afceb5836af7251c19cd1dd8ef21883232deb25a
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats supported by all gen */
49 #define COMMON_PRIMARY_FORMATS \
50         DRM_FORMAT_C8, \
51         DRM_FORMAT_RGB565, \
52         DRM_FORMAT_XRGB8888, \
53         DRM_FORMAT_ARGB8888
54
55 /* Primary plane formats for gen <= 3 */
56 static const uint32_t intel_primary_formats_gen2[] = {
57         COMMON_PRIMARY_FORMATS,
58         DRM_FORMAT_XRGB1555,
59         DRM_FORMAT_ARGB1555,
60 };
61
62 /* Primary plane formats for gen >= 4 */
63 static const uint32_t intel_primary_formats_gen4[] = {
64         COMMON_PRIMARY_FORMATS, \
65         DRM_FORMAT_XBGR8888,
66         DRM_FORMAT_ABGR8888,
67         DRM_FORMAT_XRGB2101010,
68         DRM_FORMAT_ARGB2101010,
69         DRM_FORMAT_XBGR2101010,
70         DRM_FORMAT_ABGR2101010,
71 };
72
73 /* Cursor formats */
74 static const uint32_t intel_cursor_formats[] = {
75         DRM_FORMAT_ARGB8888,
76 };
77
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81                                 struct intel_crtc_state *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83                                    struct intel_crtc_state *pipe_config);
84
85 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
86                           int x, int y, struct drm_framebuffer *old_fb,
87                           struct drm_atomic_state *state);
88 static int intel_framebuffer_init(struct drm_device *dev,
89                                   struct intel_framebuffer *ifb,
90                                   struct drm_mode_fb_cmd2 *mode_cmd,
91                                   struct drm_i915_gem_object *obj);
92 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
93 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
94 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
95                                          struct intel_link_m_n *m_n,
96                                          struct intel_link_m_n *m2_n2);
97 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
98 static void haswell_set_pipeconf(struct drm_crtc *crtc);
99 static void intel_set_pipe_csc(struct drm_crtc *crtc);
100 static void vlv_prepare_pll(struct intel_crtc *crtc,
101                             const struct intel_crtc_state *pipe_config);
102 static void chv_prepare_pll(struct intel_crtc *crtc,
103                             const struct intel_crtc_state *pipe_config);
104 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
105 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
106
107 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
108 {
109         if (!connector->mst_port)
110                 return connector->encoder;
111         else
112                 return &connector->mst_port->mst_encoders[pipe]->base;
113 }
114
115 typedef struct {
116         int     min, max;
117 } intel_range_t;
118
119 typedef struct {
120         int     dot_limit;
121         int     p2_slow, p2_fast;
122 } intel_p2_t;
123
124 typedef struct intel_limit intel_limit_t;
125 struct intel_limit {
126         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
127         intel_p2_t          p2;
128 };
129
130 int
131 intel_pch_rawclk(struct drm_device *dev)
132 {
133         struct drm_i915_private *dev_priv = dev->dev_private;
134
135         WARN_ON(!HAS_PCH_SPLIT(dev));
136
137         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
138 }
139
140 static inline u32 /* units of 100MHz */
141 intel_fdi_link_freq(struct drm_device *dev)
142 {
143         if (IS_GEN5(dev)) {
144                 struct drm_i915_private *dev_priv = dev->dev_private;
145                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
146         } else
147                 return 27;
148 }
149
150 static const intel_limit_t intel_limits_i8xx_dac = {
151         .dot = { .min = 25000, .max = 350000 },
152         .vco = { .min = 908000, .max = 1512000 },
153         .n = { .min = 2, .max = 16 },
154         .m = { .min = 96, .max = 140 },
155         .m1 = { .min = 18, .max = 26 },
156         .m2 = { .min = 6, .max = 16 },
157         .p = { .min = 4, .max = 128 },
158         .p1 = { .min = 2, .max = 33 },
159         .p2 = { .dot_limit = 165000,
160                 .p2_slow = 4, .p2_fast = 2 },
161 };
162
163 static const intel_limit_t intel_limits_i8xx_dvo = {
164         .dot = { .min = 25000, .max = 350000 },
165         .vco = { .min = 908000, .max = 1512000 },
166         .n = { .min = 2, .max = 16 },
167         .m = { .min = 96, .max = 140 },
168         .m1 = { .min = 18, .max = 26 },
169         .m2 = { .min = 6, .max = 16 },
170         .p = { .min = 4, .max = 128 },
171         .p1 = { .min = 2, .max = 33 },
172         .p2 = { .dot_limit = 165000,
173                 .p2_slow = 4, .p2_fast = 4 },
174 };
175
176 static const intel_limit_t intel_limits_i8xx_lvds = {
177         .dot = { .min = 25000, .max = 350000 },
178         .vco = { .min = 908000, .max = 1512000 },
179         .n = { .min = 2, .max = 16 },
180         .m = { .min = 96, .max = 140 },
181         .m1 = { .min = 18, .max = 26 },
182         .m2 = { .min = 6, .max = 16 },
183         .p = { .min = 4, .max = 128 },
184         .p1 = { .min = 1, .max = 6 },
185         .p2 = { .dot_limit = 165000,
186                 .p2_slow = 14, .p2_fast = 7 },
187 };
188
189 static const intel_limit_t intel_limits_i9xx_sdvo = {
190         .dot = { .min = 20000, .max = 400000 },
191         .vco = { .min = 1400000, .max = 2800000 },
192         .n = { .min = 1, .max = 6 },
193         .m = { .min = 70, .max = 120 },
194         .m1 = { .min = 8, .max = 18 },
195         .m2 = { .min = 3, .max = 7 },
196         .p = { .min = 5, .max = 80 },
197         .p1 = { .min = 1, .max = 8 },
198         .p2 = { .dot_limit = 200000,
199                 .p2_slow = 10, .p2_fast = 5 },
200 };
201
202 static const intel_limit_t intel_limits_i9xx_lvds = {
203         .dot = { .min = 20000, .max = 400000 },
204         .vco = { .min = 1400000, .max = 2800000 },
205         .n = { .min = 1, .max = 6 },
206         .m = { .min = 70, .max = 120 },
207         .m1 = { .min = 8, .max = 18 },
208         .m2 = { .min = 3, .max = 7 },
209         .p = { .min = 7, .max = 98 },
210         .p1 = { .min = 1, .max = 8 },
211         .p2 = { .dot_limit = 112000,
212                 .p2_slow = 14, .p2_fast = 7 },
213 };
214
215
216 static const intel_limit_t intel_limits_g4x_sdvo = {
217         .dot = { .min = 25000, .max = 270000 },
218         .vco = { .min = 1750000, .max = 3500000},
219         .n = { .min = 1, .max = 4 },
220         .m = { .min = 104, .max = 138 },
221         .m1 = { .min = 17, .max = 23 },
222         .m2 = { .min = 5, .max = 11 },
223         .p = { .min = 10, .max = 30 },
224         .p1 = { .min = 1, .max = 3},
225         .p2 = { .dot_limit = 270000,
226                 .p2_slow = 10,
227                 .p2_fast = 10
228         },
229 };
230
231 static const intel_limit_t intel_limits_g4x_hdmi = {
232         .dot = { .min = 22000, .max = 400000 },
233         .vco = { .min = 1750000, .max = 3500000},
234         .n = { .min = 1, .max = 4 },
235         .m = { .min = 104, .max = 138 },
236         .m1 = { .min = 16, .max = 23 },
237         .m2 = { .min = 5, .max = 11 },
238         .p = { .min = 5, .max = 80 },
239         .p1 = { .min = 1, .max = 8},
240         .p2 = { .dot_limit = 165000,
241                 .p2_slow = 10, .p2_fast = 5 },
242 };
243
244 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
245         .dot = { .min = 20000, .max = 115000 },
246         .vco = { .min = 1750000, .max = 3500000 },
247         .n = { .min = 1, .max = 3 },
248         .m = { .min = 104, .max = 138 },
249         .m1 = { .min = 17, .max = 23 },
250         .m2 = { .min = 5, .max = 11 },
251         .p = { .min = 28, .max = 112 },
252         .p1 = { .min = 2, .max = 8 },
253         .p2 = { .dot_limit = 0,
254                 .p2_slow = 14, .p2_fast = 14
255         },
256 };
257
258 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
259         .dot = { .min = 80000, .max = 224000 },
260         .vco = { .min = 1750000, .max = 3500000 },
261         .n = { .min = 1, .max = 3 },
262         .m = { .min = 104, .max = 138 },
263         .m1 = { .min = 17, .max = 23 },
264         .m2 = { .min = 5, .max = 11 },
265         .p = { .min = 14, .max = 42 },
266         .p1 = { .min = 2, .max = 6 },
267         .p2 = { .dot_limit = 0,
268                 .p2_slow = 7, .p2_fast = 7
269         },
270 };
271
272 static const intel_limit_t intel_limits_pineview_sdvo = {
273         .dot = { .min = 20000, .max = 400000},
274         .vco = { .min = 1700000, .max = 3500000 },
275         /* Pineview's Ncounter is a ring counter */
276         .n = { .min = 3, .max = 6 },
277         .m = { .min = 2, .max = 256 },
278         /* Pineview only has one combined m divider, which we treat as m2. */
279         .m1 = { .min = 0, .max = 0 },
280         .m2 = { .min = 0, .max = 254 },
281         .p = { .min = 5, .max = 80 },
282         .p1 = { .min = 1, .max = 8 },
283         .p2 = { .dot_limit = 200000,
284                 .p2_slow = 10, .p2_fast = 5 },
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288         .dot = { .min = 20000, .max = 400000 },
289         .vco = { .min = 1700000, .max = 3500000 },
290         .n = { .min = 3, .max = 6 },
291         .m = { .min = 2, .max = 256 },
292         .m1 = { .min = 0, .max = 0 },
293         .m2 = { .min = 0, .max = 254 },
294         .p = { .min = 7, .max = 112 },
295         .p1 = { .min = 1, .max = 8 },
296         .p2 = { .dot_limit = 112000,
297                 .p2_slow = 14, .p2_fast = 14 },
298 };
299
300 /* Ironlake / Sandybridge
301  *
302  * We calculate clock using (register_value + 2) for N/M1/M2, so here
303  * the range value for them is (actual_value - 2).
