drm/i915: Wrap -EIO send-vblank event for failed pageflip in spinlock
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48         DRM_FORMAT_C8, \
49         DRM_FORMAT_RGB565, \
50         DRM_FORMAT_XRGB8888, \
51         DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55         COMMON_PRIMARY_FORMATS,
56         DRM_FORMAT_XRGB1555,
57         DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62         COMMON_PRIMARY_FORMATS, \
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_ABGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_ARGB2101010,
67         DRM_FORMAT_XBGR2101010,
68         DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73         DRM_FORMAT_ARGB8888,
74 };
75
76 #define DIV_ROUND_CLOSEST_ULL(ll, d)    \
77 ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
78
79 static void intel_increase_pllclock(struct drm_device *dev,
80                                     enum pipe pipe);
81 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
82
83 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84                                 struct intel_crtc_config *pipe_config);
85 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86                                    struct intel_crtc_config *pipe_config);
87
88 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89                           int x, int y, struct drm_framebuffer *old_fb);
90 static int intel_framebuffer_init(struct drm_device *dev,
91                                   struct intel_framebuffer *ifb,
92                                   struct drm_mode_fb_cmd2 *mode_cmd,
93                                   struct drm_i915_gem_object *obj);
94 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
96 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
97                                          struct intel_link_m_n *m_n,
98                                          struct intel_link_m_n *m2_n2);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc);
103 static void chv_prepare_pll(struct intel_crtc *crtc);
104
105 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106 {
107         if (!connector->mst_port)
108                 return connector->encoder;
109         else
110                 return &connector->mst_port->mst_encoders[pipe]->base;
111 }
112
113 typedef struct {
114         int     min, max;
115 } intel_range_t;
116
117 typedef struct {
118         int     dot_limit;
119         int     p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
125         intel_p2_t          p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132
133         WARN_ON(!HAS_PCH_SPLIT(dev));
134
135         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141         if (IS_GEN5(dev)) {
142                 struct drm_i915_private *dev_priv = dev->dev_private;
143                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144         } else
145                 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149         .dot = { .min = 25000, .max = 350000 },
150         .vco = { .min = 908000, .max = 1512000 },
151         .n = { .min = 2, .max = 16 },
152         .m = { .min = 96, .max = 140 },
153         .m1 = { .min = 18, .max = 26 },
154         .m2 = { .min = 6, .max = 16 },
155         .p = { .min = 4, .max = 128 },
156         .p1 = { .min = 2, .max = 33 },
157         .p2 = { .dot_limit = 165000,
158                 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162         .dot = { .min = 25000, .max = 350000 },
163         .vco = { .min = 908000, .max = 1512000 },
164         .n = { .min = 2, .max = 16 },
165         .m = { .min = 96, .max = 140 },
166         .m1 = { .min = 18, .max = 26 },
167         .m2 = { .min = 6, .max = 16 },
168         .p = { .min = 4, .max = 128 },
169         .p1 = { .min = 2, .max = 33 },
170         .p2 = { .dot_limit = 165000,
171                 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175         .dot = { .min = 25000, .max = 350000 },
176         .vco = { .min = 908000, .max = 1512000 },
177         .n = { .min = 2, .max = 16 },
178         .m = { .min = 96, .max = 140 },
179         .m1 = { .min = 18, .max = 26 },
180         .m2 = { .min = 6, .max = 16 },
181         .p = { .min = 4, .max = 128 },
182         .p1 = { .min = 1, .max = 6 },
183         .p2 = { .dot_limit = 165000,
184                 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188         .dot = { .min = 20000, .max = 400000 },
189         .vco = { .min = 1400000, .max = 2800000 },
190         .n = { .min = 1, .max = 6 },
191         .m = { .min = 70, .max = 120 },
192         .m1 = { .min = 8, .max = 18 },
193         .m2 = { .min = 3, .max = 7 },
194         .p = { .min = 5, .max = 80 },
195         .p1 = { .min = 1, .max = 8 },
196         .p2 = { .dot_limit = 200000,
197                 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201         .dot = { .min = 20000, .max = 400000 },
202         .vco = { .min = 1400000, .max = 2800000 },
203         .n = { .min = 1, .max = 6 },
204         .m = { .min = 70, .max = 120 },
205         .m1 = { .min = 8, .max = 18 },
206         .m2 = { .min = 3, .max = 7 },
207         .p = { .min = 7, .max = 98 },
208         .p1 = { .min = 1, .max = 8 },
209         .p2 = { .dot_limit = 112000,
210                 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215         .dot = { .min = 25000, .max = 270000 },
216         .vco = { .min = 1750000, .max = 3500000},
217         .n = { .min = 1, .max = 4 },
218         .m = { .min = 104, .max = 138 },
219         .m1 = { .min = 17, .max = 23 },
220         .m2 = { .min = 5, .max = 11 },
221         .p = { .min = 10, .max = 30 },
222         .p1 = { .min = 1, .max = 3},
223         .p2 = { .dot_limit = 270000,
224                 .p2_slow = 10,
225                 .p2_fast = 10
226         },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230         .dot = { .min = 22000, .max = 400000 },
231         .vco = { .min = 1750000, .max = 3500000},
232         .n = { .min = 1, .max = 4 },
233         .m = { .min = 104, .max = 138 },
234         .m1 = { .min = 16, .max = 23 },
235         .m2 = { .min = 5, .max = 11 },
236         .p = { .min = 5, .max = 80 },
237         .p1 = { .min = 1, .max = 8},
238         .p2 = { .dot_limit = 165000,
239                 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243         .dot = { .min = 20000, .max = 115000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 28, .max = 112 },
250         .p1 = { .min = 2, .max = 8 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 14, .p2_fast = 14
253         },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257         .dot = { .min = 80000, .max = 224000 },
258         .vco = { .min = 1750000, .max = 3500000 },
259         .n = { .min = 1, .max = 3 },
260         .m = { .min = 104, .max = 138 },
261         .m1 = { .min = 17, .max = 23 },
262         .m2 = { .min = 5, .max = 11 },
263         .p = { .min = 14, .max = 42 },
264         .p1 = { .min = 2, .max = 6 },
265         .p2 = { .dot_limit = 0,
266                 .p2_slow = 7, .p2_fast = 7
267         },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271         .dot = { .min = 20000, .max = 400000},
272         .vco = { .min = 1700000, .max = 3500000 },
273         /* Pineview's Ncounter is a ring counter */
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         /* Pineview only has one combined m divider, which we treat as m2. */
277         .m1 = { .min = 0, .max = 0 },
278         .m2 = { .min = 0, .max = 254 },
279         .p = { .min = 5, .max = 80 },
280         .p1 = { .min = 1, .max = 8 },
281         .p2 = { .dot_limit = 200000,
282                 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286         .dot = { .min = 20000, .max = 400000 },
287         .vco = { .min = 1700000, .max = 3500000 },
288         .n = { .min = 3, .max = 6 },
289         .m = { .min = 2, .max = 256 },
290         .m1 = { .min = 0, .max = 0 },
291         .m2 = { .min = 0, .max = 254 },
292         .p = { .min = 7, .max = 112 },
293         .p1 = { .min = 1, .max = 8 },
294         .p2 = { .dot_limit = 112000,
295                 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299  *
300  * We calculate clock using (register_value + 2) for N/M1/M2, so here
301  * the range value for them is (actual_value - 2).
302  */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304         .dot = { .min = 25000, .max = 350000 },
305         .vco = { .min = 1760000, .max = 3510000 },
306         .n = { .min = 1, .max = 5 },
307         .m = { .min = 79, .max = 127 },
308         .m1 = { .min = 12, .max = 22 },
309         .m2 = { .min = 5, .max = 9 },
310         .p = { .min = 5, .max = 80 },
311         .p1 = { .min = 1, .max = 8 },
312         .p2 = { .dot_limit = 225000,
313                 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317         .dot = { .min = 25000, .max = 350000 },
318         .vco = { .min = 1760000, .max = 3510000 },
319         .n = { .min = 1, .max = 3 },
320         .m = { .min = 79, .max = 118 },
321         .m1 = { .min = 12, .max = 22 },
322         .m2 = { .min = 5, .max = 9 },
323         .p = { .min = 28, .max = 112 },
324         .p1 = { .min = 2, .max = 8 },
325         .p2 = { .dot_limit = 225000,
326                 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330         .dot = { .min = 25000, .max = 350000 },
331         .vco = { .min = 1760000, .max = 3510000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 79, .max = 127 },
334         .m1 = { .min = 12, .max = 22 },
335         .m2 = { .min = 5, .max = 9 },
336         .p = { .min = 14, .max = 56 },
337         .p1 = { .min = 2, .max = 8 },
338         .p2 = { .dot_limit = 225000,
339                 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000 },
346         .n = { .min = 1, .max = 2 },
347         .m = { .min = 79, .max = 126 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 28, .max = 112 },
351         .p1 = { .min = 2, .max = 8 },
352         .p2 = { .dot_limit = 225000,
353                 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357         .dot = { .min = 25000, .max = 350000 },
358         .vco = { .min = 1760000, .max = 3510000 },
359         .n = { .min = 1, .max = 3 },
360         .m = { .min = 79, .max = 126 },
361         .m1 = { .min = 12, .max = 22 },
362         .m2 = { .min = 5, .max = 9 },
363         .p = { .min = 14, .max = 42 },
364         .p1 = { .min = 2, .max = 6 },
365         .p2 = { .dot_limit = 225000,
366                 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370          /*
371           * These are the data rate limits (measured in fast clocks)
372           * since those are the strictest limits we have. The fast
373           * clock and actual rate limits are more relaxed, so checking
374           * them would make no difference.
375           */
376         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m1 = { .min = 2, .max = 3 },
380         .m2 = { .min = 11, .max = 156 },
381         .p1 = { .min = 2, .max = 3 },
382         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386         /*
387          * These are the data rate limits (measured in fast clocks)
388          * since those are the strictest limits we have.  The fast
389          * clock and actual rate limits are more relaxed, so checking
390          * them would make no difference.
391          */
392         .dot = { .min = 25000 * 5, .max = 540000 * 5},
393         .vco = { .min = 4860000, .max = 6700000 },
394         .n = { .min = 1, .max = 1 },
395         .m1 = { .min = 2, .max = 2 },
396         .m2 = { .min = 24 << 22, .max = 175 << 22 },
397         .p1 = { .min = 2, .max = 4 },
398         .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static void vlv_clock(int refclk, intel_clock_t *clock)
402 {
403         clock->m = clock->m1 * clock->m2;
404         clock->p = clock->p1 * clock->p2;
405         if (WARN_ON(clock->n == 0 || clock->p == 0))
406                 return;
407         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
409 }
410
411 /**
412  * Returns whether any output on the specified pipe is of the specified type
413  */
414 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
415 {
416         struct drm_device *dev = crtc->dev;
417         struct intel_encoder *encoder;
418
419         for_each_encoder_on_crtc(dev, crtc, encoder)
420                 if (encoder->type == type)
421                         return true;
422
423         return false;
424 }
425
426 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
427                                                 int refclk)
428 {
429         struct drm_device *dev = crtc->dev;
430         const intel_limit_t *limit;
431
432         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
433                 if (intel_is_dual_link_lvds(dev)) {
434                         if (refclk == 100000)
435                                 limit = &intel_limits_ironlake_dual_lvds_100m;
436                         else
437                                 limit = &intel_limits_ironlake_dual_lvds;
438                 } else {
439                         if (refclk == 100000)
440                                 limit = &intel_limits_ironlake_single_lvds_100m;
441                         else
442                                 limit = &intel_limits_ironlake_single_lvds;
443                 }
444         } else
445                 limit = &intel_limits_ironlake_dac;
446
447         return limit;
448 }
449
450 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
451 {
452         struct drm_device *dev = crtc->dev;
453         const intel_limit_t *limit;
454
455         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
456                 if (intel_is_dual_link_lvds(dev))
457                         limit = &intel_limits_g4x_dual_channel_lvds;
458                 else
459                         limit = &intel_limits_g4x_single_channel_lvds;
460         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
461                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
462                 limit = &intel_limits_g4x_hdmi;
463         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
464                 limit = &intel_limits_g4x_sdvo;
465         } else /* The option is for other outputs */
466                 limit = &intel_limits_i9xx_sdvo;
467
468         return limit;
469 }
470
471 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
472 {
473         struct drm_device *dev = crtc->dev;
474         const intel_limit_t *limit;
475
476         if (HAS_PCH_SPLIT(dev))
477                 limit = intel_ironlake_limit(crtc, refclk);
478         else if (IS_G4X(dev)) {
479                 limit = intel_g4x_limit(crtc);
480         } else if (IS_PINEVIEW(dev)) {
481                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482                         limit = &intel_limits_pineview_lvds;
483                 else
484                         limit = &intel_limits_pineview_sdvo;
485         } else if (IS_CHERRYVIEW(dev)) {
486                 limit = &intel_limits_chv;
487         } else if (IS_VALLEYVIEW(dev)) {
488                 limit = &intel_limits_vlv;
489         } else if (!IS_GEN2(dev)) {
490                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
491                         limit = &intel_limits_i9xx_lvds;
492                 else
493                         limit = &intel_limits_i9xx_sdvo;
494         } else {
495                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
496                         limit = &intel_limits_i8xx_lvds;
497                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
498                         limit = &intel_limits_i8xx_dvo;
499                 else
500                         limit = &intel_limits_i8xx_dac;
501         }
502         return limit;
503 }
504
505 /* m1 is reserved as 0 in Pineview, n is a ring counter */
506 static void pineview_clock(int refclk, intel_clock_t *clock)
507 {
508         clock->m = clock->m2 + 2;
509         clock->p = clock->p1 * clock->p2;
510         if (WARN_ON(clock->n == 0 || clock->p == 0))
511                 return;
512         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
513         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
514 }
515
516 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
517 {
518         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
519 }
520
521 static void i9xx_clock(int refclk, intel_clock_t *clock)
522 {
523         clock->m = i9xx_dpll_compute_m(clock);
524         clock->p = clock->p1 * clock->p2;
525         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
526                 return;
527         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
528         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static void chv_clock(int refclk, intel_clock_t *clock)
532 {
533         clock->m = clock->m1 * clock->m2;
534         clock->p = clock->p1 * clock->p2;
535         if (WARN_ON(clock->n == 0 || clock->p == 0))
536                 return;
537         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
538                         clock->n << 22);
539         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
540 }
541
542 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
543 /**
544  * Returns whether the given set of divisors are valid for a given refclk with
545  * the given connectors.
546  */
547
548 static bool intel_PLL_is_valid(struct drm_device *dev,
549                                const intel_limit_t *limit,
550                                const intel_clock_t *clock)
551 {
552         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
553                 INTELPllInvalid("n out of range\n");
554         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
555                 INTELPllInvalid("p1 out of range\n");
556         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
557                 INTELPllInvalid("m2 out of range\n");
558         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
559                 INTELPllInvalid("m1 out of range\n");
560
561         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
562                 if (clock->m1 <= clock->m2)
563                         INTELPllInvalid("m1 <= m2\n");
564
565         if (!IS_VALLEYVIEW(dev)) {
566                 if (clock->p < limit->p.min || limit->p.max < clock->p)
567                         INTELPllInvalid("p out of range\n");
568                 if (clock->m < limit->m.min || limit->m.max < clock->m)
569                         INTELPllInvalid("m out of range\n");
570         }
571
572         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
573                 INTELPllInvalid("vco out of range\n");
574         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
575          * connector, etc., rather than just a single range.
576          */
577         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
578                 INTELPllInvalid("dot out of range\n");
579
580         return true;
581 }
582
583 static bool
584 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
585                     int target, int refclk, intel_clock_t *match_clock,
586                     intel_clock_t *best_clock)
587 {
588         struct drm_device *dev = crtc->dev;
589         intel_clock_t clock;
590         int err = target;
591
592         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
593                 /*
594                  * For LVDS just rely on its current settings for dual-channel.
595                  * We haven't figured out how to reliably set up different
596                  * single/dual channel state, if we even can.
597                  */
598                 if (intel_is_dual_link_lvds(dev))
599                         clock.p2 = limit->p2.p2_fast;
600                 else
601                         clock.p2 = limit->p2.p2_slow;
602         } else {
603                 if (target < limit->p2.dot_limit)
604                         clock.p2 = limit->p2.p2_slow;
605                 else
606                         clock.p2 = limit->p2.p2_fast;
607         }
608
609         memset(best_clock, 0, sizeof(*best_clock));
610
611         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
612              clock.m1++) {
613                 for (clock.m2 = limit->m2.min;
614                      clock.m2 <= limit->m2.max; clock.m2++) {
615                         if (clock.m2 >= clock.m1)
616                                 break;
617                         for (clock.n = limit->n.min;
618                              clock.n <= limit->n.max; clock.n++) {
619                                 for (clock.p1 = limit->p1.min;
620                                         clock.p1 <= limit->p1.max; clock.p1++) {
621                                         int this_err;
622
623                                         i9xx_clock(refclk, &clock);
624                                         if (!intel_PLL_is_valid(dev, limit,
625                                                                 &clock))
626                                                 continue;
627                                         if (match_clock &&
628                                             clock.p != match_clock->p)
629                                                 continue;
630
631                                         this_err = abs(clock.dot - target);
632                                         if (this_err < err) {
633                                                 *best_clock = clock;
634                                                 err = this_err;
635                                         }
636                                 }
637                         }
638                 }
639         }
640
641         return (err != target);
642 }
643
644 static bool
645 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
646                    int target, int refclk, intel_clock_t *match_clock,
647                    intel_clock_t *best_clock)
648 {
649         struct drm_device *dev = crtc->dev;
650         intel_clock_t clock;
651         int err = target;
652
653         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
654                 /*
655                  * For LVDS just rely on its current settings for dual-channel.
656                  * We haven't figured out how to reliably set up different
657                  * single/dual channel state, if we even can.
658                  */
659                 if (intel_is_dual_link_lvds(dev))
660                         clock.p2 = limit->p2.p2_fast;
661                 else
662                         clock.p2 = limit->p2.p2_slow;
663         } else {
664                 if (target < limit->p2.dot_limit)
665                         clock.p2 = limit->p2.p2_slow;
666                 else
667                         clock.p2 = limit->p2.p2_fast;
668         }
669
670         memset(best_clock, 0, sizeof(*best_clock));
671
672         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673              clock.m1++) {
674                 for (clock.m2 = limit->m2.min;
675                      clock.m2 <= limit->m2.max; clock.m2++) {
676                         for (clock.n = limit->n.min;
677                              clock.n <= limit->n.max; clock.n++) {
678                                 for (clock.p1 = limit->p1.min;
679                                         clock.p1 <= limit->p1.max; clock.p1++) {
680                                         int this_err;
681
682                                         pineview_clock(refclk, &clock);
683                                         if (!intel_PLL_is_valid(dev, limit,
684                                                                 &clock))
685                                                 continue;
686                                         if (match_clock &&
687                                             clock.p != match_clock->p)
688                                                 continue;
689
690                                         this_err = abs(clock.dot - target);
691                                         if (this_err < err) {
692                                                 *best_clock = clock;
693                                                 err = this_err;
694                                         }
695                                 }
696                         }
697                 }
698         }
699
700         return (err != target);
701 }
702
703 static bool
704 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
705                    int target, int refclk, intel_clock_t *match_clock,
706                    intel_clock_t *best_clock)
707 {
708         struct drm_device *dev = crtc->dev;
709         intel_clock_t clock;
710         int max_n;
711         bool found;
712         /* approximately equals target * 0.00585 */
713         int err_most = (target >> 8) + (target >> 9);
714         found = false;
715
716         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
717                 if (intel_is_dual_link_lvds(dev))
718                         clock.p2 = limit->p2.p2_fast;
719                 else
720                         clock.p2 = limit->p2.p2_slow;
721         } else {
722                 if (target < limit->p2.dot_limit)
723                         clock.p2 = limit->p2.p2_slow;
724                 else
725                         clock.p2 = limit->p2.p2_fast;
726         }
727
728         memset(best_clock, 0, sizeof(*best_clock));
729         max_n = limit->n.max;
730         /* based on hardware requirement, prefer smaller n to precision */
731         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
732                 /* based on hardware requirement, prefere larger m1,m2 */
733                 for (clock.m1 = limit->m1.max;
734                      clock.m1 >= limit->m1.min; clock.m1--) {
735                         for (clock.m2 = limit->m2.max;
736                              clock.m2 >= limit->m2.min; clock.m2--) {
737                                 for (clock.p1 = limit->p1.max;
738                                      clock.p1 >= limit->p1.min; clock.p1--) {
739                                         int this_err;
740
741                                         i9xx_clock(refclk, &clock);
742                                         if (!intel_PLL_is_valid(dev, limit,
743                                                                 &clock))
744                                                 continue;
745
746                                         this_err = abs(clock.dot - target);
747                                         if (this_err < err_most) {
748                                                 *best_clock = clock;
749                                                 err_most = this_err;
750                                                 max_n = clock.n;
751                                                 found = true;
752                                         }
753                                 }
754                         }
755                 }
756         }
757         return found;
758 }
759
760 static bool
761 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
762                    int target, int refclk, intel_clock_t *match_clock,
763                    intel_clock_t *best_clock)
764 {
765         struct drm_device *dev = crtc->dev;
766         intel_clock_t clock;
767         unsigned int bestppm = 1000000;
768         /* min update 19.2 MHz */
769         int max_n = min(limit->n.max, refclk / 19200);
770         bool found = false;
771
772         target *= 5; /* fast clock */
773
774         memset(best_clock, 0, sizeof(*best_clock));
775
776         /* based on hardware requirement, prefer smaller n to precision */
777         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
778                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
779                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
780                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
781                                 clock.p = clock.p1 * clock.p2;
782                                 /* based on hardware requirement, prefer bigger m1,m2 values */
783                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
784                                         unsigned int ppm, diff;
785
786                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
787                                                                      refclk * clock.m1);
788
789                                         vlv_clock(refclk, &clock);
790
791                                         if (!intel_PLL_is_valid(dev, limit,
792                                                                 &clock))
793                                                 continue;
794
795                                         diff = abs(clock.dot - target);
796                                         ppm = div_u64(1000000ULL * diff, target);
797
798                                         if (ppm < 100 && clock.p > best_clock->p) {
799                                                 bestppm = 0;
800                                                 *best_clock = clock;
801                                                 found = true;
802                                         }
803
804                                         if (bestppm >= 10 && ppm < bestppm - 10) {
805                                                 bestppm = ppm;
806                                                 *best_clock = clock;
807                                                 found = true;
808                                         }
809                                 }
810                         }
811                 }
812         }
813
814         return found;
815 }
816
817 static bool
818 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
819                    int target, int refclk, intel_clock_t *match_clock,
820                    intel_clock_t *best_clock)
821 {
822         struct drm_device *dev = crtc->dev;
823         intel_clock_t clock;
824         uint64_t m2;
825         int found = false;
826
827         memset(best_clock, 0, sizeof(*best_clock));
828
829         /*
830          * Based on hardware doc, the n always set to 1, and m1 always
831          * set to 2.  If requires to support 200Mhz refclk, we need to
832          * revisit this because n may not 1 anymore.
833          */
834         clock.n = 1, clock.m1 = 2;
835         target *= 5;    /* fast clock */
836
837         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838                 for (clock.p2 = limit->p2.p2_fast;
839                                 clock.p2 >= limit->p2.p2_slow;
840                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841
842                         clock.p = clock.p1 * clock.p2;
843
844                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
845                                         clock.n) << 22, refclk * clock.m1);
846
847                         if (m2 > INT_MAX/clock.m1)
848                                 continue;
849
850                         clock.m2 = m2;
851
852                         chv_clock(refclk, &clock);
853
854                         if (!intel_PLL_is_valid(dev, limit, &clock))
855                                 continue;
856
857                         /* based on hardware requirement, prefer bigger p
858                          */
859                         if (clock.p > best_clock->p) {
860                                 *best_clock = clock;
861                                 found = true;
862                         }
863                 }
864         }
865
866         return found;
867 }
868
869 bool intel_crtc_active(struct drm_crtc *crtc)
870 {
871         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
872
873         /* Be paranoid as we can arrive here with only partial
874          * state retrieved from the hardware during setup.
875          *
876          * We can ditch the adjusted_mode.crtc_clock check as soon
877          * as Haswell has gained clock readout/fastboot support.
878          *
879          * We can ditch the crtc->primary->fb check as soon as we can
880          * properly reconstruct framebuffers.
881          */
882         return intel_crtc->active && crtc->primary->fb &&
883                 intel_crtc->config.adjusted_mode.crtc_clock;
884 }
885
886 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
887                                              enum pipe pipe)
888 {
889         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
890         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891
892         return intel_crtc->config.cpu_transcoder;
893 }
894
895 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
896 {
897         struct drm_i915_private *dev_priv = dev->dev_private;
898         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
899
900         frame = I915_READ(frame_reg);
901
902         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
903                 WARN(1, "vblank wait on pipe %c timed out\n",
904                      pipe_name(pipe));
905 }
906
907 /**
908  * intel_wait_for_vblank - wait for vblank on a given pipe
909  * @dev: drm device
910  * @pipe: pipe to wait for
911  *
912  * Wait for vblank to occur on a given pipe.  Needed for various bits of
913  * mode setting code.
914  */
915 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
916 {
917         struct drm_i915_private *dev_priv = dev->dev_private;
918         int pipestat_reg = PIPESTAT(pipe);
919
920         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
921                 g4x_wait_for_vblank(dev, pipe);
922                 return;
923         }
924
925         /* Clear existing vblank status. Note this will clear any other
926          * sticky status fields as well.
927          *
928          * This races with i915_driver_irq_handler() with the result
929          * that either function could miss a vblank event.  Here it is not
930          * fatal, as we will either wait upon the next vblank interrupt or
931          * timeout.  Generally speaking intel_wait_for_vblank() is only
932          * called during modeset at which time the GPU should be idle and
933          * should *not* be performing page flips and thus not waiting on
934          * vblanks...
935          * Currently, the result of us stealing a vblank from the irq
936          * handler is that a single frame will be skipped during swapbuffers.
937          */
938         I915_WRITE(pipestat_reg,
939                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
940
941         /* Wait for vblank interrupt bit to set */
942         if (wait_for(I915_READ(pipestat_reg) &
943                      PIPE_VBLANK_INTERRUPT_STATUS,
944                      50))
945                 DRM_DEBUG_KMS("vblank wait on pipe %c timed out\n",
946                               pipe_name(pipe));
947 }
948
949 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
950 {
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         u32 reg = PIPEDSL(pipe);
953         u32 line1, line2;
954         u32 line_mask;
955
956         if (IS_GEN2(dev))
957                 line_mask = DSL_LINEMASK_GEN2;
958         else
959                 line_mask = DSL_LINEMASK_GEN3;
960
961         line1 = I915_READ(reg) & line_mask;
962         mdelay(5);
963         line2 = I915_READ(reg) & line_mask;
964
965         return line1 == line2;
966 }
967
968 /*
969  * intel_wait_for_pipe_off - wait for pipe to turn off
970  * @crtc: crtc whose pipe to wait for
971  *
972  * After disabling a pipe, we can't wait for vblank in the usual way,
973  * spinning on the vblank interrupt status bit, since we won't actually
974  * see an interrupt when the pipe is disabled.
975  *
976  * On Gen4 and above:
977  *   wait for the pipe register state bit to turn off
978  *
979  * Otherwise:
980  *   wait for the display line value to settle (it usually
981  *   ends up stopping at the start of the next frame).
982  *
983  */
984 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
985 {
986         struct drm_device *dev = crtc->base.dev;
987         struct drm_i915_private *dev_priv = dev->dev_private;
988         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
989         enum pipe pipe = crtc->pipe;
990
991         if (INTEL_INFO(dev)->gen >= 4) {
992                 int reg = PIPECONF(cpu_transcoder);
993
994                 /* Wait for the Pipe State to go off */
995                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
996                              100))
997                         WARN(1, "pipe_off wait timed out\n");
998         } else {
999                 /* Wait for the display line to settle */
1000                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1001                         WARN(1, "pipe_off wait timed out\n");
1002         }
1003 }
1004
1005 /*
1006  * ibx_digital_port_connected - is the specified port connected?
1007  * @dev_priv: i915 private structure
1008  * @port: the port to test
1009  *
1010  * Returns true if @port is connected, false otherwise.
1011  */
1012 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1013                                 struct intel_digital_port *port)
1014 {
1015         u32 bit;
1016
1017         if (HAS_PCH_IBX(dev_priv->dev)) {
1018                 switch (port->port) {
1019                 case PORT_B:
1020                         bit = SDE_PORTB_HOTPLUG;
1021                         break;
1022                 case PORT_C:
1023                         bit = SDE_PORTC_HOTPLUG;
1024                         break;
1025                 case PORT_D:
1026                         bit = SDE_PORTD_HOTPLUG;
1027                         break;
1028                 default:
1029                         return true;
1030                 }
1031         } else {
1032                 switch (port->port) {
1033                 case PORT_B:
1034                         bit = SDE_PORTB_HOTPLUG_CPT;
1035                         break;
1036                 case PORT_C:
1037                         bit = SDE_PORTC_HOTPLUG_CPT;
1038                         break;
1039                 case PORT_D:
1040                         bit = SDE_PORTD_HOTPLUG_CPT;
1041                         break;
1042                 default:
1043                         return true;
1044                 }
1045         }
1046
1047         return I915_READ(SDEISR) & bit;
1048 }
1049
1050 static const char *state_string(bool enabled)
1051 {
1052         return enabled ? "on" : "off";
1053 }
1054
1055 /* Only for pre-ILK configs */
1056 void assert_pll(struct drm_i915_private *dev_priv,
1057                 enum pipe pipe, bool state)
1058 {
1059         int reg;
1060         u32 val;
1061         bool cur_state;
1062
1063         reg = DPLL(pipe);
1064         val = I915_READ(reg);
1065         cur_state = !!(val & DPLL_VCO_ENABLE);
1066         WARN(cur_state != state,
1067              "PLL state assertion failure (expected %s, current %s)\n",
1068              state_string(state), state_string(cur_state));
1069 }
1070
1071 /* XXX: the dsi pll is shared between MIPI DSI ports */
1072 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1073 {
1074         u32 val;
1075         bool cur_state;
1076
1077         mutex_lock(&dev_priv->dpio_lock);
1078         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1079         mutex_unlock(&dev_priv->dpio_lock);
1080
1081         cur_state = val & DSI_PLL_VCO_EN;
1082         WARN(cur_state != state,
1083              "DSI PLL state assertion failure (expected %s, current %s)\n",
1084              state_string(state), state_string(cur_state));
1085 }
1086 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1087 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1088
1089 struct intel_shared_dpll *
1090 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1091 {
1092         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1093
1094         if (crtc->config.shared_dpll < 0)
1095                 return NULL;
1096
1097         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1098 }
1099
1100 /* For ILK+ */
1101 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1102                         struct intel_shared_dpll *pll,
1103                         bool state)
1104 {
1105         bool cur_state;
1106         struct intel_dpll_hw_state hw_state;
1107
1108         if (WARN (!pll,
1109                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1110                 return;
1111
1112         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1113         WARN(cur_state != state,
1114              "%s assertion failure (expected %s, current %s)\n",
1115              pll->name, state_string(state), state_string(cur_state));
1116 }
1117
1118 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1119                           enum pipe pipe, bool state)
1120 {
1121         int reg;
1122         u32 val;
1123         bool cur_state;
1124         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1125                                                                       pipe);
1126
1127         if (HAS_DDI(dev_priv->dev)) {
1128                 /* DDI does not have a specific FDI_TX register */
1129                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1130                 val = I915_READ(reg);
1131                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1132         } else {
1133                 reg = FDI_TX_CTL(pipe);
1134                 val = I915_READ(reg);
1135                 cur_state = !!(val & FDI_TX_ENABLE);
1136         }
1137         WARN(cur_state != state,
1138              "FDI TX state assertion failure (expected %s, current %s)\n",
1139              state_string(state), state_string(cur_state));
1140 }
1141 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1143
1144 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145                           enum pipe pipe, bool state)
1146 {
1147         int reg;
1148         u32 val;
1149         bool cur_state;
1150
1151         reg = FDI_RX_CTL(pipe);
1152         val = I915_READ(reg);
1153         cur_state = !!(val & FDI_RX_ENABLE);
1154         WARN(cur_state != state,
1155              "FDI RX state assertion failure (expected %s, current %s)\n",
1156              state_string(state), state_string(cur_state));
1157 }
1158 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1159 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1160
1161 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1162                                       enum pipe pipe)
1163 {
1164         int reg;
1165         u32 val;
1166
1167         /* ILK FDI PLL is always enabled */
1168         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1169                 return;
1170
1171         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1172         if (HAS_DDI(dev_priv->dev))
1173                 return;
1174
1175         reg = FDI_TX_CTL(pipe);
1176         val = I915_READ(reg);
1177         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1178 }
1179
1180 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1181                        enum pipe pipe, bool state)
1182 {
1183         int reg;
1184         u32 val;
1185         bool cur_state;
1186
1187         reg = FDI_RX_CTL(pipe);
1188         val = I915_READ(reg);
1189         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1190         WARN(cur_state != state,
1191              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1192              state_string(state), state_string(cur_state));
1193 }
1194
1195 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1196                                   enum pipe pipe)
1197 {
1198         struct drm_device *dev = dev_priv->dev;
1199         int pp_reg;
1200         u32 val;
1201         enum pipe panel_pipe = PIPE_A;
1202         bool locked = true;
1203
1204         if (WARN_ON(HAS_DDI(dev)))
1205                 return;
1206
1207         if (HAS_PCH_SPLIT(dev)) {
1208                 u32 port_sel;
1209
1210                 pp_reg = PCH_PP_CONTROL;
1211                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1212
1213                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1214                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1215                         panel_pipe = PIPE_B;
1216                 /* XXX: else fix for eDP */
1217         } else if (IS_VALLEYVIEW(dev)) {
1218                 /* presumably write lock depends on pipe, not port select */
1219                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1220                 panel_pipe = pipe;
1221         } else {
1222                 pp_reg = PP_CONTROL;
1223                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1224                         panel_pipe = PIPE_B;
1225         }
1226
1227         val = I915_READ(pp_reg);
1228         if (!(val & PANEL_POWER_ON) ||
1229             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1230                 locked = false;
1231
1232         WARN(panel_pipe == pipe && locked,
1233              "panel assertion failure, pipe %c regs locked\n",
1234              pipe_name(pipe));
1235 }
1236
1237 static void assert_cursor(struct drm_i915_private *dev_priv,
1238                           enum pipe pipe, bool state)
1239 {
1240         struct drm_device *dev = dev_priv->dev;
1241         bool cur_state;
1242
1243         if (IS_845G(dev) || IS_I865G(dev))
1244                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1245         else
1246                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1247
1248         WARN(cur_state != state,
1249              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1250              pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1253 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1254
1255 void assert_pipe(struct drm_i915_private *dev_priv,
1256                  enum pipe pipe, bool state)
1257 {
1258         int reg;
1259         u32 val;
1260         bool cur_state;
1261         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1262                                                                       pipe);
1263
1264         /* if we need the pipe quirk it must be always on */
1265         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1266             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1267                 state = true;
1268
1269         if (!intel_display_power_enabled(dev_priv,
1270                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1271                 cur_state = false;
1272         } else {
1273                 reg = PIPECONF(cpu_transcoder);
1274                 val = I915_READ(reg);
1275                 cur_state = !!(val & PIPECONF_ENABLE);
1276         }
1277
1278         WARN(cur_state != state,
1279              "pipe %c assertion failure (expected %s, current %s)\n",
1280              pipe_name(pipe), state_string(state), state_string(cur_state));
1281 }
1282
1283 static void assert_plane(struct drm_i915_private *dev_priv,
1284                          enum plane plane, bool state)
1285 {
1286         int reg;
1287         u32 val;
1288         bool cur_state;
1289
1290         reg = DSPCNTR(plane);
1291         val = I915_READ(reg);
1292         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1293         WARN(cur_state != state,
1294              "plane %c assertion failure (expected %s, current %s)\n",
1295              plane_name(plane), state_string(state), state_string(cur_state));
1296 }
1297
1298 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1299 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1300
1301 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1302                                    enum pipe pipe)
1303 {
1304         struct drm_device *dev = dev_priv->dev;
1305         int reg, i;
1306         u32 val;
1307         int cur_pipe;
1308
1309         /* Primary planes are fixed to pipes on gen4+ */
1310         if (INTEL_INFO(dev)->gen >= 4) {
1311                 reg = DSPCNTR(pipe);
1312                 val = I915_READ(reg);
1313                 WARN(val & DISPLAY_PLANE_ENABLE,
1314                      "plane %c assertion failure, should be disabled but not\n",
1315                      plane_name(pipe));
1316                 return;
1317         }
1318
1319         /* Need to check both planes against the pipe */
1320         for_each_pipe(dev_priv, i) {
1321                 reg = DSPCNTR(i);
1322                 val = I915_READ(reg);
1323                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1324                         DISPPLANE_SEL_PIPE_SHIFT;
1325                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1326                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1327                      plane_name(i), pipe_name(pipe));
1328         }
1329 }
1330
1331 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1332                                     enum pipe pipe)
1333 {
1334         struct drm_device *dev = dev_priv->dev;
1335         int reg, sprite;
1336         u32 val;
1337
1338         if (IS_VALLEYVIEW(dev)) {
1339                 for_each_sprite(pipe, sprite) {
1340                         reg = SPCNTR(pipe, sprite);
1341                         val = I915_READ(reg);
1342                         WARN(val & SP_ENABLE,
1343                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344                              sprite_name(pipe, sprite), pipe_name(pipe));
1345                 }
1346         } else if (INTEL_INFO(dev)->gen >= 7) {
1347                 reg = SPRCTL(pipe);
1348                 val = I915_READ(reg);
1349                 WARN(val & SPRITE_ENABLE,
1350                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1351                      plane_name(pipe), pipe_name(pipe));
1352         } else if (INTEL_INFO(dev)->gen >= 5) {
1353                 reg = DVSCNTR(pipe);
1354                 val = I915_READ(reg);
1355                 WARN(val & DVS_ENABLE,
1356                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1357                      plane_name(pipe), pipe_name(pipe));
1358         }
1359 }
1360
1361 static void assert_vblank_disabled(struct drm_crtc *crtc)
1362 {
1363         if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1364                 drm_crtc_vblank_put(crtc);
1365 }
1366
1367 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1368 {
1369         u32 val;
1370         bool enabled;
1371
1372         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1373
1374         val = I915_READ(PCH_DREF_CONTROL);
1375         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1376                             DREF_SUPERSPREAD_SOURCE_MASK));
1377         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1378 }
1379
1380 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1381                                            enum pipe pipe)
1382 {
1383         int reg;
1384         u32 val;
1385         bool enabled;
1386
1387         reg = PCH_TRANSCONF(pipe);
1388         val = I915_READ(reg);
1389         enabled = !!(val & TRANS_ENABLE);
1390         WARN(enabled,
1391              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1392              pipe_name(pipe));
1393 }
1394
1395 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1396                             enum pipe pipe, u32 port_sel, u32 val)
1397 {
1398         if ((val & DP_PORT_EN) == 0)
1399                 return false;
1400
1401         if (HAS_PCH_CPT(dev_priv->dev)) {
1402                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1403                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1404                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1405                         return false;
1406         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1407                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1408                         return false;
1409         } else {
1410                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1411                         return false;
1412         }
1413         return true;
1414 }
1415
1416 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1417                               enum pipe pipe, u32 val)
1418 {
1419         if ((val & SDVO_ENABLE) == 0)
1420                 return false;
1421
1422         if (HAS_PCH_CPT(dev_priv->dev)) {
1423                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1424                         return false;
1425         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1426                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1427                         return false;
1428         } else {
1429                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1430                         return false;
1431         }
1432         return true;
1433 }
1434
1435 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1436                               enum pipe pipe, u32 val)
1437 {
1438         if ((val & LVDS_PORT_EN) == 0)
1439                 return false;
1440
1441         if (HAS_PCH_CPT(dev_priv->dev)) {
1442                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1443                         return false;
1444         } else {
1445                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1446                         return false;
1447         }
1448         return true;
1449 }
1450
1451 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1452                               enum pipe pipe, u32 val)
1453 {
1454         if ((val & ADPA_DAC_ENABLE) == 0)
1455                 return false;
1456         if (HAS_PCH_CPT(dev_priv->dev)) {
1457                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1458                         return false;
1459         } else {
1460                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1461                         return false;
1462         }
1463         return true;
1464 }
1465
1466 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1467                                    enum pipe pipe, int reg, u32 port_sel)
1468 {
1469         u32 val = I915_READ(reg);
1470         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1471              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1472              reg, pipe_name(pipe));
1473
1474         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1475              && (val & DP_PIPEB_SELECT),
1476              "IBX PCH dp port still using transcoder B\n");
1477 }
1478
1479 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1480                                      enum pipe pipe, int reg)
1481 {
1482         u32 val = I915_READ(reg);
1483         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1484              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1485              reg, pipe_name(pipe));
1486
1487         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1488              && (val & SDVO_PIPE_B_SELECT),
1489              "IBX PCH hdmi port still using transcoder B\n");
1490 }
1491
1492 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1493                                       enum pipe pipe)
1494 {
1495         int reg;
1496         u32 val;
1497
1498         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1499         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1500         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1501
1502         reg = PCH_ADPA;
1503         val = I915_READ(reg);
1504         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1505              "PCH VGA enabled on transcoder %c, should be disabled\n",
1506              pipe_name(pipe));
1507
1508         reg = PCH_LVDS;
1509         val = I915_READ(reg);
1510         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1511              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1512              pipe_name(pipe));
1513
1514         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1515         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1516         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1517 }
1518
1519 static void intel_init_dpio(struct drm_device *dev)
1520 {
1521         struct drm_i915_private *dev_priv = dev->dev_private;
1522
1523         if (!IS_VALLEYVIEW(dev))
1524                 return;
1525
1526         /*
1527          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1528          * CHV x1 PHY (DP/HDMI D)
1529          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1530          */
1531         if (IS_CHERRYVIEW(dev)) {
1532                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1533                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1534         } else {
1535                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1536         }
1537 }
1538
1539 static void vlv_enable_pll(struct intel_crtc *crtc)
1540 {
1541         struct drm_device *dev = crtc->base.dev;
1542         struct drm_i915_private *dev_priv = dev->dev_private;
1543         int reg = DPLL(crtc->pipe);
1544         u32 dpll = crtc->config.dpll_hw_state.dpll;
1545
1546         assert_pipe_disabled(dev_priv, crtc->pipe);
1547
1548         /* No really, not for ILK+ */
1549         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1550
1551         /* PLL is protected by panel, make sure we can write it */
1552         if (IS_MOBILE(dev_priv->dev))
1553                 assert_panel_unlocked(dev_priv, crtc->pipe);
1554
1555         I915_WRITE(reg, dpll);
1556         POSTING_READ(reg);
1557         udelay(150);
1558
1559         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1560                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1561
1562         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1563         POSTING_READ(DPLL_MD(crtc->pipe));
1564
1565         /* We do this three times for luck */
1566         I915_WRITE(reg, dpll);
1567         POSTING_READ(reg);
1568         udelay(150); /* wait for warmup */
1569         I915_WRITE(reg, dpll);
1570         POSTING_READ(reg);
1571         udelay(150); /* wait for warmup */
1572         I915_WRITE(reg, dpll);
1573         POSTING_READ(reg);
1574         udelay(150); /* wait for warmup */
1575 }
1576
1577 static void chv_enable_pll(struct intel_crtc *crtc)
1578 {
1579         struct drm_device *dev = crtc->base.dev;
1580         struct drm_i915_private *dev_priv = dev->dev_private;
1581         int pipe = crtc->pipe;
1582         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1583         u32 tmp;
1584
1585         assert_pipe_disabled(dev_priv, crtc->pipe);
1586
1587         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1588
1589         mutex_lock(&dev_priv->dpio_lock);
1590
1591         /* Enable back the 10bit clock to display controller */
1592         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1593         tmp |= DPIO_DCLKP_EN;
1594         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1595
1596         /*
1597          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1598          */
1599         udelay(1);
1600
1601         /* Enable PLL */
1602         I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1603
1604         /* Check PLL is locked */
1605         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1606                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1607
1608         /* not sure when this should be written */
1609         I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1610         POSTING_READ(DPLL_MD(pipe));
1611
1612         mutex_unlock(&dev_priv->dpio_lock);
1613 }
1614
1615 static int intel_num_dvo_pipes(struct drm_device *dev)
1616 {
1617         struct intel_crtc *crtc;
1618         int count = 0;
1619
1620         for_each_intel_crtc(dev, crtc)
1621                 count += crtc->active &&
1622                         intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO);
1623
1624         return count;
1625 }
1626
1627 static void i9xx_enable_pll(struct intel_crtc *crtc)
1628 {
1629         struct drm_device *dev = crtc->base.dev;
1630         struct drm_i915_private *dev_priv = dev->dev_private;
1631         int reg = DPLL(crtc->pipe);
1632         u32 dpll = crtc->config.dpll_hw_state.dpll;
1633
1634         assert_pipe_disabled(dev_priv, crtc->pipe);
1635
1636         /* No really, not for ILK+ */
1637         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1638
1639         /* PLL is protected by panel, make sure we can write it */
1640         if (IS_MOBILE(dev) && !IS_I830(dev))
1641                 assert_panel_unlocked(dev_priv, crtc->pipe);
1642
1643         /* Enable DVO 2x clock on both PLLs if necessary */
1644         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1645                 /*
1646                  * It appears to be important that we don't enable this
1647                  * for the current pipe before otherwise configuring the
1648                  * PLL. No idea how this should be handled if multiple
1649                  * DVO outputs are enabled simultaneosly.
1650                  */
1651                 dpll |= DPLL_DVO_2X_MODE;
1652                 I915_WRITE(DPLL(!crtc->pipe),
1653                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1654         }
1655
1656         /* Wait for the clocks to stabilize. */
1657         POSTING_READ(reg);
1658         udelay(150);
1659
1660         if (INTEL_INFO(dev)->gen >= 4) {
1661                 I915_WRITE(DPLL_MD(crtc->pipe),
1662                            crtc->config.dpll_hw_state.dpll_md);
1663         } else {
1664                 /* The pixel multiplier can only be updated once the
1665                  * DPLL is enabled and the clocks are stable.
1666                  *
1667                  * So write it again.
1668                  */
1669                 I915_WRITE(reg, dpll);
1670         }
1671
1672         /* We do this three times for luck */
1673         I915_WRITE(reg, dpll);
1674         POSTING_READ(reg);
1675         udelay(150); /* wait for warmup */
1676         I915_WRITE(reg, dpll);
1677         POSTING_READ(reg);
1678         udelay(150); /* wait for warmup */
1679         I915_WRITE(reg, dpll);
1680         POSTING_READ(reg);
1681         udelay(150); /* wait for warmup */
1682 }
1683
1684 /**
1685  * i9xx_disable_pll - disable a PLL
1686  * @dev_priv: i915 private structure
1687  * @pipe: pipe PLL to disable
1688  *
1689  * Disable the PLL for @pipe, making sure the pipe is off first.
1690  *
1691  * Note!  This is for pre-ILK only.
1692  */
1693 static void i9xx_disable_pll(struct intel_crtc *crtc)
1694 {
1695         struct drm_device *dev = crtc->base.dev;
1696         struct drm_i915_private *dev_priv = dev->dev_private;
1697         enum pipe pipe = crtc->pipe;
1698
1699         /* Disable DVO 2x clock on both PLLs if necessary */
1700         if (IS_I830(dev) &&
1701             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO) &&
1702             intel_num_dvo_pipes(dev) == 1) {
1703                 I915_WRITE(DPLL(PIPE_B),
1704                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1705                 I915_WRITE(DPLL(PIPE_A),
1706                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1707         }
1708
1709         /* Don't disable pipe or pipe PLLs if needed */
1710         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1711             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1712                 return;
1713
1714         /* Make sure the pipe isn't still relying on us */
1715         assert_pipe_disabled(dev_priv, pipe);
1716
1717         I915_WRITE(DPLL(pipe), 0);
1718         POSTING_READ(DPLL(pipe));
1719 }
1720
1721 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1722 {
1723         u32 val = 0;
1724
1725         /* Make sure the pipe isn't still relying on us */
1726         assert_pipe_disabled(dev_priv, pipe);
1727
1728         /*
1729          * Leave integrated clock source and reference clock enabled for pipe B.
1730          * The latter is needed for VGA hotplug / manual detection.
1731          */
1732         if (pipe == PIPE_B)
1733                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1734         I915_WRITE(DPLL(pipe), val);
1735         POSTING_READ(DPLL(pipe));
1736
1737 }
1738
1739 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1740 {
1741         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1742         u32 val;
1743
1744         /* Make sure the pipe isn't still relying on us */
1745         assert_pipe_disabled(dev_priv, pipe);
1746
1747         /* Set PLL en = 0 */
1748         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1749         if (pipe != PIPE_A)
1750                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1751         I915_WRITE(DPLL(pipe), val);
1752         POSTING_READ(DPLL(pipe));
1753
1754         mutex_lock(&dev_priv->dpio_lock);
1755
1756         /* Disable 10bit clock to display controller */
1757         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1758         val &= ~DPIO_DCLKP_EN;
1759         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1760
1761         /* disable left/right clock distribution */
1762         if (pipe != PIPE_B) {
1763                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1764                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1765                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1766         } else {
1767                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1768                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1769                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1770         }
1771
1772         mutex_unlock(&dev_priv->dpio_lock);
1773 }
1774
1775 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1776                 struct intel_digital_port *dport)
1777 {
1778         u32 port_mask;
1779         int dpll_reg;
1780
1781         switch (dport->port) {
1782         case PORT_B:
1783                 port_mask = DPLL_PORTB_READY_MASK;
1784                 dpll_reg = DPLL(0);
1785                 break;
1786         case PORT_C:
1787                 port_mask = DPLL_PORTC_READY_MASK;
1788                 dpll_reg = DPLL(0);
1789                 break;
1790         case PORT_D:
1791                 port_mask = DPLL_PORTD_READY_MASK;
1792                 dpll_reg = DPIO_PHY_STATUS;
1793                 break;
1794         default:
1795                 BUG();
1796         }
1797
1798         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1799                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1800                      port_name(dport->port), I915_READ(dpll_reg));
1801 }
1802
1803 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1804 {
1805         struct drm_device *dev = crtc->base.dev;
1806         struct drm_i915_private *dev_priv = dev->dev_private;
1807         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1808
1809         if (WARN_ON(pll == NULL))
1810                 return;
1811
1812         WARN_ON(!pll->refcount);
1813         if (pll->active == 0) {
1814                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1815                 WARN_ON(pll->on);
1816                 assert_shared_dpll_disabled(dev_priv, pll);
1817
1818                 pll->mode_set(dev_priv, pll);
1819         }
1820 }
1821
1822 /**
1823  * intel_enable_shared_dpll - enable PCH PLL
1824  * @dev_priv: i915 private structure
1825  * @pipe: pipe PLL to enable
1826  *
1827  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1828  * drives the transcoder clock.
