb bound */
2652         if (!fb) {
2653                 DRM_ERROR("No FB bound\n");
2654                 return 0;
2655         }
2656
2657         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2658                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2659                           plane_name(intel_crtc->plane),
2660                           INTEL_INFO(dev)->num_pipes);
2661                 return -EINVAL;
2662         }
2663
2664         mutex_lock(&dev->struct_mutex);
2665         ret = intel_pin_and_fence_fb_obj(dev,
2666                                          to_intel_framebuffer(fb)->obj,
2667                                          NULL);
2668         mutex_unlock(&dev->struct_mutex);
2669         if (ret != 0) {
2670                 DRM_ERROR("pin & fence failed\n");
2671                 return ret;
2672         }
2673
2674         /*
2675          * Update pipe size and adjust fitter if needed: the reason for this is
2676          * that in compute_mode_changes we check the native mode (not the pfit
2677          * mode) to see if we can flip rather than do a full mode set. In the
2678          * fastboot case, we'll flip, but if we don't update the pipesrc and
2679          * pfit state, we'll end up with a big fb scanned out into the wrong
2680          * sized surface.
2681          *
2682          * To fix this properly, we need to hoist the checks up into
2683          * compute_mode_changes (or above), check the actual pfit state and
2684          * whether the platform allows pfit disable with pipe active, and only
2685          * then update the pipesrc and pfit state, even on the flip path.
2686          */
2687         if (i915.fastboot) {
2688                 const struct drm_display_mode *adjusted_mode =
2689                         &intel_crtc->config.adjusted_mode;
2690
2691                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2692                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2693                            (adjusted_mode->crtc_vdisplay - 1));
2694                 if (!intel_crtc->config.pch_pfit.enabled &&
2695                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2696                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2697                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2698                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2699                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2700                 }
2701                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2702                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2703         }
2704
2705         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2706
2707         old_fb = crtc->primary->fb;
2708         crtc->primary->fb = fb;
2709         crtc->x = x;
2710         crtc->y = y;
2711
2712         if (old_fb) {
2713                 if (intel_crtc->active && old_fb != fb)
2714                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2715                 mutex_lock(&dev->struct_mutex);
2716                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2717                 mutex_unlock(&dev->struct_mutex);
2718         }
2719
2720         mutex_lock(&dev->struct_mutex);
2721         intel_update_fbc(dev);
2722         intel_edp_psr_update(dev);
2723         mutex_unlock(&dev->struct_mutex);
2724
2725         return 0;
2726 }
2727
2728 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2729 {
2730         struct drm_device *dev = crtc->dev;
2731         struct drm_i915_private *dev_priv = dev->dev_private;
2732         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2733         int pipe = intel_crtc->pipe;
2734         u32 reg, temp;
2735
2736         /* enable normal train */
2737         reg = FDI_TX_CTL(pipe);
2738         temp = I915_READ(reg);
2739         if (IS_IVYBRIDGE(dev)) {
2740                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2741                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2742         } else {
2743                 temp &= ~FDI_LINK_TRAIN_NONE;
2744                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2745         }
2746         I915_WRITE(reg, temp);
2747
2748         reg = FDI_RX_CTL(pipe);
2749         temp = I915_READ(reg);
2750         if (HAS_PCH_CPT(dev)) {
2751                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2752                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2753         } else {
2754                 temp &= ~FDI_LINK_TRAIN_NONE;
2755                 temp |= FDI_LINK_TRAIN_NONE;
2756         }
2757         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2758
2759         /* wait one idle pattern time */
2760         POSTING_READ(reg);
2761         udelay(1000);
2762
2763         /* IVB wants error correction enabled */
2764         if (IS_IVYBRIDGE(dev))
2765                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2766                            FDI_FE_ERRC_ENABLE);
2767 }
2768
2769 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2770 {
2771         return crtc->base.enabled && crtc->active &&
2772                 crtc->config.has_pch_encoder;
2773 }
2774
2775 static void ivb_modeset_global_resources(struct drm_device *dev)
2776 {
2777         struct drm_i915_private *dev_priv = dev->dev_private;
2778         struct intel_crtc *pipe_B_crtc =
2779                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2780         struct intel_crtc *pipe_C_crtc =
2781                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2782         uint32_t temp;
2783
2784         /*
2785          * When everything is off disable fdi C so that we could enable fdi B
2786          * with all lanes. Note that we don't care about enabled pipes without
2787          * an enabled pch encoder.
2788          */
2789         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2790             !pipe_has_enabled_pch(pipe_C_crtc)) {
2791                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2792                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2793
2794                 temp = I915_READ(SOUTH_CHICKEN1);
2795                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2796                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2797                 I915_WRITE(SOUTH_CHICKEN1, temp);
2798         }
2799 }
2800
2801 /* The FDI link training functions for ILK/Ibexpeak. */
2802 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2803 {
2804         struct drm_device *dev = crtc->dev;
2805         struct drm_i915_private *dev_priv = dev->dev_private;
2806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2807         int pipe = intel_crtc->pipe;
2808         u32 reg, temp, tries;
2809
2810         /* FDI needs bits from pipe first */
2811         assert_pipe_enabled(dev_priv, pipe);
2812
2813         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2814            for train result */
2815         reg = FDI_RX_IMR(pipe);
2816         temp = I915_READ(reg);
2817         temp &= ~FDI_RX_SYMBOL_LOCK;
2818         temp &= ~FDI_RX_BIT_LOCK;
2819         I915_WRITE(reg, temp);
2820         I915_READ(reg);
2821         udelay(150);
2822
2823         /* enable CPU FDI TX and PCH FDI RX */
2824         reg = FDI_TX_CTL(pipe);
2825         temp = I915_READ(reg);
2826         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2827         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2828         temp &= ~FDI_LINK_TRAIN_NONE;
2829         temp |= FDI_LINK_TRAIN_PATTERN_1;
2830         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2831
2832         reg = FDI_RX_CTL(pipe);
2833         temp = I915_READ(reg);
2834         temp &= ~FDI_LINK_TRAIN_NONE;
2835         temp |= FDI_LINK_TRAIN_PATTERN_1;
2836         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2837
2838         POSTING_READ(reg);
2839         udelay(150);
2840
2841         /* Ironlake workaround, enable clock pointer after FDI enable*/
2842         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2843         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2844                    FDI_RX_PHASE_SYNC_POINTER_EN);
2845
2846         reg = FDI_RX_IIR(pipe);
2847         for (tries = 0; tries < 5; tries++) {
2848                 temp = I915_READ(reg);
2849                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2850
2851                 if ((temp & FDI_RX_BIT_LOCK)) {
2852                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2853                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2854                         break;
2855                 }
2856         }
2857         if (tries == 5)
2858                 DRM_ERROR("FDI train 1 fail!\n");
2859
2860         /* Train 2 */
2861         reg = FDI_TX_CTL(pipe);
2862         temp = I915_READ(reg);
2863         temp &= ~FDI_LINK_TRAIN_NONE;
2864         temp |= FDI_LINK_TRAIN_PATTERN_2;
2865         I915_WRITE(reg, temp);
2866
2867         reg = FDI_RX_CTL(pipe);
2868         temp = I915_READ(reg);
2869         temp &= ~FDI_LINK_TRAIN_NONE;
2870         temp |= FDI_LINK_TRAIN_PATTERN_2;
2871         I915_WRITE(reg, temp);
2872
2873         POSTING_READ(reg);
2874         udelay(150);
2875
2876         reg = FDI_RX_IIR(pipe);
2877         for (tries = 0; tries < 5; tries++) {
2878                 temp = I915_READ(reg);
2879                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2880
2881                 if (temp & FDI_RX_SYMBOL_LOCK) {
2882                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2883                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2884                         break;
2885                 }
2886         }
2887         if (tries == 5)
2888                 DRM_ERROR("FDI train 2 fail!\n");
2889
2890         DRM_DEBUG_KMS("FDI train done\n");
2891
2892 }
2893
2894 static const int snb_b_fdi_train_param[] = {
2895         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2896         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2897         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2898         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2899 };
2900
2901 /* The FDI link training functions for SNB/Cougarpoint. */
2902 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2903 {
2904         struct drm_device *dev = crtc->dev;
2905         struct drm_i915_private *dev_priv = dev->dev_private;
2906         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2907         int pipe = intel_crtc->pipe;
2908         u32 reg, temp, i, retry;
2909
2910         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2911            for train result */
2912         reg = FDI_RX_IMR(pipe);
2913         temp = I915_READ(reg);
2914         temp &= ~FDI_RX_SYMBOL_LOCK;
2915         temp &= ~FDI_RX_BIT_LOCK;
2916         I915_WRITE(reg, temp);
2917
2918         POSTING_READ(reg);
2919         udelay(150);
2920
2921         /* enable CPU FDI TX and PCH FDI RX */
2922         reg = FDI_TX_CTL(pipe);
2923         temp = I915_READ(reg);
2924         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2925         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2926         temp &= ~FDI_LINK_TRAIN_NONE;
2927         temp |= FDI_LINK_TRAIN_PATTERN_1;
2928         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2929         /* SNB-B */
2930         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2931         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2932
2933         I915_WRITE(FDI_RX_MISC(pipe),
2934                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2935
2936         reg = FDI_RX_CTL(pipe);
2937         temp = I915_READ(reg);
2938         if (HAS_PCH_CPT(dev)) {
2939                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2940                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2941         } else {
2942                 temp &= ~FDI_LINK_TRAIN_NONE;
2943                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2944         }
2945         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2946
2947         POSTING_READ(reg);
2948         udelay(150);
2949
2950         for (i = 0; i < 4; i++) {
2951                 reg = FDI_TX_CTL(pipe);
2952                 temp = I915_READ(reg);
2953                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2954                 temp |= snb_b_fdi_train_param[i];
2955                 I915_WRITE(reg, temp);
2956
2957                 POSTING_READ(reg);
2958                 udelay(500);
2959
2960                 for (retry = 0; retry < 5; retry++) {
2961                         reg = FDI_RX_IIR(pipe);
2962                         temp = I915_READ(reg);
2963                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2964                         if (temp & FDI_RX_BIT_LOCK) {
2965                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2966                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2967                                 break;
2968                         }
2969                         udelay(50);
2970                 }
2971                 if (retry < 5)
2972                         break;
2973         }
2974         if (i == 4)
2975                 DRM_ERROR("FDI train 1 fail!\n");
2976
2977         /* Train 2 */
2978         reg = FDI_TX_CTL(pipe);
2979         temp = I915_READ(reg);
2980         temp &= ~FDI_LINK_TRAIN_NONE;
2981         temp |= FDI_LINK_TRAIN_PATTERN_2;
2982         if (IS_GEN6(dev)) {
2983                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2984                 /* SNB-B */
2985                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2986         }
2987         I915_WRITE(reg, temp);
2988
2989         reg = FDI_RX_CTL(pipe);
2990         temp = I915_READ(reg);
2991         if (HAS_PCH_CPT(dev)) {
2992                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2993                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2994         } else {
2995                 temp &= ~FDI_LINK_TRAIN_NONE;
2996                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2997         }
2998         I915_WRITE(reg, temp);
2999
3000         POSTING_READ(reg);
3001         udelay(150);
3002
3003         for (i = 0; i < 4; i++) {
3004                 reg = FDI_TX_CTL(pipe);
3005                 temp = I915_READ(reg);
3006                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3007                 temp |= snb_b_fdi_train_param[i];
3008                 I915_WRITE(reg, temp);
3009
3010                 POSTING_READ(reg);
3011                 udelay(500);
3012
3013                 for (retry = 0; retry < 5; retry++) {
3014                         reg = FDI_RX_IIR(pipe);
3015                         temp = I915_READ(reg);
3016                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3017                         if (temp & FDI_RX_SYMBOL_LOCK) {
3018                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3019                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3020                                 break;
3021                         }
3022                         udelay(50);
3023                 }
3024                 if (retry < 5)
3025                         break;
3026         }
3027         if (i == 4)
3028                 DRM_ERROR("FDI train 2 fail!\n");
3029
3030         DRM_DEBUG_KMS("FDI train done.\n");
3031 }
3032
3033 /* Manual link training for Ivy Bridge A0 parts */
3034 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3035 {
3036         struct drm_device *dev = crtc->dev;
3037         struct drm_i915_private *dev_priv = dev->dev_private;
3038         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3039         int pipe = intel_crtc->pipe;
3040         u32 reg, temp, i, j;
3041
3042         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3043            for train result */
3044         reg = FDI_RX_IMR(pipe);
3045         temp = I915_READ(reg);
3046         temp &= ~FDI_RX_SYMBOL_LOCK;
3047         temp &= ~FDI_RX_BIT_LOCK;
3048         I915_WRITE(reg, temp);
3049
3050         POSTING_READ(reg);
3051         udelay(150);
3052
3053         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3054                       I915_READ(FDI_RX_IIR(pipe)));
3055
3056         /* Try each vswing and preemphasis setting twice before moving on */
3057         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3058                 /* disable first in case we need to retry */
3059                 reg = FDI_TX_CTL(pipe);
3060                 temp = I915_READ(reg);
3061                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3062                 temp &= ~FDI_TX_ENABLE;
3063                 I915_WRITE(reg, temp);
3064
3065                 reg = FDI_RX_CTL(pipe);
3066                 temp = I915_READ(reg);
3067                 temp &= ~FDI_LINK_TRAIN_AUTO;
3068                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3069                 temp &= ~FDI_RX_ENABLE;
3070                 I915_WRITE(reg, temp);
3071
3072                 /* enable CPU FDI TX and PCH FDI RX */
3073                 reg = FDI_TX_CTL(pipe);
3074                 temp = I915_READ(reg);
3075                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3076                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3077                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3078                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3079                 temp |= snb_b_fdi_train_param[j/2];
3080                 temp |= FDI_COMPOSITE_SYNC;
3081                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3082
3083                 I915_WRITE(FDI_RX_MISC(pipe),
3084                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3085
3086                 reg = FDI_RX_CTL(pipe);
3087                 temp = I915_READ(reg);
3088                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3089                 temp |= FDI_COMPOSITE_SYNC;
3090                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3091
3092                 POSTING_READ(reg);
3093                 udelay(1); /* should be 0.5us */
3094
3095                 for (i = 0; i < 4; i++) {
3096                         reg = FDI_RX_IIR(pipe);
3097                         temp = I915_READ(reg);
3098                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3099
3100                         if (temp & FDI_RX_BIT_LOCK ||
3101                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3102                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3103                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3104                                               i);
3105                                 break;
3106                         }
3107                         udelay(1); /* should be 0.5us */
3108                 }
3109                 if (i == 4) {
3110                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3111                         continue;
3112                 }
3113
3114                 /* Train 2 */
3115                 reg = FDI_TX_CTL(pipe);
3116                 temp = I915_READ(reg);
3117                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3118                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3119                 I915_WRITE(reg, temp);
3120
3121                 reg = FDI_RX_CTL(pipe);
3122                 temp = I915_READ(reg);
3123                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3124                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3125                 I915_WRITE(reg, temp);
3126
3127                 POSTING_READ(reg);
3128                 udelay(2); /* should be 1.5us */
3129
3130                 for (i = 0; i < 4; i++) {
3131                         reg = FDI_RX_IIR(pipe);
3132                         temp = I915_READ(reg);
3133                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3134
3135                         if (temp & FDI_RX_SYMBOL_LOCK ||
3136                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3137                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3138                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3139                                               i);
3140                                 goto train_done;
3141                         }
3142                         udelay(2); /* should be 1.5us */
3143                 }
3144                 if (i == 4)
3145                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3146         }
3147
3148 train_done:
3149         DRM_DEBUG_KMS("FDI train done.\n");
3150 }
3151
3152 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3153 {
3154         struct drm_device *dev = intel_crtc->base.dev;
3155         struct drm_i915_private *dev_priv = dev->dev_private;
3156         int pipe = intel_crtc->pipe;
3157         u32 reg, temp;
3158
3159
3160         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3161         reg = FDI_RX_CTL(pipe);
3162         temp = I915_READ(reg);
3163         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3164         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3165         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3166         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3167
3168         POSTING_READ(reg);
3169         udelay(200);
3170
3171         /* Switch from Rawclk to PCDclk */
3172         temp = I915_READ(reg);
3173         I915_WRITE(reg, temp | FDI_PCDCLK);
3174
3175         POSTING_READ(reg);
3176         udelay(200);
3177
3178         /* Enable CPU FDI TX PLL, always on for Ironlake */
3179         reg = FDI_TX_CTL(pipe);
3180         temp = I915_READ(reg);
3181         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3182                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3183
3184                 POSTING_READ(reg);
3185                 udelay(100);
3186         }
3187 }
3188
3189 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3190 {
3191         struct drm_device *dev = intel_crtc->base.dev;
3192         struct drm_i915_private *dev_priv = dev->dev_private;
3193         int pipe = intel_crtc->pipe;
3194         u32 reg, temp;
3195
3196         /* Switch from PCDclk to Rawclk */
3197         reg = FDI_RX_CTL(pipe);
3198         temp = I915_READ(reg);
3199         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3200
3201         /* Disable CPU FDI TX PLL */
3202         reg = FDI_TX_CTL(pipe);
3203         temp = I915_READ(reg);
3204         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3205
3206         POSTING_READ(reg);
3207         udelay(100);
3208
3209         reg = FDI_RX_CTL(pipe);
3210         temp = I915_READ(reg);
3211         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3212
3213         /* Wait for the clocks to turn off. */
3214         POSTING_READ(reg);
3215         udelay(100);
3216 }
3217
3218 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3219 {
3220         struct drm_device *dev = crtc->dev;
3221         struct drm_i915_private *dev_priv = dev->dev_private;
3222         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3223         int pipe = intel_crtc->pipe;
3224         u32 reg, temp;
3225
3226         /* disable CPU FDI tx and PCH FDI rx */
3227         reg = FDI_TX_CTL(pipe);
3228         temp = I915_READ(reg);
3229         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3230         POSTING_READ(reg);
3231
3232         reg = FDI_RX_CTL(pipe);
3233         temp = I915_READ(reg);
3234         temp &= ~(0x7 << 16);
3235         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3236         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3237
3238         POSTING_READ(reg);
3239         udelay(100);
3240
3241         /* Ironlake workaround, disable clock pointer after downing FDI */
3242         if (HAS_PCH_IBX(dev))
3243                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3244
3245         /* still set train pattern 1 */
3246         reg = FDI_TX_CTL(pipe);
3247         temp = I915_READ(reg);
3248         temp &= ~FDI_LINK_TRAIN_NONE;
3249         temp |= FDI_LINK_TRAIN_PATTERN_1;
3250         I915_WRITE(reg, temp);
3251
3252         reg = FDI_RX_CTL(pipe);
3253         temp = I915_READ(reg);
3254         if (HAS_PCH_CPT(dev)) {
3255                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3256                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3257         } else {
3258                 temp &= ~FDI_LINK_TRAIN_NONE;
3259                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3260         }
3261         /* BPC in FDI rx is consistent with that in PIPECONF */
3262         temp &= ~(0x07 << 16);
3263         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3264         I915_WRITE(reg, temp);
3265
3266         POSTING_READ(reg);
3267         udelay(100);
3268 }
3269
3270 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3271 {
3272         struct intel_crtc *crtc;
3273
3274         /* Note that we don't need to be called with mode_config.lock here
3275          * as our list of CRTC objects is static for the lifetime of the
3276          * device and so cannot disappear as we iterate. Similarly, we can
3277          * happily treat the predicates as racy, atomic checks as userspace
3278          * cannot claim and pin a new fb without at least acquring the
3279          * struct_mutex and so serialising with us.
3280          */
3281         for_each_intel_crtc(dev, crtc) {
3282                 if (atomic_read(&crtc->unpin_work_count) == 0)
3283                         continue;
3284
3285                 if (crtc->unpin_work)
3286                         intel_wait_for_vblank(dev, crtc->pipe);
3287
3288                 return true;
3289         }
3290
3291         return false;
3292 }
3293
3294 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3295 {
3296         struct drm_device *dev = crtc->dev;
3297         struct drm_i915_private *dev_priv = dev->dev_private;
3298
3299         if (crtc->primary->fb == NULL)
3300                 return;
3301
3302         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3303
3304         WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3305                                    !intel_crtc_has_pending_flip(crtc),
3306                                    60*HZ) == 0);
3307
3308         mutex_lock(&dev->struct_mutex);
3309         intel_finish_fb(crtc->primary->fb);
3310         mutex_unlock(&dev->struct_mutex);
3311 }
3312
3313 /* Program iCLKIP clock to the desired frequency */
3314 static void lpt_program_iclkip(struct drm_crtc *crtc)
3315 {
3316         struct drm_device *dev = crtc->dev;
3317         struct drm_i915_private *dev_priv = dev->dev_private;
3318         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3319         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3320         u32 temp;
3321
3322         mutex_lock(&dev_priv->dpio_lock);
3323
3324         /* It is necessary to ungate the pixclk gate prior to programming
3325          * the divisors, and gate it back when it is done.
3326          */
3327         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3328
3329         /* Disable SSCCTL */
3330         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3331                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3332                                 SBI_SSCCTL_DISABLE,
3333                         SBI_ICLK);
3334
3335         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3336         if (clock == 20000) {
3337                 auxdiv = 1;
3338                 divsel = 0x41;
3339                 phaseinc = 0x20;
3340         } else {
3341                 /* The iCLK virtual clock root frequency is in MHz,
3342                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3343                  * divisors, it is necessary to divide one by another, so we
3344                  * convert the virtual clock precision to KHz here for higher
3345                  * precision.
3346                  */
3347                 u32 iclk_virtual_root_freq = 172800 * 1000;
3348                 u32 iclk_pi_range = 64;
3349                 u32 desired_divisor, msb_divisor_value, pi_value;
3350
3351                 desired_divisor = (iclk_virtual_root_freq / clock);
3352                 msb_divisor_value = desired_divisor / iclk_pi_range;
3353                 pi_value = desired_divisor % iclk_pi_range;
3354
3355                 auxdiv = 0;
3356                 divsel = msb_divisor_value - 2;
3357                 phaseinc = pi_value;
3358         }
3359
3360         /* This should not happen with any sane values */
3361         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3362                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3363         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3364                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3365
3366         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3367                         clock,
3368                         auxdiv,
3369                         divsel,
3370                         phasedir,
3371                         phaseinc);
3372
3373         /* Program SSCDIVINTPHASE6 */
3374         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3375         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3376         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3377         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3378         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3379         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3380         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3381         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3382
3383         /* Program SSCAUXDIV */
3384         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3385         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3386         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3387         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3388
3389         /* Enable modulator and associated divider */
3390         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3391         temp &= ~SBI_SSCCTL_DISABLE;
3392         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3393
3394         /* Wait for initialization time */
3395         udelay(24);
3396
3397         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3398
3399         mutex_unlock(&dev_priv->dpio_lock);
3400 }
3401
3402 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3403                                                 enum pipe pch_transcoder)
3404 {
3405         struct drm_device *dev = crtc->base.dev;
3406         struct drm_i915_private *dev_priv = dev->dev_private;
3407         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3408
3409         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3410                    I915_READ(HTOTAL(cpu_transcoder)));
3411         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3412                    I915_READ(HBLANK(cpu_transcoder)));
3413         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3414                    I915_READ(HSYNC(cpu_transcoder)));
3415
3416         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3417                    I915_READ(VTOTAL(cpu_transcoder)));
3418         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3419                    I915_READ(VBLANK(cpu_transcoder)));
3420         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3421                    I915_READ(VSYNC(cpu_transcoder)));
3422         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3423                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3424 }
3425
3426 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3427 {
3428         struct drm_i915_private *dev_priv = dev->dev_private;
3429         uint32_t temp;
3430
3431         temp = I915_READ(SOUTH_CHICKEN1);
3432         if (temp & FDI_BC_BIFURCATION_SELECT)
3433                 return;
3434
3435         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3436         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3437
3438         temp |= FDI_BC_BIFURCATION_SELECT;
3439         DRM_DEBUG_KMS("enabling fdi C rx\n");
3440         I915_WRITE(SOUTH_CHICKEN1, temp);
3441         POSTING_READ(SOUTH_CHICKEN1);
3442 }
3443
3444 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3445 {
3446         struct drm_device *dev = intel_crtc->base.dev;
3447         struct drm_i915_private *dev_priv = dev->dev_private;
3448
3449         switch (intel_crtc->pipe) {
3450         case PIPE_A:
3451                 break;
3452         case PIPE_B:
3453                 if (intel_crtc->config.fdi_lanes > 2)
3454                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3455                 else
3456                         cpt_enable_fdi_bc_bifurcation(dev);
3457
3458                 break;
3459         case PIPE_C:
3460                 cpt_enable_fdi_bc_bifurcation(dev);
3461
3462                 break;
3463         default:
3464                 BUG();
3465         }
3466 }
3467
3468 /*
3469  * Enable PCH resources required for PCH ports:
3470  *   - PCH PLLs
3471  *   - FDI training & RX/TX
3472  *   - update transcoder timings
3473  *   - DP transcoding bits
3474  *   - transcoder
3475  */
3476 static void ironlake_pch_enable(struct drm_crtc *crtc)
3477 {
3478         struct drm_device *dev = crtc->dev;
3479         struct drm_i915_private *dev_priv = dev->dev_private;
3480         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3481         int pipe = intel_crtc->pipe;
3482         u32 reg, temp;
3483
3484         assert_pch_transcoder_disabled(dev_priv, pipe);
3485
3486         if (IS_IVYBRIDGE(dev))
3487                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3488
3489         /* Write the TU size bits before fdi link training, so that error
3490          * detection works. */
3491         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3492                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3493
3494         /* For PCH output, training FDI link */
3495         dev_priv->display.fdi_link_train(crtc);
3496
3497         /* We need to program the right clock selection before writing the pixel
3498          * mutliplier into the DPLL. */
3499         if (HAS_PCH_CPT(dev)) {
3500                 u32 sel;
3501
3502                 temp = I915_READ(PCH_DPLL_SEL);
3503                 temp |= TRANS_DPLL_ENABLE(pipe);
3504                 sel = TRANS_DPLLB_SEL(pipe);
3505                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3506                         temp |= sel;
3507                 else
3508                         temp &= ~sel;
3509                 I915_WRITE(PCH_DPLL_SEL, temp);
3510         }
3511
3512         /* XXX: pch pll's can be enabled any time before we enable the PCH
3513          * transcoder, and we actually should do this to not upset any PCH
3514          * transcoder that already use the clock when we share it.
3515          *
3516          * Note that enable_shared_dpll tries to do the right thing, but
3517          * get_shared_dpll unconditionally resets the pll - we need that to have
3518          * the right LVDS enable sequence. */
3519         intel_enable_shared_dpll(intel_crtc);
3520
3521         /* set transcoder timing, panel must allow it */
3522         assert_panel_unlocked(dev_priv, pipe);
3523         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3524
3525         intel_fdi_normal_train(crtc);
3526
3527         /* For PCH DP, enable TRANS_DP_CTL */
3528         if (HAS_PCH_CPT(dev) &&
3529             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3530              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3531                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3532                 reg = TRANS_DP_CTL(pipe);
3533                 temp = I915_READ(reg);
3534                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3535                           TRANS_DP_SYNC_MASK |
3536                           TRANS_DP_BPC_MASK);
3537                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3538                          TRANS_DP_ENH_FRAMING);
3539                 temp |= bpc << 9; /* same format but at 11:9 */
3540
3541                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3542                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3543                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3544                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3545
3546                 switch (intel_trans_dp_port_sel(crtc)) {
3547                 case PCH_DP_B:
3548                         temp |= TRANS_DP_PORT_SEL_B;
3549                         break;
3550                 case PCH_DP_C:
3551                         temp |= TRANS_DP_PORT_SEL_C;
3552                         break;
3553                 case PCH_DP_D:
3554                         temp |= TRANS_DP_PORT_SEL_D;
3555                         break;
3556                 default:
3557                         BUG();
3558                 }
3559
3560                 I915_WRITE(reg, temp);
3561         }
3562
3563         ironlake_enable_pch_transcoder(dev_priv, pipe);
3564 }
3565
3566 static void lpt_pch_enable(struct drm_crtc *crtc)
3567 {
3568         struct drm_device *dev = crtc->dev;
3569         struct drm_i915_private *dev_priv = dev->dev_private;
3570         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3571         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3572
3573         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3574
3575         lpt_program_iclkip(crtc);
3576
3577         /* Set transcoder timing. */
3578         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3579
3580         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3581 }
3582
3583 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3584 {
3585         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3586
3587         if (pll == NULL)
3588                 return;
3589
3590         if (pll->refcount == 0) {
3591                 WARN(1, "bad %s refcount\n", pll->name);
3592                 return;
3593         }
3594
3595         if (--pll->refcount == 0) {
3596                 WARN_ON(pll->on);
3597                 WARN_ON(pll->active);
3598         }
3599
3600         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3601 }
3602
3603 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3604 {
3605         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3606         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3607         enum intel_dpll_id i;
3608
3609         if (pll) {
3610                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3611                               crtc->base.base.id, pll->name);
3612                 intel_put_shared_dpll(crtc);
3613         }
3614
3615         if (HAS_PCH_IBX(dev_priv->dev)) {
3616                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3617                 i = (enum intel_dpll_id) crtc->pipe;
3618                 pll = &dev_priv->shared_dplls[i];
3619
3620                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3621                               crtc->base.base.id, pll->name);
3622
3623                 WARN_ON(pll->refcount);
3624
3625                 goto found;
3626         }
3627
3628         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3629                 pll = &dev_priv->shared_dplls[i];
3630
3631                 /* Only want to check enabled timings first */
3632                 if (pll->refcount == 0)
3633                         continue;
3634
3635                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3636                            sizeof(pll->hw_state)) == 0) {
3637                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3638                                       crtc->base.base.id,
3639                                       pll->name, pll->refcount, pll->active);
3640
3641                         goto found;
3642                 }
3643         }
3644
3645         /* Ok no matching timings, maybe there's a free one? */
3646         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3647                 pll = &dev_priv->shared_dplls[i];
3648                 if (pll->refcount == 0) {
3649                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3650                                       crtc->base.base.id, pll->name);
3651                         goto found;
3652                 }
3653         }
3654
3655         return NULL;
3656
3657 found:
3658         if (pll->refcount == 0)
3659                 pll->hw_state = crtc->config.dpll_hw_state;
3660
3661         crtc->config.shared_dpll = i;
3662         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3663                          pipe_name(crtc->pipe));
3664
3665         pll->refcount++;
3666
3667         return pll;
3668 }
3669
3670 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3671 {
3672         struct drm_i915_private *dev_priv = dev->dev_private;
3673         int dslreg = PIPEDSL(pipe);
3674         u32 temp;
3675
3676         temp = I915_READ(dslreg);
3677         udelay(500);
3678         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3679                 if (wait_for(I915_READ(dslreg) != temp, 5))
3680                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3681         }
3682 }
3683
3684 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3685 {
3686         struct drm_device *dev = crtc->base.dev;
3687         struct drm_i915_private *dev_priv = dev->dev_private;
3688         int pipe = crtc->pipe;
3689
3690         if (crtc->config.pch_pfit.enabled) {
3691                 /* Force use of hard-coded filter coefficients
3692                  * as some pre-programmed values are broken,
3693                  * e.g. x201.
3694                  */
3695                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3696                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3697                                                  PF_PIPE_SEL_IVB(pipe));
3698                 else
3699                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3700                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3701                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3702         }
3703 }
3704
3705 static void intel_enable_planes(struct drm_crtc *crtc)
3706 {
3707         struct drm_device *dev = crtc->dev;
3708         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3709         struct drm_plane *plane;
3710         struct intel_plane *intel_plane;
3711
3712         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3713                 intel_plane = to_intel_plane(plane);
3714                 if (intel_plane->pipe == pipe)
3715                         intel_plane_restore(&intel_plane->base);
3716         }
3717 }
3718
3719 static void intel_disable_planes(struct drm_crtc *crtc)
3720 {
3721         struct drm_device *dev = crtc->dev;
3722         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3723         struct drm_plane *plane;
3724         struct intel_plane *intel_plane;
3725
3726         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3727                 intel_plane = to_intel_plane(plane);
3728                 if (intel_plane->pipe == pipe)
3729                         intel_plane_disable(&intel_plane->base);
3730         }
3731 }
3732
3733 void hsw_enable_ips(struct intel_crtc *crtc)
3734 {
3735         struct drm_device *dev = crtc->base.dev;
3736         struct drm_i915_private *dev_priv = dev->dev_private;
3737
3738         if (!crtc->config.ips_enabled)
3739                 return;
3740
3741         /* We can only enable IPS after we enable a plane and wait for a vblank */
3742         intel_wait_for_vblank(dev, crtc->pipe);
3743
3744         assert_plane_enabled(dev_priv, crtc->plane);
3745         if (IS_BROADWELL(dev)) {
3746                 mutex_lock(&dev_priv->rps.hw_lock);
3747                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3748                 mutex_unlock(&dev_priv->rps.hw_lock);
3749                 /* Quoting Art Runyan: "its not safe to expect any particular
3750                  * value in IPS_CTL bit 31 after enabling IPS through the
3751                  * mailbox." Moreover, the mailbox may return a bogus state,
3752                  * so we need to just enable it and continue on.
3753                  */
3754         } else {
3755                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3756                 /* The bit only becomes 1 in the next vblank, so this wait here
3757                  * is essentially intel_wait_for_vblank. If we don't have this
3758                  * and don't wait for vblanks until the end of crtc_enable, then
3759                  * the HW state readout code will complain that the expected
3760                  * IPS_CTL value is not the one we read. */
3761                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3762                         DRM_ERROR("Timed out waiting for IPS enable\n");
3763         }
3764 }
3765
3766 void hsw_disable_ips(struct intel_crtc *crtc)
3767 {
3768         struct drm_device *dev = crtc->base.dev;
3769         struct drm_i915_private *dev_priv = dev->dev_private;
3770
3771         if (!crtc->config.ips_enabled)
3772                 return;
3773
3774         assert_plane_enabled(dev_priv, crtc->plane);
3775         if (IS_BROADWELL(dev)) {
3776                 mutex_lock(&dev_priv->rps.hw_lock);
3777                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3778                 mutex_unlock(&dev_priv->rps.hw_lock);
3779                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3780                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3781                         DRM_ERROR("Timed out waiting for IPS disable\n");
3782         } else {
3783                 I915_WRITE(IPS_CTL, 0);
3784                 POSTING_READ(IPS_CTL);
3785         }
3786
3787         /* We need to wait for a vblank before we can disable the plane. */
3788         intel_wait_for_vblank(dev, crtc->pipe);
3789 }
3790
3791 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3792 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3793 {
3794         struct drm_device *dev = crtc->dev;
3795         struct drm_i915_private *dev_priv = dev->dev_private;
3796         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3797         enum pipe pipe = intel_crtc->pipe;
3798         int palreg = PALETTE(pipe);
3799         int i;
3800         bool reenable_ips = false;
3801
3802         /* The clocks have to be on to load the palette. */
3803         if (!crtc->enabled || !intel_crtc->active)
3804                 return;
3805
3806         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3807                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3808                         assert_dsi_pll_enabled(dev_priv);
3809                 else
3810                         assert_pll_enabled(dev_priv, pipe);
3811         }
3812
3813         /* use legacy palette for Ironlake */
3814         if (HAS_PCH_SPLIT(dev))
3815                 palreg = LGC_PALETTE(pipe);
3816
3817         /* Workaround : Do not read or write the pipe palette/gamma data while
3818          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3819          */
3820         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3821             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3822              GAMMA_MODE_MODE_SPLIT)) {
3823                 hsw_disable_ips(intel_crtc);
3824                 reenable_ips = true;
3825         }
3826
3827         for (i = 0; i < 256; i++) {
3828                 I915_WRITE(palreg + 4 * i,
3829                            (intel_crtc->lut_r[i] << 16) |
3830                            (intel_crtc->lut_g[i] << 8) |
3831                            intel_crtc->lut_b[i]);
3832         }
3833
3834         if (reenable_ips)
3835                 hsw_enable_ips(intel_crtc);
3836 }
3837
3838 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3839 {
3840         if (!enable && intel_crtc->overlay) {
3841                 struct drm_device *dev = intel_crtc->base.dev;
3842                 struct drm_i915_private *dev_priv = dev->dev_private;
3843
3844                 mutex_lock(&dev->struct_mutex);
3845                 dev_priv->mm.interruptible = false;
3846                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3847                 dev_priv->mm.interruptible = true;
3848                 mutex_unlock(&dev->struct_mutex);
3849         }
3850
3851         /* Let userspace switch the overlay on again. In most cases userspace
3852          * has to recompute where to put it anyway.
3853          */
3854 }
3855
3856 /**
3857  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3858  * cursor plane briefly if not already running after enabling the display
3859  * plane.
3860  * This workaround avoids occasional blank screens when self refresh is
3861  * enabled.