304  */
305 static const intel_limit_t intel_limits_ironlake_dac = {
306         .dot = { .min = 25000, .max = 350000 },
307         .vco = { .min = 1760000, .max = 3510000 },
308         .n = { .min = 1, .max = 5 },
309         .m = { .min = 79, .max = 127 },
310         .m1 = { .min = 12, .max = 22 },
311         .m2 = { .min = 5, .max = 9 },
312         .p = { .min = 5, .max = 80 },
313         .p1 = { .min = 1, .max = 8 },
314         .p2 = { .dot_limit = 225000,
315                 .p2_slow = 10, .p2_fast = 5 },
316 };
317
318 static const intel_limit_t intel_limits_ironlake_single_lvds = {
319         .dot = { .min = 25000, .max = 350000 },
320         .vco = { .min = 1760000, .max = 3510000 },
321         .n = { .min = 1, .max = 3 },
322         .m = { .min = 79, .max = 118 },
323         .m1 = { .min = 12, .max = 22 },
324         .m2 = { .min = 5, .max = 9 },
325         .p = { .min = 28, .max = 112 },
326         .p1 = { .min = 2, .max = 8 },
327         .p2 = { .dot_limit = 225000,
328                 .p2_slow = 14, .p2_fast = 14 },
329 };
330
331 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
332         .dot = { .min = 25000, .max = 350000 },
333         .vco = { .min = 1760000, .max = 3510000 },
334         .n = { .min = 1, .max = 3 },
335         .m = { .min = 79, .max = 127 },
336         .m1 = { .min = 12, .max = 22 },
337         .m2 = { .min = 5, .max = 9 },
338         .p = { .min = 14, .max = 56 },
339         .p1 = { .min = 2, .max = 8 },
340         .p2 = { .dot_limit = 225000,
341                 .p2_slow = 7, .p2_fast = 7 },
342 };
343
344 /* LVDS 100mhz refclk limits. */
345 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
346         .dot = { .min = 25000, .max = 350000 },
347         .vco = { .min = 1760000, .max = 3510000 },
348         .n = { .min = 1, .max = 2 },
349         .m = { .min = 79, .max = 126 },
350         .m1 = { .min = 12, .max = 22 },
351         .m2 = { .min = 5, .max = 9 },
352         .p = { .min = 28, .max = 112 },
353         .p1 = { .min = 2, .max = 8 },
354         .p2 = { .dot_limit = 225000,
355                 .p2_slow = 14, .p2_fast = 14 },
356 };
357
358 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
359         .dot = { .min = 25000, .max = 350000 },
360         .vco = { .min = 1760000, .max = 3510000 },
361         .n = { .min = 1, .max = 3 },
362         .m = { .min = 79, .max = 126 },
363         .m1 = { .min = 12, .max = 22 },
364         .m2 = { .min = 5, .max = 9 },
365         .p = { .min = 14, .max = 42 },
366         .p1 = { .min = 2, .max = 6 },
367         .p2 = { .dot_limit = 225000,
368                 .p2_slow = 7, .p2_fast = 7 },
369 };
370
371 static const intel_limit_t intel_limits_vlv = {
372          /*
373           * These are the data rate limits (measured in fast clocks)
374           * since those are the strictest limits we have. The fast
375           * clock and actual rate limits are more relaxed, so checking
376           * them would make no difference.
377           */
378         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
379         .vco = { .min = 4000000, .max = 6000000 },
380         .n = { .min = 1, .max = 7 },
381         .m1 = { .min = 2, .max = 3 },
382         .m2 = { .min = 11, .max = 156 },
383         .p1 = { .min = 2, .max = 3 },
384         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
385 };
386
387 static const intel_limit_t intel_limits_chv = {
388         /*
389          * These are the data rate limits (measured in fast clocks)
390          * since those are the strictest limits we have.  The fast
391          * clock and actual rate limits are more relaxed, so checking
392          * them would make no difference.
393          */
394         .dot = { .min = 25000 * 5, .max = 540000 * 5},
395         .vco = { .min = 4800000, .max = 6480000 },
396         .n = { .min = 1, .max = 1 },
397         .m1 = { .min = 2, .max = 2 },
398         .m2 = { .min = 24 << 22, .max = 175 << 22 },
399         .p1 = { .min = 2, .max = 4 },
400         .p2 = { .p2_slow = 1, .p2_fast = 14 },
401 };
402
403 static void vlv_clock(int refclk, intel_clock_t *clock)
404 {
405         clock->m = clock->m1 * clock->m2;
406         clock->p = clock->p1 * clock->p2;
407         if (WARN_ON(clock->n == 0 || clock->p == 0))
408                 return;
409         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
410         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
411 }
412
413 /**
414  * Returns whether any output on the specified pipe is of the specified type
415  */
416 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
417 {
418         struct drm_device *dev = crtc->base.dev;
419         struct intel_encoder *encoder;
420
421         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
422                 if (encoder->type == type)
423                         return true;
424
425         return false;
426 }
427
428 /**
429  * Returns whether any output on the specified pipe will have the specified
430  * type after a staged modeset is complete, i.e., the same as
431  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
432  * encoder->crtc.
433  */
434 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
435 {
436         struct drm_device *dev = crtc->base.dev;
437         struct intel_encoder *encoder;
438
439         for_each_intel_encoder(dev, encoder)
440                 if (encoder->new_crtc == crtc && encoder->type == type)
441                         return true;
442
443         return false;
444 }
445
446 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
447                                                 int refclk)
448 {
449         struct drm_device *dev = crtc->base.dev;
450         const intel_limit_t *limit;
451
452         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
453                 if (intel_is_dual_link_lvds(dev)) {
454                         if (refclk == 100000)
455                                 limit = &intel_limits_ironlake_dual_lvds_100m;
456                         else
457                                 limit = &intel_limits_ironlake_dual_lvds;
458                 } else {
459                         if (refclk == 100000)
460                                 limit = &intel_limits_ironlake_single_lvds_100m;
461                         else
462                                 limit = &intel_limits_ironlake_single_lvds;
463                 }
464         } else
465                 limit = &intel_limits_ironlake_dac;
466
467         return limit;
468 }
469
470 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
471 {
472         struct drm_device *dev = crtc->base.dev;
473         const intel_limit_t *limit;
474
475         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
476                 if (intel_is_dual_link_lvds(dev))
477                         limit = &intel_limits_g4x_dual_channel_lvds;
478                 else
479                         limit = &intel_limits_g4x_single_channel_lvds;
480         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
481                    intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
482                 limit = &intel_limits_g4x_hdmi;
483         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
484                 limit = &intel_limits_g4x_sdvo;
485         } else /* The option is for other outputs */
486                 limit = &intel_limits_i9xx_sdvo;
487
488         return limit;
489 }
490
491 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
492 {
493         struct drm_device *dev = crtc->base.dev;
494         const intel_limit_t *limit;
495
496         if (HAS_PCH_SPLIT(dev))
497                 limit = intel_ironlake_limit(crtc, refclk);
498         else if (IS_G4X(dev)) {
499                 limit = intel_g4x_limit(crtc);
500         } else if (IS_PINEVIEW(dev)) {
501                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
502                         limit = &intel_limits_pineview_lvds;
503                 else
504                         limit = &intel_limits_pineview_sdvo;
505         } else if (IS_CHERRYVIEW(dev)) {
506                 limit = &intel_limits_chv;
507         } else if (IS_VALLEYVIEW(dev)) {
508                 limit = &intel_limits_vlv;
509         } else if (!IS_GEN2(dev)) {
510                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
511                         limit = &intel_limits_i9xx_lvds;
512                 else
513                         limit = &intel_limits_i9xx_sdvo;
514         } else {
515                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
516                         limit = &intel_limits_i8xx_lvds;
517                 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
518                         limit = &intel_limits_i8xx_dvo;
519                 else
520                         limit = &intel_limits_i8xx_dac;
521         }
522         return limit;
523 }
524
525 /* m1 is reserved as 0 in Pineview, n is a ring counter */
526 static void pineview_clock(int refclk, intel_clock_t *clock)
527 {
528         clock->m = clock->m2 + 2;
529         clock->p = clock->p1 * clock->p2;
530         if (WARN_ON(clock->n == 0 || clock->p == 0))
531                 return;
532         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
533         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
534 }
535
536 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
537 {
538         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
539 }
540
541 static void i9xx_clock(int refclk, intel_clock_t *clock)
542 {
543         clock->m = i9xx_dpll_compute_m(clock);
544         clock->p = clock->p1 * clock->p2;
545         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
546                 return;
547         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
548         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
549 }
550
551 static void chv_clock(int refclk, intel_clock_t *clock)
552 {
553         clock->m = clock->m1 * clock->m2;
554         clock->p = clock->p1 * clock->p2;
555         if (WARN_ON(clock->n == 0 || clock->p == 0))
556                 return;
557         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
558                         clock->n << 22);
559         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
560 }
561
562 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
563 /**
564  * Returns whether the given set of divisors are valid for a given refclk with
565  * the given connectors.