1829  */
1830 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1831 {
1832         struct drm_device *dev = crtc->base.dev;
1833         struct drm_i915_private *dev_priv = dev->dev_private;
1834         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836         if (WARN_ON(pll == NULL))
1837                 return;
1838
1839         if (WARN_ON(pll->refcount == 0))
1840                 return;
1841
1842         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1843                       pll->name, pll->active, pll->on,
1844                       crtc->base.base.id);
1845
1846         if (pll->active++) {
1847                 WARN_ON(!pll->on);
1848                 assert_shared_dpll_enabled(dev_priv, pll);
1849                 return;
1850         }
1851         WARN_ON(pll->on);
1852
1853         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1854
1855         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1856         pll->enable(dev_priv, pll);
1857         pll->on = true;
1858 }
1859
1860 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1861 {
1862         struct drm_device *dev = crtc->base.dev;
1863         struct drm_i915_private *dev_priv = dev->dev_private;
1864         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1865
1866         /* PCH only available on ILK+ */
1867         BUG_ON(INTEL_INFO(dev)->gen < 5);
1868         if (WARN_ON(pll == NULL))
1869                return;
1870
1871         if (WARN_ON(pll->refcount == 0))
1872                 return;
1873
1874         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1875                       pll->name, pll->active, pll->on,
1876                       crtc->base.base.id);
1877
1878         if (WARN_ON(pll->active == 0)) {
1879                 assert_shared_dpll_disabled(dev_priv, pll);
1880                 return;
1881         }
1882
1883         assert_shared_dpll_enabled(dev_priv, pll);
1884         WARN_ON(!pll->on);
1885         if (--pll->active)
1886                 return;
1887
1888         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1889         pll->disable(dev_priv, pll);
1890         pll->on = false;
1891
1892         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1893 }
1894
1895 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1896                                            enum pipe pipe)
1897 {
1898         struct drm_device *dev = dev_priv->dev;
1899         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1900         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1901         uint32_t reg, val, pipeconf_val;
1902
1903         /* PCH only available on ILK+ */
1904         BUG_ON(!HAS_PCH_SPLIT(dev));
1905
1906         /* Make sure PCH DPLL is enabled */
1907         assert_shared_dpll_enabled(dev_priv,
1908                                    intel_crtc_to_shared_dpll(intel_crtc));
1909
1910         /* FDI must be feeding us bits for PCH ports */
1911         assert_fdi_tx_enabled(dev_priv, pipe);
1912         assert_fdi_rx_enabled(dev_priv, pipe);
1913
1914         if (HAS_PCH_CPT(dev)) {
1915                 /* Workaround: Set the timing override bit before enabling the
1916                  * pch transcoder. */
1917                 reg = TRANS_CHICKEN2(pipe);
1918                 val = I915_READ(reg);
1919                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1920                 I915_WRITE(reg, val);
1921         }
1922
1923         reg = PCH_TRANSCONF(pipe);
1924         val = I915_READ(reg);
1925         pipeconf_val = I915_READ(PIPECONF(pipe));
1926
1927         if (HAS_PCH_IBX(dev_priv->dev)) {
1928                 /*
1929                  * make the BPC in transcoder be consistent with
1930                  * that in pipeconf reg.
1931                  */
1932                 val &= ~PIPECONF_BPC_MASK;
1933                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1934         }
1935
1936         val &= ~TRANS_INTERLACE_MASK;
1937         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1938                 if (HAS_PCH_IBX(dev_priv->dev) &&
1939                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1940                         val |= TRANS_LEGACY_INTERLACED_ILK;
1941                 else
1942                         val |= TRANS_INTERLACED;
1943         else
1944                 val |= TRANS_PROGRESSIVE;
1945
1946         I915_WRITE(reg, val | TRANS_ENABLE);
1947         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1948                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1949 }
1950
1951 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1952                                       enum transcoder cpu_transcoder)
1953 {
1954         u32 val, pipeconf_val;
1955
1956         /* PCH only available on ILK+ */
1957         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1958
1959         /* FDI must be feeding us bits for PCH ports */
1960         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1961         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1962
1963         /* Workaround: set timing override bit. */
1964         val = I915_READ(_TRANSA_CHICKEN2);
1965         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1966         I915_WRITE(_TRANSA_CHICKEN2, val);
1967
1968         val = TRANS_ENABLE;
1969         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1970
1971         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1972             PIPECONF_INTERLACED_ILK)
1973                 val |= TRANS_INTERLACED;
1974         else
1975                 val |= TRANS_PROGRESSIVE;
1976
1977         I915_WRITE(LPT_TRANSCONF, val);
1978         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1979                 DRM_ERROR("Failed to enable PCH transcoder\n");
1980 }
1981
1982 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1983                                             enum pipe pipe)
1984 {
1985         struct drm_device *dev = dev_priv->dev;
1986         uint32_t reg, val;
1987
1988         /* FDI relies on the transcoder */
1989         assert_fdi_tx_disabled(dev_priv, pipe);
1990         assert_fdi_rx_disabled(dev_priv, pipe);
1991
1992         /* Ports must be off as well */
1993         assert_pch_ports_disabled(dev_priv, pipe);
1994
1995         reg = PCH_TRANSCONF(pipe);
1996         val = I915_READ(reg);
1997         val &= ~TRANS_ENABLE;
1998         I915_WRITE(reg, val);
1999         /* wait for PCH transcoder off, transcoder state */
2000         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2001                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2002
2003         if (!HAS_PCH_IBX(dev)) {
2004                 /* Workaround: Clear the timing override chicken bit again. */
2005                 reg = TRANS_CHICKEN2(pipe);
2006                 val = I915_READ(reg);
2007                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2008                 I915_WRITE(reg, val);
2009         }
2010 }
2011
2012 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2013 {
2014         u32 val;
2015
2016         val = I915_READ(LPT_TRANSCONF);
2017         val &= ~TRANS_ENABLE;
2018         I915_WRITE(LPT_TRANSCONF, val);
2019         /* wait for PCH transcoder off, transcoder state */
2020         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2021                 DRM_ERROR("Failed to disable PCH transcoder\n");
2022
2023         /* Workaround: clear timing override bit. */
2024         val = I915_READ(_TRANSA_CHICKEN2);
2025         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2026         I915_WRITE(_TRANSA_CHICKEN2, val);
2027 }
2028
2029 /**
2030  * intel_enable_pipe - enable a pipe, asserting requirements
2031  * @crtc: crtc responsible for the pipe
2032  *
2033  * Enable @crtc's pipe, making sure that various hardware specific requirements
2034  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2035  */
2036 static void intel_enable_pipe(struct intel_crtc *crtc)
2037 {
2038         struct drm_device *dev = crtc->base.dev;
2039         struct drm_i915_private *dev_priv = dev->dev_private;
2040         enum pipe pipe = crtc->pipe;
2041         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2042                                                                       pipe);
2043         enum pipe pch_transcoder;
2044         int reg;
2045         u32 val;
2046
2047         assert_planes_disabled(dev_priv, pipe);
2048         assert_cursor_disabled(dev_priv, pipe);
2049         assert_sprites_disabled(dev_priv, pipe);
2050
2051         if (HAS_PCH_LPT(dev_priv->dev))
2052                 pch_transcoder = TRANSCODER_A;
2053         else
2054                 pch_transcoder = pipe;
2055
2056         /*
2057          * A pipe without a PLL won't actually be able to drive bits from
2058          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2059          * need the check.
2060          */
2061         if (!HAS_PCH_SPLIT(dev_priv->dev))
2062                 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2063                         assert_dsi_pll_enabled(dev_priv);
2064                 else
2065                         assert_pll_enabled(dev_priv, pipe);
2066         else {
2067                 if (crtc->config.has_pch_encoder) {
2068                         /* if driving the PCH, we need FDI enabled */
2069                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2070                         assert_fdi_tx_pll_enabled(dev_priv,
2071                                                   (enum pipe) cpu_transcoder);
2072                 }
2073                 /* FIXME: assert CPU port conditions for SNB+ */
2074         }
2075
2076         reg = PIPECONF(cpu_transcoder);
2077         val = I915_READ(reg);
2078         if (val & PIPECONF_ENABLE) {
2079                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2080                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2081                 return;
2082         }
2083
2084         I915_WRITE(reg, val | PIPECONF_ENABLE);
2085         POSTING_READ(reg);
2086 }
2087
2088 /**
2089  * intel_disable_pipe - disable a pipe, asserting requirements
2090  * @crtc: crtc whose pipes is to be disabled
2091  *
2092  * Disable the pipe of @crtc, making sure that various hardware
2093  * specific requirements are met, if applicable, e.g. plane
2094  * disabled, panel fitter off, etc.
2095  *
2096  * Will wait until the pipe has shut down before returning.
2097  */
2098 static void intel_disable_pipe(struct intel_crtc *crtc)
2099 {
2100         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2101         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2102         enum pipe pipe = crtc->pipe;
2103         int reg;
2104         u32 val;
2105
2106         /*
2107          * Make sure planes won't keep trying to pump pixels to us,
2108          * or we might hang the display.
2109          */
2110         assert_planes_disabled(dev_priv, pipe);
2111         assert_cursor_disabled(dev_priv, pipe);
2112         assert_sprites_disabled(dev_priv, pipe);
2113
2114         reg = PIPECONF(cpu_transcoder);
2115         val = I915_READ(reg);
2116         if ((val & PIPECONF_ENABLE) == 0)
2117                 return;
2118
2119         /*
2120          * Double wide has implications for planes
2121          * so best keep it disabled when not needed.
2122          */
2123         if (crtc->config.double_wide)
2124                 val &= ~PIPECONF_DOUBLE_WIDE;
2125
2126         /* Don't disable pipe or pipe PLLs if needed */
2127         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2128             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2129                 val &= ~PIPECONF_ENABLE;
2130
2131         I915_WRITE(reg, val);
2132         if ((val & PIPECONF_ENABLE) == 0)
2133                 intel_wait_for_pipe_off(crtc);
2134 }
2135
2136 /*
2137  * Plane regs are double buffered, going from enabled->disabled needs a
2138  * trigger in order to latch.  The display address reg provides this.
2139  */
2140 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2141                                enum plane plane)
2142 {
2143         struct drm_device *dev = dev_priv->dev;
2144         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2145
2146         I915_WRITE(reg, I915_READ(reg));
2147         POSTING_READ(reg);
2148 }
2149
2150 /**
2151  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2152  * @plane:  plane to be enabled
2153  * @crtc: crtc for the plane
2154  *
2155  * Enable @plane on @crtc, making sure that the pipe is running first.
2156  */
2157 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2158                                           struct drm_crtc *crtc)
2159 {
2160         struct drm_device *dev = plane->dev;
2161         struct drm_i915_private *dev_priv = dev->dev_private;
2162         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2163
2164         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2165         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2166
2167         if (intel_crtc->primary_enabled)
2168                 return;
2169
2170         intel_crtc->primary_enabled = true;
2171
2172         dev_priv->display.update_primary_plane(crtc, plane->fb,
2173                                                crtc->x, crtc->y);
2174
2175         /*
2176          * BDW signals flip done immediately if the plane
2177          * is disabled, even if the plane enable is already
2178          * armed to occur at the next vblank :(
2179          */
2180         if (IS_BROADWELL(dev))
2181                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2182 }
2183
2184 /**
2185  * intel_disable_primary_hw_plane - disable the primary hardware plane
2186  * @plane: plane to be disabled
2187  * @crtc: crtc for the plane
2188  *
2189  * Disable @plane on @crtc, making sure that the pipe is running first.
2190  */
2191 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2192                                            struct drm_crtc *crtc)
2193 {
2194         struct drm_device *dev = plane->dev;
2195         struct drm_i915_private *dev_priv = dev->dev_private;
2196         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2197
2198         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2199
2200         if (!intel_crtc->primary_enabled)
2201                 return;
2202
2203         intel_crtc->primary_enabled = false;
2204
2205         dev_priv->display.update_primary_plane(crtc, plane->fb,
2206                                                crtc->x, crtc->y);
2207 }
2208
2209 static bool need_vtd_wa(struct drm_device *dev)
2210 {
2211 #ifdef CONFIG_INTEL_IOMMU
2212         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2213                 return true;
2214 #endif
2215         return false;
2216 }
2217
2218 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2219 {
2220         int tile_height;
2221
2222         tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2223         return ALIGN(height, tile_height);
2224 }
2225
2226 int
2227 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2228                            struct drm_i915_gem_object *obj,
2229                            struct intel_engine_cs *pipelined)
2230 {
2231         struct drm_i915_private *dev_priv = dev->dev_private;
2232         u32 alignment;
2233         int ret;
2234
2235         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2236
2237         switch (obj->tiling_mode) {
2238         case I915_TILING_NONE:
2239                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2240                         alignment = 128 * 1024;
2241                 else if (INTEL_INFO(dev)->gen >= 4)
2242                         alignment = 4 * 1024;
2243                 else
2244                         alignment = 64 * 1024;
2245                 break;
2246         case I915_TILING_X:
2247                 /* pin() will align the object as required by fence */
2248                 alignment = 0;
2249                 break;
2250         case I915_TILING_Y:
2251                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2252                 return -EINVAL;
2253         default:
2254                 BUG();
2255         }
2256
2257         /* Note that the w/a also requires 64 PTE of padding following the
2258          * bo. We currently fill all unused PTE with the shadow page and so
2259          * we should always have valid PTE following the scanout preventing
2260          * the VT-d warning.
2261          */
2262         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2263                 alignment = 256 * 1024;
2264
2265         /*
2266          * Global gtt pte registers are special registers which actually forward
2267          * writes to a chunk of system memory. Which means that there is no risk
2268          * that the register values disappear as soon as we call
2269          * intel_runtime_pm_put(), so it is correct to wrap only the
2270          * pin/unpin/fence and not more.
2271          */
2272         intel_runtime_pm_get(dev_priv);
2273
2274         dev_priv->mm.interruptible = false;
2275         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2276         if (ret)
2277                 goto err_interruptible;
2278
2279         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2280          * fence, whereas 965+ only requires a fence if using
2281          * framebuffer compression.  For simplicity, we always install
2282          * a fence as the cost is not that onerous.
2283          */
2284         ret = i915_gem_object_get_fence(obj);
2285         if (ret)
2286                 goto err_unpin;
2287
2288         i915_gem_object_pin_fence(obj);
2289
2290         dev_priv->mm.interruptible = true;
2291         intel_runtime_pm_put(dev_priv);
2292         return 0;
2293
2294 err_unpin:
2295         i915_gem_object_unpin_from_display_plane(obj);
2296 err_interruptible:
2297         dev_priv->mm.interruptible = true;
2298         intel_runtime_pm_put(dev_priv);
2299         return ret;
2300 }
2301
2302 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2303 {
2304         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2305
2306         i915_gem_object_unpin_fence(obj);
2307         i915_gem_object_unpin_from_display_plane(obj);
2308 }
2309
2310 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2311  * is assumed to be a power-of-two. */
2312 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2313                                              unsigned int tiling_mode,
2314                                              unsigned int cpp,
2315                                              unsigned int pitch)
2316 {
2317         if (tiling_mode != I915_TILING_NONE) {
2318                 unsigned int tile_rows, tiles;
2319
2320                 tile_rows = *y / 8;
2321                 *y %= 8;
2322
2323                 tiles = *x / (512/cpp);
2324                 *x %= 512/cpp;
2325
2326                 return tile_rows * pitch * 8 + tiles * 4096;
2327         } else {
2328                 unsigned int offset;
2329
2330                 offset = *y * pitch + *x * cpp;
2331                 *y = 0;
2332                 *x = (offset & 4095) / cpp;
2333                 return offset & -4096;
2334         }
2335 }
2336
2337 int intel_format_to_fourcc(int format)
2338 {
2339         switch (format) {
2340         case DISPPLANE_8BPP:
2341                 return DRM_FORMAT_C8;
2342         case DISPPLANE_BGRX555:
2343                 return DRM_FORMAT_XRGB1555;
2344         case DISPPLANE_BGRX565:
2345                 return DRM_FORMAT_RGB565;
2346         default:
2347         case DISPPLANE_BGRX888:
2348                 return DRM_FORMAT_XRGB8888;
2349         case DISPPLANE_RGBX888:
2350                 return DRM_FORMAT_XBGR8888;
2351         case DISPPLANE_BGRX101010:
2352                 return DRM_FORMAT_XRGB2101010;
2353         case DISPPLANE_RGBX101010:
2354                 return DRM_FORMAT_XBGR2101010;
2355         }
2356 }
2357
2358 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2359                                   struct intel_plane_config *plane_config)
2360 {
2361         struct drm_device *dev = crtc->base.dev;
2362         struct drm_i915_gem_object *obj = NULL;
2363         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2364         u32 base = plane_config->base;
2365
2366         if (plane_config->size == 0)
2367                 return false;
2368
2369         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2370                                                              plane_config->size);
2371         if (!obj)
2372                 return false;
2373
2374         if (plane_config->tiled) {
2375                 obj->tiling_mode = I915_TILING_X;
2376                 obj->stride = crtc->base.primary->fb->pitches[0];
2377         }
2378
2379         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2380         mode_cmd.width = crtc->base.primary->fb->width;
2381         mode_cmd.height = crtc->base.primary->fb->height;
2382         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2383
2384         mutex_lock(&dev->struct_mutex);
2385
2386         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2387                                    &mode_cmd, obj)) {
2388                 DRM_DEBUG_KMS("intel fb init failed\n");
2389                 goto out_unref_obj;
2390         }
2391
2392         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2393         mutex_unlock(&dev->struct_mutex);
2394
2395         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2396         return true;
2397
2398 out_unref_obj:
2399         drm_gem_object_unreference(&obj->base);
2400         mutex_unlock(&dev->struct_mutex);
2401         return false;
2402 }
2403
2404 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2405                                  struct intel_plane_config *plane_config)
2406 {
2407         struct drm_device *dev = intel_crtc->base.dev;
2408         struct drm_crtc *c;
2409         struct intel_crtc *i;
2410         struct drm_i915_gem_object *obj;
2411
2412         if (!intel_crtc->base.primary->fb)
2413                 return;
2414
2415         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2416                 return;
2417
2418         kfree(intel_crtc->base.primary->fb);
2419         intel_crtc->base.primary->fb = NULL;
2420
2421         /*
2422          * Failed to alloc the obj, check to see if we should share
2423          * an fb with another CRTC instead
2424          */
2425         for_each_crtc(dev, c) {
2426                 i = to_intel_crtc(c);
2427
2428                 if (c == &intel_crtc->base)
2429                         continue;
2430
2431                 if (!i->active)
2432                         continue;
2433
2434                 obj = intel_fb_obj(c->primary->fb);
2435                 if (obj == NULL)
2436                         continue;
2437
2438                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2439                         drm_framebuffer_reference(c->primary->fb);
2440                         intel_crtc->base.primary->fb = c->primary->fb;
2441                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2442                         break;
2443                 }
2444         }
2445 }
2446
2447 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2448                                       struct drm_framebuffer *fb,
2449                                       int x, int y)
2450 {
2451         struct drm_device *dev = crtc->dev;
2452         struct drm_i915_private *dev_priv = dev->dev_private;
2453         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2454         struct drm_i915_gem_object *obj;
2455         int plane = intel_crtc->plane;
2456         unsigned long linear_offset;
2457         u32 dspcntr;
2458         u32 reg = DSPCNTR(plane);
2459         int pixel_size;
2460
2461         if (!intel_crtc->primary_enabled) {
2462                 I915_WRITE(reg, 0);
2463                 if (INTEL_INFO(dev)->gen >= 4)
2464                         I915_WRITE(DSPSURF(plane), 0);
2465                 else
2466                         I915_WRITE(DSPADDR(plane), 0);
2467                 POSTING_READ(reg);
2468                 return;
2469         }
2470
2471         obj = intel_fb_obj(fb);
2472         if (WARN_ON(obj == NULL))
2473                 return;
2474
2475         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2476
2477         dspcntr = DISPPLANE_GAMMA_ENABLE;
2478
2479         dspcntr |= DISPLAY_PLANE_ENABLE;
2480
2481         if (INTEL_INFO(dev)->gen < 4) {
2482                 if (intel_crtc->pipe == PIPE_B)
2483                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2484
2485                 /* pipesrc and dspsize control the size that is scaled from,
2486                  * which should always be the user's requested size.
2487                  */
2488                 I915_WRITE(DSPSIZE(plane),
2489                            ((intel_crtc->config.pipe_src_h - 1) << 16) |
2490                            (intel_crtc->config.pipe_src_w - 1));
2491                 I915_WRITE(DSPPOS(plane), 0);
2492         }
2493
2494         switch (fb->pixel_format) {
2495         case DRM_FORMAT_C8:
2496                 dspcntr |= DISPPLANE_8BPP;
2497                 break;
2498         case DRM_FORMAT_XRGB1555:
2499         case DRM_FORMAT_ARGB1555:
2500                 dspcntr |= DISPPLANE_BGRX555;
2501                 break;
2502         case DRM_FORMAT_RGB565:
2503                 dspcntr |= DISPPLANE_BGRX565;
2504                 break;
2505         case DRM_FORMAT_XRGB8888:
2506         case DRM_FORMAT_ARGB8888:
2507                 dspcntr |= DISPPLANE_BGRX888;
2508                 break;
2509         case DRM_FORMAT_XBGR8888:
2510         case DRM_FORMAT_ABGR8888:
2511                 dspcntr |= DISPPLANE_RGBX888;
2512                 break;
2513         case DRM_FORMAT_XRGB2101010:
2514         case DRM_FORMAT_ARGB2101010:
2515                 dspcntr |= DISPPLANE_BGRX101010;
2516                 break;
2517         case DRM_FORMAT_XBGR2101010:
2518         case DRM_FORMAT_ABGR2101010:
2519                 dspcntr |= DISPPLANE_RGBX101010;
2520                 break;
2521         default:
2522                 BUG();
2523         }
2524
2525         if (INTEL_INFO(dev)->gen >= 4 &&
2526             obj->tiling_mode != I915_TILING_NONE)
2527                 dspcntr |= DISPPLANE_TILED;
2528
2529         if (IS_G4X(dev))
2530                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2531
2532         linear_offset = y * fb->pitches[0] + x * pixel_size;
2533
2534         if (INTEL_INFO(dev)->gen >= 4) {
2535                 intel_crtc->dspaddr_offset =
2536                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2537                                                        pixel_size,
2538                                                        fb->pitches[0]);
2539                 linear_offset -= intel_crtc->dspaddr_offset;
2540         } else {
2541                 intel_crtc->dspaddr_offset = linear_offset;
2542         }
2543
2544         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2545                 dspcntr |= DISPPLANE_ROTATE_180;
2546
2547                 x += (intel_crtc->config.pipe_src_w - 1);
2548                 y += (intel_crtc->config.pipe_src_h - 1);
2549
2550                 /* Finding the last pixel of the last line of the display
2551                 data and adding to linear_offset*/
2552                 linear_offset +=
2553                         (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2554                         (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2555         }
2556
2557         I915_WRITE(reg, dspcntr);
2558
2559         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2560                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2561                       fb->pitches[0]);
2562         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2563         if (INTEL_INFO(dev)->gen >= 4) {
2564                 I915_WRITE(DSPSURF(plane),
2565                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2566                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2567                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2568         } else
2569                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2570         POSTING_READ(reg);
2571 }
2572
2573 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2574                                           struct drm_framebuffer *fb,
2575                                           int x, int y)
2576 {
2577         struct drm_device *dev = crtc->dev;
2578         struct drm_i915_private *dev_priv = dev->dev_private;
2579         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2580         struct drm_i915_gem_object *obj;
2581         int plane = intel_crtc->plane;
2582         unsigned long linear_offset;
2583         u32 dspcntr;
2584         u32 reg = DSPCNTR(plane);
2585         int pixel_size;
2586
2587         if (!intel_crtc->primary_enabled) {
2588                 I915_WRITE(reg, 0);
2589                 I915_WRITE(DSPSURF(plane), 0);
2590                 POSTING_READ(reg);
2591                 return;
2592         }
2593
2594         obj = intel_fb_obj(fb);
2595         if (WARN_ON(obj == NULL))
2596                 return;
2597
2598         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2599
2600         dspcntr = DISPPLANE_GAMMA_ENABLE;
2601
2602         dspcntr |= DISPLAY_PLANE_ENABLE;
2603
2604         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2605                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2606
2607         switch (fb->pixel_format) {
2608         case DRM_FORMAT_C8:
2609                 dspcntr |= DISPPLANE_8BPP;
2610                 break;
2611         case DRM_FORMAT_RGB565:
2612                 dspcntr |= DISPPLANE_BGRX565;
2613                 break;
2614         case DRM_FORMAT_XRGB8888:
2615         case DRM_FORMAT_ARGB8888:
2616                 dspcntr |= DISPPLANE_BGRX888;
2617                 break;
2618         case DRM_FORMAT_XBGR8888:
2619         case DRM_FORMAT_ABGR8888:
2620                 dspcntr |= DISPPLANE_RGBX888;
2621                 break;
2622         case DRM_FORMAT_XRGB2101010:
2623         case DRM_FORMAT_ARGB2101010:
2624                 dspcntr |= DISPPLANE_BGRX101010;
2625                 break;
2626         case DRM_FORMAT_XBGR2101010:
2627         case DRM_FORMAT_ABGR2101010:
2628                 dspcntr |= DISPPLANE_RGBX101010;
2629                 break;
2630         default:
2631                 BUG();
2632         }
2633
2634         if (obj->tiling_mode != I915_TILING_NONE)
2635                 dspcntr |= DISPPLANE_TILED;
2636
2637         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2638                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2639
2640         linear_offset = y * fb->pitches[0] + x * pixel_size;
2641         intel_crtc->dspaddr_offset =
2642                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2643                                                pixel_size,
2644                                                fb->pitches[0]);
2645         linear_offset -= intel_crtc->dspaddr_offset;
2646         if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2647                 dspcntr |= DISPPLANE_ROTATE_180;
2648
2649                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2650                         x += (intel_crtc->config.pipe_src_w - 1);
2651                         y += (intel_crtc->config.pipe_src_h - 1);
2652
2653                         /* Finding the last pixel of the last line of the display
2654                         data and adding to linear_offset*/
2655                         linear_offset +=
2656                                 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2657                                 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2658                 }
2659         }
2660
2661         I915_WRITE(reg, dspcntr);
2662
2663         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2664                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2665                       fb->pitches[0]);
2666         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2667         I915_WRITE(DSPSURF(plane),
2668                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2669         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2670                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2671         } else {
2672                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2673                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2674         }
2675         POSTING_READ(reg);
2676 }
2677
2678 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2679 static int
2680 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2681                            int x, int y, enum mode_set_atomic state)
2682 {
2683         struct drm_device *dev = crtc->dev;
2684         struct drm_i915_private *dev_priv = dev->dev_private;
2685
2686         if (dev_priv->display.disable_fbc)
2687                 dev_priv->display.disable_fbc(dev);
2688         intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2689
2690         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2691
2692         return 0;
2693 }
2694
2695 void intel_display_handle_reset(struct drm_device *dev)
2696 {
2697         struct drm_i915_private *dev_priv = dev->dev_private;
2698         struct drm_crtc *crtc;
2699
2700         /*
2701          * Flips in the rings have been nuked by the reset,
2702          * so complete all pending flips so that user space
2703          * will get its events and not get stuck.
2704          *
2705          * Also update the base address of all primary
2706          * planes to the the last fb to make sure we're
2707          * showing the correct fb after a reset.
2708          *
2709          * Need to make two loops over the crtcs so that we
2710          * don't try to grab a crtc mutex before the
2711          * pending_flip_queue really got woken up.
2712          */
2713
2714         for_each_crtc(dev, crtc) {
2715                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2716                 enum plane plane = intel_crtc->plane;
2717
2718                 intel_prepare_page_flip(dev, plane);
2719                 intel_finish_page_flip_plane(dev, plane);
2720         }
2721
2722         for_each_crtc(dev, crtc) {
2723                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2724
2725                 drm_modeset_lock(&crtc->mutex, NULL);
2726                 /*
2727                  * FIXME: Once we have proper support for primary planes (and
2728                  * disabling them without disabling the entire crtc) allow again
2729                  * a NULL crtc->primary->fb.
2730                  */
2731                 if (intel_crtc->active && crtc->primary->fb)
2732                         dev_priv->display.update_primary_plane(crtc,
2733                                                                crtc->primary->fb,
2734                                                                crtc->x,
2735                                                                crtc->y);
2736                 drm_modeset_unlock(&crtc->mutex);
2737         }
2738 }
2739
2740 static int
2741 intel_finish_fb(struct drm_framebuffer *old_fb)
2742 {
2743         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2744         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2745         bool was_interruptible = dev_priv->mm.interruptible;
2746         int ret;
2747
2748         /* Big Hammer, we also need to ensure that any pending
2749          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2750          * current scanout is retired before unpinning the old
2751          * framebuffer.
2752          *
2753          * This should only fail upon a hung GPU, in which case we
2754          * can safely continue.
2755          */
2756         dev_priv->mm.interruptible = false;
2757         ret = i915_gem_object_finish_gpu(obj);
2758         dev_priv->mm.interruptible = was_interruptible;
2759
2760         return ret;
2761 }
2762
2763 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2764 {
2765         struct drm_device *dev = crtc->dev;
2766         struct drm_i915_private *dev_priv = dev->dev_private;
2767         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2768         unsigned long flags;
2769         bool pending;
2770
2771         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2772             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2773                 return false;
2774
2775         spin_lock_irqsave(&dev->event_lock, flags);
2776         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2777         spin_unlock_irqrestore(&dev->event_lock, flags);
2778
2779         return pending;
2780 }
2781
2782 static int
2783 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2784                     struct drm_framebuffer *fb)
2785 {
2786         struct drm_device *dev = crtc->dev;
2787         struct drm_i915_private *dev_priv = dev->dev_private;
2788         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2789         enum pipe pipe = intel_crtc->pipe;
2790         struct drm_framebuffer *old_fb = crtc->primary->fb;
2791         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2792         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2793         int ret;
2794
2795         if (intel_crtc_has_pending_flip(crtc)) {
2796                 DRM_ERROR("pipe is still busy with an old pageflip\n");
2797                 return -EBUSY;
2798         }
2799
2800         /* no fb bound */
2801         if (!fb) {
2802                 DRM_ERROR("No FB bound\n");
2803                 return 0;
2804         }
2805
2806         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2807                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2808                           plane_name(intel_crtc->plane),
2809                           INTEL_INFO(dev)->num_pipes);
2810                 return -EINVAL;
2811         }
2812
2813         mutex_lock(&dev->struct_mutex);
2814         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2815         if (ret == 0)
2816                 i915_gem_track_fb(old_obj, obj,
2817                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
2818         mutex_unlock(&dev->struct_mutex);
2819         if (ret != 0) {
2820                 DRM_ERROR("pin & fence failed\n");
2821                 return ret;
2822         }
2823
2824         /*
2825          * Update pipe size and adjust fitter if needed: the reason for this is
2826          * that in compute_mode_changes we check the native mode (not the pfit
2827          * mode) to see if we can flip rather than do a full mode set. In the
2828          * fastboot case, we'll flip, but if we don't update the pipesrc and
2829          * pfit state, we'll end up with a big fb scanned out into the wrong
2830          * sized surface.
2831          *
2832          * To fix this properly, we need to hoist the checks up into
2833          * compute_mode_changes (or above), check the actual pfit state and
2834          * whether the platform allows pfit disable with pipe active, and only
2835          * then update the pipesrc and pfit state, even on the flip path.
2836          */
2837         if (i915.fastboot) {
2838                 const struct drm_display_mode *adjusted_mode =
2839                         &intel_crtc->config.adjusted_mode;
2840
2841                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2842                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2843                            (adjusted_mode->crtc_vdisplay - 1));
2844                 if (!intel_crtc->config.pch_pfit.enabled &&
2845                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2846                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2847                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2848                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2849                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2850                 }
2851                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2852                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2853         }
2854
2855         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2856
2857         if (intel_crtc->active)
2858                 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2859
2860         crtc->primary->fb = fb;
2861         crtc->x = x;
2862         crtc->y = y;
2863
2864         if (old_fb) {
2865                 if (intel_crtc->active && old_fb != fb)
2866                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2867                 mutex_lock(&dev->struct_mutex);
2868                 intel_unpin_fb_obj(old_obj);
2869                 mutex_unlock(&dev->struct_mutex);
2870         }
2871
2872         mutex_lock(&dev->struct_mutex);
2873         intel_update_fbc(dev);
2874         mutex_unlock(&dev->struct_mutex);
2875
2876         return 0;
2877 }
2878
2879 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2880 {
2881         struct drm_device *dev = crtc->dev;
2882         struct drm_i915_private *dev_priv = dev->dev_private;
2883         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2884         int pipe = intel_crtc->pipe;
2885         u32 reg, temp;
2886
2887         /* enable normal train */
2888         reg = FDI_TX_CTL(pipe);
2889         temp = I915_READ(reg);
2890         if (IS_IVYBRIDGE(dev)) {
2891                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2892                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2893         } else {
2894                 temp &= ~FDI_LINK_TRAIN_NONE;
2895                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2896         }
2897         I915_WRITE(reg, temp);
2898
2899         reg = FDI_RX_CTL(pipe);
2900         temp = I915_READ(reg);
2901         if (HAS_PCH_CPT(dev)) {
2902                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2903                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2904         } else {
2905                 temp &= ~FDI_LINK_TRAIN_NONE;
2906                 temp |= FDI_LINK_TRAIN_NONE;
2907         }
2908         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2909
2910         /* wait one idle pattern time */
2911         POSTING_READ(reg);
2912         udelay(1000);
2913
2914         /* IVB wants error correction enabled */
2915         if (IS_IVYBRIDGE(dev))
2916                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2917                            FDI_FE_ERRC_ENABLE);
2918 }
2919
2920 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2921 {
2922         return crtc->base.enabled && crtc->active &&
2923                 crtc->config.has_pch_encoder;
2924 }
2925
2926 static void ivb_modeset_global_resources(struct drm_device *dev)
2927 {
2928         struct drm_i915_private *dev_priv = dev->dev_private;
2929         struct intel_crtc *pipe_B_crtc =
2930                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2931         struct intel_crtc *pipe_C_crtc =
2932                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2933         uint32_t temp;
2934
2935         /*
2936          * When everything is off disable fdi C so that we could enable fdi B
2937          * with all lanes. Note that we don't care about enabled pipes without
2938          * an enabled pch encoder.
2939          */
2940         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2941             !pipe_has_enabled_pch(pipe_C_crtc)) {
2942                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2943                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2944
2945                 temp = I915_READ(SOUTH_CHICKEN1);
2946                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2947                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2948                 I915_WRITE(SOUTH_CHICKEN1, temp);
2949         }
2950 }
2951
2952 /* The FDI link training functions for ILK/Ibexpeak. */
2953 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2954 {
2955         struct drm_device *dev = crtc->dev;
2956         struct drm_i915_private *dev_priv = dev->dev_private;
2957         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2958         int pipe = intel_crtc->pipe;
2959         u32 reg, temp, tries;
2960
2961         /* FDI needs bits from pipe first */
2962         assert_pipe_enabled(dev_priv, pipe);
2963
2964         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2965            for train result */
2966         reg = FDI_RX_IMR(pipe);
2967         temp = I915_READ(reg);
2968         temp &= ~FDI_RX_SYMBOL_LOCK;
2969         temp &= ~FDI_RX_BIT_LOCK;
2970         I915_WRITE(reg, temp);
2971         I915_READ(reg);
2972         udelay(150);
2973
2974         /* enable CPU FDI TX and PCH FDI RX */
2975         reg = FDI_TX_CTL(pipe);
2976         temp = I915_READ(reg);
2977         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2978         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2979         temp &= ~FDI_LINK_TRAIN_NONE;
2980         temp |= FDI_LINK_TRAIN_PATTERN_1;
2981         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2982
2983         reg = FDI_RX_CTL(pipe);
2984         temp = I915_READ(reg);
2985         temp &= ~FDI_LINK_TRAIN_NONE;
2986         temp |= FDI_LINK_TRAIN_PATTERN_1;
2987         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2988
2989         POSTING_READ(reg);
2990         udelay(150);
2991
2992         /* Ironlake workaround, enable clock pointer after FDI enable*/
2993         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2994         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2995                    FDI_RX_PHASE_SYNC_POINTER_EN);
2996
2997         reg = FDI_RX_IIR(pipe);
2998         for (tries = 0; tries < 5; tries++) {
2999                 temp = I915_READ(reg);
3000                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3001
3002                 if ((temp & FDI_RX_BIT_LOCK)) {
3003                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3004                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3005                         break;
3006                 }
3007         }
3008         if (tries == 5)
3009                 DRM_ERROR("FDI train 1 fail!\n");
3010
3011         /* Train 2 */
3012         reg = FDI_TX_CTL(pipe);
3013         temp = I915_READ(reg);
3014         temp &= ~FDI_LINK_TRAIN_NONE;
3015         temp |= FDI_LINK_TRAIN_PATTERN_2;
3016         I915_WRITE(reg, temp);
3017
3018         reg = FDI_RX_CTL(pipe);
3019         temp = I915_READ(reg);
3020         temp &= ~FDI_LINK_TRAIN_NONE;
3021         temp |= FDI_LINK_TRAIN_PATTERN_2;
3022         I915_WRITE(reg, temp);
3023
3024         POSTING_READ(reg);
3025         udelay(150);
3026
3027         reg = FDI_RX_IIR(pipe);
3028         for (tries = 0; tries < 5; tries++) {
3029                 temp = I915_READ(reg);
3030                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3031
3032                 if (temp & FDI_RX_SYMBOL_LOCK) {
3033                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3034                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3035                         break;
3036                 }
3037         }
3038         if (tries == 5)
3039                 DRM_ERROR("FDI train 2 fail!\n");
3040
3041         DRM_DEBUG_KMS("FDI train done\n");
3042
3043 }
3044
3045 static const int snb_b_fdi_train_param[] = {
3046         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3047         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3048         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3049         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3050 };
3051
3052 /* The FDI link training functions for SNB/Cougarpoint. */
3053 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3054 {
3055         struct drm_device *dev = crtc->dev;
3056         struct drm_i915_private *dev_priv = dev->dev_private;
3057         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3058         int pipe = intel_crtc->pipe;
3059         u32 reg, temp, i, retry;
3060
3061         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3062            for train result */
3063         reg = FDI_RX_IMR(pipe);
3064         temp = I915_READ(reg);
3065         temp &= ~FDI_RX_SYMBOL_LOCK;
3066         temp &= ~FDI_RX_BIT_LOCK;
3067         I915_WRITE(reg, temp);
3068
3069         POSTING_READ(reg);
3070         udelay(150);
3071
3072         /* enable CPU FDI TX and PCH FDI RX */
3073         reg = FDI_TX_CTL(pipe);
3074         temp = I915_READ(reg);
3075         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3076         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3077         temp &= ~FDI_LINK_TRAIN_NONE;
3078         temp |= FDI_LINK_TRAIN_PATTERN_1;
3079         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3080         /* SNB-B */
3081         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3082         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3083
3084         I915_WRITE(FDI_RX_MISC(pipe),
3085                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3086
3087         reg = FDI_RX_CTL(pipe);
3088         temp = I915_READ(reg);
3089         if (HAS_PCH_CPT(dev)) {
3090                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3091                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3092         } else {
3093                 temp &= ~FDI_LINK_TRAIN_NONE;
3094                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3095         }
3096         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3097
3098         POSTING_READ(reg);
3099         udelay(150);
3100
3101         for (i = 0; i < 4; i++) {
3102                 reg = FDI_TX_CTL(pipe);
3103                 temp = I915_READ(reg);
3104                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3105                 temp |= snb_b_fdi_train_param[i];
3106                 I915_WRITE(reg, temp);
3107
3108                 POSTING_READ(reg);
3109                 udelay(500);
3110
3111                 for (retry = 0; retry < 5; retry++) {
3112                         reg = FDI_RX_IIR(pipe);
3113                         temp = I915_READ(reg);
3114                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3115                         if (temp & FDI_RX_BIT_LOCK) {
3116                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3117                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3118                                 break;
3119                         }
3120                         udelay(50);
3121                 }
3122                 if (retry < 5)
3123                         break;
3124         }
3125         if (i == 4)
3126                 DRM_ERROR("FDI train 1 fail!\n");
3127
3128         /* Train 2 */
3129         reg = FDI_TX_CTL(pipe);
3130         temp = I915_READ(reg);
3131         temp &= ~FDI_LINK_TRAIN_NONE;
3132         temp |= FDI_LINK_TRAIN_PATTERN_2;
3133         if (IS_GEN6(dev)) {
3134                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3135                 /* SNB-B */
3136                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3137         }
3138         I915_WRITE(reg, temp);
3139
3140         reg = FDI_RX_CTL(pipe);
3141         temp = I915_READ(reg);
3142         if (HAS_PCH_CPT(dev)) {
3143                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3144                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3145         } else {
3146                 temp &= ~FDI_LINK_TRAIN_NONE;
3147                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3148         }
3149         I915_WRITE(reg, temp);
3150
3151         POSTING_READ(reg);
3152         udelay(150);
3153
3154         for (i = 0; i < 4; i++) {
3155                 reg = FDI_TX_CTL(pipe);
3156                 temp = I915_READ(reg);
3157                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3158                 temp |= snb_b_fdi_train_param[i];
3159                 I915_WRITE(reg, temp);
3160
3161                 POSTING_READ(reg);
3162                 udelay(500);
3163
3164                 for (retry = 0; retry < 5; retry++) {
3165                         reg = FDI_RX_IIR(pipe);
3166                         temp = I915_READ(reg);
3167                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3168                         if (temp & FDI_RX_SYMBOL_LOCK) {
3169                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3170                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3171                                 break;
3172                         }
3173                         udelay(50);
3174                 }
3175                 if (retry < 5)
3176                         break;
3177         }
3178         if (i == 4)
3179                 DRM_ERROR("FDI train 2 fail!\n");
3180
3181         DRM_DEBUG_KMS("FDI train done.\n");
3182 }
3183
3184 /* Manual link training for Ivy Bridge A0 parts */
3185 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3186 {
3187         struct drm_device *dev = crtc->dev;
3188         struct drm_i915_private *dev_priv = dev->dev_private;
3189         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3190         int pipe = intel_crtc->pipe;
3191         u32 reg, temp, i, j;
3192
3193         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3194            for train result */
3195         reg = FDI_RX_IMR(pipe);
3196         temp = I915_READ(reg);
3197         temp &= ~FDI_RX_SYMBOL_LOCK;
3198         temp &= ~FDI_RX_BIT_LOCK;
3199         I915_WRITE(reg, temp);
3200
3201         POSTING_READ(reg);
3202         udelay(150);
3203
3204         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3205                       I915_READ(FDI_RX_IIR(pipe)));
3206
3207         /* Try each vswing and preemphasis setting twice before moving on */
3208         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3209                 /* disable first in case we need to retry */
3210                 reg = FDI_TX_CTL(pipe);
3211                 temp = I915_READ(reg);
3212                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3213                 temp &= ~FDI_TX_ENABLE;
3214                 I915_WRITE(reg, temp);
3215
3216                 reg = FDI_RX_CTL(pipe);
3217                 temp = I915_READ(reg);
3218                 temp &= ~FDI_LINK_TRAIN_AUTO;
3219                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3220                 temp &= ~FDI_RX_ENABLE;
3221                 I915_WRITE(reg, temp);
3222
3223                 /* enable CPU FDI TX and PCH FDI RX */
3224                 reg = FDI_TX_CTL(pipe);
3225                 temp = I915_READ(reg);
3226                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3227                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3228                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3229                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3230                 temp |= snb_b_fdi_train_param[j/2];
3231                 temp |= FDI_COMPOSITE_SYNC;
3232                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3233
3234                 I915_WRITE(FDI_RX_MISC(pipe),
3235                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3236
3237                 reg = FDI_RX_CTL(pipe);
3238                 temp = I915_READ(reg);
3239                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3240                 temp |= FDI_COMPOSITE_SYNC;
3241                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3242
3243                 POSTING_READ(reg);
3244                 udelay(1); /* should be 0.5us */
3245
3246                 for (i = 0; i < 4; i++) {
3247                         reg = FDI_RX_IIR(pipe);
3248                         temp = I915_READ(reg);
3249                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3250
3251                         if (temp & FDI_RX_BIT_LOCK ||
3252                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3253                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3254                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3255                                               i);
3256                                 break;
3257                         }
3258                         udelay(1); /* should be 0.5us */
3259                 }
3260                 if (i == 4) {
3261                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3262                         continue;
3263                 }
3264
3265                 /* Train 2 */
3266                 reg = FDI_TX_CTL(pipe);
3267                 temp = I915_READ(reg);
3268                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3269                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3270                 I915_WRITE(reg, temp);
3271
3272                 reg = FDI_RX_CTL(pipe);
3273                 temp = I915_READ(reg);
3274                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3275                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3276                 I915_WRITE(reg, temp);
3277
3278                 POSTING_READ(reg);
3279                 udelay(2); /* should be 1.5us */
3280
3281                 for (i = 0; i < 4; i++) {
3282                         reg = FDI_RX_IIR(pipe);
3283                         temp = I915_READ(reg);
3284                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3285
3286                         if (temp & FDI_RX_SYMBOL_LOCK ||
3287                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3288                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3289                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3290                                               i);
3291                                 goto train_done;
3292                         }
3293                         udelay(2); /* should be 1.5us */
3294                 }
3295                 if (i == 4)
3296                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3297         }
3298
3299 train_done:
3300         DRM_DEBUG_KMS("FDI train done.\n");
3301 }
3302
3303 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3304 {
3305         struct drm_device *dev = intel_crtc->base.dev;
3306         struct drm_i915_private *dev_priv = dev->dev_private;
3307         int pipe = intel_crtc->pipe;
3308         u32 reg, temp;
3309
3310
3311         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3312         reg = FDI_RX_CTL(pipe);
3313         temp = I915_READ(reg);
3314         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3315         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3316         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3317         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3318
3319         POSTING_READ(reg);
3320         udelay(200);
3321
3322         /* Switch from Rawclk to PCDclk */
3323         temp = I915_READ(reg);
3324         I915_WRITE(reg, temp | FDI_PCDCLK);
3325
3326         POSTING_READ(reg);
3327         udelay(200);
3328
3329         /* Enable CPU FDI TX PLL, always on for Ironlake */
3330         reg = FDI_TX_CTL(pipe);
3331         temp = I915_READ(reg);
3332         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3333                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3334
3335                 POSTING_READ(reg);
3336                 udelay(100);
3337         }
3338 }
3339
3340 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3341 {
3342         struct drm_device *dev = intel_crtc->base.dev;
3343         struct drm_i915_private *dev_priv = dev->dev_private;
3344         int pipe = intel_crtc->pipe;
3345         u32 reg, temp;
3346
3347         /* Switch from PCDclk to Rawclk */
3348         reg = FDI_RX_CTL(pipe);
3349         temp = I915_READ(reg);
3350         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3351
3352         /* Disable CPU FDI TX PLL */
3353         reg = FDI_TX_CTL(pipe);
3354         temp = I915_READ(reg);
3355         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3356
3357         POSTING_READ(reg);
3358         udelay(100);
3359
3360         reg = FDI_RX_CTL(pipe);
3361         temp = I915_READ(reg);
3362         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3363
3364         /* Wait for the clocks to turn off. */
3365         POSTING_READ(reg);
3366         udelay(100);
3367 }
3368
3369 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3370 {
3371         struct drm_device *dev = crtc->dev;
3372         struct drm_i915_private *dev_priv = dev->dev_private;
3373         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3374         int pipe = intel_crtc->pipe;
3375         u32 reg, temp;
3376
3377         /* disable CPU FDI tx and PCH FDI rx */
3378         reg = FDI_TX_CTL(pipe);
3379         temp = I915_READ(reg);
3380         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3381         POSTING_READ(reg);
3382
3383         reg = FDI_RX_CTL(pipe);
3384         temp = I915_READ(reg);
3385         temp &= ~(0x7 << 16);
3386         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3387         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3388
3389         POSTING_READ(reg);
3390         udelay(100);
3391
3392         /* Ironlake workaround, disable clock pointer after downing FDI */
3393         if (HAS_PCH_IBX(dev))
3394                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3395
3396         /* still set train pattern 1 */
3397         reg = FDI_TX_CTL(pipe);
3398         temp = I915_READ(reg);
3399         temp &= ~FDI_LINK_TRAIN_NONE;
3400         temp |= FDI_LINK_TRAIN_PATTERN_1;
3401         I915_WRITE(reg, temp);
3402
3403         reg = FDI_RX_CTL(pipe);
3404         temp = I915_READ(reg);
3405         if (HAS_PCH_CPT(dev)) {
3406                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3407                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3408         } else {
3409                 temp &= ~FDI_LINK_TRAIN_NONE;
3410                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3411         }
3412         /* BPC in FDI rx is consistent with that in PIPECONF */
3413         temp &= ~(0x07 << 16);
3414         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3415         I915_WRITE(reg, temp);
3416
3417         POSTING_READ(reg);
3418         udelay(100);
3419 }
3420
3421 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3422 {
3423         struct intel_crtc *crtc;
3424
3425         /* Note that we don't need to be called with mode_config.lock here
3426          * as our list of CRTC objects is static for the lifetime of the
3427          * device and so cannot disappear as we iterate. Similarly, we can
3428          * happily treat the predicates as racy, atomic checks as userspace
3429          * cannot claim and pin a new fb without at least acquring the
3430          * struct_mutex and so serialising with us.
3431          */
3432         for_each_intel_crtc(dev, crtc) {
3433                 if (atomic_read(&crtc->unpin_work_count) == 0)
3434                         continue;
3435
3436                 if (crtc->unpin_work)
3437                         intel_wait_for_vblank(dev, crtc->pipe);
3438
3439                 return true;
3440         }
3441
3442         return false;
3443 }
3444
3445 static void page_flip_completed(struct intel_crtc *intel_crtc)
3446 {
3447         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3448         struct intel_unpin_work *work = intel_crtc->unpin_work;
3449
3450         /* ensure that the unpin work is consistent wrt ->pending. */
3451         smp_rmb();
3452         intel_crtc->unpin_work = NULL;
3453
3454         if (work->event)
3455                 drm_send_vblank_event(intel_crtc->base.dev,
3456                                       intel_crtc->pipe,
3457                                       work->event);
3458
3459         drm_crtc_vblank_put(&intel_crtc->base);
3460
3461         wake_up_all(&dev_priv->pending_flip_queue);
3462         queue_work(dev_priv->wq, &work->work);
3463
3464         trace_i915_flip_complete(intel_crtc->plane,
3465                                  work->pending_flip_obj);
3466 }
3467
3468 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3469 {
3470         struct drm_device *dev = crtc->dev;
3471         struct drm_i915_private *dev_priv = dev->dev_private;
3472
3473         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3474         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3475                                        !intel_crtc_has_pending_flip(crtc),
3476                                        60*HZ) == 0)) {
3477                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3478                 unsigned long flags;
3479
3480                 spin_lock_irqsave(&dev->event_lock, flags);
3481                 if (intel_crtc->unpin_work) {
3482                         WARN_ONCE(1, "Removing stuck page flip\n");
3483                         page_flip_completed(intel_crtc);
3484                 }
3485                 spin_unlock_irqrestore(&dev->event_lock, flags);
3486         }
3487
3488         if (crtc->primary->fb) {
3489                 mutex_lock(&dev->struct_mutex);
3490                 intel_finish_fb(crtc->primary->fb);
3491                 mutex_unlock(&dev->struct_mutex);
3492         }
3493 }
3494
3495 /* Program iCLKIP clock to the desired frequency */
3496 static void lpt_program_iclkip(struct drm_crtc *crtc)
3497 {
3498         struct drm_device *dev = crtc->dev;
3499         struct drm_i915_private *dev_priv = dev->dev_private;
3500         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3501         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3502         u32 temp;
3503
3504         mutex_lock(&dev_priv->dpio_lock);
3505
3506         /* It is necessary to ungate the pixclk gate prior to programming
3507          * the divisors, and gate it back when it is done.