3862  */
3863 static void
3864 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3865 {
3866         u32 cntl = I915_READ(CURCNTR(pipe));
3867
3868         if ((cntl & CURSOR_MODE) == 0) {
3869                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3870
3871                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3872                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3873                 intel_wait_for_vblank(dev_priv->dev, pipe);
3874                 I915_WRITE(CURCNTR(pipe), cntl);
3875                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3876                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3877         }
3878 }
3879
3880 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3881 {
3882         struct drm_device *dev = crtc->dev;
3883         struct drm_i915_private *dev_priv = dev->dev_private;
3884         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3885         int pipe = intel_crtc->pipe;
3886         int plane = intel_crtc->plane;
3887
3888         intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3889         intel_enable_planes(crtc);
3890         /* The fixup needs to happen before cursor is enabled */
3891         if (IS_G4X(dev))
3892                 g4x_fixup_plane(dev_priv, pipe);
3893         intel_crtc_update_cursor(crtc, true);
3894         intel_crtc_dpms_overlay(intel_crtc, true);
3895
3896         hsw_enable_ips(intel_crtc);
3897
3898         mutex_lock(&dev->struct_mutex);
3899         intel_update_fbc(dev);
3900         intel_edp_psr_update(dev);
3901         mutex_unlock(&dev->struct_mutex);
3902 }
3903
3904 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3905 {
3906         struct drm_device *dev = crtc->dev;
3907         struct drm_i915_private *dev_priv = dev->dev_private;
3908         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3909         int pipe = intel_crtc->pipe;
3910         int plane = intel_crtc->plane;
3911
3912         intel_crtc_wait_for_pending_flips(crtc);
3913         drm_crtc_vblank_off(crtc);
3914
3915         if (dev_priv->fbc.plane == plane)
3916                 intel_disable_fbc(dev);
3917
3918         hsw_disable_ips(intel_crtc);
3919
3920         intel_crtc_dpms_overlay(intel_crtc, false);
3921         intel_crtc_update_cursor(crtc, false);
3922         intel_disable_planes(crtc);
3923         intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3924 }
3925
3926 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3927 {
3928         struct drm_device *dev = crtc->dev;
3929         struct drm_i915_private *dev_priv = dev->dev_private;
3930         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3931         struct intel_encoder *encoder;
3932         int pipe = intel_crtc->pipe;
3933         enum plane plane = intel_crtc->plane;
3934
3935         WARN_ON(!crtc->enabled);
3936
3937         if (intel_crtc->active)
3938                 return;
3939
3940         if (intel_crtc->config.has_pch_encoder)
3941                 intel_prepare_shared_dpll(intel_crtc);
3942
3943         if (intel_crtc->config.has_dp_encoder)
3944                 intel_dp_set_m_n(intel_crtc);
3945
3946         intel_set_pipe_timings(intel_crtc);
3947
3948         if (intel_crtc->config.has_pch_encoder) {
3949                 intel_cpu_transcoder_set_m_n(intel_crtc,
3950                                              &intel_crtc->config.fdi_m_n);
3951         }
3952
3953         ironlake_set_pipeconf(crtc);
3954
3955         /* Set up the display plane register */
3956         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3957         POSTING_READ(DSPCNTR(plane));
3958
3959         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3960                                                crtc->x, crtc->y);
3961
3962         intel_crtc->active = true;
3963
3964         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3965         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3966
3967         for_each_encoder_on_crtc(dev, crtc, encoder)
3968                 if (encoder->pre_enable)
3969                         encoder->pre_enable(encoder);
3970
3971         if (intel_crtc->config.has_pch_encoder) {
3972                 /* Note: FDI PLL enabling _must_ be done before we enable the
3973                  * cpu pipes, hence this is separate from all the other fdi/pch
3974                  * enabling. */
3975                 ironlake_fdi_pll_enable(intel_crtc);
3976         } else {
3977                 assert_fdi_tx_disabled(dev_priv, pipe);
3978                 assert_fdi_rx_disabled(dev_priv, pipe);
3979         }
3980
3981         ironlake_pfit_enable(intel_crtc);
3982
3983         /*
3984          * On ILK+ LUT must be loaded before the pipe is running but with
3985          * clocks enabled
3986          */
3987         intel_crtc_load_lut(crtc);
3988
3989         intel_update_watermarks(crtc);
3990         intel_enable_pipe(intel_crtc);
3991
3992         if (intel_crtc->config.has_pch_encoder)
3993                 ironlake_pch_enable(crtc);
3994
3995         for_each_encoder_on_crtc(dev, crtc, encoder)
3996                 encoder->enable(encoder);
3997
3998         if (HAS_PCH_CPT(dev))
3999                 cpt_verify_modeset(dev, intel_crtc->pipe);
4000
4001         intel_crtc_enable_planes(crtc);
4002
4003         drm_crtc_vblank_on(crtc);
4004 }
4005
4006 /* IPS only exists on ULT machines and is tied to pipe A. */
4007 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4008 {
4009         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4010 }
4011
4012 /*
4013  * This implements the workaround described in the "notes" section of the mode
4014  * set sequence documentation. When going from no pipes or single pipe to
4015  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4016  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4017  */
4018 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4019 {
4020         struct drm_device *dev = crtc->base.dev;
4021         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4022
4023         /* We want to get the other_active_crtc only if there's only 1 other
4024          * active crtc. */
4025         for_each_intel_crtc(dev, crtc_it) {
4026                 if (!crtc_it->active || crtc_it == crtc)
4027                         continue;
4028
4029                 if (other_active_crtc)
4030                         return;
4031
4032                 other_active_crtc = crtc_it;
4033         }
4034         if (!other_active_crtc)
4035                 return;
4036
4037         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4038         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4039 }
4040
4041 static void haswell_crtc_enable(struct drm_crtc *crtc)
4042 {
4043         struct drm_device *dev = crtc->dev;
4044         struct drm_i915_private *dev_priv = dev->dev_private;
4045         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4046         struct intel_encoder *encoder;
4047         int pipe = intel_crtc->pipe;
4048         enum plane plane = intel_crtc->plane;
4049
4050         WARN_ON(!crtc->enabled);
4051
4052         if (intel_crtc->active)
4053                 return;
4054
4055         if (intel_crtc->config.has_dp_encoder)
4056                 intel_dp_set_m_n(intel_crtc);
4057
4058         intel_set_pipe_timings(intel_crtc);
4059
4060         if (intel_crtc->config.has_pch_encoder) {
4061                 intel_cpu_transcoder_set_m_n(intel_crtc,
4062                                              &intel_crtc->config.fdi_m_n);
4063         }
4064
4065         haswell_set_pipeconf(crtc);
4066
4067         intel_set_pipe_csc(crtc);
4068
4069         /* Set up the display plane register */
4070         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4071         POSTING_READ(DSPCNTR(plane));
4072
4073         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4074                                                crtc->x, crtc->y);
4075
4076         intel_crtc->active = true;
4077
4078         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4079         if (intel_crtc->config.has_pch_encoder)
4080                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4081
4082         if (intel_crtc->config.has_pch_encoder)
4083                 dev_priv->display.fdi_link_train(crtc);
4084
4085         for_each_encoder_on_crtc(dev, crtc, encoder)
4086                 if (encoder->pre_enable)
4087                         encoder->pre_enable(encoder);
4088
4089         intel_ddi_enable_pipe_clock(intel_crtc);
4090
4091         ironlake_pfit_enable(intel_crtc);
4092
4093         /*
4094          * On ILK+ LUT must be loaded before the pipe is running but with
4095          * clocks enabled
4096          */
4097         intel_crtc_load_lut(crtc);
4098
4099         intel_ddi_set_pipe_settings(crtc);
4100         intel_ddi_enable_transcoder_func(crtc);
4101
4102         intel_update_watermarks(crtc);
4103         intel_enable_pipe(intel_crtc);
4104
4105         if (intel_crtc->config.has_pch_encoder)
4106                 lpt_pch_enable(crtc);
4107
4108         for_each_encoder_on_crtc(dev, crtc, encoder) {
4109                 encoder->enable(encoder);
4110                 intel_opregion_notify_encoder(encoder, true);
4111         }
4112
4113         /* If we change the relative order between pipe/planes enabling, we need
4114          * to change the workaround. */
4115         haswell_mode_set_planes_workaround(intel_crtc);
4116         intel_crtc_enable_planes(crtc);
4117
4118         drm_crtc_vblank_on(crtc);
4119 }
4120
4121 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4122 {
4123         struct drm_device *dev = crtc->base.dev;
4124         struct drm_i915_private *dev_priv = dev->dev_private;
4125         int pipe = crtc->pipe;
4126
4127         /* To avoid upsetting the power well on haswell only disable the pfit if
4128          * it's in use. The hw state code will make sure we get this right. */
4129         if (crtc->config.pch_pfit.enabled) {
4130                 I915_WRITE(PF_CTL(pipe), 0);
4131                 I915_WRITE(PF_WIN_POS(pipe), 0);
4132                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4133         }
4134 }
4135
4136 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4137 {
4138         struct drm_device *dev = crtc->dev;
4139         struct drm_i915_private *dev_priv = dev->dev_private;
4140         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4141         struct intel_encoder *encoder;
4142         int pipe = intel_crtc->pipe;
4143         u32 reg, temp;
4144
4145         if (!intel_crtc->active)
4146                 return;
4147
4148         intel_crtc_disable_planes(crtc);
4149
4150         for_each_encoder_on_crtc(dev, crtc, encoder)
4151                 encoder->disable(encoder);
4152
4153         if (intel_crtc->config.has_pch_encoder)
4154                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4155
4156         intel_disable_pipe(dev_priv, pipe);
4157
4158         ironlake_pfit_disable(intel_crtc);
4159
4160         for_each_encoder_on_crtc(dev, crtc, encoder)
4161                 if (encoder->post_disable)
4162                         encoder->post_disable(encoder);
4163
4164         if (intel_crtc->config.has_pch_encoder) {
4165                 ironlake_fdi_disable(crtc);
4166
4167                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4168                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4169
4170                 if (HAS_PCH_CPT(dev)) {
4171                         /* disable TRANS_DP_CTL */
4172                         reg = TRANS_DP_CTL(pipe);
4173                         temp = I915_READ(reg);
4174                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4175                                   TRANS_DP_PORT_SEL_MASK);
4176                         temp |= TRANS_DP_PORT_SEL_NONE;
4177                         I915_WRITE(reg, temp);
4178
4179                         /* disable DPLL_SEL */
4180                         temp = I915_READ(PCH_DPLL_SEL);
4181                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4182                         I915_WRITE(PCH_DPLL_SEL, temp);
4183                 }
4184
4185                 /* disable PCH DPLL */
4186                 intel_disable_shared_dpll(intel_crtc);
4187
4188                 ironlake_fdi_pll_disable(intel_crtc);
4189         }
4190
4191         intel_crtc->active = false;
4192         intel_update_watermarks(crtc);
4193
4194         mutex_lock(&dev->struct_mutex);
4195         intel_update_fbc(dev);
4196         intel_edp_psr_update(dev);
4197         mutex_unlock(&dev->struct_mutex);
4198 }
4199
4200 static void haswell_crtc_disable(struct drm_crtc *crtc)
4201 {
4202         struct drm_device *dev = crtc->dev;
4203         struct drm_i915_private *dev_priv = dev->dev_private;
4204         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4205         struct intel_encoder *encoder;
4206         int pipe = intel_crtc->pipe;
4207         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4208
4209         if (!intel_crtc->active)
4210                 return;
4211
4212         intel_crtc_disable_planes(crtc);
4213
4214         for_each_encoder_on_crtc(dev, crtc, encoder) {
4215                 intel_opregion_notify_encoder(encoder, false);
4216                 encoder->disable(encoder);
4217         }
4218
4219         if (intel_crtc->config.has_pch_encoder)
4220                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4221         intel_disable_pipe(dev_priv, pipe);
4222
4223         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4224
4225         ironlake_pfit_disable(intel_crtc);
4226
4227         intel_ddi_disable_pipe_clock(intel_crtc);
4228
4229         for_each_encoder_on_crtc(dev, crtc, encoder)
4230                 if (encoder->post_disable)
4231                         encoder->post_disable(encoder);
4232
4233         if (intel_crtc->config.has_pch_encoder) {
4234                 lpt_disable_pch_transcoder(dev_priv);
4235                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4236                 intel_ddi_fdi_disable(crtc);
4237         }
4238
4239         intel_crtc->active = false;
4240         intel_update_watermarks(crtc);
4241
4242         mutex_lock(&dev->struct_mutex);
4243         intel_update_fbc(dev);
4244         intel_edp_psr_update(dev);
4245         mutex_unlock(&dev->struct_mutex);
4246 }
4247
4248 static void ironlake_crtc_off(struct drm_crtc *crtc)
4249 {
4250         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4251         intel_put_shared_dpll(intel_crtc);
4252 }
4253
4254 static void haswell_crtc_off(struct drm_crtc *crtc)
4255 {
4256         intel_ddi_put_crtc_pll(crtc);
4257 }
4258
4259 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4260 {
4261         struct drm_device *dev = crtc->base.dev;
4262         struct drm_i915_private *dev_priv = dev->dev_private;
4263         struct intel_crtc_config *pipe_config = &crtc->config;
4264
4265         if (!crtc->config.gmch_pfit.control)
4266                 return;
4267
4268         /*
4269          * The panel fitter should only be adjusted whilst the pipe is disabled,
4270          * according to register description and PRM.
4271          */
4272         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4273         assert_pipe_disabled(dev_priv, crtc->pipe);
4274
4275         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4276         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4277
4278         /* Border color in case we don't scale up to the full screen. Black by
4279          * default, change to something else for debugging. */
4280         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4281 }
4282
4283 #define for_each_power_domain(domain, mask)                             \
4284         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4285                 if ((1 << (domain)) & (mask))
4286
4287 enum intel_display_power_domain
4288 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4289 {
4290         struct drm_device *dev = intel_encoder->base.dev;
4291         struct intel_digital_port *intel_dig_port;
4292
4293         switch (intel_encoder->type) {
4294         case INTEL_OUTPUT_UNKNOWN:
4295                 /* Only DDI platforms should ever use this output type */
4296                 WARN_ON_ONCE(!HAS_DDI(dev));
4297         case INTEL_OUTPUT_DISPLAYPORT:
4298         case INTEL_OUTPUT_HDMI:
4299         case INTEL_OUTPUT_EDP:
4300                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4301                 switch (intel_dig_port->port) {
4302                 case PORT_A:
4303                         return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4304                 case PORT_B:
4305                         return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4306                 case PORT_C:
4307                         return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4308                 case PORT_D:
4309                         return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4310                 default:
4311                         WARN_ON_ONCE(1);
4312                         return POWER_DOMAIN_PORT_OTHER;
4313                 }
4314         case INTEL_OUTPUT_ANALOG:
4315                 return POWER_DOMAIN_PORT_CRT;
4316         case INTEL_OUTPUT_DSI:
4317                 return POWER_DOMAIN_PORT_DSI;
4318         default:
4319                 return POWER_DOMAIN_PORT_OTHER;
4320         }
4321 }
4322
4323 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4324 {
4325         struct drm_device *dev = crtc->dev;
4326         struct intel_encoder *intel_encoder;
4327         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4328         enum pipe pipe = intel_crtc->pipe;
4329         bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
4330         unsigned long mask;
4331         enum transcoder transcoder;
4332
4333         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4334
4335         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4336         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4337         if (pfit_enabled)
4338                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4339
4340         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4341                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4342
4343         return mask;
4344 }
4345
4346 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4347                                   bool enable)
4348 {
4349         if (dev_priv->power_domains.init_power_on == enable)
4350                 return;
4351
4352         if (enable)
4353                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4354         else
4355                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4356
4357         dev_priv->power_domains.init_power_on = enable;
4358 }
4359
4360 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4361 {
4362         struct drm_i915_private *dev_priv = dev->dev_private;
4363         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4364         struct intel_crtc *crtc;
4365
4366         /*
4367          * First get all needed power domains, then put all unneeded, to avoid
4368          * any unnecessary toggling of the power wells.
4369          */
4370         for_each_intel_crtc(dev, crtc) {
4371                 enum intel_display_power_domain domain;
4372
4373                 if (!crtc->base.enabled)
4374                         continue;
4375
4376                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4377
4378                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4379                         intel_display_power_get(dev_priv, domain);
4380         }
4381
4382         for_each_intel_crtc(dev, crtc) {
4383                 enum intel_display_power_domain domain;
4384
4385                 for_each_power_domain(domain, crtc->enabled_power_domains)
4386                         intel_display_power_put(dev_priv, domain);
4387
4388                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4389         }
4390
4391         intel_display_set_init_power(dev_priv, false);
4392 }
4393
4394 int valleyview_get_vco(struct drm_i915_private *dev_priv)
4395 {
4396         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4397
4398         /* Obtain SKU information */
4399         mutex_lock(&dev_priv->dpio_lock);
4400         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4401                 CCK_FUSE_HPLL_FREQ_MASK;
4402         mutex_unlock(&dev_priv->dpio_lock);
4403
4404         return vco_freq[hpll_freq];
4405 }
4406
4407 /* Adjust CDclk dividers to allow high res or save power if possible */
4408 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4409 {
4410         struct drm_i915_private *dev_priv = dev->dev_private;
4411         u32 val, cmd;
4412
4413         WARN_ON(valleyview_cur_cdclk(dev_priv) != dev_priv->vlv_cdclk_freq);
4414         dev_priv->vlv_cdclk_freq = cdclk;
4415
4416         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
4417                 cmd = 2;
4418         else if (cdclk == 266)
4419                 cmd = 1;
4420         else
4421                 cmd = 0;
4422
4423         mutex_lock(&dev_priv->rps.hw_lock);
4424         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4425         val &= ~DSPFREQGUAR_MASK;
4426         val |= (cmd << DSPFREQGUAR_SHIFT);
4427         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4428         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4429                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4430                      50)) {
4431                 DRM_ERROR("timed out waiting for CDclk change\n");
4432         }
4433         mutex_unlock(&dev_priv->rps.hw_lock);
4434
4435         if (cdclk == 400) {
4436                 u32 divider, vco;
4437
4438                 vco = valleyview_get_vco(dev_priv);
4439                 divider = ((vco << 1) / cdclk) - 1;
4440
4441                 mutex_lock(&dev_priv->dpio_lock);
4442                 /* adjust cdclk divider */
4443                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4444                 val &= ~0xf;
4445                 val |= divider;
4446                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4447                 mutex_unlock(&dev_priv->dpio_lock);
4448         }
4449
4450         mutex_lock(&dev_priv->dpio_lock);
4451         /* adjust self-refresh exit latency value */
4452         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4453         val &= ~0x7f;
4454
4455         /*
4456          * For high bandwidth configs, we set a higher latency in the bunit
4457          * so that the core display fetch happens in time to avoid underruns.
4458          */
4459         if (cdclk == 400)
4460                 val |= 4500 / 250; /* 4.5 usec */
4461         else
4462                 val |= 3000 / 250; /* 3.0 usec */
4463         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4464         mutex_unlock(&dev_priv->dpio_lock);
4465
4466         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4467         intel_i2c_reset(dev);
4468 }
4469
4470 int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4471 {
4472         int cur_cdclk, vco;
4473         int divider;
4474
4475         vco = valleyview_get_vco(dev_priv);
4476
4477         mutex_lock(&dev_priv->dpio_lock);
4478         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4479         mutex_unlock(&dev_priv->dpio_lock);
4480
4481         divider &= 0xf;
4482
4483         cur_cdclk = (vco << 1) / (divider + 1);
4484
4485         return cur_cdclk;
4486 }
4487
4488 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4489                                  int max_pixclk)
4490 {
4491         /*
4492          * Really only a few cases to deal with, as only 4 CDclks are supported:
4493          *   200MHz
4494          *   267MHz
4495          *   320MHz
4496          *   400MHz
4497          * So we check to see whether we're above 90% of the lower bin and
4498          * adjust if needed.
4499          */
4500         if (max_pixclk > 288000) {
4501                 return 400;
4502         } else if (max_pixclk > 240000) {
4503                 return 320;
4504         } else
4505                 return 266;
4506         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4507 }
4508
4509 /* compute the max pixel clock for new configuration */
4510 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4511 {
4512         struct drm_device *dev = dev_priv->dev;
4513         struct intel_crtc *intel_crtc;
4514         int max_pixclk = 0;
4515
4516         for_each_intel_crtc(dev, intel_crtc) {
4517                 if (intel_crtc->new_enabled)
4518                         max_pixclk = max(max_pixclk,
4519                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4520         }
4521
4522         return max_pixclk;
4523 }
4524
4525 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4526                                             unsigned *prepare_pipes)
4527 {
4528         struct drm_i915_private *dev_priv = dev->dev_private;
4529         struct intel_crtc *intel_crtc;
4530         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4531
4532         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4533             dev_priv->vlv_cdclk_freq)
4534                 return;
4535
4536         /* disable/enable all currently active pipes while we change cdclk */
4537         for_each_intel_crtc(dev, intel_crtc)
4538                 if (intel_crtc->base.enabled)
4539                         *prepare_pipes |= (1 << intel_crtc->pipe);
4540 }
4541
4542 static void valleyview_modeset_global_resources(struct drm_device *dev)
4543 {
4544         struct drm_i915_private *dev_priv = dev->dev_private;
4545         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4546         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4547
4548         if (req_cdclk != dev_priv->vlv_cdclk_freq)
4549                 valleyview_set_cdclk(dev, req_cdclk);
4550         modeset_update_crtc_power_domains(dev);
4551 }
4552
4553 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4554 {
4555         struct drm_device *dev = crtc->dev;
4556         struct drm_i915_private *dev_priv = dev->dev_private;
4557         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4558         struct intel_encoder *encoder;
4559         int pipe = intel_crtc->pipe;
4560         int plane = intel_crtc->plane;
4561         bool is_dsi;
4562         u32 dspcntr;
4563
4564         WARN_ON(!crtc->enabled);
4565
4566         if (intel_crtc->active)
4567                 return;
4568
4569         vlv_prepare_pll(intel_crtc);
4570
4571         /* Set up the display plane register */
4572         dspcntr = DISPPLANE_GAMMA_ENABLE;
4573
4574         if (intel_crtc->config.has_dp_encoder)
4575                 intel_dp_set_m_n(intel_crtc);
4576
4577         intel_set_pipe_timings(intel_crtc);
4578
4579         /* pipesrc and dspsize control the size that is scaled from,
4580          * which should always be the user's requested size.
4581          */
4582         I915_WRITE(DSPSIZE(plane),
4583                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
4584                    (intel_crtc->config.pipe_src_w - 1));
4585         I915_WRITE(DSPPOS(plane), 0);
4586
4587         i9xx_set_pipeconf(intel_crtc);
4588
4589         I915_WRITE(DSPCNTR(plane), dspcntr);
4590         POSTING_READ(DSPCNTR(plane));
4591
4592         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4593                                                crtc->x, crtc->y);
4594
4595         intel_crtc->active = true;
4596
4597         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4598
4599         for_each_encoder_on_crtc(dev, crtc, encoder)
4600                 if (encoder->pre_pll_enable)
4601                         encoder->pre_pll_enable(encoder);
4602
4603         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4604
4605         if (!is_dsi) {
4606                 if (IS_CHERRYVIEW(dev))
4607                         chv_enable_pll(intel_crtc);
4608                 else
4609                         vlv_enable_pll(intel_crtc);
4610         }
4611
4612         for_each_encoder_on_crtc(dev, crtc, encoder)
4613                 if (encoder->pre_enable)
4614                         encoder->pre_enable(encoder);
4615
4616         i9xx_pfit_enable(intel_crtc);
4617
4618         intel_crtc_load_lut(crtc);
4619
4620         intel_update_watermarks(crtc);
4621         intel_enable_pipe(intel_crtc);
4622
4623         for_each_encoder_on_crtc(dev, crtc, encoder)
4624                 encoder->enable(encoder);
4625
4626         intel_crtc_enable_planes(crtc);
4627
4628         drm_crtc_vblank_on(crtc);
4629
4630         /* Underruns don't raise interrupts, so check manually. */
4631         i9xx_check_fifo_underruns(dev);
4632 }
4633
4634 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4635 {
4636         struct drm_device *dev = crtc->base.dev;
4637         struct drm_i915_private *dev_priv = dev->dev_private;
4638
4639         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4640         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4641 }
4642
4643 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4644 {
4645         struct drm_device *dev = crtc->dev;
4646         struct drm_i915_private *dev_priv = dev->dev_private;
4647         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4648         struct intel_encoder *encoder;
4649         int pipe = intel_crtc->pipe;
4650         int plane = intel_crtc->plane;
4651         u32 dspcntr;
4652
4653         WARN_ON(!crtc->enabled);
4654
4655         if (intel_crtc->active)
4656                 return;
4657
4658         i9xx_set_pll_dividers(intel_crtc);
4659
4660         /* Set up the display plane register */
4661         dspcntr = DISPPLANE_GAMMA_ENABLE;
4662
4663         if (pipe == 0)
4664                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4665         else
4666                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4667
4668         if (intel_crtc->config.has_dp_encoder)
4669                 intel_dp_set_m_n(intel_crtc);
4670
4671         intel_set_pipe_timings(intel_crtc);
4672
4673         /* pipesrc and dspsize control the size that is scaled from,
4674          * which should always be the user's requested size.
4675          */
4676         I915_WRITE(DSPSIZE(plane),
4677                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
4678                    (intel_crtc->config.pipe_src_w - 1));
4679         I915_WRITE(DSPPOS(plane), 0);
4680
4681         i9xx_set_pipeconf(intel_crtc);
4682
4683         I915_WRITE(DSPCNTR(plane), dspcntr);
4684         POSTING_READ(DSPCNTR(plane));
4685
4686         dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4687                                                crtc->x, crtc->y);
4688
4689         intel_crtc->active = true;
4690
4691         if (!IS_GEN2(dev))
4692                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4693
4694         for_each_encoder_on_crtc(dev, crtc, encoder)
4695                 if (encoder->pre_enable)
4696                         encoder->pre_enable(encoder);
4697
4698         i9xx_enable_pll(intel_crtc);
4699
4700         i9xx_pfit_enable(intel_crtc);
4701
4702         intel_crtc_load_lut(crtc);
4703
4704         intel_update_watermarks(crtc);
4705         intel_enable_pipe(intel_crtc);
4706
4707         for_each_encoder_on_crtc(dev, crtc, encoder)
4708                 encoder->enable(encoder);
4709
4710         intel_crtc_enable_planes(crtc);
4711
4712         /*
4713          * Gen2 reports pipe underruns whenever all planes are disabled.
4714          * So don't enable underrun reporting before at least some planes
4715          * are enabled.
4716          * FIXME: Need to fix the logic to work when we turn off all planes
4717          * but leave the pipe running.
4718          */
4719         if (IS_GEN2(dev))
4720                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4721
4722         drm_crtc_vblank_on(crtc);
4723
4724         /* Underruns don't raise interrupts, so check manually. */
4725         i9xx_check_fifo_underruns(dev);
4726 }
4727
4728 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4729 {
4730         struct drm_device *dev = crtc->base.dev;
4731         struct drm_i915_private *dev_priv = dev->dev_private;
4732
4733         if (!crtc->config.gmch_pfit.control)
4734                 return;
4735
4736         assert_pipe_disabled(dev_priv, crtc->pipe);
4737
4738         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4739                          I915_READ(PFIT_CONTROL));
4740         I915_WRITE(PFIT_CONTROL, 0);
4741 }
4742
4743 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4744 {
4745         struct drm_device *dev = crtc->dev;
4746         struct drm_i915_private *dev_priv = dev->dev_private;
4747         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4748         struct intel_encoder *encoder;
4749         int pipe = intel_crtc->pipe;
4750
4751         if (!intel_crtc->active)
4752                 return;
4753
4754         /*
4755          * Gen2 reports pipe underruns whenever all planes are disabled.
4756          * So diasble underrun reporting before all the planes get disabled.
4757          * FIXME: Need to fix the logic to work when we turn off all planes
4758          * but leave the pipe running.
4759          */
4760         if (IS_GEN2(dev))
4761                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4762
4763         intel_crtc_disable_planes(crtc);
4764
4765         for_each_encoder_on_crtc(dev, crtc, encoder)
4766                 encoder->disable(encoder);
4767
4768         /*
4769          * On gen2 planes are double buffered but the pipe isn't, so we must
4770          * wait for planes to fully turn off before disabling the pipe.
4771          */
4772         if (IS_GEN2(dev))
4773                 intel_wait_for_vblank(dev, pipe);
4774
4775         intel_disable_pipe(dev_priv, pipe);
4776
4777         i9xx_pfit_disable(intel_crtc);
4778
4779         for_each_encoder_on_crtc(dev, crtc, encoder)
4780                 if (encoder->post_disable)
4781                         encoder->post_disable(encoder);
4782
4783         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4784                 if (IS_CHERRYVIEW(dev))
4785                         chv_disable_pll(dev_priv, pipe);
4786                 else if (IS_VALLEYVIEW(dev))
4787                         vlv_disable_pll(dev_priv, pipe);
4788                 else
4789                         i9xx_disable_pll(dev_priv, pipe);
4790         }
4791
4792         if (!IS_GEN2(dev))
4793                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4794
4795         intel_crtc->active = false;
4796         intel_update_watermarks(crtc);
4797
4798         mutex_lock(&dev->struct_mutex);
4799         intel_update_fbc(dev);
4800         intel_edp_psr_update(dev);
4801         mutex_unlock(&dev->struct_mutex);
4802 }
4803
4804 static void i9xx_crtc_off(struct drm_crtc *crtc)
4805 {
4806 }
4807
4808 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4809                                     bool enabled)
4810 {
4811         struct drm_device *dev = crtc->dev;
4812         struct drm_i915_master_private *master_priv;
4813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4814         int pipe = intel_crtc->pipe;
4815
4816         if (!dev->primary->master)
4817                 return;
4818
4819         master_priv = dev->primary->master->driver_priv;
4820         if (!master_priv->sarea_priv)
4821                 return;
4822
4823         switch (pipe) {
4824         case 0:
4825                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4826                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4827                 break;
4828         case 1:
4829                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4830                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4831                 break;
4832         default:
4833                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4834                 break;
4835         }
4836 }
4837
4838 /**
4839  * Sets the power management mode of the pipe and plane.
4840  */
4841 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4842 {
4843         struct drm_device *dev = crtc->dev;
4844         struct drm_i915_private *dev_priv = dev->dev_private;
4845         struct intel_encoder *intel_encoder;
4846         bool enable = false;
4847
4848         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4849                 enable |= intel_encoder->connectors_active;
4850
4851         if (enable)
4852                 dev_priv->display.crtc_enable(crtc);
4853         else
4854                 dev_priv->display.crtc_disable(crtc);
4855
4856         intel_crtc_update_sarea(crtc, enable);
4857 }
4858
4859 static void intel_crtc_disable(struct drm_crtc *crtc)
4860 {
4861         struct drm_device *dev = crtc->dev;
4862         struct drm_connector *connector;
4863         struct drm_i915_private *dev_priv = dev->dev_private;
4864
4865         /* crtc should still be enabled when we disable it. */
4866         WARN_ON(!crtc->enabled);
4867
4868         dev_priv->display.crtc_disable(crtc);
4869         intel_crtc_update_sarea(crtc, false);
4870         dev_priv->display.off(crtc);
4871
4872         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4873         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4874         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4875
4876         if (crtc->primary->fb) {
4877                 mutex_lock(&dev->struct_mutex);
4878                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->primary->fb)->obj);
4879                 mutex_unlock(&dev->struct_mutex);
4880                 crtc->primary->fb = NULL;
4881         }
4882
4883         /* Update computed state. */
4884         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4885                 if (!connector->encoder || !connector->encoder->crtc)
4886                         continue;
4887
4888                 if (connector->encoder->crtc != crtc)
4889                         continue;
4890
4891                 connector->dpms = DRM_MODE_DPMS_OFF;
4892                 to_intel_encoder(connector->encoder)->connectors_active = false;
4893         }
4894 }
4895
4896 void intel_encoder_destroy(struct drm_encoder *encoder)
4897 {
4898         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4899
4900         drm_encoder_cleanup(encoder);
4901         kfree(intel_encoder);
4902 }
4903
4904 /* Simple dpms helper for encoders with just one connector, no cloning and only
4905  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4906  * state of the entire output pipe. */
4907 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4908 {
4909         if (mode == DRM_MODE_DPMS_ON) {
4910                 encoder->connectors_active = true;
4911
4912                 intel_crtc_update_dpms(encoder->base.crtc);
4913         } else {
4914                 encoder->connectors_active = false;
4915
4916                 intel_crtc_update_dpms(encoder->base.crtc);
4917         }
4918 }
4919
4920 /* Cross check the actual hw state with our own modeset state tracking (and it's
4921  * internal consistency). */
4922 static void intel_connector_check_state(struct intel_connector *connector)
4923 {
4924         if (connector->get_hw_state(connector)) {
4925                 struct intel_encoder *encoder = connector->encoder;
4926                 struct drm_crtc *crtc;
4927                 bool encoder_enabled;
4928                 enum pipe pipe;
4929
4930                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4931                               connector->base.base.id,
4932                               drm_get_connector_name(&connector->base));
4933
4934                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4935                      "wrong connector dpms state\n");
4936                 WARN(connector->base.encoder != &encoder->base,
4937                      "active connector not linked to encoder\n");
4938                 WARN(!encoder->connectors_active,
4939                      "encoder->connectors_active not set\n");
4940
4941                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4942                 WARN(!encoder_enabled, "encoder not enabled\n");
4943                 if (WARN_ON(!encoder->base.crtc))
4944                         return;
4945
4946                 crtc = encoder->base.crtc;
4947
4948                 WARN(!crtc->enabled, "crtc not enabled\n");
4949                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4950                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4951                      "encoder active on the wrong pipe\n");
4952         }
4953 }
4954
4955 /* Even simpler default implementation, if there's really no special case to
4956  * consider. */
4957 void intel_connector_dpms(struct drm_connector *connector, int mode)
4958 {
4959         /* All the simple cases only support two dpms states. */
4960         if (mode != DRM_MODE_DPMS_ON)
4961                 mode = DRM_MODE_DPMS_OFF;
4962
4963         if (mode == connector->dpms)
4964                 return;
4965
4966         connector->dpms = mode;
4967
4968         /* Only need to change hw state when actually enabled */
4969         if (connector->encoder)
4970                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4971
4972         intel_modeset_check_state(connector->dev);
4973 }
4974
4975 /* Simple connector->get_hw_state implementation for encoders that support only
4976  * one connector and no cloning and hence the encoder state determines the state
4977  * of the connector. */
4978 bool intel_connector_get_hw_state(struct intel_connector *connector)
4979 {
4980         enum pipe pipe = 0;
4981         struct intel_encoder *encoder = connector->encoder;
4982
4983         return encoder->get_hw_state(encoder, &pipe);
4984 }
4985
4986 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4987                                      struct intel_crtc_config *pipe_config)
4988 {
4989         struct drm_i915_private *dev_priv = dev->dev_private;
4990         struct intel_crtc *pipe_B_crtc =
4991                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4992
4993         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4994                       pipe_name(pipe), pipe_config->fdi_lanes);
4995         if (pipe_config->fdi_lanes > 4) {
4996                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4997                               pipe_name(pipe), pipe_config->fdi_lanes);
4998                 return false;
4999         }
5000
5001         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5002                 if (pipe_config->fdi_lanes > 2) {
5003                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5004                                       pipe_config->fdi_lanes);
5005                         return false;
5006                 } else {
5007                         return true;
5008                 }
5009         }
5010
5011         if (INTEL_INFO(dev)->num_pipes == 2)
5012                 return true;
5013
5014         /* Ivybridge 3 pipe is really complicated */
5015         switch (pipe) {
5016         case PIPE_A:
5017                 return true;
5018         case PIPE_B:
5019                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5020                     pipe_config->fdi_lanes > 2) {
5021                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5022                                       pipe_name(pipe), pipe_config->fdi_lanes);
5023                         return false;
5024                 }
5025                 return true;
5026         case PIPE_C:
5027                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5028                     pipe_B_crtc->config.fdi_lanes <= 2) {
5029                         if (pipe_config->fdi_lanes > 2) {
5030                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5031                                               pipe_name(pipe), pipe_config->fdi_lanes);
5032                                 return false;
5033                         }
5034                 } else {
5035                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5036                         return false;
5037                 }
5038                 return true;
5039         default:
5040                 BUG();
5041         }
5042 }
5043
5044 #define RETRY 1
5045 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5046                                        struct intel_crtc_config *pipe_config)
5047 {
5048         struct drm_device *dev = intel_crtc->base.dev;
5049         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5050         int lane, link_bw, fdi_dotclock;
5051         bool setup_ok, needs_recompute = false;
5052
5053 retry:
5054         /* FDI is a binary signal running at ~2.7GHz, encoding
5055          * each output octet as 10 bits. The actual frequency
5056          * is stored as a divider into a 100MHz clock, and the
5057          * mode pixel clock is stored in units of 1KHz.