566  */
567
568 static bool intel_PLL_is_valid(struct drm_device *dev,
569                                const intel_limit_t *limit,
570                                const intel_clock_t *clock)
571 {
572         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
573                 INTELPllInvalid("n out of range\n");
574         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
575                 INTELPllInvalid("p1 out of range\n");
576         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
577                 INTELPllInvalid("m2 out of range\n");
578         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
579                 INTELPllInvalid("m1 out of range\n");
580
581         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
582                 if (clock->m1 <= clock->m2)
583                         INTELPllInvalid("m1 <= m2\n");
584
585         if (!IS_VALLEYVIEW(dev)) {
586                 if (clock->p < limit->p.min || limit->p.max < clock->p)
587                         INTELPllInvalid("p out of range\n");
588                 if (clock->m < limit->m.min || limit->m.max < clock->m)
589                         INTELPllInvalid("m out of range\n");
590         }
591
592         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
593                 INTELPllInvalid("vco out of range\n");
594         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
595          * connector, etc., rather than just a single range.
596          */
597         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
598                 INTELPllInvalid("dot out of range\n");
599
600         return true;
601 }
602
603 static bool
604 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
605                     int target, int refclk, intel_clock_t *match_clock,
606                     intel_clock_t *best_clock)
607 {
608         struct drm_device *dev = crtc->base.dev;
609         intel_clock_t clock;
610         int err = target;
611
612         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
613                 /*
614                  * For LVDS just rely on its current settings for dual-channel.
615                  * We haven't figured out how to reliably set up different
616                  * single/dual channel state, if we even can.
617                  */
618                 if (intel_is_dual_link_lvds(dev))
619                         clock.p2 = limit->p2.p2_fast;
620                 else
621                         clock.p2 = limit->p2.p2_slow;
622         } else {
623                 if (target < limit->p2.dot_limit)
624                         clock.p2 = limit->p2.p2_slow;
625                 else
626                         clock.p2 = limit->p2.p2_fast;
627         }
628
629         memset(best_clock, 0, sizeof(*best_clock));
630
631         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
632              clock.m1++) {
633                 for (clock.m2 = limit->m2.min;
634                      clock.m2 <= limit->m2.max; clock.m2++) {
635                         if (clock.m2 >= clock.m1)
636                                 break;
637                         for (clock.n = limit->n.min;
638                              clock.n <= limit->n.max; clock.n++) {
639                                 for (clock.p1 = limit->p1.min;
640                                         clock.p1 <= limit->p1.max; clock.p1++) {
641                                         int this_err;
642
643                                         i9xx_clock(refclk, &clock);
644                                         if (!intel_PLL_is_valid(dev, limit,
645                                                                 &clock))
646                                                 continue;
647                                         if (match_clock &&
648                                             clock.p != match_clock->p)
649                                                 continue;
650
651                                         this_err = abs(clock.dot - target);
652                                         if (this_err < err) {
653                                                 *best_clock = clock;
654                                                 err = this_err;
655                                         }
656                                 }
657                         }
658                 }
659         }
660
661         return (err != target);
662 }
663
664 static bool
665 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
666                    int target, int refclk, intel_clock_t *match_clock,
667                    intel_clock_t *best_clock)
668 {
669         struct drm_device *dev = crtc->base.dev;
670         intel_clock_t clock;
671         int err = target;
672
673         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
674                 /*
675                  * For LVDS just rely on its current settings for dual-channel.
676                  * We haven't figured out how to reliably set up different
677                  * single/dual channel state, if we even can.
678                  */
679                 if (intel_is_dual_link_lvds(dev))
680                         clock.p2 = limit->p2.p2_fast;
681                 else
682                         clock.p2 = limit->p2.p2_slow;
683         } else {
684                 if (target < limit->p2.dot_limit)
685                         clock.p2 = limit->p2.p2_slow;
686                 else
687                         clock.p2 = limit->p2.p2_fast;
688         }
689
690         memset(best_clock, 0, sizeof(*best_clock));
691
692         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
693              clock.m1++) {
694                 for (clock.m2 = limit->m2.min;
695                      clock.m2 <= limit->m2.max; clock.m2++) {
696                         for (clock.n = limit->n.min;
697                              clock.n <= limit->n.max; clock.n++) {
698                                 for (clock.p1 = limit->p1.min;
699                                         clock.p1 <= limit->p1.max; clock.p1++) {
700                                         int this_err;
701
702                                         pineview_clock(refclk, &clock);
703                                         if (!intel_PLL_is_valid(dev, limit,
704                                                                 &clock))
705                                                 continue;
706                                         if (match_clock &&
707                                             clock.p != match_clock->p)
708                                                 continue;
709
710                                         this_err = abs(clock.dot - target);
711                                         if (this_err < err) {
712                                                 *best_clock = clock;
713                                                 err = this_err;
714                                         }
715                                 }
716                         }
717                 }
718         }
719
720         return (err != target);
721 }
722
723 static bool
724 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
725                    int target, int refclk, intel_clock_t *match_clock,
726                    intel_clock_t *best_clock)
727 {
728         struct drm_device *dev = crtc->base.dev;
729         intel_clock_t clock;
730         int max_n;
731         bool found;
732         /* approximately equals target * 0.00585 */
733         int err_most = (target >> 8) + (target >> 9);
734         found = false;
735
736         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
737                 if (intel_is_dual_link_lvds(dev))
738                         clock.p2 = limit->p2.p2_fast;
739                 else
740                         clock.p2 = limit->p2.p2_slow;
741         } else {
742                 if (target < limit->p2.dot_limit)
743                         clock.p2 = limit->p2.p2_slow;
744                 else
745                         clock.p2 = limit->p2.p2_fast;
746         }
747
748         memset(best_clock, 0, sizeof(*best_clock));
749         max_n = limit->n.max;
750         /* based on hardware requirement, prefer smaller n to precision */
751         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
752                 /* based on hardware requirement, prefere larger m1,m2 */
753                 for (clock.m1 = limit->m1.max;
754                      clock.m1 >= limit->m1.min; clock.m1--) {
755                         for (clock.m2 = limit->m2.max;
756                              clock.m2 >= limit->m2.min; clock.m2--) {
757                                 for (clock.p1 = limit->p1.max;
758                                      clock.p1 >= limit->p1.min; clock.p1--) {
759                                         int this_err;
760
761                                         i9xx_clock(refclk, &clock);
762                                         if (!intel_PLL_is_valid(dev, limit,
763                                                                 &clock))
764                                                 continue;
765
766                                         this_err = abs(clock.dot - target);
767                                         if (this_err < err_most) {
768                                                 *best_clock = clock;
769                                                 err_most = this_err;
770                                                 max_n = clock.n;
771                                                 found = true;
772                                         }
773                                 }
774                         }
775                 }
776         }
777         return found;
778 }
779
780 /*
781  * Check if the calculated PLL configuration is more optimal compared to the
782  * best configuration and error found so far. Return the calculated error.
783  */
784 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
785                                const intel_clock_t *calculated_clock,
786                                const intel_clock_t *best_clock,
787                                unsigned int best_error_ppm,
788                                unsigned int *error_ppm)
789 {
790         /*
791          * For CHV ignore the error and consider only the P value.
792          * Prefer a bigger P value based on HW requirements.