3508          */
3509         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3510
3511         /* Disable SSCCTL */
3512         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3513                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3514                                 SBI_SSCCTL_DISABLE,
3515                         SBI_ICLK);
3516
3517         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3518         if (clock == 20000) {
3519                 auxdiv = 1;
3520                 divsel = 0x41;
3521                 phaseinc = 0x20;
3522         } else {
3523                 /* The iCLK virtual clock root frequency is in MHz,
3524                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3525                  * divisors, it is necessary to divide one by another, so we
3526                  * convert the virtual clock precision to KHz here for higher
3527                  * precision.
3528                  */
3529                 u32 iclk_virtual_root_freq = 172800 * 1000;
3530                 u32 iclk_pi_range = 64;
3531                 u32 desired_divisor, msb_divisor_value, pi_value;
3532
3533                 desired_divisor = (iclk_virtual_root_freq / clock);
3534                 msb_divisor_value = desired_divisor / iclk_pi_range;
3535                 pi_value = desired_divisor % iclk_pi_range;
3536
3537                 auxdiv = 0;
3538                 divsel = msb_divisor_value - 2;
3539                 phaseinc = pi_value;
3540         }
3541
3542         /* This should not happen with any sane values */
3543         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3544                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3545         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3546                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3547
3548         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3549                         clock,
3550                         auxdiv,
3551                         divsel,
3552                         phasedir,
3553                         phaseinc);
3554
3555         /* Program SSCDIVINTPHASE6 */
3556         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3557         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3558         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3559         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3560         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3561         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3562         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3563         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3564
3565         /* Program SSCAUXDIV */
3566         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3567         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3568         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3569         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3570
3571         /* Enable modulator and associated divider */
3572         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3573         temp &= ~SBI_SSCCTL_DISABLE;
3574         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3575
3576         /* Wait for initialization time */
3577         udelay(24);
3578
3579         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3580
3581         mutex_unlock(&dev_priv->dpio_lock);
3582 }
3583
3584 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3585                                                 enum pipe pch_transcoder)
3586 {
3587         struct drm_device *dev = crtc->base.dev;
3588         struct drm_i915_private *dev_priv = dev->dev_private;
3589         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3590
3591         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3592                    I915_READ(HTOTAL(cpu_transcoder)));
3593         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3594                    I915_READ(HBLANK(cpu_transcoder)));
3595         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3596                    I915_READ(HSYNC(cpu_transcoder)));
3597
3598         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3599                    I915_READ(VTOTAL(cpu_transcoder)));
3600         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3601                    I915_READ(VBLANK(cpu_transcoder)));
3602         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3603                    I915_READ(VSYNC(cpu_transcoder)));
3604         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3605                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3606 }
3607
3608 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3609 {
3610         struct drm_i915_private *dev_priv = dev->dev_private;
3611         uint32_t temp;
3612
3613         temp = I915_READ(SOUTH_CHICKEN1);
3614         if (temp & FDI_BC_BIFURCATION_SELECT)
3615                 return;
3616
3617         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3618         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3619
3620         temp |= FDI_BC_BIFURCATION_SELECT;
3621         DRM_DEBUG_KMS("enabling fdi C rx\n");
3622         I915_WRITE(SOUTH_CHICKEN1, temp);
3623         POSTING_READ(SOUTH_CHICKEN1);
3624 }
3625
3626 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3627 {
3628         struct drm_device *dev = intel_crtc->base.dev;
3629         struct drm_i915_private *dev_priv = dev->dev_private;
3630
3631         switch (intel_crtc->pipe) {
3632         case PIPE_A:
3633                 break;
3634         case PIPE_B:
3635                 if (intel_crtc->config.fdi_lanes > 2)
3636                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3637                 else
3638                         cpt_enable_fdi_bc_bifurcation(dev);
3639
3640                 break;
3641         case PIPE_C:
3642                 cpt_enable_fdi_bc_bifurcation(dev);
3643
3644                 break;
3645         default:
3646                 BUG();
3647         }
3648 }
3649
3650 /*
3651  * Enable PCH resources required for PCH ports:
3652  *   - PCH PLLs
3653  *   - FDI training & RX/TX
3654  *   - update transcoder timings
3655  *   - DP transcoding bits
3656  *   - transcoder
3657  */
3658 static void ironlake_pch_enable(struct drm_crtc *crtc)
3659 {
3660         struct drm_device *dev = crtc->dev;
3661         struct drm_i915_private *dev_priv = dev->dev_private;
3662         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3663         int pipe = intel_crtc->pipe;
3664         u32 reg, temp;
3665
3666         assert_pch_transcoder_disabled(dev_priv, pipe);
3667
3668         if (IS_IVYBRIDGE(dev))
3669                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3670
3671         /* Write the TU size bits before fdi link training, so that error
3672          * detection works. */
3673         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3674                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3675
3676         /* For PCH output, training FDI link */
3677         dev_priv->display.fdi_link_train(crtc);
3678
3679         /* We need to program the right clock selection before writing the pixel
3680          * mutliplier into the DPLL. */
3681         if (HAS_PCH_CPT(dev)) {
3682                 u32 sel;
3683
3684                 temp = I915_READ(PCH_DPLL_SEL);
3685                 temp |= TRANS_DPLL_ENABLE(pipe);
3686                 sel = TRANS_DPLLB_SEL(pipe);
3687                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3688                         temp |= sel;
3689                 else
3690                         temp &= ~sel;
3691                 I915_WRITE(PCH_DPLL_SEL, temp);
3692         }
3693
3694         /* XXX: pch pll's can be enabled any time before we enable the PCH
3695          * transcoder, and we actually should do this to not upset any PCH
3696          * transcoder that already use the clock when we share it.
3697          *
3698          * Note that enable_shared_dpll tries to do the right thing, but
3699          * get_shared_dpll unconditionally resets the pll - we need that to have
3700          * the right LVDS enable sequence. */
3701         intel_enable_shared_dpll(intel_crtc);
3702
3703         /* set transcoder timing, panel must allow it */
3704         assert_panel_unlocked(dev_priv, pipe);
3705         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3706
3707         intel_fdi_normal_train(crtc);
3708
3709         /* For PCH DP, enable TRANS_DP_CTL */
3710         if (HAS_PCH_CPT(dev) &&
3711             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3712              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3713                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3714                 reg = TRANS_DP_CTL(pipe);
3715                 temp = I915_READ(reg);
3716                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3717                           TRANS_DP_SYNC_MASK |
3718                           TRANS_DP_BPC_MASK);
3719                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3720                          TRANS_DP_ENH_FRAMING);
3721                 temp |= bpc << 9; /* same format but at 11:9 */
3722
3723                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3724                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3725                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3726                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3727
3728                 switch (intel_trans_dp_port_sel(crtc)) {
3729                 case PCH_DP_B:
3730                         temp |= TRANS_DP_PORT_SEL_B;
3731                         break;
3732                 case PCH_DP_C:
3733                         temp |= TRANS_DP_PORT_SEL_C;
3734                         break;
3735                 case PCH_DP_D:
3736                         temp |= TRANS_DP_PORT_SEL_D;
3737                         break;
3738                 default:
3739                         BUG();
3740                 }
3741
3742                 I915_WRITE(reg, temp);
3743         }
3744
3745         ironlake_enable_pch_transcoder(dev_priv, pipe);
3746 }
3747
3748 static void lpt_pch_enable(struct drm_crtc *crtc)
3749 {
3750         struct drm_device *dev = crtc->dev;
3751         struct drm_i915_private *dev_priv = dev->dev_private;
3752         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3753         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3754
3755         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3756
3757         lpt_program_iclkip(crtc);
3758
3759         /* Set transcoder timing. */
3760         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3761
3762         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3763 }
3764
3765 void intel_put_shared_dpll(struct intel_crtc *crtc)
3766 {
3767         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3768
3769         if (pll == NULL)
3770                 return;
3771
3772         if (pll->refcount == 0) {
3773                 WARN(1, "bad %s refcount\n", pll->name);
3774                 return;
3775         }
3776
3777         if (--pll->refcount == 0) {
3778                 WARN_ON(pll->on);
3779                 WARN_ON(pll->active);
3780         }
3781
3782         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3783 }
3784
3785 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3786 {
3787         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3788         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3789         enum intel_dpll_id i;
3790
3791         if (pll) {
3792                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3793                               crtc->base.base.id, pll->name);
3794                 intel_put_shared_dpll(crtc);
3795         }
3796
3797         if (HAS_PCH_IBX(dev_priv->dev)) {
3798                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3799                 i = (enum intel_dpll_id) crtc->pipe;
3800                 pll = &dev_priv->shared_dplls[i];
3801
3802                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3803                               crtc->base.base.id, pll->name);
3804
3805                 WARN_ON(pll->refcount);
3806
3807                 goto found;
3808         }
3809
3810         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3811                 pll = &dev_priv->shared_dplls[i];
3812
3813                 /* Only want to check enabled timings first */
3814                 if (pll->refcount == 0)
3815                         continue;
3816
3817                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3818                            sizeof(pll->hw_state)) == 0) {
3819                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3820                                       crtc->base.base.id,
3821                                       pll->name, pll->refcount, pll->active);
3822
3823                         goto found;
3824                 }
3825         }
3826
3827         /* Ok no matching timings, maybe there's a free one? */
3828         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3829                 pll = &dev_priv->shared_dplls[i];
3830                 if (pll->refcount == 0) {
3831                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3832                                       crtc->base.base.id, pll->name);
3833                         goto found;
3834                 }
3835         }
3836
3837         return NULL;
3838
3839 found:
3840         if (pll->refcount == 0)
3841                 pll->hw_state = crtc->config.dpll_hw_state;
3842
3843         crtc->config.shared_dpll = i;
3844         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3845                          pipe_name(crtc->pipe));
3846
3847         pll->refcount++;
3848
3849         return pll;
3850 }
3851
3852 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3853 {
3854         struct drm_i915_private *dev_priv = dev->dev_private;
3855         int dslreg = PIPEDSL(pipe);
3856         u32 temp;
3857
3858         temp = I915_READ(dslreg);
3859         udelay(500);
3860         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3861                 if (wait_for(I915_READ(dslreg) != temp, 5))
3862                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3863         }
3864 }
3865
3866 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3867 {
3868         struct drm_device *dev = crtc->base.dev;
3869         struct drm_i915_private *dev_priv = dev->dev_private;
3870         int pipe = crtc->pipe;
3871
3872         if (crtc->config.pch_pfit.enabled) {
3873                 /* Force use of hard-coded filter coefficients
3874                  * as some pre-programmed values are broken,
3875                  * e.g. x201.
3876                  */
3877                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3878                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3879                                                  PF_PIPE_SEL_IVB(pipe));
3880                 else
3881                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3882                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3883                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3884         }
3885 }
3886
3887 static void intel_enable_planes(struct drm_crtc *crtc)
3888 {
3889         struct drm_device *dev = crtc->dev;
3890         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3891         struct drm_plane *plane;
3892         struct intel_plane *intel_plane;
3893
3894         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3895                 intel_plane = to_intel_plane(plane);
3896                 if (intel_plane->pipe == pipe)
3897                         intel_plane_restore(&intel_plane->base);
3898         }
3899 }
3900
3901 static void intel_disable_planes(struct drm_crtc *crtc)
3902 {
3903         struct drm_device *dev = crtc->dev;
3904         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3905         struct drm_plane *plane;
3906         struct intel_plane *intel_plane;
3907
3908         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3909                 intel_plane = to_intel_plane(plane);
3910                 if (intel_plane->pipe == pipe)
3911                         intel_plane_disable(&intel_plane->base);
3912         }
3913 }
3914
3915 void hsw_enable_ips(struct intel_crtc *crtc)
3916 {
3917         struct drm_device *dev = crtc->base.dev;
3918         struct drm_i915_private *dev_priv = dev->dev_private;
3919
3920         if (!crtc->config.ips_enabled)
3921                 return;
3922
3923         /* We can only enable IPS after we enable a plane and wait for a vblank */
3924         intel_wait_for_vblank(dev, crtc->pipe);
3925
3926         assert_plane_enabled(dev_priv, crtc->plane);
3927         if (IS_BROADWELL(dev)) {
3928                 mutex_lock(&dev_priv->rps.hw_lock);
3929                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3930                 mutex_unlock(&dev_priv->rps.hw_lock);
3931                 /* Quoting Art Runyan: "its not safe to expect any particular
3932                  * value in IPS_CTL bit 31 after enabling IPS through the
3933                  * mailbox." Moreover, the mailbox may return a bogus state,
3934                  * so we need to just enable it and continue on.
3935                  */
3936         } else {
3937                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3938                 /* The bit only becomes 1 in the next vblank, so this wait here
3939                  * is essentially intel_wait_for_vblank. If we don't have this
3940                  * and don't wait for vblanks until the end of crtc_enable, then
3941                  * the HW state readout code will complain that the expected
3942                  * IPS_CTL value is not the one we read. */
3943                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3944                         DRM_ERROR("Timed out waiting for IPS enable\n");
3945         }
3946 }
3947
3948 void hsw_disable_ips(struct intel_crtc *crtc)
3949 {
3950         struct drm_device *dev = crtc->base.dev;
3951         struct drm_i915_private *dev_priv = dev->dev_private;
3952
3953         if (!crtc->config.ips_enabled)
3954                 return;
3955
3956         assert_plane_enabled(dev_priv, crtc->plane);
3957         if (IS_BROADWELL(dev)) {
3958                 mutex_lock(&dev_priv->rps.hw_lock);
3959                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3960                 mutex_unlock(&dev_priv->rps.hw_lock);
3961                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3962                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3963                         DRM_ERROR("Timed out waiting for IPS disable\n");
3964         } else {
3965                 I915_WRITE(IPS_CTL, 0);
3966                 POSTING_READ(IPS_CTL);
3967         }
3968
3969         /* We need to wait for a vblank before we can disable the plane. */
3970         intel_wait_for_vblank(dev, crtc->pipe);
3971 }
3972
3973 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3974 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3975 {
3976         struct drm_device *dev = crtc->dev;
3977         struct drm_i915_private *dev_priv = dev->dev_private;
3978         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3979         enum pipe pipe = intel_crtc->pipe;
3980         int palreg = PALETTE(pipe);
3981         int i;
3982         bool reenable_ips = false;
3983
3984         /* The clocks have to be on to load the palette. */
3985         if (!crtc->enabled || !intel_crtc->active)
3986                 return;
3987
3988         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3989                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3990                         assert_dsi_pll_enabled(dev_priv);
3991                 else
3992                         assert_pll_enabled(dev_priv, pipe);
3993         }
3994
3995         /* use legacy palette for Ironlake */
3996         if (!HAS_GMCH_DISPLAY(dev))
3997                 palreg = LGC_PALETTE(pipe);
3998
3999         /* Workaround : Do not read or write the pipe palette/gamma data while
4000          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4001          */
4002         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4003             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4004              GAMMA_MODE_MODE_SPLIT)) {
4005                 hsw_disable_ips(intel_crtc);
4006                 reenable_ips = true;
4007         }
4008
4009         for (i = 0; i < 256; i++) {
4010                 I915_WRITE(palreg + 4 * i,
4011                            (intel_crtc->lut_r[i] << 16) |
4012                            (intel_crtc->lut_g[i] << 8) |
4013                            intel_crtc->lut_b[i]);
4014         }
4015
4016         if (reenable_ips)
4017                 hsw_enable_ips(intel_crtc);
4018 }
4019
4020 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4021 {
4022         if (!enable && intel_crtc->overlay) {
4023                 struct drm_device *dev = intel_crtc->base.dev;
4024                 struct drm_i915_private *dev_priv = dev->dev_private;
4025
4026                 mutex_lock(&dev->struct_mutex);
4027                 dev_priv->mm.interruptible = false;
4028                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4029                 dev_priv->mm.interruptible = true;
4030                 mutex_unlock(&dev->struct_mutex);
4031         }
4032
4033         /* Let userspace switch the overlay on again. In most cases userspace
4034          * has to recompute where to put it anyway.
4035          */
4036 }
4037
4038 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4039 {
4040         struct drm_device *dev = crtc->dev;
4041         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4042         int pipe = intel_crtc->pipe;
4043
4044         assert_vblank_disabled(crtc);
4045
4046         drm_vblank_on(dev, pipe);
4047
4048         intel_enable_primary_hw_plane(crtc->primary, crtc);
4049         intel_enable_planes(crtc);
4050         intel_crtc_update_cursor(crtc, true);
4051         intel_crtc_dpms_overlay(intel_crtc, true);
4052
4053         hsw_enable_ips(intel_crtc);
4054
4055         mutex_lock(&dev->struct_mutex);
4056         intel_update_fbc(dev);
4057         mutex_unlock(&dev->struct_mutex);
4058
4059         /*
4060          * FIXME: Once we grow proper nuclear flip support out of this we need
4061          * to compute the mask of flip planes precisely. For the time being
4062          * consider this a flip from a NULL plane.
4063          */
4064         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4065 }
4066
4067 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4068 {
4069         struct drm_device *dev = crtc->dev;
4070         struct drm_i915_private *dev_priv = dev->dev_private;
4071         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4072         int pipe = intel_crtc->pipe;
4073         int plane = intel_crtc->plane;
4074
4075         intel_crtc_wait_for_pending_flips(crtc);
4076
4077         if (dev_priv->fbc.plane == plane)
4078                 intel_disable_fbc(dev);
4079
4080         hsw_disable_ips(intel_crtc);
4081
4082         intel_crtc_dpms_overlay(intel_crtc, false);
4083         intel_crtc_update_cursor(crtc, false);
4084         intel_disable_planes(crtc);
4085         intel_disable_primary_hw_plane(crtc->primary, crtc);
4086
4087         /*
4088          * FIXME: Once we grow proper nuclear flip support out of this we need
4089          * to compute the mask of flip planes precisely. For the time being
4090          * consider this a flip to a NULL plane.
4091          */
4092         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4093
4094         drm_vblank_off(dev, pipe);
4095
4096         assert_vblank_disabled(crtc);
4097 }
4098
4099 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4100 {
4101         struct drm_device *dev = crtc->dev;
4102         struct drm_i915_private *dev_priv = dev->dev_private;
4103         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4104         struct intel_encoder *encoder;
4105         int pipe = intel_crtc->pipe;
4106
4107         WARN_ON(!crtc->enabled);
4108
4109         if (intel_crtc->active)
4110                 return;
4111
4112         if (intel_crtc->config.has_pch_encoder)
4113                 intel_prepare_shared_dpll(intel_crtc);
4114
4115         if (intel_crtc->config.has_dp_encoder)
4116                 intel_dp_set_m_n(intel_crtc);
4117
4118         intel_set_pipe_timings(intel_crtc);
4119
4120         if (intel_crtc->config.has_pch_encoder) {
4121                 intel_cpu_transcoder_set_m_n(intel_crtc,
4122                                      &intel_crtc->config.fdi_m_n, NULL);
4123         }
4124
4125         ironlake_set_pipeconf(crtc);
4126
4127         intel_crtc->active = true;
4128
4129         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4130         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4131
4132         for_each_encoder_on_crtc(dev, crtc, encoder)
4133                 if (encoder->pre_enable)
4134                         encoder->pre_enable(encoder);
4135
4136         if (intel_crtc->config.has_pch_encoder) {
4137                 /* Note: FDI PLL enabling _must_ be done before we enable the
4138                  * cpu pipes, hence this is separate from all the other fdi/pch
4139                  * enabling. */
4140                 ironlake_fdi_pll_enable(intel_crtc);
4141         } else {
4142                 assert_fdi_tx_disabled(dev_priv, pipe);
4143                 assert_fdi_rx_disabled(dev_priv, pipe);
4144         }
4145
4146         ironlake_pfit_enable(intel_crtc);
4147
4148         /*
4149          * On ILK+ LUT must be loaded before the pipe is running but with
4150          * clocks enabled
4151          */
4152         intel_crtc_load_lut(crtc);
4153
4154         intel_update_watermarks(crtc);
4155         intel_enable_pipe(intel_crtc);
4156
4157         if (intel_crtc->config.has_pch_encoder)
4158                 ironlake_pch_enable(crtc);
4159
4160         for_each_encoder_on_crtc(dev, crtc, encoder)
4161                 encoder->enable(encoder);
4162
4163         if (HAS_PCH_CPT(dev))
4164                 cpt_verify_modeset(dev, intel_crtc->pipe);
4165
4166         intel_crtc_enable_planes(crtc);
4167 }
4168
4169 /* IPS only exists on ULT machines and is tied to pipe A. */
4170 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4171 {
4172         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4173 }
4174
4175 /*
4176  * This implements the workaround described in the "notes" section of the mode
4177  * set sequence documentation. When going from no pipes or single pipe to
4178  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4179  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4180  */
4181 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4182 {
4183         struct drm_device *dev = crtc->base.dev;
4184         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4185
4186         /* We want to get the other_active_crtc only if there's only 1 other
4187          * active crtc. */
4188         for_each_intel_crtc(dev, crtc_it) {
4189                 if (!crtc_it->active || crtc_it == crtc)
4190                         continue;
4191
4192                 if (other_active_crtc)
4193                         return;
4194
4195                 other_active_crtc = crtc_it;
4196         }
4197         if (!other_active_crtc)
4198                 return;
4199
4200         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4201         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4202 }
4203
4204 static void haswell_crtc_enable(struct drm_crtc *crtc)
4205 {
4206         struct drm_device *dev = crtc->dev;
4207         struct drm_i915_private *dev_priv = dev->dev_private;
4208         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4209         struct intel_encoder *encoder;
4210         int pipe = intel_crtc->pipe;
4211
4212         WARN_ON(!crtc->enabled);
4213
4214         if (intel_crtc->active)
4215                 return;
4216
4217         if (intel_crtc_to_shared_dpll(intel_crtc))
4218                 intel_enable_shared_dpll(intel_crtc);
4219
4220         if (intel_crtc->config.has_dp_encoder)
4221                 intel_dp_set_m_n(intel_crtc);
4222
4223         intel_set_pipe_timings(intel_crtc);
4224
4225         if (intel_crtc->config.has_pch_encoder) {
4226                 intel_cpu_transcoder_set_m_n(intel_crtc,
4227                                      &intel_crtc->config.fdi_m_n, NULL);
4228         }
4229
4230         haswell_set_pipeconf(crtc);
4231
4232         intel_set_pipe_csc(crtc);
4233
4234         intel_crtc->active = true;
4235
4236         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4237         for_each_encoder_on_crtc(dev, crtc, encoder)
4238                 if (encoder->pre_enable)
4239                         encoder->pre_enable(encoder);
4240
4241         if (intel_crtc->config.has_pch_encoder) {
4242                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4243                 dev_priv->display.fdi_link_train(crtc);
4244         }
4245
4246         intel_ddi_enable_pipe_clock(intel_crtc);
4247
4248         ironlake_pfit_enable(intel_crtc);
4249
4250         /*
4251          * On ILK+ LUT must be loaded before the pipe is running but with
4252          * clocks enabled
4253          */
4254         intel_crtc_load_lut(crtc);
4255
4256         intel_ddi_set_pipe_settings(crtc);
4257         intel_ddi_enable_transcoder_func(crtc);
4258
4259         intel_update_watermarks(crtc);
4260         intel_enable_pipe(intel_crtc);
4261
4262         if (intel_crtc->config.has_pch_encoder)
4263                 lpt_pch_enable(crtc);
4264
4265         if (intel_crtc->config.dp_encoder_is_mst)
4266                 intel_ddi_set_vc_payload_alloc(crtc, true);
4267
4268         for_each_encoder_on_crtc(dev, crtc, encoder) {
4269                 encoder->enable(encoder);
4270                 intel_opregion_notify_encoder(encoder, true);
4271         }
4272
4273         /* If we change the relative order between pipe/planes enabling, we need
4274          * to change the workaround. */
4275         haswell_mode_set_planes_workaround(intel_crtc);
4276         intel_crtc_enable_planes(crtc);
4277 }
4278
4279 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4280 {
4281         struct drm_device *dev = crtc->base.dev;
4282         struct drm_i915_private *dev_priv = dev->dev_private;
4283         int pipe = crtc->pipe;
4284
4285         /* To avoid upsetting the power well on haswell only disable the pfit if
4286          * it's in use. The hw state code will make sure we get this right. */
4287         if (crtc->config.pch_pfit.enabled) {
4288                 I915_WRITE(PF_CTL(pipe), 0);
4289                 I915_WRITE(PF_WIN_POS(pipe), 0);
4290                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4291         }
4292 }
4293
4294 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4295 {
4296         struct drm_device *dev = crtc->dev;
4297         struct drm_i915_private *dev_priv = dev->dev_private;
4298         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4299         struct intel_encoder *encoder;
4300         int pipe = intel_crtc->pipe;
4301         u32 reg, temp;
4302
4303         if (!intel_crtc->active)
4304                 return;
4305
4306         intel_crtc_disable_planes(crtc);
4307
4308         for_each_encoder_on_crtc(dev, crtc, encoder)
4309                 encoder->disable(encoder);
4310
4311         if (intel_crtc->config.has_pch_encoder)
4312                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4313
4314         intel_disable_pipe(intel_crtc);
4315
4316         ironlake_pfit_disable(intel_crtc);
4317
4318         for_each_encoder_on_crtc(dev, crtc, encoder)
4319                 if (encoder->post_disable)
4320                         encoder->post_disable(encoder);
4321
4322         if (intel_crtc->config.has_pch_encoder) {
4323                 ironlake_fdi_disable(crtc);
4324
4325                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4326                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4327
4328                 if (HAS_PCH_CPT(dev)) {
4329                         /* disable TRANS_DP_CTL */
4330                         reg = TRANS_DP_CTL(pipe);
4331                         temp = I915_READ(reg);
4332                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4333                                   TRANS_DP_PORT_SEL_MASK);
4334                         temp |= TRANS_DP_PORT_SEL_NONE;
4335                         I915_WRITE(reg, temp);
4336
4337                         /* disable DPLL_SEL */
4338                         temp = I915_READ(PCH_DPLL_SEL);
4339                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4340                         I915_WRITE(PCH_DPLL_SEL, temp);
4341                 }
4342
4343                 /* disable PCH DPLL */
4344                 intel_disable_shared_dpll(intel_crtc);
4345
4346                 ironlake_fdi_pll_disable(intel_crtc);
4347         }
4348
4349         intel_crtc->active = false;
4350         intel_update_watermarks(crtc);
4351
4352         mutex_lock(&dev->struct_mutex);
4353         intel_update_fbc(dev);
4354         mutex_unlock(&dev->struct_mutex);
4355 }
4356
4357 static void haswell_crtc_disable(struct drm_crtc *crtc)
4358 {
4359         struct drm_device *dev = crtc->dev;
4360         struct drm_i915_private *dev_priv = dev->dev_private;
4361         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4362         struct intel_encoder *encoder;
4363         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4364
4365         if (!intel_crtc->active)
4366                 return;
4367
4368         intel_crtc_disable_planes(crtc);
4369
4370         for_each_encoder_on_crtc(dev, crtc, encoder) {
4371                 intel_opregion_notify_encoder(encoder, false);
4372                 encoder->disable(encoder);
4373         }
4374
4375         if (intel_crtc->config.has_pch_encoder)
4376                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4377         intel_disable_pipe(intel_crtc);
4378
4379         if (intel_crtc->config.dp_encoder_is_mst)
4380                 intel_ddi_set_vc_payload_alloc(crtc, false);
4381
4382         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4383
4384         ironlake_pfit_disable(intel_crtc);
4385
4386         intel_ddi_disable_pipe_clock(intel_crtc);
4387
4388         if (intel_crtc->config.has_pch_encoder) {
4389                 lpt_disable_pch_transcoder(dev_priv);
4390                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4391                 intel_ddi_fdi_disable(crtc);
4392         }
4393
4394         for_each_encoder_on_crtc(dev, crtc, encoder)
4395                 if (encoder->post_disable)
4396                         encoder->post_disable(encoder);
4397
4398         intel_crtc->active = false;
4399         intel_update_watermarks(crtc);
4400
4401         mutex_lock(&dev->struct_mutex);
4402         intel_update_fbc(dev);
4403         mutex_unlock(&dev->struct_mutex);
4404
4405         if (intel_crtc_to_shared_dpll(intel_crtc))
4406                 intel_disable_shared_dpll(intel_crtc);
4407 }
4408
4409 static void ironlake_crtc_off(struct drm_crtc *crtc)
4410 {
4411         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4412         intel_put_shared_dpll(intel_crtc);
4413 }
4414
4415
4416 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4417 {
4418         struct drm_device *dev = crtc->base.dev;
4419         struct drm_i915_private *dev_priv = dev->dev_private;
4420         struct intel_crtc_config *pipe_config = &crtc->config;
4421
4422         if (!crtc->config.gmch_pfit.control)
4423                 return;
4424
4425         /*
4426          * The panel fitter should only be adjusted whilst the pipe is disabled,
4427          * according to register description and PRM.
4428          */
4429         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4430         assert_pipe_disabled(dev_priv, crtc->pipe);
4431
4432         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4433         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4434
4435         /* Border color in case we don't scale up to the full screen. Black by
4436          * default, change to something else for debugging. */
4437         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4438 }
4439
4440 static enum intel_display_power_domain port_to_power_domain(enum port port)
4441 {
4442         switch (port) {
4443         case PORT_A:
4444                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4445         case PORT_B:
4446                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4447         case PORT_C:
4448                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4449         case PORT_D:
4450                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4451         default:
4452                 WARN_ON_ONCE(1);
4453                 return POWER_DOMAIN_PORT_OTHER;
4454         }
4455 }
4456
4457 #define for_each_power_domain(domain, mask)                             \
4458         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4459                 if ((1 << (domain)) & (mask))
4460
4461 enum intel_display_power_domain
4462 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4463 {
4464         struct drm_device *dev = intel_encoder->base.dev;
4465         struct intel_digital_port *intel_dig_port;
4466
4467         switch (intel_encoder->type) {
4468         case INTEL_OUTPUT_UNKNOWN:
4469                 /* Only DDI platforms should ever use this output type */
4470                 WARN_ON_ONCE(!HAS_DDI(dev));
4471         case INTEL_OUTPUT_DISPLAYPORT:
4472         case INTEL_OUTPUT_HDMI:
4473         case INTEL_OUTPUT_EDP:
4474                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4475                 return port_to_power_domain(intel_dig_port->port);
4476         case INTEL_OUTPUT_DP_MST:
4477                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4478                 return port_to_power_domain(intel_dig_port->port);
4479         case INTEL_OUTPUT_ANALOG:
4480                 return POWER_DOMAIN_PORT_CRT;
4481         case INTEL_OUTPUT_DSI:
4482                 return POWER_DOMAIN_PORT_DSI;
4483         default:
4484                 return POWER_DOMAIN_PORT_OTHER;
4485         }
4486 }
4487
4488 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4489 {
4490         struct drm_device *dev = crtc->dev;
4491         struct intel_encoder *intel_encoder;
4492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4493         enum pipe pipe = intel_crtc->pipe;
4494         unsigned long mask;
4495         enum transcoder transcoder;
4496
4497         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4498
4499         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4500         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4501         if (intel_crtc->config.pch_pfit.enabled ||
4502             intel_crtc->config.pch_pfit.force_thru)
4503                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4504
4505         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4506                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4507
4508         return mask;
4509 }
4510
4511 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4512                                   bool enable)
4513 {
4514         if (dev_priv->power_domains.init_power_on == enable)
4515                 return;
4516
4517         if (enable)
4518                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4519         else
4520                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4521
4522         dev_priv->power_domains.init_power_on = enable;
4523 }
4524
4525 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4526 {
4527         struct drm_i915_private *dev_priv = dev->dev_private;
4528         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4529         struct intel_crtc *crtc;
4530
4531         /*
4532          * First get all needed power domains, then put all unneeded, to avoid
4533          * any unnecessary toggling of the power wells.
4534          */
4535         for_each_intel_crtc(dev, crtc) {
4536                 enum intel_display_power_domain domain;
4537
4538                 if (!crtc->base.enabled)
4539                         continue;
4540
4541                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4542
4543                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4544                         intel_display_power_get(dev_priv, domain);
4545         }
4546
4547         for_each_intel_crtc(dev, crtc) {
4548                 enum intel_display_power_domain domain;
4549
4550                 for_each_power_domain(domain, crtc->enabled_power_domains)
4551                         intel_display_power_put(dev_priv, domain);
4552
4553                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4554         }
4555
4556         intel_display_set_init_power(dev_priv, false);
4557 }
4558
4559 /* returns HPLL frequency in kHz */
4560 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4561 {
4562         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4563
4564         /* Obtain SKU information */
4565         mutex_lock(&dev_priv->dpio_lock);
4566         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4567                 CCK_FUSE_HPLL_FREQ_MASK;
4568         mutex_unlock(&dev_priv->dpio_lock);
4569
4570         return vco_freq[hpll_freq] * 1000;
4571 }
4572
4573 static void vlv_update_cdclk(struct drm_device *dev)
4574 {
4575         struct drm_i915_private *dev_priv = dev->dev_private;
4576
4577         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4578         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4579                          dev_priv->vlv_cdclk_freq);
4580
4581         /*
4582          * Program the gmbus_freq based on the cdclk frequency.
4583          * BSpec erroneously claims we should aim for 4MHz, but
4584          * in fact 1MHz is the correct frequency.
4585          */
4586         I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4587 }
4588
4589 /* Adjust CDclk dividers to allow high res or save power if possible */
4590 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4591 {
4592         struct drm_i915_private *dev_priv = dev->dev_private;
4593         u32 val, cmd;
4594
4595         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4596
4597         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4598                 cmd = 2;
4599         else if (cdclk == 266667)
4600                 cmd = 1;
4601         else
4602                 cmd = 0;
4603
4604         mutex_lock(&dev_priv->rps.hw_lock);
4605         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4606         val &= ~DSPFREQGUAR_MASK;
4607         val |= (cmd << DSPFREQGUAR_SHIFT);
4608         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4609         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4610                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4611                      50)) {
4612                 DRM_ERROR("timed out waiting for CDclk change\n");
4613         }
4614         mutex_unlock(&dev_priv->rps.hw_lock);
4615
4616         if (cdclk == 400000) {
4617                 u32 divider, vco;
4618
4619                 vco = valleyview_get_vco(dev_priv);
4620                 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4621
4622                 mutex_lock(&dev_priv->dpio_lock);
4623                 /* adjust cdclk divider */
4624                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4625                 val &= ~DISPLAY_FREQUENCY_VALUES;
4626                 val |= divider;
4627                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4628
4629                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4630                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4631                              50))
4632                         DRM_ERROR("timed out waiting for CDclk change\n");
4633                 mutex_unlock(&dev_priv->dpio_lock);
4634         }
4635
4636         mutex_lock(&dev_priv->dpio_lock);
4637         /* adjust self-refresh exit latency value */
4638         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4639         val &= ~0x7f;
4640
4641         /*
4642          * For high bandwidth configs, we set a higher latency in the bunit
4643          * so that the core display fetch happens in time to avoid underruns.
4644          */
4645         if (cdclk == 400000)
4646                 val |= 4500 / 250; /* 4.5 usec */
4647         else
4648                 val |= 3000 / 250; /* 3.0 usec */
4649         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4650         mutex_unlock(&dev_priv->dpio_lock);
4651
4652         vlv_update_cdclk(dev);
4653 }
4654
4655 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4656 {
4657         struct drm_i915_private *dev_priv = dev->dev_private;
4658         u32 val, cmd;
4659
4660         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4661
4662         switch (cdclk) {
4663         case 400000:
4664                 cmd = 3;
4665                 break;
4666         case 333333:
4667         case 320000:
4668                 cmd = 2;
4669                 break;
4670         case 266667:
4671                 cmd = 1;
4672                 break;
4673         case 200000:
4674                 cmd = 0;
4675                 break;
4676         default:
4677                 WARN_ON(1);
4678                 return;
4679         }
4680
4681         mutex_lock(&dev_priv->rps.hw_lock);
4682         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4683         val &= ~DSPFREQGUAR_MASK_CHV;
4684         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4685         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4686         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4687                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4688                      50)) {
4689                 DRM_ERROR("timed out waiting for CDclk change\n");
4690         }
4691         mutex_unlock(&dev_priv->rps.hw_lock);
4692
4693         vlv_update_cdclk(dev);
4694 }
4695
4696 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4697                                  int max_pixclk)
4698 {
4699         int vco = valleyview_get_vco(dev_priv);
4700         int freq_320 = (vco <<  1) % 320000 != 0 ? 333333 : 320000;
4701
4702         /* FIXME: Punit isn't quite ready yet */
4703         if (IS_CHERRYVIEW(dev_priv->dev))
4704                 return 400000;
4705
4706         /*
4707          * Really only a few cases to deal with, as only 4 CDclks are supported:
4708          *   200MHz
4709          *   267MHz
4710          *   320/333MHz (depends on HPLL freq)
4711          *   400MHz
4712          * So we check to see whether we're above 90% of the lower bin and
4713          * adjust if needed.
4714          *
4715          * We seem to get an unstable or solid color picture at 200MHz.
4716          * Not sure what's wrong. For now use 200MHz only when all pipes
4717          * are off.
4718          */
4719         if (max_pixclk > freq_320*9/10)
4720                 return 400000;
4721         else if (max_pixclk > 266667*9/10)
4722                 return freq_320;
4723         else if (max_pixclk > 0)
4724                 return 266667;
4725         else
4726                 return 200000;
4727 }
4728
4729 /* compute the max pixel clock for new configuration */
4730 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4731 {
4732         struct drm_device *dev = dev_priv->dev;
4733         struct intel_crtc *intel_crtc;
4734         int max_pixclk = 0;
4735
4736         for_each_intel_crtc(dev, intel_crtc) {
4737                 if (intel_crtc->new_enabled)
4738                         max_pixclk = max(max_pixclk,
4739                                          intel_crtc->new_config->adjusted_mode.crtc_clock);
4740         }
4741
4742         return max_pixclk;
4743 }
4744
4745 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4746                                             unsigned *prepare_pipes)
4747 {
4748         struct drm_i915_private *dev_priv = dev->dev_private;
4749         struct intel_crtc *intel_crtc;
4750         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4751
4752         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4753             dev_priv->vlv_cdclk_freq)
4754                 return;
4755
4756         /* disable/enable all currently active pipes while we change cdclk */
4757         for_each_intel_crtc(dev, intel_crtc)
4758                 if (intel_crtc->base.enabled)
4759                         *prepare_pipes |= (1 << intel_crtc->pipe);
4760 }
4761
4762 static void valleyview_modeset_global_resources(struct drm_device *dev)
4763 {
4764         struct drm_i915_private *dev_priv = dev->dev_private;
4765         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4766         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4767
4768         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4769                 if (IS_CHERRYVIEW(dev))
4770                         cherryview_set_cdclk(dev, req_cdclk);
4771                 else
4772                         valleyview_set_cdclk(dev, req_cdclk);
4773         }
4774
4775         modeset_update_crtc_power_domains(dev);
4776 }
4777
4778 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4779 {
4780         struct drm_device *dev = crtc->dev;
4781         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4782         struct intel_encoder *encoder;
4783         int pipe = intel_crtc->pipe;
4784         bool is_dsi;
4785
4786         WARN_ON(!crtc->enabled);
4787
4788         if (intel_crtc->active)
4789                 return;
4790
4791         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4792
4793         if (!is_dsi) {
4794                 if (IS_CHERRYVIEW(dev))
4795                         chv_prepare_pll(intel_crtc);
4796                 else
4797                         vlv_prepare_pll(intel_crtc);
4798         }
4799
4800         if (intel_crtc->config.has_dp_encoder)
4801                 intel_dp_set_m_n(intel_crtc);
4802
4803         intel_set_pipe_timings(intel_crtc);
4804
4805         i9xx_set_pipeconf(intel_crtc);
4806
4807         intel_crtc->active = true;
4808
4809         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4810
4811         for_each_encoder_on_crtc(dev, crtc, encoder)
4812                 if (encoder->pre_pll_enable)
4813                         encoder->pre_pll_enable(encoder);
4814
4815         if (!is_dsi) {
4816                 if (IS_CHERRYVIEW(dev))
4817                         chv_enable_pll(intel_crtc);
4818                 else
4819                         vlv_enable_pll(intel_crtc);
4820         }
4821
4822         for_each_encoder_on_crtc(dev, crtc, encoder)
4823                 if (encoder->pre_enable)
4824                         encoder->pre_enable(encoder);
4825
4826         i9xx_pfit_enable(intel_crtc);
4827
4828         intel_crtc_load_lut(crtc);
4829
4830         intel_update_watermarks(crtc);
4831         intel_enable_pipe(intel_crtc);
4832
4833         for_each_encoder_on_crtc(dev, crtc, encoder)
4834                 encoder->enable(encoder);
4835
4836         intel_crtc_enable_planes(crtc);
4837
4838         /* Underruns don't raise interrupts, so check manually. */
4839         i9xx_check_fifo_underruns(dev);
4840 }
4841
4842 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4843 {
4844         struct drm_device *dev = crtc->base.dev;
4845         struct drm_i915_private *dev_priv = dev->dev_private;
4846
4847         I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4848         I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4849 }
4850
4851 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4852 {
4853         struct drm_device *dev = crtc->dev;
4854         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4855         struct intel_encoder *encoder;
4856         int pipe = intel_crtc->pipe;
4857
4858         WARN_ON(!crtc->enabled);
4859
4860         if (intel_crtc->active)
4861                 return;
4862
4863         i9xx_set_pll_dividers(intel_crtc);
4864
4865         if (intel_crtc->config.has_dp_encoder)
4866                 intel_dp_set_m_n(intel_crtc);
4867
4868         intel_set_pipe_timings(intel_crtc);
4869
4870         i9xx_set_pipeconf(intel_crtc);
4871
4872         intel_crtc->active = true;
4873
4874         if (!IS_GEN2(dev))
4875                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4876
4877         for_each_encoder_on_crtc(dev, crtc, encoder)
4878                 if (encoder->pre_enable)
4879                         encoder->pre_enable(encoder);
4880
4881         i9xx_enable_pll(intel_crtc);
4882
4883         i9xx_pfit_enable(intel_crtc);
4884
4885         intel_crtc_load_lut(crtc);
4886
4887         intel_update_watermarks(crtc);
4888         intel_enable_pipe(intel_crtc);
4889
4890         for_each_encoder_on_crtc(dev, crtc, encoder)
4891                 encoder->enable(encoder);
4892
4893         intel_crtc_enable_planes(crtc);
4894
4895         /*
4896          * Gen2 reports pipe underruns whenever all planes are disabled.
4897          * So don't enable underrun reporting before at least some planes
4898          * are enabled.
4899          * FIXME: Need to fix the logic to work when we turn off all planes
4900          * but leave the pipe running.
4901          */
4902         if (IS_GEN2(dev))
4903                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4904
4905         /* Underruns don't raise interrupts, so check manually. */
4906         i9xx_check_fifo_underruns(dev);
4907 }
4908
4909 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4910 {
4911         struct drm_device *dev = crtc->base.dev;
4912         struct drm_i915_private *dev_priv = dev->dev_private;
4913
4914         if (!crtc->config.gmch_pfit.control)
4915                 return;
4916
4917         assert_pipe_disabled(dev_priv, crtc->pipe);
4918
4919         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4920                          I915_READ(PFIT_CONTROL));
4921         I915_WRITE(PFIT_CONTROL, 0);
4922 }
4923
4924 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4925 {
4926         struct drm_device *dev = crtc->dev;
4927         struct drm_i915_private *dev_priv = dev->dev_private;
4928         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4929         struct intel_encoder *encoder;
4930         int pipe = intel_crtc->pipe;
4931
4932         if (!intel_crtc->active)
4933                 return;
4934
4935         /*
4936          * Gen2 reports pipe underruns whenever all planes are disabled.
4937          * So diasble underrun reporting before all the planes get disabled.
4938          * FIXME: Need to fix the logic to work when we turn off all planes
4939          * but leave the pipe running.
4940          */
4941         if (IS_GEN2(dev))
4942                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4943
4944         /*
4945          * Vblank time updates from the shadow to live plane control register
4946          * are blocked if the memory self-refresh mode is active at that
4947          * moment. So to make sure the plane gets truly disabled, disable
4948          * first the self-refresh mode. The self-refresh enable bit in turn
4949          * will be checked/applied by the HW only at the next frame start
4950          * event which is after the vblank start event, so we need to have a
4951          * wait-for-vblank between disabling the plane and the pipe.
4952          */
4953         intel_set_memory_cxsr(dev_priv, false);
4954         intel_crtc_disable_planes(crtc);
4955
4956         for_each_encoder_on_crtc(dev, crtc, encoder)
4957                 encoder->disable(encoder);
4958
4959         /*
4960          * On gen2 planes are double buffered but the pipe isn't, so we must
4961          * wait for planes to fully turn off before disabling the pipe.
4962          * We also need to wait on all gmch platforms because of the
4963          * self-refresh mode constraint explained above.
4964          */
4965         intel_wait_for_vblank(dev, pipe);
4966
4967         intel_disable_pipe(intel_crtc);
4968
4969         i9xx_pfit_disable(intel_crtc);
4970
4971         for_each_encoder_on_crtc(dev, crtc, encoder)
4972                 if (encoder->post_disable)
4973                         encoder->post_disable(encoder);
4974
4975         if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4976                 if (IS_CHERRYVIEW(dev))
4977                         chv_disable_pll(dev_priv, pipe);
4978                 else if (IS_VALLEYVIEW(dev))
4979                         vlv_disable_pll(dev_priv, pipe);
4980                 else
4981                         i9xx_disable_pll(intel_crtc);
4982         }
4983
4984         if (!IS_GEN2(dev))
4985                 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4986
4987         intel_crtc->active = false;
4988         intel_update_watermarks(crtc);
4989
4990         mutex_lock(&dev->struct_mutex);
4991         intel_update_fbc(dev);
4992         mutex_unlock(&dev->struct_mutex);
4993 }
4994
4995 static void i9xx_crtc_off(struct drm_crtc *crtc)
4996 {
4997 }
4998
4999 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5000                                     bool enabled)
5001 {
5002         struct drm_device *dev = crtc->dev;
5003         struct drm_i915_master_private *master_priv;
5004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5005         int pipe = intel_crtc->pipe;
5006
5007         if (!dev->primary->master)
5008                 return;
5009
5010         master_priv = dev->primary->master->driver_priv;
5011         if (!master_priv->sarea_priv)
5012                 return;
5013
5014         switch (pipe) {
5015         case 0:
5016                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5017                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5018                 break;
5019         case 1:
5020                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5021                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5022                 break;
5023         default:
5024                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
5025                 break;
5026         }
5027 }
5028
5029 /* Master function to enable/disable CRTC and corresponding power wells */
5030 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5031 {
5032         struct drm_device *dev = crtc->dev;
5033         struct drm_i915_private *dev_priv = dev->dev_private;
5034         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5035         enum intel_display_power_domain domain;
5036         unsigned long domains;
5037
5038         if (enable) {
5039                 if (!intel_crtc->active) {
5040                         domains = get_crtc_power_domains(crtc);
5041                         for_each_power_domain(domain, domains)
5042                                 intel_display_power_get(dev_priv, domain);
5043                         intel_crtc->enabled_power_domains = domains;
5044
5045                         dev_priv->display.crtc_enable(crtc);
5046                 }
5047         } else {
5048                 if (intel_crtc->active) {
5049                         dev_priv->display.crtc_disable(crtc);
5050
5051                         domains = intel_crtc->enabled_power_domains;
5052                         for_each_power_domain(domain, domains)
5053                                 intel_display_power_put(dev_priv, domain);
5054                         intel_crtc->enabled_power_domains = 0;
5055                 }
5056         }
5057 }
5058
5059 /**
5060  * Sets the power management mode of the pipe and plane.
5061  */
5062 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5063 {
5064         struct drm_device *dev = crtc->dev;
5065         struct intel_encoder *intel_encoder;
5066         bool enable = false;
5067
5068         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5069                 enable |= intel_encoder->connectors_active;
5070
5071         intel_crtc_control(crtc, enable);
5072
5073         intel_crtc_update_sarea(crtc, enable);
5074 }
5075
5076 static void intel_crtc_disable(struct drm_crtc *crtc)
5077 {
5078         struct drm_device *dev = crtc->dev;
5079         struct drm_connector *connector;
5080         struct drm_i915_private *dev_priv = dev->dev_private;
5081         struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5082         enum pipe pipe = to_intel_crtc(crtc)->pipe;
5083
5084         /* crtc should still be enabled when we disable it. */
5085         WARN_ON(!crtc->enabled);
5086
5087         dev_priv->display.crtc_disable(crtc);
5088         intel_crtc_update_sarea(crtc, false);
5089         dev_priv->display.off(crtc);
5090
5091         if (crtc->primary->fb) {
5092                 mutex_lock(&dev->struct_mutex);
5093                 intel_unpin_fb_obj(old_obj);
5094                 i915_gem_track_fb(old_obj, NULL,
5095                                   INTEL_FRONTBUFFER_PRIMARY(pipe));
5096                 mutex_unlock(&dev->struct_mutex);
5097                 crtc->primary->fb = NULL;
5098         }
5099
5100         /* Update computed state. */
5101         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5102                 if (!connector->encoder || !connector->encoder->crtc)
5103                         continue;
5104
5105                 if (connector->encoder->crtc != crtc)
5106                         continue;
5107
5108                 connector->dpms = DRM_MODE_DPMS_OFF;
5109                 to_intel_encoder(connector->encoder)->connectors_active = false;
5110         }
5111 }
5112
5113 void intel_encoder_destroy(struct drm_encoder *encoder)
5114 {
5115         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5116
5117         drm_encoder_cleanup(encoder);
5118         kfree(intel_encoder);
5119 }
5120
5121 /* Simple dpms helper for encoders with just one connector, no cloning and only
5122  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5123  * state of the entire output pipe. */
5124 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5125 {
5126         if (mode == DRM_MODE_DPMS_ON) {
5127                 encoder->connectors_active = true;
5128
5129                 intel_crtc_update_dpms(encoder->base.crtc);
5130         } else {
5131                 encoder->connectors_active = false;
5132
5133                 intel_crtc_update_dpms(encoder->base.crtc);
5134         }
5135 }
5136
5137 /* Cross check the actual hw state with our own modeset state tracking (and it's
5138  * internal consistency). */
5139 static void intel_connector_check_state(struct intel_connector *connector)
5140 {
5141         if (connector->get_hw_state(connector)) {
5142                 struct intel_encoder *encoder = connector->encoder;
5143                 struct drm_crtc *crtc;
5144                 bool encoder_enabled;
5145                 enum pipe pipe;
5146
5147                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5148                               connector->base.base.id,
5149                               connector->base.name);
5150
5151                 /* there is no real hw state for MST connectors */
5152                 if (connector->mst_port)
5153                         return;
5154
5155                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5156                      "wrong connector dpms state\n");
5157                 WARN(connector->base.encoder != &encoder->base,
5158                      "active connector not linked to encoder\n");
5159
5160                 if (encoder) {
5161                         WARN(!encoder->connectors_active,
5162                              "encoder->connectors_active not set\n");
5163
5164                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5165                         WARN(!encoder_enabled, "encoder not enabled\n");
5166                         if (WARN_ON(!encoder->base.crtc))
5167                                 return;
5168
5169                         crtc = encoder->base.crtc;
5170
5171                         WARN(!crtc->enabled, "crtc not enabled\n");
5172                         WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5173                         WARN(pipe != to_intel_crtc(crtc)->pipe,
5174                              "encoder active on the wrong pipe\n");
5175                 }
5176         }
5177 }
5178
5179 /* Even simpler default implementation, if there's really no special case to
5180  * consider. */
5181 void intel_connector_dpms(struct drm_connector *connector, int mode)
5182 {
5183         /* All the simple cases only support two dpms states. */
5184         if (mode != DRM_MODE_DPMS_ON)
5185                 mode = DRM_MODE_DPMS_OFF;
5186
5187         if (mode == connector->dpms)
5188                 return;
5189
5190         connector->dpms = mode;
5191
5192         /* Only need to change hw state when actually enabled */
5193         if (connector->encoder)
5194                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5195
5196         intel_modeset_check_state(connector->dev);
5197 }
5198
5199 /* Simple connector->get_hw_state implementation for encoders that support only
5200  * one connector and no cloning and hence the encoder state determines the state
5201  * of the connector. */
5202 bool intel_connector_get_hw_state(struct intel_connector *connector)
5203 {
5204         enum pipe pipe = 0;
5205         struct intel_encoder *encoder = connector->encoder;
5206
5207         return encoder->get_hw_state(encoder, &pipe);
5208 }
5209
5210 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5211                                      struct intel_crtc_config *pipe_config)
5212 {
5213         struct drm_i915_private *dev_priv = dev->dev_private;
5214         struct intel_crtc *pipe_B_crtc =
5215                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5216
5217         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5218                       pipe_name(pipe), pipe_config->fdi_lanes);
5219         if (pipe_config->fdi_lanes > 4) {
5220                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5221                               pipe_name(pipe), pipe_config->fdi_lanes);
5222                 return false;
5223         }
5224
5225         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5226                 if (pipe_config->fdi_lanes > 2) {
5227                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5228                                       pipe_config->fdi_lanes);
5229                         return false;
5230                 } else {
5231                         return true;
5232                 }
5233         }
5234
5235         if (INTEL_INFO(dev)->num_pipes == 2)
5236                 return true;
5237
5238         /* Ivybridge 3 pipe is really complicated */
5239         switch (pipe) {
5240         case PIPE_A:
5241                 return true;
5242         case PIPE_B:
5243                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5244                     pipe_config->fdi_lanes > 2) {
5245                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5246                                       pipe_name(pipe), pipe_config->fdi_lanes);
5247                         return false;
5248                 }
5249                 return true;
5250         case PIPE_C:
5251                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5252                     pipe_B_crtc->config.fdi_lanes <= 2) {
5253                         if (pipe_config->fdi_lanes > 2) {
5254                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5255                                               pipe_name(pipe), pipe_config->fdi_lanes);
5256                                 return false;
5257                         }
5258                 } else {
5259                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5260                         return false;
5261                 }
5262                 return true;
5263         default:
5264                 BUG();
5265         }
5266 }
5267
5268 #define RETRY 1
5269 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5270                                        struct intel_crtc_config *pipe_config)
5271 {
5272         struct drm_device *dev = intel_crtc->base.dev;
5273         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5274         int lane, link_bw, fdi_dotclock;
5275         bool setup_ok, needs_recompute = false;
5276
5277 retry:
5278         /* FDI is a binary signal running at ~2.7GHz, encoding
5279          * each output octet as 10 bits. The actual frequency
5280          * is stored as a divider into a 100MHz clock, and the
5281          * mode pixel clock is stored in units of 1KHz.