5058          * Hence the bw of each lane in terms of the mode signal
5059          * is:
5060          */
5061         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5062
5063         fdi_dotclock = adjusted_mode->crtc_clock;
5064
5065         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5066                                            pipe_config->pipe_bpp);
5067
5068         pipe_config->fdi_lanes = lane;
5069
5070         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5071                                link_bw, &pipe_config->fdi_m_n);
5072
5073         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5074                                             intel_crtc->pipe, pipe_config);
5075         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5076                 pipe_config->pipe_bpp -= 2*3;
5077                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5078                               pipe_config->pipe_bpp);
5079                 needs_recompute = true;
5080                 pipe_config->bw_constrained = true;
5081
5082                 goto retry;
5083         }
5084
5085         if (needs_recompute)
5086                 return RETRY;
5087
5088         return setup_ok ? 0 : -EINVAL;
5089 }
5090
5091 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5092                                    struct intel_crtc_config *pipe_config)
5093 {
5094         pipe_config->ips_enabled = i915.enable_ips &&
5095                                    hsw_crtc_supports_ips(crtc) &&
5096                                    pipe_config->pipe_bpp <= 24;
5097 }
5098
5099 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5100                                      struct intel_crtc_config *pipe_config)
5101 {
5102         struct drm_device *dev = crtc->base.dev;
5103         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5104
5105         /* FIXME should check pixel clock limits on all platforms */
5106         if (INTEL_INFO(dev)->gen < 4) {
5107                 struct drm_i915_private *dev_priv = dev->dev_private;
5108                 int clock_limit =
5109                         dev_priv->display.get_display_clock_speed(dev);
5110
5111                 /*
5112                  * Enable pixel doubling when the dot clock
5113                  * is > 90% of the (display) core speed.
5114                  *
5115                  * GDG double wide on either pipe,
5116                  * otherwise pipe A only.
5117                  */
5118                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5119                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5120                         clock_limit *= 2;
5121                         pipe_config->double_wide = true;
5122                 }
5123
5124                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5125                         return -EINVAL;
5126         }
5127
5128         /*
5129          * Pipe horizontal size must be even in:
5130          * - DVO ganged mode
5131          * - LVDS dual channel mode
5132          * - Double wide pipe
5133          */
5134         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5135              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5136                 pipe_config->pipe_src_w &= ~1;
5137
5138         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5139          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5140          */
5141         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5142                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5143                 return -EINVAL;
5144
5145         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5146                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5147         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5148                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5149                  * for lvds. */
5150                 pipe_config->pipe_bpp = 8*3;
5151         }
5152
5153         if (HAS_IPS(dev))
5154                 hsw_compute_ips_config(crtc, pipe_config);
5155
5156         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
5157          * clock survives for now. */
5158         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5159                 pipe_config->shared_dpll = crtc->config.shared_dpll;
5160
5161         if (pipe_config->has_pch_encoder)
5162                 return ironlake_fdi_compute_config(crtc, pipe_config);
5163
5164         return 0;
5165 }
5166
5167 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5168 {
5169         return 400000; /* FIXME */
5170 }
5171
5172 static int i945_get_display_clock_speed(struct drm_device *dev)
5173 {
5174         return 400000;
5175 }
5176
5177 static int i915_get_display_clock_speed(struct drm_device *dev)
5178 {
5179         return 333000;
5180 }
5181
5182 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5183 {
5184         return 200000;
5185 }
5186
5187 static int pnv_get_display_clock_speed(struct drm_device *dev)
5188 {
5189         u16 gcfgc = 0;
5190
5191         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5192
5193         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5194         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5195                 return 267000;
5196         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5197                 return 333000;
5198         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5199                 return 444000;
5200         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5201                 return 200000;
5202         default:
5203                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5204         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5205                 return 133000;
5206         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5207                 return 167000;
5208         }
5209 }
5210
5211 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5212 {
5213         u16 gcfgc = 0;
5214
5215         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5216
5217         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5218                 return 133000;
5219         else {
5220                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5221                 case GC_DISPLAY_CLOCK_333_MHZ:
5222                         return 333000;
5223                 default:
5224                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5225                         return 190000;
5226                 }
5227         }
5228 }
5229
5230 static int i865_get_display_clock_speed(struct drm_device *dev)
5231 {
5232         return 266000;
5233 }
5234
5235 static int i855_get_display_clock_speed(struct drm_device *dev)
5236 {
5237         u16 hpllcc = 0;
5238         /* Assume that the hardware is in the high speed state.  This
5239          * should be the default.
5240          */
5241         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5242         case GC_CLOCK_133_200:
5243         case GC_CLOCK_100_200:
5244                 return 200000;
5245         case GC_CLOCK_166_250:
5246                 return 250000;
5247         case GC_CLOCK_100_133:
5248                 return 133000;
5249         }
5250
5251         /* Shouldn't happen */
5252         return 0;
5253 }
5254
5255 static int i830_get_display_clock_speed(struct drm_device *dev)
5256 {
5257         return 133000;
5258 }
5259
5260 static void
5261 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5262 {
5263         while (*num > DATA_LINK_M_N_MASK ||
5264                *den > DATA_LINK_M_N_MASK) {
5265                 *num >>= 1;
5266                 *den >>= 1;
5267         }
5268 }
5269
5270 static void compute_m_n(unsigned int m, unsigned int n,
5271                         uint32_t *ret_m, uint32_t *ret_n)
5272 {
5273         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5274         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5275         intel_reduce_m_n_ratio(ret_m, ret_n);
5276 }
5277
5278 void
5279 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5280                        int pixel_clock, int link_clock,
5281                        struct intel_link_m_n *m_n)
5282 {
5283         m_n->tu = 64;
5284
5285         compute_m_n(bits_per_pixel * pixel_clock,
5286                     link_clock * nlanes * 8,
5287                     &m_n->gmch_m, &m_n->gmch_n);
5288
5289         compute_m_n(pixel_clock, link_clock,
5290                     &m_n->link_m, &m_n->link_n);
5291 }
5292
5293 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5294 {
5295         if (i915.panel_use_ssc >= 0)
5296                 return i915.panel_use_ssc != 0;
5297         return dev_priv->vbt.lvds_use_ssc
5298                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5299 }
5300
5301 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5302 {
5303         struct drm_device *dev = crtc->dev;
5304         struct drm_i915_private *dev_priv = dev->dev_private;
5305         int refclk;
5306
5307         if (IS_VALLEYVIEW(dev)) {
5308                 refclk = 100000;
5309         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5310             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5311                 refclk = dev_priv->vbt.lvds_ssc_freq;
5312                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5313         } else if (!IS_GEN2(dev)) {
5314                 refclk = 96000;
5315         } else {
5316                 refclk = 48000;
5317         }
5318
5319         return refclk;
5320 }
5321
5322 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5323 {
5324         return (1 << dpll->n) << 16 | dpll->m2;
5325 }
5326
5327 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5328 {
5329         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5330 }
5331
5332 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5333                                      intel_clock_t *reduced_clock)
5334 {
5335         struct drm_device *dev = crtc->base.dev;
5336         u32 fp, fp2 = 0;
5337
5338         if (IS_PINEVIEW(dev)) {
5339                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5340                 if (reduced_clock)
5341                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5342         } else {
5343                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5344                 if (reduced_clock)
5345                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5346         }
5347
5348         crtc->config.dpll_hw_state.fp0 = fp;
5349
5350         crtc->lowfreq_avail = false;
5351         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5352             reduced_clock && i915.powersave) {
5353                 crtc->config.dpll_hw_state.fp1 = fp2;
5354                 crtc->lowfreq_avail = true;
5355         } else {
5356                 crtc->config.dpll_hw_state.fp1 = fp;
5357         }
5358 }
5359
5360 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5361                 pipe)
5362 {
5363         u32 reg_val;
5364
5365         /*
5366          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5367          * and set it to a reasonable value instead.
5368          */
5369         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5370         reg_val &= 0xffffff00;
5371         reg_val |= 0x00000030;
5372         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5373
5374         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5375         reg_val &= 0x8cffffff;
5376         reg_val = 0x8c000000;
5377         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5378
5379         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5380         reg_val &= 0xffffff00;
5381         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5382
5383         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5384         reg_val &= 0x00ffffff;
5385         reg_val |= 0xb0000000;
5386         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5387 }
5388
5389 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5390                                          struct intel_link_m_n *m_n)
5391 {
5392         struct drm_device *dev = crtc->base.dev;
5393         struct drm_i915_private *dev_priv = dev->dev_private;
5394         int pipe = crtc->pipe;
5395
5396         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5397         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5398         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5399         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5400 }
5401
5402 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5403                                          struct intel_link_m_n *m_n)
5404 {
5405         struct drm_device *dev = crtc->base.dev;
5406         struct drm_i915_private *dev_priv = dev->dev_private;
5407         int pipe = crtc->pipe;
5408         enum transcoder transcoder = crtc->config.cpu_transcoder;
5409
5410         if (INTEL_INFO(dev)->gen >= 5) {
5411                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5412                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5413                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5414                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5415         } else {
5416                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5417                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5418                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5419                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5420         }
5421 }
5422
5423 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5424 {
5425         if (crtc->config.has_pch_encoder)
5426                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5427         else
5428                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5429 }
5430
5431 static void vlv_update_pll(struct intel_crtc *crtc)
5432 {
5433         u32 dpll, dpll_md;
5434
5435         /*
5436          * Enable DPIO clock input. We should never disable the reference
5437          * clock for pipe B, since VGA hotplug / manual detection depends
5438          * on it.
5439          */
5440         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5441                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5442         /* We should never disable this, set it here for state tracking */
5443         if (crtc->pipe == PIPE_B)
5444                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5445         dpll |= DPLL_VCO_ENABLE;
5446         crtc->config.dpll_hw_state.dpll = dpll;
5447
5448         dpll_md = (crtc->config.pixel_multiplier - 1)
5449                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5450         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5451 }
5452
5453 static void vlv_prepare_pll(struct intel_crtc *crtc)
5454 {
5455         struct drm_device *dev = crtc->base.dev;
5456         struct drm_i915_private *dev_priv = dev->dev_private;
5457         int pipe = crtc->pipe;
5458         u32 mdiv;
5459         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5460         u32 coreclk, reg_val;
5461
5462         mutex_lock(&dev_priv->dpio_lock);
5463
5464         bestn = crtc->config.dpll.n;
5465         bestm1 = crtc->config.dpll.m1;
5466         bestm2 = crtc->config.dpll.m2;
5467         bestp1 = crtc->config.dpll.p1;
5468         bestp2 = crtc->config.dpll.p2;
5469
5470         /* See eDP HDMI DPIO driver vbios notes doc */
5471
5472         /* PLL B needs special handling */
5473         if (pipe == PIPE_B)
5474                 vlv_pllb_recal_opamp(dev_priv, pipe);
5475
5476         /* Set up Tx target for periodic Rcomp update */
5477         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5478
5479         /* Disable target IRef on PLL */
5480         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5481         reg_val &= 0x00ffffff;
5482         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5483
5484         /* Disable fast lock */
5485         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5486
5487         /* Set idtafcrecal before PLL is enabled */
5488         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5489         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5490         mdiv |= ((bestn << DPIO_N_SHIFT));
5491         mdiv |= (1 << DPIO_K_SHIFT);
5492
5493         /*
5494          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5495          * but we don't support that).
5496          * Note: don't use the DAC post divider as it seems unstable.
5497          */
5498         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5499         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5500
5501         mdiv |= DPIO_ENABLE_CALIBRATION;
5502         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5503
5504         /* Set HBR and RBR LPF coefficients */
5505         if (crtc->config.port_clock == 162000 ||
5506             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5507             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5508                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5509                                  0x009f0003);
5510         else
5511                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5512                                  0x00d0000f);
5513
5514         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5515             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5516                 /* Use SSC source */
5517                 if (pipe == PIPE_A)
5518                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5519                                          0x0df40000);
5520                 else
5521                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5522                                          0x0df70000);
5523         } else { /* HDMI or VGA */
5524                 /* Use bend source */
5525                 if (pipe == PIPE_A)
5526                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5527                                          0x0df70000);
5528                 else
5529                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5530                                          0x0df40000);
5531         }
5532
5533         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5534         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5535         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5536             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5537                 coreclk |= 0x01000000;
5538         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5539
5540         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5541         mutex_unlock(&dev_priv->dpio_lock);
5542 }
5543
5544 static void chv_update_pll(struct intel_crtc *crtc)
5545 {
5546         struct drm_device *dev = crtc->base.dev;
5547         struct drm_i915_private *dev_priv = dev->dev_private;
5548         int pipe = crtc->pipe;
5549         int dpll_reg = DPLL(crtc->pipe);
5550         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5551         u32 loopfilter, intcoeff;
5552         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5553         int refclk;
5554
5555         crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5556                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5557                 DPLL_VCO_ENABLE;
5558         if (pipe != PIPE_A)
5559                 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5560
5561         crtc->config.dpll_hw_state.dpll_md =
5562                 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5563
5564         bestn = crtc->config.dpll.n;
5565         bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5566         bestm1 = crtc->config.dpll.m1;
5567         bestm2 = crtc->config.dpll.m2 >> 22;
5568         bestp1 = crtc->config.dpll.p1;
5569         bestp2 = crtc->config.dpll.p2;
5570
5571         /*
5572          * Enable Refclk and SSC
5573          */
5574         I915_WRITE(dpll_reg,
5575                    crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5576
5577         mutex_lock(&dev_priv->dpio_lock);
5578
5579         /* p1 and p2 divider */
5580         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5581                         5 << DPIO_CHV_S1_DIV_SHIFT |
5582                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5583                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5584                         1 << DPIO_CHV_K_DIV_SHIFT);
5585
5586         /* Feedback post-divider - m2 */
5587         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5588
5589         /* Feedback refclk divider - n and m1 */
5590         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5591                         DPIO_CHV_M1_DIV_BY_2 |
5592                         1 << DPIO_CHV_N_DIV_SHIFT);
5593
5594         /* M2 fraction division */
5595         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5596
5597         /* M2 fraction division enable */
5598         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5599                        DPIO_CHV_FRAC_DIV_EN |
5600                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5601
5602         /* Loop filter */
5603         refclk = i9xx_get_refclk(&crtc->base, 0);
5604         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5605                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5606         if (refclk == 100000)
5607                 intcoeff = 11;
5608         else if (refclk == 38400)
5609                 intcoeff = 10;
5610         else
5611                 intcoeff = 9;
5612         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5613         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5614
5615         /* AFC Recal */
5616         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5617                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5618                         DPIO_AFC_RECAL);
5619
5620         mutex_unlock(&dev_priv->dpio_lock);
5621 }
5622
5623 static void i9xx_update_pll(struct intel_crtc *crtc,
5624                             intel_clock_t *reduced_clock,
5625                             int num_connectors)
5626 {
5627         struct drm_device *dev = crtc->base.dev;
5628         struct drm_i915_private *dev_priv = dev->dev_private;
5629         u32 dpll;
5630         bool is_sdvo;
5631         struct dpll *clock = &crtc->config.dpll;
5632
5633         i9xx_update_pll_dividers(crtc, reduced_clock);
5634
5635         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5636                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5637
5638         dpll = DPLL_VGA_MODE_DIS;
5639
5640         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5641                 dpll |= DPLLB_MODE_LVDS;
5642         else
5643                 dpll |= DPLLB_MODE_DAC_SERIAL;
5644
5645         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5646                 dpll |= (crtc->config.pixel_multiplier - 1)
5647                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5648         }
5649
5650         if (is_sdvo)
5651                 dpll |= DPLL_SDVO_HIGH_SPEED;
5652
5653         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5654                 dpll |= DPLL_SDVO_HIGH_SPEED;
5655
5656         /* compute bitmask from p1 value */
5657         if (IS_PINEVIEW(dev))
5658                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5659         else {
5660                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5661                 if (IS_G4X(dev) && reduced_clock)
5662                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5663         }
5664         switch (clock->p2) {
5665         case 5:
5666                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5667                 break;
5668         case 7:
5669                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5670                 break;
5671         case 10:
5672                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5673                 break;
5674         case 14:
5675                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5676                 break;
5677         }
5678         if (INTEL_INFO(dev)->gen >= 4)
5679                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5680
5681         if (crtc->config.sdvo_tv_clock)
5682                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5683         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5684                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5685                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5686         else
5687                 dpll |= PLL_REF_INPUT_DREFCLK;
5688
5689         dpll |= DPLL_VCO_ENABLE;
5690         crtc->config.dpll_hw_state.dpll = dpll;
5691
5692         if (INTEL_INFO(dev)->gen >= 4) {
5693                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5694                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5695                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5696         }
5697 }
5698
5699 static void i8xx_update_pll(struct intel_crtc *crtc,
5700                             intel_clock_t *reduced_clock,
5701                             int num_connectors)
5702 {
5703         struct drm_device *dev = crtc->base.dev;
5704         struct drm_i915_private *dev_priv = dev->dev_private;
5705         u32 dpll;
5706         struct dpll *clock = &crtc->config.dpll;
5707
5708         i9xx_update_pll_dividers(crtc, reduced_clock);
5709
5710         dpll = DPLL_VGA_MODE_DIS;
5711
5712         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5713                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5714         } else {
5715                 if (clock->p1 == 2)
5716                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5717                 else
5718                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5719                 if (clock->p2 == 4)
5720                         dpll |= PLL_P2_DIVIDE_BY_4;
5721         }
5722
5723         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5724                 dpll |= DPLL_DVO_2X_MODE;
5725
5726         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5727                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5728                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5729         else
5730                 dpll |= PLL_REF_INPUT_DREFCLK;
5731
5732         dpll |= DPLL_VCO_ENABLE;
5733         crtc->config.dpll_hw_state.dpll = dpll;
5734 }
5735
5736 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5737 {
5738         struct drm_device *dev = intel_crtc->base.dev;
5739         struct drm_i915_private *dev_priv = dev->dev_private;
5740         enum pipe pipe = intel_crtc->pipe;
5741         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5742         struct drm_display_mode *adjusted_mode =
5743                 &intel_crtc->config.adjusted_mode;
5744         uint32_t crtc_vtotal, crtc_vblank_end;
5745         int vsyncshift = 0;
5746
5747         /* We need to be careful not to changed the adjusted mode, for otherwise
5748          * the hw state checker will get angry at the mismatch. */
5749         crtc_vtotal = adjusted_mode->crtc_vtotal;
5750         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5751
5752         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5753                 /* the chip adds 2 halflines automatically */
5754                 crtc_vtotal -= 1;
5755                 crtc_vblank_end -= 1;
5756
5757                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5758                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5759                 else
5760                         vsyncshift = adjusted_mode->crtc_hsync_start -
5761                                 adjusted_mode->crtc_htotal / 2;
5762                 if (vsyncshift < 0)
5763                         vsyncshift += adjusted_mode->crtc_htotal;
5764         }
5765
5766         if (INTEL_INFO(dev)->gen > 3)
5767                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5768
5769         I915_WRITE(HTOTAL(cpu_transcoder),
5770                    (adjusted_mode->crtc_hdisplay - 1) |
5771                    ((adjusted_mode->crtc_htotal - 1) << 16));
5772         I915_WRITE(HBLANK(cpu_transcoder),
5773                    (adjusted_mode->crtc_hblank_start - 1) |
5774                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5775         I915_WRITE(HSYNC(cpu_transcoder),
5776                    (adjusted_mode->crtc_hsync_start - 1) |
5777                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5778
5779         I915_WRITE(VTOTAL(cpu_transcoder),
5780                    (adjusted_mode->crtc_vdisplay - 1) |
5781                    ((crtc_vtotal - 1) << 16));
5782         I915_WRITE(VBLANK(cpu_transcoder),
5783                    (adjusted_mode->crtc_vblank_start - 1) |
5784                    ((crtc_vblank_end - 1) << 16));
5785         I915_WRITE(VSYNC(cpu_transcoder),
5786                    (adjusted_mode->crtc_vsync_start - 1) |
5787                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5788
5789         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5790          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5791          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5792          * bits. */
5793         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5794             (pipe == PIPE_B || pipe == PIPE_C))
5795                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5796
5797         /* pipesrc controls the size that is scaled from, which should
5798          * always be the user's requested size.
5799          */
5800         I915_WRITE(PIPESRC(pipe),
5801                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5802                    (intel_crtc->config.pipe_src_h - 1));
5803 }
5804
5805 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5806                                    struct intel_crtc_config *pipe_config)
5807 {
5808         struct drm_device *dev = crtc->base.dev;
5809         struct drm_i915_private *dev_priv = dev->dev_private;
5810         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5811         uint32_t tmp;
5812
5813         tmp = I915_READ(HTOTAL(cpu_transcoder));
5814         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5815         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5816         tmp = I915_READ(HBLANK(cpu_transcoder));
5817         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5818         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5819         tmp = I915_READ(HSYNC(cpu_transcoder));
5820         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5821         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5822
5823         tmp = I915_READ(VTOTAL(cpu_transcoder));
5824         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5825         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5826         tmp = I915_READ(VBLANK(cpu_transcoder));
5827         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5828         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5829         tmp = I915_READ(VSYNC(cpu_transcoder));
5830         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5831         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5832
5833         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5834                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5835                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5836                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5837         }
5838
5839         tmp = I915_READ(PIPESRC(crtc->pipe));
5840         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5841         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5842
5843         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5844         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5845 }
5846
5847 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5848                                  struct intel_crtc_config *pipe_config)
5849 {
5850         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5851         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5852         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5853         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5854
5855         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5856         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5857         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5858         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5859
5860         mode->flags = pipe_config->adjusted_mode.flags;
5861
5862         mode->clock = pipe_config->adjusted_mode.crtc_clock;
5863         mode->flags |= pipe_config->adjusted_mode.flags;
5864 }
5865
5866 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5867 {
5868         struct drm_device *dev = intel_crtc->base.dev;
5869         struct drm_i915_private *dev_priv = dev->dev_private;
5870         uint32_t pipeconf;
5871
5872         pipeconf = 0;
5873
5874         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5875             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5876                 pipeconf |= PIPECONF_ENABLE;
5877
5878         if (intel_crtc->config.double_wide)
5879                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5880
5881         /* only g4x and later have fancy bpc/dither controls */
5882         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5883                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5884                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5885                         pipeconf |= PIPECONF_DITHER_EN |
5886                                     PIPECONF_DITHER_TYPE_SP;
5887
5888                 switch (intel_crtc->config.pipe_bpp) {
5889                 case 18:
5890                         pipeconf |= PIPECONF_6BPC;
5891                         break;
5892                 case 24:
5893                         pipeconf |= PIPECONF_8BPC;
5894                         break;
5895                 case 30:
5896                         pipeconf |= PIPECONF_10BPC;
5897                         break;
5898                 default:
5899                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5900                         BUG();
5901                 }
5902         }
5903
5904         if (HAS_PIPE_CXSR(dev)) {
5905                 if (intel_crtc->lowfreq_avail) {
5906                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5907                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5908                 } else {
5909                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5910                 }
5911         }
5912
5913         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5914                 if (INTEL_INFO(dev)->gen < 4 ||
5915                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5916                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5917                 else
5918                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
5919         } else
5920                 pipeconf |= PIPECONF_PROGRESSIVE;
5921
5922         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5923                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5924
5925         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5926         POSTING_READ(PIPECONF(intel_crtc->pipe));
5927 }
5928
5929 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5930                               int x, int y,
5931                               struct drm_framebuffer *fb)
5932 {
5933         struct drm_device *dev = crtc->dev;
5934         struct drm_i915_private *dev_priv = dev->dev_private;
5935         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5936         int refclk, num_connectors = 0;
5937         intel_clock_t clock, reduced_clock;
5938         bool ok, has_reduced_clock = false;
5939         bool is_lvds = false, is_dsi = false;
5940         struct intel_encoder *encoder;
5941         const intel_limit_t *limit;
5942
5943         for_each_encoder_on_crtc(dev, crtc, encoder) {
5944                 switch (encoder->type) {
5945                 case INTEL_OUTPUT_LVDS:
5946                         is_lvds = true;
5947                         break;
5948                 case INTEL_OUTPUT_DSI:
5949                         is_dsi = true;
5950                         break;
5951                 }
5952
5953                 num_connectors++;
5954         }
5955
5956         if (is_dsi)
5957                 return 0;
5958
5959         if (!intel_crtc->config.clock_set) {
5960                 refclk = i9xx_get_refclk(crtc, num_connectors);
5961
5962                 /*
5963                  * Returns a set of divisors for the desired target clock with
5964                  * the given refclk, or FALSE.  The returned values represent
5965                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5966                  * 2) / p1 / p2.
5967                  */
5968                 limit = intel_limit(crtc, refclk);
5969                 ok = dev_priv->display.find_dpll(limit, crtc,
5970                                                  intel_crtc->config.port_clock,
5971                                                  refclk, NULL, &clock);
5972                 if (!ok) {
5973                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5974                         return -EINVAL;
5975                 }
5976
5977                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5978                         /*
5979                          * Ensure we match the reduced clock's P to the target
5980                          * clock.  If the clocks don't match, we can't switch
5981                          * the display clock by using the FP0/FP1. In such case
5982                          * we will disable the LVDS downclock feature.
5983                          */
5984                         has_reduced_clock =
5985                                 dev_priv->display.find_dpll(limit, crtc,
5986                                                             dev_priv->lvds_downclock,
5987                                                             refclk, &clock,
5988                                                             &reduced_clock);
5989                 }
5990                 /* Compat-code for transition, will disappear. */
5991                 intel_crtc->config.dpll.n = clock.n;
5992                 intel_crtc->config.dpll.m1 = clock.m1;
5993                 intel_crtc->config.dpll.m2 = clock.m2;
5994                 intel_crtc->config.dpll.p1 = clock.p1;
5995                 intel_crtc->config.dpll.p2 = clock.p2;
5996         }
5997
5998         if (IS_GEN2(dev)) {
5999                 i8xx_update_pll(intel_crtc,
6000                                 has_reduced_clock ? &reduced_clock : NULL,
6001                                 num_connectors);
6002         } else if (IS_CHERRYVIEW(dev)) {
6003                 chv_update_pll(intel_crtc);
6004         } else if (IS_VALLEYVIEW(dev)) {
6005                 vlv_update_pll(intel_crtc);
6006         } else {
6007                 i9xx_update_pll(intel_crtc,
6008                                 has_reduced_clock ? &reduced_clock : NULL,
6009                                 num_connectors);
6010         }
6011
6012         return 0;
6013 }
6014
6015 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6016                                  struct intel_crtc_config *pipe_config)
6017 {
6018         struct drm_device *dev = crtc->base.dev;
6019         struct drm_i915_private *dev_priv = dev->dev_private;
6020         uint32_t tmp;
6021
6022         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6023                 return;
6024
6025         tmp = I915_READ(PFIT_CONTROL);
6026         if (!(tmp & PFIT_ENABLE))
6027                 return;
6028
6029         /* Check whether the pfit is attached to our pipe. */
6030         if (INTEL_INFO(dev)->gen < 4) {
6031                 if (crtc->pipe != PIPE_B)
6032                         return;
6033         } else {
6034                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6035                         return;
6036         }
6037
6038         pipe_config->gmch_pfit.control = tmp;
6039         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6040         if (INTEL_INFO(dev)->gen < 5)
6041                 pipe_config->gmch_pfit.lvds_border_bits =
6042                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6043 }
6044
6045 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6046                                struct intel_crtc_config *pipe_config)
6047 {
6048         struct drm_device *dev = crtc->base.dev;
6049         struct drm_i915_private *dev_priv = dev->dev_private;
6050         int pipe = pipe_config->cpu_transcoder;
6051         intel_clock_t clock;
6052         u32 mdiv;
6053         int refclk = 100000;
6054
6055         mutex_lock(&dev_priv->dpio_lock);
6056         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6057         mutex_unlock(&dev_priv->dpio_lock);
6058
6059         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6060         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6061         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6062         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6063         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6064
6065         vlv_clock(refclk, &clock);
6066
6067         /* clock.dot is the fast clock */
6068         pipe_config->port_clock = clock.dot / 5;
6069 }
6070
6071 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6072                                   struct intel_plane_config *plane_config)
6073 {
6074         struct drm_device *dev = crtc->base.dev;
6075         struct drm_i915_private *dev_priv = dev->dev_private;
6076         u32 val, base, offset;
6077         int pipe = crtc->pipe, plane = crtc->plane;
6078         int fourcc, pixel_format;
6079         int aligned_height;
6080
6081         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6082         if (!crtc->base.primary->fb) {
6083                 DRM_DEBUG_KMS("failed to alloc fb\n");
6084                 return;
6085         }
6086
6087         val = I915_READ(DSPCNTR(plane));
6088
6089         if (INTEL_INFO(dev)->gen >= 4)
6090                 if (val & DISPPLANE_TILED)
6091                         plane_config->tiled = true;
6092
6093         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6094         fourcc = intel_format_to_fourcc(pixel_format);
6095         crtc->base.primary->fb->pixel_format = fourcc;
6096         crtc->base.primary->fb->bits_per_pixel =
6097                 drm_format_plane_cpp(fourcc, 0) * 8;
6098
6099         if (INTEL_INFO(dev)->gen >= 4) {
6100                 if (plane_config->tiled)
6101                         offset = I915_READ(DSPTILEOFF(plane));
6102                 else
6103                         offset = I915_READ(DSPLINOFF(plane));
6104                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6105         } else {
6106                 base = I915_READ(DSPADDR(plane));
6107         }
6108         plane_config->base = base;
6109
6110         val = I915_READ(PIPESRC(pipe));
6111         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6112         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6113
6114         val = I915_READ(DSPSTRIDE(pipe));
6115         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6116
6117         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6118                                             plane_config->tiled);
6119
6120         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
6121                                    aligned_height, PAGE_SIZE);
6122
6123         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6124                       pipe, plane, crtc->base.primary->fb->width,
6125                       crtc->base.primary->fb->height,
6126                       crtc->base.primary->fb->bits_per_pixel, base,
6127                       crtc->base.primary->fb->pitches[0],
6128                       plane_config->size);
6129
6130 }
6131
6132 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6133                                struct intel_crtc_config *pipe_config)
6134 {
6135         struct drm_device *dev = crtc->base.dev;
6136         struct drm_i915_private *dev_priv = dev->dev_private;
6137         int pipe = pipe_config->cpu_transcoder;
6138         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6139         intel_clock_t clock;
6140         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6141         int refclk = 100000;
6142
6143         mutex_lock(&dev_priv->dpio_lock);
6144         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6145         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6146         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6147         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6148         mutex_unlock(&dev_priv->dpio_lock);
6149
6150         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6151         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6152         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6153         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6154         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6155
6156         chv_clock(refclk, &clock);
6157
6158         /* clock.dot is the fast clock */
6159         pipe_config->port_clock = clock.dot / 5;
6160 }
6161
6162 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6163                                  struct intel_crtc_config *pipe_config)
6164 {
6165         struct drm_device *dev = crtc->base.dev;
6166         struct drm_i915_private *dev_priv = dev->dev_private;
6167         uint32_t tmp;
6168
6169         if (!intel_display_power_enabled(dev_priv,
6170                                          POWER_DOMAIN_PIPE(crtc->pipe)))
6171                 return false;
6172
6173         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6174         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6175
6176         tmp = I915_READ(PIPECONF(crtc->pipe));
6177         if (!(tmp & PIPECONF_ENABLE))
6178                 return false;
6179
6180         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6181                 switch (tmp & PIPECONF_BPC_MASK) {
6182                 case PIPECONF_6BPC:
6183                         pipe_config->pipe_bpp = 18;
6184                         break;
6185                 case PIPECONF_8BPC:
6186                         pipe_config->pipe_bpp = 24;
6187                         break;
6188                 case PIPECONF_10BPC:
6189                         pipe_config->pipe_bpp = 30;
6190                         break;
6191                 default:
6192                         break;
6193                 }
6194         }
6195
6196         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6197                 pipe_config->limited_color_range = true;
6198
6199         if (INTEL_INFO(dev)->gen < 4)
6200                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6201
6202         intel_get_pipe_timings(crtc, pipe_config);
6203
6204         i9xx_get_pfit_config(crtc, pipe_config);
6205
6206         if (INTEL_INFO(dev)->gen >= 4) {
6207                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6208                 pipe_config->pixel_multiplier =
6209                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6210                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6211                 pipe_config->dpll_hw_state.dpll_md = tmp;
6212         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6213                 tmp = I915_READ(DPLL(crtc->pipe));
6214                 pipe_config->pixel_multiplier =
6215                         ((tmp & SDVO_MULTIPLIER_MASK)
6216                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6217         } else {
6218                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6219                  * port and will be fixed up in the encoder->get_config
6220                  * function. */
6221                 pipe_config->pixel_multiplier = 1;
6222         }
6223         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6224         if (!IS_VALLEYVIEW(dev)) {
6225                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6226                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6227         } else {
6228                 /* Mask out read-only status bits. */
6229                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6230                                                      DPLL_PORTC_READY_MASK |
6231                                                      DPLL_PORTB_READY_MASK);
6232         }
6233
6234         if (IS_CHERRYVIEW(dev))
6235                 chv_crtc_clock_get(crtc, pipe_config);
6236         else if (IS_VALLEYVIEW(dev))
6237                 vlv_crtc_clock_get(crtc, pipe_config);
6238         else
6239                 i9xx_crtc_clock_get(crtc, pipe_config);
6240
6241         return true;
6242 }
6243
6244 static void ironlake_init_pch_refclk(struct drm_device *dev)
6245 {
6246         struct drm_i915_private *dev_priv = dev->dev_private;
6247         struct drm_mode_config *mode_config = &dev->mode_config;
6248         struct intel_encoder *encoder;
6249         u32 val, final;
6250         bool has_lvds = false;
6251         bool has_cpu_edp = false;
6252         bool has_panel = false;
6253         bool has_ck505 = false;
6254         bool can_ssc = false;
6255
6256         /* We need to take the global config into account */
6257         list_for_each_entry(encoder, &mode_config->encoder_list,
6258                             base.head) {
6259                 switch (encoder->type) {
6260                 case INTEL_OUTPUT_LVDS:
6261                         has_panel = true;
6262                         has_lvds = true;
6263                         break;
6264                 case INTEL_OUTPUT_EDP:
6265                         has_panel = true;
6266                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6267                                 has_cpu_edp = true;
6268                         break;
6269                 }
6270         }
6271
6272         if (HAS_PCH_IBX(dev)) {
6273                 has_ck505 = dev_priv->vbt.display_clock_mode;
6274                 can_ssc = has_ck505;
6275         } else {
6276                 has_ck505 = false;
6277                 can_ssc = true;
6278         }
6279
6280         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6281                       has_panel, has_lvds, has_ck505);
6282
6283         /* Ironlake: try to setup display ref clock before DPLL
6284          * enabling. This is only under driver's control after
6285          * PCH B stepping, previous chipset stepping should be
6286          * ignoring this setting.
6287          */
6288         val = I915_READ(PCH_DREF_CONTROL);
6289
6290         /* As we must carefully and slowly disable/enable each source in turn,
6291          * compute the final state we want first and check if we need to
6292          * make any changes at all.