793          */
794         if (IS_CHERRYVIEW(dev)) {
795                 *error_ppm = 0;
796
797                 return calculated_clock->p > best_clock->p;
798         }
799
800         if (WARN_ON_ONCE(!target_freq))
801                 return false;
802
803         *error_ppm = div_u64(1000000ULL *
804                                 abs(target_freq - calculated_clock->dot),
805                              target_freq);
806         /*
807          * Prefer a better P value over a better (smaller) error if the error
808          * is small. Ensure this preference for future configurations too by
809          * setting the error to 0.
810          */
811         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
812                 *error_ppm = 0;
813
814                 return true;
815         }
816
817         return *error_ppm + 10 < best_error_ppm;
818 }
819
820 static bool
821 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
822                    int target, int refclk, intel_clock_t *match_clock,
823                    intel_clock_t *best_clock)
824 {
825         struct drm_device *dev = crtc->base.dev;
826         intel_clock_t clock;
827         unsigned int bestppm = 1000000;
828         /* min update 19.2 MHz */
829         int max_n = min(limit->n.max, refclk / 19200);
830         bool found = false;
831
832         target *= 5; /* fast clock */
833
834         memset(best_clock, 0, sizeof(*best_clock));
835
836         /* based on hardware requirement, prefer smaller n to precision */
837         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
838                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
839                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
840                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841                                 clock.p = clock.p1 * clock.p2;
842                                 /* based on hardware requirement, prefer bigger m1,m2 values */
843                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
844                                         unsigned int ppm;
845
846                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
847                                                                      refclk * clock.m1);
848
849                                         vlv_clock(refclk, &clock);
850
851                                         if (!intel_PLL_is_valid(dev, limit,
852                                                                 &clock))
853                                                 continue;
854
855                                         if (!vlv_PLL_is_optimal(dev, target,
856                                                                 &clock,
857                                                                 best_clock,
858                                                                 bestppm, &ppm))
859                                                 continue;
860
861                                         *best_clock = clock;
862                                         bestppm = ppm;
863                                         found = true;
864                                 }
865                         }
866                 }
867         }
868
869         return found;
870 }
871
872 static bool
873 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
874                    int target, int refclk, intel_clock_t *match_clock,
875                    intel_clock_t *best_clock)
876 {
877         struct drm_device *dev = crtc->base.dev;
878         unsigned int best_error_ppm;
879         intel_clock_t clock;
880         uint64_t m2;
881         int found = false;
882
883         memset(best_clock, 0, sizeof(*best_clock));
884         best_error_ppm = 1000000;
885
886         /*
887          * Based on hardware doc, the n always set to 1, and m1 always
888          * set to 2.  If requires to support 200Mhz refclk, we need to
889          * revisit this because n may not 1 anymore.
890          */
891         clock.n = 1, clock.m1 = 2;
892         target *= 5;    /* fast clock */
893
894         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
895                 for (clock.p2 = limit->p2.p2_fast;
896                                 clock.p2 >= limit->p2.p2_slow;
897                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
898                         unsigned int error_ppm;
899
900                         clock.p = clock.p1 * clock.p2;
901
902                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
903                                         clock.n) << 22, refclk * clock.m1);
904
905                         if (m2 > INT_MAX/clock.m1)
906                                 continue;
907
908                         clock.m2 = m2;
909
910                         chv_clock(refclk, &clock);
911
912                         if (!intel_PLL_is_valid(dev, limit, &clock))
913                                 continue;
914
915                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
916                                                 best_error_ppm, &error_ppm))
917                                 continue;
918
919                         *best_clock = clock;
920                         best_error_ppm = error_ppm;
921                         found = true;
922                 }
923         }
924
925         return found;
926 }
927
928 bool intel_crtc_active(struct drm_crtc *crtc)
929 {
930         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
931
932         /* Be paranoid as we can arrive here with only partial
933          * state retrieved from the hardware during setup.
934          *
935          * We can ditch the adjusted_mode.crtc_clock check as soon
936          * as Haswell has gained clock readout/fastboot support.
937          *
938          * We can ditch the crtc->primary->fb check as soon as we can
939          * properly reconstruct framebuffers.
940          *
941          * FIXME: The intel_crtc->active here should be switched to
942          * crtc->state->active once we have proper CRTC states wired up
943          * for atomic.
944          */
945         return intel_crtc->active && crtc->primary->state->fb &&
946                 intel_crtc->config->base.adjusted_mode.crtc_clock;
947 }
948
949 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
950                                              enum pipe pipe)
951 {
952         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
953         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
954
955         return intel_crtc->config->cpu_transcoder;
956 }
957
958 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
959 {
960         struct drm_i915_private *dev_priv = dev->dev_private;
961         u32 reg = PIPEDSL(pipe);
962         u32 line1, line2;
963         u32 line_mask;
964
965         if (IS_GEN2(dev))
966                 line_mask = DSL_LINEMASK_GEN2;
967         else
968                 line_mask = DSL_LINEMASK_GEN3;
969
970         line1 = I915_READ(reg) & line_mask;
971         mdelay(5);
972         line2 = I915_READ(reg) & line_mask;
973
974         return line1 == line2;
975 }
976
977 /*
978  * intel_wait_for_pipe_off - wait for pipe to turn off
979  * @crtc: crtc whose pipe to wait for
980  *
981  * After disabling a pipe, we can't wait for vblank in the usual way,
982  * spinning on the vblank interrupt status bit, since we won't actually
983  * see an interrupt when the pipe is disabled.
984  *
985  * On Gen4 and above:
986  *   wait for the pipe register state bit to turn off
987  *
988  * Otherwise:
989  *   wait for the display line value to settle (it usually
990  *   ends up stopping at the start of the next frame).
991  *
992  */
993 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
994 {
995         struct drm_device *dev = crtc->base.dev;
996         struct drm_i915_private *dev_priv = dev->dev_private;
997         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
998         enum pipe pipe = crtc->pipe;
999
1000         if (INTEL_INFO(dev)->gen >= 4) {
1001                 int reg = PIPECONF(cpu_transcoder);
1002
1003                 /* Wait for the Pipe State to go off */
1004                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1005                              100))
1006                         WARN(1, "pipe_off wait timed out\n");
1007         } else {
1008                 /* Wait for the display line to settle */
1009                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1010                         WARN(1, "pipe_off wait timed out\n");
1011         }
1012 }
1013
1014 /*
1015  * ibx_digital_port_connected - is the specified port connected?
1016  * @dev_priv: i915 private structure
1017  * @port: the port to test
1018  *
1019  * Returns true if @port is connected, false otherwise.