5282          * Hence the bw of each lane in terms of the mode signal
5283          * is:
5284          */
5285         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5286
5287         fdi_dotclock = adjusted_mode->crtc_clock;
5288
5289         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5290                                            pipe_config->pipe_bpp);
5291
5292         pipe_config->fdi_lanes = lane;
5293
5294         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5295                                link_bw, &pipe_config->fdi_m_n);
5296
5297         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5298                                             intel_crtc->pipe, pipe_config);
5299         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5300                 pipe_config->pipe_bpp -= 2*3;
5301                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5302                               pipe_config->pipe_bpp);
5303                 needs_recompute = true;
5304                 pipe_config->bw_constrained = true;
5305
5306                 goto retry;
5307         }
5308
5309         if (needs_recompute)
5310                 return RETRY;
5311
5312         return setup_ok ? 0 : -EINVAL;
5313 }
5314
5315 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5316                                    struct intel_crtc_config *pipe_config)
5317 {
5318         pipe_config->ips_enabled = i915.enable_ips &&
5319                                    hsw_crtc_supports_ips(crtc) &&
5320                                    pipe_config->pipe_bpp <= 24;
5321 }
5322
5323 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5324                                      struct intel_crtc_config *pipe_config)
5325 {
5326         struct drm_device *dev = crtc->base.dev;
5327         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5328
5329         /* FIXME should check pixel clock limits on all platforms */
5330         if (INTEL_INFO(dev)->gen < 4) {
5331                 struct drm_i915_private *dev_priv = dev->dev_private;
5332                 int clock_limit =
5333                         dev_priv->display.get_display_clock_speed(dev);
5334
5335                 /*
5336                  * Enable pixel doubling when the dot clock
5337                  * is > 90% of the (display) core speed.
5338                  *
5339                  * GDG double wide on either pipe,
5340                  * otherwise pipe A only.
5341                  */
5342                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5343                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5344                         clock_limit *= 2;
5345                         pipe_config->double_wide = true;
5346                 }
5347
5348                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5349                         return -EINVAL;
5350         }
5351
5352         /*
5353          * Pipe horizontal size must be even in:
5354          * - DVO ganged mode
5355          * - LVDS dual channel mode
5356          * - Double wide pipe
5357          */
5358         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5359              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5360                 pipe_config->pipe_src_w &= ~1;
5361
5362         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5363          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5364          */
5365         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5366                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5367                 return -EINVAL;
5368
5369         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5370                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5371         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5372                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5373                  * for lvds. */
5374                 pipe_config->pipe_bpp = 8*3;
5375         }
5376
5377         if (HAS_IPS(dev))
5378                 hsw_compute_ips_config(crtc, pipe_config);
5379
5380         /*
5381          * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5382          * old clock survives for now.
5383          */
5384         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
5385                 pipe_config->shared_dpll = crtc->config.shared_dpll;
5386
5387         if (pipe_config->has_pch_encoder)
5388                 return ironlake_fdi_compute_config(crtc, pipe_config);
5389
5390         return 0;
5391 }
5392
5393 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5394 {
5395         struct drm_i915_private *dev_priv = dev->dev_private;
5396         int vco = valleyview_get_vco(dev_priv);
5397         u32 val;
5398         int divider;
5399
5400         /* FIXME: Punit isn't quite ready yet */
5401         if (IS_CHERRYVIEW(dev))
5402                 return 400000;
5403
5404         mutex_lock(&dev_priv->dpio_lock);
5405         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5406         mutex_unlock(&dev_priv->dpio_lock);
5407
5408         divider = val & DISPLAY_FREQUENCY_VALUES;
5409
5410         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5411              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5412              "cdclk change in progress\n");
5413
5414         return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5415 }
5416
5417 static int i945_get_display_clock_speed(struct drm_device *dev)
5418 {
5419         return 400000;
5420 }
5421
5422 static int i915_get_display_clock_speed(struct drm_device *dev)
5423 {
5424         return 333000;
5425 }
5426
5427 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5428 {
5429         return 200000;
5430 }
5431
5432 static int pnv_get_display_clock_speed(struct drm_device *dev)
5433 {
5434         u16 gcfgc = 0;
5435
5436         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5437
5438         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5439         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5440                 return 267000;
5441         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5442                 return 333000;
5443         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5444                 return 444000;
5445         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5446                 return 200000;
5447         default:
5448                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5449         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5450                 return 133000;
5451         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5452                 return 167000;
5453         }
5454 }
5455
5456 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5457 {
5458         u16 gcfgc = 0;
5459
5460         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5461
5462         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5463                 return 133000;
5464         else {
5465                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5466                 case GC_DISPLAY_CLOCK_333_MHZ:
5467                         return 333000;
5468                 default:
5469                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5470                         return 190000;
5471                 }
5472         }
5473 }
5474
5475 static int i865_get_display_clock_speed(struct drm_device *dev)
5476 {
5477         return 266000;
5478 }
5479
5480 static int i855_get_display_clock_speed(struct drm_device *dev)
5481 {
5482         u16 hpllcc = 0;
5483         /* Assume that the hardware is in the high speed state.  This
5484          * should be the default.
5485          */
5486         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5487         case GC_CLOCK_133_200:
5488         case GC_CLOCK_100_200:
5489                 return 200000;
5490         case GC_CLOCK_166_250:
5491                 return 250000;
5492         case GC_CLOCK_100_133:
5493                 return 133000;
5494         }
5495
5496         /* Shouldn't happen */
5497         return 0;
5498 }
5499
5500 static int i830_get_display_clock_speed(struct drm_device *dev)
5501 {
5502         return 133000;
5503 }
5504
5505 static void
5506 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5507 {
5508         while (*num > DATA_LINK_M_N_MASK ||
5509                *den > DATA_LINK_M_N_MASK) {
5510                 *num >>= 1;
5511                 *den >>= 1;
5512         }
5513 }
5514
5515 static void compute_m_n(unsigned int m, unsigned int n,
5516                         uint32_t *ret_m, uint32_t *ret_n)
5517 {
5518         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5519         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5520         intel_reduce_m_n_ratio(ret_m, ret_n);
5521 }
5522
5523 void
5524 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5525                        int pixel_clock, int link_clock,
5526                        struct intel_link_m_n *m_n)
5527 {
5528         m_n->tu = 64;
5529
5530         compute_m_n(bits_per_pixel * pixel_clock,
5531                     link_clock * nlanes * 8,
5532                     &m_n->gmch_m, &m_n->gmch_n);
5533
5534         compute_m_n(pixel_clock, link_clock,
5535                     &m_n->link_m, &m_n->link_n);
5536 }
5537
5538 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5539 {
5540         if (i915.panel_use_ssc >= 0)
5541                 return i915.panel_use_ssc != 0;
5542         return dev_priv->vbt.lvds_use_ssc
5543                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5544 }
5545
5546 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5547 {
5548         struct drm_device *dev = crtc->dev;
5549         struct drm_i915_private *dev_priv = dev->dev_private;
5550         int refclk;
5551
5552         if (IS_VALLEYVIEW(dev)) {
5553                 refclk = 100000;
5554         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5555             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5556                 refclk = dev_priv->vbt.lvds_ssc_freq;
5557                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5558         } else if (!IS_GEN2(dev)) {
5559                 refclk = 96000;
5560         } else {
5561                 refclk = 48000;
5562         }
5563
5564         return refclk;
5565 }
5566
5567 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5568 {
5569         return (1 << dpll->n) << 16 | dpll->m2;
5570 }
5571
5572 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5573 {
5574         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5575 }
5576
5577 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5578                                      intel_clock_t *reduced_clock)
5579 {
5580         struct drm_device *dev = crtc->base.dev;
5581         u32 fp, fp2 = 0;
5582
5583         if (IS_PINEVIEW(dev)) {
5584                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5585                 if (reduced_clock)
5586                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5587         } else {
5588                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5589                 if (reduced_clock)
5590                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5591         }
5592
5593         crtc->config.dpll_hw_state.fp0 = fp;
5594
5595         crtc->lowfreq_avail = false;
5596         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5597             reduced_clock && i915.powersave) {
5598                 crtc->config.dpll_hw_state.fp1 = fp2;
5599                 crtc->lowfreq_avail = true;
5600         } else {
5601                 crtc->config.dpll_hw_state.fp1 = fp;
5602         }
5603 }
5604
5605 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5606                 pipe)
5607 {
5608         u32 reg_val;
5609
5610         /*
5611          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5612          * and set it to a reasonable value instead.
5613          */
5614         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5615         reg_val &= 0xffffff00;
5616         reg_val |= 0x00000030;
5617         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5618
5619         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5620         reg_val &= 0x8cffffff;
5621         reg_val = 0x8c000000;
5622         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5623
5624         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5625         reg_val &= 0xffffff00;
5626         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5627
5628         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5629         reg_val &= 0x00ffffff;
5630         reg_val |= 0xb0000000;
5631         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5632 }
5633
5634 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5635                                          struct intel_link_m_n *m_n)
5636 {
5637         struct drm_device *dev = crtc->base.dev;
5638         struct drm_i915_private *dev_priv = dev->dev_private;
5639         int pipe = crtc->pipe;
5640
5641         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5642         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5643         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5644         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5645 }
5646
5647 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5648                                          struct intel_link_m_n *m_n,
5649                                          struct intel_link_m_n *m2_n2)
5650 {
5651         struct drm_device *dev = crtc->base.dev;
5652         struct drm_i915_private *dev_priv = dev->dev_private;
5653         int pipe = crtc->pipe;
5654         enum transcoder transcoder = crtc->config.cpu_transcoder;
5655
5656         if (INTEL_INFO(dev)->gen >= 5) {
5657                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5658                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5659                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5660                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5661                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5662                  * for gen < 8) and if DRRS is supported (to make sure the
5663                  * registers are not unnecessarily accessed).
5664                  */
5665                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5666                         crtc->config.has_drrs) {
5667                         I915_WRITE(PIPE_DATA_M2(transcoder),
5668                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5669                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5670                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5671                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5672                 }
5673         } else {
5674                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5675                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5676                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5677                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5678         }
5679 }
5680
5681 void intel_dp_set_m_n(struct intel_crtc *crtc)
5682 {
5683         if (crtc->config.has_pch_encoder)
5684                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5685         else
5686                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5687                                                    &crtc->config.dp_m2_n2);
5688 }
5689
5690 static void vlv_update_pll(struct intel_crtc *crtc)
5691 {
5692         u32 dpll, dpll_md;
5693
5694         /*
5695          * Enable DPIO clock input. We should never disable the reference
5696          * clock for pipe B, since VGA hotplug / manual detection depends
5697          * on it.
5698          */
5699         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5700                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5701         /* We should never disable this, set it here for state tracking */
5702         if (crtc->pipe == PIPE_B)
5703                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5704         dpll |= DPLL_VCO_ENABLE;
5705         crtc->config.dpll_hw_state.dpll = dpll;
5706
5707         dpll_md = (crtc->config.pixel_multiplier - 1)
5708                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5709         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5710 }
5711
5712 static void vlv_prepare_pll(struct intel_crtc *crtc)
5713 {
5714         struct drm_device *dev = crtc->base.dev;
5715         struct drm_i915_private *dev_priv = dev->dev_private;
5716         int pipe = crtc->pipe;
5717         u32 mdiv;
5718         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5719         u32 coreclk, reg_val;
5720
5721         mutex_lock(&dev_priv->dpio_lock);
5722
5723         bestn = crtc->config.dpll.n;
5724         bestm1 = crtc->config.dpll.m1;
5725         bestm2 = crtc->config.dpll.m2;
5726         bestp1 = crtc->config.dpll.p1;
5727         bestp2 = crtc->config.dpll.p2;
5728
5729         /* See eDP HDMI DPIO driver vbios notes doc */
5730
5731         /* PLL B needs special handling */
5732         if (pipe == PIPE_B)
5733                 vlv_pllb_recal_opamp(dev_priv, pipe);
5734
5735         /* Set up Tx target for periodic Rcomp update */
5736         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5737
5738         /* Disable target IRef on PLL */
5739         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5740         reg_val &= 0x00ffffff;
5741         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5742
5743         /* Disable fast lock */
5744         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5745
5746         /* Set idtafcrecal before PLL is enabled */
5747         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5748         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5749         mdiv |= ((bestn << DPIO_N_SHIFT));
5750         mdiv |= (1 << DPIO_K_SHIFT);
5751
5752         /*
5753          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5754          * but we don't support that).
5755          * Note: don't use the DAC post divider as it seems unstable.
5756          */
5757         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5758         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5759
5760         mdiv |= DPIO_ENABLE_CALIBRATION;
5761         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5762
5763         /* Set HBR and RBR LPF coefficients */
5764         if (crtc->config.port_clock == 162000 ||
5765             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5766             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5767                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5768                                  0x009f0003);
5769         else
5770                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5771                                  0x00d0000f);
5772
5773         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5774             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5775                 /* Use SSC source */
5776                 if (pipe == PIPE_A)
5777                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5778                                          0x0df40000);
5779                 else
5780                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5781                                          0x0df70000);
5782         } else { /* HDMI or VGA */
5783                 /* Use bend source */
5784                 if (pipe == PIPE_A)
5785                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5786                                          0x0df70000);
5787                 else
5788                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5789                                          0x0df40000);
5790         }
5791
5792         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5793         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5794         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5795             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5796                 coreclk |= 0x01000000;
5797         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5798
5799         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5800         mutex_unlock(&dev_priv->dpio_lock);
5801 }
5802
5803 static void chv_update_pll(struct intel_crtc *crtc)
5804 {
5805         crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5806                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5807                 DPLL_VCO_ENABLE;
5808         if (crtc->pipe != PIPE_A)
5809                 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5810
5811         crtc->config.dpll_hw_state.dpll_md =
5812                 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5813 }
5814
5815 static void chv_prepare_pll(struct intel_crtc *crtc)
5816 {
5817         struct drm_device *dev = crtc->base.dev;
5818         struct drm_i915_private *dev_priv = dev->dev_private;
5819         int pipe = crtc->pipe;
5820         int dpll_reg = DPLL(crtc->pipe);
5821         enum dpio_channel port = vlv_pipe_to_channel(pipe);
5822         u32 loopfilter, intcoeff;
5823         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5824         int refclk;
5825
5826         bestn = crtc->config.dpll.n;
5827         bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5828         bestm1 = crtc->config.dpll.m1;
5829         bestm2 = crtc->config.dpll.m2 >> 22;
5830         bestp1 = crtc->config.dpll.p1;
5831         bestp2 = crtc->config.dpll.p2;
5832
5833         /*
5834          * Enable Refclk and SSC
5835          */
5836         I915_WRITE(dpll_reg,
5837                    crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5838
5839         mutex_lock(&dev_priv->dpio_lock);
5840
5841         /* p1 and p2 divider */
5842         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5843                         5 << DPIO_CHV_S1_DIV_SHIFT |
5844                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5845                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5846                         1 << DPIO_CHV_K_DIV_SHIFT);
5847
5848         /* Feedback post-divider - m2 */
5849         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5850
5851         /* Feedback refclk divider - n and m1 */
5852         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5853                         DPIO_CHV_M1_DIV_BY_2 |
5854                         1 << DPIO_CHV_N_DIV_SHIFT);
5855
5856         /* M2 fraction division */
5857         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5858
5859         /* M2 fraction division enable */
5860         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5861                        DPIO_CHV_FRAC_DIV_EN |
5862                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5863
5864         /* Loop filter */
5865         refclk = i9xx_get_refclk(&crtc->base, 0);
5866         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5867                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5868         if (refclk == 100000)
5869                 intcoeff = 11;
5870         else if (refclk == 38400)
5871                 intcoeff = 10;
5872         else
5873                 intcoeff = 9;
5874         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5875         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5876
5877         /* AFC Recal */
5878         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5879                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5880                         DPIO_AFC_RECAL);
5881
5882         mutex_unlock(&dev_priv->dpio_lock);
5883 }
5884
5885 static void i9xx_update_pll(struct intel_crtc *crtc,
5886                             intel_clock_t *reduced_clock,
5887                             int num_connectors)
5888 {
5889         struct drm_device *dev = crtc->base.dev;
5890         struct drm_i915_private *dev_priv = dev->dev_private;
5891         u32 dpll;
5892         bool is_sdvo;
5893         struct dpll *clock = &crtc->config.dpll;
5894
5895         i9xx_update_pll_dividers(crtc, reduced_clock);
5896
5897         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5898                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5899
5900         dpll = DPLL_VGA_MODE_DIS;
5901
5902         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5903                 dpll |= DPLLB_MODE_LVDS;
5904         else
5905                 dpll |= DPLLB_MODE_DAC_SERIAL;
5906
5907         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5908                 dpll |= (crtc->config.pixel_multiplier - 1)
5909                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5910         }
5911
5912         if (is_sdvo)
5913                 dpll |= DPLL_SDVO_HIGH_SPEED;
5914
5915         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5916                 dpll |= DPLL_SDVO_HIGH_SPEED;
5917
5918         /* compute bitmask from p1 value */
5919         if (IS_PINEVIEW(dev))
5920                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5921         else {
5922                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5923                 if (IS_G4X(dev) && reduced_clock)
5924                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5925         }
5926         switch (clock->p2) {
5927         case 5:
5928                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5929                 break;
5930         case 7:
5931                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5932                 break;
5933         case 10:
5934                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5935                 break;
5936         case 14:
5937                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5938                 break;
5939         }
5940         if (INTEL_INFO(dev)->gen >= 4)
5941                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5942
5943         if (crtc->config.sdvo_tv_clock)
5944                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5945         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5946                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5947                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5948         else
5949                 dpll |= PLL_REF_INPUT_DREFCLK;
5950
5951         dpll |= DPLL_VCO_ENABLE;
5952         crtc->config.dpll_hw_state.dpll = dpll;
5953
5954         if (INTEL_INFO(dev)->gen >= 4) {
5955                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5956                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5957                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5958         }
5959 }
5960
5961 static void i8xx_update_pll(struct intel_crtc *crtc,
5962                             intel_clock_t *reduced_clock,
5963                             int num_connectors)
5964 {
5965         struct drm_device *dev = crtc->base.dev;
5966         struct drm_i915_private *dev_priv = dev->dev_private;
5967         u32 dpll;
5968         struct dpll *clock = &crtc->config.dpll;
5969
5970         i9xx_update_pll_dividers(crtc, reduced_clock);
5971
5972         dpll = DPLL_VGA_MODE_DIS;
5973
5974         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5975                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5976         } else {
5977                 if (clock->p1 == 2)
5978                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5979                 else
5980                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5981                 if (clock->p2 == 4)
5982                         dpll |= PLL_P2_DIVIDE_BY_4;
5983         }
5984
5985         if (!IS_I830(dev) && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5986                 dpll |= DPLL_DVO_2X_MODE;
5987
5988         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5989                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5990                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5991         else
5992                 dpll |= PLL_REF_INPUT_DREFCLK;
5993
5994         dpll |= DPLL_VCO_ENABLE;
5995         crtc->config.dpll_hw_state.dpll = dpll;
5996 }
5997
5998 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5999 {
6000         struct drm_device *dev = intel_crtc->base.dev;
6001         struct drm_i915_private *dev_priv = dev->dev_private;
6002         enum pipe pipe = intel_crtc->pipe;
6003         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6004         struct drm_display_mode *adjusted_mode =
6005                 &intel_crtc->config.adjusted_mode;
6006         uint32_t crtc_vtotal, crtc_vblank_end;
6007         int vsyncshift = 0;
6008
6009         /* We need to be careful not to changed the adjusted mode, for otherwise
6010          * the hw state checker will get angry at the mismatch. */
6011         crtc_vtotal = adjusted_mode->crtc_vtotal;
6012         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6013
6014         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6015                 /* the chip adds 2 halflines automatically */
6016                 crtc_vtotal -= 1;
6017                 crtc_vblank_end -= 1;
6018
6019                 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6020                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6021                 else
6022                         vsyncshift = adjusted_mode->crtc_hsync_start -
6023                                 adjusted_mode->crtc_htotal / 2;
6024                 if (vsyncshift < 0)
6025                         vsyncshift += adjusted_mode->crtc_htotal;
6026         }
6027
6028         if (INTEL_INFO(dev)->gen > 3)
6029                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6030
6031         I915_WRITE(HTOTAL(cpu_transcoder),
6032                    (adjusted_mode->crtc_hdisplay - 1) |
6033                    ((adjusted_mode->crtc_htotal - 1) << 16));
6034         I915_WRITE(HBLANK(cpu_transcoder),
6035                    (adjusted_mode->crtc_hblank_start - 1) |
6036                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6037         I915_WRITE(HSYNC(cpu_transcoder),
6038                    (adjusted_mode->crtc_hsync_start - 1) |
6039                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6040
6041         I915_WRITE(VTOTAL(cpu_transcoder),
6042                    (adjusted_mode->crtc_vdisplay - 1) |
6043                    ((crtc_vtotal - 1) << 16));
6044         I915_WRITE(VBLANK(cpu_transcoder),
6045                    (adjusted_mode->crtc_vblank_start - 1) |
6046                    ((crtc_vblank_end - 1) << 16));
6047         I915_WRITE(VSYNC(cpu_transcoder),
6048                    (adjusted_mode->crtc_vsync_start - 1) |
6049                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6050
6051         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6052          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6053          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6054          * bits. */
6055         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6056             (pipe == PIPE_B || pipe == PIPE_C))
6057                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6058
6059         /* pipesrc controls the size that is scaled from, which should
6060          * always be the user's requested size.
6061          */
6062         I915_WRITE(PIPESRC(pipe),
6063                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
6064                    (intel_crtc->config.pipe_src_h - 1));
6065 }
6066
6067 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6068                                    struct intel_crtc_config *pipe_config)
6069 {
6070         struct drm_device *dev = crtc->base.dev;
6071         struct drm_i915_private *dev_priv = dev->dev_private;
6072         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6073         uint32_t tmp;
6074
6075         tmp = I915_READ(HTOTAL(cpu_transcoder));
6076         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6077         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6078         tmp = I915_READ(HBLANK(cpu_transcoder));
6079         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6080         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6081         tmp = I915_READ(HSYNC(cpu_transcoder));
6082         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6083         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6084
6085         tmp = I915_READ(VTOTAL(cpu_transcoder));
6086         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6087         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6088         tmp = I915_READ(VBLANK(cpu_transcoder));
6089         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6090         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6091         tmp = I915_READ(VSYNC(cpu_transcoder));
6092         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6093         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6094
6095         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6096                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6097                 pipe_config->adjusted_mode.crtc_vtotal += 1;
6098                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6099         }
6100
6101         tmp = I915_READ(PIPESRC(crtc->pipe));
6102         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6103         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6104
6105         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6106         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6107 }
6108
6109 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6110                                  struct intel_crtc_config *pipe_config)
6111 {
6112         mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6113         mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6114         mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6115         mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6116
6117         mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6118         mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6119         mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6120         mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6121
6122         mode->flags = pipe_config->adjusted_mode.flags;
6123
6124         mode->clock = pipe_config->adjusted_mode.crtc_clock;
6125         mode->flags |= pipe_config->adjusted_mode.flags;
6126 }
6127
6128 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6129 {
6130         struct drm_device *dev = intel_crtc->base.dev;
6131         struct drm_i915_private *dev_priv = dev->dev_private;
6132         uint32_t pipeconf;
6133
6134         pipeconf = 0;
6135
6136         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6137             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6138                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6139
6140         if (intel_crtc->config.double_wide)
6141                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6142
6143         /* only g4x and later have fancy bpc/dither controls */
6144         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6145                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6146                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6147                         pipeconf |= PIPECONF_DITHER_EN |
6148                                     PIPECONF_DITHER_TYPE_SP;
6149
6150                 switch (intel_crtc->config.pipe_bpp) {
6151                 case 18:
6152                         pipeconf |= PIPECONF_6BPC;
6153                         break;
6154                 case 24:
6155                         pipeconf |= PIPECONF_8BPC;
6156                         break;
6157                 case 30:
6158                         pipeconf |= PIPECONF_10BPC;
6159                         break;
6160                 default:
6161                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6162                         BUG();
6163                 }
6164         }
6165
6166         if (HAS_PIPE_CXSR(dev)) {
6167                 if (intel_crtc->lowfreq_avail) {
6168                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6169                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6170                 } else {
6171                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6172                 }
6173         }
6174
6175         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6176                 if (INTEL_INFO(dev)->gen < 4 ||
6177                     intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6178                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6179                 else
6180                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6181         } else
6182                 pipeconf |= PIPECONF_PROGRESSIVE;
6183
6184         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6185                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6186
6187         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6188         POSTING_READ(PIPECONF(intel_crtc->pipe));
6189 }
6190
6191 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6192                               int x, int y,
6193                               struct drm_framebuffer *fb)
6194 {
6195         struct drm_device *dev = crtc->dev;
6196         struct drm_i915_private *dev_priv = dev->dev_private;
6197         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6198         int refclk, num_connectors = 0;
6199         intel_clock_t clock, reduced_clock;
6200         bool ok, has_reduced_clock = false;
6201         bool is_lvds = false, is_dsi = false;
6202         struct intel_encoder *encoder;
6203         const intel_limit_t *limit;
6204
6205         for_each_encoder_on_crtc(dev, crtc, encoder) {
6206                 switch (encoder->type) {
6207                 case INTEL_OUTPUT_LVDS:
6208                         is_lvds = true;
6209                         break;
6210                 case INTEL_OUTPUT_DSI:
6211                         is_dsi = true;
6212                         break;
6213                 }
6214
6215                 num_connectors++;
6216         }
6217
6218         if (is_dsi)
6219                 return 0;
6220
6221         if (!intel_crtc->config.clock_set) {
6222                 refclk = i9xx_get_refclk(crtc, num_connectors);
6223
6224                 /*
6225                  * Returns a set of divisors for the desired target clock with
6226                  * the given refclk, or FALSE.  The returned values represent
6227                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6228                  * 2) / p1 / p2.
6229                  */
6230                 limit = intel_limit(crtc, refclk);
6231                 ok = dev_priv->display.find_dpll(limit, crtc,
6232                                                  intel_crtc->config.port_clock,
6233                                                  refclk, NULL, &clock);
6234                 if (!ok) {
6235                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6236                         return -EINVAL;
6237                 }
6238
6239                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6240                         /*
6241                          * Ensure we match the reduced clock's P to the target
6242                          * clock.  If the clocks don't match, we can't switch
6243                          * the display clock by using the FP0/FP1. In such case
6244                          * we will disable the LVDS downclock feature.
6245                          */
6246                         has_reduced_clock =
6247                                 dev_priv->display.find_dpll(limit, crtc,
6248                                                             dev_priv->lvds_downclock,
6249                                                             refclk, &clock,
6250                                                             &reduced_clock);
6251                 }
6252                 /* Compat-code for transition, will disappear. */
6253                 intel_crtc->config.dpll.n = clock.n;
6254                 intel_crtc->config.dpll.m1 = clock.m1;
6255                 intel_crtc->config.dpll.m2 = clock.m2;
6256                 intel_crtc->config.dpll.p1 = clock.p1;
6257                 intel_crtc->config.dpll.p2 = clock.p2;
6258         }
6259
6260         if (IS_GEN2(dev)) {
6261                 i8xx_update_pll(intel_crtc,
6262                                 has_reduced_clock ? &reduced_clock : NULL,
6263                                 num_connectors);
6264         } else if (IS_CHERRYVIEW(dev)) {
6265                 chv_update_pll(intel_crtc);
6266         } else if (IS_VALLEYVIEW(dev)) {
6267                 vlv_update_pll(intel_crtc);
6268         } else {
6269                 i9xx_update_pll(intel_crtc,
6270                                 has_reduced_clock ? &reduced_clock : NULL,
6271                                 num_connectors);
6272         }
6273
6274         return 0;
6275 }
6276
6277 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6278                                  struct intel_crtc_config *pipe_config)
6279 {
6280         struct drm_device *dev = crtc->base.dev;
6281         struct drm_i915_private *dev_priv = dev->dev_private;
6282         uint32_t tmp;
6283
6284         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6285                 return;
6286
6287         tmp = I915_READ(PFIT_CONTROL);
6288         if (!(tmp & PFIT_ENABLE))
6289                 return;
6290
6291         /* Check whether the pfit is attached to our pipe. */
6292         if (INTEL_INFO(dev)->gen < 4) {
6293                 if (crtc->pipe != PIPE_B)
6294                         return;
6295         } else {
6296                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6297                         return;
6298         }
6299
6300         pipe_config->gmch_pfit.control = tmp;
6301         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6302         if (INTEL_INFO(dev)->gen < 5)
6303                 pipe_config->gmch_pfit.lvds_border_bits =
6304                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6305 }
6306
6307 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6308                                struct intel_crtc_config *pipe_config)
6309 {
6310         struct drm_device *dev = crtc->base.dev;
6311         struct drm_i915_private *dev_priv = dev->dev_private;
6312         int pipe = pipe_config->cpu_transcoder;
6313         intel_clock_t clock;
6314         u32 mdiv;
6315         int refclk = 100000;
6316
6317         /* In case of MIPI DPLL will not even be used */
6318         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6319                 return;
6320
6321         mutex_lock(&dev_priv->dpio_lock);
6322         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6323         mutex_unlock(&dev_priv->dpio_lock);
6324
6325         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6326         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6327         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6328         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6329         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6330
6331         vlv_clock(refclk, &clock);
6332
6333         /* clock.dot is the fast clock */
6334         pipe_config->port_clock = clock.dot / 5;
6335 }
6336
6337 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6338                                   struct intel_plane_config *plane_config)
6339 {
6340         struct drm_device *dev = crtc->base.dev;
6341         struct drm_i915_private *dev_priv = dev->dev_private;
6342         u32 val, base, offset;
6343         int pipe = crtc->pipe, plane = crtc->plane;
6344         int fourcc, pixel_format;
6345         int aligned_height;
6346
6347         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6348         if (!crtc->base.primary->fb) {
6349                 DRM_DEBUG_KMS("failed to alloc fb\n");
6350                 return;
6351         }
6352
6353         val = I915_READ(DSPCNTR(plane));
6354
6355         if (INTEL_INFO(dev)->gen >= 4)
6356                 if (val & DISPPLANE_TILED)
6357                         plane_config->tiled = true;
6358
6359         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6360         fourcc = intel_format_to_fourcc(pixel_format);
6361         crtc->base.primary->fb->pixel_format = fourcc;
6362         crtc->base.primary->fb->bits_per_pixel =
6363                 drm_format_plane_cpp(fourcc, 0) * 8;
6364
6365         if (INTEL_INFO(dev)->gen >= 4) {
6366                 if (plane_config->tiled)
6367                         offset = I915_READ(DSPTILEOFF(plane));
6368                 else
6369                         offset = I915_READ(DSPLINOFF(plane));
6370                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6371         } else {
6372                 base = I915_READ(DSPADDR(plane));
6373         }
6374         plane_config->base = base;
6375
6376         val = I915_READ(PIPESRC(pipe));
6377         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6378         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6379
6380         val = I915_READ(DSPSTRIDE(pipe));
6381         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6382
6383         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6384                                             plane_config->tiled);
6385
6386         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6387                                         aligned_height);
6388
6389         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6390                       pipe, plane, crtc->base.primary->fb->width,
6391                       crtc->base.primary->fb->height,
6392                       crtc->base.primary->fb->bits_per_pixel, base,
6393                       crtc->base.primary->fb->pitches[0],
6394                       plane_config->size);
6395
6396 }
6397
6398 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6399                                struct intel_crtc_config *pipe_config)
6400 {
6401         struct drm_device *dev = crtc->base.dev;
6402         struct drm_i915_private *dev_priv = dev->dev_private;
6403         int pipe = pipe_config->cpu_transcoder;
6404         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6405         intel_clock_t clock;
6406         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6407         int refclk = 100000;
6408
6409         mutex_lock(&dev_priv->dpio_lock);
6410         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6411         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6412         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6413         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6414         mutex_unlock(&dev_priv->dpio_lock);
6415
6416         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6417         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6418         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6419         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6420         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6421
6422         chv_clock(refclk, &clock);
6423
6424         /* clock.dot is the fast clock */
6425         pipe_config->port_clock = clock.dot / 5;
6426 }
6427
6428 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6429                                  struct intel_crtc_config *pipe_config)
6430 {
6431         struct drm_device *dev = crtc->base.dev;
6432         struct drm_i915_private *dev_priv = dev->dev_private;
6433         uint32_t tmp;
6434
6435         if (!intel_display_power_enabled(dev_priv,
6436                                          POWER_DOMAIN_PIPE(crtc->pipe)))
6437                 return false;
6438
6439         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6440         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6441
6442         tmp = I915_READ(PIPECONF(crtc->pipe));
6443         if (!(tmp & PIPECONF_ENABLE))
6444                 return false;
6445
6446         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6447                 switch (tmp & PIPECONF_BPC_MASK) {
6448                 case PIPECONF_6BPC:
6449                         pipe_config->pipe_bpp = 18;
6450                         break;
6451                 case PIPECONF_8BPC:
6452                         pipe_config->pipe_bpp = 24;
6453                         break;
6454                 case PIPECONF_10BPC:
6455                         pipe_config->pipe_bpp = 30;
6456                         break;
6457                 default:
6458                         break;
6459                 }
6460         }
6461
6462         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6463                 pipe_config->limited_color_range = true;
6464
6465         if (INTEL_INFO(dev)->gen < 4)
6466                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6467
6468         intel_get_pipe_timings(crtc, pipe_config);
6469
6470         i9xx_get_pfit_config(crtc, pipe_config);
6471
6472         if (INTEL_INFO(dev)->gen >= 4) {
6473                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6474                 pipe_config->pixel_multiplier =
6475                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6476                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6477                 pipe_config->dpll_hw_state.dpll_md = tmp;
6478         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6479                 tmp = I915_READ(DPLL(crtc->pipe));
6480                 pipe_config->pixel_multiplier =
6481                         ((tmp & SDVO_MULTIPLIER_MASK)
6482                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6483         } else {
6484                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6485                  * port and will be fixed up in the encoder->get_config
6486                  * function. */
6487                 pipe_config->pixel_multiplier = 1;
6488         }
6489         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6490         if (!IS_VALLEYVIEW(dev)) {
6491                 /*
6492                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6493                  * on 830. Filter it out here so that we don't
6494                  * report errors due to that.
6495                  */
6496                 if (IS_I830(dev))
6497                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6498
6499                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6500                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6501         } else {
6502                 /* Mask out read-only status bits. */
6503                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6504                                                      DPLL_PORTC_READY_MASK |
6505                                                      DPLL_PORTB_READY_MASK);
6506         }
6507
6508         if (IS_CHERRYVIEW(dev))
6509                 chv_crtc_clock_get(crtc, pipe_config);
6510         else if (IS_VALLEYVIEW(dev))
6511                 vlv_crtc_clock_get(crtc, pipe_config);
6512         else
6513                 i9xx_crtc_clock_get(crtc, pipe_config);
6514
6515         return true;
6516 }
6517
6518 static void ironlake_init_pch_refclk(struct drm_device *dev)
6519 {
6520         struct drm_i915_private *dev_priv = dev->dev_private;
6521         struct intel_encoder *encoder;
6522         u32 val, final;
6523         bool has_lvds = false;
6524         bool has_cpu_edp = false;
6525         bool has_panel = false;
6526         bool has_ck505 = false;
6527         bool can_ssc = false;
6528
6529         /* We need to take the global config into account */
6530         for_each_intel_encoder(dev, encoder) {
6531                 switch (encoder->type) {
6532                 case INTEL_OUTPUT_LVDS:
6533                         has_panel = true;
6534                         has_lvds = true;
6535                         break;
6536                 case INTEL_OUTPUT_EDP:
6537                         has_panel = true;
6538                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6539                                 has_cpu_edp = true;
6540                         break;
6541                 }
6542         }
6543
6544         if (HAS_PCH_IBX(dev)) {
6545                 has_ck505 = dev_priv->vbt.display_clock_mode;
6546                 can_ssc = has_ck505;
6547         } else {
6548                 has_ck505 = false;
6549                 can_ssc = true;
6550         }
6551
6552         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6553                       has_panel, has_lvds, has_ck505);
6554
6555         /* Ironlake: try to setup display ref clock before DPLL
6556          * enabling. This is only under driver's control after
6557          * PCH B stepping, previous chipset stepping should be
6558          * ignoring this setting.
6559          */
6560         val = I915_READ(PCH_DREF_CONTROL);
6561
6562         /* As we must carefully and slowly disable/enable each source in turn,
6563          * compute the final state we want first and check if we need to
6564          * make any changes at all.
6565          */
6566         final = val;
6567         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6568         if (has_ck505)
6569                 final |= DREF_NONSPREAD_CK505_ENABLE;
6570         else
6571                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6572
6573         final &= ~DREF_SSC_SOURCE_MASK;
6574         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6575         final &= ~DREF_SSC1_ENABLE;
6576
6577         if (has_panel) {
6578                 final |= DREF_SSC_SOURCE_ENABLE;
6579
6580                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6581                         final |= DREF_SSC1_ENABLE;
6582
6583                 if (has_cpu_edp) {
6584                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6585                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6586                         else
6587                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6588                 } else
6589                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6590         } else {
6591                 final |= DREF_SSC_SOURCE_DISABLE;
6592                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6593         }
6594
6595         if (final == val)
6596                 return;
6597
6598         /* Always enable nonspread source */
6599         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6600
6601         if (has_ck505)
6602                 val |= DREF_NONSPREAD_CK505_ENABLE;
6603         else
6604                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6605
6606         if (has_panel) {
6607                 val &= ~DREF_SSC_SOURCE_MASK;
6608                 val |= DREF_SSC_SOURCE_ENABLE;
6609
6610                 /* SSC must be turned on before enabling the CPU output  */
6611                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6612                         DRM_DEBUG_KMS("Using SSC on panel\n");
6613                         val |= DREF_SSC1_ENABLE;
6614                 } else
6615                         val &= ~DREF_SSC1_ENABLE;
6616
6617                 /* Get SSC going before enabling the outputs */
6618                 I915_WRITE(PCH_DREF_CONTROL, val);
6619                 POSTING_READ(PCH_DREF_CONTROL);
6620                 udelay(200);
6621
6622                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6623
6624                 /* Enable CPU source on CPU attached eDP */
6625                 if (has_cpu_edp) {
6626                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6627                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6628                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6629                         } else
6630                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6631                 } else
6632                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6633
6634                 I915_WRITE(PCH_DREF_CONTROL, val);
6635                 POSTING_READ(PCH_DREF_CONTROL);
6636                 udelay(200);
6637         } else {
6638                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6639
6640                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6641
6642                 /* Turn off CPU output */
6643                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6644
6645                 I915_WRITE(PCH_DREF_CONTROL, val);
6646                 POSTING_READ(PCH_DREF_CONTROL);
6647                 udelay(200);
6648
6649                 /* Turn off the SSC source */
6650                 val &= ~DREF_SSC_SOURCE_MASK;
6651                 val |= DREF_SSC_SOURCE_DISABLE;
6652
6653                 /* Turn off SSC1 */
6654                 val &= ~DREF_SSC1_ENABLE;
6655
6656                 I915_WRITE(PCH_DREF_CONTROL, val);
6657                 POSTING_READ(PCH_DREF_CONTROL);
6658                 udelay(200);
6659         }
6660
6661         BUG_ON(val != final);
6662 }
6663
6664 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6665 {
6666         uint32_t tmp;
6667
6668         tmp = I915_READ(SOUTH_CHICKEN2);
6669         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6670         I915_WRITE(SOUTH_CHICKEN2, tmp);
6671
6672         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6673                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6674                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6675
6676         tmp = I915_READ(SOUTH_CHICKEN2);
6677         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6678         I915_WRITE(SOUTH_CHICKEN2, tmp);
6679
6680         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6681                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6682                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6683 }
6684
6685 /* WaMPhyProgramming:hsw */
6686 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6687 {
6688         uint32_t tmp;
6689
6690         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6691         tmp &= ~(0xFF << 24);
6692         tmp |= (0x12 << 24);
6693         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6694
6695         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6696         tmp |= (1 << 11);
6697         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6698
6699         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6700         tmp |= (1 << 11);
6701         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6702
6703         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6704         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6705         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6706
6707         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6708         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6709         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6710
6711         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6712         tmp &= ~(7 << 13);
6713         tmp |= (5 << 13);
6714         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6715
6716         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6717         tmp &= ~(7 << 13);
6718         tmp |= (5 << 13);
6719         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6720
6721         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6722         tmp &= ~0xFF;
6723         tmp |= 0x1C;
6724         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6725
6726         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6727         tmp &= ~0xFF;
6728         tmp |= 0x1C;
6729         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6730
6731         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6732         tmp &= ~(0xFF << 16);
6733         tmp |= (0x1C << 16);
6734         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6735
6736         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6737         tmp &= ~(0xFF << 16);
6738         tmp |= (0x1C << 16);
6739         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6740
6741         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6742         tmp |= (1 << 27);
6743         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6744
6745         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6746         tmp |= (1 << 27);
6747         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6748
6749         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6750         tmp &= ~(0xF << 28);
6751         tmp |= (4 << 28);
6752         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6753
6754         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6755         tmp &= ~(0xF << 28);
6756         tmp |= (4 << 28);
6757         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6758 }
6759
6760 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6761  * Programming" based on the parameters passed:
6762  * - Sequence to enable CLKOUT_DP
6763  * - Sequence to enable CLKOUT_DP without spread
6764  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6765  */
6766 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6767                                  bool with_fdi)
6768 {
6769         struct drm_i915_private *dev_priv = dev->dev_private;
6770         uint32_t reg, tmp;
6771
6772         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6773                 with_spread = true;
6774         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6775                  with_fdi, "LP PCH doesn't have FDI\n"))
6776                 with_fdi = false;
6777
6778         mutex_lock(&dev_priv->dpio_lock);
6779
6780         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6781         tmp &= ~SBI_SSCCTL_DISABLE;
6782         tmp |= SBI_SSCCTL_PATHALT;
6783         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6784
6785         udelay(24);
6786
6787         if (with_spread) {
6788                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6789                 tmp &= ~SBI_SSCCTL_PATHALT;
6790                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6791
6792                 if (with_fdi) {
6793                         lpt_reset_fdi_mphy(dev_priv);
6794                         lpt_program_fdi_mphy(dev_priv);
6795                 }
6796         }
6797
6798         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6799                SBI_GEN0 : SBI_DBUFF0;
6800         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6801         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6802         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6803
6804         mutex_unlock(&dev_priv->dpio_lock);
6805 }
6806
6807 /* Sequence to disable CLKOUT_DP */
6808 static void lpt_disable_clkout_dp(struct drm_device *dev)
6809 {
6810         struct drm_i915_private *dev_priv = dev->dev_private;
6811         uint32_t reg, tmp;
6812
6813         mutex_lock(&dev_priv->dpio_lock);
6814
6815         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6816                SBI_GEN0 : SBI_DBUFF0;
6817         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6818         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6819         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6820
6821         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6822         if (!(tmp & SBI_SSCCTL_DISABLE)) {
6823                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6824                         tmp |= SBI_SSCCTL_PATHALT;
6825                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6826                         udelay(32);
6827                 }
6828                 tmp |= SBI_SSCCTL_DISABLE;
6829                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6830         }
6831
6832         mutex_unlock(&dev_priv->dpio_lock);
6833 }
6834
6835 static void lpt_init_pch_refclk(struct drm_device *dev)
6836 {
6837         struct intel_encoder *encoder;
6838         bool has_vga = false;
6839
6840         for_each_intel_encoder(dev, encoder) {
6841                 switch (encoder->type) {
6842                 case INTEL_OUTPUT_ANALOG:
6843                         has_vga = true;
6844                         break;
6845                 }
6846         }
6847
6848         if (has_vga)
6849                 lpt_enable_clkout_dp(dev, true, true);
6850         else
6851                 lpt_disable_clkout_dp(dev);
6852 }
6853
6854 /*
6855  * Initialize reference clocks when the driver loads
6856  */
6857 void intel_init_pch_refclk(struct drm_device *dev)
6858 {
6859         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6860                 ironlake_init_pch_refclk(dev);
6861         else if (HAS_PCH_LPT(dev))
6862                 lpt_init_pch_refclk(dev);
6863 }
6864
6865 static int ironlake_get_refclk(struct drm_crtc *crtc)
6866 {
6867         struct drm_device *dev = crtc->dev;
6868         struct drm_i915_private *dev_priv = dev->dev_private;
6869         struct intel_encoder *encoder;
6870         int num_connectors = 0;
6871         bool is_lvds = false;
6872
6873         for_each_encoder_on_crtc(dev, crtc, encoder) {
6874                 switch (encoder->type) {
6875                 case INTEL_OUTPUT_LVDS:
6876                         is_lvds = true;
6877                         break;
6878                 }
6879                 num_connectors++;
6880         }
6881
6882         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6883                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6884                               dev_priv->vbt.lvds_ssc_freq);
6885                 return dev_priv->vbt.lvds_ssc_freq;
6886         }
6887
6888         return 120000;
6889 }
6890
6891 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6892 {
6893         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6894         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6895         int pipe = intel_crtc->pipe;
6896         uint32_t val;
6897
6898         val = 0;
6899
6900         switch (intel_crtc->config.pipe_bpp) {
6901         case 18:
6902                 val |= PIPECONF_6BPC;
6903                 break;
6904         case 24:
6905                 val |= PIPECONF_8BPC;
6906                 break;
6907         case 30:
6908                 val |= PIPECONF_10BPC;
6909                 break;
6910         case 36:
6911                 val |= PIPECONF_12BPC;
6912                 break;
6913         default:
6914                 /* Case prevented by intel_choose_pipe_bpp_dither. */
6915                 BUG();
6916         }
6917
6918         if (intel_crtc->config.dither)
6919                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6920
6921         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6922                 val |= PIPECONF_INTERLACED_ILK;
6923         else
6924                 val |= PIPECONF_PROGRESSIVE;
6925
6926         if (intel_crtc->config.limited_color_range)
6927                 val |= PIPECONF_COLOR_RANGE_SELECT;
6928
6929         I915_WRITE(PIPECONF(pipe), val);
6930         POSTING_READ(PIPECONF(pipe));
6931 }
6932
6933 /*
6934  * Set up the pipe CSC unit.
6935  *
6936  * Currently only full range RGB to limited range RGB conversion
6937  * is supported, but eventually this should handle various
6938  * RGB<->YCbCr scenarios as well.
6939  */
6940 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6941 {
6942         struct drm_device *dev = crtc->dev;
6943         struct drm_i915_private *dev_priv = dev->dev_private;
6944         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6945         int pipe = intel_crtc->pipe;
6946         uint16_t coeff = 0x7800; /* 1.0 */
6947
6948         /*
6949          * TODO: Check what kind of values actually come out of the pipe
6950          * with these coeff/postoff values and adjust to get the best
6951          * accuracy. Perhaps we even need to take the bpc value into
6952          * consideration.
6953          */
6954
6955         if (intel_crtc->config.limited_color_range)
6956                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6957
6958         /*
6959          * GY/GU and RY/RU should be the other way around according
6960          * to BSpec, but reality doesn't agree. Just set them up in
6961          * a way that results in the correct picture.