6293          */
6294         final = val;
6295         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6296         if (has_ck505)
6297                 final |= DREF_NONSPREAD_CK505_ENABLE;
6298         else
6299                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6300
6301         final &= ~DREF_SSC_SOURCE_MASK;
6302         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6303         final &= ~DREF_SSC1_ENABLE;
6304
6305         if (has_panel) {
6306                 final |= DREF_SSC_SOURCE_ENABLE;
6307
6308                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6309                         final |= DREF_SSC1_ENABLE;
6310
6311                 if (has_cpu_edp) {
6312                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6313                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6314                         else
6315                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6316                 } else
6317                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6318         } else {
6319                 final |= DREF_SSC_SOURCE_DISABLE;
6320                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6321         }
6322
6323         if (final == val)
6324                 return;
6325
6326         /* Always enable nonspread source */
6327         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6328
6329         if (has_ck505)
6330                 val |= DREF_NONSPREAD_CK505_ENABLE;
6331         else
6332                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6333
6334         if (has_panel) {
6335                 val &= ~DREF_SSC_SOURCE_MASK;
6336                 val |= DREF_SSC_SOURCE_ENABLE;
6337
6338                 /* SSC must be turned on before enabling the CPU output  */
6339                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6340                         DRM_DEBUG_KMS("Using SSC on panel\n");
6341                         val |= DREF_SSC1_ENABLE;
6342                 } else
6343                         val &= ~DREF_SSC1_ENABLE;
6344
6345                 /* Get SSC going before enabling the outputs */
6346                 I915_WRITE(PCH_DREF_CONTROL, val);
6347                 POSTING_READ(PCH_DREF_CONTROL);
6348                 udelay(200);
6349
6350                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6351
6352                 /* Enable CPU source on CPU attached eDP */
6353                 if (has_cpu_edp) {
6354                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6355                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6356                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6357                         } else
6358                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6359                 } else
6360                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6361
6362                 I915_WRITE(PCH_DREF_CONTROL, val);
6363                 POSTING_READ(PCH_DREF_CONTROL);
6364                 udelay(200);
6365         } else {
6366                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6367
6368                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6369
6370                 /* Turn off CPU output */
6371                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6372
6373                 I915_WRITE(PCH_DREF_CONTROL, val);
6374                 POSTING_READ(PCH_DREF_CONTROL);
6375                 udelay(200);
6376
6377                 /* Turn off the SSC source */
6378                 val &= ~DREF_SSC_SOURCE_MASK;
6379                 val |= DREF_SSC_SOURCE_DISABLE;
6380
6381                 /* Turn off SSC1 */
6382                 val &= ~DREF_SSC1_ENABLE;
6383
6384                 I915_WRITE(PCH_DREF_CONTROL, val);
6385                 POSTING_READ(PCH_DREF_CONTROL);
6386                 udelay(200);
6387         }
6388
6389         BUG_ON(val != final);
6390 }
6391
6392 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6393 {
6394         uint32_t tmp;
6395
6396         tmp = I915_READ(SOUTH_CHICKEN2);
6397         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6398         I915_WRITE(SOUTH_CHICKEN2, tmp);
6399
6400         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6401                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6402                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6403
6404         tmp = I915_READ(SOUTH_CHICKEN2);
6405         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6406         I915_WRITE(SOUTH_CHICKEN2, tmp);
6407
6408         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6409                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6410                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6411 }
6412
6413 /* WaMPhyProgramming:hsw */
6414 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6415 {
6416         uint32_t tmp;
6417
6418         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6419         tmp &= ~(0xFF << 24);
6420         tmp |= (0x12 << 24);
6421         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6422
6423         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6424         tmp |= (1 << 11);
6425         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6426
6427         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6428         tmp |= (1 << 11);
6429         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6430
6431         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6432         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6433         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6434
6435         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6436         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6437         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6438
6439         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6440         tmp &= ~(7 << 13);
6441         tmp |= (5 << 13);
6442         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6443
6444         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6445         tmp &= ~(7 << 13);
6446         tmp |= (5 << 13);
6447         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6448
6449         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6450         tmp &= ~0xFF;
6451         tmp |= 0x1C;
6452         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6453
6454         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6455         tmp &= ~0xFF;
6456         tmp |= 0x1C;
6457         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6458
6459         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6460         tmp &= ~(0xFF << 16);
6461         tmp |= (0x1C << 16);
6462         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6463
6464         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6465         tmp &= ~(0xFF << 16);
6466         tmp |= (0x1C << 16);
6467         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6468
6469         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6470         tmp |= (1 << 27);
6471         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6472
6473         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6474         tmp |= (1 << 27);
6475         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6476
6477         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6478         tmp &= ~(0xF << 28);
6479         tmp |= (4 << 28);
6480         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6481
6482         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6483         tmp &= ~(0xF << 28);
6484         tmp |= (4 << 28);
6485         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6486 }
6487
6488 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6489  * Programming" based on the parameters passed:
6490  * - Sequence to enable CLKOUT_DP
6491  * - Sequence to enable CLKOUT_DP without spread
6492  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6493  */
6494 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6495                                  bool with_fdi)
6496 {
6497         struct drm_i915_private *dev_priv = dev->dev_private;
6498         uint32_t reg, tmp;
6499
6500         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6501                 with_spread = true;
6502         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6503                  with_fdi, "LP PCH doesn't have FDI\n"))
6504                 with_fdi = false;
6505
6506         mutex_lock(&dev_priv->dpio_lock);
6507
6508         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6509         tmp &= ~SBI_SSCCTL_DISABLE;
6510         tmp |= SBI_SSCCTL_PATHALT;
6511         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6512
6513         udelay(24);
6514
6515         if (with_spread) {
6516                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6517                 tmp &= ~SBI_SSCCTL_PATHALT;
6518                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6519
6520                 if (with_fdi) {
6521                         lpt_reset_fdi_mphy(dev_priv);
6522                         lpt_program_fdi_mphy(dev_priv);
6523                 }
6524         }
6525
6526         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6527                SBI_GEN0 : SBI_DBUFF0;
6528         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6529         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6530         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6531
6532         mutex_unlock(&dev_priv->dpio_lock);
6533 }
6534
6535 /* Sequence to disable CLKOUT_DP */
6536 static void lpt_disable_clkout_dp(struct drm_device *dev)
6537 {
6538         struct drm_i915_private *dev_priv = dev->dev_private;
6539         uint32_t reg, tmp;
6540
6541         mutex_lock(&dev_priv->dpio_lock);
6542
6543         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6544                SBI_GEN0 : SBI_DBUFF0;
6545         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6546         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6547         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6548
6549         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6550         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6551                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6552                         tmp |= SBI_SSCCTL_PATHALT;
6553                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6554                         udelay(32);
6555                 }
6556                 tmp |= SBI_SSCCTL_DISABLE;
6557                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6558         }
6559
6560         mutex_unlock(&dev_priv->dpio_lock);
6561 }
6562
6563 static void lpt_init_pch_refclk(struct drm_device *dev)
6564 {
6565         struct drm_mode_config *mode_config = &dev->mode_config;
6566         struct intel_encoder *encoder;
6567         bool has_vga = false;
6568
6569         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6570                 switch (encoder->type) {
6571                 case INTEL_OUTPUT_ANALOG:
6572                         has_vga = true;
6573                         break;
6574                 }
6575         }
6576
6577         if (has_vga)
6578                 lpt_enable_clkout_dp(dev, true, true);
6579         else
6580                 lpt_disable_clkout_dp(dev);
6581 }
6582
6583 /*
6584  * Initialize reference clocks when the driver loads
6585  */
6586 void intel_init_pch_refclk(struct drm_device *dev)
6587 {
6588         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6589                 ironlake_init_pch_refclk(dev);
6590         else if (HAS_PCH_LPT(dev))
6591                 lpt_init_pch_refclk(dev);
6592 }
6593
6594 static int ironlake_get_refclk(struct drm_crtc *crtc)
6595 {
6596         struct drm_device *dev = crtc->dev;
6597         struct drm_i915_private *dev_priv = dev->dev_private;
6598         struct intel_encoder *encoder;
6599         int num_connectors = 0;
6600         bool is_lvds = false;
6601
6602         for_each_encoder_on_crtc(dev, crtc, encoder) {
6603                 switch (encoder->type) {
6604                 case INTEL_OUTPUT_LVDS:
6605                         is_lvds = true;
6606                         break;
6607                 }
6608                 num_connectors++;
6609         }
6610
6611         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6612                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6613                               dev_priv->vbt.lvds_ssc_freq);
6614                 return dev_priv->vbt.lvds_ssc_freq;
6615         }
6616
6617         return 120000;
6618 }
6619
6620 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6621 {
6622         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6623         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6624         int pipe = intel_crtc->pipe;
6625         uint32_t val;
6626
6627         val = 0;
6628
6629         switch (intel_crtc->config.pipe_bpp) {
6630         case 18:
6631                 val |= PIPECONF_6BPC;
6632                 break;
6633         case 24:
6634                 val |= PIPECONF_8BPC;
6635                 break;
6636         case 30:
6637                 val |= PIPECONF_10BPC;
6638                 break;
6639         case 36:
6640                 val |= PIPECONF_12BPC;
6641                 break;
6642         default:
6643                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6644                 BUG();
6645         }
6646
6647         if (intel_crtc->config.dither)
6648                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6649
6650         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6651                 val |= PIPECONF_INTERLACED_ILK;
6652         else
6653                 val |= PIPECONF_PROGRESSIVE;
6654
6655         if (intel_crtc->config.limited_color_range)
6656                 val |= PIPECONF_COLOR_RANGE_SELECT;
6657
6658         I915_WRITE(PIPECONF(pipe), val);
6659         POSTING_READ(PIPECONF(pipe));
6660 }
6661
6662 /*
6663  * Set up the pipe CSC unit.
6664  *
6665  * Currently only full range RGB to limited range RGB conversion
6666  * is supported, but eventually this should handle various
6667  * RGB<->YCbCr scenarios as well.
6668  */
6669 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6670 {
6671         struct drm_device *dev = crtc->dev;
6672         struct drm_i915_private *dev_priv = dev->dev_private;
6673         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6674         int pipe = intel_crtc->pipe;
6675         uint16_t coeff = 0x7800; /* 1.0 */
6676
6677         /*
6678          * TODO: Check what kind of values actually come out of the pipe
6679          * with these coeff/postoff values and adjust to get the best
6680          * accuracy. Perhaps we even need to take the bpc value into
6681          * consideration.
6682          */
6683
6684         if (intel_crtc->config.limited_color_range)
6685                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6686
6687         /*
6688          * GY/GU and RY/RU should be the other way around according
6689          * to BSpec, but reality doesn't agree. Just set them up in
6690          * a way that results in the correct picture.
6691          */
6692         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6693         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6694
6695         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6696         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6697
6698         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6699         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6700
6701         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6702         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6703         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6704
6705         if (INTEL_INFO(dev)->gen > 6) {
6706                 uint16_t postoff = 0;
6707
6708                 if (intel_crtc->config.limited_color_range)
6709                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6710
6711                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6712                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6713                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6714
6715                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6716         } else {
6717                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6718
6719                 if (intel_crtc->config.limited_color_range)
6720                         mode |= CSC_BLACK_SCREEN_OFFSET;
6721
6722                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6723         }
6724 }
6725
6726 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6727 {
6728         struct drm_device *dev = crtc->dev;
6729         struct drm_i915_private *dev_priv = dev->dev_private;
6730         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6731         enum pipe pipe = intel_crtc->pipe;
6732         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6733         uint32_t val;
6734
6735         val = 0;
6736
6737         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6738                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6739
6740         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6741                 val |= PIPECONF_INTERLACED_ILK;
6742         else
6743                 val |= PIPECONF_PROGRESSIVE;
6744
6745         I915_WRITE(PIPECONF(cpu_transcoder), val);
6746         POSTING_READ(PIPECONF(cpu_transcoder));
6747
6748         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6749         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6750
6751         if (IS_BROADWELL(dev)) {
6752                 val = 0;
6753
6754                 switch (intel_crtc->config.pipe_bpp) {
6755                 case 18:
6756                         val |= PIPEMISC_DITHER_6_BPC;
6757                         break;
6758                 case 24:
6759                         val |= PIPEMISC_DITHER_8_BPC;
6760                         break;
6761                 case 30:
6762                         val |= PIPEMISC_DITHER_10_BPC;
6763                         break;
6764                 case 36:
6765                         val |= PIPEMISC_DITHER_12_BPC;
6766                         break;
6767                 default:
6768                         /* Case prevented by pipe_config_set_bpp. */
6769                         BUG();
6770                 }
6771
6772                 if (intel_crtc->config.dither)
6773                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6774
6775                 I915_WRITE(PIPEMISC(pipe), val);
6776         }
6777 }
6778
6779 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6780                                     intel_clock_t *clock,
6781                                     bool *has_reduced_clock,
6782                                     intel_clock_t *reduced_clock)
6783 {
6784         struct drm_device *dev = crtc->dev;
6785         struct drm_i915_private *dev_priv = dev->dev_private;
6786         struct intel_encoder *intel_encoder;
6787         int refclk;
6788         const intel_limit_t *limit;
6789         bool ret, is_lvds = false;
6790
6791         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6792                 switch (intel_encoder->type) {
6793                 case INTEL_OUTPUT_LVDS:
6794                         is_lvds = true;
6795                         break;
6796                 }
6797         }
6798
6799         refclk = ironlake_get_refclk(crtc);
6800
6801         /*
6802          * Returns a set of divisors for the desired target clock with the given
6803          * refclk, or FALSE.  The returned values represent the clock equation:
6804          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6805          */
6806         limit = intel_limit(crtc, refclk);
6807         ret = dev_priv->display.find_dpll(limit, crtc,
6808                                           to_intel_crtc(crtc)->config.port_clock,
6809                                           refclk, NULL, clock);
6810         if (!ret)
6811                 return false;
6812
6813         if (is_lvds && dev_priv->lvds_downclock_avail) {
6814                 /*
6815                  * Ensure we match the reduced clock's P to the target clock.
6816                  * If the clocks don't match, we can't switch the display clock
6817                  * by using the FP0/FP1. In such case we will disable the LVDS
6818                  * downclock feature.
6819                 */
6820                 *has_reduced_clock =
6821                         dev_priv->display.find_dpll(limit, crtc,
6822                                                     dev_priv->lvds_downclock,
6823                                                     refclk, clock,
6824                                                     reduced_clock);
6825         }
6826
6827         return true;
6828 }
6829
6830 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6831 {
6832         /*
6833          * Account for spread spectrum to avoid
6834          * oversubscribing the link. Max center spread
6835          * is 2.5%; use 5% for safety's sake.
6836          */
6837         u32 bps = target_clock * bpp * 21 / 20;
6838         return DIV_ROUND_UP(bps, link_bw * 8);
6839 }
6840
6841 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6842 {
6843         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6844 }
6845
6846 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6847                                       u32 *fp,
6848                                       intel_clock_t *reduced_clock, u32 *fp2)
6849 {
6850         struct drm_crtc *crtc = &intel_crtc->base;
6851         struct drm_device *dev = crtc->dev;
6852         struct drm_i915_private *dev_priv = dev->dev_private;
6853         struct intel_encoder *intel_encoder;
6854         uint32_t dpll;
6855         int factor, num_connectors = 0;
6856         bool is_lvds = false, is_sdvo = false;
6857
6858         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6859                 switch (intel_encoder->type) {
6860                 case INTEL_OUTPUT_LVDS:
6861                         is_lvds = true;
6862                         break;
6863                 case INTEL_OUTPUT_SDVO:
6864                 case INTEL_OUTPUT_HDMI:
6865                         is_sdvo = true;
6866                         break;
6867                 }
6868
6869                 num_connectors++;
6870         }
6871
6872         /* Enable autotuning of the PLL clock (if permissible) */
6873         factor = 21;
6874         if (is_lvds) {
6875                 if ((intel_panel_use_ssc(dev_priv) &&
6876                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6877                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6878                         factor = 25;
6879         } else if (intel_crtc->config.sdvo_tv_clock)
6880                 factor = 20;
6881
6882         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6883                 *fp |= FP_CB_TUNE;
6884
6885         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6886                 *fp2 |= FP_CB_TUNE;
6887
6888         dpll = 0;
6889
6890         if (is_lvds)
6891                 dpll |= DPLLB_MODE_LVDS;
6892         else
6893                 dpll |= DPLLB_MODE_DAC_SERIAL;
6894
6895         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6896                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6897
6898         if (is_sdvo)
6899                 dpll |= DPLL_SDVO_HIGH_SPEED;
6900         if (intel_crtc->config.has_dp_encoder)
6901                 dpll |= DPLL_SDVO_HIGH_SPEED;
6902
6903         /* compute bitmask from p1 value */
6904         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6905         /* also FPA1 */
6906         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6907
6908         switch (intel_crtc->config.dpll.p2) {
6909         case 5:
6910                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6911                 break;
6912         case 7:
6913                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6914                 break;
6915         case 10:
6916                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6917                 break;
6918         case 14:
6919                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6920                 break;
6921         }
6922
6923         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6924                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6925         else
6926                 dpll |= PLL_REF_INPUT_DREFCLK;
6927
6928         return dpll | DPLL_VCO_ENABLE;
6929 }
6930
6931 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6932                                   int x, int y,
6933                                   struct drm_framebuffer *fb)
6934 {
6935         struct drm_device *dev = crtc->dev;
6936         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6937         int num_connectors = 0;
6938         intel_clock_t clock, reduced_clock;
6939         u32 dpll = 0, fp = 0, fp2 = 0;
6940         bool ok, has_reduced_clock = false;
6941         bool is_lvds = false;
6942         struct intel_encoder *encoder;
6943         struct intel_shared_dpll *pll;
6944
6945         for_each_encoder_on_crtc(dev, crtc, encoder) {
6946                 switch (encoder->type) {
6947                 case INTEL_OUTPUT_LVDS:
6948                         is_lvds = true;
6949                         break;
6950                 }
6951
6952                 num_connectors++;
6953         }
6954
6955         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6956              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6957
6958         ok = ironlake_compute_clocks(crtc, &clock,
6959                                      &has_reduced_clock, &reduced_clock);
6960         if (!ok && !intel_crtc->config.clock_set) {
6961                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6962                 return -EINVAL;
6963         }
6964         /* Compat-code for transition, will disappear. */
6965         if (!intel_crtc->config.clock_set) {
6966                 intel_crtc->config.dpll.n = clock.n;
6967                 intel_crtc->config.dpll.m1 = clock.m1;
6968                 intel_crtc->config.dpll.m2 = clock.m2;
6969                 intel_crtc->config.dpll.p1 = clock.p1;
6970                 intel_crtc->config.dpll.p2 = clock.p2;
6971         }
6972
6973         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6974         if (intel_crtc->config.has_pch_encoder) {
6975                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6976                 if (has_reduced_clock)
6977                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6978
6979                 dpll = ironlake_compute_dpll(intel_crtc,
6980                                              &fp, &reduced_clock,
6981                                              has_reduced_clock ? &fp2 : NULL);
6982
6983                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6984                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6985                 if (has_reduced_clock)
6986                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6987                 else
6988                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6989
6990                 pll = intel_get_shared_dpll(intel_crtc);
6991                 if (pll == NULL) {
6992                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6993                                          pipe_name(intel_crtc->pipe));
6994                         return -EINVAL;
6995                 }
6996         } else
6997                 intel_put_shared_dpll(intel_crtc);
6998
6999         if (is_lvds && has_reduced_clock && i915.powersave)
7000                 intel_crtc->lowfreq_avail = true;
7001         else
7002                 intel_crtc->lowfreq_avail = false;
7003
7004         return 0;
7005 }
7006
7007 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7008                                          struct intel_link_m_n *m_n)
7009 {
7010         struct drm_device *dev = crtc->base.dev;
7011         struct drm_i915_private *dev_priv = dev->dev_private;
7012         enum pipe pipe = crtc->pipe;
7013
7014         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7015         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7016         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7017                 & ~TU_SIZE_MASK;
7018         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7019         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7020                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7021 }
7022
7023 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7024                                          enum transcoder transcoder,
7025                                          struct intel_link_m_n *m_n)
7026 {
7027         struct drm_device *dev = crtc->base.dev;
7028         struct drm_i915_private *dev_priv = dev->dev_private;
7029         enum pipe pipe = crtc->pipe;
7030
7031         if (INTEL_INFO(dev)->gen >= 5) {
7032                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7033                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7034                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7035                         & ~TU_SIZE_MASK;
7036                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7037                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7038                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7039         } else {
7040                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7041                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7042                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7043                         & ~TU_SIZE_MASK;
7044                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7045                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7046                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7047         }
7048 }
7049
7050 void intel_dp_get_m_n(struct intel_crtc *crtc,
7051                       struct intel_crtc_config *pipe_config)
7052 {
7053         if (crtc->config.has_pch_encoder)
7054                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7055         else
7056                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7057                                              &pipe_config->dp_m_n);
7058 }
7059
7060 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7061                                         struct intel_crtc_config *pipe_config)
7062 {
7063         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7064                                      &pipe_config->fdi_m_n);
7065 }
7066
7067 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7068                                      struct intel_crtc_config *pipe_config)
7069 {
7070         struct drm_device *dev = crtc->base.dev;
7071         struct drm_i915_private *dev_priv = dev->dev_private;
7072         uint32_t tmp;
7073
7074         tmp = I915_READ(PF_CTL(crtc->pipe));
7075
7076         if (tmp & PF_ENABLE) {
7077                 pipe_config->pch_pfit.enabled = true;
7078                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7079                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7080
7081                 /* We currently do not free assignements of panel fitters on
7082                  * ivb/hsw (since we don't use the higher upscaling modes which
7083                  * differentiates them) so just WARN about this case for now. */
7084                 if (IS_GEN7(dev)) {
7085                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7086                                 PF_PIPE_SEL_IVB(crtc->pipe));
7087                 }
7088         }
7089 }
7090
7091 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7092                                       struct intel_plane_config *plane_config)
7093 {
7094         struct drm_device *dev = crtc->base.dev;
7095         struct drm_i915_private *dev_priv = dev->dev_private;
7096         u32 val, base, offset;
7097         int pipe = crtc->pipe, plane = crtc->plane;
7098         int fourcc, pixel_format;
7099         int aligned_height;
7100
7101         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7102         if (!crtc->base.primary->fb) {
7103                 DRM_DEBUG_KMS("failed to alloc fb\n");
7104                 return;
7105         }
7106
7107         val = I915_READ(DSPCNTR(plane));
7108
7109         if (INTEL_INFO(dev)->gen >= 4)
7110                 if (val & DISPPLANE_TILED)
7111                         plane_config->tiled = true;
7112
7113         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7114         fourcc = intel_format_to_fourcc(pixel_format);
7115         crtc->base.primary->fb->pixel_format = fourcc;
7116         crtc->base.primary->fb->bits_per_pixel =
7117                 drm_format_plane_cpp(fourcc, 0) * 8;
7118
7119         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7120         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7121                 offset = I915_READ(DSPOFFSET(plane));
7122         } else {
7123                 if (plane_config->tiled)
7124                         offset = I915_READ(DSPTILEOFF(plane));
7125                 else
7126                         offset = I915_READ(DSPLINOFF(plane));
7127         }
7128         plane_config->base = base;
7129
7130         val = I915_READ(PIPESRC(pipe));
7131         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7132         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7133
7134         val = I915_READ(DSPSTRIDE(pipe));
7135         crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
7136
7137         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7138                                             plane_config->tiled);
7139
7140         plane_config->size = ALIGN(crtc->base.primary->fb->pitches[0] *
7141                                    aligned_height, PAGE_SIZE);
7142
7143         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7144                       pipe, plane, crtc->base.primary->fb->width,
7145                       crtc->base.primary->fb->height,
7146                       crtc->base.primary->fb->bits_per_pixel, base,
7147                       crtc->base.primary->fb->pitches[0],
7148                       plane_config->size);
7149 }
7150
7151 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7152                                      struct intel_crtc_config *pipe_config)
7153 {
7154         struct drm_device *dev = crtc->base.dev;
7155         struct drm_i915_private *dev_priv = dev->dev_private;
7156         uint32_t tmp;
7157
7158         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7159         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7160
7161         tmp = I915_READ(PIPECONF(crtc->pipe));
7162         if (!(tmp & PIPECONF_ENABLE))
7163                 return false;
7164
7165         switch (tmp & PIPECONF_BPC_MASK) {
7166         case PIPECONF_6BPC:
7167                 pipe_config->pipe_bpp = 18;
7168                 break;
7169         case PIPECONF_8BPC:
7170                 pipe_config->pipe_bpp = 24;
7171                 break;
7172         case PIPECONF_10BPC:
7173                 pipe_config->pipe_bpp = 30;
7174                 break;
7175         case PIPECONF_12BPC:
7176                 pipe_config->pipe_bpp = 36;
7177                 break;
7178         default:
7179                 break;
7180         }
7181
7182         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7183                 pipe_config->limited_color_range = true;
7184
7185         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7186                 struct intel_shared_dpll *pll;
7187
7188                 pipe_config->has_pch_encoder = true;
7189
7190                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7191                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7192                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7193
7194                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7195
7196                 if (HAS_PCH_IBX(dev_priv->dev)) {
7197                         pipe_config->shared_dpll =
7198                                 (enum intel_dpll_id) crtc->pipe;
7199                 } else {
7200                         tmp = I915_READ(PCH_DPLL_SEL);
7201                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7202                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7203                         else
7204                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7205                 }
7206
7207                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7208
7209                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7210                                            &pipe_config->dpll_hw_state));
7211
7212                 tmp = pipe_config->dpll_hw_state.dpll;
7213                 pipe_config->pixel_multiplier =
7214                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7215                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7216
7217                 ironlake_pch_clock_get(crtc, pipe_config);
7218         } else {
7219                 pipe_config->pixel_multiplier = 1;
7220         }
7221
7222         intel_get_pipe_timings(crtc, pipe_config);
7223
7224         ironlake_get_pfit_config(crtc, pipe_config);
7225
7226         return true;
7227 }
7228
7229 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7230 {
7231         struct drm_device *dev = dev_priv->dev;
7232         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
7233         struct intel_crtc *crtc;
7234
7235         for_each_intel_crtc(dev, crtc)
7236                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7237                      pipe_name(crtc->pipe));
7238
7239         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7240         WARN(plls->spll_refcount, "SPLL enabled\n");
7241         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
7242         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
7243         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7244         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7245              "CPU PWM1 enabled\n");
7246         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7247              "CPU PWM2 enabled\n");
7248         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7249              "PCH PWM1 enabled\n");
7250         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7251              "Utility pin enabled\n");
7252         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7253
7254         /*
7255          * In theory we can still leave IRQs enabled, as long as only the HPD
7256          * interrupts remain enabled. We used to check for that, but since it's
7257          * gen-specific and since we only disable LCPLL after we fully disable
7258          * the interrupts, the check below should be enough.
7259          */
7260         WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
7261 }
7262
7263 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7264 {
7265         struct drm_device *dev = dev_priv->dev;
7266
7267         if (IS_HASWELL(dev)) {
7268                 mutex_lock(&dev_priv->rps.hw_lock);
7269                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7270                                             val))
7271                         DRM_ERROR("Failed to disable D_COMP\n");
7272                 mutex_unlock(&dev_priv->rps.hw_lock);
7273         } else {
7274                 I915_WRITE(D_COMP, val);
7275         }
7276         POSTING_READ(D_COMP);
7277 }
7278
7279 /*
7280  * This function implements pieces of two sequences from BSpec:
7281  * - Sequence for display software to disable LCPLL
7282  * - Sequence for display software to allow package C8+
7283  * The steps implemented here are just the steps that actually touch the LCPLL
7284  * register. Callers should take care of disabling all the display engine
7285  * functions, doing the mode unset, fixing interrupts, etc.
7286  */
7287 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7288                               bool switch_to_fclk, bool allow_power_down)
7289 {
7290         uint32_t val;
7291
7292         assert_can_disable_lcpll(dev_priv);
7293
7294         val = I915_READ(LCPLL_CTL);
7295
7296         if (switch_to_fclk) {
7297                 val |= LCPLL_CD_SOURCE_FCLK;
7298                 I915_WRITE(LCPLL_CTL, val);
7299
7300                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7301                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7302                         DRM_ERROR("Switching to FCLK failed\n");
7303
7304                 val = I915_READ(LCPLL_CTL);
7305         }
7306
7307         val |= LCPLL_PLL_DISABLE;
7308         I915_WRITE(LCPLL_CTL, val);
7309         POSTING_READ(LCPLL_CTL);
7310
7311         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7312                 DRM_ERROR("LCPLL still locked\n");
7313
7314         val = I915_READ(D_COMP);
7315         val |= D_COMP_COMP_DISABLE;
7316         hsw_write_dcomp(dev_priv, val);
7317         ndelay(100);
7318
7319         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
7320                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7321
7322         if (allow_power_down) {
7323                 val = I915_READ(LCPLL_CTL);
7324                 val |= LCPLL_POWER_DOWN_ALLOW;
7325                 I915_WRITE(LCPLL_CTL, val);
7326                 POSTING_READ(LCPLL_CTL);
7327         }
7328 }
7329
7330 /*
7331  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7332  * source.
7333  */
7334 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7335 {
7336         uint32_t val;
7337         unsigned long irqflags;
7338
7339         val = I915_READ(LCPLL_CTL);
7340
7341         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7342                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7343                 return;
7344
7345         /*
7346          * Make sure we're not on PC8 state before disabling PC8, otherwise
7347          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7348          *
7349          * The other problem is that hsw_restore_lcpll() is called as part of
7350          * the runtime PM resume sequence, so we can't just call
7351          * gen6_gt_force_wake_get() because that function calls
7352          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7353          * while we are on the resume sequence. So to solve this problem we have
7354          * to call special forcewake code that doesn't touch runtime PM and
7355          * doesn't enable the forcewake delayed work.
7356          */
7357         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7358         if (dev_priv->uncore.forcewake_count++ == 0)
7359                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7360         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7361
7362         if (val & LCPLL_POWER_DOWN_ALLOW) {
7363                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7364                 I915_WRITE(LCPLL_CTL, val);
7365                 POSTING_READ(LCPLL_CTL);
7366         }
7367
7368         val = I915_READ(D_COMP);
7369         val |= D_COMP_COMP_FORCE;
7370         val &= ~D_COMP_COMP_DISABLE;
7371         hsw_write_dcomp(dev_priv, val);
7372
7373         val = I915_READ(LCPLL_CTL);
7374         val &= ~LCPLL_PLL_DISABLE;
7375         I915_WRITE(LCPLL_CTL, val);
7376
7377         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7378                 DRM_ERROR("LCPLL not locked yet\n");
7379
7380         if (val & LCPLL_CD_SOURCE_FCLK) {
7381                 val = I915_READ(LCPLL_CTL);
7382                 val &= ~LCPLL_CD_SOURCE_FCLK;
7383                 I915_WRITE(LCPLL_CTL, val);
7384
7385                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7386                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7387                         DRM_ERROR("Switching back to LCPLL failed\n");
7388         }
7389
7390         /* See the big comment above. */
7391         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7392         if (--dev_priv->uncore.forcewake_count == 0)
7393                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7394         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7395 }
7396
7397 /*
7398  * Package states C8 and deeper are really deep PC states that can only be
7399  * reached when all the devices on the system allow it, so even if the graphics
7400  * device allows PC8+, it doesn't mean the system will actually get to these
7401  * states. Our driver only allows PC8+ when going into runtime PM.
7402  *
7403  * The requirements for PC8+ are that all the outputs are disabled, the power
7404  * well is disabled and most interrupts are disabled, and these are also
7405  * requirements for runtime PM. When these conditions are met, we manually do
7406  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7407  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7408  * hang the machine.
7409  *
7410  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7411  * the state of some registers, so when we come back from PC8+ we need to
7412  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7413  * need to take care of the registers kept by RC6. Notice that this happens even
7414  * if we don't put the device in PCI D3 state (which is what currently happens
7415  * because of the runtime PM support).
7416  *
7417  * For more, read "Display Sequences for Package C8" on the hardware
7418  * documentation.
7419  */
7420 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7421 {
7422         struct drm_device *dev = dev_priv->dev;
7423         uint32_t val;
7424
7425         DRM_DEBUG_KMS("Enabling package C8+\n");
7426
7427         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7428                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7429                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7430                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7431         }
7432
7433         lpt_disable_clkout_dp(dev);
7434         hsw_disable_lcpll(dev_priv, true, true);
7435 }
7436
7437 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7438 {
7439         struct drm_device *dev = dev_priv->dev;
7440         uint32_t val;
7441
7442         DRM_DEBUG_KMS("Disabling package C8+\n");
7443
7444         hsw_restore_lcpll(dev_priv);
7445         lpt_init_pch_refclk(dev);
7446
7447         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7448                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7449                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7450                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7451         }
7452
7453         intel_prepare_ddi(dev);
7454 }
7455
7456 static void snb_modeset_global_resources(struct drm_device *dev)
7457 {
7458         modeset_update_crtc_power_domains(dev);
7459 }
7460
7461 static void haswell_modeset_global_resources(struct drm_device *dev)
7462 {
7463         modeset_update_crtc_power_domains(dev);
7464 }
7465
7466 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7467                                  int x, int y,
7468                                  struct drm_framebuffer *fb)
7469 {
7470         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7471
7472         if (!intel_ddi_pll_select(intel_crtc))
7473                 return -EINVAL;
7474         intel_ddi_pll_enable(intel_crtc);
7475
7476         intel_crtc->lowfreq_avail = false;
7477
7478         return 0;
7479 }
7480
7481 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7482                                     struct intel_crtc_config *pipe_config)
7483 {
7484         struct drm_device *dev = crtc->base.dev;
7485         struct drm_i915_private *dev_priv = dev->dev_private;
7486         enum intel_display_power_domain pfit_domain;
7487         uint32_t tmp;
7488
7489         if (!intel_display_power_enabled(dev_priv,
7490                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7491                 return false;
7492
7493         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7494         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7495
7496         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7497         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7498                 enum pipe trans_edp_pipe;
7499                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7500                 default:
7501                         WARN(1, "unknown pipe linked to edp transcoder\n");
7502                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7503                 case TRANS_DDI_EDP_INPUT_A_ON:
7504                         trans_edp_pipe = PIPE_A;
7505                         break;
7506                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7507                         trans_edp_pipe = PIPE_B;
7508                         break;
7509                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7510                         trans_edp_pipe = PIPE_C;
7511                         break;
7512                 }
7513
7514                 if (trans_edp_pipe == crtc->pipe)
7515                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7516         }
7517
7518         if (!intel_display_power_enabled(dev_priv,
7519                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7520                 return false;
7521
7522         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7523         if (!(tmp & PIPECONF_ENABLE))
7524                 return false;
7525
7526         /*
7527          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7528          * DDI E. So just check whether this pipe is wired to DDI E and whether
7529          * the PCH transcoder is on.