1020  */
1021 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1022                                 struct intel_digital_port *port)
1023 {
1024         u32 bit;
1025
1026         if (HAS_PCH_IBX(dev_priv->dev)) {
1027                 switch (port->port) {
1028                 case PORT_B:
1029                         bit = SDE_PORTB_HOTPLUG;
1030                         break;
1031                 case PORT_C:
1032                         bit = SDE_PORTC_HOTPLUG;
1033                         break;
1034                 case PORT_D:
1035                         bit = SDE_PORTD_HOTPLUG;
1036                         break;
1037                 default:
1038                         return true;
1039                 }
1040         } else {
1041                 switch (port->port) {
1042                 case PORT_B:
1043                         bit = SDE_PORTB_HOTPLUG_CPT;
1044                         break;
1045                 case PORT_C:
1046                         bit = SDE_PORTC_HOTPLUG_CPT;
1047                         break;
1048                 case PORT_D:
1049                         bit = SDE_PORTD_HOTPLUG_CPT;
1050                         break;
1051                 default:
1052                         return true;
1053                 }
1054         }
1055
1056         return I915_READ(SDEISR) & bit;
1057 }
1058
1059 static const char *state_string(bool enabled)
1060 {
1061         return enabled ? "on" : "off";
1062 }
1063
1064 /* Only for pre-ILK configs */
1065 void assert_pll(struct drm_i915_private *dev_priv,
1066                 enum pipe pipe, bool state)
1067 {
1068         int reg;
1069         u32 val;
1070         bool cur_state;
1071
1072         reg = DPLL(pipe);
1073         val = I915_READ(reg);
1074         cur_state = !!(val & DPLL_VCO_ENABLE);
1075         I915_STATE_WARN(cur_state != state,
1076              "PLL state assertion failure (expected %s, current %s)\n",
1077              state_string(state), state_string(cur_state));
1078 }
1079
1080 /* XXX: the dsi pll is shared between MIPI DSI ports */
1081 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1082 {
1083         u32 val;
1084         bool cur_state;
1085
1086         mutex_lock(&dev_priv->dpio_lock);
1087         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1088         mutex_unlock(&dev_priv->dpio_lock);
1089
1090         cur_state = val & DSI_PLL_VCO_EN;
1091         I915_STATE_WARN(cur_state != state,
1092              "DSI PLL state assertion failure (expected %s, current %s)\n",
1093              state_string(state), state_string(cur_state));
1094 }
1095 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1096 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1097
1098 struct intel_shared_dpll *
1099 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1100 {
1101         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1102
1103         if (crtc->config->shared_dpll < 0)
1104                 return NULL;
1105
1106         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1107 }
1108
1109 /* For ILK+ */
1110 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1111                         struct intel_shared_dpll *pll,
1112                         bool state)
1113 {
1114         bool cur_state;
1115         struct intel_dpll_hw_state hw_state;
1116
1117         if (WARN (!pll,
1118                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1119                 return;
1120
1121         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1122         I915_STATE_WARN(cur_state != state,
1123              "%s assertion failure (expected %s, current %s)\n",
1124              pll->name, state_string(state), state_string(cur_state));
1125 }
1126
1127 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1128                           enum pipe pipe, bool state)
1129 {
1130         int reg;
1131         u32 val;
1132         bool cur_state;
1133         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1134                                                                       pipe);
1135
1136         if (HAS_DDI(dev_priv->dev)) {
1137                 /* DDI does not have a specific FDI_TX register */
1138                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1139                 val = I915_READ(reg);
1140                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1141         } else {
1142                 reg = FDI_TX_CTL(pipe);
1143                 val = I915_READ(reg);
1144                 cur_state = !!(val & FDI_TX_ENABLE);
1145         }
1146         I915_STATE_WARN(cur_state != state,
1147              "FDI TX state assertion failure (expected %s, current %s)\n",
1148              state_string(state), state_string(cur_state));
1149 }
1150 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1151 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1152
1153 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1154                           enum pipe pipe, bool state)
1155 {
1156         int reg;
1157         u32 val;
1158         bool cur_state;
1159
1160         reg = FDI_RX_CTL(pipe);
1161         val = I915_READ(reg);
1162         cur_state = !!(val & FDI_RX_ENABLE);
1163         I915_STATE_WARN(cur_state != state,
1164              "FDI RX state assertion failure (expected %s, current %s)\n",
1165              state_string(state), state_string(cur_state));
1166 }
1167 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1168 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1169
1170 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1171                                       enum pipe pipe)
1172 {
1173         int reg;
1174         u32 val;
1175
1176         /* ILK FDI PLL is always enabled */
1177         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1178                 return;
1179
1180         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1181         if (HAS_DDI(dev_priv->dev))
1182                 return;
1183
1184         reg = FDI_TX_CTL(pipe);
1185         val = I915_READ(reg);
1186         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1187 }
1188
1189 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1190                        enum pipe pipe, bool state)
1191 {
1192         int reg;
1193         u32 val;
1194         bool cur_state;
1195
1196         reg = FDI_RX_CTL(pipe);
1197         val = I915_READ(reg);
1198         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1199         I915_STATE_WARN(cur_state != state,
1200              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1201              state_string(state), state_string(cur_state));
1202 }
1203
1204 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1205                            enum pipe pipe)
1206 {
1207         struct drm_device *dev = dev_priv->dev;
1208         int pp_reg;
1209         u32 val;
1210         enum pipe panel_pipe = PIPE_A;
1211         bool locked = true;
1212
1213         if (WARN_ON(HAS_DDI(dev)))
1214                 return;
1215
1216         if (HAS_PCH_SPLIT(dev)) {
1217                 u32 port_sel;
1218
1219                 pp_reg = PCH_PP_CONTROL;
1220                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1221
1222                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1223                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1224                         panel_pipe = PIPE_B;
1225                 /* XXX: else fix for eDP */
1226         } else if (IS_VALLEYVIEW(dev)) {
1227                 /* presumably write lock depends on pipe, not port select */
1228                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1229                 panel_pipe = pipe;
1230         } else {
1231                 pp_reg = PP_CONTROL;
1232                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1233                         panel_pipe = PIPE_B;
1234         }
1235
1236         val = I915_READ(pp_reg);
1237         if (!(val & PANEL_POWER_ON) ||
1238             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1239                 locked = false;
1240
1241         I915_STATE_WARN(panel_pipe == pipe && locked,
1242              "panel assertion failure, pipe %c regs locked\n",
1243              pipe_name(pipe));
1244 }
1245
1246 static void assert_cursor(struct drm_i915_private *dev_priv,
1247                           enum pipe pipe, bool state)
1248 {
1249         struct drm_device *dev = dev_priv->dev;
1250         bool cur_state;
1251
1252         if (IS_845G(dev) || IS_I865G(dev))
1253                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1254         else
1255                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1256
1257         I915_STATE_WARN(cur_state != state,
1258              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1259              pipe_name(pipe), state_string(state), state_string(cur_state));
1260 }
1261 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1262 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1263
1264 void assert_pipe(struct drm_i915_private *dev_priv,
1265                  enum pipe pipe, bool state)
1266 {
1267         int reg;
1268         u32 val;
1269         bool cur_state;
1270         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1271                                                                       pipe);
1272
1273         /* if we need the pipe quirk it must be always on */
1274         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1275             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1276                 state = true;
1277
1278         if (!intel_display_power_is_enabled(dev_priv,
1279                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1280                 cur_state = false;
1281         } else {
1282                 reg = PIPECONF(cpu_transcoder);
1283                 val = I915_READ(reg);
1284                 cur_state = !!(val & PIPECONF_ENABLE);
1285         }
1286
1287         I915_STATE_WARN(cur_state != state,
1288              "pipe %c assertion failure (expected %s, current %s)\n",
1289              pipe_name(pipe), state_string(state), state_string(cur_state));
1290 }
1291
1292 static void assert_plane(struct drm_i915_private *dev_priv,
1293                          enum plane plane, bool state)
1294 {
1295         int reg;
1296         u32 val;
1297         bool cur_state;
1298
1299         reg = DSPCNTR(plane);
1300         val = I915_READ(reg);
1301         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1302         I915_STATE_WARN(cur_state != state,
1303              "plane %c assertion failure (expected %s, current %s)\n",
1304              plane_name(plane), state_string(state), state_string(cur_state));
1305 }
1306
1307 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1308 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1309
1310 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1311                                    enum pipe pipe)
1312 {
1313         struct drm_device *dev = dev_priv->dev;
1314         int reg, i;
1315         u32 val;
1316         int cur_pipe;
1317
1318         /* Primary planes are fixed to pipes on gen4+ */
1319         if (INTEL_INFO(dev)->gen >= 4) {
1320                 reg = DSPCNTR(pipe);
1321                 val = I915_READ(reg);
1322                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1323                      "plane %c assertion failure, should be disabled but not\n",
1324                      plane_name(pipe));
1325                 return;
1326         }
1327
1328         /* Need to check both planes against the pipe */
1329         for_each_pipe(dev_priv, i) {
1330                 reg = DSPCNTR(i);
1331                 val = I915_READ(reg);
1332                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1333                         DISPPLANE_SEL_PIPE_SHIFT;
1334                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1335                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1336                      plane_name(i), pipe_name(pipe));
1337         }
1338 }
1339
1340 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1341                                     enum pipe pipe)
1342 {
1343         struct drm_device *dev = dev_priv->dev;
1344         int reg, sprite;
1345         u32 val;
1346
1347         if (INTEL_INFO(dev)->gen >= 9) {
1348                 for_each_sprite(dev_priv, pipe, sprite) {
1349                         val = I915_READ(PLANE_CTL(pipe, sprite));
1350                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1351                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1352                              sprite, pipe_name(pipe));
1353                 }
1354         } else if (IS_VALLEYVIEW(dev)) {
1355                 for_each_sprite(dev_priv, pipe, sprite) {
1356                         reg = SPCNTR(pipe, sprite);
1357                         val = I915_READ(reg);
1358                         I915_STATE_WARN(val & SP_ENABLE,
1359                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1360                              sprite_name(pipe, sprite), pipe_name(pipe));
1361                 }
1362         } else if (INTEL_INFO(dev)->gen >= 7) {