6962          */
6963         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6964         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6965
6966         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6967         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6968
6969         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6970         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6971
6972         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6973         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6974         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6975
6976         if (INTEL_INFO(dev)->gen > 6) {
6977                 uint16_t postoff = 0;
6978
6979                 if (intel_crtc->config.limited_color_range)
6980                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6981
6982                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6983                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6984                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6985
6986                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6987         } else {
6988                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6989
6990                 if (intel_crtc->config.limited_color_range)
6991                         mode |= CSC_BLACK_SCREEN_OFFSET;
6992
6993                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6994         }
6995 }
6996
6997 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6998 {
6999         struct drm_device *dev = crtc->dev;
7000         struct drm_i915_private *dev_priv = dev->dev_private;
7001         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7002         enum pipe pipe = intel_crtc->pipe;
7003         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7004         uint32_t val;
7005
7006         val = 0;
7007
7008         if (IS_HASWELL(dev) && intel_crtc->config.dither)
7009                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7010
7011         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7012                 val |= PIPECONF_INTERLACED_ILK;
7013         else
7014                 val |= PIPECONF_PROGRESSIVE;
7015
7016         I915_WRITE(PIPECONF(cpu_transcoder), val);
7017         POSTING_READ(PIPECONF(cpu_transcoder));
7018
7019         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7020         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7021
7022         if (IS_BROADWELL(dev)) {
7023                 val = 0;
7024
7025                 switch (intel_crtc->config.pipe_bpp) {
7026                 case 18:
7027                         val |= PIPEMISC_DITHER_6_BPC;
7028                         break;
7029                 case 24:
7030                         val |= PIPEMISC_DITHER_8_BPC;
7031                         break;
7032                 case 30:
7033                         val |= PIPEMISC_DITHER_10_BPC;
7034                         break;
7035                 case 36:
7036                         val |= PIPEMISC_DITHER_12_BPC;
7037                         break;
7038                 default:
7039                         /* Case prevented by pipe_config_set_bpp. */
7040                         BUG();
7041                 }
7042
7043                 if (intel_crtc->config.dither)
7044                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7045
7046                 I915_WRITE(PIPEMISC(pipe), val);
7047         }
7048 }
7049
7050 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7051                                     intel_clock_t *clock,
7052                                     bool *has_reduced_clock,
7053                                     intel_clock_t *reduced_clock)
7054 {
7055         struct drm_device *dev = crtc->dev;
7056         struct drm_i915_private *dev_priv = dev->dev_private;
7057         struct intel_encoder *intel_encoder;
7058         int refclk;
7059         const intel_limit_t *limit;
7060         bool ret, is_lvds = false;
7061
7062         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7063                 switch (intel_encoder->type) {
7064                 case INTEL_OUTPUT_LVDS:
7065                         is_lvds = true;
7066                         break;
7067                 }
7068         }
7069
7070         refclk = ironlake_get_refclk(crtc);
7071
7072         /*
7073          * Returns a set of divisors for the desired target clock with the given
7074          * refclk, or FALSE.  The returned values represent the clock equation:
7075          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7076          */
7077         limit = intel_limit(crtc, refclk);
7078         ret = dev_priv->display.find_dpll(limit, crtc,
7079                                           to_intel_crtc(crtc)->config.port_clock,
7080                                           refclk, NULL, clock);
7081         if (!ret)
7082                 return false;
7083
7084         if (is_lvds && dev_priv->lvds_downclock_avail) {
7085                 /*
7086                  * Ensure we match the reduced clock's P to the target clock.
7087                  * If the clocks don't match, we can't switch the display clock
7088                  * by using the FP0/FP1. In such case we will disable the LVDS
7089                  * downclock feature.
7090                 */
7091                 *has_reduced_clock =
7092                         dev_priv->display.find_dpll(limit, crtc,
7093                                                     dev_priv->lvds_downclock,
7094                                                     refclk, clock,
7095                                                     reduced_clock);
7096         }
7097
7098         return true;
7099 }
7100
7101 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7102 {
7103         /*
7104          * Account for spread spectrum to avoid
7105          * oversubscribing the link. Max center spread
7106          * is 2.5%; use 5% for safety's sake.
7107          */
7108         u32 bps = target_clock * bpp * 21 / 20;
7109         return DIV_ROUND_UP(bps, link_bw * 8);
7110 }
7111
7112 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7113 {
7114         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7115 }
7116
7117 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7118                                       u32 *fp,
7119                                       intel_clock_t *reduced_clock, u32 *fp2)
7120 {
7121         struct drm_crtc *crtc = &intel_crtc->base;
7122         struct drm_device *dev = crtc->dev;
7123         struct drm_i915_private *dev_priv = dev->dev_private;
7124         struct intel_encoder *intel_encoder;
7125         uint32_t dpll;
7126         int factor, num_connectors = 0;
7127         bool is_lvds = false, is_sdvo = false;
7128
7129         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7130                 switch (intel_encoder->type) {
7131                 case INTEL_OUTPUT_LVDS:
7132                         is_lvds = true;
7133                         break;
7134                 case INTEL_OUTPUT_SDVO:
7135                 case INTEL_OUTPUT_HDMI:
7136                         is_sdvo = true;
7137                         break;
7138                 }
7139
7140                 num_connectors++;
7141         }
7142
7143         /* Enable autotuning of the PLL clock (if permissible) */
7144         factor = 21;
7145         if (is_lvds) {
7146                 if ((intel_panel_use_ssc(dev_priv) &&
7147                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7148                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7149                         factor = 25;
7150         } else if (intel_crtc->config.sdvo_tv_clock)
7151                 factor = 20;
7152
7153         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7154                 *fp |= FP_CB_TUNE;
7155
7156         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7157                 *fp2 |= FP_CB_TUNE;
7158
7159         dpll = 0;
7160
7161         if (is_lvds)
7162                 dpll |= DPLLB_MODE_LVDS;
7163         else
7164                 dpll |= DPLLB_MODE_DAC_SERIAL;
7165
7166         dpll |= (intel_crtc->config.pixel_multiplier - 1)
7167                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7168
7169         if (is_sdvo)
7170                 dpll |= DPLL_SDVO_HIGH_SPEED;
7171         if (intel_crtc->config.has_dp_encoder)
7172                 dpll |= DPLL_SDVO_HIGH_SPEED;
7173
7174         /* compute bitmask from p1 value */
7175         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7176         /* also FPA1 */
7177         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7178
7179         switch (intel_crtc->config.dpll.p2) {
7180         case 5:
7181                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7182                 break;
7183         case 7:
7184                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7185                 break;
7186         case 10:
7187                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7188                 break;
7189         case 14:
7190                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7191                 break;
7192         }
7193
7194         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7195                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7196         else
7197                 dpll |= PLL_REF_INPUT_DREFCLK;
7198
7199         return dpll | DPLL_VCO_ENABLE;
7200 }
7201
7202 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7203                                   int x, int y,
7204                                   struct drm_framebuffer *fb)
7205 {
7206         struct drm_device *dev = crtc->dev;
7207         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7208         int num_connectors = 0;
7209         intel_clock_t clock, reduced_clock;
7210         u32 dpll = 0, fp = 0, fp2 = 0;
7211         bool ok, has_reduced_clock = false;
7212         bool is_lvds = false;
7213         struct intel_encoder *encoder;
7214         struct intel_shared_dpll *pll;
7215
7216         for_each_encoder_on_crtc(dev, crtc, encoder) {
7217                 switch (encoder->type) {
7218                 case INTEL_OUTPUT_LVDS:
7219                         is_lvds = true;
7220                         break;
7221                 }
7222
7223                 num_connectors++;
7224         }
7225
7226         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7227              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7228
7229         ok = ironlake_compute_clocks(crtc, &clock,
7230                                      &has_reduced_clock, &reduced_clock);
7231         if (!ok && !intel_crtc->config.clock_set) {
7232                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7233                 return -EINVAL;
7234         }
7235         /* Compat-code for transition, will disappear. */
7236         if (!intel_crtc->config.clock_set) {
7237                 intel_crtc->config.dpll.n = clock.n;
7238                 intel_crtc->config.dpll.m1 = clock.m1;
7239                 intel_crtc->config.dpll.m2 = clock.m2;
7240                 intel_crtc->config.dpll.p1 = clock.p1;
7241                 intel_crtc->config.dpll.p2 = clock.p2;
7242         }
7243
7244         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7245         if (intel_crtc->config.has_pch_encoder) {
7246                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7247                 if (has_reduced_clock)
7248                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7249
7250                 dpll = ironlake_compute_dpll(intel_crtc,
7251                                              &fp, &reduced_clock,
7252                                              has_reduced_clock ? &fp2 : NULL);
7253
7254                 intel_crtc->config.dpll_hw_state.dpll = dpll;
7255                 intel_crtc->config.dpll_hw_state.fp0 = fp;
7256                 if (has_reduced_clock)
7257                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
7258                 else
7259                         intel_crtc->config.dpll_hw_state.fp1 = fp;
7260
7261                 pll = intel_get_shared_dpll(intel_crtc);
7262                 if (pll == NULL) {
7263                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7264                                          pipe_name(intel_crtc->pipe));
7265                         return -EINVAL;
7266                 }
7267         } else
7268                 intel_put_shared_dpll(intel_crtc);
7269
7270         if (is_lvds && has_reduced_clock && i915.powersave)
7271                 intel_crtc->lowfreq_avail = true;
7272         else
7273                 intel_crtc->lowfreq_avail = false;
7274
7275         return 0;
7276 }
7277
7278 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7279                                          struct intel_link_m_n *m_n)
7280 {
7281         struct drm_device *dev = crtc->base.dev;
7282         struct drm_i915_private *dev_priv = dev->dev_private;
7283         enum pipe pipe = crtc->pipe;
7284
7285         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7286         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7287         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7288                 & ~TU_SIZE_MASK;
7289         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7290         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7291                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7292 }
7293
7294 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7295                                          enum transcoder transcoder,
7296                                          struct intel_link_m_n *m_n,
7297                                          struct intel_link_m_n *m2_n2)
7298 {
7299         struct drm_device *dev = crtc->base.dev;
7300         struct drm_i915_private *dev_priv = dev->dev_private;
7301         enum pipe pipe = crtc->pipe;
7302
7303         if (INTEL_INFO(dev)->gen >= 5) {
7304                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7305                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7306                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7307                         & ~TU_SIZE_MASK;
7308                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7309                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7310                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7311                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7312                  * gen < 8) and if DRRS is supported (to make sure the
7313                  * registers are not unnecessarily read).
7314                  */
7315                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7316                         crtc->config.has_drrs) {
7317                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7318                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7319                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7320                                         & ~TU_SIZE_MASK;
7321                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7322                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7323                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7324                 }
7325         } else {
7326                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7327                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7328                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7329                         & ~TU_SIZE_MASK;
7330                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7331                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7332                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7333         }
7334 }
7335
7336 void intel_dp_get_m_n(struct intel_crtc *crtc,
7337                       struct intel_crtc_config *pipe_config)
7338 {
7339         if (crtc->config.has_pch_encoder)
7340                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7341         else
7342                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7343                                              &pipe_config->dp_m_n,
7344                                              &pipe_config->dp_m2_n2);
7345 }
7346
7347 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7348                                         struct intel_crtc_config *pipe_config)
7349 {
7350         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7351                                      &pipe_config->fdi_m_n, NULL);
7352 }
7353
7354 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7355                                      struct intel_crtc_config *pipe_config)
7356 {
7357         struct drm_device *dev = crtc->base.dev;
7358         struct drm_i915_private *dev_priv = dev->dev_private;
7359         uint32_t tmp;
7360
7361         tmp = I915_READ(PF_CTL(crtc->pipe));
7362
7363         if (tmp & PF_ENABLE) {
7364                 pipe_config->pch_pfit.enabled = true;
7365                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7366                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7367
7368                 /* We currently do not free assignements of panel fitters on
7369                  * ivb/hsw (since we don't use the higher upscaling modes which
7370                  * differentiates them) so just WARN about this case for now. */
7371                 if (IS_GEN7(dev)) {
7372                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7373                                 PF_PIPE_SEL_IVB(crtc->pipe));
7374                 }
7375         }
7376 }
7377
7378 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7379                                       struct intel_plane_config *plane_config)
7380 {
7381         struct drm_device *dev = crtc->base.dev;
7382         struct drm_i915_private *dev_priv = dev->dev_private;
7383         u32 val, base, offset;
7384         int pipe = crtc->pipe, plane = crtc->plane;
7385         int fourcc, pixel_format;
7386         int aligned_height;
7387
7388         crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7389         if (!crtc->base.primary->fb) {
7390                 DRM_DEBUG_KMS("failed to alloc fb\n");
7391                 return;
7392         }
7393
7394         val = I915_READ(DSPCNTR(plane));
7395
7396         if (INTEL_INFO(dev)->gen >= 4)
7397                 if (val & DISPPLANE_TILED)
7398                         plane_config->tiled = true;
7399
7400         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7401         fourcc = intel_format_to_fourcc(pixel_format);
7402         crtc->base.primary->fb->pixel_format = fourcc;
7403         crtc->base.primary->fb->bits_per_pixel =
7404                 drm_format_plane_cpp(fourcc, 0) * 8;
7405
7406         base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7407         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7408                 offset = I915_READ(DSPOFFSET(plane));
7409         } else {
7410                 if (plane_config->tiled)
7411                         offset = I915_READ(DSPTILEOFF(plane));
7412                 else
7413                         offset = I915_READ(DSPLINOFF(plane));
7414         }
7415         plane_config->base = base;
7416
7417         val = I915_READ(PIPESRC(pipe));
7418         crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7419         crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7420
7421         val = I915_READ(DSPSTRIDE(pipe));
7422         crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7423
7424         aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7425                                             plane_config->tiled);
7426
7427         plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7428                                         aligned_height);
7429
7430         DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7431                       pipe, plane, crtc->base.primary->fb->width,
7432                       crtc->base.primary->fb->height,
7433                       crtc->base.primary->fb->bits_per_pixel, base,
7434                       crtc->base.primary->fb->pitches[0],
7435                       plane_config->size);
7436 }
7437
7438 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7439                                      struct intel_crtc_config *pipe_config)
7440 {
7441         struct drm_device *dev = crtc->base.dev;
7442         struct drm_i915_private *dev_priv = dev->dev_private;
7443         uint32_t tmp;
7444
7445         if (!intel_display_power_enabled(dev_priv,
7446                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7447                 return false;
7448
7449         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7450         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7451
7452         tmp = I915_READ(PIPECONF(crtc->pipe));
7453         if (!(tmp & PIPECONF_ENABLE))
7454                 return false;
7455
7456         switch (tmp & PIPECONF_BPC_MASK) {
7457         case PIPECONF_6BPC:
7458                 pipe_config->pipe_bpp = 18;
7459                 break;
7460         case PIPECONF_8BPC:
7461                 pipe_config->pipe_bpp = 24;
7462                 break;
7463         case PIPECONF_10BPC:
7464                 pipe_config->pipe_bpp = 30;
7465                 break;
7466         case PIPECONF_12BPC:
7467                 pipe_config->pipe_bpp = 36;
7468                 break;
7469         default:
7470                 break;
7471         }
7472
7473         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7474                 pipe_config->limited_color_range = true;
7475
7476         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7477                 struct intel_shared_dpll *pll;
7478
7479                 pipe_config->has_pch_encoder = true;
7480
7481                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7482                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7483                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7484
7485                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7486
7487                 if (HAS_PCH_IBX(dev_priv->dev)) {
7488                         pipe_config->shared_dpll =
7489                                 (enum intel_dpll_id) crtc->pipe;
7490                 } else {
7491                         tmp = I915_READ(PCH_DPLL_SEL);
7492                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7493                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7494                         else
7495                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7496                 }
7497
7498                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7499
7500                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7501                                            &pipe_config->dpll_hw_state));
7502
7503                 tmp = pipe_config->dpll_hw_state.dpll;
7504                 pipe_config->pixel_multiplier =
7505                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7506                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7507
7508                 ironlake_pch_clock_get(crtc, pipe_config);
7509         } else {
7510                 pipe_config->pixel_multiplier = 1;
7511         }
7512
7513         intel_get_pipe_timings(crtc, pipe_config);
7514
7515         ironlake_get_pfit_config(crtc, pipe_config);
7516
7517         return true;
7518 }
7519
7520 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7521 {
7522         struct drm_device *dev = dev_priv->dev;
7523         struct intel_crtc *crtc;
7524
7525         for_each_intel_crtc(dev, crtc)
7526                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7527                      pipe_name(crtc->pipe));
7528
7529         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7530         WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7531         WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7532         WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7533         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7534         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7535              "CPU PWM1 enabled\n");
7536         if (IS_HASWELL(dev))
7537                 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7538                      "CPU PWM2 enabled\n");
7539         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7540              "PCH PWM1 enabled\n");
7541         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7542              "Utility pin enabled\n");
7543         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7544
7545         /*
7546          * In theory we can still leave IRQs enabled, as long as only the HPD
7547          * interrupts remain enabled. We used to check for that, but since it's
7548          * gen-specific and since we only disable LCPLL after we fully disable
7549          * the interrupts, the check below should be enough.
7550          */
7551         WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7552 }
7553
7554 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7555 {
7556         struct drm_device *dev = dev_priv->dev;
7557
7558         if (IS_HASWELL(dev))
7559                 return I915_READ(D_COMP_HSW);
7560         else
7561                 return I915_READ(D_COMP_BDW);
7562 }
7563
7564 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7565 {
7566         struct drm_device *dev = dev_priv->dev;
7567
7568         if (IS_HASWELL(dev)) {
7569                 mutex_lock(&dev_priv->rps.hw_lock);
7570                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7571                                             val))
7572                         DRM_ERROR("Failed to write to D_COMP\n");
7573                 mutex_unlock(&dev_priv->rps.hw_lock);
7574         } else {
7575                 I915_WRITE(D_COMP_BDW, val);
7576                 POSTING_READ(D_COMP_BDW);
7577         }
7578 }
7579
7580 /*
7581  * This function implements pieces of two sequences from BSpec:
7582  * - Sequence for display software to disable LCPLL
7583  * - Sequence for display software to allow package C8+
7584  * The steps implemented here are just the steps that actually touch the LCPLL
7585  * register. Callers should take care of disabling all the display engine
7586  * functions, doing the mode unset, fixing interrupts, etc.
7587  */
7588 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7589                               bool switch_to_fclk, bool allow_power_down)
7590 {
7591         uint32_t val;
7592
7593         assert_can_disable_lcpll(dev_priv);
7594
7595         val = I915_READ(LCPLL_CTL);
7596
7597         if (switch_to_fclk) {
7598                 val |= LCPLL_CD_SOURCE_FCLK;
7599                 I915_WRITE(LCPLL_CTL, val);
7600
7601                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7602                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7603                         DRM_ERROR("Switching to FCLK failed\n");
7604
7605                 val = I915_READ(LCPLL_CTL);
7606         }
7607
7608         val |= LCPLL_PLL_DISABLE;
7609         I915_WRITE(LCPLL_CTL, val);
7610         POSTING_READ(LCPLL_CTL);
7611
7612         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7613                 DRM_ERROR("LCPLL still locked\n");
7614
7615         val = hsw_read_dcomp(dev_priv);
7616         val |= D_COMP_COMP_DISABLE;
7617         hsw_write_dcomp(dev_priv, val);
7618         ndelay(100);
7619
7620         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7621                      1))
7622                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7623
7624         if (allow_power_down) {
7625                 val = I915_READ(LCPLL_CTL);
7626                 val |= LCPLL_POWER_DOWN_ALLOW;
7627                 I915_WRITE(LCPLL_CTL, val);
7628                 POSTING_READ(LCPLL_CTL);
7629         }
7630 }
7631
7632 /*
7633  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7634  * source.
7635  */
7636 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7637 {
7638         uint32_t val;
7639         unsigned long irqflags;
7640
7641         val = I915_READ(LCPLL_CTL);
7642
7643         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7644                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7645                 return;
7646
7647         /*
7648          * Make sure we're not on PC8 state before disabling PC8, otherwise
7649          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7650          *
7651          * The other problem is that hsw_restore_lcpll() is called as part of
7652          * the runtime PM resume sequence, so we can't just call
7653          * gen6_gt_force_wake_get() because that function calls
7654          * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7655          * while we are on the resume sequence. So to solve this problem we have
7656          * to call special forcewake code that doesn't touch runtime PM and
7657          * doesn't enable the forcewake delayed work.
7658          */
7659         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7660         if (dev_priv->uncore.forcewake_count++ == 0)
7661                 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7662         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7663
7664         if (val & LCPLL_POWER_DOWN_ALLOW) {
7665                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7666                 I915_WRITE(LCPLL_CTL, val);
7667                 POSTING_READ(LCPLL_CTL);
7668         }
7669
7670         val = hsw_read_dcomp(dev_priv);
7671         val |= D_COMP_COMP_FORCE;
7672         val &= ~D_COMP_COMP_DISABLE;
7673         hsw_write_dcomp(dev_priv, val);
7674
7675         val = I915_READ(LCPLL_CTL);
7676         val &= ~LCPLL_PLL_DISABLE;
7677         I915_WRITE(LCPLL_CTL, val);
7678
7679         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7680                 DRM_ERROR("LCPLL not locked yet\n");
7681
7682         if (val & LCPLL_CD_SOURCE_FCLK) {
7683                 val = I915_READ(LCPLL_CTL);
7684                 val &= ~LCPLL_CD_SOURCE_FCLK;
7685                 I915_WRITE(LCPLL_CTL, val);
7686
7687                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7688                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7689                         DRM_ERROR("Switching back to LCPLL failed\n");
7690         }
7691
7692         /* See the big comment above. */
7693         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7694         if (--dev_priv->uncore.forcewake_count == 0)
7695                 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7696         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7697 }
7698
7699 /*
7700  * Package states C8 and deeper are really deep PC states that can only be
7701  * reached when all the devices on the system allow it, so even if the graphics
7702  * device allows PC8+, it doesn't mean the system will actually get to these
7703  * states. Our driver only allows PC8+ when going into runtime PM.
7704  *
7705  * The requirements for PC8+ are that all the outputs are disabled, the power
7706  * well is disabled and most interrupts are disabled, and these are also
7707  * requirements for runtime PM. When these conditions are met, we manually do
7708  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7709  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7710  * hang the machine.
7711  *
7712  * When we really reach PC8 or deeper states (not just when we allow it) we lose
7713  * the state of some registers, so when we come back from PC8+ we need to
7714  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7715  * need to take care of the registers kept by RC6. Notice that this happens even
7716  * if we don't put the device in PCI D3 state (which is what currently happens
7717  * because of the runtime PM support).
7718  *
7719  * For more, read "Display Sequences for Package C8" on the hardware
7720  * documentation.
7721  */
7722 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7723 {
7724         struct drm_device *dev = dev_priv->dev;
7725         uint32_t val;
7726
7727         DRM_DEBUG_KMS("Enabling package C8+\n");
7728
7729         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7730                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7731                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7732                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7733         }
7734
7735         lpt_disable_clkout_dp(dev);
7736         hsw_disable_lcpll(dev_priv, true, true);
7737 }
7738
7739 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7740 {
7741         struct drm_device *dev = dev_priv->dev;
7742         uint32_t val;
7743
7744         DRM_DEBUG_KMS("Disabling package C8+\n");
7745
7746         hsw_restore_lcpll(dev_priv);
7747         lpt_init_pch_refclk(dev);
7748
7749         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7750                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7751                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7752                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7753         }
7754
7755         intel_prepare_ddi(dev);
7756 }
7757
7758 static void snb_modeset_global_resources(struct drm_device *dev)
7759 {
7760         modeset_update_crtc_power_domains(dev);
7761 }
7762
7763 static void haswell_modeset_global_resources(struct drm_device *dev)
7764 {
7765         modeset_update_crtc_power_domains(dev);
7766 }
7767
7768 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7769                                  int x, int y,
7770                                  struct drm_framebuffer *fb)
7771 {
7772         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7773
7774         if (!intel_ddi_pll_select(intel_crtc))
7775                 return -EINVAL;
7776
7777         intel_crtc->lowfreq_avail = false;
7778
7779         return 0;
7780 }
7781
7782 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7783                                 enum port port,
7784                                 struct intel_crtc_config *pipe_config)
7785 {
7786         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7787
7788         switch (pipe_config->ddi_pll_sel) {
7789         case PORT_CLK_SEL_WRPLL1:
7790                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7791                 break;
7792         case PORT_CLK_SEL_WRPLL2:
7793                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7794                 break;
7795         }
7796 }
7797
7798 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7799                                        struct intel_crtc_config *pipe_config)
7800 {
7801         struct drm_device *dev = crtc->base.dev;
7802         struct drm_i915_private *dev_priv = dev->dev_private;
7803         struct intel_shared_dpll *pll;
7804         enum port port;
7805         uint32_t tmp;
7806
7807         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7808
7809         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7810
7811         haswell_get_ddi_pll(dev_priv, port, pipe_config);
7812
7813         if (pipe_config->shared_dpll >= 0) {
7814                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7815
7816                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7817                                            &pipe_config->dpll_hw_state));
7818         }
7819
7820         /*
7821          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7822          * DDI E. So just check whether this pipe is wired to DDI E and whether
7823          * the PCH transcoder is on.
7824          */
7825         if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7826                 pipe_config->has_pch_encoder = true;
7827
7828                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7829                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7830                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7831
7832                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7833         }
7834 }
7835
7836 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7837                                     struct intel_crtc_config *pipe_config)
7838 {
7839         struct drm_device *dev = crtc->base.dev;
7840         struct drm_i915_private *dev_priv = dev->dev_private;
7841         enum intel_display_power_domain pfit_domain;
7842         uint32_t tmp;
7843
7844         if (!intel_display_power_enabled(dev_priv,
7845                                          POWER_DOMAIN_PIPE(crtc->pipe)))
7846                 return false;
7847
7848         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7849         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7850
7851         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7852         if (tmp & TRANS_DDI_FUNC_ENABLE) {
7853                 enum pipe trans_edp_pipe;
7854                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7855                 default:
7856                         WARN(1, "unknown pipe linked to edp transcoder\n");
7857                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7858                 case TRANS_DDI_EDP_INPUT_A_ON:
7859                         trans_edp_pipe = PIPE_A;
7860                         break;
7861                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7862                         trans_edp_pipe = PIPE_B;
7863                         break;
7864                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7865                         trans_edp_pipe = PIPE_C;
7866                         break;
7867                 }
7868
7869                 if (trans_edp_pipe == crtc->pipe)
7870                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7871         }
7872
7873         if (!intel_display_power_enabled(dev_priv,
7874                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7875                 return false;
7876
7877         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7878         if (!(tmp & PIPECONF_ENABLE))
7879                 return false;
7880
7881         haswell_get_ddi_port_state(crtc, pipe_config);
7882
7883         intel_get_pipe_timings(crtc, pipe_config);
7884
7885         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7886         if (intel_display_power_enabled(dev_priv, pfit_domain))
7887                 ironlake_get_pfit_config(crtc, pipe_config);
7888
7889         if (IS_HASWELL(dev))
7890                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7891                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7892
7893         pipe_config->pixel_multiplier = 1;
7894
7895         return true;
7896 }
7897
7898 static struct {
7899         int clock;
7900         u32 config;
7901 } hdmi_audio_clock[] = {
7902         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7903         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7904         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7905         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7906         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7907         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7908         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7909         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7910         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7911         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7912 };
7913
7914 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7915 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7916 {
7917         int i;
7918
7919         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7920                 if (mode->clock == hdmi_audio_clock[i].clock)
7921                         break;
7922         }
7923
7924         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7925                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7926                 i = 1;
7927         }
7928
7929         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7930                       hdmi_audio_clock[i].clock,
7931                       hdmi_audio_clock[i].config);
7932
7933         return hdmi_audio_clock[i].config;
7934 }
7935
7936 static bool intel_eld_uptodate(struct drm_connector *connector,
7937                                int reg_eldv, uint32_t bits_eldv,
7938                                int reg_elda, uint32_t bits_elda,
7939                                int reg_edid)
7940 {
7941         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7942         uint8_t *eld = connector->eld;
7943         uint32_t i;
7944
7945         i = I915_READ(reg_eldv);
7946         i &= bits_eldv;
7947
7948         if (!eld[0])
7949                 return !i;
7950
7951         if (!i)
7952                 return false;
7953
7954         i = I915_READ(reg_elda);
7955         i &= ~bits_elda;
7956         I915_WRITE(reg_elda, i);
7957
7958         for (i = 0; i < eld[2]; i++)
7959                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7960                         return false;
7961
7962         return true;
7963 }
7964
7965 static void g4x_write_eld(struct drm_connector *connector,
7966                           struct drm_crtc *crtc,
7967                           struct drm_display_mode *mode)
7968 {
7969         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7970         uint8_t *eld = connector->eld;
7971         uint32_t eldv;
7972         uint32_t len;
7973         uint32_t i;
7974
7975         i = I915_READ(G4X_AUD_VID_DID);
7976
7977         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7978                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7979         else
7980                 eldv = G4X_ELDV_DEVCTG;
7981
7982         if (intel_eld_uptodate(connector,
7983                                G4X_AUD_CNTL_ST, eldv,
7984                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7985                                G4X_HDMIW_HDMIEDID))
7986                 return;
7987
7988         i = I915_READ(G4X_AUD_CNTL_ST);
7989         i &= ~(eldv | G4X_ELD_ADDR);
7990         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7991         I915_WRITE(G4X_AUD_CNTL_ST, i);
7992
7993         if (!eld[0])
7994                 return;
7995
7996         len = min_t(uint8_t, eld[2], len);
7997         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7998         for (i = 0; i < len; i++)
7999                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
8000
8001         i = I915_READ(G4X_AUD_CNTL_ST);
8002         i |= eldv;
8003         I915_WRITE(G4X_AUD_CNTL_ST, i);
8004 }
8005
8006 static void haswell_write_eld(struct drm_connector *connector,
8007                               struct drm_crtc *crtc,
8008                               struct drm_display_mode *mode)
8009 {
8010         struct drm_i915_private *dev_priv = connector->dev->dev_private;
8011         uint8_t *eld = connector->eld;
8012         uint32_t eldv;
8013         uint32_t i;
8014         int len;
8015         int pipe = to_intel_crtc(crtc)->pipe;
8016         int tmp;
8017
8018         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
8019         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
8020         int aud_config = HSW_AUD_CFG(pipe);
8021         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
8022
8023         /* Audio output enable */
8024         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
8025         tmp = I915_READ(aud_cntrl_st2);
8026         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
8027         I915_WRITE(aud_cntrl_st2, tmp);
8028         POSTING_READ(aud_cntrl_st2);
8029
8030         assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
8031
8032         /* Set ELD valid state */
8033         tmp = I915_READ(aud_cntrl_st2);
8034         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
8035         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
8036         I915_WRITE(aud_cntrl_st2, tmp);
8037         tmp = I915_READ(aud_cntrl_st2);
8038         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
8039
8040         /* Enable HDMI mode */
8041         tmp = I915_READ(aud_config);
8042         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
8043         /* clear N_programing_enable and N_value_index */
8044         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
8045         I915_WRITE(aud_config, tmp);
8046
8047         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8048
8049         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
8050
8051         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8052                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8053                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
8054                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8055         } else {
8056                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8057         }
8058
8059         if (intel_eld_uptodate(connector,
8060                                aud_cntrl_st2, eldv,
8061                                aud_cntl_st, IBX_ELD_ADDRESS,
8062                                hdmiw_hdmiedid))
8063                 return;
8064
8065         i = I915_READ(aud_cntrl_st2);
8066         i &= ~eldv;
8067         I915_WRITE(aud_cntrl_st2, i);
8068
8069         if (!eld[0])
8070                 return;
8071
8072         i = I915_READ(aud_cntl_st);
8073         i &= ~IBX_ELD_ADDRESS;
8074         I915_WRITE(aud_cntl_st, i);
8075         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
8076         DRM_DEBUG_DRIVER("port num:%d\n", i);
8077
8078         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
8079         DRM_DEBUG_DRIVER("ELD size %d\n", len);
8080         for (i = 0; i < len; i++)
8081                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8082
8083         i = I915_READ(aud_cntrl_st2);
8084         i |= eldv;
8085         I915_WRITE(aud_cntrl_st2, i);
8086
8087 }
8088
8089 static void ironlake_write_eld(struct drm_connector *connector,
8090                                struct drm_crtc *crtc,
8091                                struct drm_display_mode *mode)
8092 {
8093         struct drm_i915_private *dev_priv = connector->dev->dev_private;
8094         uint8_t *eld = connector->eld;
8095         uint32_t eldv;
8096         uint32_t i;
8097         int len;
8098         int hdmiw_hdmiedid;
8099         int aud_config;
8100         int aud_cntl_st;
8101         int aud_cntrl_st2;
8102         int pipe = to_intel_crtc(crtc)->pipe;
8103
8104         if (HAS_PCH_IBX(connector->dev)) {
8105                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
8106                 aud_config = IBX_AUD_CFG(pipe);
8107                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
8108                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
8109         } else if (IS_VALLEYVIEW(connector->dev)) {
8110                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
8111                 aud_config = VLV_AUD_CFG(pipe);
8112                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
8113                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
8114         } else {
8115                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8116                 aud_config = CPT_AUD_CFG(pipe);
8117                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
8118                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
8119         }
8120
8121         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8122
8123         if (IS_VALLEYVIEW(connector->dev))  {
8124                 struct intel_encoder *intel_encoder;
8125                 struct intel_digital_port *intel_dig_port;
8126
8127                 intel_encoder = intel_attached_encoder(connector);
8128                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8129                 i = intel_dig_port->port;
8130         } else {
8131                 i = I915_READ(aud_cntl_st);
8132                 i = (i >> 29) & DIP_PORT_SEL_MASK;
8133                 /* DIP_Port_Select, 0x1 = PortB */
8134         }
8135
8136         if (!i) {
8137                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8138                 /* operate blindly on all ports */
8139                 eldv = IBX_ELD_VALIDB;
8140                 eldv |= IBX_ELD_VALIDB << 4;
8141                 eldv |= IBX_ELD_VALIDB << 8;
8142         } else {
8143                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
8144                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
8145         }
8146
8147         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8148                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8149                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
8150                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8151         } else {
8152                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8153         }
8154
8155         if (intel_eld_uptodate(connector,
8156                                aud_cntrl_st2, eldv,
8157                                aud_cntl_st, IBX_ELD_ADDRESS,
8158                                hdmiw_hdmiedid))
8159                 return;
8160
8161         i = I915_READ(aud_cntrl_st2);
8162         i &= ~eldv;
8163         I915_WRITE(aud_cntrl_st2, i);
8164
8165         if (!eld[0])
8166                 return;
8167
8168         i = I915_READ(aud_cntl_st);
8169         i &= ~IBX_ELD_ADDRESS;
8170         I915_WRITE(aud_cntl_st, i);
8171
8172         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
8173         DRM_DEBUG_DRIVER("ELD size %d\n", len);
8174         for (i = 0; i < len; i++)
8175                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8176
8177         i = I915_READ(aud_cntrl_st2);
8178         i |= eldv;
8179         I915_WRITE(aud_cntrl_st2, i);
8180 }
8181
8182 void intel_write_eld(struct drm_encoder *encoder,
8183                      struct drm_display_mode *mode)
8184 {
8185         struct drm_crtc *crtc = encoder->crtc;
8186         struct drm_connector *connector;
8187         struct drm_device *dev = encoder->dev;
8188         struct drm_i915_private *dev_priv = dev->dev_private;
8189
8190         connector = drm_select_eld(encoder, mode);
8191         if (!connector)
8192                 return;
8193
8194         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8195                          connector->base.id,
8196                          connector->name,
8197                          connector->encoder->base.id,
8198                          connector->encoder->name);
8199
8200         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8201
8202         if (dev_priv->display.write_eld)
8203                 dev_priv->display.write_eld(connector, crtc, mode);
8204 }
8205
8206 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8207 {
8208         struct drm_device *dev = crtc->dev;
8209         struct drm_i915_private *dev_priv = dev->dev_private;
8210         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8211         uint32_t cntl = 0, size = 0;
8212
8213         if (base) {
8214                 unsigned int width = intel_crtc->cursor_width;
8215                 unsigned int height = intel_crtc->cursor_height;
8216                 unsigned int stride = roundup_pow_of_two(width) * 4;
8217
8218                 switch (stride) {
8219                 default:
8220                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8221                                   width, stride);
8222                         stride = 256;
8223                         /* fallthrough */
8224                 case 256:
8225                 case 512:
8226                 case 1024:
8227                 case 2048:
8228                         break;
8229                 }
8230
8231                 cntl |= CURSOR_ENABLE |
8232                         CURSOR_GAMMA_ENABLE |
8233                         CURSOR_FORMAT_ARGB |
8234                         CURSOR_STRIDE(stride);
8235
8236                 size = (height << 12) | width;
8237         }
8238
8239         if (intel_crtc->cursor_cntl != 0 &&
8240             (intel_crtc->cursor_base != base ||
8241              intel_crtc->cursor_size != size ||
8242              intel_crtc->cursor_cntl != cntl)) {
8243                 /* On these chipsets we can only modify the base/size/stride
8244                  * whilst the cursor is disabled.
8245                  */
8246                 I915_WRITE(_CURACNTR, 0);
8247                 POSTING_READ(_CURACNTR);
8248                 intel_crtc->cursor_cntl = 0;
8249         }
8250
8251         if (intel_crtc->cursor_base != base)
8252                 I915_WRITE(_CURABASE, base);
8253
8254         if (intel_crtc->cursor_size != size) {
8255                 I915_WRITE(CURSIZE, size);
8256                 intel_crtc->cursor_size = size;
8257         }
8258
8259         if (intel_crtc->cursor_cntl != cntl) {
8260                 I915_WRITE(_CURACNTR, cntl);
8261                 POSTING_READ(_CURACNTR);
8262                 intel_crtc->cursor_cntl = cntl;
8263         }
8264 }
8265
8266 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8267 {
8268         struct drm_device *dev = crtc->dev;
8269         struct drm_i915_private *dev_priv = dev->dev_private;
8270         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8271         int pipe = intel_crtc->pipe;
8272         uint32_t cntl;
8273
8274         cntl = 0;
8275         if (base) {
8276                 cntl = MCURSOR_GAMMA_ENABLE;
8277                 switch (intel_crtc->cursor_width) {
8278                         case 64:
8279                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8280                                 break;
8281                         case 128:
8282                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8283                                 break;
8284                         case 256:
8285                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8286                                 break;
8287                         default:
8288                                 WARN_ON(1);
8289                                 return;
8290                 }
8291                 cntl |= pipe << 28; /* Connect to correct pipe */
8292         }
8293         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8294                 cntl |= CURSOR_PIPE_CSC_ENABLE;
8295
8296         if (intel_crtc->cursor_cntl != cntl) {
8297                 I915_WRITE(CURCNTR(pipe), cntl);
8298                 POSTING_READ(CURCNTR(pipe));
8299                 intel_crtc->cursor_cntl = cntl;
8300         }
8301
8302         /* and commit changes on next vblank */
8303         I915_WRITE(CURBASE(pipe), base);
8304         POSTING_READ(CURBASE(pipe));
8305 }
8306
8307 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8308 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8309                                      bool on)
8310 {
8311         struct drm_device *dev = crtc->dev;
8312         struct drm_i915_private *dev_priv = dev->dev_private;
8313         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8314         int pipe = intel_crtc->pipe;
8315         int x = crtc->cursor_x;
8316         int y = crtc->cursor_y;
8317         u32 base = 0, pos = 0;
8318
8319         if (on)
8320                 base = intel_crtc->cursor_addr;
8321
8322         if (x >= intel_crtc->config.pipe_src_w)
8323                 base = 0;
8324
8325         if (y >= intel_crtc->config.pipe_src_h)
8326                 base = 0;
8327
8328         if (x < 0) {
8329                 if (x + intel_crtc->cursor_width <= 0)
8330                         base = 0;
8331
8332                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8333                 x = -x;
8334         }
8335         pos |= x << CURSOR_X_SHIFT;
8336
8337         if (y < 0) {
8338                 if (y + intel_crtc->cursor_height <= 0)
8339                         base = 0;
8340
8341                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8342                 y = -y;
8343         }
8344         pos |= y << CURSOR_Y_SHIFT;
8345
8346         if (base == 0 && intel_crtc->cursor_base == 0)
8347                 return;
8348
8349         I915_WRITE(CURPOS(pipe), pos);
8350
8351         if (IS_845G(dev) || IS_I865G(dev))
8352                 i845_update_cursor(crtc, base);
8353         else
8354                 i9xx_update_cursor(crtc, base);
8355         intel_crtc->cursor_base = base;
8356 }
8357
8358 static bool cursor_size_ok(struct drm_device *dev,
8359                            uint32_t width, uint32_t height)
8360 {
8361         if (width == 0 || height == 0)
8362                 return false;
8363
8364         /*
8365          * 845g/865g are special in that they are only limited by
8366          * the width of their cursors, the height is arbitrary up to
8367          * the precision of the register. Everything else requires
8368          * square cursors, limited to a few power-of-two sizes.
8369          */
8370         if (IS_845G(dev) || IS_I865G(dev)) {
8371                 if ((width & 63) != 0)
8372                         return false;
8373
8374                 if (width > (IS_845G(dev) ? 64 : 512))
8375                         return false;
8376
8377                 if (height > 1023)
8378                         return false;
8379         } else {
8380                 switch (width | height) {
8381                 case 256:
8382                 case 128:
8383                         if (IS_GEN2(dev))
8384                                 return false;
8385                 case 64:
8386                         break;
8387                 default:
8388                         return false;
8389                 }
8390         }
8391
8392         return true;
8393 }
8394
8395 /*
8396  * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8397  *
8398  * Note that the object's reference will be consumed if the update fails.  If
8399  * the update succeeds, the reference of the old object (if any) will be
8400  * consumed.
8401  */
8402 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8403                                      struct drm_i915_gem_object *obj,
8404                                      uint32_t width, uint32_t height)
8405 {
8406         struct drm_device *dev = crtc->dev;
8407         struct drm_i915_private *dev_priv = dev->dev_private;
8408         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8409         enum pipe pipe = intel_crtc->pipe;
8410         unsigned old_width, stride;
8411         uint32_t addr;
8412         int ret;
8413
8414         /* if we want to turn off the cursor ignore width and height */
8415         if (!obj) {
8416                 DRM_DEBUG_KMS("cursor off\n");
8417                 addr = 0;
8418                 mutex_lock(&dev->struct_mutex);
8419                 goto finish;
8420         }
8421
8422         /* Check for which cursor types we support */
8423         if (!cursor_size_ok(dev, width, height)) {
8424                 DRM_DEBUG("Cursor dimension not supported\n");
8425                 return -EINVAL;
8426         }
8427
8428         stride = roundup_pow_of_two(width) * 4;
8429         if (obj->base.size < stride * height) {
8430                 DRM_DEBUG_KMS("buffer is too small\n");
8431                 ret = -ENOMEM;
8432                 goto fail;
8433         }
8434
8435         /* we only need to pin inside GTT if cursor is non-phy */
8436         mutex_lock(&dev->struct_mutex);
8437         if (!INTEL_INFO(dev)->cursor_needs_physical) {
8438                 unsigned alignment;
8439
8440                 if (obj->tiling_mode) {
8441                         DRM_DEBUG_KMS("cursor cannot be tiled\n");
8442                         ret = -EINVAL;
8443                         goto fail_locked;
8444                 }
8445
8446                 /*
8447                  * Global gtt pte registers are special registers which actually
8448                  * forward writes to a chunk of system memory. Which means that
8449                  * there is no risk that the register values disappear as soon
8450                  * as we call intel_runtime_pm_put(), so it is correct to wrap
8451                  * only the pin/unpin/fence and not more.
8452                  */
8453                 intel_runtime_pm_get(dev_priv);
8454
8455                 /* Note that the w/a also requires 2 PTE of padding following
8456                  * the bo. We currently fill all unused PTE with the shadow
8457                  * page and so we should always have valid PTE following the
8458                  * cursor preventing the VT-d warning.
8459                  */
8460                 alignment = 0;
8461                 if (need_vtd_wa(dev))
8462                         alignment = 64*1024;
8463
8464                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8465                 if (ret) {
8466                         DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8467                         intel_runtime_pm_put(dev_priv);
8468                         goto fail_locked;
8469                 }
8470
8471                 ret = i915_gem_object_put_fence(obj);
8472                 if (ret) {
8473                         DRM_DEBUG_KMS("failed to release fence for cursor");
8474                         intel_runtime_pm_put(dev_priv);
8475                         goto fail_unpin;
8476                 }
8477
8478                 addr = i915_gem_obj_ggtt_offset(obj);
8479
8480                 intel_runtime_pm_put(dev_priv);
8481         } else {
8482                 int align = IS_I830(dev) ? 16 * 1024 : 256;
8483                 ret = i915_gem_object_attach_phys(obj, align);
8484                 if (ret) {
8485                         DRM_DEBUG_KMS("failed to attach phys object\n");
8486                         goto fail_locked;
8487                 }
8488                 addr = obj->phys_handle->busaddr;
8489         }
8490
8491  finish:
8492         if (intel_crtc->cursor_bo) {
8493                 if (!INTEL_INFO(dev)->cursor_needs_physical)
8494                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8495         }
8496
8497         i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8498                           INTEL_FRONTBUFFER_CURSOR(pipe));
8499         mutex_unlock(&dev->struct_mutex);
8500
8501         old_width = intel_crtc->cursor_width;
8502
8503         intel_crtc->cursor_addr = addr;
8504         intel_crtc->cursor_bo = obj;
8505         intel_crtc->cursor_width = width;
8506         intel_crtc->cursor_height = height;
8507
8508         if (intel_crtc->active) {
8509                 if (old_width != width)
8510                         intel_update_watermarks(crtc);
8511                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8512         }
8513
8514         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8515
8516         return 0;
8517 fail_unpin:
8518         i915_gem_object_unpin_from_display_plane(obj);
8519 fail_locked:
8520         mutex_unlock(&dev->struct_mutex);
8521 fail:
8522         drm_gem_object_unreference_unlocked(&obj->base);
8523         return ret;
8524 }
8525
8526 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8527                                  u16 *blue, uint32_t start, uint32_t size)
8528 {
8529         int end = (start + size > 256) ? 256 : start + size, i;
8530         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8531
8532         for (i = start; i < end; i++) {
8533                 intel_crtc->lut_r[i] = red[i] >> 8;
8534                 intel_crtc->lut_g[i] = green[i] >> 8;
8535                 intel_crtc->lut_b[i] = blue[i] >> 8;
8536         }
8537
8538         intel_crtc_load_lut(crtc);
8539 }
8540
8541 /* VESA 640x480x72Hz mode to set on the pipe */
8542 static struct drm_display_mode load_detect_mode = {
8543         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8544                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8545 };
8546
8547 struct drm_framebuffer *
8548 __intel_framebuffer_create(struct drm_device *dev,
8549                            struct drm_mode_fb_cmd2 *mode_cmd,
8550                            struct drm_i915_gem_object *obj)
8551 {
8552         struct intel_framebuffer *intel_fb;
8553         int ret;
8554
8555         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8556         if (!intel_fb) {
8557                 drm_gem_object_unreference_unlocked(&obj->base);
8558                 return ERR_PTR(-ENOMEM);
8559         }
8560
8561         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8562         if (ret)
8563                 goto err;
8564
8565         return &intel_fb->base;
8566 err:
8567         drm_gem_object_unreference_unlocked(&obj->base);
8568         kfree(intel_fb);
8569
8570         return ERR_PTR(ret);
8571 }
8572
8573 static struct drm_framebuffer *
8574 intel_framebuffer_create(struct drm_device *dev,
8575                          struct drm_mode_fb_cmd2 *mode_cmd,
8576                          struct drm_i915_gem_object *obj)
8577 {
8578         struct drm_framebuffer *fb;
8579         int ret;
8580
8581         ret = i915_mutex_lock_interruptible(dev);
8582         if (ret)
8583                 return ERR_PTR(ret);
8584         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8585         mutex_unlock(&dev->struct_mutex);
8586
8587         return fb;
8588 }
8589
8590 static u32
8591 intel_framebuffer_pitch_for_width(int width, int bpp)
8592 {
8593         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8594         return ALIGN(pitch, 64);
8595 }
8596
8597 static u32
8598 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8599 {
8600         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8601         return PAGE_ALIGN(pitch * mode->vdisplay);
8602 }
8603
8604 static struct drm_framebuffer *
8605 intel_framebuffer_create_for_mode(struct drm_device *dev,
8606                                   struct drm_display_mode *mode,
8607                                   int depth, int bpp)
8608 {
8609         struct drm_i915_gem_object *obj;
8610         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8611
8612         obj = i915_gem_alloc_object(dev,
8613                                     intel_framebuffer_size_for_mode(mode, bpp));
8614         if (obj == NULL)
8615                 return ERR_PTR(-ENOMEM);
8616
8617         mode_cmd.width = mode->hdisplay;
8618         mode_cmd.height = mode->vdisplay;
8619         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8620                                                                 bpp);
8621         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8622
8623         return intel_framebuffer_create(dev, &mode_cmd, obj);
8624 }
8625
8626 static struct drm_framebuffer *
8627 mode_fits_in_fbdev(struct drm_device *dev,
8628                    struct drm_display_mode *mode)
8629 {
8630 #ifdef CONFIG_DRM_I915_FBDEV
8631         struct drm_i915_private *dev_priv = dev->dev_private;
8632         struct drm_i915_gem_object *obj;
8633         struct drm_framebuffer *fb;
8634
8635         if (!dev_priv->fbdev)
8636                 return NULL;
8637
8638         if (!dev_priv->fbdev->fb)
8639                 return NULL;
8640
8641         obj = dev_priv->fbdev->fb->obj;
8642         BUG_ON(!obj);
8643
8644         fb = &dev_priv->fbdev->fb->base;
8645         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8646                                                                fb->bits_per_pixel))
8647                 return NULL;
8648
8649         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8650                 return NULL;
8651
8652         return fb;
8653 #else
8654         return NULL;
8655 #endif
8656 }
8657
8658 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8659                                 struct drm_display_mode *mode,
8660                                 struct intel_load_detect_pipe *old,
8661                                 struct drm_modeset_acquire_ctx *ctx)
8662 {
8663         struct intel_crtc *intel_crtc;
8664         struct intel_encoder *intel_encoder =
8665                 intel_attached_encoder(connector);
8666         struct drm_crtc *possible_crtc;
8667         struct drm_encoder *encoder = &intel_encoder->base;
8668         struct drm_crtc *crtc = NULL;
8669         struct drm_device *dev = encoder->dev;
8670         struct drm_framebuffer *fb;
8671         struct drm_mode_config *config = &dev->mode_config;
8672         int ret, i = -1;
8673
8674         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8675                       connector->base.id, connector->name,
8676                       encoder->base.id, encoder->name);
8677
8678 retry:
8679         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8680         if (ret)
8681                 goto fail_unlock;
8682
8683         /*
8684          * Algorithm gets a little messy:
8685          *
8686          *   - if the connector already has an assigned crtc, use it (but make
8687          *     sure it's on first)
8688          *
8689          *   - try to find the first unused crtc that can drive this connector,
8690          *     and use that if we find one
8691          */
8692
8693         /* See if we already have a CRTC for this connector */
8694         if (encoder->crtc) {
8695                 crtc = encoder->crtc;
8696
8697                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8698                 if (ret)
8699                         goto fail_unlock;
8700
8701                 old->dpms_mode = connector->dpms;
8702                 old->load_detect_temp = false;
8703
8704                 /* Make sure the crtc and connector are running */
8705                 if (connector->dpms != DRM_MODE_DPMS_ON)
8706                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8707
8708                 return true;
8709         }
8710
8711         /* Find an unused one (if possible) */
8712         for_each_crtc(dev, possible_crtc) {
8713                 i++;
8714                 if (!(encoder->possible_crtcs & (1 << i)))
8715                         continue;
8716                 if (possible_crtc->enabled)
8717                         continue;
8718                 /* This can occur when applying the pipe A quirk on resume. */
8719                 if (to_intel_crtc(possible_crtc)->new_enabled)
8720                         continue;
8721
8722                 crtc = possible_crtc;
8723                 break;
8724         }
8725
8726         /*
8727          * If we didn't find an unused CRTC, don't use any.
8728          */
8729         if (!crtc) {
8730                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8731                 goto fail_unlock;
8732         }
8733
8734         ret = drm_modeset_lock(&crtc->mutex, ctx);
8735         if (ret)
8736                 goto fail_unlock;
8737         intel_encoder->new_crtc = to_intel_crtc(crtc);
8738         to_intel_connector(connector)->new_encoder = intel_encoder;
8739
8740         intel_crtc = to_intel_crtc(crtc);
8741         intel_crtc->new_enabled = true;
8742         intel_crtc->new_config = &intel_crtc->config;
8743         old->dpms_mode = connector->dpms;
8744         old->load_detect_temp = true;
8745         old->release_fb = NULL;
8746
8747         if (!mode)
8748                 mode = &load_detect_mode;
8749
8750         /* We need a framebuffer large enough to accommodate all accesses
8751          * that the plane may generate whilst we perform load detection.