7530          */
7531         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7532         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7533             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7534                 pipe_config->has_pch_encoder = true;
7535
7536                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7537                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7538                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7539
7540                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7541         }
7542
7543         intel_get_pipe_timings(crtc, pipe_config);
7544
7545         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7546         if (intel_display_power_enabled(dev_priv, pfit_domain))
7547                 ironlake_get_pfit_config(crtc, pipe_config);
7548
7549         if (IS_HASWELL(dev))
7550                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7551                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7552
7553         pipe_config->pixel_multiplier = 1;
7554
7555         return true;
7556 }
7557
7558 static struct {
7559         int clock;
7560         u32 config;
7561 } hdmi_audio_clock[] = {
7562         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7563         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7564         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7565         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7566         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7567         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7568         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7569         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7570         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7571         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7572 };
7573
7574 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7575 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7576 {
7577         int i;
7578
7579         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7580                 if (mode->clock == hdmi_audio_clock[i].clock)
7581                         break;
7582         }
7583
7584         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7585                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7586                 i = 1;
7587         }
7588
7589         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7590                       hdmi_audio_clock[i].clock,
7591                       hdmi_audio_clock[i].config);
7592
7593         return hdmi_audio_clock[i].config;
7594 }
7595
7596 static bool intel_eld_uptodate(struct drm_connector *connector,
7597                                int reg_eldv, uint32_t bits_eldv,
7598                                int reg_elda, uint32_t bits_elda,
7599                                int reg_edid)
7600 {
7601         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7602         uint8_t *eld = connector->eld;
7603         uint32_t i;
7604
7605         i = I915_READ(reg_eldv);
7606         i &= bits_eldv;
7607
7608         if (!eld[0])
7609                 return !i;
7610
7611         if (!i)
7612                 return false;
7613
7614         i = I915_READ(reg_elda);
7615         i &= ~bits_elda;
7616         I915_WRITE(reg_elda, i);
7617
7618         for (i = 0; i < eld[2]; i++)
7619                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7620                         return false;
7621
7622         return true;
7623 }
7624
7625 static void g4x_write_eld(struct drm_connector *connector,
7626                           struct drm_crtc *crtc,
7627                           struct drm_display_mode *mode)
7628 {
7629         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7630         uint8_t *eld = connector->eld;
7631         uint32_t eldv;
7632         uint32_t len;
7633         uint32_t i;
7634
7635         i = I915_READ(G4X_AUD_VID_DID);
7636
7637         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7638                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7639         else
7640                 eldv = G4X_ELDV_DEVCTG;
7641
7642         if (intel_eld_uptodate(connector,
7643                                G4X_AUD_CNTL_ST, eldv,
7644                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7645                                G4X_HDMIW_HDMIEDID))
7646                 return;
7647
7648         i = I915_READ(G4X_AUD_CNTL_ST);
7649         i &= ~(eldv | G4X_ELD_ADDR);
7650         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7651         I915_WRITE(G4X_AUD_CNTL_ST, i);
7652
7653         if (!eld[0])
7654                 return;
7655
7656         len = min_t(uint8_t, eld[2], len);
7657         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7658         for (i = 0; i < len; i++)
7659                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7660
7661         i = I915_READ(G4X_AUD_CNTL_ST);
7662         i |= eldv;
7663         I915_WRITE(G4X_AUD_CNTL_ST, i);
7664 }
7665
7666 static void haswell_write_eld(struct drm_connector *connector,
7667                               struct drm_crtc *crtc,
7668                               struct drm_display_mode *mode)
7669 {
7670         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7671         uint8_t *eld = connector->eld;
7672         uint32_t eldv;
7673         uint32_t i;
7674         int len;
7675         int pipe = to_intel_crtc(crtc)->pipe;
7676         int tmp;
7677
7678         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7679         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7680         int aud_config = HSW_AUD_CFG(pipe);
7681         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7682
7683         /* Audio output enable */
7684         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7685         tmp = I915_READ(aud_cntrl_st2);
7686         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7687         I915_WRITE(aud_cntrl_st2, tmp);
7688         POSTING_READ(aud_cntrl_st2);
7689
7690         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7691
7692         /* Set ELD valid state */
7693         tmp = I915_READ(aud_cntrl_st2);
7694         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7695         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7696         I915_WRITE(aud_cntrl_st2, tmp);
7697         tmp = I915_READ(aud_cntrl_st2);
7698         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7699
7700         /* Enable HDMI mode */
7701         tmp = I915_READ(aud_config);
7702         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7703         /* clear N_programing_enable and N_value_index */
7704         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7705         I915_WRITE(aud_config, tmp);
7706
7707         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7708
7709         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7710
7711         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7712                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7713                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7714                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7715         } else {
7716                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7717         }
7718
7719         if (intel_eld_uptodate(connector,
7720                                aud_cntrl_st2, eldv,
7721                                aud_cntl_st, IBX_ELD_ADDRESS,
7722                                hdmiw_hdmiedid))
7723                 return;
7724
7725         i = I915_READ(aud_cntrl_st2);
7726         i &= ~eldv;
7727         I915_WRITE(aud_cntrl_st2, i);
7728
7729         if (!eld[0])
7730                 return;
7731
7732         i = I915_READ(aud_cntl_st);
7733         i &= ~IBX_ELD_ADDRESS;
7734         I915_WRITE(aud_cntl_st, i);
7735         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7736         DRM_DEBUG_DRIVER("port num:%d\n", i);
7737
7738         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7739         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7740         for (i = 0; i < len; i++)
7741                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7742
7743         i = I915_READ(aud_cntrl_st2);
7744         i |= eldv;
7745         I915_WRITE(aud_cntrl_st2, i);
7746
7747 }
7748
7749 static void ironlake_write_eld(struct drm_connector *connector,
7750                                struct drm_crtc *crtc,
7751                                struct drm_display_mode *mode)
7752 {
7753         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7754         uint8_t *eld = connector->eld;
7755         uint32_t eldv;
7756         uint32_t i;
7757         int len;
7758         int hdmiw_hdmiedid;
7759         int aud_config;
7760         int aud_cntl_st;
7761         int aud_cntrl_st2;
7762         int pipe = to_intel_crtc(crtc)->pipe;
7763
7764         if (HAS_PCH_IBX(connector->dev)) {
7765                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7766                 aud_config = IBX_AUD_CFG(pipe);
7767                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7768                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7769         } else if (IS_VALLEYVIEW(connector->dev)) {
7770                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7771                 aud_config = VLV_AUD_CFG(pipe);
7772                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7773                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7774         } else {
7775                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7776                 aud_config = CPT_AUD_CFG(pipe);
7777                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7778                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7779         }
7780
7781         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7782
7783         if (IS_VALLEYVIEW(connector->dev))  {
7784                 struct intel_encoder *intel_encoder;
7785                 struct intel_digital_port *intel_dig_port;
7786
7787                 intel_encoder = intel_attached_encoder(connector);
7788                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7789                 i = intel_dig_port->port;
7790         } else {
7791                 i = I915_READ(aud_cntl_st);
7792                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7793                 /* DIP_Port_Select, 0x1 = PortB */
7794         }
7795
7796         if (!i) {
7797                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7798                 /* operate blindly on all ports */
7799                 eldv = IBX_ELD_VALIDB;
7800                 eldv |= IBX_ELD_VALIDB << 4;
7801                 eldv |= IBX_ELD_VALIDB << 8;
7802         } else {
7803                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7804                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7805         }
7806
7807         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7808                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7809                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7810                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7811         } else {
7812                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7813         }
7814
7815         if (intel_eld_uptodate(connector,
7816                                aud_cntrl_st2, eldv,
7817                                aud_cntl_st, IBX_ELD_ADDRESS,
7818                                hdmiw_hdmiedid))
7819                 return;
7820
7821         i = I915_READ(aud_cntrl_st2);
7822         i &= ~eldv;
7823         I915_WRITE(aud_cntrl_st2, i);
7824
7825         if (!eld[0])
7826                 return;
7827
7828         i = I915_READ(aud_cntl_st);
7829         i &= ~IBX_ELD_ADDRESS;
7830         I915_WRITE(aud_cntl_st, i);
7831
7832         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7833         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7834         for (i = 0; i < len; i++)
7835                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7836
7837         i = I915_READ(aud_cntrl_st2);
7838         i |= eldv;
7839         I915_WRITE(aud_cntrl_st2, i);
7840 }
7841
7842 void intel_write_eld(struct drm_encoder *encoder,
7843                      struct drm_display_mode *mode)
7844 {
7845         struct drm_crtc *crtc = encoder->crtc;
7846         struct drm_connector *connector;
7847         struct drm_device *dev = encoder->dev;
7848         struct drm_i915_private *dev_priv = dev->dev_private;
7849
7850         connector = drm_select_eld(encoder, mode);
7851         if (!connector)
7852                 return;
7853
7854         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7855                          connector->base.id,
7856                          drm_get_connector_name(connector),
7857                          connector->encoder->base.id,
7858                          drm_get_encoder_name(connector->encoder));
7859
7860         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7861
7862         if (dev_priv->display.write_eld)
7863                 dev_priv->display.write_eld(connector, crtc, mode);
7864 }
7865
7866 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7867 {
7868         struct drm_device *dev = crtc->dev;
7869         struct drm_i915_private *dev_priv = dev->dev_private;
7870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7871         bool visible = base != 0;
7872         u32 cntl;
7873
7874         if (intel_crtc->cursor_visible == visible)
7875                 return;
7876
7877         cntl = I915_READ(_CURACNTR);
7878         if (visible) {
7879                 /* On these chipsets we can only modify the base whilst
7880                  * the cursor is disabled.
7881                  */
7882                 I915_WRITE(_CURABASE, base);
7883
7884                 cntl &= ~(CURSOR_FORMAT_MASK);
7885                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7886                 cntl |= CURSOR_ENABLE |
7887                         CURSOR_GAMMA_ENABLE |
7888                         CURSOR_FORMAT_ARGB;
7889         } else
7890                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7891         I915_WRITE(_CURACNTR, cntl);
7892
7893         intel_crtc->cursor_visible = visible;
7894 }
7895
7896 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7897 {
7898         struct drm_device *dev = crtc->dev;
7899         struct drm_i915_private *dev_priv = dev->dev_private;
7900         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7901         int pipe = intel_crtc->pipe;
7902         bool visible = base != 0;
7903
7904         if (intel_crtc->cursor_visible != visible) {
7905                 int16_t width = intel_crtc->cursor_width;
7906                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7907                 if (base) {
7908                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7909                         cntl |= MCURSOR_GAMMA_ENABLE;
7910
7911                         switch (width) {
7912                         case 64:
7913                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7914                                 break;
7915                         case 128:
7916                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7917                                 break;
7918                         case 256:
7919                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7920                                 break;
7921                         default:
7922                                 WARN_ON(1);
7923                                 return;
7924                         }
7925                         cntl |= pipe << 28; /* Connect to correct pipe */
7926                 } else {
7927                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7928                         cntl |= CURSOR_MODE_DISABLE;
7929                 }
7930                 I915_WRITE(CURCNTR(pipe), cntl);
7931
7932                 intel_crtc->cursor_visible = visible;
7933         }
7934         /* and commit changes on next vblank */
7935         POSTING_READ(CURCNTR(pipe));
7936         I915_WRITE(CURBASE(pipe), base);
7937         POSTING_READ(CURBASE(pipe));
7938 }
7939
7940 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7941 {
7942         struct drm_device *dev = crtc->dev;
7943         struct drm_i915_private *dev_priv = dev->dev_private;
7944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7945         int pipe = intel_crtc->pipe;
7946         bool visible = base != 0;
7947
7948         if (intel_crtc->cursor_visible != visible) {
7949                 int16_t width = intel_crtc->cursor_width;
7950                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7951                 if (base) {
7952                         cntl &= ~CURSOR_MODE;
7953                         cntl |= MCURSOR_GAMMA_ENABLE;
7954                         switch (width) {
7955                         case 64:
7956                                 cntl |= CURSOR_MODE_64_ARGB_AX;
7957                                 break;
7958                         case 128:
7959                                 cntl |= CURSOR_MODE_128_ARGB_AX;
7960                                 break;
7961                         case 256:
7962                                 cntl |= CURSOR_MODE_256_ARGB_AX;
7963                                 break;
7964                         default:
7965                                 WARN_ON(1);
7966                                 return;
7967                         }
7968                 } else {
7969                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7970                         cntl |= CURSOR_MODE_DISABLE;
7971                 }
7972                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7973                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7974                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7975                 }
7976                 I915_WRITE(CURCNTR(pipe), cntl);
7977
7978                 intel_crtc->cursor_visible = visible;
7979         }
7980         /* and commit changes on next vblank */
7981         POSTING_READ(CURCNTR(pipe));
7982         I915_WRITE(CURBASE(pipe), base);
7983         POSTING_READ(CURBASE(pipe));
7984 }
7985
7986 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7987 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7988                                      bool on)
7989 {
7990         struct drm_device *dev = crtc->dev;
7991         struct drm_i915_private *dev_priv = dev->dev_private;
7992         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7993         int pipe = intel_crtc->pipe;
7994         int x = intel_crtc->cursor_x;
7995         int y = intel_crtc->cursor_y;
7996         u32 base = 0, pos = 0;
7997         bool visible;
7998
7999         if (on)
8000                 base = intel_crtc->cursor_addr;
8001
8002         if (x >= intel_crtc->config.pipe_src_w)
8003                 base = 0;
8004
8005         if (y >= intel_crtc->config.pipe_src_h)
8006                 base = 0;
8007
8008         if (x < 0) {
8009                 if (x + intel_crtc->cursor_width <= 0)
8010                         base = 0;
8011
8012                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8013                 x = -x;
8014         }
8015         pos |= x << CURSOR_X_SHIFT;
8016
8017         if (y < 0) {
8018                 if (y + intel_crtc->cursor_height <= 0)
8019                         base = 0;
8020
8021                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8022                 y = -y;
8023         }
8024         pos |= y << CURSOR_Y_SHIFT;
8025
8026         visible = base != 0;
8027         if (!visible && !intel_crtc->cursor_visible)
8028                 return;
8029
8030         I915_WRITE(CURPOS(pipe), pos);
8031
8032         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
8033                 ivb_update_cursor(crtc, base);
8034         else if (IS_845G(dev) || IS_I865G(dev))
8035                 i845_update_cursor(crtc, base);
8036         else
8037                 i9xx_update_cursor(crtc, base);
8038 }
8039
8040 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
8041                                  struct drm_file *file,
8042                                  uint32_t handle,
8043                                  uint32_t width, uint32_t height)
8044 {
8045         struct drm_device *dev = crtc->dev;
8046         struct drm_i915_private *dev_priv = dev->dev_private;
8047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8048         struct drm_i915_gem_object *obj;
8049         unsigned old_width;
8050         uint32_t addr;
8051         int ret;
8052
8053         /* if we want to turn off the cursor ignore width and height */
8054         if (!handle) {
8055                 DRM_DEBUG_KMS("cursor off\n");
8056                 addr = 0;
8057                 obj = NULL;
8058                 mutex_lock(&dev->struct_mutex);
8059                 goto finish;
8060         }
8061
8062         /* Check for which cursor types we support */
8063         if (!((width == 64 && height == 64) ||
8064                         (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8065                         (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8066                 DRM_DEBUG("Cursor dimension not supported\n");
8067                 return -EINVAL;
8068         }
8069
8070         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
8071         if (&obj->base == NULL)
8072                 return -ENOENT;
8073
8074         if (obj->base.size < width * height * 4) {
8075                 DRM_DEBUG_KMS("buffer is to small\n");
8076                 ret = -ENOMEM;
8077                 goto fail;
8078         }
8079
8080         /* we only need to pin inside GTT if cursor is non-phy */
8081         mutex_lock(&dev->struct_mutex);
8082         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8083                 unsigned alignment;
8084
8085                 if (obj->tiling_mode) {
8086                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
8087                         ret = -EINVAL;
8088                         goto fail_locked;
8089                 }
8090
8091                 /* Note that the w/a also requires 2 PTE of padding following
8092                  * the bo. We currently fill all unused PTE with the shadow
8093                  * page and so we should always have valid PTE following the
8094                  * cursor preventing the VT-d warning.
8095                  */
8096                 alignment = 0;
8097                 if (need_vtd_wa(dev))
8098                         alignment = 64*1024;
8099
8100                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8101                 if (ret) {
8102                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8103                         goto fail_locked;
8104                 }
8105
8106                 ret = i915_gem_object_put_fence(obj);
8107                 if (ret) {
8108                         DRM_DEBUG_KMS("failed to release fence for cursor");
8109                         goto fail_unpin;
8110                 }
8111
8112                 addr = i915_gem_obj_ggtt_offset(obj);
8113         } else {
8114                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8115                 ret = i915_gem_attach_phys_object(dev, obj,
8116                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
8117                                                   align);
8118                 if (ret) {
8119                         DRM_DEBUG_KMS("failed to attach phys object\n");
8120                         goto fail_locked;
8121                 }
8122                 addr = obj->phys_obj->handle->busaddr;
8123         }
8124
8125         if (IS_GEN2(dev))
8126                 I915_WRITE(CURSIZE, (height << 12) | width);
8127
8128  finish:
8129         if (intel_crtc->cursor_bo) {
8130                 if (INTEL_INFO(dev)->cursor_needs_physical) {
8131                         if (intel_crtc->cursor_bo != obj)
8132                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
8133                 } else
8134                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8135                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
8136         }
8137
8138         mutex_unlock(&dev->struct_mutex);
8139
8140         old_width = intel_crtc->cursor_width;
8141
8142         intel_crtc->cursor_addr = addr;
8143         intel_crtc->cursor_bo = obj;
8144         intel_crtc->cursor_width = width;
8145         intel_crtc->cursor_height = height;
8146
8147         if (intel_crtc->active) {
8148                 if (old_width != width)
8149                         intel_update_watermarks(crtc);
8150                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8151         }
8152
8153         return 0;
8154 fail_unpin:
8155         i915_gem_object_unpin_from_display_plane(obj);
8156 fail_locked:
8157         mutex_unlock(&dev->struct_mutex);
8158 fail:
8159         drm_gem_object_unreference_unlocked(&obj->base);
8160         return ret;
8161 }
8162
8163 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
8164 {
8165         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8166
8167         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
8168         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
8169
8170         if (intel_crtc->active)
8171                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8172
8173         return 0;
8174 }
8175
8176 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8177                                  u16 *blue, uint32_t start, uint32_t size)
8178 {
8179         int end = (start + size > 256) ? 256 : start + size, i;
8180         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8181
8182         for (i = start; i < end; i++) {
8183                 intel_crtc->lut_r[i] = red[i] >> 8;
8184                 intel_crtc->lut_g[i] = green[i] >> 8;
8185                 intel_crtc->lut_b[i] = blue[i] >> 8;
8186         }
8187
8188         intel_crtc_load_lut(crtc);
8189 }
8190
8191 /* VESA 640x480x72Hz mode to set on the pipe */
8192 static struct drm_display_mode load_detect_mode = {
8193         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8194                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8195 };
8196
8197 struct drm_framebuffer *
8198 __intel_framebuffer_create(struct drm_device *dev,
8199                            struct drm_mode_fb_cmd2 *mode_cmd,
8200                            struct drm_i915_gem_object *obj)
8201 {
8202         struct intel_framebuffer *intel_fb;
8203         int ret;
8204
8205         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8206         if (!intel_fb) {
8207                 drm_gem_object_unreference_unlocked(&obj->base);
8208                 return ERR_PTR(-ENOMEM);
8209         }
8210
8211         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8212         if (ret)
8213                 goto err;
8214
8215         return &intel_fb->base;
8216 err:
8217         drm_gem_object_unreference_unlocked(&obj->base);
8218         kfree(intel_fb);
8219
8220         return ERR_PTR(ret);
8221 }
8222
8223 static struct drm_framebuffer *
8224 intel_framebuffer_create(struct drm_device *dev,
8225                          struct drm_mode_fb_cmd2 *mode_cmd,
8226                          struct drm_i915_gem_object *obj)
8227 {
8228         struct drm_framebuffer *fb;
8229         int ret;
8230
8231         ret = i915_mutex_lock_interruptible(dev);
8232         if (ret)
8233                 return ERR_PTR(ret);
8234         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8235         mutex_unlock(&dev->struct_mutex);
8236
8237         return fb;
8238 }
8239
8240 static u32
8241 intel_framebuffer_pitch_for_width(int width, int bpp)
8242 {
8243         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8244         return ALIGN(pitch, 64);
8245 }
8246
8247 static u32
8248 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8249 {
8250         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8251         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
8252 }
8253
8254 static struct drm_framebuffer *
8255 intel_framebuffer_create_for_mode(struct drm_device *dev,
8256                                   struct drm_display_mode *mode,
8257                                   int depth, int bpp)
8258 {
8259         struct drm_i915_gem_object *obj;
8260         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8261
8262         obj = i915_gem_alloc_object(dev,
8263                                     intel_framebuffer_size_for_mode(mode, bpp));
8264         if (obj == NULL)
8265                 return ERR_PTR(-ENOMEM);
8266
8267         mode_cmd.width = mode->hdisplay;
8268         mode_cmd.height = mode->vdisplay;
8269         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8270                                                                 bpp);
8271         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8272
8273         return intel_framebuffer_create(dev, &mode_cmd, obj);
8274 }
8275
8276 static struct drm_framebuffer *
8277 mode_fits_in_fbdev(struct drm_device *dev,
8278                    struct drm_display_mode *mode)
8279 {
8280 #ifdef CONFIG_DRM_I915_FBDEV
8281         struct drm_i915_private *dev_priv = dev->dev_private;
8282         struct drm_i915_gem_object *obj;
8283         struct drm_framebuffer *fb;
8284
8285         if (!dev_priv->fbdev)
8286                 return NULL;
8287
8288         if (!dev_priv->fbdev->fb)
8289                 return NULL;
8290
8291         obj = dev_priv->fbdev->fb->obj;
8292         BUG_ON(!obj);
8293
8294         fb = &dev_priv->fbdev->fb->base;
8295         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8296                                                                fb->bits_per_pixel))
8297                 return NULL;
8298
8299         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8300                 return NULL;
8301
8302         return fb;
8303 #else
8304         return NULL;
8305 #endif
8306 }
8307
8308 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8309                                 struct drm_display_mode *mode,
8310                                 struct intel_load_detect_pipe *old)
8311 {
8312         struct intel_crtc *intel_crtc;
8313         struct intel_encoder *intel_encoder =
8314                 intel_attached_encoder(connector);
8315         struct drm_crtc *possible_crtc;
8316         struct drm_encoder *encoder = &intel_encoder->base;
8317         struct drm_crtc *crtc = NULL;
8318         struct drm_device *dev = encoder->dev;
8319         struct drm_framebuffer *fb;
8320         int i = -1;
8321
8322         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8323                       connector->base.id, drm_get_connector_name(connector),
8324                       encoder->base.id, drm_get_encoder_name(encoder));
8325
8326         /*
8327          * Algorithm gets a little messy:
8328          *
8329          *   - if the connector already has an assigned crtc, use it (but make
8330          *     sure it's on first)
8331          *
8332          *   - try to find the first unused crtc that can drive this connector,
8333          *     and use that if we find one
8334          */
8335
8336         /* See if we already have a CRTC for this connector */
8337         if (encoder->crtc) {
8338                 crtc = encoder->crtc;
8339
8340                 mutex_lock(&crtc->mutex);
8341
8342                 old->dpms_mode = connector->dpms;
8343                 old->load_detect_temp = false;
8344
8345                 /* Make sure the crtc and connector are running */
8346                 if (connector->dpms != DRM_MODE_DPMS_ON)
8347                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8348
8349                 return true;
8350         }
8351
8352         /* Find an unused one (if possible) */
8353         for_each_crtc(dev, possible_crtc) {
8354                 i++;
8355                 if (!(encoder->possible_crtcs & (1 << i)))
8356                         continue;
8357                 if (!possible_crtc->enabled) {
8358                         crtc = possible_crtc;
8359                         break;
8360                 }
8361         }
8362
8363         /*
8364          * If we didn't find an unused CRTC, don't use any.
8365          */
8366         if (!crtc) {
8367                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8368                 return false;
8369         }
8370
8371         mutex_lock(&crtc->mutex);
8372         intel_encoder->new_crtc = to_intel_crtc(crtc);
8373         to_intel_connector(connector)->new_encoder = intel_encoder;
8374
8375         intel_crtc = to_intel_crtc(crtc);
8376         intel_crtc->new_enabled = true;
8377         intel_crtc->new_config = &intel_crtc->config;
8378         old->dpms_mode = connector->dpms;
8379         old->load_detect_temp = true;
8380         old->release_fb = NULL;
8381
8382         if (!mode)
8383                 mode = &load_detect_mode;
8384
8385         /* We need a framebuffer large enough to accommodate all accesses
8386          * that the plane may generate whilst we perform load detection.
8387          * We can not rely on the fbcon either being present (we get called
8388          * during its initialisation to detect all boot displays, or it may
8389          * not even exist) or that it is large enough to satisfy the
8390          * requested mode.
8391          */
8392         fb = mode_fits_in_fbdev(dev, mode);
8393         if (fb == NULL) {
8394                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8395                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8396                 old->release_fb = fb;
8397         } else
8398                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8399         if (IS_ERR(fb)) {
8400                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8401                 goto fail;
8402         }
8403
8404         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8405                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8406                 if (old->release_fb)
8407                         old->release_fb->funcs->destroy(old->release_fb);
8408                 goto fail;
8409         }
8410
8411         /* let the connector get through one full cycle before testing */
8412         intel_wait_for_vblank(dev, intel_crtc->pipe);
8413         return true;
8414
8415  fail:
8416         intel_crtc->new_enabled = crtc->enabled;
8417         if (intel_crtc->new_enabled)
8418                 intel_crtc->new_config = &intel_crtc->config;
8419         else
8420                 intel_crtc->new_config = NULL;
8421         mutex_unlock(&crtc->mutex);
8422         return false;
8423 }
8424
8425 void intel_release_load_detect_pipe(struct drm_connector *connector,
8426                                     struct intel_load_detect_pipe *old)
8427 {
8428         struct intel_encoder *intel_encoder =
8429                 intel_attached_encoder(connector);
8430         struct drm_encoder *encoder = &intel_encoder->base;
8431         struct drm_crtc *crtc = encoder->crtc;
8432         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8433
8434         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8435                       connector->base.id, drm_get_connector_name(connector),
8436                       encoder->base.id, drm_get_encoder_name(encoder));
8437
8438         if (old->load_detect_temp) {
8439                 to_intel_connector(connector)->new_encoder = NULL;
8440                 intel_encoder->new_crtc = NULL;
8441                 intel_crtc->new_enabled = false;
8442                 intel_crtc->new_config = NULL;
8443                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8444
8445                 if (old->release_fb) {
8446                         drm_framebuffer_unregister_private(old->release_fb);
8447                         drm_framebuffer_unreference(old->release_fb);
8448                 }
8449
8450                 mutex_unlock(&crtc->mutex);
8451                 return;
8452         }
8453
8454         /* Switch crtc and encoder back off if necessary */
8455         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8456                 connector->funcs->dpms(connector, old->dpms_mode);
8457
8458         mutex_unlock(&crtc->mutex);
8459 }
8460
8461 static int i9xx_pll_refclk(struct drm_device *dev,
8462                            const struct intel_crtc_config *pipe_config)
8463 {
8464         struct drm_i915_private *dev_priv = dev->dev_private;
8465         u32 dpll = pipe_config->dpll_hw_state.dpll;
8466
8467         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8468                 return dev_priv->vbt.lvds_ssc_freq;
8469         else if (HAS_PCH_SPLIT(dev))
8470                 return 120000;
8471         else if (!IS_GEN2(dev))
8472                 return 96000;
8473         else
8474                 return 48000;
8475 }
8476
8477 /* Returns the clock of the currently programmed mode of the given pipe. */
8478 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8479                                 struct intel_crtc_config *pipe_config)
8480 {
8481         struct drm_device *dev = crtc->base.dev;
8482         struct drm_i915_private *dev_priv = dev->dev_private;
8483         int pipe = pipe_config->cpu_transcoder;
8484         u32 dpll = pipe_config->dpll_hw_state.dpll;
8485         u32 fp;
8486         intel_clock_t clock;
8487         int refclk = i9xx_pll_refclk(dev, pipe_config);
8488
8489         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8490                 fp = pipe_config->dpll_hw_state.fp0;
8491         else
8492                 fp = pipe_config->dpll_hw_state.fp1;
8493
8494         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8495         if (IS_PINEVIEW(dev)) {
8496                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8497                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8498         } else {
8499                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8500                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8501         }
8502
8503         if (!IS_GEN2(dev)) {
8504                 if (IS_PINEVIEW(dev))
8505                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8506                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8507                 else
8508                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8509                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8510
8511                 switch (dpll & DPLL_MODE_MASK) {
8512                 case DPLLB_MODE_DAC_SERIAL:
8513                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8514                                 5 : 10;
8515                         break;
8516                 case DPLLB_MODE_LVDS:
8517                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8518                                 7 : 14;
8519                         break;
8520                 default:
8521                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8522                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8523                         return;
8524                 }
8525
8526                 if (IS_PINEVIEW(dev))
8527                         pineview_clock(refclk, &clock);
8528                 else
8529                         i9xx_clock(refclk, &clock);
8530         } else {
8531                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8532                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8533
8534                 if (is_lvds) {
8535                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8536                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8537
8538                         if (lvds & LVDS_CLKB_POWER_UP)
8539                                 clock.p2 = 7;
8540                         else
8541                                 clock.p2 = 14;
8542                 } else {
8543                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8544                                 clock.p1 = 2;
8545                         else {
8546                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8547                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8548                         }
8549                         if (dpll & PLL_P2_DIVIDE_BY_4)
8550                                 clock.p2 = 4;
8551                         else
8552                                 clock.p2 = 2;
8553                 }
8554
8555                 i9xx_clock(refclk, &clock);
8556         }
8557
8558         /*
8559          * This value includes pixel_multiplier. We will use
8560          * port_clock to compute adjusted_mode.crtc_clock in the
8561          * encoder's get_config() function.
8562          */
8563         pipe_config->port_clock = clock.dot;
8564 }
8565
8566 int intel_dotclock_calculate(int link_freq,
8567                              const struct intel_link_m_n *m_n)
8568 {
8569         /*
8570          * The calculation for the data clock is:
8571          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8572          * But we want to avoid losing precison if possible, so:
8573          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8574          *
8575          * and the link clock is simpler:
8576          * link_clock = (m * link_clock) / n
8577          */
8578
8579         if (!m_n->link_n)
8580                 return 0;
8581
8582         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8583 }
8584
8585 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8586                                    struct intel_crtc_config *pipe_config)
8587 {
8588         struct drm_device *dev = crtc->base.dev;
8589
8590         /* read out port_clock from the DPLL */
8591         i9xx_crtc_clock_get(crtc, pipe_config);
8592
8593         /*
8594          * This value does not include pixel_multiplier.
8595          * We will check that port_clock and adjusted_mode.crtc_clock
8596          * agree once we know their relationship in the encoder's
8597          * get_config() function.
8598          */
8599         pipe_config->adjusted_mode.crtc_clock =
8600                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8601                                          &pipe_config->fdi_m_n);
8602 }
8603
8604 /** Returns the currently programmed mode of the given pipe. */
8605 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8606                                              struct drm_crtc *crtc)
8607 {
8608         struct drm_i915_private *dev_priv = dev->dev_private;
8609         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8610         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8611         struct drm_display_mode *mode;
8612         struct intel_crtc_config pipe_config;
8613         int htot = I915_READ(HTOTAL(cpu_transcoder));
8614         int hsync = I915_READ(HSYNC(cpu_transcoder));
8615         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8616         int vsync = I915_READ(VSYNC(cpu_transcoder));
8617         enum pipe pipe = intel_crtc->pipe;
8618
8619         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8620         if (!mode)
8621                 return NULL;
8622
8623         /*
8624          * Construct a pipe_config sufficient for getting the clock info
8625          * back out of crtc_clock_get.
8626          *
8627          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8628          * to use a real value here instead.
8629          */
8630         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8631         pipe_config.pixel_multiplier = 1;
8632         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8633         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8634         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8635         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8636
8637         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8638         mode->hdisplay = (htot & 0xffff) + 1;
8639         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8640         mode->hsync_start = (hsync & 0xffff) + 1;
8641         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8642         mode->vdisplay = (vtot & 0xffff) + 1;
8643         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8644         mode->vsync_start = (vsync & 0xffff) + 1;
8645         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8646
8647         drm_mode_set_name(mode);
8648
8649         return mode;
8650 }
8651
8652 static void intel_increase_pllclock(struct drm_crtc *crtc)
8653 {
8654         struct drm_device *dev = crtc->dev;
8655         struct drm_i915_private *dev_priv = dev->dev_private;
8656         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8657         int pipe = intel_crtc->pipe;
8658         int dpll_reg = DPLL(pipe);
8659         int dpll;
8660
8661         if (HAS_PCH_SPLIT(dev))
8662                 return;
8663
8664         if (!dev_priv->lvds_downclock_avail)
8665                 return;
8666
8667         dpll = I915_READ(dpll_reg);
8668         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8669                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8670
8671                 assert_panel_unlocked(dev_priv, pipe);
8672
8673                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8674                 I915_WRITE(dpll_reg, dpll);
8675                 intel_wait_for_vblank(dev, pipe);
8676
8677                 dpll = I915_READ(dpll_reg);
8678                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8679                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8680         }
8681 }
8682
8683 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8684 {
8685         struct drm_device *dev = crtc->dev;
8686         struct drm_i915_private *dev_priv = dev->dev_private;
8687         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8688
8689         if (HAS_PCH_SPLIT(dev))
8690                 return;
8691
8692         if (!dev_priv->lvds_downclock_avail)
8693                 return;
8694
8695         /*
8696          * Since this is called by a timer, we should never get here in
8697          * the manual case.
8698          */
8699         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8700                 int pipe = intel_crtc->pipe;
8701                 int dpll_reg = DPLL(pipe);
8702                 int dpll;
8703
8704                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8705
8706                 assert_panel_unlocked(dev_priv, pipe);
8707
8708                 dpll = I915_READ(dpll_reg);
8709                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8710                 I915_WRITE(dpll_reg, dpll);
8711                 intel_wait_for_vblank(dev, pipe);
8712                 dpll = I915_READ(dpll_reg);
8713                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8714                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8715         }
8716
8717 }
8718
8719 void intel_mark_busy(struct drm_device *dev)
8720 {
8721         struct drm_i915_private *dev_priv = dev->dev_private;
8722
8723         if (dev_priv->mm.busy)
8724                 return;
8725
8726         intel_runtime_pm_get(dev_priv);
8727         i915_update_gfx_val(dev_priv);
8728         dev_priv->mm.busy = true;
8729 }
8730
8731 void intel_mark_idle(struct drm_device *dev)
8732 {
8733         struct drm_i915_private *dev_priv = dev->dev_private;
8734         struct drm_crtc *crtc;
8735
8736         if (!dev_priv->mm.busy)
8737                 return;
8738
8739         dev_priv->mm.busy = false;
8740
8741         if (!i915.powersave)
8742                 goto out;
8743
8744         for_each_crtc(dev, crtc) {
8745                 if (!crtc->primary->fb)
8746                         continue;
8747
8748                 intel_decrease_pllclock(crtc);
8749         }
8750
8751         if (INTEL_INFO(dev)->gen >= 6)
8752                 gen6_rps_idle(dev->dev_private);
8753
8754 out:
8755         intel_runtime_pm_put(dev_priv);
8756 }
8757
8758 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8759                         struct intel_ring_buffer *ring)
8760 {
8761         struct drm_device *dev = obj->base.dev;
8762         struct drm_crtc *crtc;
8763
8764         if (!i915.powersave)
8765                 return;
8766
8767         for_each_crtc(dev, crtc) {
8768                 if (!crtc->primary->fb)
8769                         continue;
8770
8771                 if (to_intel_framebuffer(crtc->primary->fb)->obj != obj)
8772                         continue;
8773
8774                 intel_increase_pllclock(crtc);
8775                 if (ring && intel_fbc_enabled(dev))
8776                         ring->fbc_dirty = true;
8777         }
8778 }
8779
8780 static void intel_crtc_destroy(struct drm_crtc *crtc)
8781 {
8782         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8783         struct drm_device *dev = crtc->dev;
8784         struct intel_unpin_work *work;
8785         unsigned long flags;
8786
8787         spin_lock_irqsave(&dev->event_lock, flags);
8788         work = intel_crtc->unpin_work;
8789         intel_crtc->unpin_work = NULL;
8790         spin_unlock_irqrestore(&dev->event_lock, flags);
8791
8792         if (work) {
8793                 cancel_work_sync(&work->work);
8794                 kfree(work);
8795         }
8796
8797         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8798
8799         drm_crtc_cleanup(crtc);
8800
8801         kfree(intel_crtc);
8802 }
8803
8804 static void intel_unpin_work_fn(struct work_struct *__work)
8805 {
8806         struct intel_unpin_work *work =
8807                 container_of(__work, struct intel_unpin_work, work);
8808         struct drm_device *dev = work->crtc->dev;
8809
8810         mutex_lock(&dev->struct_mutex);
8811         intel_unpin_fb_obj(work->old_fb_obj);
8812         drm_gem_object_unreference(&work->pending_flip_obj->base);
8813         drm_gem_object_unreference(&work->old_fb_obj->base);
8814
8815         intel_update_fbc(dev);
8816         mutex_unlock(&dev->struct_mutex);
8817
8818         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8819         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8820
8821         kfree(work);
8822 }
8823
8824 static void do_intel_finish_page_flip(struct drm_device *dev,
8825                                       struct drm_crtc *crtc)
8826 {
8827         struct drm_i915_private *dev_priv = dev->dev_private;
8828         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8829         struct intel_unpin_work *work;
8830         unsigned long flags;
8831
8832         /* Ignore early vblank irqs */
8833         if (intel_crtc == NULL)
8834                 return;
8835
8836         spin_lock_irqsave(&dev->event_lock, flags);
8837         work = intel_crtc->unpin_work;
8838
8839         /* Ensure we don't miss a work->pending update ... */
8840         smp_rmb();
8841
8842         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8843                 spin_unlock_irqrestore(&dev->event_lock, flags);
8844                 return;
8845         }
8846
8847         /* and that the unpin work is consistent wrt ->pending. */
8848         smp_rmb();
8849
8850         intel_crtc->unpin_work = NULL;
8851
8852         if (work->event)
8853                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8854
8855         drm_crtc_vblank_put(crtc);
8856
8857         spin_unlock_irqrestore(&dev->event_lock, flags);
8858
8859         wake_up_all(&dev_priv->pending_flip_queue);
8860
8861         queue_work(dev_priv->wq, &work->work);
8862
8863         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8864 }
8865
8866 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8867 {
8868         struct drm_i915_private *dev_priv = dev->dev_private;
8869         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8870
8871         do_intel_finish_page_flip(dev, crtc);
8872 }
8873
8874 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8875 {
8876         struct drm_i915_private *dev_priv = dev->dev_private;
8877         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8878
8879         do_intel_finish_page_flip(dev, crtc);
8880 }
8881
8882 /* Is 'a' after or equal to 'b'? */
8883 static bool g4x_flip_count_after_eq(u32 a, u32 b)
8884 {
8885         return !((a - b) & 0x80000000);
8886 }
8887
8888 static bool page_flip_finished(struct intel_crtc *crtc)
8889 {
8890         struct drm_device *dev = crtc->base.dev;
8891         struct drm_i915_private *dev_priv = dev->dev_private;
8892
8893         /*
8894          * The relevant registers doen't exist on pre-ctg.
8895          * As the flip done interrupt doesn't trigger for mmio
8896          * flips on gmch platforms, a flip count check isn't
8897          * really needed there. But since ctg has the registers,
8898          * include it in the check anyway.
8899          */
8900         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
8901                 return true;
8902
8903         /*
8904          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
8905          * used the same base address. In that case the mmio flip might
8906          * have completed, but the CS hasn't even executed the flip yet.
8907          *
8908          * A flip count check isn't enough as the CS might have updated
8909          * the base address just after start of vblank, but before we
8910          * managed to process the interrupt. This means we'd complete the
8911          * CS flip too soon.
8912          *
8913          * Combining both checks should get us a good enough result. It may
8914          * still happen that the CS flip has been executed, but has not
8915          * yet actually completed. But in case the base address is the same
8916          * anyway, we don't really care.