1363                 reg = SPRCTL(pipe);
1364                 val = I915_READ(reg);
1365                 I915_STATE_WARN(val & SPRITE_ENABLE,
1366                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1367                      plane_name(pipe), pipe_name(pipe));
1368         } else if (INTEL_INFO(dev)->gen >= 5) {
1369                 reg = DVSCNTR(pipe);
1370                 val = I915_READ(reg);
1371                 I915_STATE_WARN(val & DVS_ENABLE,
1372                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1373                      plane_name(pipe), pipe_name(pipe));
1374         }
1375 }
1376
1377 static void assert_vblank_disabled(struct drm_crtc *crtc)
1378 {
1379         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1380                 drm_crtc_vblank_put(crtc);
1381 }
1382
1383 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1384 {
1385         u32 val;
1386         bool enabled;
1387
1388         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1389
1390         val = I915_READ(PCH_DREF_CONTROL);
1391         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1392                             DREF_SUPERSPREAD_SOURCE_MASK));
1393         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1394 }
1395
1396 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1397                                            enum pipe pipe)
1398 {
1399         int reg;
1400         u32 val;
1401         bool enabled;
1402
1403         reg = PCH_TRANSCONF(pipe);
1404         val = I915_READ(reg);
1405         enabled = !!(val & TRANS_ENABLE);
1406         I915_STATE_WARN(enabled,
1407              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1408              pipe_name(pipe));
1409 }
1410
1411 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1412                             enum pipe pipe, u32 port_sel, u32 val)
1413 {
1414         if ((val & DP_PORT_EN) == 0)
1415                 return false;
1416
1417         if (HAS_PCH_CPT(dev_priv->dev)) {
1418                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1419                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1420                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1421                         return false;
1422         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1423                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1424                         return false;
1425         } else {
1426                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1427                         return false;
1428         }
1429         return true;
1430 }
1431
1432 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1433                               enum pipe pipe, u32 val)
1434 {
1435         if ((val & SDVO_ENABLE) == 0)
1436                 return false;
1437
1438         if (HAS_PCH_CPT(dev_priv->dev)) {
1439                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1440                         return false;
1441         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1442                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1443                         return false;
1444         } else {
1445                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1446                         return false;
1447         }
1448         return true;
1449 }
1450
1451 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1452                               enum pipe pipe, u32 val)
1453 {
1454         if ((val & LVDS_PORT_EN) == 0)
1455                 return false;
1456
1457         if (HAS_PCH_CPT(dev_priv->dev)) {
1458                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1459                         return false;
1460         } else {
1461                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1462                         return false;
1463         }
1464         return true;
1465 }
1466
1467 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1468                               enum pipe pipe, u32 val)
1469 {
1470         if ((val & ADPA_DAC_ENABLE) == 0)
1471                 return false;
1472         if (HAS_PCH_CPT(dev_priv->dev)) {
1473                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1474                         return false;
1475         } else {
1476                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1477                         return false;
1478         }
1479         return true;
1480 }
1481
1482 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1483                                    enum pipe pipe, int reg, u32 port_sel)
1484 {
1485         u32 val = I915_READ(reg);
1486         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1487              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1488              reg, pipe_name(pipe));
1489
1490         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1491              && (val & DP_PIPEB_SELECT),
1492              "IBX PCH dp port still using transcoder B\n");
1493 }
1494
1495 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1496                                      enum pipe pipe, int reg)
1497 {
1498         u32 val = I915_READ(reg);
1499         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1500              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1501              reg, pipe_name(pipe));
1502
1503         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1504              && (val & SDVO_PIPE_B_SELECT),
1505              "IBX PCH hdmi port still using transcoder B\n");
1506 }
1507
1508 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1509                                       enum pipe pipe)
1510 {
1511         int reg;
1512         u32 val;
1513
1514         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1515         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1516         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1517
1518         reg = PCH_ADPA;
1519         val = I915_READ(reg);
1520         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1521              "PCH VGA enabled on transcoder %c, should be disabled\n",
1522              pipe_name(pipe));
1523
1524         reg = PCH_LVDS;
1525         val = I915_READ(reg);
1526         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1527              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1528              pipe_name(pipe));
1529
1530         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1531         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1532         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1533 }
1534
1535 static void intel_init_dpio(struct drm_device *dev)
1536 {
1537         struct drm_i915_private *dev_priv = dev->dev_private;
1538
1539         if (!IS_VALLEYVIEW(dev))
1540                 return;
1541
1542         /*
1543          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1544          * CHV x1 PHY (DP/HDMI D)
1545          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1546          */
1547         if (IS_CHERRYVIEW(dev)) {
1548                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1549                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1550         } else {
1551                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1552         }
1553 }
1554
1555 static void vlv_enable_pll(struct intel_crtc *crtc,
1556                            const struct intel_crtc_state *pipe_config)
1557 {
1558         struct drm_device *dev = crtc->base.dev;
1559         struct drm_i915_private *dev_priv = dev->dev_private;
1560         int reg = DPLL(crtc->pipe);
1561         u32 dpll = pipe_config->dpll_hw_state.dpll;
1562
1563         assert_pipe_disabled(dev_priv, crtc->pipe);
1564
1565         /* No really, not for ILK+ */
1566         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1567
1568         /* PLL is protected by panel, make sure we can write it */
1569         if (IS_MOBILE(dev_priv->dev))
1570                 assert_panel_unlocked(dev_priv, crtc->pipe);
1571
1572         I915_WRITE(reg, dpll);
1573         POSTING_READ(reg);
1574         udelay(150);
1575
1576         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1577                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1578
1579         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1580         POSTING_READ(DPLL_MD(crtc->pipe));
1581
1582         /* We do this three times for luck */
1583         I915_WRITE(reg, dpll);
1584         POSTING_READ(reg);
1585         udelay(150); /* wait for warmup */
1586         I915_WRITE(reg, dpll);
1587         POSTING_READ(reg);
1588         udelay(150); /* wait for warmup */
1589         I915_WRITE(reg, dpll);
1590         POSTING_READ(reg);
1591         udelay(150); /* wait for warmup */
1592 }
1593
1594 static void chv_enable_pll(struct intel_crtc *crtc,
1595                            const struct intel_crtc_state *pipe_config)
1596 {
1597         struct drm_device *dev = crtc->base.dev;
1598         struct drm_i915_private *dev_priv = dev->dev_private;
1599         int pipe = crtc->pipe;
1600         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1601         u32 tmp;
1602
1603         assert_pipe_disabled(dev_priv, crtc->pipe);
1604
1605         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1606
1607         mutex_lock(&dev_priv->dpio_lock);
1608
1609         /* Enable back the 10bit clock to display controller */
1610         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1611         tmp |= DPIO_DCLKP_EN;
1612         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1613
1614         /*
1615          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1616          */
1617         udelay(1);
1618
1619         /* Enable PLL */
1620         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1621
1622         /* Check PLL is locked */
1623         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1624                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1625
1626         /* not sure when this should be written */
1627         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1628         POSTING_READ(DPLL_MD(pipe));
1629
1630         mutex_unlock(&dev_priv->dpio_lock);
1631 }
1632
1633 static int intel_num_dvo_pipes(struct drm_device *dev)
1634 {
1635         struct intel_crtc *crtc;
1636         int count = 0;
1637
1638         for_each_intel_crtc(dev, crtc)
1639                 count += crtc->active &&
1640                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1641
1642         return count;
1643 }
1644
1645 static void i9xx_enable_pll(struct intel_crtc *crtc)
1646 {
1647         struct drm_device *dev = crtc->base.dev;
1648         struct drm_i915_private *dev_priv = dev->dev_private;
1649         int reg = DPLL(crtc->pipe);
1650         u32 dpll = crtc->config->dpll_hw_state.dpll;
1651
1652         assert_pipe_disabled(dev_priv, crtc->pipe);
1653
1654         /* No really, not for ILK+ */
1655         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1656
1657         /* PLL is protected by panel, make sure we can write it */
1658         if (IS_MOBILE(dev) && !IS_I830(dev))
1659                 assert_panel_unlocked(dev_priv, crtc->pipe);
1660
1661         /* Enable DVO 2x clock on both PLLs if necessary */
1662         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1663                 /*
1664                  * It appears to be important that we don't enable this
1665                  * for the current pipe before otherwise configuring the
1666                  * PLL. No idea how this should be handled if multiple
1667                  * DVO outputs are enabled simultaneosly.
1668                  */
1669                 dpll |= DPLL_DVO_2X_MODE;
1670                 I915_WRITE(DPLL(!crtc->pipe),
1671                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1672         }
1673
1674         /* Wait for the clocks to stabilize. */
1675         POSTING_READ(reg);
1676         udelay(150);
1677
1678         if (INTEL_INFO(dev)->gen >= 4) {
1679                 I915_WRITE(DPLL_MD(crtc->pipe),
1680                            crtc->config->dpll_hw_state.dpll_md);
1681         } else {
1682                 /* The pixel multiplier can only be updated once the
1683                  * DPLL is enabled and the clocks are stable.
1684                  *
1685                  * So write it again.
1686                  */
1687                 I915_WRITE(reg, dpll);
1688         }
1689
1690         /* We do this three times for luck */
1691         I915_WRITE(reg, dpll);
1692         POSTING_READ(reg);
1693         udelay(150); /* wait for warmup */
1694         I915_WRITE(reg, dpll);
1695         POSTING_READ(reg);
1696         udelay(150); /* wait for warmup */
1697         I915_WRITE(reg, dpll);
1698         POSTING_READ(reg);
1699         udelay(150); /* wait for warmup */
1700 }
1701
1702 /**
1703  * i9xx_disable_pll - disable a PLL
1704  * @dev_priv: i915 private structure
1705  * @pipe: pipe PLL to disable
1706  *
1707  * Disable the PLL for @pipe, making sure the pipe is off first.
1708  *
1709  * Note!  This is for pre-ILK only.