8752          * We can not rely on the fbcon either being present (we get called
8753          * during its initialisation to detect all boot displays, or it may
8754          * not even exist) or that it is large enough to satisfy the
8755          * requested mode.
8756          */
8757         fb = mode_fits_in_fbdev(dev, mode);
8758         if (fb == NULL) {
8759                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8760                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8761                 old->release_fb = fb;
8762         } else
8763                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8764         if (IS_ERR(fb)) {
8765                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8766                 goto fail;
8767         }
8768
8769         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8770                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8771                 if (old->release_fb)
8772                         old->release_fb->funcs->destroy(old->release_fb);
8773                 goto fail;
8774         }
8775
8776         /* let the connector get through one full cycle before testing */
8777         intel_wait_for_vblank(dev, intel_crtc->pipe);
8778         return true;
8779
8780  fail:
8781         intel_crtc->new_enabled = crtc->enabled;
8782         if (intel_crtc->new_enabled)
8783                 intel_crtc->new_config = &intel_crtc->config;
8784         else
8785                 intel_crtc->new_config = NULL;
8786 fail_unlock:
8787         if (ret == -EDEADLK) {
8788                 drm_modeset_backoff(ctx);
8789                 goto retry;
8790         }
8791
8792         return false;
8793 }
8794
8795 void intel_release_load_detect_pipe(struct drm_connector *connector,
8796                                     struct intel_load_detect_pipe *old)
8797 {
8798         struct intel_encoder *intel_encoder =
8799                 intel_attached_encoder(connector);
8800         struct drm_encoder *encoder = &intel_encoder->base;
8801         struct drm_crtc *crtc = encoder->crtc;
8802         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8803
8804         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8805                       connector->base.id, connector->name,
8806                       encoder->base.id, encoder->name);
8807
8808         if (old->load_detect_temp) {
8809                 to_intel_connector(connector)->new_encoder = NULL;
8810                 intel_encoder->new_crtc = NULL;
8811                 intel_crtc->new_enabled = false;
8812                 intel_crtc->new_config = NULL;
8813                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8814
8815                 if (old->release_fb) {
8816                         drm_framebuffer_unregister_private(old->release_fb);
8817                         drm_framebuffer_unreference(old->release_fb);
8818                 }
8819
8820                 return;
8821         }
8822
8823         /* Switch crtc and encoder back off if necessary */
8824         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8825                 connector->funcs->dpms(connector, old->dpms_mode);
8826 }
8827
8828 static int i9xx_pll_refclk(struct drm_device *dev,
8829                            const struct intel_crtc_config *pipe_config)
8830 {
8831         struct drm_i915_private *dev_priv = dev->dev_private;
8832         u32 dpll = pipe_config->dpll_hw_state.dpll;
8833
8834         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8835                 return dev_priv->vbt.lvds_ssc_freq;
8836         else if (HAS_PCH_SPLIT(dev))
8837                 return 120000;
8838         else if (!IS_GEN2(dev))
8839                 return 96000;
8840         else
8841                 return 48000;
8842 }
8843
8844 /* Returns the clock of the currently programmed mode of the given pipe. */
8845 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8846                                 struct intel_crtc_config *pipe_config)
8847 {
8848         struct drm_device *dev = crtc->base.dev;
8849         struct drm_i915_private *dev_priv = dev->dev_private;
8850         int pipe = pipe_config->cpu_transcoder;
8851         u32 dpll = pipe_config->dpll_hw_state.dpll;
8852         u32 fp;
8853         intel_clock_t clock;
8854         int refclk = i9xx_pll_refclk(dev, pipe_config);
8855
8856         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8857                 fp = pipe_config->dpll_hw_state.fp0;
8858         else
8859                 fp = pipe_config->dpll_hw_state.fp1;
8860
8861         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8862         if (IS_PINEVIEW(dev)) {
8863                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8864                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8865         } else {
8866                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8867                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8868         }
8869
8870         if (!IS_GEN2(dev)) {
8871                 if (IS_PINEVIEW(dev))
8872                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8873                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8874                 else
8875                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8876                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8877
8878                 switch (dpll & DPLL_MODE_MASK) {
8879                 case DPLLB_MODE_DAC_SERIAL:
8880                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8881                                 5 : 10;
8882                         break;
8883                 case DPLLB_MODE_LVDS:
8884                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8885                                 7 : 14;
8886                         break;
8887                 default:
8888                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8889                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8890                         return;
8891                 }
8892
8893                 if (IS_PINEVIEW(dev))
8894                         pineview_clock(refclk, &clock);
8895                 else
8896                         i9xx_clock(refclk, &clock);
8897         } else {
8898                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8899                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8900
8901                 if (is_lvds) {
8902                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8903                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8904
8905                         if (lvds & LVDS_CLKB_POWER_UP)
8906                                 clock.p2 = 7;
8907                         else
8908                                 clock.p2 = 14;
8909                 } else {
8910                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8911                                 clock.p1 = 2;
8912                         else {
8913                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8914                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8915                         }
8916                         if (dpll & PLL_P2_DIVIDE_BY_4)
8917                                 clock.p2 = 4;
8918                         else
8919                                 clock.p2 = 2;
8920                 }
8921
8922                 i9xx_clock(refclk, &clock);
8923         }
8924
8925         /*
8926          * This value includes pixel_multiplier. We will use
8927          * port_clock to compute adjusted_mode.crtc_clock in the
8928          * encoder's get_config() function.
8929          */
8930         pipe_config->port_clock = clock.dot;
8931 }
8932
8933 int intel_dotclock_calculate(int link_freq,
8934                              const struct intel_link_m_n *m_n)
8935 {
8936         /*
8937          * The calculation for the data clock is:
8938          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8939          * But we want to avoid losing precison if possible, so:
8940          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8941          *
8942          * and the link clock is simpler:
8943          * link_clock = (m * link_clock) / n
8944          */
8945
8946         if (!m_n->link_n)
8947                 return 0;
8948
8949         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8950 }
8951
8952 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8953                                    struct intel_crtc_config *pipe_config)
8954 {
8955         struct drm_device *dev = crtc->base.dev;
8956
8957         /* read out port_clock from the DPLL */
8958         i9xx_crtc_clock_get(crtc, pipe_config);
8959
8960         /*
8961          * This value does not include pixel_multiplier.
8962          * We will check that port_clock and adjusted_mode.crtc_clock
8963          * agree once we know their relationship in the encoder's
8964          * get_config() function.
8965          */
8966         pipe_config->adjusted_mode.crtc_clock =
8967                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8968                                          &pipe_config->fdi_m_n);
8969 }
8970
8971 /** Returns the currently programmed mode of the given pipe. */
8972 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8973                                              struct drm_crtc *crtc)
8974 {
8975         struct drm_i915_private *dev_priv = dev->dev_private;
8976         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8977         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8978         struct drm_display_mode *mode;
8979         struct intel_crtc_config pipe_config;
8980         int htot = I915_READ(HTOTAL(cpu_transcoder));
8981         int hsync = I915_READ(HSYNC(cpu_transcoder));
8982         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8983         int vsync = I915_READ(VSYNC(cpu_transcoder));
8984         enum pipe pipe = intel_crtc->pipe;
8985
8986         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8987         if (!mode)
8988                 return NULL;
8989
8990         /*
8991          * Construct a pipe_config sufficient for getting the clock info
8992          * back out of crtc_clock_get.
8993          *
8994          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8995          * to use a real value here instead.
8996          */
8997         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8998         pipe_config.pixel_multiplier = 1;
8999         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9000         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9001         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9002         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9003
9004         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9005         mode->hdisplay = (htot & 0xffff) + 1;
9006         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9007         mode->hsync_start = (hsync & 0xffff) + 1;
9008         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9009         mode->vdisplay = (vtot & 0xffff) + 1;
9010         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9011         mode->vsync_start = (vsync & 0xffff) + 1;
9012         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9013
9014         drm_mode_set_name(mode);
9015
9016         return mode;
9017 }
9018
9019 static void intel_increase_pllclock(struct drm_device *dev,
9020                                     enum pipe pipe)
9021 {
9022         struct drm_i915_private *dev_priv = dev->dev_private;
9023         int dpll_reg = DPLL(pipe);
9024         int dpll;
9025
9026         if (!HAS_GMCH_DISPLAY(dev))
9027                 return;
9028
9029         if (!dev_priv->lvds_downclock_avail)
9030                 return;
9031
9032         dpll = I915_READ(dpll_reg);
9033         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
9034                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
9035
9036                 assert_panel_unlocked(dev_priv, pipe);
9037
9038                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
9039                 I915_WRITE(dpll_reg, dpll);
9040                 intel_wait_for_vblank(dev, pipe);
9041
9042                 dpll = I915_READ(dpll_reg);
9043                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
9044                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
9045         }
9046 }
9047
9048 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9049 {
9050         struct drm_device *dev = crtc->dev;
9051         struct drm_i915_private *dev_priv = dev->dev_private;
9052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9053
9054         if (!HAS_GMCH_DISPLAY(dev))
9055                 return;
9056
9057         if (!dev_priv->lvds_downclock_avail)
9058                 return;
9059
9060         /*
9061          * Since this is called by a timer, we should never get here in
9062          * the manual case.
9063          */
9064         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9065                 int pipe = intel_crtc->pipe;
9066                 int dpll_reg = DPLL(pipe);
9067                 int dpll;
9068
9069                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9070
9071                 assert_panel_unlocked(dev_priv, pipe);
9072
9073                 dpll = I915_READ(dpll_reg);
9074                 dpll |= DISPLAY_RATE_SELECT_FPA1;
9075                 I915_WRITE(dpll_reg, dpll);
9076                 intel_wait_for_vblank(dev, pipe);
9077                 dpll = I915_READ(dpll_reg);
9078                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9079                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9080         }
9081
9082 }
9083
9084 void intel_mark_busy(struct drm_device *dev)
9085 {
9086         struct drm_i915_private *dev_priv = dev->dev_private;
9087
9088         if (dev_priv->mm.busy)
9089                 return;
9090
9091         intel_runtime_pm_get(dev_priv);
9092         i915_update_gfx_val(dev_priv);
9093         dev_priv->mm.busy = true;
9094 }
9095
9096 void intel_mark_idle(struct drm_device *dev)
9097 {
9098         struct drm_i915_private *dev_priv = dev->dev_private;
9099         struct drm_crtc *crtc;
9100
9101         if (!dev_priv->mm.busy)
9102                 return;
9103
9104         dev_priv->mm.busy = false;
9105
9106         if (!i915.powersave)
9107                 goto out;
9108
9109         for_each_crtc(dev, crtc) {
9110                 if (!crtc->primary->fb)
9111                         continue;
9112
9113                 intel_decrease_pllclock(crtc);
9114         }
9115
9116         if (INTEL_INFO(dev)->gen >= 6)
9117                 gen6_rps_idle(dev->dev_private);
9118
9119 out:
9120         intel_runtime_pm_put(dev_priv);
9121 }
9122
9123
9124 /**
9125  * intel_mark_fb_busy - mark given planes as busy
9126  * @dev: DRM device
9127  * @frontbuffer_bits: bits for the affected planes
9128  * @ring: optional ring for asynchronous commands
9129  *
9130  * This function gets called every time the screen contents change. It can be
9131  * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
9132  */
9133 static void intel_mark_fb_busy(struct drm_device *dev,
9134                                unsigned frontbuffer_bits,
9135                                struct intel_engine_cs *ring)
9136 {
9137         struct drm_i915_private *dev_priv = dev->dev_private;
9138         enum pipe pipe;
9139
9140         if (!i915.powersave)
9141                 return;
9142
9143         for_each_pipe(dev_priv, pipe) {
9144                 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
9145                         continue;
9146
9147                 intel_increase_pllclock(dev, pipe);
9148                 if (ring && intel_fbc_enabled(dev))
9149                         ring->fbc_dirty = true;
9150         }
9151 }
9152
9153 /**
9154  * intel_fb_obj_invalidate - invalidate frontbuffer object
9155  * @obj: GEM object to invalidate
9156  * @ring: set for asynchronous rendering
9157  *
9158  * This function gets called every time rendering on the given object starts and
9159  * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9160  * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9161  * until the rendering completes or a flip on this frontbuffer plane is
9162  * scheduled.
9163  */
9164 void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9165                              struct intel_engine_cs *ring)
9166 {
9167         struct drm_device *dev = obj->base.dev;
9168         struct drm_i915_private *dev_priv = dev->dev_private;
9169
9170         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9171
9172         if (!obj->frontbuffer_bits)
9173                 return;
9174
9175         if (ring) {
9176                 mutex_lock(&dev_priv->fb_tracking.lock);
9177                 dev_priv->fb_tracking.busy_bits
9178                         |= obj->frontbuffer_bits;
9179                 dev_priv->fb_tracking.flip_bits
9180                         &= ~obj->frontbuffer_bits;
9181                 mutex_unlock(&dev_priv->fb_tracking.lock);
9182         }
9183
9184         intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9185
9186         intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
9187 }
9188
9189 /**
9190  * intel_frontbuffer_flush - flush frontbuffer
9191  * @dev: DRM device
9192  * @frontbuffer_bits: frontbuffer plane tracking bits
9193  *
9194  * This function gets called every time rendering on the given planes has
9195  * completed and frontbuffer caching can be started again. Flushes will get
9196  * delayed if they're blocked by some oustanding asynchronous rendering.
9197  *
9198  * Can be called without any locks held.
9199  */
9200 void intel_frontbuffer_flush(struct drm_device *dev,
9201                              unsigned frontbuffer_bits)
9202 {
9203         struct drm_i915_private *dev_priv = dev->dev_private;
9204
9205         /* Delay flushing when rings are still busy.*/
9206         mutex_lock(&dev_priv->fb_tracking.lock);
9207         frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9208         mutex_unlock(&dev_priv->fb_tracking.lock);
9209
9210         intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9211
9212         intel_edp_psr_flush(dev, frontbuffer_bits);
9213
9214         /*
9215          * FIXME: Unconditional fbc flushing here is a rather gross hack and
9216          * needs to be reworked into a proper frontbuffer tracking scheme like
9217          * psr employs.
9218          */
9219         if (IS_BROADWELL(dev))
9220                 gen8_fbc_sw_flush(dev, FBC_REND_CACHE_CLEAN);
9221 }
9222
9223 /**
9224  * intel_fb_obj_flush - flush frontbuffer object
9225  * @obj: GEM object to flush
9226  * @retire: set when retiring asynchronous rendering
9227  *
9228  * This function gets called every time rendering on the given object has
9229  * completed and frontbuffer caching can be started again. If @retire is true
9230  * then any delayed flushes will be unblocked.
9231  */
9232 void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9233                         bool retire)
9234 {
9235         struct drm_device *dev = obj->base.dev;
9236         struct drm_i915_private *dev_priv = dev->dev_private;
9237         unsigned frontbuffer_bits;
9238
9239         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9240
9241         if (!obj->frontbuffer_bits)
9242                 return;
9243
9244         frontbuffer_bits = obj->frontbuffer_bits;
9245
9246         if (retire) {
9247                 mutex_lock(&dev_priv->fb_tracking.lock);
9248                 /* Filter out new bits since rendering started. */
9249                 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9250
9251                 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9252                 mutex_unlock(&dev_priv->fb_tracking.lock);
9253         }
9254
9255         intel_frontbuffer_flush(dev, frontbuffer_bits);
9256 }
9257
9258 /**
9259  * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9260  * @dev: DRM device
9261  * @frontbuffer_bits: frontbuffer plane tracking bits
9262  *
9263  * This function gets called after scheduling a flip on @obj. The actual
9264  * frontbuffer flushing will be delayed until completion is signalled with
9265  * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9266  * flush will be cancelled.
9267  *
9268  * Can be called without any locks held.
9269  */
9270 void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9271                                     unsigned frontbuffer_bits)
9272 {
9273         struct drm_i915_private *dev_priv = dev->dev_private;
9274
9275         mutex_lock(&dev_priv->fb_tracking.lock);
9276         dev_priv->fb_tracking.flip_bits
9277                 |= frontbuffer_bits;
9278         mutex_unlock(&dev_priv->fb_tracking.lock);
9279 }
9280
9281 /**
9282  * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9283  * @dev: DRM device
9284  * @frontbuffer_bits: frontbuffer plane tracking bits
9285  *
9286  * This function gets called after the flip has been latched and will complete
9287  * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9288  *
9289  * Can be called without any locks held.
9290  */
9291 void intel_frontbuffer_flip_complete(struct drm_device *dev,
9292                                      unsigned frontbuffer_bits)
9293 {
9294         struct drm_i915_private *dev_priv = dev->dev_private;
9295
9296         mutex_lock(&dev_priv->fb_tracking.lock);
9297         /* Mask any cancelled flips. */
9298         frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9299         dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9300         mutex_unlock(&dev_priv->fb_tracking.lock);
9301
9302         intel_frontbuffer_flush(dev, frontbuffer_bits);
9303 }
9304
9305 static void intel_crtc_destroy(struct drm_crtc *crtc)
9306 {
9307         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9308         struct drm_device *dev = crtc->dev;
9309         struct intel_unpin_work *work;
9310         unsigned long flags;
9311
9312         spin_lock_irqsave(&dev->event_lock, flags);
9313         work = intel_crtc->unpin_work;
9314         intel_crtc->unpin_work = NULL;
9315         spin_unlock_irqrestore(&dev->event_lock, flags);
9316
9317         if (work) {
9318                 cancel_work_sync(&work->work);
9319                 kfree(work);
9320         }
9321
9322         drm_crtc_cleanup(crtc);
9323
9324         kfree(intel_crtc);
9325 }
9326
9327 static void intel_unpin_work_fn(struct work_struct *__work)
9328 {
9329         struct intel_unpin_work *work =
9330                 container_of(__work, struct intel_unpin_work, work);
9331         struct drm_device *dev = work->crtc->dev;
9332         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9333
9334         mutex_lock(&dev->struct_mutex);
9335         intel_unpin_fb_obj(work->old_fb_obj);
9336         drm_gem_object_unreference(&work->pending_flip_obj->base);
9337         drm_gem_object_unreference(&work->old_fb_obj->base);
9338
9339         intel_update_fbc(dev);
9340         mutex_unlock(&dev->struct_mutex);
9341
9342         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9343
9344         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9345         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9346
9347         kfree(work);
9348 }
9349
9350 static void do_intel_finish_page_flip(struct drm_device *dev,
9351                                       struct drm_crtc *crtc)
9352 {
9353         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9354         struct intel_unpin_work *work;
9355         unsigned long flags;
9356
9357         /* Ignore early vblank irqs */
9358         if (intel_crtc == NULL)
9359                 return;
9360
9361         spin_lock_irqsave(&dev->event_lock, flags);
9362         work = intel_crtc->unpin_work;
9363
9364         /* Ensure we don't miss a work->pending update ... */
9365         smp_rmb();
9366
9367         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9368                 spin_unlock_irqrestore(&dev->event_lock, flags);
9369                 return;
9370         }
9371
9372         page_flip_completed(intel_crtc);
9373
9374         spin_unlock_irqrestore(&dev->event_lock, flags);
9375 }
9376
9377 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9378 {
9379         struct drm_i915_private *dev_priv = dev->dev_private;
9380         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9381
9382         do_intel_finish_page_flip(dev, crtc);
9383 }
9384
9385 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9386 {
9387         struct drm_i915_private *dev_priv = dev->dev_private;
9388         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9389
9390         do_intel_finish_page_flip(dev, crtc);
9391 }
9392
9393 /* Is 'a' after or equal to 'b'? */
9394 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9395 {
9396         return !((a - b) & 0x80000000);
9397 }
9398
9399 static bool page_flip_finished(struct intel_crtc *crtc)
9400 {
9401         struct drm_device *dev = crtc->base.dev;
9402         struct drm_i915_private *dev_priv = dev->dev_private;
9403
9404         /*
9405          * The relevant registers doen't exist on pre-ctg.
9406          * As the flip done interrupt doesn't trigger for mmio
9407          * flips on gmch platforms, a flip count check isn't
9408          * really needed there. But since ctg has the registers,
9409          * include it in the check anyway.
9410          */
9411         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9412                 return true;
9413
9414         /*
9415          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9416          * used the same base address. In that case the mmio flip might
9417          * have completed, but the CS hasn't even executed the flip yet.
9418          *
9419          * A flip count check isn't enough as the CS might have updated
9420          * the base address just after start of vblank, but before we
9421          * managed to process the interrupt. This means we'd complete the
9422          * CS flip too soon.
9423          *
9424          * Combining both checks should get us a good enough result. It may
9425          * still happen that the CS flip has been executed, but has not
9426          * yet actually completed. But in case the base address is the same
9427          * anyway, we don't really care.
9428          */
9429         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9430                 crtc->unpin_work->gtt_offset &&
9431                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9432                                     crtc->unpin_work->flip_count);
9433 }
9434
9435 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9436 {
9437         struct drm_i915_private *dev_priv = dev->dev_private;
9438         struct intel_crtc *intel_crtc =
9439                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9440         unsigned long flags;
9441
9442         /* NB: An MMIO update of the plane base pointer will also
9443          * generate a page-flip completion irq, i.e. every modeset
9444          * is also accompanied by a spurious intel_prepare_page_flip().
9445          */
9446         spin_lock_irqsave(&dev->event_lock, flags);
9447         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9448                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9449         spin_unlock_irqrestore(&dev->event_lock, flags);
9450 }
9451
9452 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9453 {
9454         /* Ensure that the work item is consistent when activating it ... */
9455         smp_wmb();
9456         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9457         /* and that it is marked active as soon as the irq could fire. */
9458         smp_wmb();
9459 }
9460
9461 static int intel_gen2_queue_flip(struct drm_device *dev,
9462                                  struct drm_crtc *crtc,
9463                                  struct drm_framebuffer *fb,
9464                                  struct drm_i915_gem_object *obj,
9465                                  struct intel_engine_cs *ring,
9466                                  uint32_t flags)
9467 {
9468         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9469         u32 flip_mask;
9470         int ret;
9471
9472         ret = intel_ring_begin(ring, 6);
9473         if (ret)
9474                 return ret;
9475
9476         /* Can't queue multiple flips, so wait for the previous
9477          * one to finish before executing the next.
9478          */
9479         if (intel_crtc->plane)
9480                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9481         else
9482                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9483         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9484         intel_ring_emit(ring, MI_NOOP);
9485         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9486                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9487         intel_ring_emit(ring, fb->pitches[0]);
9488         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9489         intel_ring_emit(ring, 0); /* aux display base address, unused */
9490
9491         intel_mark_page_flip_active(intel_crtc);
9492         __intel_ring_advance(ring);
9493         return 0;
9494 }
9495
9496 static int intel_gen3_queue_flip(struct drm_device *dev,
9497                                  struct drm_crtc *crtc,
9498                                  struct drm_framebuffer *fb,
9499                                  struct drm_i915_gem_object *obj,
9500                                  struct intel_engine_cs *ring,
9501                                  uint32_t flags)
9502 {
9503         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9504         u32 flip_mask;
9505         int ret;
9506
9507         ret = intel_ring_begin(ring, 6);
9508         if (ret)
9509                 return ret;
9510
9511         if (intel_crtc->plane)
9512                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9513         else
9514                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9515         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9516         intel_ring_emit(ring, MI_NOOP);
9517         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9518                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9519         intel_ring_emit(ring, fb->pitches[0]);
9520         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9521         intel_ring_emit(ring, MI_NOOP);
9522
9523         intel_mark_page_flip_active(intel_crtc);
9524         __intel_ring_advance(ring);
9525         return 0;
9526 }
9527
9528 static int intel_gen4_queue_flip(struct drm_device *dev,
9529                                  struct drm_crtc *crtc,
9530                                  struct drm_framebuffer *fb,
9531                                  struct drm_i915_gem_object *obj,
9532                                  struct intel_engine_cs *ring,
9533                                  uint32_t flags)
9534 {
9535         struct drm_i915_private *dev_priv = dev->dev_private;
9536         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9537         uint32_t pf, pipesrc;
9538         int ret;
9539
9540         ret = intel_ring_begin(ring, 4);
9541         if (ret)
9542                 return ret;
9543
9544         /* i965+ uses the linear or tiled offsets from the
9545          * Display Registers (which do not change across a page-flip)
9546          * so we need only reprogram the base address.
9547          */
9548         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9549                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9550         intel_ring_emit(ring, fb->pitches[0]);
9551         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9552                         obj->tiling_mode);
9553
9554         /* XXX Enabling the panel-fitter across page-flip is so far
9555          * untested on non-native modes, so ignore it for now.
9556          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9557          */
9558         pf = 0;
9559         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9560         intel_ring_emit(ring, pf | pipesrc);
9561
9562         intel_mark_page_flip_active(intel_crtc);
9563         __intel_ring_advance(ring);
9564         return 0;
9565 }
9566
9567 static int intel_gen6_queue_flip(struct drm_device *dev,
9568                                  struct drm_crtc *crtc,
9569                                  struct drm_framebuffer *fb,
9570                                  struct drm_i915_gem_object *obj,
9571                                  struct intel_engine_cs *ring,
9572                                  uint32_t flags)
9573 {
9574         struct drm_i915_private *dev_priv = dev->dev_private;
9575         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9576         uint32_t pf, pipesrc;
9577         int ret;
9578
9579         ret = intel_ring_begin(ring, 4);
9580         if (ret)
9581                 return ret;
9582
9583         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9584                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9585         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9586         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9587
9588         /* Contrary to the suggestions in the documentation,
9589          * "Enable Panel Fitter" does not seem to be required when page
9590          * flipping with a non-native mode, and worse causes a normal
9591          * modeset to fail.
9592          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9593          */
9594         pf = 0;
9595         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9596         intel_ring_emit(ring, pf | pipesrc);
9597
9598         intel_mark_page_flip_active(intel_crtc);
9599         __intel_ring_advance(ring);
9600         return 0;
9601 }
9602
9603 static int intel_gen7_queue_flip(struct drm_device *dev,
9604                                  struct drm_crtc *crtc,
9605                                  struct drm_framebuffer *fb,
9606                                  struct drm_i915_gem_object *obj,
9607                                  struct intel_engine_cs *ring,
9608                                  uint32_t flags)
9609 {
9610         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9611         uint32_t plane_bit = 0;
9612         int len, ret;
9613
9614         switch (intel_crtc->plane) {
9615         case PLANE_A:
9616                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9617                 break;
9618         case PLANE_B:
9619                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9620                 break;
9621         case PLANE_C:
9622                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9623                 break;
9624         default:
9625                 WARN_ONCE(1, "unknown plane in flip command\n");
9626                 return -ENODEV;
9627         }
9628
9629         len = 4;
9630         if (ring->id == RCS) {
9631                 len += 6;
9632                 /*
9633                  * On Gen 8, SRM is now taking an extra dword to accommodate
9634                  * 48bits addresses, and we need a NOOP for the batch size to
9635                  * stay even.
9636                  */
9637                 if (IS_GEN8(dev))
9638                         len += 2;
9639         }
9640
9641         /*
9642          * BSpec MI_DISPLAY_FLIP for IVB:
9643          * "The full packet must be contained within the same cache line."
9644          *
9645          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9646          * cacheline, if we ever start emitting more commands before
9647          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9648          * then do the cacheline alignment, and finally emit the
9649          * MI_DISPLAY_FLIP.
9650          */
9651         ret = intel_ring_cacheline_align(ring);
9652         if (ret)
9653                 return ret;
9654
9655         ret = intel_ring_begin(ring, len);
9656         if (ret)
9657                 return ret;
9658
9659         /* Unmask the flip-done completion message. Note that the bspec says that
9660          * we should do this for both the BCS and RCS, and that we must not unmask
9661          * more than one flip event at any time (or ensure that one flip message
9662          * can be sent by waiting for flip-done prior to queueing new flips).
9663          * Experimentation says that BCS works despite DERRMR masking all
9664          * flip-done completion events and that unmasking all planes at once
9665          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9666          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9667          */
9668         if (ring->id == RCS) {
9669                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9670                 intel_ring_emit(ring, DERRMR);
9671                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9672                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9673                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9674                 if (IS_GEN8(dev))
9675                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9676                                               MI_SRM_LRM_GLOBAL_GTT);
9677                 else
9678                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9679                                               MI_SRM_LRM_GLOBAL_GTT);
9680                 intel_ring_emit(ring, DERRMR);
9681                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9682                 if (IS_GEN8(dev)) {
9683                         intel_ring_emit(ring, 0);
9684                         intel_ring_emit(ring, MI_NOOP);
9685                 }
9686         }
9687
9688         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9689         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9690         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9691         intel_ring_emit(ring, (MI_NOOP));
9692
9693         intel_mark_page_flip_active(intel_crtc);
9694         __intel_ring_advance(ring);
9695         return 0;
9696 }
9697
9698 static bool use_mmio_flip(struct intel_engine_cs *ring,
9699                           struct drm_i915_gem_object *obj)
9700 {
9701         /*
9702          * This is not being used for older platforms, because
9703          * non-availability of flip done interrupt forces us to use
9704          * CS flips. Older platforms derive flip done using some clever
9705          * tricks involving the flip_pending status bits and vblank irqs.
9706          * So using MMIO flips there would disrupt this mechanism.
9707          */
9708
9709         if (ring == NULL)
9710                 return true;
9711
9712         if (INTEL_INFO(ring->dev)->gen < 5)
9713                 return false;
9714
9715         if (i915.use_mmio_flip < 0)
9716                 return false;
9717         else if (i915.use_mmio_flip > 0)
9718                 return true;
9719         else if (i915.enable_execlists)
9720                 return true;
9721         else
9722                 return ring != obj->ring;
9723 }
9724
9725 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9726 {
9727         struct drm_device *dev = intel_crtc->base.dev;
9728         struct drm_i915_private *dev_priv = dev->dev_private;
9729         struct intel_framebuffer *intel_fb =
9730                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9731         struct drm_i915_gem_object *obj = intel_fb->obj;
9732         u32 dspcntr;
9733         u32 reg;
9734
9735         intel_mark_page_flip_active(intel_crtc);
9736
9737         reg = DSPCNTR(intel_crtc->plane);
9738         dspcntr = I915_READ(reg);
9739
9740         if (INTEL_INFO(dev)->gen >= 4) {
9741                 if (obj->tiling_mode != I915_TILING_NONE)
9742                         dspcntr |= DISPPLANE_TILED;
9743                 else
9744                         dspcntr &= ~DISPPLANE_TILED;
9745         }
9746         I915_WRITE(reg, dspcntr);
9747
9748         I915_WRITE(DSPSURF(intel_crtc->plane),
9749                    intel_crtc->unpin_work->gtt_offset);
9750         POSTING_READ(DSPSURF(intel_crtc->plane));
9751 }
9752
9753 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9754 {
9755         struct intel_engine_cs *ring;
9756         int ret;
9757
9758         lockdep_assert_held(&obj->base.dev->struct_mutex);
9759
9760         if (!obj->last_write_seqno)
9761                 return 0;
9762
9763         ring = obj->ring;
9764
9765         if (i915_seqno_passed(ring->get_seqno(ring, true),
9766                               obj->last_write_seqno))
9767                 return 0;
9768
9769         ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9770         if (ret)
9771                 return ret;
9772
9773         if (WARN_ON(!ring->irq_get(ring)))
9774                 return 0;
9775
9776         return 1;
9777 }
9778
9779 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9780 {
9781         struct drm_i915_private *dev_priv = to_i915(ring->dev);
9782         struct intel_crtc *intel_crtc;
9783         unsigned long irq_flags;
9784         u32 seqno;
9785
9786         seqno = ring->get_seqno(ring, false);
9787
9788         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9789         for_each_intel_crtc(ring->dev, intel_crtc) {
9790                 struct intel_mmio_flip *mmio_flip;
9791
9792                 mmio_flip = &intel_crtc->mmio_flip;
9793                 if (mmio_flip->seqno == 0)
9794                         continue;
9795
9796                 if (ring->id != mmio_flip->ring_id)
9797                         continue;
9798
9799                 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9800                         intel_do_mmio_flip(intel_crtc);
9801                         mmio_flip->seqno = 0;
9802                         ring->irq_put(ring);
9803                 }
9804         }
9805         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9806 }
9807
9808 static int intel_queue_mmio_flip(struct drm_device *dev,
9809                                  struct drm_crtc *crtc,
9810                                  struct drm_framebuffer *fb,
9811                                  struct drm_i915_gem_object *obj,
9812                                  struct intel_engine_cs *ring,
9813                                  uint32_t flags)
9814 {
9815         struct drm_i915_private *dev_priv = dev->dev_private;
9816         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9817         unsigned long irq_flags;
9818         int ret;
9819
9820         if (WARN_ON(intel_crtc->mmio_flip.seqno))
9821                 return -EBUSY;
9822
9823         ret = intel_postpone_flip(obj);
9824         if (ret < 0)
9825                 return ret;
9826         if (ret == 0) {
9827                 intel_do_mmio_flip(intel_crtc);
9828                 return 0;
9829         }
9830
9831         spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9832         intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9833         intel_crtc->mmio_flip.ring_id = obj->ring->id;
9834         spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9835
9836         /*
9837          * Double check to catch cases where irq fired before
9838          * mmio flip data was ready
9839          */
9840         intel_notify_mmio_flip(obj->ring);
9841         return 0;
9842 }
9843
9844 static int intel_default_queue_flip(struct drm_device *dev,
9845                                     struct drm_crtc *crtc,
9846                                     struct drm_framebuffer *fb,
9847                                     struct drm_i915_gem_object *obj,
9848                                     struct intel_engine_cs *ring,
9849                                     uint32_t flags)
9850 {
9851         return -ENODEV;
9852 }
9853
9854 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9855                                          struct drm_crtc *crtc)
9856 {
9857         struct drm_i915_private *dev_priv = dev->dev_private;
9858         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9859         struct intel_unpin_work *work = intel_crtc->unpin_work;
9860         u32 addr;
9861
9862         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9863                 return true;
9864
9865         if (!work->enable_stall_check)
9866                 return false;
9867
9868         if (work->flip_ready_vblank == 0) {
9869                 if (work->flip_queued_ring &&
9870                     !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9871                                        work->flip_queued_seqno))
9872                         return false;
9873
9874                 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9875         }
9876
9877         if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9878                 return false;
9879
9880         /* Potential stall - if we see that the flip has happened,
9881          * assume a missed interrupt. */
9882         if (INTEL_INFO(dev)->gen >= 4)
9883                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9884         else
9885                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9886
9887         /* There is a potential issue here with a false positive after a flip
9888          * to the same address. We could address this by checking for a
9889          * non-incrementing frame counter.
9890          */
9891         return addr == work->gtt_offset;
9892 }
9893
9894 void intel_check_page_flip(struct drm_device *dev, int pipe)
9895 {
9896         struct drm_i915_private *dev_priv = dev->dev_private;
9897         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9898         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9899         unsigned long flags;
9900
9901         if (crtc == NULL)
9902                 return;
9903
9904         spin_lock_irqsave(&dev->event_lock, flags);
9905         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9906                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9907                          intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9908                 page_flip_completed(intel_crtc);
9909         }
9910         spin_unlock_irqrestore(&dev->event_lock, flags);
9911 }
9912
9913 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9914                                 struct drm_framebuffer *fb,
9915                                 struct drm_pending_vblank_event *event,
9916                                 uint32_t page_flip_flags)
9917 {
9918         struct drm_device *dev = crtc->dev;
9919         struct drm_i915_private *dev_priv = dev->dev_private;
9920         struct drm_framebuffer *old_fb = crtc->primary->fb;
9921         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9922         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9923         enum pipe pipe = intel_crtc->pipe;
9924         struct intel_unpin_work *work;
9925         struct intel_engine_cs *ring;
9926         unsigned long flags;
9927         int ret;
9928
9929         //trigger software GT busyness calculation
9930         gen8_flip_interrupt(dev);
9931
9932         /*
9933          * drm_mode_page_flip_ioctl() should already catch this, but double
9934          * check to be safe.  In the future we may enable pageflipping from
9935          * a disabled primary plane.
9936          */
9937         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9938                 return -EBUSY;
9939
9940         /* Can't change pixel format via MI display flips. */
9941         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9942                 return -EINVAL;
9943
9944         /*
9945          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9946          * Note that pitch changes could also affect these register.
9947          */
9948         if (INTEL_INFO(dev)->gen > 3 &&
9949             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9950              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9951                 return -EINVAL;
9952
9953         if (i915_terminally_wedged(&dev_priv->gpu_error))
9954                 goto out_hang;
9955
9956         work = kzalloc(sizeof(*work), GFP_KERNEL);
9957         if (work == NULL)
9958                 return -ENOMEM;
9959
9960         work->event = event;
9961         work->crtc = crtc;
9962         work->old_fb_obj = intel_fb_obj(old_fb);
9963         INIT_WORK(&work->work, intel_unpin_work_fn);
9964
9965         ret = drm_crtc_vblank_get(crtc);
9966         if (ret)
9967                 goto free_work;
9968
9969         /* We borrow the event spin lock for protecting unpin_work */
9970         spin_lock_irqsave(&dev->event_lock, flags);
9971         if (intel_crtc->unpin_work) {
9972                 /* Before declaring the flip queue wedged, check if
9973                  * the hardware completed the operation behind our backs.
9974                  */
9975                 if (__intel_pageflip_stall_check(dev, crtc)) {
9976                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9977                         page_flip_completed(intel_crtc);
9978                 } else {
9979                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9980                         spin_unlock_irqrestore(&dev->event_lock, flags);
9981
9982                         drm_crtc_vblank_put(crtc);
9983                         kfree(work);
9984                         return -EBUSY;
9985                 }
9986         }
9987         intel_crtc->unpin_work = work;
9988         spin_unlock_irqrestore(&dev->event_lock, flags);
9989
9990         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9991                 flush_workqueue(dev_priv->wq);
9992
9993         ret = i915_mutex_lock_interruptible(dev);
9994         if (ret)
9995                 goto cleanup;
9996
9997         /* Reference the objects for the scheduled work. */
9998         drm_gem_object_reference(&work->old_fb_obj->base);
9999         drm_gem_object_reference(&obj->base);
10000
10001         crtc->primary->fb = fb;
10002
10003         work->pending_flip_obj = obj;
10004
10005         atomic_inc(&intel_crtc->unpin_work_count);
10006         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10007
10008         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10009                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10010
10011         if (IS_VALLEYVIEW(dev)) {
10012                 ring = &dev_priv->ring[BCS];
10013                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
10014                         /* vlv: DISPLAY_FLIP fails to change tiling */
10015                         ring = NULL;
10016         } else if (IS_IVYBRIDGE(dev)) {
10017                 ring = &dev_priv->ring[BCS];
10018         } else if (INTEL_INFO(dev)->gen >= 7) {
10019                 ring = obj->ring;
10020                 if (ring == NULL || ring->id != RCS)
10021                         ring = &dev_priv->ring[BCS];
10022         } else {
10023                 ring = &dev_priv->ring[RCS];
10024         }
10025
10026         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
10027         if (ret)
10028                 goto cleanup_pending;
10029
10030         work->gtt_offset =
10031                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
10032
10033         if (use_mmio_flip(ring, obj)) {
10034                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10035                                             page_flip_flags);
10036                 if (ret)
10037                         goto cleanup_unpin;
10038
10039                 work->flip_queued_seqno = obj->last_write_seqno;
10040                 work->flip_queued_ring = obj->ring;
10041         } else {
10042                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10043                                                    page_flip_flags);
10044                 if (ret)
10045                         goto cleanup_unpin;
10046
10047                 work->flip_queued_seqno = intel_ring_get_seqno(ring);
10048                 work->flip_queued_ring = ring;
10049         }
10050
10051         work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
10052         work->enable_stall_check = true;
10053
10054         i915_gem_track_fb(work->old_fb_obj, obj,
10055                           INTEL_FRONTBUFFER_PRIMARY(pipe));
10056
10057         intel_disable_fbc(dev);
10058         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10059         mutex_unlock(&dev->struct_mutex);
10060
10061         trace_i915_flip_request(intel_crtc->plane, obj);
10062
10063         return 0;
10064
10065 cleanup_unpin:
10066         intel_unpin_fb_obj(obj);
10067 cleanup_pending:
10068         atomic_dec(&intel_crtc->unpin_work_count);
10069         crtc->primary->fb = old_fb;
10070         drm_gem_object_unreference(&work->old_fb_obj->base);
10071         drm_gem_object_unreference(&obj->base);
10072         mutex_unlock(&dev->struct_mutex);
10073
10074 cleanup:
10075         spin_lock_irqsave(&dev->event_lock, flags);
10076         intel_crtc->unpin_work = NULL;
10077         spin_unlock_irqrestore(&dev->event_lock, flags);
10078
10079         drm_crtc_vblank_put(crtc);
10080 free_work:
10081         kfree(work);
10082
10083         if (ret == -EIO) {
10084 out_hang:
10085                 intel_crtc_wait_for_pending_flips(crtc);
10086                 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
10087                 if (ret == 0 && event) {
10088                         spin_lock_irqsave(&dev->event_lock, flags);
10089                         drm_send_vblank_event(dev, pipe, event);
10090                         spin_unlock_irqrestore(&dev->event_lock, flags);
10091                 }
10092         }
10093         return ret;
10094 }
10095
10096 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10097         .mode_set_base_atomic = intel_pipe_set_base_atomic,
10098         .load_lut = intel_crtc_load_lut,
10099 };
10100
10101 /**
10102  * intel_modeset_update_staged_output_state
10103  *
10104  * Updates the staged output configuration state, e.g. after we've read out the
10105  * current hw state.
10106  */
10107 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10108 {
10109         struct intel_crtc *crtc;
10110         struct intel_encoder *encoder;
10111         struct intel_connector *connector;
10112
10113         list_for_each_entry(connector, &dev->mode_config.connector_list,
10114                             base.head) {
10115                 connector->new_encoder =
10116                         to_intel_encoder(connector->base.encoder);
10117         }
10118
10119         for_each_intel_encoder(dev, encoder) {
10120                 encoder->new_crtc =
10121                         to_intel_crtc(encoder->base.crtc);
10122         }
10123
10124         for_each_intel_crtc(dev, crtc) {
10125                 crtc->new_enabled = crtc->base.enabled;
10126
10127                 if (crtc->new_enabled)
10128                         crtc->new_config = &crtc->config;
10129                 else
10130                         crtc->new_config = NULL;
10131         }
10132 }
10133
10134 /**
10135  * intel_modeset_commit_output_state
10136  *
10137  * This function copies the stage display pipe configuration to the real one.
10138  */
10139 static void intel_modeset_commit_output_state(struct drm_device *dev)
10140 {
10141         struct intel_crtc *crtc;
10142         struct intel_encoder *encoder;
10143         struct intel_connector *connector;
10144
10145         list_for_each_entry(connector, &dev->mode_config.connector_list,
10146                             base.head) {
10147                 connector->base.encoder = &connector->new_encoder->base;
10148         }
10149
10150         for_each_intel_encoder(dev, encoder) {
10151                 encoder->base.crtc = &encoder->new_crtc->base;
10152         }
10153
10154         for_each_intel_crtc(dev, crtc) {
10155                 crtc->base.enabled = crtc->new_enabled;
10156         }
10157 }
10158
10159 static void
10160 connected_sink_compute_bpp(struct intel_connector *connector,
10161                            struct intel_crtc_config *pipe_config)
10162 {
10163         int bpp = pipe_config->pipe_bpp;
10164
10165         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10166                 connector->base.base.id,
10167                 connector->base.name);
10168
10169         /* Don't use an invalid EDID bpc value */
10170         if (connector->base.display_info.bpc &&
10171             connector->base.display_info.bpc * 3 < bpp) {
10172                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10173                               bpp, connector->base.display_info.bpc*3);
10174                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10175         }
10176
10177         /* Clamp bpp to 8 on screens without EDID 1.4 */
10178         if (connector->base.display_info.bpc == 0 && bpp > 24) {
10179                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10180                               bpp);
10181                 pipe_config->pipe_bpp = 24;
10182         }
10183 }
10184
10185 static int
10186 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10187                           struct drm_framebuffer *fb,
10188                           struct intel_crtc_config *pipe_config)
10189 {
10190         struct drm_device *dev = crtc->base.dev;
10191         struct intel_connector *connector;
10192         int bpp;
10193
10194         switch (fb->pixel_format) {
10195         case DRM_FORMAT_C8:
10196                 bpp = 8*3; /* since we go through a colormap */
10197                 break;
10198         case DRM_FORMAT_XRGB1555:
10199         case DRM_FORMAT_ARGB1555:
10200                 /* checked in intel_framebuffer_init already */
10201                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10202                         return -EINVAL;
10203         case DRM_FORMAT_RGB565:
10204                 bpp = 6*3; /* min is 18bpp */
10205                 break;
10206         case DRM_FORMAT_XBGR8888:
10207         case DRM_FORMAT_ABGR8888:
10208                 /* checked in intel_framebuffer_init already */
10209                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10210                         return -EINVAL;
10211         case DRM_FORMAT_XRGB8888:
10212         case DRM_FORMAT_ARGB8888:
10213                 bpp = 8*3;
10214                 break;
10215         case DRM_FORMAT_XRGB2101010:
10216         case DRM_FORMAT_ARGB2101010:
10217         case DRM_FORMAT_XBGR2101010:
10218         case DRM_FORMAT_ABGR2101010:
10219                 /* checked in intel_framebuffer_init already */
10220                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10221                         return -EINVAL;
10222                 bpp = 10*3;
10223                 break;
10224         /* TODO: gen4+ supports 16 bpc floating point, too. */
10225         default:
10226                 DRM_DEBUG_KMS("unsupported depth\n");
10227                 return -EINVAL;
10228         }
10229
10230         pipe_config->pipe_bpp = bpp;
10231
10232         /* Clamp display bpp to EDID value */
10233         list_for_each_entry(connector, &dev->mode_config.connector_list,
10234                             base.head) {
10235                 if (!connector->new_encoder ||
10236                     connector->new_encoder->new_crtc != crtc)
10237                         continue;
10238
10239                 connected_sink_compute_bpp(connector, pipe_config);
10240         }
10241
10242         return bpp;
10243 }
10244
10245 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10246 {
10247         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10248                         "type: 0x%x flags: 0x%x\n",
10249                 mode->crtc_clock,
10250                 mode->crtc_hdisplay, mode->crtc_hsync_start,
10251                 mode->crtc_hsync_end, mode->crtc_htotal,
10252                 mode->crtc_vdisplay, mode->crtc_vsync_start,
10253                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10254 }
10255
10256 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10257                                    struct intel_crtc_config *pipe_config,
10258                                    const char *context)
10259 {
10260         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10261                       context, pipe_name(crtc->pipe));
10262
10263         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10264         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10265                       pipe_config->pipe_bpp, pipe_config->dither);
10266         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10267                       pipe_config->has_pch_encoder,
10268                       pipe_config->fdi_lanes,
10269                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10270                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10271                       pipe_config->fdi_m_n.tu);
10272         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10273                       pipe_config->has_dp_encoder,
10274                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10275                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10276                       pipe_config->dp_m_n.tu);
10277
10278         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10279                       pipe_config->has_dp_encoder,
10280                       pipe_config->dp_m2_n2.gmch_m,
10281                       pipe_config->dp_m2_n2.gmch_n,
10282                       pipe_config->dp_m2_n2.link_m,
10283                       pipe_config->dp_m2_n2.link_n,
10284                       pipe_config->dp_m2_n2.tu);
10285
10286         DRM_DEBUG_KMS("requested mode:\n");
10287         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10288         DRM_DEBUG_KMS("adjusted mode:\n");
10289         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10290         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10291         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10292         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10293                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10294         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10295                       pipe_config->gmch_pfit.control,
10296                       pipe_config->gmch_pfit.pgm_ratios,
10297                       pipe_config->gmch_pfit.lvds_border_bits);
10298         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10299                       pipe_config->pch_pfit.pos,
10300                       pipe_config->pch_pfit.size,
10301                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10302         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10303         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10304 }
10305
10306 static bool encoders_cloneable(const struct intel_encoder *a,
10307                                const struct intel_encoder *b)
10308 {
10309         /* masks could be asymmetric, so check both ways */
10310         return a == b || (a->cloneable & (1 << b->type) &&
10311                           b->cloneable & (1 << a->type));
10312 }
10313
10314 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10315                                          struct intel_encoder *encoder)
10316 {
10317         struct drm_device *dev = crtc->base.dev;
10318         struct intel_encoder *source_encoder;
10319
10320         for_each_intel_encoder(dev, source_encoder) {
10321                 if (source_encoder->new_crtc != crtc)
10322                         continue;
10323
10324                 if (!encoders_cloneable(encoder, source_encoder))
10325                         return false;
10326         }
10327
10328         return true;
10329 }
10330
10331 static bool check_encoder_cloning(struct intel_crtc *crtc)
10332 {
10333         struct drm_device *dev = crtc->base.dev;
10334         struct intel_encoder *encoder;
10335
10336         for_each_intel_encoder(dev, encoder) {
10337                 if (encoder->new_crtc != crtc)
10338                         continue;
10339
10340                 if (!check_single_encoder_cloning(crtc, encoder))
10341                         return false;
10342         }
10343
10344         return true;
10345 }
10346
10347 static struct intel_crtc_config *
10348 intel_modeset_pipe_config(struct drm_crtc *crtc,
10349                           struct drm_framebuffer *fb,
10350                           struct drm_display_mode *mode)
10351 {
10352         struct drm_device *dev = crtc->dev;
10353         struct intel_encoder *encoder;
10354         struct intel_crtc_config *pipe_config;
10355         int plane_bpp, ret = -EINVAL;
10356         bool retry = true;
10357
10358         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10359                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10360                 return ERR_PTR(-EINVAL);
10361         }
10362
10363         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10364         if (!pipe_config)
10365                 return ERR_PTR(-ENOMEM);
10366
10367         drm_mode_copy(&pipe_config->adjusted_mode, mode);
10368         drm_mode_copy(&pipe_config->requested_mode, mode);
10369
10370         pipe_config->cpu_transcoder =
10371                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10372         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10373
10374         /*
10375          * Sanitize sync polarity flags based on requested ones. If neither
10376          * positive or negative polarity is requested, treat this as meaning
10377          * negative polarity.
10378          */
10379         if (!(pipe_config->adjusted_mode.flags &
10380               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10381                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10382
10383         if (!(pipe_config->adjusted_mode.flags &
10384               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10385                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10386
10387         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10388          * plane pixel format and any sink constraints into account. Returns the
10389          * source plane bpp so that dithering can be selected on mismatches
10390          * after encoders and crtc also have had their say. */
10391         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10392                                               fb, pipe_config);
10393         if (plane_bpp < 0)
10394                 goto fail;
10395
10396         /*
10397          * Determine the real pipe dimensions. Note that stereo modes can
10398          * increase the actual pipe size due to the frame doubling and
10399          * insertion of additional space for blanks between the frame. This
10400          * is stored in the crtc timings. We use the requested mode to do this
10401          * computation to clearly distinguish it from the adjusted mode, which
10402          * can be changed by the connectors in the below retry loop.
10403          */
10404         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10405         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10406         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10407
10408 encoder_retry:
10409         /* Ensure the port clock defaults are reset when retrying. */
10410         pipe_config->port_clock = 0;
10411         pipe_config->pixel_multiplier = 1;
10412
10413         /* Fill in default crtc timings, allow encoders to overwrite them. */
10414         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10415
10416         /* Pass our mode to the connectors and the CRTC to give them a chance to
10417          * adjust it according to limitations or connector properties, and also
10418          * a chance to reject the mode entirely.