8917          */
8918         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
8919                 crtc->unpin_work->gtt_offset &&
8920                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
8921                                     crtc->unpin_work->flip_count);
8922 }
8923
8924 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8925 {
8926         struct drm_i915_private *dev_priv = dev->dev_private;
8927         struct intel_crtc *intel_crtc =
8928                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8929         unsigned long flags;
8930
8931         /* NB: An MMIO update of the plane base pointer will also
8932          * generate a page-flip completion irq, i.e. every modeset
8933          * is also accompanied by a spurious intel_prepare_page_flip().
8934          */
8935         spin_lock_irqsave(&dev->event_lock, flags);
8936         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
8937                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8938         spin_unlock_irqrestore(&dev->event_lock, flags);
8939 }
8940
8941 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8942 {
8943         /* Ensure that the work item is consistent when activating it ... */
8944         smp_wmb();
8945         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8946         /* and that it is marked active as soon as the irq could fire. */
8947         smp_wmb();
8948 }
8949
8950 static int intel_gen2_queue_flip(struct drm_device *dev,
8951                                  struct drm_crtc *crtc,
8952                                  struct drm_framebuffer *fb,
8953                                  struct drm_i915_gem_object *obj,
8954                                  struct intel_ring_buffer *ring,
8955                                  uint32_t flags)
8956 {
8957         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8958         u32 flip_mask;
8959         int ret;
8960
8961         ret = intel_ring_begin(ring, 6);
8962         if (ret)
8963                 return ret;
8964
8965         /* Can't queue multiple flips, so wait for the previous
8966          * one to finish before executing the next.
8967          */
8968         if (intel_crtc->plane)
8969                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8970         else
8971                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8972         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8973         intel_ring_emit(ring, MI_NOOP);
8974         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8975                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8976         intel_ring_emit(ring, fb->pitches[0]);
8977         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8978         intel_ring_emit(ring, 0); /* aux display base address, unused */
8979
8980         intel_mark_page_flip_active(intel_crtc);
8981         __intel_ring_advance(ring);
8982         return 0;
8983 }
8984
8985 static int intel_gen3_queue_flip(struct drm_device *dev,
8986                                  struct drm_crtc *crtc,
8987                                  struct drm_framebuffer *fb,
8988                                  struct drm_i915_gem_object *obj,
8989                                  struct intel_ring_buffer *ring,
8990                                  uint32_t flags)
8991 {
8992         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8993         u32 flip_mask;
8994         int ret;
8995
8996         ret = intel_ring_begin(ring, 6);
8997         if (ret)
8998                 return ret;
8999
9000         if (intel_crtc->plane)
9001                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9002         else
9003                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9004         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9005         intel_ring_emit(ring, MI_NOOP);
9006         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9007                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9008         intel_ring_emit(ring, fb->pitches[0]);
9009         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9010         intel_ring_emit(ring, MI_NOOP);
9011
9012         intel_mark_page_flip_active(intel_crtc);
9013         __intel_ring_advance(ring);
9014         return 0;
9015 }
9016
9017 static int intel_gen4_queue_flip(struct drm_device *dev,
9018                                  struct drm_crtc *crtc,
9019                                  struct drm_framebuffer *fb,
9020                                  struct drm_i915_gem_object *obj,
9021                                  struct intel_ring_buffer *ring,
9022                                  uint32_t flags)
9023 {
9024         struct drm_i915_private *dev_priv = dev->dev_private;
9025         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9026         uint32_t pf, pipesrc;
9027         int ret;
9028
9029         ret = intel_ring_begin(ring, 4);
9030         if (ret)
9031                 return ret;
9032
9033         /* i965+ uses the linear or tiled offsets from the
9034          * Display Registers (which do not change across a page-flip)
9035          * so we need only reprogram the base address.
9036          */
9037         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9038                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9039         intel_ring_emit(ring, fb->pitches[0]);
9040         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9041                         obj->tiling_mode);
9042
9043         /* XXX Enabling the panel-fitter across page-flip is so far
9044          * untested on non-native modes, so ignore it for now.
9045          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9046          */
9047         pf = 0;
9048         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9049         intel_ring_emit(ring, pf | pipesrc);
9050
9051         intel_mark_page_flip_active(intel_crtc);
9052         __intel_ring_advance(ring);
9053         return 0;
9054 }
9055
9056 static int intel_gen6_queue_flip(struct drm_device *dev,
9057                                  struct drm_crtc *crtc,
9058                                  struct drm_framebuffer *fb,
9059                                  struct drm_i915_gem_object *obj,
9060                                  struct intel_ring_buffer *ring,
9061                                  uint32_t flags)
9062 {
9063         struct drm_i915_private *dev_priv = dev->dev_private;
9064         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9065         uint32_t pf, pipesrc;
9066         int ret;
9067
9068         ret = intel_ring_begin(ring, 4);
9069         if (ret)
9070                 return ret;
9071
9072         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9073                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9074         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9075         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9076
9077         /* Contrary to the suggestions in the documentation,
9078          * "Enable Panel Fitter" does not seem to be required when page
9079          * flipping with a non-native mode, and worse causes a normal
9080          * modeset to fail.
9081          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9082          */
9083         pf = 0;
9084         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9085         intel_ring_emit(ring, pf | pipesrc);
9086
9087         intel_mark_page_flip_active(intel_crtc);
9088         __intel_ring_advance(ring);
9089         return 0;
9090 }
9091
9092 static int intel_gen7_queue_flip(struct drm_device *dev,
9093                                  struct drm_crtc *crtc,
9094                                  struct drm_framebuffer *fb,
9095                                  struct drm_i915_gem_object *obj,
9096                                  struct intel_ring_buffer *ring,
9097                                  uint32_t flags)
9098 {
9099         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9100         uint32_t plane_bit = 0;
9101         int len, ret;
9102
9103         switch (intel_crtc->plane) {
9104         case PLANE_A:
9105                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9106                 break;
9107         case PLANE_B:
9108                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9109                 break;
9110         case PLANE_C:
9111                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9112                 break;
9113         default:
9114                 WARN_ONCE(1, "unknown plane in flip command\n");
9115                 return -ENODEV;
9116         }
9117
9118         len = 4;
9119         if (ring->id == RCS) {
9120                 len += 6;
9121                 /*
9122                  * On Gen 8, SRM is now taking an extra dword to accommodate
9123                  * 48bits addresses, and we need a NOOP for the batch size to
9124                  * stay even.
9125                  */
9126                 if (IS_GEN8(dev))
9127                         len += 2;
9128         }
9129
9130         /*
9131          * BSpec MI_DISPLAY_FLIP for IVB:
9132          * "The full packet must be contained within the same cache line."
9133          *
9134          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9135          * cacheline, if we ever start emitting more commands before
9136          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9137          * then do the cacheline alignment, and finally emit the
9138          * MI_DISPLAY_FLIP.
9139          */
9140         ret = intel_ring_cacheline_align(ring);
9141         if (ret)
9142                 return ret;
9143
9144         ret = intel_ring_begin(ring, len);
9145         if (ret)
9146                 return ret;
9147
9148         /* Unmask the flip-done completion message. Note that the bspec says that
9149          * we should do this for both the BCS and RCS, and that we must not unmask
9150          * more than one flip event at any time (or ensure that one flip message
9151          * can be sent by waiting for flip-done prior to queueing new flips).
9152          * Experimentation says that BCS works despite DERRMR masking all
9153          * flip-done completion events and that unmasking all planes at once
9154          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9155          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9156          */
9157         if (ring->id == RCS) {
9158                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9159                 intel_ring_emit(ring, DERRMR);
9160                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9161                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9162                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9163                 if (IS_GEN8(dev))
9164                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9165                                               MI_SRM_LRM_GLOBAL_GTT);
9166                 else
9167                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9168                                               MI_SRM_LRM_GLOBAL_GTT);
9169                 intel_ring_emit(ring, DERRMR);
9170                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9171                 if (IS_GEN8(dev)) {
9172                         intel_ring_emit(ring, 0);
9173                         intel_ring_emit(ring, MI_NOOP);
9174                 }
9175         }
9176
9177         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9178         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9179         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9180         intel_ring_emit(ring, (MI_NOOP));
9181
9182         intel_mark_page_flip_active(intel_crtc);
9183         __intel_ring_advance(ring);
9184         return 0;
9185 }
9186
9187 static int intel_default_queue_flip(struct drm_device *dev,
9188                                     struct drm_crtc *crtc,
9189                                     struct drm_framebuffer *fb,
9190                                     struct drm_i915_gem_object *obj,
9191                                     struct intel_ring_buffer *ring,
9192                                     uint32_t flags)
9193 {
9194         return -ENODEV;
9195 }
9196
9197 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9198                                 struct drm_framebuffer *fb,
9199                                 struct drm_pending_vblank_event *event,
9200                                 uint32_t page_flip_flags)
9201 {
9202         struct drm_device *dev = crtc->dev;
9203         struct drm_i915_private *dev_priv = dev->dev_private;
9204         struct drm_framebuffer *old_fb = crtc->primary->fb;
9205         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
9206         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9207         struct intel_unpin_work *work;
9208         struct intel_ring_buffer *ring;
9209         unsigned long flags;
9210         int ret;
9211
9212         /* Can't change pixel format via MI display flips. */
9213         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9214                 return -EINVAL;
9215
9216         /*
9217          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9218          * Note that pitch changes could also affect these register.
9219          */
9220         if (INTEL_INFO(dev)->gen > 3 &&
9221             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9222              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9223                 return -EINVAL;
9224
9225         if (i915_terminally_wedged(&dev_priv->gpu_error))
9226                 goto out_hang;
9227
9228         work = kzalloc(sizeof(*work), GFP_KERNEL);
9229         if (work == NULL)
9230                 return -ENOMEM;
9231
9232         work->event = event;
9233         work->crtc = crtc;
9234         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
9235         INIT_WORK(&work->work, intel_unpin_work_fn);
9236
9237         ret = drm_crtc_vblank_get(crtc);
9238         if (ret)
9239                 goto free_work;
9240
9241         /* We borrow the event spin lock for protecting unpin_work */
9242         spin_lock_irqsave(&dev->event_lock, flags);
9243         if (intel_crtc->unpin_work) {
9244                 spin_unlock_irqrestore(&dev->event_lock, flags);
9245                 kfree(work);
9246                 drm_crtc_vblank_put(crtc);
9247
9248                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9249                 return -EBUSY;
9250         }
9251         intel_crtc->unpin_work = work;
9252         spin_unlock_irqrestore(&dev->event_lock, flags);
9253
9254         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9255                 flush_workqueue(dev_priv->wq);
9256
9257         ret = i915_mutex_lock_interruptible(dev);
9258         if (ret)
9259                 goto cleanup;
9260
9261         /* Reference the objects for the scheduled work. */
9262         drm_gem_object_reference(&work->old_fb_obj->base);
9263         drm_gem_object_reference(&obj->base);
9264
9265         crtc->primary->fb = fb;
9266
9267         work->pending_flip_obj = obj;
9268
9269         work->enable_stall_check = true;
9270
9271         atomic_inc(&intel_crtc->unpin_work_count);
9272         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9273
9274         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9275                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(intel_crtc->pipe)) + 1;
9276
9277         if (IS_VALLEYVIEW(dev)) {
9278                 ring = &dev_priv->ring[BCS];
9279         } else if (INTEL_INFO(dev)->gen >= 7) {
9280                 ring = obj->ring;
9281                 if (ring == NULL || ring->id != RCS)
9282                         ring = &dev_priv->ring[BCS];
9283         } else {
9284                 ring = &dev_priv->ring[RCS];
9285         }
9286
9287         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9288         if (ret)
9289                 goto cleanup_pending;
9290
9291         work->gtt_offset =
9292                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9293
9294         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring, page_flip_flags);
9295         if (ret)
9296                 goto cleanup_unpin;
9297
9298         intel_disable_fbc(dev);
9299         intel_mark_fb_busy(obj, NULL);
9300         mutex_unlock(&dev->struct_mutex);
9301
9302         trace_i915_flip_request(intel_crtc->plane, obj);
9303
9304         return 0;
9305
9306 cleanup_unpin:
9307         intel_unpin_fb_obj(obj);
9308 cleanup_pending:
9309         atomic_dec(&intel_crtc->unpin_work_count);
9310         crtc->primary->fb = old_fb;
9311         drm_gem_object_unreference(&work->old_fb_obj->base);
9312         drm_gem_object_unreference(&obj->base);
9313         mutex_unlock(&dev->struct_mutex);
9314
9315 cleanup:
9316         spin_lock_irqsave(&dev->event_lock, flags);
9317         intel_crtc->unpin_work = NULL;
9318         spin_unlock_irqrestore(&dev->event_lock, flags);
9319
9320         drm_crtc_vblank_put(crtc);
9321 free_work:
9322         kfree(work);
9323
9324         if (ret == -EIO) {
9325 out_hang:
9326                 intel_crtc_wait_for_pending_flips(crtc);
9327                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9328                 if (ret == 0 && event)
9329                         drm_send_vblank_event(dev, intel_crtc->pipe, event);
9330         }
9331         return ret;
9332 }
9333
9334 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9335         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9336         .load_lut = intel_crtc_load_lut,
9337 };
9338
9339 /**
9340  * intel_modeset_update_staged_output_state
9341  *
9342  * Updates the staged output configuration state, e.g. after we've read out the
9343  * current hw state.
9344  */
9345 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9346 {
9347         struct intel_crtc *crtc;
9348         struct intel_encoder *encoder;
9349         struct intel_connector *connector;
9350
9351         list_for_each_entry(connector, &dev->mode_config.connector_list,
9352                             base.head) {
9353                 connector->new_encoder =
9354                         to_intel_encoder(connector->base.encoder);
9355         }
9356
9357         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9358                             base.head) {
9359                 encoder->new_crtc =
9360                         to_intel_crtc(encoder->base.crtc);
9361         }
9362
9363         for_each_intel_crtc(dev, crtc) {
9364                 crtc->new_enabled = crtc->base.enabled;
9365
9366                 if (crtc->new_enabled)
9367                         crtc->new_config = &crtc->config;
9368                 else
9369                         crtc->new_config = NULL;
9370         }
9371 }
9372
9373 /**
9374  * intel_modeset_commit_output_state
9375  *
9376  * This function copies the stage display pipe configuration to the real one.
9377  */
9378 static void intel_modeset_commit_output_state(struct drm_device *dev)
9379 {
9380         struct intel_crtc *crtc;
9381         struct intel_encoder *encoder;
9382         struct intel_connector *connector;
9383
9384         list_for_each_entry(connector, &dev->mode_config.connector_list,
9385                             base.head) {
9386                 connector->base.encoder = &connector->new_encoder->base;
9387         }
9388
9389         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9390                             base.head) {
9391                 encoder->base.crtc = &encoder->new_crtc->base;
9392         }
9393
9394         for_each_intel_crtc(dev, crtc) {
9395                 crtc->base.enabled = crtc->new_enabled;
9396         }
9397 }
9398
9399 static void
9400 connected_sink_compute_bpp(struct intel_connector *connector,
9401                            struct intel_crtc_config *pipe_config)
9402 {
9403         int bpp = pipe_config->pipe_bpp;
9404
9405         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9406                 connector->base.base.id,
9407                 drm_get_connector_name(&connector->base));
9408
9409         /* Don't use an invalid EDID bpc value */
9410         if (connector->base.display_info.bpc &&
9411             connector->base.display_info.bpc * 3 < bpp) {
9412                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9413                               bpp, connector->base.display_info.bpc*3);
9414                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9415         }
9416
9417         /* Clamp bpp to 8 on screens without EDID 1.4 */
9418         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9419                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9420                               bpp);
9421                 pipe_config->pipe_bpp = 24;
9422         }
9423 }
9424
9425 static int
9426 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9427                           struct drm_framebuffer *fb,
9428                           struct intel_crtc_config *pipe_config)
9429 {
9430         struct drm_device *dev = crtc->base.dev;
9431         struct intel_connector *connector;
9432         int bpp;
9433
9434         switch (fb->pixel_format) {
9435         case DRM_FORMAT_C8:
9436                 bpp = 8*3; /* since we go through a colormap */
9437                 break;
9438         case DRM_FORMAT_XRGB1555:
9439         case DRM_FORMAT_ARGB1555:
9440                 /* checked in intel_framebuffer_init already */
9441                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9442                         return -EINVAL;
9443         case DRM_FORMAT_RGB565:
9444                 bpp = 6*3; /* min is 18bpp */
9445                 break;
9446         case DRM_FORMAT_XBGR8888:
9447         case DRM_FORMAT_ABGR8888:
9448                 /* checked in intel_framebuffer_init already */
9449                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9450                         return -EINVAL;
9451         case DRM_FORMAT_XRGB8888:
9452         case DRM_FORMAT_ARGB8888:
9453                 bpp = 8*3;
9454                 break;
9455         case DRM_FORMAT_XRGB2101010:
9456         case DRM_FORMAT_ARGB2101010:
9457         case DRM_FORMAT_XBGR2101010:
9458         case DRM_FORMAT_ABGR2101010:
9459                 /* checked in intel_framebuffer_init already */
9460                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9461                         return -EINVAL;
9462                 bpp = 10*3;
9463                 break;
9464         /* TODO: gen4+ supports 16 bpc floating point, too. */
9465         default:
9466                 DRM_DEBUG_KMS("unsupported depth\n");
9467                 return -EINVAL;
9468         }
9469
9470         pipe_config->pipe_bpp = bpp;
9471
9472         /* Clamp display bpp to EDID value */
9473         list_for_each_entry(connector, &dev->mode_config.connector_list,
9474                             base.head) {
9475                 if (!connector->new_encoder ||
9476                     connector->new_encoder->new_crtc != crtc)
9477                         continue;
9478
9479                 connected_sink_compute_bpp(connector, pipe_config);
9480         }
9481
9482         return bpp;
9483 }
9484
9485 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9486 {
9487         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9488                         "type: 0x%x flags: 0x%x\n",
9489                 mode->crtc_clock,
9490                 mode->crtc_hdisplay, mode->crtc_hsync_start,
9491                 mode->crtc_hsync_end, mode->crtc_htotal,
9492                 mode->crtc_vdisplay, mode->crtc_vsync_start,
9493                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9494 }
9495
9496 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9497                                    struct intel_crtc_config *pipe_config,
9498                                    const char *context)
9499 {
9500         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9501                       context, pipe_name(crtc->pipe));
9502
9503         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9504         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9505                       pipe_config->pipe_bpp, pipe_config->dither);
9506         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9507                       pipe_config->has_pch_encoder,
9508                       pipe_config->fdi_lanes,
9509                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9510                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9511                       pipe_config->fdi_m_n.tu);
9512         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9513                       pipe_config->has_dp_encoder,
9514                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9515                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9516                       pipe_config->dp_m_n.tu);
9517         DRM_DEBUG_KMS("requested mode:\n");
9518         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9519         DRM_DEBUG_KMS("adjusted mode:\n");
9520         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9521         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9522         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9523         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9524                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9525         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9526                       pipe_config->gmch_pfit.control,
9527                       pipe_config->gmch_pfit.pgm_ratios,
9528                       pipe_config->gmch_pfit.lvds_border_bits);
9529         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9530                       pipe_config->pch_pfit.pos,
9531                       pipe_config->pch_pfit.size,
9532                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9533         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9534         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9535 }
9536
9537 static bool encoders_cloneable(const struct intel_encoder *a,
9538                                const struct intel_encoder *b)
9539 {
9540         /* masks could be asymmetric, so check both ways */
9541         return a == b || (a->cloneable & (1 << b->type) &&
9542                           b->cloneable & (1 << a->type));
9543 }
9544
9545 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9546                                          struct intel_encoder *encoder)
9547 {
9548         struct drm_device *dev = crtc->base.dev;
9549         struct intel_encoder *source_encoder;
9550
9551         list_for_each_entry(source_encoder,
9552                             &dev->mode_config.encoder_list, base.head) {
9553                 if (source_encoder->new_crtc != crtc)
9554                         continue;
9555
9556                 if (!encoders_cloneable(encoder, source_encoder))
9557                         return false;
9558         }
9559
9560         return true;
9561 }
9562
9563 static bool check_encoder_cloning(struct intel_crtc *crtc)
9564 {
9565         struct drm_device *dev = crtc->base.dev;
9566         struct intel_encoder *encoder;
9567
9568         list_for_each_entry(encoder,
9569                             &dev->mode_config.encoder_list, base.head) {
9570                 if (encoder->new_crtc != crtc)
9571                         continue;
9572
9573                 if (!check_single_encoder_cloning(crtc, encoder))
9574                         return false;
9575         }
9576
9577         return true;
9578 }
9579
9580 static struct intel_crtc_config *
9581 intel_modeset_pipe_config(struct drm_crtc *crtc,
9582                           struct drm_framebuffer *fb,
9583                           struct drm_display_mode *mode)
9584 {
9585         struct drm_device *dev = crtc->dev;
9586         struct intel_encoder *encoder;
9587         struct intel_crtc_config *pipe_config;
9588         int plane_bpp, ret = -EINVAL;
9589         bool retry = true;
9590
9591         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
9592                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9593                 return ERR_PTR(-EINVAL);
9594         }
9595
9596         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
9597         if (!pipe_config)
9598                 return ERR_PTR(-ENOMEM);
9599
9600         drm_mode_copy(&pipe_config->adjusted_mode, mode);
9601         drm_mode_copy(&pipe_config->requested_mode, mode);
9602
9603         pipe_config->cpu_transcoder =
9604                 (enum transcoder) to_intel_crtc(crtc)->pipe;
9605         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9606
9607         /*
9608          * Sanitize sync polarity flags based on requested ones. If neither
9609          * positive or negative polarity is requested, treat this as meaning
9610          * negative polarity.
9611          */
9612         if (!(pipe_config->adjusted_mode.flags &
9613               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
9614                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
9615
9616         if (!(pipe_config->adjusted_mode.flags &
9617               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9618                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9619
9620         /* Compute a starting value for pipe_config->pipe_bpp taking the source
9621          * plane pixel format and any sink constraints into account. Returns the
9622          * source plane bpp so that dithering can be selected on mismatches
9623          * after encoders and crtc also have had their say. */
9624         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9625                                               fb, pipe_config);
9626         if (plane_bpp < 0)
9627                 goto fail;
9628
9629         /*
9630          * Determine the real pipe dimensions. Note that stereo modes can
9631          * increase the actual pipe size due to the frame doubling and
9632          * insertion of additional space for blanks between the frame. This
9633          * is stored in the crtc timings. We use the requested mode to do this
9634          * computation to clearly distinguish it from the adjusted mode, which
9635          * can be changed by the connectors in the below retry loop.
9636          */
9637         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9638         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9639         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9640
9641 encoder_retry:
9642         /* Ensure the port clock defaults are reset when retrying. */
9643         pipe_config->port_clock = 0;
9644         pipe_config->pixel_multiplier = 1;
9645
9646         /* Fill in default crtc timings, allow encoders to overwrite them. */
9647         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9648
9649         /* Pass our mode to the connectors and the CRTC to give them a chance to
9650          * adjust it according to limitations or connector properties, and also
9651          * a chance to reject the mode entirely.
9652          */
9653         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9654                             base.head) {
9655
9656                 if (&encoder->new_crtc->base != crtc)
9657                         continue;
9658
9659                 if (!(encoder->compute_config(encoder, pipe_config))) {
9660                         DRM_DEBUG_KMS("Encoder config failure\n");
9661                         goto fail;
9662                 }
9663         }
9664
9665         /* Set default port clock if not overwritten by the encoder. Needs to be
9666          * done afterwards in case the encoder adjusts the mode. */
9667         if (!pipe_config->port_clock)
9668                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9669                         * pipe_config->pixel_multiplier;
9670
9671         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9672         if (ret < 0) {
9673                 DRM_DEBUG_KMS("CRTC fixup failed\n");
9674                 goto fail;
9675         }
9676
9677         if (ret == RETRY) {
9678                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9679                         ret = -EINVAL;
9680                         goto fail;
9681                 }
9682
9683                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9684                 retry = false;
9685                 goto encoder_retry;
9686         }
9687
9688         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9689         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9690                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9691
9692         return pipe_config;
9693 fail:
9694         kfree(pipe_config);
9695         return ERR_PTR(ret);
9696 }
9697
9698 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9699  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9700 static void
9701 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9702                              unsigned *prepare_pipes, unsigned *disable_pipes)
9703 {
9704         struct intel_crtc *intel_crtc;
9705         struct drm_device *dev = crtc->dev;
9706         struct intel_encoder *encoder;
9707         struct intel_connector *connector;
9708         struct drm_crtc *tmp_crtc;
9709
9710         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9711
9712         /* Check which crtcs have changed outputs connected to them, these need
9713          * to be part of the prepare_pipes mask. We don't (yet) support global
9714          * modeset across multiple crtcs, so modeset_pipes will only have one
9715          * bit set at most. */
9716         list_for_each_entry(connector, &dev->mode_config.connector_list,
9717                             base.head) {
9718                 if (connector->base.encoder == &connector->new_encoder->base)
9719                         continue;
9720
9721                 if (connector->base.encoder) {
9722                         tmp_crtc = connector->base.encoder->crtc;
9723
9724                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9725                 }
9726
9727                 if (connector->new_encoder)
9728                         *prepare_pipes |=
9729                                 1 << connector->new_encoder->new_crtc->pipe;
9730         }
9731
9732         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9733                             base.head) {
9734                 if (encoder->base.crtc == &encoder->new_crtc->base)
9735                         continue;
9736
9737                 if (encoder->base.crtc) {
9738                         tmp_crtc = encoder->base.crtc;
9739
9740                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9741                 }
9742
9743                 if (encoder->new_crtc)
9744                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9745         }
9746
9747         /* Check for pipes that will be enabled/disabled ... */
9748         for_each_intel_crtc(dev, intel_crtc) {
9749                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
9750                         continue;
9751
9752                 if (!intel_crtc->new_enabled)
9753                         *disable_pipes |= 1 << intel_crtc->pipe;
9754                 else
9755                         *prepare_pipes |= 1 << intel_crtc->pipe;
9756         }
9757
9758
9759         /* set_mode is also used to update properties on life display pipes. */
9760         intel_crtc = to_intel_crtc(crtc);
9761         if (intel_crtc->new_enabled)
9762                 *prepare_pipes |= 1 << intel_crtc->pipe;
9763
9764         /*
9765          * For simplicity do a full modeset on any pipe where the output routing
9766          * changed. We could be more clever, but that would require us to be
9767          * more careful with calling the relevant encoder->mode_set functions.
9768          */
9769         if (*prepare_pipes)
9770                 *modeset_pipes = *prepare_pipes;
9771
9772         /* ... and mask these out. */
9773         *modeset_pipes &= ~(*disable_pipes);
9774         *prepare_pipes &= ~(*disable_pipes);
9775
9776         /*
9777          * HACK: We don't (yet) fully support global modesets. intel_set_config
9778          * obies this rule, but the modeset restore mode of
9779          * intel_modeset_setup_hw_state does not.
9780          */
9781         *modeset_pipes &= 1 << intel_crtc->pipe;
9782         *prepare_pipes &= 1 << intel_crtc->pipe;
9783
9784         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9785                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9786 }
9787
9788 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9789 {
9790         struct drm_encoder *encoder;
9791         struct drm_device *dev = crtc->dev;
9792
9793         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9794                 if (encoder->crtc == crtc)
9795                         return true;
9796
9797         return false;
9798 }
9799
9800 static void
9801 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9802 {
9803         struct intel_encoder *intel_encoder;
9804         struct intel_crtc *intel_crtc;
9805         struct drm_connector *connector;
9806
9807         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9808                             base.head) {
9809                 if (!intel_encoder->base.crtc)
9810                         continue;
9811
9812                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9813
9814                 if (prepare_pipes & (1 << intel_crtc->pipe))
9815                         intel_encoder->connectors_active = false;
9816         }
9817
9818         intel_modeset_commit_output_state(dev);
9819
9820         /* Double check state. */
9821         for_each_intel_crtc(dev, intel_crtc) {
9822                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
9823                 WARN_ON(intel_crtc->new_config &&
9824                         intel_crtc->new_config != &intel_crtc->config);
9825                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
9826         }
9827
9828         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9829                 if (!connector->encoder || !connector->encoder->crtc)
9830                         continue;
9831
9832                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9833
9834                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9835                         struct drm_property *dpms_property =
9836                                 dev->mode_config.dpms_property;
9837
9838                         connector->dpms = DRM_MODE_DPMS_ON;
9839                         drm_object_property_set_value(&connector->base,
9840                                                          dpms_property,
9841                                                          DRM_MODE_DPMS_ON);
9842
9843                         intel_encoder = to_intel_encoder(connector->encoder);
9844                         intel_encoder->connectors_active = true;
9845                 }
9846         }
9847
9848 }
9849
9850 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9851 {
9852         int diff;
9853
9854         if (clock1 == clock2)
9855                 return true;
9856
9857         if (!clock1 || !clock2)
9858                 return false;
9859
9860         diff = abs(clock1 - clock2);
9861
9862         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9863                 return true;
9864
9865         return false;
9866 }
9867
9868 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9869         list_for_each_entry((intel_crtc), \
9870                             &(dev)->mode_config.crtc_list, \
9871                             base.head) \
9872                 if (mask & (1 <<(intel_crtc)->pipe))
9873
9874 static bool
9875 intel_pipe_config_compare(struct drm_device *dev,
9876                           struct intel_crtc_config *current_config,
9877                           struct intel_crtc_config *pipe_config)
9878 {
9879 #define PIPE_CONF_CHECK_X(name) \
9880         if (current_config->name != pipe_config->name) { \
9881                 DRM_ERROR("mismatch in " #name " " \
9882                           "(expected 0x%08x, found 0x%08x)\n", \
9883                           current_config->name, \
9884                           pipe_config->name); \
9885                 return false; \
9886         }
9887
9888 #define PIPE_CONF_CHECK_I(name) \
9889         if (current_config->name != pipe_config->name) { \
9890                 DRM_ERROR("mismatch in " #name " " \
9891                           "(expected %i, found %i)\n", \
9892                           current_config->name, \
9893                           pipe_config->name); \
9894                 return false; \
9895         }
9896
9897 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9898         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9899                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9900                           "(expected %i, found %i)\n", \
9901                           current_config->name & (mask), \
9902                           pipe_config->name & (mask)); \
9903                 return false; \
9904         }
9905
9906 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9907         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9908                 DRM_ERROR("mismatch in " #name " " \
9909                           "(expected %i, found %i)\n", \
9910                           current_config->name, \
9911                           pipe_config->name); \
9912                 return false; \
9913         }
9914
9915 #define PIPE_CONF_QUIRK(quirk)  \
9916         ((current_config->quirks | pipe_config->quirks) & (quirk))
9917
9918         PIPE_CONF_CHECK_I(cpu_transcoder);
9919
9920         PIPE_CONF_CHECK_I(has_pch_encoder);
9921         PIPE_CONF_CHECK_I(fdi_lanes);
9922         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9923         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9924         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9925         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9926         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9927
9928         PIPE_CONF_CHECK_I(has_dp_encoder);
9929         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9930         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9931         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9932         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9933         PIPE_CONF_CHECK_I(dp_m_n.tu);
9934
9935         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9936         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9937         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9938         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9939         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9940         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9941
9942         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9943         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9944         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9945         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9946         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9947         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9948
9949         PIPE_CONF_CHECK_I(pixel_multiplier);
9950         PIPE_CONF_CHECK_I(has_hdmi_sink);
9951         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
9952             IS_VALLEYVIEW(dev))
9953                 PIPE_CONF_CHECK_I(limited_color_range);
9954
9955         PIPE_CONF_CHECK_I(has_audio);
9956
9957         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9958                               DRM_MODE_FLAG_INTERLACE);
9959
9960         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9961                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9962                                       DRM_MODE_FLAG_PHSYNC);
9963                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9964                                       DRM_MODE_FLAG_NHSYNC);
9965                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9966                                       DRM_MODE_FLAG_PVSYNC);
9967                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9968                                       DRM_MODE_FLAG_NVSYNC);
9969         }
9970
9971         PIPE_CONF_CHECK_I(pipe_src_w);
9972         PIPE_CONF_CHECK_I(pipe_src_h);
9973
9974         /*
9975          * FIXME: BIOS likes to set up a cloned config with lvds+external
9976          * screen. Since we don't yet re-compute the pipe config when moving
9977          * just the lvds port away to another pipe the sw tracking won't match.
9978          *
9979          * Proper atomic modesets with recomputed global state will fix this.
9980          * Until then just don't check gmch state for inherited modes.
9981          */
9982         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
9983                 PIPE_CONF_CHECK_I(gmch_pfit.control);
9984                 /* pfit ratios are autocomputed by the hw on gen4+ */
9985                 if (INTEL_INFO(dev)->gen < 4)
9986                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9987                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9988         }
9989
9990         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9991         if (current_config->pch_pfit.enabled) {
9992                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9993                 PIPE_CONF_CHECK_I(pch_pfit.size);
9994         }
9995
9996         /* BDW+ don't expose a synchronous way to read the state */
9997         if (IS_HASWELL(dev))
9998                 PIPE_CONF_CHECK_I(ips_enabled);
9999
10000         PIPE_CONF_CHECK_I(double_wide);
10001
10002         PIPE_CONF_CHECK_I(shared_dpll);
10003         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10004         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10005         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10006         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10007
10008         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10009                 PIPE_CONF_CHECK_I(pipe_bpp);
10010
10011         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10012         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10013
10014 #undef PIPE_CONF_CHECK_X
10015 #undef PIPE_CONF_CHECK_I
10016 #undef PIPE_CONF_CHECK_FLAGS
10017 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10018 #undef PIPE_CONF_QUIRK
10019
10020         return true;
10021 }
10022
10023 static void
10024 check_connector_state(struct drm_device *dev)
10025 {
10026         struct intel_connector *connector;
10027
10028         list_for_each_entry(connector, &dev->mode_config.connector_list,
10029                             base.head) {
10030                 /* This also checks the encoder/connector hw state with the
10031                  * ->get_hw_state callbacks. */
10032                 intel_connector_check_state(connector);
10033
10034                 WARN(&connector->new_encoder->base != connector->base.encoder,
10035                      "connector's staged encoder doesn't match current encoder\n");
10036         }
10037 }
10038
10039 static void
10040 check_encoder_state(struct drm_device *dev)
10041 {
10042         struct intel_encoder *encoder;
10043         struct intel_connector *connector;
10044
10045         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10046                             base.head) {
10047                 bool enabled = false;
10048                 bool active = false;
10049                 enum pipe pipe, tracked_pipe;
10050
10051                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10052                               encoder->base.base.id,
10053                               drm_get_encoder_name(&encoder->base));
10054
10055                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10056                      "encoder's stage crtc doesn't match current crtc\n");
10057                 WARN(encoder->connectors_active && !encoder->base.crtc,
10058                      "encoder's active_connectors set, but no crtc\n");
10059
10060                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10061                                     base.head) {
10062                         if (connector->base.encoder != &encoder->base)
10063                                 continue;
10064                         enabled = true;
10065                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10066                                 active = true;
10067                 }
10068                 WARN(!!encoder->base.crtc != enabled,
10069                      "encoder's enabled state mismatch "
10070                      "(expected %i, found %i)\n",
10071                      !!encoder->base.crtc, enabled);
10072                 WARN(active && !encoder->base.crtc,
10073                      "active encoder with no crtc\n");
10074
10075                 WARN(encoder->connectors_active != active,
10076                      "encoder's computed active state doesn't match tracked active state "
10077                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10078
10079                 active = encoder->get_hw_state(encoder, &pipe);
10080                 WARN(active != encoder->connectors_active,
10081                      "encoder's hw state doesn't match sw tracking "
10082                      "(expected %i, found %i)\n",
10083                      encoder->connectors_active, active);
10084
10085                 if (!encoder->base.crtc)
10086                         continue;
10087
10088                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10089                 WARN(active && pipe != tracked_pipe,
10090                      "active encoder's pipe doesn't match"
10091                      "(expected %i, found %i)\n",
10092                      tracked_pipe, pipe);
10093
10094         }
10095 }
10096
10097 static void
10098 check_crtc_state(struct drm_device *dev)
10099 {
10100         struct drm_i915_private *dev_priv = dev->dev_private;
10101         struct intel_crtc *crtc;
10102         struct intel_encoder *encoder;
10103         struct intel_crtc_config pipe_config;
10104
10105         for_each_intel_crtc(dev, crtc) {
10106                 bool enabled = false;
10107                 bool active = false;
10108
10109                 memset(&pipe_config, 0, sizeof(pipe_config));
10110
10111                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10112                               crtc->base.base.id);
10113
10114                 WARN(crtc->active && !crtc->base.enabled,
10115                      "active crtc, but not enabled in sw tracking\n");
10116
10117                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10118                                     base.head) {
10119                         if (encoder->base.crtc != &crtc->base)
10120                                 continue;
10121                         enabled = true;
10122                         if (encoder->connectors_active)
10123                                 active = true;
10124                 }
10125
10126                 WARN(active != crtc->active,
10127                      "crtc's computed active state doesn't match tracked active state "
10128                      "(expected %i, found %i)\n", active, crtc->active);
10129                 WARN(enabled != crtc->base.enabled,
10130                      "crtc's computed enabled state doesn't match tracked enabled state "
10131                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10132
10133                 active = dev_priv->display.get_pipe_config(crtc,
10134                                                            &pipe_config);
10135
10136                 /* hw state is inconsistent with the pipe A quirk */
10137                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10138                         active = crtc->active;
10139
10140                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10141                                     base.head) {
10142                         enum pipe pipe;
10143                         if (encoder->base.crtc != &crtc->base)
10144                                 continue;
10145                         if (encoder->get_hw_state(encoder, &pipe))
10146                                 encoder->get_config(encoder, &pipe_config);
10147                 }
10148
10149                 WARN(crtc->active != active,
10150                      "crtc active state doesn't match with hw state "
10151                      "(expected %i, found %i)\n", crtc->active, active);
10152
10153                 if (active &&
10154                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10155                         WARN(1, "pipe state doesn't match!\n");
10156                         intel_dump_pipe_config(crtc, &pipe_config,
10157                                                "[hw state]");
10158                         intel_dump_pipe_config(crtc, &crtc->config,
10159                                                "[sw state]");
10160                 }
10161         }
10162 }
10163
10164 static void
10165 check_shared_dpll_state(struct drm_device *dev)
10166 {
10167         struct drm_i915_private *dev_priv = dev->dev_private;
10168         struct intel_crtc *crtc;
10169         struct intel_dpll_hw_state dpll_hw_state;
10170         int i;
10171
10172         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10173                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10174                 int enabled_crtcs = 0, active_crtcs = 0;
10175                 bool active;
10176
10177                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10178
10179                 DRM_DEBUG_KMS("%s\n", pll->name);
10180
10181                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10182
10183                 WARN(pll->active > pll->refcount,
10184                      "more active pll users than references: %i vs %i\n",
10185                      pll->active, pll->refcount);
10186                 WARN(pll->active && !pll->on,
10187                      "pll in active use but not on in sw tracking\n");
10188                 WARN(pll->on && !pll->active,
10189                      "pll in on but not on in use in sw tracking\n");
10190                 WARN(pll->on != active,
10191                      "pll on state mismatch (expected %i, found %i)\n",
10192                      pll->on, active);
10193
10194                 for_each_intel_crtc(dev, crtc) {
10195                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10196                                 enabled_crtcs++;
10197                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10198                                 active_crtcs++;
10199                 }
10200                 WARN(pll->active != active_crtcs,
10201                      "pll active crtcs mismatch (expected %i, found %i)\n",
10202                      pll->active, active_crtcs);
10203                 WARN(pll->refcount != enabled_crtcs,
10204                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10205                      pll->refcount, enabled_crtcs);
10206
10207                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10208                                        sizeof(dpll_hw_state)),
10209                      "pll hw state mismatch\n");
10210         }
10211 }
10212
10213 void
10214 intel_modeset_check_state(struct drm_device *dev)
10215 {
10216         check_connector_state(dev);
10217         check_encoder_state(dev);
10218         check_crtc_state(dev);
10219         check_shared_dpll_state(dev);
10220 }
10221
10222 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10223                                      int dotclock)
10224 {
10225         /*
10226          * FDI already provided one idea for the dotclock.