1710  */
1711 static void i9xx_disable_pll(struct intel_crtc *crtc)
1712 {
1713         struct drm_device *dev = crtc->base.dev;
1714         struct drm_i915_private *dev_priv = dev->dev_private;
1715         enum pipe pipe = crtc->pipe;
1716
1717         /* Disable DVO 2x clock on both PLLs if necessary */
1718         if (IS_I830(dev) &&
1719             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1720             intel_num_dvo_pipes(dev) == 1) {
1721                 I915_WRITE(DPLL(PIPE_B),
1722                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1723                 I915_WRITE(DPLL(PIPE_A),
1724                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1725         }
1726
1727         /* Don't disable pipe or pipe PLLs if needed */
1728         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1729             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1730                 return;
1731
1732         /* Make sure the pipe isn't still relying on us */
1733         assert_pipe_disabled(dev_priv, pipe);
1734
1735         I915_WRITE(DPLL(pipe), 0);
1736         POSTING_READ(DPLL(pipe));
1737 }
1738
1739 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1740 {
1741         u32 val = 0;
1742
1743         /* Make sure the pipe isn't still relying on us */
1744         assert_pipe_disabled(dev_priv, pipe);
1745
1746         /*
1747          * Leave integrated clock source and reference clock enabled for pipe B.
1748          * The latter is needed for VGA hotplug / manual detection.
1749          */
1750         if (pipe == PIPE_B)
1751                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1752         I915_WRITE(DPLL(pipe), val);
1753         POSTING_READ(DPLL(pipe));
1754
1755 }
1756
1757 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1758 {
1759         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1760         u32 val;
1761
1762         /* Make sure the pipe isn't still relying on us */
1763         assert_pipe_disabled(dev_priv, pipe);
1764
1765         /* Set PLL en = 0 */
1766         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1767         if (pipe != PIPE_A)
1768                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1769         I915_WRITE(DPLL(pipe), val);
1770         POSTING_READ(DPLL(pipe));
1771
1772         mutex_lock(&dev_priv->dpio_lock);
1773
1774         /* Disable 10bit clock to display controller */
1775         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1776         val &= ~DPIO_DCLKP_EN;
1777         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1778
1779         /* disable left/right clock distribution */
1780         if (pipe != PIPE_B) {
1781                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1782                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1783                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1784         } else {
1785                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1786                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1787                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1788         }
1789
1790         mutex_unlock(&dev_priv->dpio_lock);
1791 }
1792
1793 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1794                 struct intel_digital_port *dport)
1795 {
1796         u32 port_mask;
1797         int dpll_reg;
1798
1799         switch (dport->port) {
1800         case PORT_B:
1801                 port_mask = DPLL_PORTB_READY_MASK;
1802                 dpll_reg = DPLL(0);
1803                 break;
1804         case PORT_C:
1805                 port_mask = DPLL_PORTC_READY_MASK;
1806                 dpll_reg = DPLL(0);
1807                 break;
1808         case PORT_D:
1809                 port_mask = DPLL_PORTD_READY_MASK;
1810                 dpll_reg = DPIO_PHY_STATUS;
1811                 break;
1812         default:
1813                 BUG();
1814         }
1815
1816         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1817                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1818                      port_name(dport->port), I915_READ(dpll_reg));
1819 }
1820
1821 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1822 {
1823         struct drm_device *dev = crtc->base.dev;
1824         struct drm_i915_private *dev_priv = dev->dev_private;
1825         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1826
1827         if (WARN_ON(pll == NULL))
1828                 return;
1829
1830         WARN_ON(!pll->config.crtc_mask);
1831         if (pll->active == 0) {
1832                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1833                 WARN_ON(pll->on);
1834                 assert_shared_dpll_disabled(dev_priv, pll);
1835
1836                 pll->mode_set(dev_priv, pll);
1837         }
1838 }
1839
1840 /**
1841  * intel_enable_shared_dpll - enable PCH PLL
1842  * @dev_priv: i915 private structure
1843  * @pipe: pipe PLL to enable
1844  *
1845  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1846  * drives the transcoder clock.
1847  */
1848 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1849 {
1850         struct drm_device *dev = crtc->base.dev;
1851         struct drm_i915_private *dev_priv = dev->dev_private;
1852         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1853
1854         if (WARN_ON(pll == NULL))
1855                 return;
1856
1857         if (WARN_ON(pll->config.crtc_mask == 0))
1858                 return;
1859
1860         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1861                       pll->name, pll->active, pll->on,
1862                       crtc->base.base.id);
1863
1864         if (pll->active++) {
1865                 WARN_ON(!pll->on);
1866                 assert_shared_dpll_enabled(dev_priv, pll);
1867                 return;
1868         }
1869         WARN_ON(pll->on);
1870
1871         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1872
1873         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1874         pll->enable(dev_priv, pll);
1875         pll->on = true;
1876 }
1877
1878 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1879 {
1880         struct drm_device *dev = crtc->base.dev;
1881         struct drm_i915_private *dev_priv = dev->dev_private;
1882         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1883
1884         /* PCH only available on ILK+ */
1885         BUG_ON(INTEL_INFO(dev)->gen < 5);
1886         if (WARN_ON(pll == NULL))
1887                return;
1888
1889         if (WARN_ON(pll->config.crtc_mask == 0))
1890                 return;
1891
1892         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1893                       pll->name, pll->active, pll->on,
1894                       crtc->base.base.id);
1895
1896         if (WARN_ON(pll->active == 0)) {
1897                 assert_shared_dpll_disabled(dev_priv, pll);
1898                 return;
1899         }
1900
1901         assert_shared_dpll_enabled(dev_priv, pll);
1902         WARN_ON(!pll->on);
1903         if (--pll->active)
1904                 return;
1905
1906         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1907         pll->disable(dev_priv, pll);
1908         pll->on = false;
1909
1910         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1911 }
1912
1913 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1914                                            enum pipe pipe)
1915 {
1916         struct drm_device *dev = dev_priv->dev;
1917         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1918         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1919         uint32_t reg, val, pipeconf_val;
1920
1921         /* PCH only available on ILK+ */
1922         BUG_ON(!HAS_PCH_SPLIT(dev));
1923
1924         /* Make sure PCH DPLL is enabled */
1925         assert_shared_dpll_enabled(dev_priv,
1926                                    intel_crtc_to_shared_dpll(intel_crtc));
1927
1928         /* FDI must be feeding us bits for PCH ports */
1929         assert_fdi_tx_enabled(dev_priv, pipe);
1930         assert_fdi_rx_enabled(dev_priv, pipe);
1931
1932         if (HAS_PCH_CPT(dev)) {
1933                 /* Workaround: Set the timing override bit before enabling the
1934                  * pch transcoder. */
1935                 reg = TRANS_CHICKEN2(pipe);
1936                 val = I915_READ(reg);
1937                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1938                 I915_WRITE(reg, val);
1939         }
1940
1941         reg = PCH_TRANSCONF(pipe);
1942         val = I915_READ(reg);
1943         pipeconf_val = I915_READ(PIPECONF(pipe));
1944
1945         if (HAS_PCH_IBX(dev_priv->dev)) {
1946                 /*
1947                  * make the BPC in transcoder be consistent with
1948                  * that in pipeconf reg.