10419          */
10420         for_each_intel_encoder(dev, encoder) {
10421
10422                 if (&encoder->new_crtc->base != crtc)
10423                         continue;
10424
10425                 if (!(encoder->compute_config(encoder, pipe_config))) {
10426                         DRM_DEBUG_KMS("Encoder config failure\n");
10427                         goto fail;
10428                 }
10429         }
10430
10431         /* Set default port clock if not overwritten by the encoder. Needs to be
10432          * done afterwards in case the encoder adjusts the mode. */
10433         if (!pipe_config->port_clock)
10434                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10435                         * pipe_config->pixel_multiplier;
10436
10437         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10438         if (ret < 0) {
10439                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10440                 goto fail;
10441         }
10442
10443         if (ret == RETRY) {
10444                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10445                         ret = -EINVAL;
10446                         goto fail;
10447                 }
10448
10449                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10450                 retry = false;
10451                 goto encoder_retry;
10452         }
10453
10454         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10455         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10456                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10457
10458         return pipe_config;
10459 fail:
10460         kfree(pipe_config);
10461         return ERR_PTR(ret);
10462 }
10463
10464 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10465  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10466 static void
10467 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10468                              unsigned *prepare_pipes, unsigned *disable_pipes)
10469 {
10470         struct intel_crtc *intel_crtc;
10471         struct drm_device *dev = crtc->dev;
10472         struct intel_encoder *encoder;
10473         struct intel_connector *connector;
10474         struct drm_crtc *tmp_crtc;
10475
10476         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10477
10478         /* Check which crtcs have changed outputs connected to them, these need
10479          * to be part of the prepare_pipes mask. We don't (yet) support global
10480          * modeset across multiple crtcs, so modeset_pipes will only have one
10481          * bit set at most. */
10482         list_for_each_entry(connector, &dev->mode_config.connector_list,
10483                             base.head) {
10484                 if (connector->base.encoder == &connector->new_encoder->base)
10485                         continue;
10486
10487                 if (connector->base.encoder) {
10488                         tmp_crtc = connector->base.encoder->crtc;
10489
10490                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10491                 }
10492
10493                 if (connector->new_encoder)
10494                         *prepare_pipes |=
10495                                 1 << connector->new_encoder->new_crtc->pipe;
10496         }
10497
10498         for_each_intel_encoder(dev, encoder) {
10499                 if (encoder->base.crtc == &encoder->new_crtc->base)
10500                         continue;
10501
10502                 if (encoder->base.crtc) {
10503                         tmp_crtc = encoder->base.crtc;
10504
10505                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10506                 }
10507
10508                 if (encoder->new_crtc)
10509                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10510         }
10511
10512         /* Check for pipes that will be enabled/disabled ... */
10513         for_each_intel_crtc(dev, intel_crtc) {
10514                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10515                         continue;
10516
10517                 if (!intel_crtc->new_enabled)
10518                         *disable_pipes |= 1 << intel_crtc->pipe;
10519                 else
10520                         *prepare_pipes |= 1 << intel_crtc->pipe;
10521         }
10522
10523
10524         /* set_mode is also used to update properties on life display pipes. */
10525         intel_crtc = to_intel_crtc(crtc);
10526         if (intel_crtc->new_enabled)
10527                 *prepare_pipes |= 1 << intel_crtc->pipe;
10528
10529         /*
10530          * For simplicity do a full modeset on any pipe where the output routing
10531          * changed. We could be more clever, but that would require us to be
10532          * more careful with calling the relevant encoder->mode_set functions.
10533          */
10534         if (*prepare_pipes)
10535                 *modeset_pipes = *prepare_pipes;
10536
10537         /* ... and mask these out. */
10538         *modeset_pipes &= ~(*disable_pipes);
10539         *prepare_pipes &= ~(*disable_pipes);
10540
10541         /*
10542          * HACK: We don't (yet) fully support global modesets. intel_set_config
10543          * obies this rule, but the modeset restore mode of
10544          * intel_modeset_setup_hw_state does not.
10545          */
10546         *modeset_pipes &= 1 << intel_crtc->pipe;
10547         *prepare_pipes &= 1 << intel_crtc->pipe;
10548
10549         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10550                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10551 }
10552
10553 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10554 {
10555         struct drm_encoder *encoder;
10556         struct drm_device *dev = crtc->dev;
10557
10558         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10559                 if (encoder->crtc == crtc)
10560                         return true;
10561
10562         return false;
10563 }
10564
10565 static void
10566 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10567 {
10568         struct intel_encoder *intel_encoder;
10569         struct intel_crtc *intel_crtc;
10570         struct drm_connector *connector;
10571
10572         for_each_intel_encoder(dev, intel_encoder) {
10573                 if (!intel_encoder->base.crtc)
10574                         continue;
10575
10576                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10577
10578                 if (prepare_pipes & (1 << intel_crtc->pipe))
10579                         intel_encoder->connectors_active = false;
10580         }
10581
10582         intel_modeset_commit_output_state(dev);
10583
10584         /* Double check state. */
10585         for_each_intel_crtc(dev, intel_crtc) {
10586                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10587                 WARN_ON(intel_crtc->new_config &&
10588                         intel_crtc->new_config != &intel_crtc->config);
10589                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10590         }
10591
10592         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10593                 if (!connector->encoder || !connector->encoder->crtc)
10594                         continue;
10595
10596                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10597
10598                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10599                         struct drm_property *dpms_property =
10600                                 dev->mode_config.dpms_property;
10601
10602                         connector->dpms = DRM_MODE_DPMS_ON;
10603                         drm_object_property_set_value(&connector->base,
10604                                                          dpms_property,
10605                                                          DRM_MODE_DPMS_ON);
10606
10607                         intel_encoder = to_intel_encoder(connector->encoder);
10608                         intel_encoder->connectors_active = true;
10609                 }
10610         }
10611
10612 }
10613
10614 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10615 {
10616         int diff;
10617
10618         if (clock1 == clock2)
10619                 return true;
10620
10621         if (!clock1 || !clock2)
10622                 return false;
10623
10624         diff = abs(clock1 - clock2);
10625
10626         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10627                 return true;
10628
10629         return false;
10630 }
10631
10632 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10633         list_for_each_entry((intel_crtc), \
10634                             &(dev)->mode_config.crtc_list, \
10635                             base.head) \
10636                 if (mask & (1 <<(intel_crtc)->pipe))
10637
10638 static bool
10639 intel_pipe_config_compare(struct drm_device *dev,
10640                           struct intel_crtc_config *current_config,
10641                           struct intel_crtc_config *pipe_config)
10642 {
10643 #define PIPE_CONF_CHECK_X(name) \
10644         if (current_config->name != pipe_config->name) { \
10645                 DRM_ERROR("mismatch in " #name " " \
10646                           "(expected 0x%08x, found 0x%08x)\n", \
10647                           current_config->name, \
10648                           pipe_config->name); \
10649                 return false; \
10650         }
10651
10652 #define PIPE_CONF_CHECK_I(name) \
10653         if (current_config->name != pipe_config->name) { \
10654                 DRM_ERROR("mismatch in " #name " " \
10655                           "(expected %i, found %i)\n", \
10656                           current_config->name, \
10657                           pipe_config->name); \
10658                 return false; \
10659         }
10660
10661 /* This is required for BDW+ where there is only one set of registers for
10662  * switching between high and low RR.
10663  * This macro can be used whenever a comparison has to be made between one
10664  * hw state and multiple sw state variables.
10665  */
10666 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10667         if ((current_config->name != pipe_config->name) && \
10668                 (current_config->alt_name != pipe_config->name)) { \
10669                         DRM_ERROR("mismatch in " #name " " \
10670                                   "(expected %i or %i, found %i)\n", \
10671                                   current_config->name, \
10672                                   current_config->alt_name, \
10673                                   pipe_config->name); \
10674                         return false; \
10675         }
10676
10677 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10678         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10679                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10680                           "(expected %i, found %i)\n", \
10681                           current_config->name & (mask), \
10682                           pipe_config->name & (mask)); \
10683                 return false; \
10684         }
10685
10686 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10687         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10688                 DRM_ERROR("mismatch in " #name " " \
10689                           "(expected %i, found %i)\n", \
10690                           current_config->name, \
10691                           pipe_config->name); \
10692                 return false; \
10693         }
10694
10695 #define PIPE_CONF_QUIRK(quirk)  \
10696         ((current_config->quirks | pipe_config->quirks) & (quirk))
10697
10698         PIPE_CONF_CHECK_I(cpu_transcoder);
10699
10700         PIPE_CONF_CHECK_I(has_pch_encoder);
10701         PIPE_CONF_CHECK_I(fdi_lanes);
10702         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10703         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10704         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10705         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10706         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10707
10708         PIPE_CONF_CHECK_I(has_dp_encoder);
10709
10710         if (INTEL_INFO(dev)->gen < 8) {
10711                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10712                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10713                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10714                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10715                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10716
10717                 if (current_config->has_drrs) {
10718                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10719                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10720                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10721                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10722                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10723                 }
10724         } else {
10725                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10726                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10727                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10728                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10729                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10730         }
10731
10732         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10733         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10734         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10735         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10736         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10737         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10738
10739         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10740         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10741         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10742         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10743         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10744         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10745
10746         PIPE_CONF_CHECK_I(pixel_multiplier);
10747         PIPE_CONF_CHECK_I(has_hdmi_sink);
10748         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10749             IS_VALLEYVIEW(dev))
10750                 PIPE_CONF_CHECK_I(limited_color_range);
10751
10752         PIPE_CONF_CHECK_I(has_audio);
10753
10754         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10755                               DRM_MODE_FLAG_INTERLACE);
10756
10757         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10758                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10759                                       DRM_MODE_FLAG_PHSYNC);
10760                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10761                                       DRM_MODE_FLAG_NHSYNC);
10762                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10763                                       DRM_MODE_FLAG_PVSYNC);
10764                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10765                                       DRM_MODE_FLAG_NVSYNC);
10766         }
10767
10768         PIPE_CONF_CHECK_I(pipe_src_w);
10769         PIPE_CONF_CHECK_I(pipe_src_h);
10770
10771         /*
10772          * FIXME: BIOS likes to set up a cloned config with lvds+external
10773          * screen. Since we don't yet re-compute the pipe config when moving
10774          * just the lvds port away to another pipe the sw tracking won't match.
10775          *
10776          * Proper atomic modesets with recomputed global state will fix this.
10777          * Until then just don't check gmch state for inherited modes.
10778          */
10779         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10780                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10781                 /* pfit ratios are autocomputed by the hw on gen4+ */
10782                 if (INTEL_INFO(dev)->gen < 4)
10783                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10784                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10785         }
10786
10787         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10788         if (current_config->pch_pfit.enabled) {
10789                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10790                 PIPE_CONF_CHECK_I(pch_pfit.size);
10791         }
10792
10793         /* BDW+ don't expose a synchronous way to read the state */
10794         if (IS_HASWELL(dev))
10795                 PIPE_CONF_CHECK_I(ips_enabled);
10796
10797         PIPE_CONF_CHECK_I(double_wide);
10798
10799         PIPE_CONF_CHECK_X(ddi_pll_sel);
10800
10801         PIPE_CONF_CHECK_I(shared_dpll);
10802         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10803         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10804         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10805         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10806         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10807
10808         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10809                 PIPE_CONF_CHECK_I(pipe_bpp);
10810
10811         PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10812         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10813
10814 #undef PIPE_CONF_CHECK_X
10815 #undef PIPE_CONF_CHECK_I
10816 #undef PIPE_CONF_CHECK_I_ALT
10817 #undef PIPE_CONF_CHECK_FLAGS
10818 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10819 #undef PIPE_CONF_QUIRK
10820
10821         return true;
10822 }
10823
10824 static void
10825 check_connector_state(struct drm_device *dev)
10826 {
10827         struct intel_connector *connector;
10828
10829         list_for_each_entry(connector, &dev->mode_config.connector_list,
10830                             base.head) {
10831                 /* This also checks the encoder/connector hw state with the
10832                  * ->get_hw_state callbacks. */
10833                 intel_connector_check_state(connector);
10834
10835                 WARN(&connector->new_encoder->base != connector->base.encoder,
10836                      "connector's staged encoder doesn't match current encoder\n");
10837         }
10838 }
10839
10840 static void
10841 check_encoder_state(struct drm_device *dev)
10842 {
10843         struct intel_encoder *encoder;
10844         struct intel_connector *connector;
10845
10846         for_each_intel_encoder(dev, encoder) {
10847                 bool enabled = false;
10848                 bool active = false;
10849                 enum pipe pipe, tracked_pipe;
10850
10851                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10852                               encoder->base.base.id,
10853                               encoder->base.name);
10854
10855                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10856                      "encoder's stage crtc doesn't match current crtc\n");
10857                 WARN(encoder->connectors_active && !encoder->base.crtc,
10858                      "encoder's active_connectors set, but no crtc\n");
10859
10860                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10861                                     base.head) {
10862                         if (connector->base.encoder != &encoder->base)
10863                                 continue;
10864                         enabled = true;
10865                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10866                                 active = true;
10867                 }
10868                 /*
10869                  * for MST connectors if we unplug the connector is gone
10870                  * away but the encoder is still connected to a crtc
10871                  * until a modeset happens in response to the hotplug.
10872                  */
10873                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10874                         continue;
10875
10876                 WARN(!!encoder->base.crtc != enabled,
10877                      "encoder's enabled state mismatch "
10878                      "(expected %i, found %i)\n",
10879                      !!encoder->base.crtc, enabled);
10880                 WARN(active && !encoder->base.crtc,
10881                      "active encoder with no crtc\n");
10882
10883                 WARN(encoder->connectors_active != active,
10884                      "encoder's computed active state doesn't match tracked active state "
10885                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10886
10887                 active = encoder->get_hw_state(encoder, &pipe);
10888                 WARN(active != encoder->connectors_active,
10889                      "encoder's hw state doesn't match sw tracking "
10890                      "(expected %i, found %i)\n",
10891                      encoder->connectors_active, active);
10892
10893                 if (!encoder->base.crtc)
10894                         continue;
10895
10896                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10897                 WARN(active && pipe != tracked_pipe,
10898                      "active encoder's pipe doesn't match"
10899                      "(expected %i, found %i)\n",
10900                      tracked_pipe, pipe);
10901
10902         }
10903 }
10904
10905 static void
10906 check_crtc_state(struct drm_device *dev)
10907 {
10908         struct drm_i915_private *dev_priv = dev->dev_private;
10909         struct intel_crtc *crtc;
10910         struct intel_encoder *encoder;
10911         struct intel_crtc_config pipe_config;
10912
10913         for_each_intel_crtc(dev, crtc) {
10914                 bool enabled = false;
10915                 bool active = false;
10916
10917                 memset(&pipe_config, 0, sizeof(pipe_config));
10918
10919                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10920                               crtc->base.base.id);
10921
10922                 WARN(crtc->active && !crtc->base.enabled,
10923                      "active crtc, but not enabled in sw tracking\n");
10924
10925                 for_each_intel_encoder(dev, encoder) {
10926                         if (encoder->base.crtc != &crtc->base)
10927                                 continue;
10928                         enabled = true;
10929                         if (encoder->connectors_active)
10930                                 active = true;
10931                 }
10932
10933                 WARN(active != crtc->active,
10934                      "crtc's computed active state doesn't match tracked active state "
10935                      "(expected %i, found %i)\n", active, crtc->active);
10936                 WARN(enabled != crtc->base.enabled,
10937                      "crtc's computed enabled state doesn't match tracked enabled state "
10938                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10939
10940                 active = dev_priv->display.get_pipe_config(crtc,
10941                                                            &pipe_config);
10942
10943                 /* hw state is inconsistent with the pipe quirk */
10944                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10945                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10946                         active = crtc->active;
10947
10948                 for_each_intel_encoder(dev, encoder) {
10949                         enum pipe pipe;
10950                         if (encoder->base.crtc != &crtc->base)
10951                                 continue;
10952                         if (encoder->get_hw_state(encoder, &pipe))
10953                                 encoder->get_config(encoder, &pipe_config);
10954                 }
10955
10956                 WARN(crtc->active != active,
10957                      "crtc active state doesn't match with hw state "
10958                      "(expected %i, found %i)\n", crtc->active, active);
10959
10960                 if (active &&
10961                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10962                         WARN(1, "pipe state doesn't match!\n");
10963                         intel_dump_pipe_config(crtc, &pipe_config,
10964                                                "[hw state]");
10965                         intel_dump_pipe_config(crtc, &crtc->config,
10966                                                "[sw state]");
10967                 }
10968         }
10969 }
10970
10971 static void
10972 check_shared_dpll_state(struct drm_device *dev)
10973 {
10974         struct drm_i915_private *dev_priv = dev->dev_private;
10975         struct intel_crtc *crtc;
10976         struct intel_dpll_hw_state dpll_hw_state;
10977         int i;
10978
10979         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10980                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10981                 int enabled_crtcs = 0, active_crtcs = 0;
10982                 bool active;
10983
10984                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10985
10986                 DRM_DEBUG_KMS("%s\n", pll->name);
10987
10988                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10989
10990                 WARN(pll->active > pll->refcount,
10991                      "more active pll users than references: %i vs %i\n",
10992                      pll->active, pll->refcount);
10993                 WARN(pll->active && !pll->on,
10994                      "pll in active use but not on in sw tracking\n");
10995                 WARN(pll->on && !pll->active,
10996                      "pll in on but not on in use in sw tracking\n");
10997                 WARN(pll->on != active,
10998                      "pll on state mismatch (expected %i, found %i)\n",
10999                      pll->on, active);
11000
11001                 for_each_intel_crtc(dev, crtc) {
11002                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
11003                                 enabled_crtcs++;
11004                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11005                                 active_crtcs++;
11006                 }
11007                 WARN(pll->active != active_crtcs,
11008                      "pll active crtcs mismatch (expected %i, found %i)\n",
11009                      pll->active, active_crtcs);
11010                 WARN(pll->refcount != enabled_crtcs,
11011                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
11012                      pll->refcount, enabled_crtcs);
11013
11014                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
11015                                        sizeof(dpll_hw_state)),
11016                      "pll hw state mismatch\n");
11017         }
11018 }
11019
11020 void
11021 intel_modeset_check_state(struct drm_device *dev)
11022 {
11023         check_connector_state(dev);
11024         check_encoder_state(dev);
11025         check_crtc_state(dev);
11026         check_shared_dpll_state(dev);
11027 }
11028
11029 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
11030                                      int dotclock)
11031 {
11032         /*
11033          * FDI already provided one idea for the dotclock.
11034          * Yell if the encoder disagrees.
11035          */
11036         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
11037              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11038              pipe_config->adjusted_mode.crtc_clock, dotclock);
11039 }
11040
11041 static void update_scanline_offset(struct intel_crtc *crtc)
11042 {
11043         struct drm_device *dev = crtc->base.dev;
11044
11045         /*
11046          * The scanline counter increments at the leading edge of hsync.
11047          *
11048          * On most platforms it starts counting from vtotal-1 on the
11049          * first active line. That means the scanline counter value is
11050          * always one less than what we would expect. Ie. just after
11051          * start of vblank, which also occurs at start of hsync (on the
11052          * last active line), the scanline counter will read vblank_start-1.
11053          *
11054          * On gen2 the scanline counter starts counting from 1 instead
11055          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11056          * to keep the value positive), instead of adding one.
11057          *
11058          * On HSW+ the behaviour of the scanline counter depends on the output
11059          * type. For DP ports it behaves like most other platforms, but on HDMI
11060          * there's an extra 1 line difference. So we need to add two instead of
11061          * one to the value.
11062          */
11063         if (IS_GEN2(dev)) {
11064                 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
11065                 int vtotal;
11066
11067                 vtotal = mode->crtc_vtotal;
11068                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11069                         vtotal /= 2;
11070
11071                 crtc->scanline_offset = vtotal - 1;
11072         } else if (HAS_DDI(dev) &&
11073                    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
11074                 crtc->scanline_offset = 2;
11075         } else
11076                 crtc->scanline_offset = 1;
11077 }
11078
11079 static int __intel_set_mode(struct drm_crtc *crtc,
11080                             struct drm_display_mode *mode,
11081                             int x, int y, struct drm_framebuffer *fb)
11082 {
11083         struct drm_device *dev = crtc->dev;
11084         struct drm_i915_private *dev_priv = dev->dev_private;
11085         struct drm_display_mode *saved_mode;
11086         struct intel_crtc_config *pipe_config = NULL;
11087         struct intel_crtc *intel_crtc;
11088         unsigned disable_pipes, prepare_pipes, modeset_pipes;
11089         int ret = 0;
11090
11091         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11092         if (!saved_mode)
11093                 return -ENOMEM;
11094
11095         intel_modeset_affected_pipes(crtc, &modeset_pipes,
11096                                      &prepare_pipes, &disable_pipes);
11097
11098         *saved_mode = crtc->mode;
11099
11100         /* Hack: Because we don't (yet) support global modeset on multiple
11101          * crtcs, we don't keep track of the new mode for more than one crtc.
11102          * Hence simply check whether any bit is set in modeset_pipes in all the
11103          * pieces of code that are not yet converted to deal with mutliple crtcs
11104          * changing their mode at the same time. */
11105         if (modeset_pipes) {
11106                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11107                 if (IS_ERR(pipe_config)) {
11108                         ret = PTR_ERR(pipe_config);
11109                         pipe_config = NULL;
11110
11111                         goto out;
11112                 }
11113                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11114                                        "[modeset]");
11115                 to_intel_crtc(crtc)->new_config = pipe_config;
11116         }
11117
11118         /*
11119          * See if the config requires any additional preparation, e.g.
11120          * to adjust global state with pipes off.  We need to do this
11121          * here so we can get the modeset_pipe updated config for the new
11122          * mode set on this crtc.  For other crtcs we need to use the
11123          * adjusted_mode bits in the crtc directly.
11124          */
11125         if (IS_VALLEYVIEW(dev)) {
11126                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11127
11128                 /* may have added more to prepare_pipes than we should */
11129                 prepare_pipes &= ~disable_pipes;
11130         }
11131
11132         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11133                 intel_crtc_disable(&intel_crtc->base);
11134
11135         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11136                 if (intel_crtc->base.enabled)
11137                         dev_priv->display.crtc_disable(&intel_crtc->base);
11138         }
11139
11140         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11141          * to set it here already despite that we pass it down the callchain.
11142          */
11143         if (modeset_pipes) {
11144                 crtc->mode = *mode;
11145                 /* mode_set/enable/disable functions rely on a correct pipe
11146                  * config. */
11147                 to_intel_crtc(crtc)->config = *pipe_config;
11148                 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
11149
11150                 /*
11151                  * Calculate and store various constants which
11152                  * are later needed by vblank and swap-completion
11153                  * timestamping. They are derived from true hwmode.
11154                  */
11155                 drm_calc_timestamping_constants(crtc,
11156                                                 &pipe_config->adjusted_mode);
11157         }
11158
11159         /* Only after disabling all output pipelines that will be changed can we
11160          * update the the output configuration. */
11161         intel_modeset_update_state(dev, prepare_pipes);
11162
11163         if (dev_priv->display.modeset_global_resources)
11164                 dev_priv->display.modeset_global_resources(dev);
11165
11166         /* Set up the DPLL and any encoders state that needs to adjust or depend
11167          * on the DPLL.
11168          */
11169         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11170                 struct drm_framebuffer *old_fb = crtc->primary->fb;
11171                 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11172                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11173
11174                 mutex_lock(&dev->struct_mutex);
11175                 ret = intel_pin_and_fence_fb_obj(dev,
11176                                                  obj,
11177                                                  NULL);
11178                 if (ret != 0) {
11179                         DRM_ERROR("pin & fence failed\n");
11180                         mutex_unlock(&dev->struct_mutex);
11181                         goto done;
11182                 }
11183                 if (old_fb)
11184                         intel_unpin_fb_obj(old_obj);
11185                 i915_gem_track_fb(old_obj, obj,
11186                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11187                 mutex_unlock(&dev->struct_mutex);
11188
11189                 crtc->primary->fb = fb;
11190                 crtc->x = x;
11191                 crtc->y = y;
11192
11193                 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
11194                                                       x, y, fb);
11195                 if (ret)
11196                         goto done;
11197         }
11198
11199         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11200         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11201                 update_scanline_offset(intel_crtc);
11202
11203                 dev_priv->display.crtc_enable(&intel_crtc->base);
11204         }
11205
11206         /* FIXME: add subpixel order */
11207 done:
11208         if (ret && crtc->enabled)
11209                 crtc->mode = *saved_mode;
11210
11211 out:
11212         kfree(pipe_config);
11213         kfree(saved_mode);
11214         return ret;
11215 }
11216
11217 static int intel_set_mode(struct drm_crtc *crtc,
11218                           struct drm_display_mode *mode,
11219                           int x, int y, struct drm_framebuffer *fb)
11220 {
11221         int ret;
11222
11223         ret = __intel_set_mode(crtc, mode, x, y, fb);
11224
11225         if (ret == 0)
11226                 intel_modeset_check_state(crtc->dev);
11227
11228         return ret;
11229 }
11230
11231 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11232 {
11233         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11234 }
11235
11236 #undef for_each_intel_crtc_masked
11237
11238 static void intel_set_config_free(struct intel_set_config *config)
11239 {
11240         if (!config)
11241                 return;
11242
11243         kfree(config->save_connector_encoders);
11244         kfree(config->save_encoder_crtcs);
11245         kfree(config->save_crtc_enabled);
11246         kfree(config);
11247 }
11248
11249 static int intel_set_config_save_state(struct drm_device *dev,
11250                                        struct intel_set_config *config)
11251 {
11252         struct drm_crtc *crtc;
11253         struct drm_encoder *encoder;
11254         struct drm_connector *connector;
11255         int count;
11256
11257         config->save_crtc_enabled =
11258                 kcalloc(dev->mode_config.num_crtc,
11259                         sizeof(bool), GFP_KERNEL);
11260         if (!config->save_crtc_enabled)
11261                 return -ENOMEM;
11262
11263         config->save_encoder_crtcs =
11264                 kcalloc(dev->mode_config.num_encoder,
11265                         sizeof(struct drm_crtc *), GFP_KERNEL);
11266         if (!config->save_encoder_crtcs)
11267                 return -ENOMEM;
11268
11269         config->save_connector_encoders =
11270                 kcalloc(dev->mode_config.num_connector,
11271                         sizeof(struct drm_encoder *), GFP_KERNEL);
11272         if (!config->save_connector_encoders)
11273                 return -ENOMEM;
11274
11275         /* Copy data. Note that driver private data is not affected.
11276          * Should anything bad happen only the expected state is
11277          * restored, not the drivers personal bookkeeping.
11278          */
11279         count = 0;
11280         for_each_crtc(dev, crtc) {
11281                 config->save_crtc_enabled[count++] = crtc->enabled;
11282         }
11283
11284         count = 0;
11285         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11286                 config->save_encoder_crtcs[count++] = encoder->crtc;
11287         }
11288
11289         count = 0;
11290         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11291                 config->save_connector_encoders[count++] = connector->encoder;
11292         }
11293
11294         return 0;
11295 }
11296
11297 static void intel_set_config_restore_state(struct drm_device *dev,
11298                                            struct intel_set_config *config)
11299 {
11300         struct intel_crtc *crtc;
11301         struct intel_encoder *encoder;
11302         struct intel_connector *connector;
11303         int count;
11304
11305         count = 0;
11306         for_each_intel_crtc(dev, crtc) {
11307                 crtc->new_enabled = config->save_crtc_enabled[count++];
11308
11309                 if (crtc->new_enabled)
11310                         crtc->new_config = &crtc->config;
11311                 else
11312                         crtc->new_config = NULL;
11313         }
11314
11315         count = 0;
11316         for_each_intel_encoder(dev, encoder) {
11317                 encoder->new_crtc =
11318                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11319         }
11320
11321         count = 0;
11322         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11323                 connector->new_encoder =
11324                         to_intel_encoder(config->save_connector_encoders[count++]);
11325         }
11326 }
11327
11328 static bool
11329 is_crtc_connector_off(struct drm_mode_set *set)
11330 {
11331         int i;
11332
11333         if (set->num_connectors == 0)
11334                 return false;
11335
11336         if (WARN_ON(set->connectors == NULL))
11337                 return false;
11338
11339         for (i = 0; i < set->num_connectors; i++)
11340                 if (set->connectors[i]->encoder &&
11341                     set->connectors[i]->encoder->crtc == set->crtc &&
11342                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11343                         return true;
11344
11345         return false;
11346 }
11347
11348 static void
11349 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11350                                       struct intel_set_config *config)
11351 {
11352
11353         /* We should be able to check here if the fb has the same properties
11354          * and then just flip_or_move it */
11355         if (is_crtc_connector_off(set)) {
11356                 config->mode_changed = true;
11357         } else if (set->crtc->primary->fb != set->fb) {
11358                 /*
11359                  * If we have no fb, we can only flip as long as the crtc is
11360                  * active, otherwise we need a full mode set.  The crtc may
11361                  * be active if we've only disabled the primary plane, or
11362                  * in fastboot situations.
11363                  */
11364                 if (set->crtc->primary->fb == NULL) {
11365                         struct intel_crtc *intel_crtc =
11366                                 to_intel_crtc(set->crtc);
11367
11368                         if (intel_crtc->active) {
11369                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11370                                 config->fb_changed = true;
11371                         } else {
11372                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11373                                 config->mode_changed = true;
11374                         }
11375                 } else if (set->fb == NULL) {
11376                         config->mode_changed = true;
11377                 } else if (set->fb->pixel_format !=
11378                            set->crtc->primary->fb->pixel_format) {
11379                         config->mode_changed = true;
11380                 } else {
11381                         config->fb_changed = true;
11382                 }
11383         }
11384
11385         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11386                 config->fb_changed = true;
11387
11388         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11389                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11390                 drm_mode_debug_printmodeline(&set->crtc->mode);
11391                 drm_mode_debug_printmodeline(set->mode);
11392                 config->mode_changed = true;
11393         }
11394
11395         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11396                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11397 }
11398
11399 static int
11400 intel_modeset_stage_output_state(struct drm_device *dev,
11401                                  struct drm_mode_set *set,
11402                                  struct intel_set_config *config)
11403 {
11404         struct intel_connector *connector;
11405         struct intel_encoder *encoder;
11406         struct intel_crtc *crtc;
11407         int ro;
11408
11409         /* The upper layers ensure that we either disable a crtc or have a list
11410          * of connectors. For paranoia, double-check this. */
11411         WARN_ON(!set->fb && (set->num_connectors != 0));
11412         WARN_ON(set->fb && (set->num_connectors == 0));
11413
11414         list_for_each_entry(connector, &dev->mode_config.connector_list,
11415                             base.head) {
11416                 /* Otherwise traverse passed in connector list and get encoders
11417                  * for them. */
11418                 for (ro = 0; ro < set->num_connectors; ro++) {
11419                         if (set->connectors[ro] == &connector->base) {
11420                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11421                                 break;
11422                         }
11423                 }
11424
11425                 /* If we disable the crtc, disable all its connectors. Also, if
11426                  * the connector is on the changing crtc but not on the new
11427                  * connector list, disable it. */
11428                 if ((!set->fb || ro == set->num_connectors) &&
11429                     connector->base.encoder &&
11430                     connector->base.encoder->crtc == set->crtc) {
11431                         connector->new_encoder = NULL;
11432
11433                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11434                                 connector->base.base.id,
11435                                 connector->base.name);
11436                 }
11437
11438
11439                 if (&connector->new_encoder->base != connector->base.encoder) {
11440                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11441                         config->mode_changed = true;
11442                 }
11443         }
11444         /* connector->new_encoder is now updated for all connectors. */
11445
11446         /* Update crtc of enabled connectors. */
11447         list_for_each_entry(connector, &dev->mode_config.connector_list,
11448                             base.head) {
11449                 struct drm_crtc *new_crtc;
11450
11451                 if (!connector->new_encoder)
11452                         continue;
11453
11454                 new_crtc = connector->new_encoder->base.crtc;
11455
11456                 for (ro = 0; ro < set->num_connectors; ro++) {
11457                         if (set->connectors[ro] == &connector->base)
11458                                 new_crtc = set->crtc;
11459                 }
11460
11461                 /* Make sure the new CRTC will work with the encoder */
11462                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11463                                          new_crtc)) {
11464                         return -EINVAL;
11465                 }
11466                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11467
11468                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11469                         connector->base.base.id,
11470                         connector->base.name,
11471                         new_crtc->base.id);
11472         }
11473
11474         /* Check for any encoders that needs to be disabled. */
11475         for_each_intel_encoder(dev, encoder) {
11476                 int num_connectors = 0;
11477                 list_for_each_entry(connector,
11478                                     &dev->mode_config.connector_list,
11479                                     base.head) {
11480                         if (connector->new_encoder == encoder) {
11481                                 WARN_ON(!connector->new_encoder->new_crtc);
11482                                 num_connectors++;
11483                         }
11484                 }
11485
11486                 if (num_connectors == 0)
11487                         encoder->new_crtc = NULL;
11488                 else if (num_connectors > 1)
11489                         return -EINVAL;
11490
11491                 /* Only now check for crtc changes so we don't miss encoders
11492                  * that will be disabled. */
11493                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11494                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11495                         config->mode_changed = true;
11496                 }
11497         }
11498         /* Now we've also updated encoder->new_crtc for all encoders. */
11499         list_for_each_entry(connector, &dev->mode_config.connector_list,
11500                             base.head) {
11501                 if (connector->new_encoder)
11502                         if (connector->new_encoder != connector->encoder)
11503                                 connector->encoder = connector->new_encoder;
11504         }
11505         for_each_intel_crtc(dev, crtc) {
11506                 crtc->new_enabled = false;
11507
11508                 for_each_intel_encoder(dev, encoder) {
11509                         if (encoder->new_crtc == crtc) {
11510                                 crtc->new_enabled = true;
11511                                 break;
11512                         }
11513                 }
11514
11515                 if (crtc->new_enabled != crtc->base.enabled) {
11516                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11517                                       crtc->new_enabled ? "en" : "dis");
11518                         config->mode_changed = true;
11519                 }
11520
11521                 if (crtc->new_enabled)
11522                         crtc->new_config = &crtc->config;
11523                 else
11524                         crtc->new_config = NULL;
11525         }
11526
11527         return 0;
11528 }
11529
11530 static void disable_crtc_nofb(struct intel_crtc *crtc)
11531 {
11532         struct drm_device *dev = crtc->base.dev;
11533         struct intel_encoder *encoder;
11534         struct intel_connector *connector;
11535
11536         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11537                       pipe_name(crtc->pipe));
11538
11539         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11540                 if (connector->new_encoder &&
11541                     connector->new_encoder->new_crtc == crtc)
11542                         connector->new_encoder = NULL;
11543         }
11544
11545         for_each_intel_encoder(dev, encoder) {
11546                 if (encoder->new_crtc == crtc)
11547                         encoder->new_crtc = NULL;
11548         }
11549
11550         crtc->new_enabled = false;
11551         crtc->new_config = NULL;
11552 }
11553
11554 static int intel_crtc_set_config(struct drm_mode_set *set)
11555 {
11556         struct drm_device *dev;
11557         struct drm_mode_set save_set;
11558         struct intel_set_config *config;
11559         int ret;
11560
11561         BUG_ON(!set);
11562         BUG_ON(!set->crtc);
11563         BUG_ON(!set->crtc->helper_private);
11564
11565         /* Enforce sane interface api - has been abused by the fb helper. */
11566         BUG_ON(!set->mode && set->fb);
11567         BUG_ON(set->fb && set->num_connectors == 0);
11568
11569         if (set->fb) {
11570                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11571                                 set->crtc->base.id, set->fb->base.id,
11572                                 (int)set->num_connectors, set->x, set->y);
11573         } else {
11574                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11575         }
11576
11577         dev = set->crtc->dev;
11578
11579         ret = -ENOMEM;
11580         config = kzalloc(sizeof(*config), GFP_KERNEL);
11581         if (!config)
11582                 goto out_config;
11583
11584         ret = intel_set_config_save_state(dev, config);
11585         if (ret)
11586                 goto out_config;
11587
11588         save_set.crtc = set->crtc;
11589         save_set.mode = &set->crtc->mode;
11590         save_set.x = set->crtc->x;
11591         save_set.y = set->crtc->y;
11592         save_set.fb = set->crtc->primary->fb;
11593
11594         /* Compute whether we need a full modeset, only an fb base update or no
11595          * change at all. In the future we might also check whether only the
11596          * mode changed, e.g. for LVDS where we only change the panel fitter in
11597          * such cases. */
11598         intel_set_config_compute_mode_changes(set, config);
11599
11600         ret = intel_modeset_stage_output_state(dev, set, config);
11601         if (ret)
11602                 goto fail;
11603
11604         if (config->mode_changed) {
11605                 ret = intel_set_mode(set->crtc, set->mode,
11606                                      set->x, set->y, set->fb);
11607         } else if (config->fb_changed) {
11608                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11609
11610                 intel_crtc_wait_for_pending_flips(set->crtc);
11611
11612                 ret = intel_pipe_set_base(set->crtc,
11613                                           set->x, set->y, set->fb);
11614
11615                 /*
11616                  * We need to make sure the primary plane is re-enabled if it
11617                  * has previously been turned off.
11618                  */
11619                 if (!intel_crtc->primary_enabled && ret == 0) {
11620                         WARN_ON(!intel_crtc->active);
11621                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11622                 }
11623
11624                 /*
11625                  * In the fastboot case this may be our only check of the
11626                  * state after boot.  It would be better to only do it on
11627                  * the first update, but we don't have a nice way of doing that
11628                  * (and really, set_config isn't used much for high freq page
11629                  * flipping, so increasing its cost here shouldn't be a big
11630                  * deal).
11631                  */
11632                 if (i915.fastboot && ret == 0)
11633                         intel_modeset_check_state(set->crtc->dev);
11634         }
11635
11636         if (ret) {
11637                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11638                               set->crtc->base.id, ret);
11639 fail:
11640                 intel_set_config_restore_state(dev, config);
11641
11642                 /*
11643                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11644                  * force the pipe off to avoid oopsing in the modeset code
11645                  * due to fb==NULL. This should only happen during boot since
11646                  * we don't yet reconstruct the FB from the hardware state.
11647                  */
11648                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11649                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11650
11651                 /* Try to restore the config */
11652                 if (config->mode_changed &&
11653                     intel_set_mode(save_set.crtc, save_set.mode,
11654                                    save_set.x, save_set.y, save_set.fb))
11655                         DRM_ERROR("failed to restore config after modeset failure\n");
11656         }
11657
11658 out_config:
11659         intel_set_config_free(config);
11660         return ret;
11661 }
11662
11663 static const struct drm_crtc_funcs intel_crtc_funcs = {
11664         .gamma_set = intel_crtc_gamma_set,
11665         .set_config = intel_crtc_set_config,
11666         .destroy = intel_crtc_destroy,
11667         .page_flip = intel_crtc_page_flip,
11668 };
11669
11670 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11671                                       struct intel_shared_dpll *pll,
11672                                       struct intel_dpll_hw_state *hw_state)
11673 {
11674         uint32_t val;
11675
11676         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11677                 return false;
11678
11679         val = I915_READ(PCH_DPLL(pll->id));
11680         hw_state->dpll = val;
11681         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11682         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11683
11684         return val & DPLL_VCO_ENABLE;
11685 }
11686
11687 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11688                                   struct intel_shared_dpll *pll)
11689 {
11690         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11691         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11692 }
11693
11694 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11695                                 struct intel_shared_dpll *pll)
11696 {
11697         /* PCH refclock must be enabled first */
11698         ibx_assert_pch_refclk_enabled(dev_priv);
11699
11700         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11701
11702         /* Wait for the clocks to stabilize. */
11703         POSTING_READ(PCH_DPLL(pll->id));
11704         udelay(150);
11705
11706         /* The pixel multiplier can only be updated once the
11707          * DPLL is enabled and the clocks are stable.
11708          *
11709          * So write it again.
11710          */
11711         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11712         POSTING_READ(PCH_DPLL(pll->id));
11713         udelay(200);
11714 }
11715
11716 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11717                                  struct intel_shared_dpll *pll)
11718 {
11719         struct drm_device *dev = dev_priv->dev;
11720         struct intel_crtc *crtc;
11721
11722         /* Make sure no transcoder isn't still depending on us. */
11723         for_each_intel_crtc(dev, crtc) {
11724                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11725                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11726         }
11727
11728         I915_WRITE(PCH_DPLL(pll->id), 0);
11729         POSTING_READ(PCH_DPLL(pll->id));
11730         udelay(200);
11731 }
11732
11733 static char *ibx_pch_dpll_names[] = {
11734         "PCH DPLL A",
11735         "PCH DPLL B",
11736 };
11737
11738 static void ibx_pch_dpll_init(struct drm_device *dev)
11739 {
11740         struct drm_i915_private *dev_priv = dev->dev_private;
11741         int i;
11742
11743         dev_priv->num_shared_dpll = 2;
11744
11745         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11746                 dev_priv->shared_dplls[i].id = i;
11747                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11748                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11749                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11750                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11751                 dev_priv->shared_dplls[i].get_hw_state =
11752                         ibx_pch_dpll_get_hw_state;
11753         }
11754 }
11755
11756 static void intel_shared_dpll_init(struct drm_device *dev)
11757 {
11758         struct drm_i915_private *dev_priv = dev->dev_private;
11759
11760         if (HAS_DDI(dev))
11761                 intel_ddi_pll_init(dev);
11762         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11763                 ibx_pch_dpll_init(dev);
11764         else
11765                 dev_priv->num_shared_dpll = 0;
11766
11767         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11768 }
11769
11770 static int
11771 intel_primary_plane_disable(struct drm_plane *plane)
11772 {
11773         struct drm_device *dev = plane->dev;
11774         struct intel_crtc *intel_crtc;
11775
11776         if (!plane->fb)
11777                 return 0;
11778
11779         BUG_ON(!plane->crtc);
11780
11781         intel_crtc = to_intel_crtc(plane->crtc);
11782
11783         /*
11784          * Even though we checked plane->fb above, it's still possible that
11785          * the primary plane has been implicitly disabled because the crtc
11786          * coordinates given weren't visible, or because we detected
11787          * that it was 100% covered by a sprite plane.  Or, the CRTC may be
11788          * off and we've set a fb, but haven't actually turned on the CRTC yet.
11789          * In either case, we need to unpin the FB and let the fb pointer get
11790          * updated, but otherwise we don't need to touch the hardware.
11791          */
11792         if (!intel_crtc->primary_enabled)
11793                 goto disable_unpin;
11794
11795         intel_crtc_wait_for_pending_flips(plane->crtc);
11796         intel_disable_primary_hw_plane(plane, plane->crtc);
11797
11798 disable_unpin:
11799         mutex_lock(&dev->struct_mutex);
11800         i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11801                           INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11802         intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11803         mutex_unlock(&dev->struct_mutex);
11804         plane->fb = NULL;
11805
11806         return 0;
11807 }
11808
11809 static int
11810 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11811                              struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11812                              unsigned int crtc_w, unsigned int crtc_h,
11813                              uint32_t src_x, uint32_t src_y,
11814                              uint32_t src_w, uint32_t src_h)
11815 {
11816         struct drm_device *dev = crtc->dev;
11817         struct drm_i915_private *dev_priv = dev->dev_private;
11818         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11819         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11820         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11821         struct drm_rect dest = {
11822                 /* integer pixels */
11823                 .x1 = crtc_x,
11824                 .y1 = crtc_y,
11825                 .x2 = crtc_x + crtc_w,
11826                 .y2 = crtc_y + crtc_h,
11827         };
11828         struct drm_rect src = {
11829                 /* 16.16 fixed point */
11830                 .x1 = src_x,
11831                 .y1 = src_y,
11832                 .x2 = src_x + src_w,
11833                 .y2 = src_y + src_h,
11834         };
11835         const struct drm_rect clip = {
11836                 /* integer pixels */
11837                 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11838                 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11839         };
11840         const struct {
11841                 int crtc_x, crtc_y;
11842                 unsigned int crtc_w, crtc_h;
11843                 uint32_t src_x, src_y, src_w, src_h;
11844         } orig = {
11845                 .crtc_x = crtc_x,
11846                 .crtc_y = crtc_y,
11847                 .crtc_w = crtc_w,
11848                 .crtc_h = crtc_h,
11849                 .src_x = src_x,
11850                 .src_y = src_y,
11851                 .src_w = src_w,
11852                 .src_h = src_h,
11853         };
11854         struct intel_plane *intel_plane = to_intel_plane(plane);
11855         bool visible;
11856         int ret;
11857
11858         ret = drm_plane_helper_check_update(plane, crtc, fb,
11859                                             &src, &dest, &clip,
11860                                             DRM_PLANE_HELPER_NO_SCALING,
11861                                             DRM_PLANE_HELPER_NO_SCALING,
11862                                             false, true, &visible);
11863
11864         if (ret)
11865                 return ret;
11866
11867         /*
11868          * If the CRTC isn't enabled, we're just pinning the framebuffer,
11869          * updating the fb pointer, and returning without touching the
11870          * hardware.  This allows us to later do a drmModeSetCrtc with fb=-1 to
11871          * turn on the display with all planes setup as desired.
11872          */
11873         if (!crtc->enabled) {
11874                 mutex_lock(&dev->struct_mutex);
11875
11876                 /*
11877                  * If we already called setplane while the crtc was disabled,
11878                  * we may have an fb pinned; unpin it.
11879                  */
11880                 if (plane->fb)
11881                         intel_unpin_fb_obj(old_obj);
11882
11883                 i915_gem_track_fb(old_obj, obj,
11884                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11885
11886                 /* Pin and return without programming hardware */
11887                 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11888                 mutex_unlock(&dev->struct_mutex);
11889
11890                 return ret;
11891         }
11892
11893         intel_crtc_wait_for_pending_flips(crtc);
11894
11895         /*
11896          * If clipping results in a non-visible primary plane, we'll disable
11897          * the primary plane.  Note that this is a bit different than what
11898          * happens if userspace explicitly disables the plane by passing fb=0
11899          * because plane->fb still gets set and pinned.
11900          */
11901         if (!visible) {
11902                 mutex_lock(&dev->struct_mutex);
11903
11904                 /*
11905                  * Try to pin the new fb first so that we can bail out if we
11906                  * fail.
11907                  */
11908                 if (plane->fb != fb) {
11909                         ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11910                         if (ret) {
11911                                 mutex_unlock(&dev->struct_mutex);
11912                                 return ret;
11913                         }
11914                 }
11915
11916                 i915_gem_track_fb(old_obj, obj,
11917                                   INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11918
11919                 if (intel_crtc->primary_enabled)
11920                         intel_disable_primary_hw_plane(plane, crtc);
11921
11922
11923                 if (plane->fb != fb)
11924                         if (plane->fb)
11925                                 intel_unpin_fb_obj(old_obj);
11926
11927                 mutex_unlock(&dev->struct_mutex);
11928
11929         } else {
11930                 if (intel_crtc && intel_crtc->active &&
11931                     intel_crtc->primary_enabled) {
11932                         /*
11933                          * FBC does not work on some platforms for rotated
11934                          * planes, so disable it when rotation is not 0 and
11935                          * update it when rotation is set back to 0.
11936                          *
11937                          * FIXME: This is redundant with the fbc update done in
11938                          * the primary plane enable function except that that
11939                          * one is done too late. We eventually need to unify
11940                          * this.
11941                          */
11942                         if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11943                             dev_priv->fbc.plane == intel_crtc->plane &&
11944                             intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11945                                 intel_disable_fbc(dev);
11946                         }
11947                 }
11948                 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11949                 if (ret)
11950                         return ret;
11951
11952                 if (!intel_crtc->primary_enabled)
11953                         intel_enable_primary_hw_plane(plane, crtc);
11954         }
11955
11956         intel_plane->crtc_x = orig.crtc_x;
11957         intel_plane->crtc_y = orig.crtc_y;
11958         intel_plane->crtc_w = orig.crtc_w;
11959         intel_plane->crtc_h = orig.crtc_h;
11960         intel_plane->src_x = orig.src_x;
11961         intel_plane->src_y = orig.src_y;
11962         intel_plane->src_w = orig.src_w;
11963         intel_plane->src_h = orig.src_h;
11964         intel_plane->obj = obj;
11965
11966         return 0;
11967 }
11968
11969 /* Common destruction function for both primary and cursor planes */
11970 static void intel_plane_destroy(struct drm_plane *plane)
11971 {
11972         struct intel_plane *intel_plane = to_intel_plane(plane);
11973         drm_plane_cleanup(plane);
11974         kfree(intel_plane);
11975 }
11976
11977 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11978         .update_plane = intel_primary_plane_setplane,
11979         .disable_plane = intel_primary_plane_disable,
11980         .destroy = intel_plane_destroy,
11981         .set_property = intel_plane_set_property
11982 };
11983
11984 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11985                                                     int pipe)
11986 {
11987         struct intel_plane *primary;
11988         const uint32_t *intel_primary_formats;
11989         int num_formats;
11990
11991         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11992         if (primary == NULL)
11993                 return NULL;
11994
11995         primary->can_scale = false;
11996         primary->max_downscale = 1;
11997         primary->pipe = pipe;
11998         primary->plane = pipe;
11999         primary->rotation = BIT(DRM_ROTATE_0);
12000         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12001                 primary->plane = !pipe;
12002
12003         if (INTEL_INFO(dev)->gen <= 3) {
12004                 intel_primary_formats = intel_primary_formats_gen2;
12005                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12006         } else {
12007                 intel_primary_formats = intel_primary_formats_gen4;
12008                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12009         }
12010
12011         drm_universal_plane_init(dev, &primary->base, 0,
12012                                  &intel_primary_plane_funcs,
12013                                  intel_primary_formats, num_formats,
12014                                  DRM_PLANE_TYPE_PRIMARY);
12015
12016         if (INTEL_INFO(dev)->gen >= 4) {
12017                 if (!dev->mode_config.rotation_property)
12018                         dev->mode_config.rotation_property =
12019                                 drm_mode_create_rotation_property(dev,
12020                                                         BIT(DRM_ROTATE_0) |
12021                                                         BIT(DRM_ROTATE_180));
12022                 if (dev->mode_config.rotation_property)
12023                         drm_object_attach_property(&primary->base.base,
12024                                 dev->mode_config.rotation_property,
12025                                 primary->rotation);
12026         }
12027
12028         return &primary->base;
12029 }
12030
12031 static int
12032 intel_cursor_plane_disable(struct drm_plane *plane)
12033 {
12034         if (!plane->fb)
12035                 return 0;
12036
12037         BUG_ON(!plane->crtc);
12038
12039         return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
12040 }
12041
12042 static int
12043 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12044                           struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12045                           unsigned int crtc_w, unsigned int crtc_h,
12046                           uint32_t src_x, uint32_t src_y,
12047                           uint32_t src_w, uint32_t src_h)
12048 {
12049         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12050         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12051         struct drm_i915_gem_object *obj = intel_fb->obj;
12052         struct drm_rect dest = {
12053                 /* integer pixels */
12054                 .x1 = crtc_x,
12055                 .y1 = crtc_y,
12056                 .x2 = crtc_x + crtc_w,
12057                 .y2 = crtc_y + crtc_h,
12058         };
12059         struct drm_rect src = {
12060                 /* 16.16 fixed point */
12061                 .x1 = src_x,
12062                 .y1 = src_y,
12063                 .x2 = src_x + src_w,
12064                 .y2 = src_y + src_h,
12065         };
12066         const struct drm_rect clip = {
12067                 /* integer pixels */
12068                 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
12069                 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
12070         };
12071         bool visible;
12072         int ret;
12073
12074         ret = drm_plane_helper_check_update(plane, crtc, fb,
12075                                             &src, &dest, &clip,
12076                                             DRM_PLANE_HELPER_NO_SCALING,
12077                                             DRM_PLANE_HELPER_NO_SCALING,
12078                                             true, true, &visible);
12079         if (ret)
12080                 return ret;
12081
12082         crtc->cursor_x = crtc_x;
12083         crtc->cursor_y = crtc_y;
12084         if (fb != crtc->cursor->fb) {
12085                 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12086         } else {
12087                 intel_crtc_update_cursor(crtc, visible);
12088
12089                 intel_frontbuffer_flip(crtc->dev,
12090                                        INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12091
12092                 return 0;
12093         }
12094 }
12095 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12096         .update_plane = intel_cursor_plane_update,
12097         .disable_plane = intel_cursor_plane_disable,
12098         .destroy = intel_plane_destroy,
12099 };
12100
12101 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12102                                                    int pipe)
12103 {
12104         struct intel_plane *cursor;
12105
12106         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12107         if (cursor == NULL)
12108                 return NULL;
12109
12110         cursor->can_scale = false;
12111         cursor->max_downscale = 1;
12112         cursor->pipe = pipe;
12113         cursor->plane = pipe;
12114
12115         drm_universal_plane_init(dev, &cursor->base, 0,
12116                                  &intel_cursor_plane_funcs,
12117                                  intel_cursor_formats,
12118                                  ARRAY_SIZE(intel_cursor_formats),
12119                                  DRM_PLANE_TYPE_CURSOR);
12120         return &cursor->base;
12121 }
12122
12123 static void intel_crtc_init(struct drm_device *dev, int pipe)
12124 {
12125         struct drm_i915_private *dev_priv = dev->dev_private;
12126         struct intel_crtc *intel_crtc;
12127         struct drm_plane *primary = NULL;
12128         struct drm_plane *cursor = NULL;
12129         int i, ret;
12130
12131         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12132         if (intel_crtc == NULL)
12133                 return;
12134
12135         primary = intel_primary_plane_create(dev, pipe);
12136         if (!primary)
12137                 goto fail;
12138
12139         cursor = intel_cursor_plane_create(dev, pipe);
12140         if (!cursor)
12141                 goto fail;
12142
12143         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12144                                         cursor, &intel_crtc_funcs);
12145         if (ret)
12146                 goto fail;
12147
12148         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12149         for (i = 0; i < 256; i++) {
12150                 intel_crtc->lut_r[i] = i;
12151                 intel_crtc->lut_g[i] = i;
12152                 intel_crtc->lut_b[i] = i;
12153         }
12154
12155         /*
12156          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12157          * is hooked to pipe B. Hence we want plane A feeding pipe B.