10227          * Yell if the encoder disagrees.
10228          */
10229         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10230              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10231              pipe_config->adjusted_mode.crtc_clock, dotclock);
10232 }
10233
10234 static int __intel_set_mode(struct drm_crtc *crtc,
10235                             struct drm_display_mode *mode,
10236                             int x, int y, struct drm_framebuffer *fb)
10237 {
10238         struct drm_device *dev = crtc->dev;
10239         struct drm_i915_private *dev_priv = dev->dev_private;
10240         struct drm_display_mode *saved_mode;
10241         struct intel_crtc_config *pipe_config = NULL;
10242         struct intel_crtc *intel_crtc;
10243         unsigned disable_pipes, prepare_pipes, modeset_pipes;
10244         int ret = 0;
10245
10246         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10247         if (!saved_mode)
10248                 return -ENOMEM;
10249
10250         intel_modeset_affected_pipes(crtc, &modeset_pipes,
10251                                      &prepare_pipes, &disable_pipes);
10252
10253         *saved_mode = crtc->mode;
10254
10255         /* Hack: Because we don't (yet) support global modeset on multiple
10256          * crtcs, we don't keep track of the new mode for more than one crtc.
10257          * Hence simply check whether any bit is set in modeset_pipes in all the
10258          * pieces of code that are not yet converted to deal with mutliple crtcs
10259          * changing their mode at the same time. */
10260         if (modeset_pipes) {
10261                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10262                 if (IS_ERR(pipe_config)) {
10263                         ret = PTR_ERR(pipe_config);
10264                         pipe_config = NULL;
10265
10266                         goto out;
10267                 }
10268                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10269                                        "[modeset]");
10270                 to_intel_crtc(crtc)->new_config = pipe_config;
10271         }
10272
10273         /*
10274          * See if the config requires any additional preparation, e.g.
10275          * to adjust global state with pipes off.  We need to do this
10276          * here so we can get the modeset_pipe updated config for the new
10277          * mode set on this crtc.  For other crtcs we need to use the
10278          * adjusted_mode bits in the crtc directly.
10279          */
10280         if (IS_VALLEYVIEW(dev)) {
10281                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10282
10283                 /* may have added more to prepare_pipes than we should */
10284                 prepare_pipes &= ~disable_pipes;
10285         }
10286
10287         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10288                 intel_crtc_disable(&intel_crtc->base);
10289
10290         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10291                 if (intel_crtc->base.enabled)
10292                         dev_priv->display.crtc_disable(&intel_crtc->base);
10293         }
10294
10295         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10296          * to set it here already despite that we pass it down the callchain.
10297          */
10298         if (modeset_pipes) {
10299                 crtc->mode = *mode;
10300                 /* mode_set/enable/disable functions rely on a correct pipe
10301                  * config. */
10302                 to_intel_crtc(crtc)->config = *pipe_config;
10303                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10304
10305                 /*
10306                  * Calculate and store various constants which
10307                  * are later needed by vblank and swap-completion
10308                  * timestamping. They are derived from true hwmode.
10309                  */
10310                 drm_calc_timestamping_constants(crtc,
10311                                                 &pipe_config->adjusted_mode);
10312         }
10313
10314         /* Only after disabling all output pipelines that will be changed can we
10315          * update the the output configuration. */
10316         intel_modeset_update_state(dev, prepare_pipes);
10317
10318         if (dev_priv->display.modeset_global_resources)
10319                 dev_priv->display.modeset_global_resources(dev);
10320
10321         /* Set up the DPLL and any encoders state that needs to adjust or depend
10322          * on the DPLL.
10323          */
10324         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10325                 struct drm_framebuffer *old_fb;
10326
10327                 mutex_lock(&dev->struct_mutex);
10328                 ret = intel_pin_and_fence_fb_obj(dev,
10329                                                  to_intel_framebuffer(fb)->obj,
10330                                                  NULL);
10331                 if (ret != 0) {
10332                         DRM_ERROR("pin & fence failed\n");
10333                         mutex_unlock(&dev->struct_mutex);
10334                         goto done;
10335                 }
10336                 old_fb = crtc->primary->fb;
10337                 if (old_fb)
10338                         intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
10339                 mutex_unlock(&dev->struct_mutex);
10340
10341                 crtc->primary->fb = fb;
10342                 crtc->x = x;
10343                 crtc->y = y;
10344
10345                 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10346                                                       x, y, fb);
10347                 if (ret)
10348                         goto done;
10349         }
10350
10351         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10352         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
10353                 dev_priv->display.crtc_enable(&intel_crtc->base);
10354
10355         /* FIXME: add subpixel order */
10356 done:
10357         if (ret && crtc->enabled)
10358                 crtc->mode = *saved_mode;
10359
10360 out:
10361         kfree(pipe_config);
10362         kfree(saved_mode);
10363         return ret;
10364 }
10365
10366 static int intel_set_mode(struct drm_crtc *crtc,
10367                           struct drm_display_mode *mode,
10368                           int x, int y, struct drm_framebuffer *fb)
10369 {
10370         int ret;
10371
10372         ret = __intel_set_mode(crtc, mode, x, y, fb);
10373
10374         if (ret == 0)
10375                 intel_modeset_check_state(crtc->dev);
10376
10377         return ret;
10378 }
10379
10380 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10381 {
10382         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10383 }
10384
10385 #undef for_each_intel_crtc_masked
10386
10387 static void intel_set_config_free(struct intel_set_config *config)
10388 {
10389         if (!config)
10390                 return;
10391
10392         kfree(config->save_connector_encoders);
10393         kfree(config->save_encoder_crtcs);
10394         kfree(config->save_crtc_enabled);
10395         kfree(config);
10396 }
10397
10398 static int intel_set_config_save_state(struct drm_device *dev,
10399                                        struct intel_set_config *config)
10400 {
10401         struct drm_crtc *crtc;
10402         struct drm_encoder *encoder;
10403         struct drm_connector *connector;
10404         int count;
10405
10406         config->save_crtc_enabled =
10407                 kcalloc(dev->mode_config.num_crtc,
10408                         sizeof(bool), GFP_KERNEL);
10409         if (!config->save_crtc_enabled)
10410                 return -ENOMEM;
10411
10412         config->save_encoder_crtcs =
10413                 kcalloc(dev->mode_config.num_encoder,
10414                         sizeof(struct drm_crtc *), GFP_KERNEL);
10415         if (!config->save_encoder_crtcs)
10416                 return -ENOMEM;
10417
10418         config->save_connector_encoders =
10419                 kcalloc(dev->mode_config.num_connector,
10420                         sizeof(struct drm_encoder *), GFP_KERNEL);
10421         if (!config->save_connector_encoders)
10422                 return -ENOMEM;
10423
10424         /* Copy data. Note that driver private data is not affected.
10425          * Should anything bad happen only the expected state is
10426          * restored, not the drivers personal bookkeeping.
10427          */
10428         count = 0;
10429         for_each_crtc(dev, crtc) {
10430                 config->save_crtc_enabled[count++] = crtc->enabled;
10431         }
10432
10433         count = 0;
10434         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10435                 config->save_encoder_crtcs[count++] = encoder->crtc;
10436         }
10437
10438         count = 0;
10439         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10440                 config->save_connector_encoders[count++] = connector->encoder;
10441         }
10442
10443         return 0;
10444 }
10445
10446 static void intel_set_config_restore_state(struct drm_device *dev,
10447                                            struct intel_set_config *config)
10448 {
10449         struct intel_crtc *crtc;
10450         struct intel_encoder *encoder;
10451         struct intel_connector *connector;
10452         int count;
10453
10454         count = 0;
10455         for_each_intel_crtc(dev, crtc) {
10456                 crtc->new_enabled = config->save_crtc_enabled[count++];
10457
10458                 if (crtc->new_enabled)
10459                         crtc->new_config = &crtc->config;
10460                 else
10461                         crtc->new_config = NULL;
10462         }
10463
10464         count = 0;
10465         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10466                 encoder->new_crtc =
10467                         to_intel_crtc(config->save_encoder_crtcs[count++]);
10468         }
10469
10470         count = 0;
10471         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10472                 connector->new_encoder =
10473                         to_intel_encoder(config->save_connector_encoders[count++]);
10474         }
10475 }
10476
10477 static bool
10478 is_crtc_connector_off(struct drm_mode_set *set)
10479 {
10480         int i;
10481
10482         if (set->num_connectors == 0)
10483                 return false;
10484
10485         if (WARN_ON(set->connectors == NULL))
10486                 return false;
10487
10488         for (i = 0; i < set->num_connectors; i++)
10489                 if (set->connectors[i]->encoder &&
10490                     set->connectors[i]->encoder->crtc == set->crtc &&
10491                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10492                         return true;
10493
10494         return false;
10495 }
10496
10497 static void
10498 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10499                                       struct intel_set_config *config)
10500 {
10501
10502         /* We should be able to check here if the fb has the same properties
10503          * and then just flip_or_move it */
10504         if (is_crtc_connector_off(set)) {
10505                 config->mode_changed = true;
10506         } else if (set->crtc->primary->fb != set->fb) {
10507                 /* If we have no fb then treat it as a full mode set */
10508                 if (set->crtc->primary->fb == NULL) {
10509                         struct intel_crtc *intel_crtc =
10510                                 to_intel_crtc(set->crtc);
10511
10512                         if (intel_crtc->active && i915.fastboot) {
10513                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10514                                 config->fb_changed = true;
10515                         } else {
10516                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10517                                 config->mode_changed = true;
10518                         }
10519                 } else if (set->fb == NULL) {
10520                         config->mode_changed = true;
10521                 } else if (set->fb->pixel_format !=
10522                            set->crtc->primary->fb->pixel_format) {
10523                         config->mode_changed = true;
10524                 } else {
10525                         config->fb_changed = true;
10526                 }
10527         }
10528
10529         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
10530                 config->fb_changed = true;
10531
10532         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10533                 DRM_DEBUG_KMS("modes are different, full mode set\n");
10534                 drm_mode_debug_printmodeline(&set->crtc->mode);
10535                 drm_mode_debug_printmodeline(set->mode);
10536                 config->mode_changed = true;
10537         }
10538
10539         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10540                         set->crtc->base.id, config->mode_changed, config->fb_changed);
10541 }
10542
10543 static int
10544 intel_modeset_stage_output_state(struct drm_device *dev,
10545                                  struct drm_mode_set *set,
10546                                  struct intel_set_config *config)
10547 {
10548         struct intel_connector *connector;
10549         struct intel_encoder *encoder;
10550         struct intel_crtc *crtc;
10551         int ro;
10552
10553         /* The upper layers ensure that we either disable a crtc or have a list
10554          * of connectors. For paranoia, double-check this. */
10555         WARN_ON(!set->fb && (set->num_connectors != 0));
10556         WARN_ON(set->fb && (set->num_connectors == 0));
10557
10558         list_for_each_entry(connector, &dev->mode_config.connector_list,
10559                             base.head) {
10560                 /* Otherwise traverse passed in connector list and get encoders
10561                  * for them. */
10562                 for (ro = 0; ro < set->num_connectors; ro++) {
10563                         if (set->connectors[ro] == &connector->base) {
10564                                 connector->new_encoder = connector->encoder;
10565                                 break;
10566                         }
10567                 }
10568
10569                 /* If we disable the crtc, disable all its connectors. Also, if
10570                  * the connector is on the changing crtc but not on the new
10571                  * connector list, disable it. */
10572                 if ((!set->fb || ro == set->num_connectors) &&
10573                     connector->base.encoder &&
10574                     connector->base.encoder->crtc == set->crtc) {
10575                         connector->new_encoder = NULL;
10576
10577                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
10578                                 connector->base.base.id,
10579                                 drm_get_connector_name(&connector->base));
10580                 }
10581
10582
10583                 if (&connector->new_encoder->base != connector->base.encoder) {
10584                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
10585                         config->mode_changed = true;
10586                 }
10587         }
10588         /* connector->new_encoder is now updated for all connectors. */
10589
10590         /* Update crtc of enabled connectors. */
10591         list_for_each_entry(connector, &dev->mode_config.connector_list,
10592                             base.head) {
10593                 struct drm_crtc *new_crtc;
10594
10595                 if (!connector->new_encoder)
10596                         continue;
10597
10598                 new_crtc = connector->new_encoder->base.crtc;
10599
10600                 for (ro = 0; ro < set->num_connectors; ro++) {
10601                         if (set->connectors[ro] == &connector->base)
10602                                 new_crtc = set->crtc;
10603                 }
10604
10605                 /* Make sure the new CRTC will work with the encoder */
10606                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
10607                                          new_crtc)) {
10608                         return -EINVAL;
10609                 }
10610                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
10611
10612                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
10613                         connector->base.base.id,
10614                         drm_get_connector_name(&connector->base),
10615                         new_crtc->base.id);
10616         }
10617
10618         /* Check for any encoders that needs to be disabled. */
10619         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10620                             base.head) {
10621                 int num_connectors = 0;
10622                 list_for_each_entry(connector,
10623                                     &dev->mode_config.connector_list,
10624                                     base.head) {
10625                         if (connector->new_encoder == encoder) {
10626                                 WARN_ON(!connector->new_encoder->new_crtc);
10627                                 num_connectors++;
10628                         }
10629                 }
10630
10631                 if (num_connectors == 0)
10632                         encoder->new_crtc = NULL;
10633                 else if (num_connectors > 1)
10634                         return -EINVAL;
10635
10636                 /* Only now check for crtc changes so we don't miss encoders
10637                  * that will be disabled. */
10638                 if (&encoder->new_crtc->base != encoder->base.crtc) {
10639                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
10640                         config->mode_changed = true;
10641                 }
10642         }
10643         /* Now we've also updated encoder->new_crtc for all encoders. */
10644
10645         for_each_intel_crtc(dev, crtc) {
10646                 crtc->new_enabled = false;
10647
10648                 list_for_each_entry(encoder,
10649                                     &dev->mode_config.encoder_list,
10650                                     base.head) {
10651                         if (encoder->new_crtc == crtc) {
10652                                 crtc->new_enabled = true;
10653                                 break;
10654                         }
10655                 }
10656
10657                 if (crtc->new_enabled != crtc->base.enabled) {
10658                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
10659                                       crtc->new_enabled ? "en" : "dis");
10660                         config->mode_changed = true;
10661                 }
10662
10663                 if (crtc->new_enabled)
10664                         crtc->new_config = &crtc->config;
10665                 else
10666                         crtc->new_config = NULL;
10667         }
10668
10669         return 0;
10670 }
10671
10672 static void disable_crtc_nofb(struct intel_crtc *crtc)
10673 {
10674         struct drm_device *dev = crtc->base.dev;
10675         struct intel_encoder *encoder;
10676         struct intel_connector *connector;
10677
10678         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
10679                       pipe_name(crtc->pipe));
10680
10681         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10682                 if (connector->new_encoder &&
10683                     connector->new_encoder->new_crtc == crtc)
10684                         connector->new_encoder = NULL;
10685         }
10686
10687         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10688                 if (encoder->new_crtc == crtc)
10689                         encoder->new_crtc = NULL;
10690         }
10691
10692         crtc->new_enabled = false;
10693         crtc->new_config = NULL;
10694 }
10695
10696 static int intel_crtc_set_config(struct drm_mode_set *set)
10697 {
10698         struct drm_device *dev;
10699         struct drm_mode_set save_set;
10700         struct intel_set_config *config;
10701         int ret;
10702
10703         BUG_ON(!set);
10704         BUG_ON(!set->crtc);
10705         BUG_ON(!set->crtc->helper_private);
10706
10707         /* Enforce sane interface api - has been abused by the fb helper. */
10708         BUG_ON(!set->mode && set->fb);
10709         BUG_ON(set->fb && set->num_connectors == 0);
10710
10711         if (set->fb) {
10712                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
10713                                 set->crtc->base.id, set->fb->base.id,
10714                                 (int)set->num_connectors, set->x, set->y);
10715         } else {
10716                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
10717         }
10718
10719         dev = set->crtc->dev;
10720
10721         ret = -ENOMEM;
10722         config = kzalloc(sizeof(*config), GFP_KERNEL);
10723         if (!config)
10724                 goto out_config;
10725
10726         ret = intel_set_config_save_state(dev, config);
10727         if (ret)
10728                 goto out_config;
10729
10730         save_set.crtc = set->crtc;
10731         save_set.mode = &set->crtc->mode;
10732         save_set.x = set->crtc->x;
10733         save_set.y = set->crtc->y;
10734         save_set.fb = set->crtc->primary->fb;
10735
10736         /* Compute whether we need a full modeset, only an fb base update or no
10737          * change at all. In the future we might also check whether only the
10738          * mode changed, e.g. for LVDS where we only change the panel fitter in
10739          * such cases. */
10740         intel_set_config_compute_mode_changes(set, config);
10741
10742         ret = intel_modeset_stage_output_state(dev, set, config);
10743         if (ret)
10744                 goto fail;
10745
10746         if (config->mode_changed) {
10747                 ret = intel_set_mode(set->crtc, set->mode,
10748                                      set->x, set->y, set->fb);
10749         } else if (config->fb_changed) {
10750                 intel_crtc_wait_for_pending_flips(set->crtc);
10751
10752                 ret = intel_pipe_set_base(set->crtc,
10753                                           set->x, set->y, set->fb);
10754                 /*
10755                  * In the fastboot case this may be our only check of the
10756                  * state after boot.  It would be better to only do it on
10757                  * the first update, but we don't have a nice way of doing that
10758                  * (and really, set_config isn't used much for high freq page
10759                  * flipping, so increasing its cost here shouldn't be a big
10760                  * deal).
10761                  */
10762                 if (i915.fastboot && ret == 0)
10763                         intel_modeset_check_state(set->crtc->dev);
10764         }
10765
10766         if (ret) {
10767                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10768                               set->crtc->base.id, ret);
10769 fail:
10770                 intel_set_config_restore_state(dev, config);
10771
10772                 /*
10773                  * HACK: if the pipe was on, but we didn't have a framebuffer,
10774                  * force the pipe off to avoid oopsing in the modeset code
10775                  * due to fb==NULL. This should only happen during boot since
10776                  * we don't yet reconstruct the FB from the hardware state.
10777                  */
10778                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
10779                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
10780
10781                 /* Try to restore the config */
10782                 if (config->mode_changed &&
10783                     intel_set_mode(save_set.crtc, save_set.mode,
10784                                    save_set.x, save_set.y, save_set.fb))
10785                         DRM_ERROR("failed to restore config after modeset failure\n");
10786         }
10787
10788 out_config:
10789         intel_set_config_free(config);
10790         return ret;
10791 }
10792
10793 static const struct drm_crtc_funcs intel_crtc_funcs = {
10794         .cursor_set = intel_crtc_cursor_set,
10795         .cursor_move = intel_crtc_cursor_move,
10796         .gamma_set = intel_crtc_gamma_set,
10797         .set_config = intel_crtc_set_config,
10798         .destroy = intel_crtc_destroy,
10799         .page_flip = intel_crtc_page_flip,
10800 };
10801
10802 static void intel_cpu_pll_init(struct drm_device *dev)
10803 {
10804         if (HAS_DDI(dev))
10805                 intel_ddi_pll_init(dev);
10806 }
10807
10808 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10809                                       struct intel_shared_dpll *pll,
10810                                       struct intel_dpll_hw_state *hw_state)
10811 {
10812         uint32_t val;
10813
10814         val = I915_READ(PCH_DPLL(pll->id));
10815         hw_state->dpll = val;
10816         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10817         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10818
10819         return val & DPLL_VCO_ENABLE;
10820 }
10821
10822 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10823                                   struct intel_shared_dpll *pll)
10824 {
10825         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10826         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10827 }
10828
10829 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10830                                 struct intel_shared_dpll *pll)
10831 {
10832         /* PCH refclock must be enabled first */
10833         ibx_assert_pch_refclk_enabled(dev_priv);
10834
10835         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10836
10837         /* Wait for the clocks to stabilize. */
10838         POSTING_READ(PCH_DPLL(pll->id));
10839         udelay(150);
10840
10841         /* The pixel multiplier can only be updated once the
10842          * DPLL is enabled and the clocks are stable.
10843          *
10844          * So write it again.
10845          */
10846         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10847         POSTING_READ(PCH_DPLL(pll->id));
10848         udelay(200);
10849 }
10850
10851 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10852                                  struct intel_shared_dpll *pll)
10853 {
10854         struct drm_device *dev = dev_priv->dev;
10855         struct intel_crtc *crtc;
10856
10857         /* Make sure no transcoder isn't still depending on us. */
10858         for_each_intel_crtc(dev, crtc) {
10859                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10860                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10861         }
10862
10863         I915_WRITE(PCH_DPLL(pll->id), 0);
10864         POSTING_READ(PCH_DPLL(pll->id));
10865         udelay(200);
10866 }
10867
10868 static char *ibx_pch_dpll_names[] = {
10869         "PCH DPLL A",
10870         "PCH DPLL B",
10871 };
10872
10873 static void ibx_pch_dpll_init(struct drm_device *dev)
10874 {
10875         struct drm_i915_private *dev_priv = dev->dev_private;
10876         int i;
10877
10878         dev_priv->num_shared_dpll = 2;
10879
10880         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10881                 dev_priv->shared_dplls[i].id = i;
10882                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10883                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10884                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10885                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10886                 dev_priv->shared_dplls[i].get_hw_state =
10887                         ibx_pch_dpll_get_hw_state;
10888         }
10889 }
10890
10891 static void intel_shared_dpll_init(struct drm_device *dev)
10892 {
10893         struct drm_i915_private *dev_priv = dev->dev_private;
10894
10895         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10896                 ibx_pch_dpll_init(dev);
10897         else
10898                 dev_priv->num_shared_dpll = 0;
10899
10900         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10901 }
10902
10903 static void intel_crtc_init(struct drm_device *dev, int pipe)
10904 {
10905         struct drm_i915_private *dev_priv = dev->dev_private;
10906         struct intel_crtc *intel_crtc;
10907         int i;
10908
10909         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10910         if (intel_crtc == NULL)
10911                 return;
10912
10913         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10914
10915         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10916         for (i = 0; i < 256; i++) {
10917                 intel_crtc->lut_r[i] = i;
10918                 intel_crtc->lut_g[i] = i;
10919                 intel_crtc->lut_b[i] = i;
10920         }
10921
10922         /*
10923          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10924          * is hooked to plane B. Hence we want plane A feeding pipe B.
10925          */
10926         intel_crtc->pipe = pipe;
10927         intel_crtc->plane = pipe;
10928         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10929                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10930                 intel_crtc->plane = !pipe;
10931         }
10932
10933         init_waitqueue_head(&intel_crtc->vbl_wait);
10934
10935         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10936                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10937         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10938         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10939
10940         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10941
10942         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
10943 }
10944
10945 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10946 {
10947         struct drm_encoder *encoder = connector->base.encoder;
10948
10949         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10950
10951         if (!encoder)
10952                 return INVALID_PIPE;
10953
10954         return to_intel_crtc(encoder->crtc)->pipe;
10955 }
10956
10957 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10958                                 struct drm_file *file)
10959 {
10960         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10961         struct drm_mode_object *drmmode_obj;
10962         struct intel_crtc *crtc;
10963
10964         if (!drm_core_check_feature(dev, DRIVER_MODESET))
10965                 return -ENODEV;
10966
10967         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10968                         DRM_MODE_OBJECT_CRTC);
10969
10970         if (!drmmode_obj) {
10971                 DRM_ERROR("no such CRTC id\n");
10972                 return -ENOENT;
10973         }
10974
10975         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10976         pipe_from_crtc_id->pipe = crtc->pipe;
10977
10978         return 0;
10979 }
10980
10981 static int intel_encoder_clones(struct intel_encoder *encoder)
10982 {
10983         struct drm_device *dev = encoder->base.dev;
10984         struct intel_encoder *source_encoder;
10985         int index_mask = 0;
10986         int entry = 0;
10987
10988         list_for_each_entry(source_encoder,
10989                             &dev->mode_config.encoder_list, base.head) {
10990                 if (encoders_cloneable(encoder, source_encoder))
10991                         index_mask |= (1 << entry);
10992
10993                 entry++;
10994         }
10995
10996         return index_mask;
10997 }
10998
10999 static bool has_edp_a(struct drm_device *dev)
11000 {
11001         struct drm_i915_private *dev_priv = dev->dev_private;
11002
11003         if (!IS_MOBILE(dev))
11004                 return false;
11005
11006         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11007                 return false;
11008
11009         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
11010                 return false;
11011
11012         return true;
11013 }
11014
11015 const char *intel_output_name(int output)
11016 {
11017         static const char *names[] = {
11018                 [INTEL_OUTPUT_UNUSED] = "Unused",
11019                 [INTEL_OUTPUT_ANALOG] = "Analog",
11020                 [INTEL_OUTPUT_DVO] = "DVO",
11021                 [INTEL_OUTPUT_SDVO] = "SDVO",
11022                 [INTEL_OUTPUT_LVDS] = "LVDS",
11023                 [INTEL_OUTPUT_TVOUT] = "TV",
11024                 [INTEL_OUTPUT_HDMI] = "HDMI",
11025                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11026                 [INTEL_OUTPUT_EDP] = "eDP",
11027                 [INTEL_OUTPUT_DSI] = "DSI",
11028                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11029         };
11030
11031         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11032                 return "Invalid";
11033
11034         return names[output];
11035 }
11036
11037 static void intel_setup_outputs(struct drm_device *dev)
11038 {
11039         struct drm_i915_private *dev_priv = dev->dev_private;
11040         struct intel_encoder *encoder;
11041         bool dpd_is_edp = false;
11042
11043         intel_lvds_init(dev);
11044
11045         if (!IS_ULT(dev) && !IS_CHERRYVIEW(dev))
11046                 intel_crt_init(dev);
11047
11048         if (HAS_DDI(dev)) {
11049                 int found;
11050
11051                 /* Haswell uses DDI functions to detect digital outputs */
11052                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11053                 /* DDI A only supports eDP */
11054                 if (found)
11055                         intel_ddi_init(dev, PORT_A);
11056
11057                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11058                  * register */
11059                 found = I915_READ(SFUSE_STRAP);
11060
11061                 if (found & SFUSE_STRAP_DDIB_DETECTED)
11062                         intel_ddi_init(dev, PORT_B);
11063                 if (found & SFUSE_STRAP_DDIC_DETECTED)
11064                         intel_ddi_init(dev, PORT_C);
11065                 if (found & SFUSE_STRAP_DDID_DETECTED)
11066                         intel_ddi_init(dev, PORT_D);
11067         } else if (HAS_PCH_SPLIT(dev)) {
11068                 int found;
11069                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
11070
11071                 if (has_edp_a(dev))
11072                         intel_dp_init(dev, DP_A, PORT_A);
11073
11074                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
11075                         /* PCH SDVOB multiplex with HDMIB */
11076                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
11077                         if (!found)
11078                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
11079                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
11080                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
11081                 }
11082
11083                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
11084                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
11085
11086                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
11087                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
11088
11089                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
11090                         intel_dp_init(dev, PCH_DP_C, PORT_C);
11091
11092                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
11093                         intel_dp_init(dev, PCH_DP_D, PORT_D);
11094         } else if (IS_VALLEYVIEW(dev)) {
11095                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11096                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11097                                         PORT_B);
11098                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11099                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11100                 }
11101
11102                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11103                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11104                                         PORT_C);
11105                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
11106                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
11107                 }
11108
11109                 if (IS_CHERRYVIEW(dev)) {
11110                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11111                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11112                                                 PORT_D);
11113                                 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11114                                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11115                         }
11116                 }
11117
11118                 intel_dsi_init(dev);
11119         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
11120                 bool found = false;
11121
11122                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11123                         DRM_DEBUG_KMS("probing SDVOB\n");
11124                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
11125                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11126                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
11127                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
11128                         }
11129
11130                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
11131                                 intel_dp_init(dev, DP_B, PORT_B);
11132                 }
11133
11134                 /* Before G4X SDVOC doesn't have its own detect register */
11135
11136                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11137                         DRM_DEBUG_KMS("probing SDVOC\n");
11138                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
11139                 }
11140
11141                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
11142
11143                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11144                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
11145                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
11146                         }
11147                         if (SUPPORTS_INTEGRATED_DP(dev))
11148                                 intel_dp_init(dev, DP_C, PORT_C);
11149                 }
11150
11151                 if (SUPPORTS_INTEGRATED_DP(dev) &&
11152                     (I915_READ(DP_D) & DP_DETECTED))
11153                         intel_dp_init(dev, DP_D, PORT_D);
11154         } else if (IS_GEN2(dev))
11155                 intel_dvo_init(dev);
11156
11157         if (SUPPORTS_TV(dev))
11158                 intel_tv_init(dev);
11159
11160         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11161                 encoder->base.possible_crtcs = encoder->crtc_mask;
11162                 encoder->base.possible_clones =
11163                         intel_encoder_clones(encoder);
11164         }
11165
11166         intel_init_pch_refclk(dev);
11167
11168         drm_helper_move_panel_connectors_to_head(dev);
11169 }
11170
11171 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
11172 {
11173         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11174
11175         drm_framebuffer_cleanup(fb);
11176         WARN_ON(!intel_fb->obj->framebuffer_references--);
11177         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
11178         kfree(intel_fb);
11179 }
11180
11181 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
11182                                                 struct drm_file *file,
11183                                                 unsigned int *handle)
11184 {
11185         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11186         struct drm_i915_gem_object *obj = intel_fb->obj;
11187
11188         return drm_gem_handle_create(file, &obj->base, handle);
11189 }
11190
11191 static const struct drm_framebuffer_funcs intel_fb_funcs = {
11192         .destroy = intel_user_framebuffer_destroy,
11193         .create_handle = intel_user_framebuffer_create_handle,
11194 };
11195
11196 static int intel_framebuffer_init(struct drm_device *dev,
11197                                   struct intel_framebuffer *intel_fb,
11198                                   struct drm_mode_fb_cmd2 *mode_cmd,
11199                                   struct drm_i915_gem_object *obj)
11200 {
11201         int aligned_height;
11202         int pitch_limit;
11203         int ret;
11204
11205         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
11206
11207         if (obj->tiling_mode == I915_TILING_Y) {
11208                 DRM_DEBUG("hardware does not support tiling Y\n");
11209                 return -EINVAL;
11210         }
11211
11212         if (mode_cmd->pitches[0] & 63) {
11213                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
11214                           mode_cmd->pitches[0]);
11215                 return -EINVAL;
11216         }
11217
11218         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
11219                 pitch_limit = 32*1024;
11220         } else if (INTEL_INFO(dev)->gen >= 4) {
11221                 if (obj->tiling_mode)
11222                         pitch_limit = 16*1024;
11223                 else
11224                         pitch_limit = 32*1024;
11225         } else if (INTEL_INFO(dev)->gen >= 3) {
11226                 if (obj->tiling_mode)
11227                         pitch_limit = 8*1024;
11228                 else
11229                         pitch_limit = 16*1024;
11230         } else
11231                 /* XXX DSPC is limited to 4k tiled */
11232                 pitch_limit = 8*1024;
11233
11234         if (mode_cmd->pitches[0] > pitch_limit) {
11235                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
11236                           obj->tiling_mode ? "tiled" : "linear",
11237                           mode_cmd->pitches[0], pitch_limit);
11238                 return -EINVAL;
11239         }
11240
11241         if (obj->tiling_mode != I915_TILING_NONE &&
11242             mode_cmd->pitches[0] != obj->stride) {
11243                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
11244                           mode_cmd->pitches[0], obj->stride);
11245                 return -EINVAL;
11246         }
11247
11248         /* Reject formats not supported by any plane early. */
11249         switch (mode_cmd->pixel_format) {
11250         case DRM_FORMAT_C8:
11251         case DRM_FORMAT_RGB565:
11252         case DRM_FORMAT_XRGB8888:
11253         case DRM_FORMAT_ARGB8888:
11254                 break;
11255         case DRM_FORMAT_XRGB1555:
11256         case DRM_FORMAT_ARGB1555:
11257                 if (INTEL_INFO(dev)->gen > 3) {
11258                         DRM_DEBUG("unsupported pixel format: %s\n",
11259                                   drm_get_format_name(mode_cmd->pixel_format));
11260                         return -EINVAL;
11261                 }
11262                 break;
11263         case DRM_FORMAT_XBGR8888:
11264         case DRM_FORMAT_ABGR8888:
11265         case DRM_FORMAT_XRGB2101010:
11266         case DRM_FORMAT_ARGB2101010:
11267         case DRM_FORMAT_XBGR2101010:
11268         case DRM_FORMAT_ABGR2101010:
11269                 if (INTEL_INFO(dev)->gen < 4) {
11270                         DRM_DEBUG("unsupported pixel format: %s\n",
11271                                   drm_get_format_name(mode_cmd->pixel_format));
11272                         return -EINVAL;
11273                 }
11274                 break;
11275         case DRM_FORMAT_YUYV:
11276         case DRM_FORMAT_UYVY:
11277         case DRM_FORMAT_YVYU:
11278         case DRM_FORMAT_VYUY:
11279                 if (INTEL_INFO(dev)->gen < 5) {
11280                         DRM_DEBUG("unsupported pixel format: %s\n",
11281                                   drm_get_format_name(mode_cmd->pixel_format));
11282                         return -EINVAL;
11283                 }
11284                 break;
11285         default:
11286                 DRM_DEBUG("unsupported pixel format: %s\n",
11287                           drm_get_format_name(mode_cmd->pixel_format));
11288                 return -EINVAL;
11289         }
11290
11291         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
11292         if (mode_cmd->offsets[0] != 0)
11293                 return -EINVAL;
11294
11295         aligned_height = intel_align_height(dev, mode_cmd->height,
11296                                             obj->tiling_mode);
11297         /* FIXME drm helper for size checks (especially planar formats)? */
11298         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
11299                 return -EINVAL;
11300
11301         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
11302         intel_fb->obj = obj;
11303         intel_fb->obj->framebuffer_references++;
11304
11305         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
11306         if (ret) {
11307                 DRM_ERROR("framebuffer init failed %d\n", ret);
11308                 return ret;
11309         }
11310
11311         return 0;
11312 }
11313
11314 static struct drm_framebuffer *
11315 intel_user_framebuffer_create(struct drm_device *dev,
11316                               struct drm_file *filp,
11317                               struct drm_mode_fb_cmd2 *mode_cmd)
11318 {
11319         struct drm_i915_gem_object *obj;
11320
11321         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
11322                                                 mode_cmd->handles[0]));
11323         if (&obj->base == NULL)
11324                 return ERR_PTR(-ENOENT);
11325
11326         return intel_framebuffer_create(dev, mode_cmd, obj);
11327 }
11328
11329 #ifndef CONFIG_DRM_I915_FBDEV
11330 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
11331 {
11332 }
11333 #endif
11334
11335 static const struct drm_mode_config_funcs intel_mode_funcs = {
11336         .fb_create = intel_user_framebuffer_create,
11337         .output_poll_changed = intel_fbdev_output_poll_changed,
11338 };
11339
11340 /* Set up chip specific display functions */
11341 static void intel_init_display(struct drm_device *dev)
11342 {
11343         struct drm_i915_private *dev_priv = dev->dev_private;
11344
11345         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
11346                 dev_priv->display.find_dpll = g4x_find_best_dpll;
11347         else if (IS_CHERRYVIEW(dev))
11348                 dev_priv->display.find_dpll = chv_find_best_dpll;
11349         else if (IS_VALLEYVIEW(dev))
11350                 dev_priv->display.find_dpll = vlv_find_best_dpll;
11351         else if (IS_PINEVIEW(dev))
11352                 dev_priv->display.find_dpll = pnv_find_best_dpll;
11353         else
11354                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
11355
11356         if (HAS_DDI(dev)) {
11357                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
11358                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11359                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
11360                 dev_priv->display.crtc_enable = haswell_crtc_enable;
11361                 dev_priv->display.crtc_disable = haswell_crtc_disable;
11362                 dev_priv->display.off = haswell_crtc_off;
11363                 dev_priv->display.update_primary_plane =
11364                         ironlake_update_primary_plane;
11365         } else if (HAS_PCH_SPLIT(dev)) {
11366                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
11367                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
11368                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
11369                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
11370                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
11371                 dev_priv->display.off = ironlake_crtc_off;
11372                 dev_priv->display.update_primary_plane =
11373                         ironlake_update_primary_plane;
11374         } else if (IS_VALLEYVIEW(dev)) {
11375                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11376                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11377                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11378                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
11379                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11380                 dev_priv->display.off = i9xx_crtc_off;
11381                 dev_priv->display.update_primary_plane =
11382                         i9xx_update_primary_plane;
11383         } else {
11384                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
11385                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
11386                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
11387                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
11388                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
11389                 dev_priv->display.off = i9xx_crtc_off;
11390                 dev_priv->display.update_primary_plane =
11391                         i9xx_update_primary_plane;
11392         }
11393
11394         /* Returns the core display clock speed */
11395         if (IS_VALLEYVIEW(dev))
11396                 dev_priv->display.get_display_clock_speed =
11397                         valleyview_get_display_clock_speed;
11398         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
11399                 dev_priv->display.get_display_clock_speed =
11400                         i945_get_display_clock_speed;
11401         else if (IS_I915G(dev))
11402                 dev_priv->display.get_display_clock_speed =
11403                         i915_get_display_clock_speed;
11404         else if (IS_I945GM(dev) || IS_845G(dev))
11405                 dev_priv->display.get_display_clock_speed =
11406                         i9xx_misc_get_display_clock_speed;
11407         else if (IS_PINEVIEW(dev))
11408                 dev_priv->display.get_display_clock_speed =
11409                         pnv_get_display_clock_speed;
11410         else if (IS_I915GM(dev))
11411                 dev_priv->display.get_display_clock_speed =
11412                         i915gm_get_display_clock_speed;
11413         else if (IS_I865G(dev))
11414                 dev_priv->display.get_display_clock_speed =
11415                         i865_get_display_clock_speed;
11416         else if (IS_I85X(dev))
11417                 dev_priv->display.get_display_clock_speed =
11418                         i855_get_display_clock_speed;
11419         else /* 852, 830 */
11420                 dev_priv->display.get_display_clock_speed =
11421                         i830_get_display_clock_speed;
11422
11423         if (HAS_PCH_SPLIT(dev)) {
11424                 if (IS_GEN5(dev)) {
11425                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
11426                         dev_priv->display.write_eld = ironlake_write_eld;
11427                 } else if (IS_GEN6(dev)) {
11428                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
11429                         dev_priv->display.write_eld = ironlake_write_eld;
11430                         dev_priv->display.modeset_global_resources =
11431                                 snb_modeset_global_resources;
11432                 } else if (IS_IVYBRIDGE(dev)) {
11433                         /* FIXME: detect B0+ stepping and use auto training */
11434                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
11435                         dev_priv->display.write_eld = ironlake_write_eld;
11436                         dev_priv->display.modeset_global_resources =
11437                                 ivb_modeset_global_resources;
11438                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
11439                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
11440                         dev_priv->display.write_eld = haswell_write_eld;
11441                         dev_priv->display.modeset_global_resources =
11442                                 haswell_modeset_global_resources;
11443                 }
11444         } else if (IS_G4X(dev)) {
11445                 dev_priv->display.write_eld = g4x_write_eld;
11446         } else if (IS_VALLEYVIEW(dev)) {
11447                 dev_priv->display.modeset_global_resources =
11448                         valleyview_modeset_global_resources;
11449                 dev_priv->display.write_eld = ironlake_write_eld;
11450         }
11451
11452         /* Default just returns -ENODEV to indicate unsupported */
11453         dev_priv->display.queue_flip = intel_default_queue_flip;
11454
11455         switch (INTEL_INFO(dev)->gen) {
11456         case 2:
11457                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
11458                 break;
11459
11460         case 3:
11461                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
11462                 break;
11463
11464         case 4:
11465         case 5:
11466                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
11467                 break;
11468
11469         case 6:
11470                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
11471                 break;
11472         case 7:
11473         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
11474                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
11475                 break;
11476         }
11477
11478         intel_panel_init_backlight_funcs(dev);
11479 }
11480
11481 /*
11482  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
11483  * resume, or other times.  This quirk makes sure that's the case for
11484  * affected systems.