12158          */
12159         intel_crtc->pipe = pipe;
12160         intel_crtc->plane = pipe;
12161         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12162                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12163                 intel_crtc->plane = !pipe;
12164         }
12165
12166         intel_crtc->cursor_base = ~0;
12167         intel_crtc->cursor_cntl = ~0;
12168         intel_crtc->cursor_size = ~0;
12169
12170         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12171                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12172         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12173         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12174
12175         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12176
12177         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12178         return;
12179
12180 fail:
12181         if (primary)
12182                 drm_plane_cleanup(primary);
12183         if (cursor)
12184                 drm_plane_cleanup(cursor);
12185         kfree(intel_crtc);
12186 }
12187
12188 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12189 {
12190         struct drm_encoder *encoder = connector->base.encoder;
12191         struct drm_device *dev = connector->base.dev;
12192
12193         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12194
12195         if (!encoder)
12196                 return INVALID_PIPE;
12197
12198         return to_intel_crtc(encoder->crtc)->pipe;
12199 }
12200
12201 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12202                                 struct drm_file *file)
12203 {
12204         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12205         struct drm_crtc *drmmode_crtc;
12206         struct intel_crtc *crtc;
12207
12208         if (!drm_core_check_feature(dev, DRIVER_MODESET))
12209                 return -ENODEV;
12210
12211         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12212
12213         if (!drmmode_crtc) {
12214                 DRM_ERROR("no such CRTC id\n");
12215                 return -ENOENT;
12216         }
12217
12218         crtc = to_intel_crtc(drmmode_crtc);
12219         pipe_from_crtc_id->pipe = crtc->pipe;
12220
12221         return 0;
12222 }
12223
12224 static int intel_encoder_clones(struct intel_encoder *encoder)
12225 {
12226         struct drm_device *dev = encoder->base.dev;
12227         struct intel_encoder *source_encoder;
12228         int index_mask = 0;
12229         int entry = 0;
12230
12231         for_each_intel_encoder(dev, source_encoder) {
12232                 if (encoders_cloneable(encoder, source_encoder))
12233                         index_mask |= (1 << entry);
12234
12235                 entry++;
12236         }
12237
12238         return index_mask;
12239 }
12240
12241 static bool has_edp_a(struct drm_device *dev)
12242 {
12243         struct drm_i915_private *dev_priv = dev->dev_private;
12244
12245         if (!IS_MOBILE(dev))
12246                 return false;
12247
12248         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12249                 return false;
12250
12251         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12252                 return false;
12253
12254         return true;
12255 }
12256
12257 const char *intel_output_name(int output)
12258 {
12259         static const char *names[] = {
12260                 [INTEL_OUTPUT_UNUSED] = "Unused",
12261                 [INTEL_OUTPUT_ANALOG] = "Analog",
12262                 [INTEL_OUTPUT_DVO] = "DVO",
12263                 [INTEL_OUTPUT_SDVO] = "SDVO",
12264                 [INTEL_OUTPUT_LVDS] = "LVDS",
12265                 [INTEL_OUTPUT_TVOUT] = "TV",
12266                 [INTEL_OUTPUT_HDMI] = "HDMI",
12267                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12268                 [INTEL_OUTPUT_EDP] = "eDP",
12269                 [INTEL_OUTPUT_DSI] = "DSI",
12270                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12271         };
12272
12273         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12274                 return "Invalid";
12275
12276         return names[output];
12277 }
12278
12279 static bool intel_crt_present(struct drm_device *dev)
12280 {
12281         struct drm_i915_private *dev_priv = dev->dev_private;
12282
12283         if (IS_ULT(dev))
12284                 return false;
12285
12286         if (IS_CHERRYVIEW(dev))
12287                 return false;
12288
12289         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12290                 return false;
12291
12292         return true;
12293 }
12294
12295 static void intel_setup_outputs(struct drm_device *dev)
12296 {
12297         struct drm_i915_private *dev_priv = dev->dev_private;
12298         struct intel_encoder *encoder;
12299         bool dpd_is_edp = false;
12300
12301         intel_lvds_init(dev);
12302
12303         if (intel_crt_present(dev))
12304                 intel_crt_init(dev);
12305
12306         if (HAS_DDI(dev)) {
12307                 int found;
12308
12309                 /* Haswell uses DDI functions to detect digital outputs */
12310                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12311                 /* DDI A only supports eDP */
12312                 if (found)
12313                         intel_ddi_init(dev, PORT_A);
12314
12315                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12316                  * register */
12317                 found = I915_READ(SFUSE_STRAP);
12318
12319                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12320                         intel_ddi_init(dev, PORT_B);
12321                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12322                         intel_ddi_init(dev, PORT_C);
12323                 if (found & SFUSE_STRAP_DDID_DETECTED)
12324                         intel_ddi_init(dev, PORT_D);
12325         } else if (HAS_PCH_SPLIT(dev)) {
12326                 int found;
12327                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12328
12329                 if (has_edp_a(dev))
12330                         intel_dp_init(dev, DP_A, PORT_A);
12331
12332                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12333                         /* PCH SDVOB multiplex with HDMIB */
12334                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12335                         if (!found)
12336                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12337                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12338                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12339                 }
12340
12341                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12342                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12343
12344                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12345                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12346
12347                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12348                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12349
12350                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12351                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12352         } else if (IS_VALLEYVIEW(dev)) {
12353                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12354                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12355                                         PORT_B);
12356                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12357                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12358                 }
12359
12360                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12361                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12362                                         PORT_C);
12363                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
12364                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12365                 }
12366
12367                 if (IS_CHERRYVIEW(dev)) {
12368                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12369                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12370                                                 PORT_D);
12371                                 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12372                                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12373                         }
12374                 }
12375
12376                 intel_dsi_init(dev);
12377         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12378                 bool found = false;
12379
12380                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12381                         DRM_DEBUG_KMS("probing SDVOB\n");
12382                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12383                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12384                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12385                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12386                         }
12387
12388                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12389                                 intel_dp_init(dev, DP_B, PORT_B);
12390                 }
12391
12392                 /* Before G4X SDVOC doesn't have its own detect register */
12393
12394                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12395                         DRM_DEBUG_KMS("probing SDVOC\n");
12396                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12397                 }
12398
12399                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12400
12401                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12402                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12403                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12404                         }
12405                         if (SUPPORTS_INTEGRATED_DP(dev))
12406                                 intel_dp_init(dev, DP_C, PORT_C);
12407                 }
12408
12409                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12410                     (I915_READ(DP_D) & DP_DETECTED))
12411                         intel_dp_init(dev, DP_D, PORT_D);
12412         } else if (IS_GEN2(dev))
12413                 intel_dvo_init(dev);
12414
12415         if (SUPPORTS_TV(dev))
12416                 intel_tv_init(dev);
12417
12418         intel_edp_psr_init(dev);
12419
12420         for_each_intel_encoder(dev, encoder) {
12421                 encoder->base.possible_crtcs = encoder->crtc_mask;
12422                 encoder->base.possible_clones =
12423                         intel_encoder_clones(encoder);
12424         }
12425
12426         intel_init_pch_refclk(dev);
12427
12428         drm_helper_move_panel_connectors_to_head(dev);
12429 }
12430
12431 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12432 {
12433         struct drm_device *dev = fb->dev;
12434         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12435
12436         drm_framebuffer_cleanup(fb);
12437         mutex_lock(&dev->struct_mutex);
12438         WARN_ON(!intel_fb->obj->framebuffer_references--);
12439         drm_gem_object_unreference(&intel_fb->obj->base);
12440         mutex_unlock(&dev->struct_mutex);
12441         kfree(intel_fb);
12442 }
12443
12444 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12445                                                 struct drm_file *file,
12446                                                 unsigned int *handle)
12447 {
12448         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12449         struct drm_i915_gem_object *obj = intel_fb->obj;
12450
12451         return drm_gem_handle_create(file, &obj->base, handle);
12452 }
12453
12454 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12455         .destroy = intel_user_framebuffer_destroy,
12456         .create_handle = intel_user_framebuffer_create_handle,
12457 };
12458
12459 static int intel_framebuffer_init(struct drm_device *dev,
12460                                   struct intel_framebuffer *intel_fb,
12461                                   struct drm_mode_fb_cmd2 *mode_cmd,
12462                                   struct drm_i915_gem_object *obj)
12463 {
12464         int aligned_height;
12465         int pitch_limit;
12466         int ret;
12467
12468         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12469
12470         if (obj->tiling_mode == I915_TILING_Y) {
12471                 DRM_DEBUG("hardware does not support tiling Y\n");
12472                 return -EINVAL;
12473         }
12474
12475         if (mode_cmd->pitches[0] & 63) {
12476                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12477                           mode_cmd->pitches[0]);
12478                 return -EINVAL;
12479         }
12480
12481         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12482                 pitch_limit = 32*1024;
12483         } else if (INTEL_INFO(dev)->gen >= 4) {
12484                 if (obj->tiling_mode)
12485                         pitch_limit = 16*1024;
12486                 else
12487                         pitch_limit = 32*1024;
12488         } else if (INTEL_INFO(dev)->gen >= 3) {
12489                 if (obj->tiling_mode)
12490                         pitch_limit = 8*1024;
12491                 else
12492                         pitch_limit = 16*1024;
12493         } else
12494                 /* XXX DSPC is limited to 4k tiled */
12495                 pitch_limit = 8*1024;
12496
12497         if (mode_cmd->pitches[0] > pitch_limit) {
12498                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12499                           obj->tiling_mode ? "tiled" : "linear",
12500                           mode_cmd->pitches[0], pitch_limit);
12501                 return -EINVAL;
12502         }
12503
12504         if (obj->tiling_mode != I915_TILING_NONE &&
12505             mode_cmd->pitches[0] != obj->stride) {
12506                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12507                           mode_cmd->pitches[0], obj->stride);
12508                 return -EINVAL;
12509         }
12510
12511         /* Reject formats not supported by any plane early. */
12512         switch (mode_cmd->pixel_format) {
12513         case DRM_FORMAT_C8:
12514         case DRM_FORMAT_RGB565:
12515         case DRM_FORMAT_XRGB8888:
12516         case DRM_FORMAT_ARGB8888:
12517                 break;
12518         case DRM_FORMAT_XRGB1555:
12519         case DRM_FORMAT_ARGB1555:
12520                 if (INTEL_INFO(dev)->gen > 3) {
12521                         DRM_DEBUG("unsupported pixel format: %s\n",
12522                                   drm_get_format_name(mode_cmd->pixel_format));
12523                         return -EINVAL;
12524                 }
12525                 break;
12526         case DRM_FORMAT_XBGR8888:
12527         case DRM_FORMAT_ABGR8888:
12528         case DRM_FORMAT_XRGB2101010:
12529         case DRM_FORMAT_ARGB2101010:
12530         case DRM_FORMAT_XBGR2101010:
12531         case DRM_FORMAT_ABGR2101010:
12532                 if (INTEL_INFO(dev)->gen < 4) {
12533                         DRM_DEBUG("unsupported pixel format: %s\n",
12534                                   drm_get_format_name(mode_cmd->pixel_format));
12535                         return -EINVAL;
12536                 }
12537                 break;
12538         case DRM_FORMAT_YUYV:
12539         case DRM_FORMAT_UYVY:
12540         case DRM_FORMAT_YVYU:
12541         case DRM_FORMAT_VYUY:
12542                 if (INTEL_INFO(dev)->gen < 5) {
12543                         DRM_DEBUG("unsupported pixel format: %s\n",
12544                                   drm_get_format_name(mode_cmd->pixel_format));
12545                         return -EINVAL;
12546                 }
12547                 break;
12548         default:
12549                 DRM_DEBUG("unsupported pixel format: %s\n",
12550                           drm_get_format_name(mode_cmd->pixel_format));
12551                 return -EINVAL;
12552         }
12553
12554         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12555         if (mode_cmd->offsets[0] != 0)
12556                 return -EINVAL;
12557
12558         aligned_height = intel_align_height(dev, mode_cmd->height,
12559                                             obj->tiling_mode);
12560         /* FIXME drm helper for size checks (especially planar formats)? */
12561         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12562                 return -EINVAL;
12563
12564         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12565         intel_fb->obj = obj;
12566         intel_fb->obj->framebuffer_references++;
12567
12568         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12569         if (ret) {
12570                 DRM_ERROR("framebuffer init failed %d\n", ret);
12571                 return ret;
12572         }
12573
12574         return 0;
12575 }
12576
12577 static struct drm_framebuffer *
12578 intel_user_framebuffer_create(struct drm_device *dev,
12579                               struct drm_file *filp,
12580                               struct drm_mode_fb_cmd2 *mode_cmd)
12581 {
12582         struct drm_i915_gem_object *obj;
12583
12584         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12585                                                 mode_cmd->handles[0]));
12586         if (&obj->base == NULL)
12587                 return ERR_PTR(-ENOENT);
12588
12589         return intel_framebuffer_create(dev, mode_cmd, obj);
12590 }
12591
12592 #ifndef CONFIG_DRM_I915_FBDEV
12593 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12594 {
12595 }
12596 #endif
12597
12598 static const struct drm_mode_config_funcs intel_mode_funcs = {
12599         .fb_create = intel_user_framebuffer_create,
12600         .output_poll_changed = intel_fbdev_output_poll_changed,
12601 };
12602
12603 /* Set up chip specific display functions */
12604 static void intel_init_display(struct drm_device *dev)
12605 {
12606         struct drm_i915_private *dev_priv = dev->dev_private;
12607
12608         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12609                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12610         else if (IS_CHERRYVIEW(dev))
12611                 dev_priv->display.find_dpll = chv_find_best_dpll;
12612         else if (IS_VALLEYVIEW(dev))
12613                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12614         else if (IS_PINEVIEW(dev))
12615                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12616         else
12617                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12618
12619         if (HAS_DDI(dev)) {
12620                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12621                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12622                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12623                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12624                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12625                 dev_priv->display.off = ironlake_crtc_off;
12626                 dev_priv->display.update_primary_plane =
12627                         ironlake_update_primary_plane;
12628         } else if (HAS_PCH_SPLIT(dev)) {
12629                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12630                 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12631                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12632                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12633                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12634                 dev_priv->display.off = ironlake_crtc_off;
12635                 dev_priv->display.update_primary_plane =
12636                         ironlake_update_primary_plane;
12637         } else if (IS_VALLEYVIEW(dev)) {
12638                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12639                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12640                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12641                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12642                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12643                 dev_priv->display.off = i9xx_crtc_off;
12644                 dev_priv->display.update_primary_plane =
12645                         i9xx_update_primary_plane;
12646         } else {
12647                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12648                 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12649                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12650                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12651                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12652                 dev_priv->display.off = i9xx_crtc_off;
12653                 dev_priv->display.update_primary_plane =
12654                         i9xx_update_primary_plane;
12655         }
12656
12657         /* Returns the core display clock speed */
12658         if (IS_VALLEYVIEW(dev))
12659                 dev_priv->display.get_display_clock_speed =
12660                         valleyview_get_display_clock_speed;
12661         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12662                 dev_priv->display.get_display_clock_speed =
12663                         i945_get_display_clock_speed;
12664         else if (IS_I915G(dev))
12665                 dev_priv->display.get_display_clock_speed =
12666                         i915_get_display_clock_speed;
12667         else if (IS_I945GM(dev) || IS_845G(dev))
12668                 dev_priv->display.get_display_clock_speed =
12669                         i9xx_misc_get_display_clock_speed;
12670         else if (IS_PINEVIEW(dev))
12671                 dev_priv->display.get_display_clock_speed =
12672                         pnv_get_display_clock_speed;
12673         else if (IS_I915GM(dev))
12674                 dev_priv->display.get_display_clock_speed =
12675                         i915gm_get_display_clock_speed;
12676         else if (IS_I865G(dev))
12677                 dev_priv->display.get_display_clock_speed =
12678                         i865_get_display_clock_speed;
12679         else if (IS_I85X(dev))
12680                 dev_priv->display.get_display_clock_speed =
12681                         i855_get_display_clock_speed;
12682         else /* 852, 830 */
12683                 dev_priv->display.get_display_clock_speed =
12684                         i830_get_display_clock_speed;
12685
12686         if (IS_G4X(dev)) {
12687                 dev_priv->display.write_eld = g4x_write_eld;
12688         } else if (IS_GEN5(dev)) {
12689                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12690                 dev_priv->display.write_eld = ironlake_write_eld;
12691         } else if (IS_GEN6(dev)) {
12692                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12693                 dev_priv->display.write_eld = ironlake_write_eld;
12694                 dev_priv->display.modeset_global_resources =
12695                         snb_modeset_global_resources;
12696         } else if (IS_IVYBRIDGE(dev)) {
12697                 /* FIXME: detect B0+ stepping and use auto training */
12698                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12699                 dev_priv->display.write_eld = ironlake_write_eld;
12700                 dev_priv->display.modeset_global_resources =
12701                         ivb_modeset_global_resources;
12702         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12703                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12704                 dev_priv->display.write_eld = haswell_write_eld;
12705                 dev_priv->display.modeset_global_resources =
12706                         haswell_modeset_global_resources;
12707         } else if (IS_VALLEYVIEW(dev)) {
12708                 dev_priv->display.modeset_global_resources =
12709                         valleyview_modeset_global_resources;
12710                 dev_priv->display.write_eld = ironlake_write_eld;
12711         }
12712
12713         /* Default just returns -ENODEV to indicate unsupported */
12714         dev_priv->display.queue_flip = intel_default_queue_flip;
12715
12716         switch (INTEL_INFO(dev)->gen) {
12717         case 2:
12718                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12719                 break;
12720
12721         case 3:
12722                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12723                 break;
12724
12725         case 4:
12726         case 5:
12727                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12728                 break;
12729
12730         case 6:
12731                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12732                 break;
12733         case 7:
12734         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12735                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12736                 break;
12737         }
12738
12739         intel_panel_init_backlight_funcs(dev);
12740
12741         mutex_init(&dev_priv->pps_mutex);
12742 }
12743
12744 /*
12745  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12746  * resume, or other times.  This quirk makes sure that's the case for
12747  * affected systems.
12748  */
12749 static void quirk_pipea_force(struct drm_device *dev)
12750 {
12751         struct drm_i915_private *dev_priv = dev->dev_private;
12752
12753         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12754         DRM_INFO("applying pipe a force quirk\n");
12755 }
12756
12757 static void quirk_pipeb_force(struct drm_device *dev)
12758 {
12759         struct drm_i915_private *dev_priv = dev->dev_private;
12760
12761         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12762         DRM_INFO("applying pipe b force quirk\n");
12763 }
12764
12765 /*
12766  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12767  */
12768 static void quirk_ssc_force_disable(struct drm_device *dev)
12769 {
12770         struct drm_i915_private *dev_priv = dev->dev_private;
12771         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12772         DRM_INFO("applying lvds SSC disable quirk\n");
12773 }
12774
12775 /*
12776  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12777  * brightness value
12778  */
12779 static void quirk_invert_brightness(struct drm_device *dev)
12780 {
12781         struct drm_i915_private *dev_priv = dev->dev_private;
12782         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12783         DRM_INFO("applying inverted panel brightness quirk\n");
12784 }
12785
12786 /* Some VBT's incorrectly indicate no backlight is present */
12787 static void quirk_backlight_present(struct drm_device *dev)
12788 {
12789         struct drm_i915_private *dev_priv = dev->dev_private;
12790         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12791         DRM_INFO("applying backlight present quirk\n");
12792 }
12793
12794 struct intel_quirk {
12795         int device;
12796         int subsystem_vendor;
12797         int subsystem_device;
12798         void (*hook)(struct drm_device *dev);
12799 };
12800
12801 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12802 struct intel_dmi_quirk {
12803         void (*hook)(struct drm_device *dev);
12804         const struct dmi_system_id (*dmi_id_list)[];
12805 };
12806
12807 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12808 {
12809         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12810         return 1;
12811 }
12812
12813 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12814         {
12815                 .dmi_id_list = &(const struct dmi_system_id[]) {
12816                         {
12817                                 .callback = intel_dmi_reverse_brightness,
12818                                 .ident = "NCR Corporation",
12819                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12820                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
12821                                 },
12822                         },
12823                         { }  /* terminating entry */
12824                 },
12825                 .hook = quirk_invert_brightness,
12826         },
12827 };
12828
12829 static struct intel_quirk intel_quirks[] = {
12830         /* HP Mini needs pipe A force quirk (LP: #322104) */
12831         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12832
12833         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12834         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12835
12836         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12837         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12838
12839         /* 830 needs to leave pipe A & dpll A up */
12840         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12841
12842         /* 830 needs to leave pipe B & dpll B up */
12843         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12844
12845         /* Lenovo U160 cannot use SSC on LVDS */
12846         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12847
12848         /* Sony Vaio Y cannot use SSC on LVDS */
12849         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12850
12851         /* Acer Aspire 5734Z must invert backlight brightness */
12852         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12853
12854         /* Acer/eMachines G725 */
12855         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12856
12857         /* Acer/eMachines e725 */
12858         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12859
12860         /* Acer/Packard Bell NCL20 */
12861         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12862
12863         /* Acer Aspire 4736Z */
12864         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12865
12866         /* Acer Aspire 5336 */
12867         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12868
12869         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12870         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12871
12872         /* Acer C720 Chromebook (Core i3 4005U) */
12873         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12874
12875         /* Toshiba CB35 Chromebook (Celeron 2955U) */
12876         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12877
12878         /* HP Chromebook 14 (Celeron 2955U) */
12879         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12880 };
12881
12882 static void intel_init_quirks(struct drm_device *dev)
12883 {
12884         struct pci_dev *d = dev->pdev;
12885         int i;
12886
12887         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12888                 struct intel_quirk *q = &intel_quirks[i];
12889
12890                 if (d->device == q->device &&
12891                     (d->subsystem_vendor == q->subsystem_vendor ||
12892                      q->subsystem_vendor == PCI_ANY_ID) &&
12893                     (d->subsystem_device == q->subsystem_device ||
12894                      q->subsystem_device == PCI_ANY_ID))
12895                         q->hook(dev);
12896         }
12897         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12898                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12899                         intel_dmi_quirks[i].hook(dev);
12900         }
12901 }
12902
12903 /* Disable the VGA plane that we never use */
12904 static void i915_disable_vga(struct drm_device *dev)
12905 {
12906         struct drm_i915_private *dev_priv = dev->dev_private;
12907         u8 sr1;
12908         u32 vga_reg = i915_vgacntrl_reg(dev);
12909
12910         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12911         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12912         outb(SR01, VGA_SR_INDEX);
12913         sr1 = inb(VGA_SR_DATA);
12914         outb(sr1 | 1<<5, VGA_SR_DATA);
12915         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12916         udelay(300);
12917
12918         /*
12919          * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12920          * from S3 without preserving (some of?) the other bits.
12921          */
12922         I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12923         POSTING_READ(vga_reg);
12924 }
12925
12926 void intel_modeset_init_hw(struct drm_device *dev)
12927 {
12928         intel_prepare_ddi(dev);
12929
12930         if (IS_VALLEYVIEW(dev))
12931                 vlv_update_cdclk(dev);
12932
12933         intel_init_clock_gating(dev);
12934
12935         intel_enable_gt_powersave(dev);
12936 }
12937
12938 void intel_modeset_suspend_hw(struct drm_device *dev)
12939 {
12940         intel_suspend_hw(dev);
12941 }
12942
12943 void intel_modeset_init(struct drm_device *dev)
12944 {
12945         struct drm_i915_private *dev_priv = dev->dev_private;
12946         int sprite, ret;
12947         enum pipe pipe;
12948         struct intel_crtc *crtc;
12949
12950         drm_mode_config_init(dev);
12951
12952         dev->mode_config.min_width = 0;
12953         dev->mode_config.min_height = 0;
12954
12955         dev->mode_config.preferred_depth = 24;
12956         dev->mode_config.prefer_shadow = 1;
12957
12958         dev->mode_config.funcs = &intel_mode_funcs;
12959
12960         intel_init_quirks(dev);
12961
12962         intel_init_pm(dev);
12963
12964         if (INTEL_INFO(dev)->num_pipes == 0)
12965                 return;
12966
12967         intel_init_display(dev);
12968
12969         if (IS_GEN2(dev)) {
12970                 dev->mode_config.max_width = 2048;
12971                 dev->mode_config.max_height = 2048;
12972         } else if (IS_GEN3(dev)) {
12973                 dev->mode_config.max_width = 4096;
12974                 dev->mode_config.max_height = 4096;
12975         } else {
12976                 dev->mode_config.max_width = 8192;
12977                 dev->mode_config.max_height = 8192;
12978         }
12979
12980         if (IS_845G(dev) || IS_I865G(dev)) {
12981                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12982                 dev->mode_config.cursor_height = 1023;
12983         } else if (IS_GEN2(dev)) {
12984                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12985                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12986         } else {
12987                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12988                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12989         }
12990
12991         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12992
12993         DRM_DEBUG_KMS("%d display pipe%s available.\n",
12994                       INTEL_INFO(dev)->num_pipes,
12995                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12996
12997         for_each_pipe(dev_priv, pipe) {
12998                 intel_crtc_init(dev, pipe);
12999                 for_each_sprite(pipe, sprite) {
13000                         ret = intel_plane_init(dev, pipe, sprite);
13001                         if (ret)
13002                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13003                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
13004                 }
13005         }
13006
13007         intel_init_dpio(dev);
13008
13009         intel_shared_dpll_init(dev);
13010
13011         /* save the BIOS value before clobbering it */
13012         dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
13013         /* Just disable it once at startup */
13014         i915_disable_vga(dev);
13015         intel_setup_outputs(dev);
13016
13017         /* Just in case the BIOS is doing something questionable. */
13018         intel_disable_fbc(dev);
13019
13020         drm_modeset_lock_all(dev);
13021         intel_modeset_setup_hw_state(dev, false);
13022         drm_modeset_unlock_all(dev);
13023
13024         for_each_intel_crtc(dev, crtc) {
13025                 if (!crtc->active)
13026                         continue;
13027
13028                 /*
13029                  * Note that reserving the BIOS fb up front prevents us
13030                  * from stuffing other stolen allocations like the ring
13031                  * on top.  This prevents some ugliness at boot time, and
13032                  * can even allow for smooth boot transitions if the BIOS
13033                  * fb is large enough for the active pipe configuration.
13034                  */
13035                 if (dev_priv->display.get_plane_config) {
13036                         dev_priv->display.get_plane_config(crtc,
13037                                                            &crtc->plane_config);
13038                         /*
13039                          * If the fb is shared between multiple heads, we'll
13040                          * just get the first one.
13041                          */
13042                         intel_find_plane_obj(crtc, &crtc->plane_config);
13043                 }
13044         }
13045 }
13046
13047 static void intel_enable_pipe_a(struct drm_device *dev)
13048 {
13049         struct intel_connector *connector;
13050         struct drm_connector *crt = NULL;
13051         struct intel_load_detect_pipe load_detect_temp;
13052         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13053
13054         /* We can't just switch on the pipe A, we need to set things up with a
13055          * proper mode and output configuration. As a gross hack, enable pipe A
13056          * by enabling the load detect pipe once. */
13057         list_for_each_entry(connector,
13058                             &dev->mode_config.connector_list,
13059                             base.head) {
13060                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13061                         crt = &connector->base;
13062                         break;
13063                 }
13064         }
13065
13066         if (!crt)
13067                 return;
13068
13069         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13070                 intel_release_load_detect_pipe(crt, &load_detect_temp);
13071 }
13072
13073 static bool
13074 intel_check_plane_mapping(struct intel_crtc *crtc)
13075 {
13076         struct drm_device *dev = crtc->base.dev;
13077         struct drm_i915_private *dev_priv = dev->dev_private;
13078         u32 reg, val;
13079
13080         if (INTEL_INFO(dev)->num_pipes == 1)
13081                 return true;
13082
13083         reg = DSPCNTR(!crtc->plane);
13084         val = I915_READ(reg);
13085
13086         if ((val & DISPLAY_PLANE_ENABLE) &&
13087             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13088                 return false;
13089
13090         return true;
13091 }
13092
13093 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13094 {
13095         struct drm_device *dev = crtc->base.dev;
13096         struct drm_i915_private *dev_priv = dev->dev_private;
13097         u32 reg;
13098
13099         /* Clear any frame start delays used for debugging left by the BIOS */
13100         reg = PIPECONF(crtc->config.cpu_transcoder);
13101         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13102
13103         /* restore vblank interrupts to correct state */
13104         if (crtc->active) {
13105                 update_scanline_offset(crtc);
13106                 drm_vblank_on(dev, crtc->pipe);
13107         } else
13108                 drm_vblank_off(dev, crtc->pipe);
13109
13110         /* We need to sanitize the plane -> pipe mapping first because this will
13111          * disable the crtc (and hence change the state) if it is wrong. Note
13112          * that gen4+ has a fixed plane -> pipe mapping.  */
13113         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13114                 struct intel_connector *connector;
13115                 bool plane;
13116
13117                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13118                               crtc->base.base.id);
13119
13120                 /* Pipe has the wrong plane attached and the plane is active.
13121                  * Temporarily change the plane mapping and disable everything
13122                  * ...  */
13123                 plane = crtc->plane;
13124                 crtc->plane = !plane;
13125                 crtc->primary_enabled = true;
13126                 dev_priv->display.crtc_disable(&crtc->base);
13127                 crtc->plane = plane;
13128
13129                 /* ... and break all links. */
13130                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13131                                     base.head) {
13132                         if (connector->encoder->base.crtc != &crtc->base)
13133                                 continue;
13134
13135                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13136                         connector->base.encoder = NULL;
13137                 }
13138                 /* multiple connectors may have the same encoder:
13139                  *  handle them and break crtc link separately */
13140                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13141                                     base.head)
13142                         if (connector->encoder->base.crtc == &crtc->base) {
13143                                 connector->encoder->base.crtc = NULL;
13144                                 connector->encoder->connectors_active = false;
13145                         }
13146
13147                 WARN_ON(crtc->active);
13148                 crtc->base.enabled = false;
13149         }
13150
13151         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13152             crtc->pipe == PIPE_A && !crtc->active) {
13153                 /* BIOS forgot to enable pipe A, this mostly happens after
13154                  * resume. Force-enable the pipe to fix this, the update_dpms
13155                  * call below we restore the pipe to the right state, but leave
13156                  * the required bits on. */
13157                 intel_enable_pipe_a(dev);
13158         }
13159
13160         /* Adjust the state of the output pipe according to whether we
13161          * have active connectors/encoders. */
13162         intel_crtc_update_dpms(&crtc->base);
13163
13164         if (crtc->active != crtc->base.enabled) {
13165                 struct intel_encoder *encoder;
13166
13167                 /* This can happen either due to bugs in the get_hw_state
13168                  * functions or because the pipe is force-enabled due to the
13169                  * pipe A quirk. */
13170                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13171                               crtc->base.base.id,
13172                               crtc->base.enabled ? "enabled" : "disabled",
13173                               crtc->active ? "enabled" : "disabled");
13174
13175                 crtc->base.enabled = crtc->active;
13176
13177                 /* Because we only establish the connector -> encoder ->
13178                  * crtc links if something is active, this means the
13179                  * crtc is now deactivated. Break the links. connector
13180                  * -> encoder links are only establish when things are
13181                  *  actually up, hence no need to break them. */
13182                 WARN_ON(crtc->active);
13183
13184                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13185                         WARN_ON(encoder->connectors_active);
13186                         encoder->base.crtc = NULL;
13187                 }
13188         }
13189
13190         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13191                 /*
13192                  * We start out with underrun reporting disabled to avoid races.
13193                  * For correct bookkeeping mark this on active crtcs.
13194                  *
13195                  * Also on gmch platforms we dont have any hardware bits to
13196                  * disable the underrun reporting. Which means we need to start
13197                  * out with underrun reporting disabled also on inactive pipes,
13198                  * since otherwise we'll complain about the garbage we read when
13199                  * e.g. coming up after runtime pm.
13200                  *
13201                  * No protection against concurrent access is required - at
13202                  * worst a fifo underrun happens which also sets this to false.
13203                  */
13204                 crtc->cpu_fifo_underrun_disabled = true;
13205                 crtc->pch_fifo_underrun_disabled = true;
13206         }
13207 }
13208
13209 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13210 {
13211         struct intel_connector *connector;
13212         struct drm_device *dev = encoder->base.dev;
13213
13214         /* We need to check both for a crtc link (meaning that the
13215          * encoder is active and trying to read from a pipe) and the
13216          * pipe itself being active. */
13217         bool has_active_crtc = encoder->base.crtc &&
13218                 to_intel_crtc(encoder->base.crtc)->active;
13219
13220         if (encoder->connectors_active && !has_active_crtc) {
13221                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13222                               encoder->base.base.id,
13223                               encoder->base.name);
13224
13225                 /* Connector is active, but has no active pipe. This is
13226                  * fallout from our resume register restoring. Disable
13227                  * the encoder manually again. */
13228                 if (encoder->base.crtc) {
13229                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13230                                       encoder->base.base.id,
13231                                       encoder->base.name);
13232                         encoder->disable(encoder);
13233                         if (encoder->post_disable)
13234                                 encoder->post_disable(encoder);
13235                 }
13236                 encoder->base.crtc = NULL;
13237                 encoder->connectors_active = false;
13238
13239                 /* Inconsistent output/port/pipe state happens presumably due to
13240                  * a bug in one of the get_hw_state functions. Or someplace else
13241                  * in our code, like the register restore mess on resume. Clamp
13242                  * things to off as a safer default. */
13243                 list_for_each_entry(connector,
13244                                     &dev->mode_config.connector_list,
13245                                     base.head) {
13246                         if (connector->encoder != encoder)
13247                                 continue;
13248                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13249                         connector->base.encoder = NULL;
13250                 }
13251         }
13252         /* Enabled encoders without active connectors will be fixed in
13253          * the crtc fixup. */
13254 }
13255
13256 void i915_redisable_vga_power_on(struct drm_device *dev)
13257 {
13258         struct drm_i915_private *dev_priv = dev->dev_private;
13259         u32 vga_reg = i915_vgacntrl_reg(dev);
13260
13261         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13262                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13263                 i915_disable_vga(dev);
13264         }
13265 }
13266
13267 void i915_redisable_vga(struct drm_device *dev)
13268 {
13269         struct drm_i915_private *dev_priv = dev->dev_private;
13270
13271         /* This function can be called both from intel_modeset_setup_hw_state or
13272          * at a very early point in our resume sequence, where the power well
13273          * structures are not yet restored. Since this function is at a very
13274          * paranoid "someone might have enabled VGA while we were not looking"
13275          * level, just check if the power well is enabled instead of trying to
13276          * follow the "don't touch the power well if we don't need it" policy
13277          * the rest of the driver uses. */
13278         if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
13279                 return;
13280
13281         i915_redisable_vga_power_on(dev);
13282 }
13283
13284 static bool primary_get_hw_state(struct intel_crtc *crtc)
13285 {
13286         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13287
13288         if (!crtc->active)
13289                 return false;
13290
13291         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13292 }
13293
13294 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13295 {
13296         struct drm_i915_private *dev_priv = dev->dev_private;
13297         enum pipe pipe;
13298         struct intel_crtc *crtc;
13299         struct intel_encoder *encoder;
13300         struct intel_connector *connector;
13301         int i;
13302
13303         for_each_intel_crtc(dev, crtc) {
13304                 memset(&crtc->config, 0, sizeof(crtc->config));
13305
13306                 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13307
13308                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13309                                                                  &crtc->config);
13310
13311                 crtc->base.enabled = crtc->active;
13312                 crtc->primary_enabled = primary_get_hw_state(crtc);
13313
13314                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13315                               crtc->base.base.id,
13316                               crtc->active ? "enabled" : "disabled");
13317         }
13318
13319         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13320                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13321
13322                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13323                 pll->active = 0;
13324                 for_each_intel_crtc(dev, crtc) {
13325                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13326                                 pll->active++;
13327                 }
13328                 pll->refcount = pll->active;
13329
13330                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13331                               pll->name, pll->refcount, pll->on);
13332
13333                 if (pll->refcount)
13334                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13335         }
13336
13337         for_each_intel_encoder(dev, encoder) {
13338                 pipe = 0;
13339
13340                 if (encoder->get_hw_state(encoder, &pipe)) {
13341                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13342                         encoder->base.crtc = &crtc->base;
13343                         encoder->get_config(encoder, &crtc->config);
13344                 } else {
13345                         encoder->base.crtc = NULL;
13346                 }
13347
13348                 encoder->connectors_active = false;
13349                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13350                               encoder->base.base.id,
13351                               encoder->base.name,
13352                               encoder->base.crtc ? "enabled" : "disabled",
13353                               pipe_name(pipe));
13354         }
13355
13356         list_for_each_entry(connector, &dev->mode_config.connector_list,
13357                             base.head) {
13358                 if (connector->get_hw_state(connector)) {
13359                         connector->base.dpms = DRM_MODE_DPMS_ON;
13360                         connector->encoder->connectors_active = true;
13361                         connector->base.encoder = &connector->encoder->base;
13362                 } else {
13363                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13364                         connector->base.encoder = NULL;
13365                 }
13366                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13367                               connector->base.base.id,
13368                               connector->base.name,
13369                               connector->base.encoder ? "enabled" : "disabled");
13370         }
13371 }
13372
13373 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13374  * and i915 state tracking structures. */
13375 void intel_modeset_setup_hw_state(struct drm_device *dev,
13376                                   bool force_restore)
13377 {
13378         struct drm_i915_private *dev_priv = dev->dev_private;
13379         enum pipe pipe;
13380         struct intel_crtc *crtc;
13381         struct intel_encoder *encoder;
13382         int i;
13383
13384         intel_modeset_readout_hw_state(dev);
13385
13386         /*
13387          * Now that we have the config, copy it to each CRTC struct
13388          * Note that this could go away if we move to using crtc_config
13389          * checking everywhere.
13390          */
13391         for_each_intel_crtc(dev, crtc) {
13392                 if (crtc->active && i915.fastboot) {
13393                         intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13394                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13395                                       crtc->base.base.id);
13396                         drm_mode_debug_printmodeline(&crtc->base.mode);
13397                 }
13398         }
13399
13400         /* HW state is read out, now we need to sanitize this mess. */
13401         for_each_intel_encoder(dev, encoder) {
13402                 intel_sanitize_encoder(encoder);
13403         }
13404
13405         for_each_pipe(dev_priv, pipe) {
13406                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13407                 intel_sanitize_crtc(crtc);
13408                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13409         }
13410
13411         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13412                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13413
13414                 if (!pll->on || pll->active)
13415                         continue;
13416
13417                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13418
13419                 pll->disable(dev_priv, pll);
13420                 pll->on = false;
13421         }
13422
13423         if (HAS_PCH_SPLIT(dev))
13424                 ilk_wm_get_hw_state(dev);
13425
13426         if (force_restore) {
13427                 i915_redisable_vga(dev);
13428
13429                 /*
13430                  * We need to use raw interfaces for restoring state to avoid
13431                  * checking (bogus) intermediate states.
13432                  */
13433                 for_each_pipe(dev_priv, pipe) {
13434                         struct drm_crtc *crtc =
13435                                 dev_priv->pipe_to_crtc_mapping[pipe];
13436
13437                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13438                                          crtc->primary->fb);
13439                 }
13440         } else {
13441                 intel_modeset_update_staged_output_state(dev);
13442         }
13443
13444         intel_modeset_check_state(dev);
13445 }
13446
13447 void intel_modeset_gem_init(struct drm_device *dev)
13448 {
13449         struct drm_crtc *c;
13450         struct drm_i915_gem_object *obj;
13451
13452         mutex_lock(&dev->struct_mutex);
13453         intel_init_gt_powersave(dev);
13454         mutex_unlock(&dev->struct_mutex);
13455
13456         intel_modeset_init_hw(dev);
13457
13458         intel_setup_overlay(dev);
13459
13460         /*
13461          * Make sure any fbs we allocated at startup are properly
13462          * pinned & fenced.  When we do the allocation it's too early
13463          * for this.
13464          */
13465         mutex_lock(&dev->struct_mutex);
13466         for_each_crtc(dev, c) {
13467                 obj = intel_fb_obj(c->primary->fb);
13468                 if (obj == NULL)
13469                         continue;
13470
13471                 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13472                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13473                                   to_intel_crtc(c)->pipe);
13474                         drm_framebuffer_unreference(c->primary->fb);
13475                         c->primary->fb = NULL;
13476                 }
13477         }
13478         mutex_unlock(&dev->struct_mutex);
13479 }
13480
13481 void intel_connector_unregister(struct intel_connector *intel_connector)
13482 {
13483         struct drm_connector *connector = &intel_connector->base;
13484
13485         intel_panel_destroy_backlight(connector);
13486         drm_connector_unregister(connector);
13487 }
13488
13489 void intel_modeset_cleanup(struct drm_device *dev)
13490 {
13491         struct drm_i915_private *dev_priv = dev->dev_private;
13492         struct drm_connector *connector;
13493
13494         /*
13495          * Interrupts and polling as the first thing to avoid creating havoc.
13496          * Too much stuff here (turning of rps, connectors, ...) would
13497          * experience fancy races otherwise.
13498          */
13499         drm_irq_uninstall(dev);
13500         intel_hpd_cancel_work(dev_priv);
13501         dev_priv->pm._irqs_disabled = true;
13502
13503         /*
13504          * Due to the hpd irq storm handling the hotplug work can re-arm the
13505          * poll handlers. Hence disable polling after hpd handling is shut down.
13506          */
13507         drm_kms_helper_poll_fini(dev);
13508
13509         mutex_lock(&dev->struct_mutex);
13510
13511         intel_unregister_dsm_handler();
13512
13513         intel_disable_fbc(dev);
13514
13515         intel_disable_gt_powersave(dev);
13516
13517         ironlake_teardown_rc6(dev);
13518
13519         mutex_unlock(&dev->struct_mutex);
13520
13521         /* flush any delayed tasks or pending work */
13522         flush_scheduled_work();
13523
13524         /* destroy the backlight and sysfs files before encoders/connectors */
13525         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13526                 struct intel_connector *intel_connector;
13527
13528                 intel_connector = to_intel_connector(connector);
13529                 intel_connector->unregister(intel_connector);
13530         }
13531
13532         drm_mode_config_cleanup(dev);
13533
13534         intel_cleanup_overlay(dev);
13535
13536         mutex_lock(&dev->struct_mutex);
13537         intel_cleanup_gt_powersave(dev);
13538         mutex_unlock(&dev->struct_mutex);
13539 }
13540
13541 /*
13542  * Return which encoder is currently attached for connector.
13543  */
13544 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13545 {
13546         return &intel_attached_encoder(connector)->base;
13547 }
13548
13549 void intel_connector_attach_encoder(struct intel_connector *connector,
13550                                     struct intel_encoder *encoder)
13551 {
13552         connector->encoder = encoder;
13553         drm_mode_connector_attach_encoder(&connector->base,
13554                                           &encoder->base);
13555 }
13556
13557 /*
13558  * set vga decode state - true == enable VGA decode
13559  */
13560 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13561 {
13562         struct drm_i915_private *dev_priv = dev->dev_private;
13563         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13564         u16 gmch_ctrl;
13565
13566         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13567                 DRM_ERROR("failed to read control word\n");
13568                 return -EIO;
13569         }
13570
13571         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13572                 return 0;
13573
13574         if (state)
13575                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13576         else
13577                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13578
13579         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13580                 DRM_ERROR("failed to write control word\n");
13581                 return -EIO;
13582         }
13583
13584         return 0;
13585 }
13586
13587 struct intel_display_error_state {
13588
13589         u32 power_well_driver;
13590
13591         int num_transcoders;
13592
13593         struct intel_cursor_error_state {
13594                 u32 control;
13595                 u32 position;
13596                 u32 base;
13597                 u32 size;
13598         } cursor[I915_MAX_PIPES];
13599
13600         struct intel_pipe_error_state {
13601                 bool power_domain_on;
13602                 u32 source;
13603                 u32 stat;
13604         } pipe[I915_MAX_PIPES];
13605
13606         struct intel_plane_error_state {
13607                 u32 control;
13608                 u32 stride;
13609                 u32 size;
13610                 u32 pos;
13611                 u32 addr;
13612                 u32 surface;
13613                 u32 tile_offset;
13614         } plane[I915_MAX_PIPES];
13615
13616         struct intel_transcoder_error_state {
13617                 bool power_domain_on;
13618                 enum transcoder cpu_transcoder;
13619
13620                 u32 conf;
13621
13622                 u32 htotal;
13623                 u32 hblank;
13624                 u32 hsync;
13625                 u32 vtotal;
13626                 u32 vblank;
13627                 u32 vsync;
13628         } transcoder[4];
13629 };
13630
13631 struct intel_display_error_state *
13632 intel_display_capture_error_state(struct drm_device *dev)
13633 {
13634         struct drm_i915_private *dev_priv = dev->dev_private;
13635         struct intel_display_error_state *error;
13636         int transcoders[] = {
13637                 TRANSCODER_A,
13638                 TRANSCODER_B,
13639                 TRANSCODER_C,
13640                 TRANSCODER_EDP,
13641         };
13642         int i;
13643
13644         if (INTEL_INFO(dev)->num_pipes == 0)
13645                 return NULL;
13646
13647         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13648         if (error == NULL)
13649                 return NULL;
13650
13651         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13652                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13653
13654         for_each_pipe(dev_priv, i) {
13655                 error->pipe[i].power_domain_on =
13656                         intel_display_power_enabled_unlocked(dev_priv,
13657                                                            POWER_DOMAIN_PIPE(i));
13658                 if (!error->pipe[i].power_domain_on)
13659                         continue;
13660
13661                 error->cursor[i].control = I915_READ(CURCNTR(i));
13662                 error->cursor[i].position = I915_READ(CURPOS(i));
13663                 error->cursor[i].base = I915_READ(CURBASE(i));
13664
13665                 error->plane[i].control = I915_READ(DSPCNTR(i));
13666                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13667                 if (INTEL_INFO(dev)->gen <= 3) {
13668                         error->plane[i].size = I915_READ(DSPSIZE(i));
13669                         error->plane[i].pos = I915_READ(DSPPOS(i));
13670                 }
13671                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13672                         error->plane[i].addr = I915_READ(DSPADDR(i));
13673                 if (INTEL_INFO(dev)->gen >= 4) {
13674                         error->plane[i].surface = I915_READ(DSPSURF(i));
13675                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13676                 }
13677
13678                 error->pipe[i].source = I915_READ(PIPESRC(i));
13679
13680                 if (HAS_GMCH_DISPLAY(dev))
13681                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13682         }
13683
13684         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13685         if (HAS_DDI(dev_priv->dev))
13686                 error->num_transcoders++; /* Account for eDP. */
13687
13688         for (i = 0; i < error->num_transcoders; i++) {
13689                 enum transcoder cpu_transcoder = transcoders[i];
13690
13691                 error->transcoder[i].power_domain_on =
13692                         intel_display_power_enabled_unlocked(dev_priv,
13693                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13694                 if (!error->transcoder[i].power_domain_on)
13695                         continue;
13696
13697                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13698
13699                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13700                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13701                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13702                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13703                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13704                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13705                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13706         }
13707
13708         return error;
13709 }
13710
13711 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13712
13713 void
13714 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13715                                 struct drm_device *dev,
13716                                 struct intel_display_error_state *error)
13717 {
13718         struct drm_i915_private *dev_priv = dev->dev_private;
13719         int i;
13720
13721         if (!error)
13722                 return;
13723
13724         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13725         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13726                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13727                            error->power_well_driver);
13728         for_each_pipe(dev_priv, i) {
13729                 err_printf(m, "Pipe [%d]:\n", i);
13730                 err_printf(m, "  Power: %s\n",
13731                            error->pipe[i].power_domain_on ? "on" : "off");
13732                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13733                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13734
13735                 err_printf(m, "Plane [%d]:\n", i);
13736                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13737                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13738                 if (INTEL_INFO(dev)->gen <= 3) {
13739                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13740                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13741                 }
13742                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13743                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13744                 if (INTEL_INFO(dev)->gen >= 4) {
13745                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13746                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13747                 }
13748
13749                 err_printf(m, "Cursor [%d]:\n", i);
13750                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13751                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13752                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13753         }
13754
13755         for (i = 0; i < error->num_transcoders; i++) {
13756                 err_printf(m, "CPU transcoder: %c\n",
13757                            transcoder_name(error->transcoder[i].cpu_transcoder));
13758                 err_printf(m, "  Power: %s\n",
13759                            error->transcoder[i].power_domain_on ? "on" : "off");
13760                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13761                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13762                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13763                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13764                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13765                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13766                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13767         }
13768 }
13769
13770 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13771 {
13772         struct intel_crtc *crtc;
13773
13774         for_each_intel_crtc(dev, crtc) {
13775                 struct intel_unpin_work *work;
13776                 unsigned long irqflags;
13777
13778                 spin_lock_irqsave(&dev->event_lock, irqflags);
13779
13780                 work = crtc->unpin_work;
13781
13782                 if (work && work->event &&
13783                     work->event->base.file_priv == file) {
13784                         kfree(work->event);
13785                         work->event = NULL;
13786                 }
13787
13788                 spin_unlock_irqrestore(&dev->event_lock, irqflags);
13789         }
13790 }