11485  */
11486 static void quirk_pipea_force(struct drm_device *dev)
11487 {
11488         struct drm_i915_private *dev_priv = dev->dev_private;
11489
11490         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
11491         DRM_INFO("applying pipe a force quirk\n");
11492 }
11493
11494 /*
11495  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
11496  */
11497 static void quirk_ssc_force_disable(struct drm_device *dev)
11498 {
11499         struct drm_i915_private *dev_priv = dev->dev_private;
11500         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
11501         DRM_INFO("applying lvds SSC disable quirk\n");
11502 }
11503
11504 /*
11505  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
11506  * brightness value
11507  */
11508 static void quirk_invert_brightness(struct drm_device *dev)
11509 {
11510         struct drm_i915_private *dev_priv = dev->dev_private;
11511         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
11512         DRM_INFO("applying inverted panel brightness quirk\n");
11513 }
11514
11515 struct intel_quirk {
11516         int device;
11517         int subsystem_vendor;
11518         int subsystem_device;
11519         void (*hook)(struct drm_device *dev);
11520 };
11521
11522 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
11523 struct intel_dmi_quirk {
11524         void (*hook)(struct drm_device *dev);
11525         const struct dmi_system_id (*dmi_id_list)[];
11526 };
11527
11528 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
11529 {
11530         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
11531         return 1;
11532 }
11533
11534 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
11535         {
11536                 .dmi_id_list = &(const struct dmi_system_id[]) {
11537                         {
11538                                 .callback = intel_dmi_reverse_brightness,
11539                                 .ident = "NCR Corporation",
11540                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
11541                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
11542                                 },
11543                         },
11544                         { }  /* terminating entry */
11545                 },
11546                 .hook = quirk_invert_brightness,
11547         },
11548 };
11549
11550 static struct intel_quirk intel_quirks[] = {
11551         /* HP Mini needs pipe A force quirk (LP: #322104) */
11552         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
11553
11554         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
11555         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
11556
11557         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
11558         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
11559
11560         /* 830 needs to leave pipe A & dpll A up */
11561         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
11562
11563         /* Lenovo U160 cannot use SSC on LVDS */
11564         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
11565
11566         /* Sony Vaio Y cannot use SSC on LVDS */
11567         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
11568
11569         /* Acer Aspire 5734Z must invert backlight brightness */
11570         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
11571
11572         /* Acer/eMachines G725 */
11573         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
11574
11575         /* Acer/eMachines e725 */
11576         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
11577
11578         /* Acer/Packard Bell NCL20 */
11579         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
11580
11581         /* Acer Aspire 4736Z */
11582         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
11583
11584         /* Acer Aspire 5336 */
11585         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
11586 };
11587
11588 static void intel_init_quirks(struct drm_device *dev)
11589 {
11590         struct pci_dev *d = dev->pdev;
11591         int i;
11592
11593         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
11594                 struct intel_quirk *q = &intel_quirks[i];
11595
11596                 if (d->device == q->device &&
11597                     (d->subsystem_vendor == q->subsystem_vendor ||
11598                      q->subsystem_vendor == PCI_ANY_ID) &&
11599                     (d->subsystem_device == q->subsystem_device ||
11600                      q->subsystem_device == PCI_ANY_ID))
11601                         q->hook(dev);
11602         }
11603         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
11604                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
11605                         intel_dmi_quirks[i].hook(dev);
11606         }
11607 }
11608
11609 /* Disable the VGA plane that we never use */
11610 static void i915_disable_vga(struct drm_device *dev)
11611 {
11612         struct drm_i915_private *dev_priv = dev->dev_private;
11613         u8 sr1;
11614         u32 vga_reg = i915_vgacntrl_reg(dev);
11615
11616         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
11617         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
11618         outb(SR01, VGA_SR_INDEX);
11619         sr1 = inb(VGA_SR_DATA);
11620         outb(sr1 | 1<<5, VGA_SR_DATA);
11621         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
11622         udelay(300);
11623
11624         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
11625         POSTING_READ(vga_reg);
11626 }
11627
11628 void intel_modeset_init_hw(struct drm_device *dev)
11629 {
11630         intel_prepare_ddi(dev);
11631
11632         intel_init_clock_gating(dev);
11633
11634         intel_reset_dpio(dev);
11635
11636         intel_enable_gt_powersave(dev);
11637 }
11638
11639 void intel_modeset_suspend_hw(struct drm_device *dev)
11640 {
11641         intel_suspend_hw(dev);
11642 }
11643
11644 void intel_modeset_init(struct drm_device *dev)
11645 {
11646         struct drm_i915_private *dev_priv = dev->dev_private;
11647         int sprite, ret;
11648         enum pipe pipe;
11649         struct intel_crtc *crtc;
11650
11651         drm_mode_config_init(dev);
11652
11653         dev->mode_config.min_width = 0;
11654         dev->mode_config.min_height = 0;
11655
11656         dev->mode_config.preferred_depth = 24;
11657         dev->mode_config.prefer_shadow = 1;
11658
11659         dev->mode_config.funcs = &intel_mode_funcs;
11660
11661         intel_init_quirks(dev);
11662
11663         intel_init_pm(dev);
11664
11665         if (INTEL_INFO(dev)->num_pipes == 0)
11666                 return;
11667
11668         intel_init_display(dev);
11669
11670         if (IS_GEN2(dev)) {
11671                 dev->mode_config.max_width = 2048;
11672                 dev->mode_config.max_height = 2048;
11673         } else if (IS_GEN3(dev)) {
11674                 dev->mode_config.max_width = 4096;
11675                 dev->mode_config.max_height = 4096;
11676         } else {
11677                 dev->mode_config.max_width = 8192;
11678                 dev->mode_config.max_height = 8192;
11679         }
11680
11681         if (IS_GEN2(dev)) {
11682                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
11683                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
11684         } else {
11685                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
11686                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
11687         }
11688
11689         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
11690
11691         DRM_DEBUG_KMS("%d display pipe%s available.\n",
11692                       INTEL_INFO(dev)->num_pipes,
11693                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
11694
11695         for_each_pipe(pipe) {
11696                 intel_crtc_init(dev, pipe);
11697                 for_each_sprite(pipe, sprite) {
11698                         ret = intel_plane_init(dev, pipe, sprite);
11699                         if (ret)
11700                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
11701                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
11702                 }
11703         }
11704
11705         intel_init_dpio(dev);
11706         intel_reset_dpio(dev);
11707
11708         intel_cpu_pll_init(dev);
11709         intel_shared_dpll_init(dev);
11710
11711         /* Just disable it once at startup */
11712         i915_disable_vga(dev);
11713         intel_setup_outputs(dev);
11714
11715         /* Just in case the BIOS is doing something questionable. */
11716         intel_disable_fbc(dev);
11717
11718         mutex_lock(&dev->mode_config.mutex);
11719         intel_modeset_setup_hw_state(dev, false);
11720         mutex_unlock(&dev->mode_config.mutex);
11721
11722         for_each_intel_crtc(dev, crtc) {
11723                 if (!crtc->active)
11724                         continue;
11725
11726                 /*
11727                  * Note that reserving the BIOS fb up front prevents us
11728                  * from stuffing other stolen allocations like the ring
11729                  * on top.  This prevents some ugliness at boot time, and
11730                  * can even allow for smooth boot transitions if the BIOS
11731                  * fb is large enough for the active pipe configuration.
11732                  */
11733                 if (dev_priv->display.get_plane_config) {
11734                         dev_priv->display.get_plane_config(crtc,
11735                                                            &crtc->plane_config);
11736                         /*
11737                          * If the fb is shared between multiple heads, we'll
11738                          * just get the first one.
11739                          */
11740                         intel_find_plane_obj(crtc, &crtc->plane_config);
11741                 }
11742         }
11743 }
11744
11745 static void
11746 intel_connector_break_all_links(struct intel_connector *connector)
11747 {
11748         connector->base.dpms = DRM_MODE_DPMS_OFF;
11749         connector->base.encoder = NULL;
11750         connector->encoder->connectors_active = false;
11751         connector->encoder->base.crtc = NULL;
11752 }
11753
11754 static void intel_enable_pipe_a(struct drm_device *dev)
11755 {
11756         struct intel_connector *connector;
11757         struct drm_connector *crt = NULL;
11758         struct intel_load_detect_pipe load_detect_temp;
11759
11760         /* We can't just switch on the pipe A, we need to set things up with a
11761          * proper mode and output configuration. As a gross hack, enable pipe A
11762          * by enabling the load detect pipe once. */
11763         list_for_each_entry(connector,
11764                             &dev->mode_config.connector_list,
11765                             base.head) {
11766                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
11767                         crt = &connector->base;
11768                         break;
11769                 }
11770         }
11771
11772         if (!crt)
11773                 return;
11774
11775         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
11776                 intel_release_load_detect_pipe(crt, &load_detect_temp);
11777
11778
11779 }
11780
11781 static bool
11782 intel_check_plane_mapping(struct intel_crtc *crtc)
11783 {
11784         struct drm_device *dev = crtc->base.dev;
11785         struct drm_i915_private *dev_priv = dev->dev_private;
11786         u32 reg, val;
11787
11788         if (INTEL_INFO(dev)->num_pipes == 1)
11789                 return true;
11790
11791         reg = DSPCNTR(!crtc->plane);
11792         val = I915_READ(reg);
11793
11794         if ((val & DISPLAY_PLANE_ENABLE) &&
11795             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11796                 return false;
11797
11798         return true;
11799 }
11800
11801 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11802 {
11803         struct drm_device *dev = crtc->base.dev;
11804         struct drm_i915_private *dev_priv = dev->dev_private;
11805         u32 reg;
11806
11807         /* Clear any frame start delays used for debugging left by the BIOS */
11808         reg = PIPECONF(crtc->config.cpu_transcoder);
11809         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11810
11811         /* restore vblank interrupts to correct state */
11812         if (crtc->active)
11813                 drm_vblank_on(dev, crtc->pipe);
11814         else
11815                 drm_vblank_off(dev, crtc->pipe);
11816
11817         /* We need to sanitize the plane -> pipe mapping first because this will
11818          * disable the crtc (and hence change the state) if it is wrong. Note
11819          * that gen4+ has a fixed plane -> pipe mapping.  */
11820         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11821                 struct intel_connector *connector;
11822                 bool plane;
11823
11824                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11825                               crtc->base.base.id);
11826
11827                 /* Pipe has the wrong plane attached and the plane is active.
11828                  * Temporarily change the plane mapping and disable everything
11829                  * ...  */
11830                 plane = crtc->plane;
11831                 crtc->plane = !plane;
11832                 dev_priv->display.crtc_disable(&crtc->base);
11833                 crtc->plane = plane;
11834
11835                 /* ... and break all links. */
11836                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11837                                     base.head) {
11838                         if (connector->encoder->base.crtc != &crtc->base)
11839                                 continue;
11840
11841                         intel_connector_break_all_links(connector);
11842                 }
11843
11844                 WARN_ON(crtc->active);
11845                 crtc->base.enabled = false;
11846         }
11847
11848         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11849             crtc->pipe == PIPE_A && !crtc->active) {
11850                 /* BIOS forgot to enable pipe A, this mostly happens after
11851                  * resume. Force-enable the pipe to fix this, the update_dpms
11852                  * call below we restore the pipe to the right state, but leave
11853                  * the required bits on. */
11854                 intel_enable_pipe_a(dev);
11855         }
11856
11857         /* Adjust the state of the output pipe according to whether we
11858          * have active connectors/encoders. */
11859         intel_crtc_update_dpms(&crtc->base);
11860
11861         if (crtc->active != crtc->base.enabled) {
11862                 struct intel_encoder *encoder;
11863
11864                 /* This can happen either due to bugs in the get_hw_state
11865                  * functions or because the pipe is force-enabled due to the
11866                  * pipe A quirk. */
11867                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11868                               crtc->base.base.id,
11869                               crtc->base.enabled ? "enabled" : "disabled",
11870                               crtc->active ? "enabled" : "disabled");
11871
11872                 crtc->base.enabled = crtc->active;
11873
11874                 /* Because we only establish the connector -> encoder ->
11875                  * crtc links if something is active, this means the
11876                  * crtc is now deactivated. Break the links. connector
11877                  * -> encoder links are only establish when things are
11878                  *  actually up, hence no need to break them. */
11879                 WARN_ON(crtc->active);
11880
11881                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11882                         WARN_ON(encoder->connectors_active);
11883                         encoder->base.crtc = NULL;
11884                 }
11885         }
11886
11887         if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
11888                 /*
11889                  * We start out with underrun reporting disabled to avoid races.
11890                  * For correct bookkeeping mark this on active crtcs.
11891                  *
11892                  * Also on gmch platforms we dont have any hardware bits to
11893                  * disable the underrun reporting. Which means we need to start
11894                  * out with underrun reporting disabled also on inactive pipes,
11895                  * since otherwise we'll complain about the garbage we read when
11896                  * e.g. coming up after runtime pm.
11897                  *
11898                  * No protection against concurrent access is required - at
11899                  * worst a fifo underrun happens which also sets this to false.
11900                  */
11901                 crtc->cpu_fifo_underrun_disabled = true;
11902                 crtc->pch_fifo_underrun_disabled = true;
11903         }
11904 }
11905
11906 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11907 {
11908         struct intel_connector *connector;
11909         struct drm_device *dev = encoder->base.dev;
11910
11911         /* We need to check both for a crtc link (meaning that the
11912          * encoder is active and trying to read from a pipe) and the
11913          * pipe itself being active. */
11914         bool has_active_crtc = encoder->base.crtc &&
11915                 to_intel_crtc(encoder->base.crtc)->active;
11916
11917         if (encoder->connectors_active && !has_active_crtc) {
11918                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11919                               encoder->base.base.id,
11920                               drm_get_encoder_name(&encoder->base));
11921
11922                 /* Connector is active, but has no active pipe. This is
11923                  * fallout from our resume register restoring. Disable
11924                  * the encoder manually again. */
11925                 if (encoder->base.crtc) {
11926                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11927                                       encoder->base.base.id,
11928                                       drm_get_encoder_name(&encoder->base));
11929                         encoder->disable(encoder);
11930                 }
11931
11932                 /* Inconsistent output/port/pipe state happens presumably due to
11933                  * a bug in one of the get_hw_state functions. Or someplace else
11934                  * in our code, like the register restore mess on resume. Clamp
11935                  * things to off as a safer default. */
11936                 list_for_each_entry(connector,
11937                                     &dev->mode_config.connector_list,
11938                                     base.head) {
11939                         if (connector->encoder != encoder)
11940                                 continue;
11941
11942                         intel_connector_break_all_links(connector);
11943                 }
11944         }
11945         /* Enabled encoders without active connectors will be fixed in
11946          * the crtc fixup. */
11947 }
11948
11949 void i915_redisable_vga_power_on(struct drm_device *dev)
11950 {
11951         struct drm_i915_private *dev_priv = dev->dev_private;
11952         u32 vga_reg = i915_vgacntrl_reg(dev);
11953
11954         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11955                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11956                 i915_disable_vga(dev);
11957         }
11958 }
11959
11960 void i915_redisable_vga(struct drm_device *dev)
11961 {
11962         struct drm_i915_private *dev_priv = dev->dev_private;
11963
11964         /* This function can be called both from intel_modeset_setup_hw_state or
11965          * at a very early point in our resume sequence, where the power well
11966          * structures are not yet restored. Since this function is at a very
11967          * paranoid "someone might have enabled VGA while we were not looking"
11968          * level, just check if the power well is enabled instead of trying to
11969          * follow the "don't touch the power well if we don't need it" policy
11970          * the rest of the driver uses. */
11971         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
11972                 return;
11973
11974         i915_redisable_vga_power_on(dev);
11975 }
11976
11977 static bool primary_get_hw_state(struct intel_crtc *crtc)
11978 {
11979         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
11980
11981         if (!crtc->active)
11982                 return false;
11983
11984         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
11985 }
11986
11987 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11988 {
11989         struct drm_i915_private *dev_priv = dev->dev_private;
11990         enum pipe pipe;
11991         struct intel_crtc *crtc;
11992         struct intel_encoder *encoder;
11993         struct intel_connector *connector;
11994         int i;
11995
11996         for_each_intel_crtc(dev, crtc) {
11997                 memset(&crtc->config, 0, sizeof(crtc->config));
11998
11999                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12000
12001                 crtc->active = dev_priv->display.get_pipe_config(crtc,
12002                                                                  &crtc->config);
12003
12004                 crtc->base.enabled = crtc->active;
12005                 crtc->primary_enabled = primary_get_hw_state(crtc);
12006
12007                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12008                               crtc->base.base.id,
12009                               crtc->active ? "enabled" : "disabled");
12010         }
12011
12012         /* FIXME: Smash this into the new shared dpll infrastructure. */
12013         if (HAS_DDI(dev))
12014                 intel_ddi_setup_hw_pll_state(dev);
12015
12016         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12017                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12018
12019                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12020                 pll->active = 0;
12021                 for_each_intel_crtc(dev, crtc) {
12022                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12023                                 pll->active++;
12024                 }
12025                 pll->refcount = pll->active;
12026
12027                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12028                               pll->name, pll->refcount, pll->on);
12029         }
12030
12031         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12032                             base.head) {
12033                 pipe = 0;
12034
12035                 if (encoder->get_hw_state(encoder, &pipe)) {
12036                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12037                         encoder->base.crtc = &crtc->base;
12038                         encoder->get_config(encoder, &crtc->config);
12039                 } else {
12040                         encoder->base.crtc = NULL;
12041                 }
12042
12043                 encoder->connectors_active = false;
12044                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
12045                               encoder->base.base.id,
12046                               drm_get_encoder_name(&encoder->base),
12047                               encoder->base.crtc ? "enabled" : "disabled",
12048                               pipe_name(pipe));
12049         }
12050
12051         list_for_each_entry(connector, &dev->mode_config.connector_list,
12052                             base.head) {
12053                 if (connector->get_hw_state(connector)) {
12054                         connector->base.dpms = DRM_MODE_DPMS_ON;
12055                         connector->encoder->connectors_active = true;
12056                         connector->base.encoder = &connector->encoder->base;
12057                 } else {
12058                         connector->base.dpms = DRM_MODE_DPMS_OFF;
12059                         connector->base.encoder = NULL;
12060                 }
12061                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12062                               connector->base.base.id,
12063                               drm_get_connector_name(&connector->base),
12064                               connector->base.encoder ? "enabled" : "disabled");
12065         }
12066 }
12067
12068 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12069  * and i915 state tracking structures. */
12070 void intel_modeset_setup_hw_state(struct drm_device *dev,
12071                                   bool force_restore)
12072 {
12073         struct drm_i915_private *dev_priv = dev->dev_private;
12074         enum pipe pipe;
12075         struct intel_crtc *crtc;
12076         struct intel_encoder *encoder;
12077         int i;
12078
12079         intel_modeset_readout_hw_state(dev);
12080
12081         /*
12082          * Now that we have the config, copy it to each CRTC struct
12083          * Note that this could go away if we move to using crtc_config
12084          * checking everywhere.
12085          */
12086         for_each_intel_crtc(dev, crtc) {
12087                 if (crtc->active && i915.fastboot) {
12088                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
12089                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12090                                       crtc->base.base.id);
12091                         drm_mode_debug_printmodeline(&crtc->base.mode);
12092                 }
12093         }
12094
12095         /* HW state is read out, now we need to sanitize this mess. */
12096         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12097                             base.head) {
12098                 intel_sanitize_encoder(encoder);
12099         }
12100
12101         for_each_pipe(pipe) {
12102                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12103                 intel_sanitize_crtc(crtc);
12104                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
12105         }
12106
12107         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12108                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12109
12110                 if (!pll->on || pll->active)
12111                         continue;
12112
12113                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12114
12115                 pll->disable(dev_priv, pll);
12116                 pll->on = false;
12117         }
12118
12119         if (HAS_PCH_SPLIT(dev))
12120                 ilk_wm_get_hw_state(dev);
12121
12122         if (force_restore) {
12123                 i915_redisable_vga(dev);
12124
12125                 /*
12126                  * We need to use raw interfaces for restoring state to avoid
12127                  * checking (bogus) intermediate states.
12128                  */
12129                 for_each_pipe(pipe) {
12130                         struct drm_crtc *crtc =
12131                                 dev_priv->pipe_to_crtc_mapping[pipe];
12132
12133                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
12134                                          crtc->primary->fb);
12135                 }
12136         } else {
12137                 intel_modeset_update_staged_output_state(dev);
12138         }
12139
12140         intel_modeset_check_state(dev);
12141 }
12142
12143 void intel_modeset_gem_init(struct drm_device *dev)
12144 {
12145         struct drm_crtc *c;
12146         struct intel_framebuffer *fb;
12147
12148         mutex_lock(&dev->struct_mutex);
12149         intel_init_gt_powersave(dev);
12150         mutex_unlock(&dev->struct_mutex);
12151
12152         intel_modeset_init_hw(dev);
12153
12154         intel_setup_overlay(dev);
12155
12156         /*
12157          * Make sure any fbs we allocated at startup are properly
12158          * pinned & fenced.  When we do the allocation it's too early
12159          * for this.
12160          */
12161         mutex_lock(&dev->struct_mutex);
12162         for_each_crtc(dev, c) {
12163                 if (!c->primary->fb)
12164                         continue;
12165
12166                 fb = to_intel_framebuffer(c->primary->fb);
12167                 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
12168                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
12169                                   to_intel_crtc(c)->pipe);
12170                         drm_framebuffer_unreference(c->primary->fb);
12171                         c->primary->fb = NULL;
12172                 }
12173         }
12174         mutex_unlock(&dev->struct_mutex);
12175 }
12176
12177 void intel_connector_unregister(struct intel_connector *intel_connector)
12178 {
12179         struct drm_connector *connector = &intel_connector->base;
12180
12181         intel_panel_destroy_backlight(connector);
12182         drm_sysfs_connector_remove(connector);
12183 }
12184
12185 void intel_modeset_cleanup(struct drm_device *dev)
12186 {
12187         struct drm_i915_private *dev_priv = dev->dev_private;
12188         struct drm_crtc *crtc;
12189         struct drm_connector *connector;
12190
12191         /*
12192          * Interrupts and polling as the first thing to avoid creating havoc.
12193          * Too much stuff here (turning of rps, connectors, ...) would
12194          * experience fancy races otherwise.
12195          */
12196         drm_irq_uninstall(dev);
12197         cancel_work_sync(&dev_priv->hotplug_work);
12198         /*
12199          * Due to the hpd irq storm handling the hotplug work can re-arm the
12200          * poll handlers. Hence disable polling after hpd handling is shut down.
12201          */
12202         drm_kms_helper_poll_fini(dev);
12203
12204         mutex_lock(&dev->struct_mutex);
12205
12206         intel_unregister_dsm_handler();
12207
12208         for_each_crtc(dev, crtc) {
12209                 /* Skip inactive CRTCs */
12210                 if (!crtc->primary->fb)
12211                         continue;
12212
12213                 intel_increase_pllclock(crtc);
12214         }
12215
12216         intel_disable_fbc(dev);
12217
12218         intel_disable_gt_powersave(dev);
12219
12220         ironlake_teardown_rc6(dev);
12221
12222         mutex_unlock(&dev->struct_mutex);
12223
12224         /* flush any delayed tasks or pending work */
12225         flush_scheduled_work();
12226
12227         /* destroy the backlight and sysfs files before encoders/connectors */
12228         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12229                 struct intel_connector *intel_connector;
12230
12231                 intel_connector = to_intel_connector(connector);
12232                 intel_connector->unregister(intel_connector);
12233         }
12234
12235         drm_mode_config_cleanup(dev);
12236
12237         intel_cleanup_overlay(dev);
12238
12239         mutex_lock(&dev->struct_mutex);
12240         intel_cleanup_gt_powersave(dev);
12241         mutex_unlock(&dev->struct_mutex);
12242 }
12243
12244 /*
12245  * Return which encoder is currently attached for connector.
12246  */
12247 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
12248 {
12249         return &intel_attached_encoder(connector)->base;
12250 }
12251
12252 void intel_connector_attach_encoder(struct intel_connector *connector,
12253                                     struct intel_encoder *encoder)
12254 {
12255         connector->encoder = encoder;
12256         drm_mode_connector_attach_encoder(&connector->base,
12257                                           &encoder->base);
12258 }
12259
12260 /*
12261  * set vga decode state - true == enable VGA decode
12262  */
12263 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
12264 {
12265         struct drm_i915_private *dev_priv = dev->dev_private;
12266         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
12267         u16 gmch_ctrl;
12268
12269         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
12270                 DRM_ERROR("failed to read control word\n");
12271                 return -EIO;
12272         }
12273
12274         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
12275                 return 0;
12276
12277         if (state)
12278                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
12279         else
12280                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
12281
12282         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
12283                 DRM_ERROR("failed to write control word\n");
12284                 return -EIO;
12285         }
12286
12287         return 0;
12288 }
12289
12290 struct intel_display_error_state {
12291
12292         u32 power_well_driver;
12293
12294         int num_transcoders;
12295
12296         struct intel_cursor_error_state {
12297                 u32 control;
12298                 u32 position;
12299                 u32 base;
12300                 u32 size;
12301         } cursor[I915_MAX_PIPES];
12302
12303         struct intel_pipe_error_state {
12304                 bool power_domain_on;
12305                 u32 source;
12306                 u32 stat;
12307         } pipe[I915_MAX_PIPES];
12308
12309         struct intel_plane_error_state {
12310                 u32 control;
12311                 u32 stride;
12312                 u32 size;
12313                 u32 pos;
12314                 u32 addr;
12315                 u32 surface;
12316                 u32 tile_offset;
12317         } plane[I915_MAX_PIPES];
12318
12319         struct intel_transcoder_error_state {
12320                 bool power_domain_on;
12321                 enum transcoder cpu_transcoder;
12322
12323                 u32 conf;
12324
12325                 u32 htotal;
12326                 u32 hblank;
12327                 u32 hsync;
12328                 u32 vtotal;
12329                 u32 vblank;
12330                 u32 vsync;
12331         } transcoder[4];
12332 };
12333
12334 struct intel_display_error_state *
12335 intel_display_capture_error_state(struct drm_device *dev)
12336 {
12337         struct drm_i915_private *dev_priv = dev->dev_private;
12338         struct intel_display_error_state *error;
12339         int transcoders[] = {
12340                 TRANSCODER_A,
12341                 TRANSCODER_B,
12342                 TRANSCODER_C,
12343                 TRANSCODER_EDP,
12344         };
12345         int i;
12346
12347         if (INTEL_INFO(dev)->num_pipes == 0)
12348                 return NULL;
12349
12350         error = kzalloc(sizeof(*error), GFP_ATOMIC);
12351         if (error == NULL)
12352                 return NULL;
12353
12354         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12355                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
12356
12357         for_each_pipe(i) {
12358                 error->pipe[i].power_domain_on =
12359                         intel_display_power_enabled_sw(dev_priv,
12360                                                        POWER_DOMAIN_PIPE(i));
12361                 if (!error->pipe[i].power_domain_on)
12362                         continue;
12363
12364                 error->cursor[i].control = I915_READ(CURCNTR(i));
12365                 error->cursor[i].position = I915_READ(CURPOS(i));
12366                 error->cursor[i].base = I915_READ(CURBASE(i));
12367
12368                 error->plane[i].control = I915_READ(DSPCNTR(i));
12369                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
12370                 if (INTEL_INFO(dev)->gen <= 3) {
12371                         error->plane[i].size = I915_READ(DSPSIZE(i));
12372                         error->plane[i].pos = I915_READ(DSPPOS(i));
12373                 }
12374                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12375                         error->plane[i].addr = I915_READ(DSPADDR(i));
12376                 if (INTEL_INFO(dev)->gen >= 4) {
12377                         error->plane[i].surface = I915_READ(DSPSURF(i));
12378                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
12379                 }
12380
12381                 error->pipe[i].source = I915_READ(PIPESRC(i));
12382
12383                 if (!HAS_PCH_SPLIT(dev))
12384                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
12385         }
12386
12387         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
12388         if (HAS_DDI(dev_priv->dev))
12389                 error->num_transcoders++; /* Account for eDP. */
12390
12391         for (i = 0; i < error->num_transcoders; i++) {
12392                 enum transcoder cpu_transcoder = transcoders[i];
12393
12394                 error->transcoder[i].power_domain_on =
12395                         intel_display_power_enabled_sw(dev_priv,
12396                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
12397                 if (!error->transcoder[i].power_domain_on)
12398                         continue;
12399
12400                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
12401
12402                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
12403                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
12404                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
12405                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
12406                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
12407                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
12408                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
12409         }
12410
12411         return error;
12412 }
12413
12414 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
12415
12416 void
12417 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
12418                                 struct drm_device *dev,
12419                                 struct intel_display_error_state *error)
12420 {
12421         int i;
12422
12423         if (!error)
12424                 return;
12425
12426         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
12427         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
12428                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
12429                            error->power_well_driver);
12430         for_each_pipe(i) {
12431                 err_printf(m, "Pipe [%d]:\n", i);
12432                 err_printf(m, "  Power: %s\n",
12433                            error->pipe[i].power_domain_on ? "on" : "off");
12434                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
12435                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
12436
12437                 err_printf(m, "Plane [%d]:\n", i);
12438                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
12439                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
12440                 if (INTEL_INFO(dev)->gen <= 3) {
12441                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
12442                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
12443                 }
12444                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
12445                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
12446                 if (INTEL_INFO(dev)->gen >= 4) {
12447                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
12448                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
12449                 }
12450
12451                 err_printf(m, "Cursor [%d]:\n", i);
12452                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
12453                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
12454                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
12455         }
12456
12457         for (i = 0; i < error->num_transcoders; i++) {
12458                 err_printf(m, "CPU transcoder: %c\n",
12459                            transcoder_name(error->transcoder[i].cpu_transcoder));
12460                 err_printf(m, "  Power: %s\n",
12461                            error->transcoder[i].power_domain_on ? "on" : "off");
12462                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
12463                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
12464                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
12465                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
12466                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
12467                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
12468                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
12469         }
12470 }