1949                  */
1950                 val &= ~PIPECONF_BPC_MASK;
1951                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1952         }
1953
1954         val &= ~TRANS_INTERLACE_MASK;
1955         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1956                 if (HAS_PCH_IBX(dev_priv->dev) &&
1957                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1958                         val |= TRANS_LEGACY_INTERLACED_ILK;
1959                 else
1960                         val |= TRANS_INTERLACED;
1961         else
1962                 val |= TRANS_PROGRESSIVE;
1963
1964         I915_WRITE(reg, val | TRANS_ENABLE);
1965         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1966                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1967 }
1968
1969 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1970                                       enum transcoder cpu_transcoder)
1971 {
1972         u32 val, pipeconf_val;
1973
1974         /* PCH only available on ILK+ */
1975         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1976
1977         /* FDI must be feeding us bits for PCH ports */
1978         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1979         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1980
1981         /* Workaround: set timing override bit. */
1982         val = I915_READ(_TRANSA_CHICKEN2);
1983         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1984         I915_WRITE(_TRANSA_CHICKEN2, val);
1985
1986         val = TRANS_ENABLE;
1987         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1988
1989         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1990             PIPECONF_INTERLACED_ILK)
1991                 val |= TRANS_INTERLACED;
1992         else
1993                 val |= TRANS_PROGRESSIVE;
1994
1995         I915_WRITE(LPT_TRANSCONF, val);
1996         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1997                 DRM_ERROR("Failed to enable PCH transcoder\n");
1998 }
1999
2000 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2001                                             enum pipe pipe)
2002 {
2003         struct drm_device *dev = dev_priv->dev;
2004         uint32_t reg, val;
2005
2006         /* FDI relies on the transcoder */
2007         assert_fdi_tx_disabled(dev_priv, pipe);
2008         assert_fdi_rx_disabled(dev_priv, pipe);
2009
2010         /* Ports must be off as well */
2011         assert_pch_ports_disabled(dev_priv, pipe);
2012
2013         reg = PCH_TRANSCONF(pipe);
2014         val = I915_READ(reg);
2015         val &= ~TRANS_ENABLE;
2016         I915_WRITE(reg, val);
2017         /* wait for PCH transcoder off, transcoder state */
2018         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2019                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2020
2021         if (!HAS_PCH_IBX(dev)) {
2022                 /* Workaround: Clear the timing override chicken bit again. */
2023                 reg = TRANS_CHICKEN2(pipe);
2024                 val = I915_READ(reg);
2025                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2026                 I915_WRITE(reg, val);
2027         }
2028 }
2029
2030 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2031 {
2032         u32 val;
2033
2034         val = I915_READ(LPT_TRANSCONF);
2035         val &= ~TRANS_ENABLE;
2036         I915_WRITE(LPT_TRANSCONF, val);
2037         /* wait for PCH transcoder off, transcoder state */
2038         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2039                 DRM_ERROR("Failed to disable PCH transcoder\n");
2040
2041         /* Workaround: clear timing override bit. */
2042         val = I915_READ(_TRANSA_CHICKEN2);
2043         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2044         I915_WRITE(_TRANSA_CHICKEN2, val);
2045 }
2046
2047 /**
2048  * intel_enable_pipe - enable a pipe, asserting requirements
2049  * @crtc: crtc responsible for the pipe
2050  *
2051  * Enable @crtc's pipe, making sure that various hardware specific requirements
2052  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2053  */
2054 static void intel_enable_pipe(struct intel_crtc *crtc)
2055 {
2056         struct drm_device *dev = crtc->base.dev;
2057         struct drm_i915_private *dev_priv = dev->dev_private;
2058         enum pipe pipe = crtc->pipe;
2059         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2060                                                                       pipe);
2061         enum pipe pch_transcoder;
2062         int reg;
2063         u32 val;
2064
2065         assert_planes_disabled(dev_priv, pipe);
2066         assert_cursor_disabled(dev_priv, pipe);
2067         assert_sprites_disabled(dev_priv, pipe);
2068
2069         if (HAS_PCH_LPT(dev_priv->dev))
2070                 pch_transcoder = TRANSCODER_A;
2071         else
2072                 pch_transcoder = pipe;
2073
2074         /*
2075          * A pipe without a PLL won't actually be able to drive bits from
2076          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2077          * need the check.
2078          */
2079         if (!HAS_PCH_SPLIT(dev_priv->dev))
2080                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2081                         assert_dsi_pll_enabled(dev_priv);
2082                 else
2083                         assert_pll_enabled(dev_priv, pipe);
2084         else {
2085                 if (crtc->config->has_pch_encoder) {
2086                         /* if driving the PCH, we need FDI enabled */
2087                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2088                         assert_fdi_tx_pll_enabled(dev_priv,
2089                                                   (enum pipe) cpu_transcoder);
2090                 }
2091                 /* FIXME: assert CPU port conditions for SNB+ */
2092         }
2093
2094         reg = PIPECONF(cpu_transcoder);
2095         val = I915_READ(reg);
2096         if (val & PIPECONF_ENABLE) {
2097                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2098                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2099                 return;
2100         }
2101
2102         I915_WRITE(reg, val | PIPECONF_ENABLE);
2103         POSTING_READ(reg);
2104 }
2105
2106 /**
2107  * intel_disable_pipe - disable a pipe, asserting requirements
2108  * @crtc: crtc whose pipes is to be disabled
2109  *
2110  * Disable the pipe of @crtc, making sure that various hardware
2111  * specific requirements are met, if applicable, e.g. plane
2112  * disabled, panel fitter off, etc.
2113  *
2114  * Will wait until the pipe has shut down before returning.
2115  */
2116 static void intel_disable_pipe(struct intel_crtc *crtc)
2117 {
2118         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2119         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2120         enum pipe pipe = crtc->pipe;
2121         int reg;
2122         u32 val;
2123
2124         /*
2125          * Make sure planes won't keep trying to pump pixels to us,
2126          * or we might hang the display.
2127          */
2128         assert_planes_disabled(dev_priv, pipe);
2129         assert_cursor_disabled(dev_priv, pipe);
2130         assert_sprites_disabled(dev_priv, pipe);
2131
2132         reg = PIPECONF(cpu_transcoder);
2133         val = I915_READ(reg);
2134         if ((val & PIPECONF_ENABLE) == 0)
2135                 return;
2136
2137         /*
2138          * Double wide has implications for planes
2139          * so best keep it disabled when not needed.
2140          */
2141         if (crtc->config->double_wide)
2142                 val &= ~PIPECONF_DOUBLE_WIDE;
2143
2144         /* Don't disable pipe or pipe PLLs if needed */
2145         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2146             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2147                 val &= ~PIPECONF_ENABLE;
2148
2149         I915_WRITE(reg, val);
2150         if ((val & PIPECONF_ENABLE) == 0)
2151                 intel_wait_for_pipe_off(crtc);
2152 }
2153
2154 /*
2155  * Plane regs are double buffered, going from enabled->disabled needs a
2156  * trigger in order to latch.  The display address reg provides this.
2157  */
2158 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2159                                enum plane plane)
2160 {
2161         struct drm_device *dev = dev_priv->dev;
2162         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2163
2164         I915_WRITE(reg, I915_READ(reg));
2165         POSTING_READ(reg);
2166 }
2167
2168 /**
2169  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2170  * @plane:  plane to be enabled
2171  * @crtc: crtc for the plane
2172  *
2173  * Enable @plane on @crtc, making sure that the pipe is running first.
2174  */
2175 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2176                                           struct drm_crtc *crtc)
2177 {
2178         struct drm_device *dev = plane->dev;
2179         struct drm_i915_private *dev_priv = dev->dev_private;
2180         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2181
2182         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2183         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2184
2185         if (intel_crtc->primary_enabled)
2186                 return;
2187
2188         intel_crtc->primary_enabled = true;
2189
2190         dev_priv->display.update_primary_plane(crtc, plane->fb,
2191                                                crtc->x, crtc->y);
2192
2193         /*
2194          * BDW signals flip done immediately if the plane
2195          * is disabled, even if the plane enable is already
2196          * armed to occur at the next vblank :(
2197          */
2198         if (IS_BROADWELL(dev))
2199                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2200 }
2201
2202 /**
2203  * intel_disable_primary_hw_plane - disable the primary hardware plane
2204  * @plane: plane to be disabled
2205  * @crtc: crtc for the plane
2206  *
2207  * Disable @plane on @crtc, making sure that the pipe is running first.
2208  */
2209 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2210                                            struct drm_crtc *crtc)
2211 {
2212         struct drm_device *dev = plane->dev;
2213         struct drm_i915_private *dev_priv = dev->dev_private;
2214         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2215
2216         if (WARN_ON(!intel_crtc->active))
2217                 return;
2218
2219         if (!intel_crtc->primary_enabled)
2220                 return;
2221
2222         intel_crtc->primary_enabled = false;
2223
2224         dev_priv->display.update_primary_plane(crtc, plane->fb,
2225                                                crtc->x, crtc->y);
2226 }
2227
2228 static bool need_vtd_wa(struct drm_device *dev)
2229 {
2230 #ifdef CONFIG_INTEL_IOMMU
2231         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2232                 return true;
2233 #endif
2234         return false;
2235 }
2236
2237 unsigned int
2238 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2239                   uint64_t fb_format_modifier)
2240 {
2241         unsigned int tile_height;
2242         uint32_t pixel_bytes;
2243
2244         switch (fb_format_modifier) {
2245         case DRM_FORMAT_MOD_NONE:
2246                 tile_height = 1;
2247                 break;
2248         case I915_FORMAT_MOD_X_TILED:
2249                 tile_height = IS_GEN2(dev) ? 16 : 8;
2250                 break;
2251         case I915_FORMAT_MOD_Y_TILED:
2252                 tile_height = 32;
2253                 break;
2254         case I915_FORMAT_MOD_Yf_TILED:
2255                 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2256                 switch (pixel_bytes) {
2257                 default:
2258                 case 1:
2259                         tile_height = 64;
2260                         break;
2261                 case 2:
2262                 case 4:
2263                         tile_height = 32;
2264                         break;
2265                 case 8:
2266                         tile_height = 16;
2267                         break;
2268                 case 16:
2269                         WARN_ONCE(1,
2270                                   "128-bit pixels are not supported for display!");
2271                         tile_height = 16;
2272                         break;
2273                 }
2274                 break;
2275         default:
2276                 MISSING_CASE(fb_format_modifier);
2277                 tile_height = 1;
2278                 break;
2279         }
2280
2281         return tile_height;
2282 }
2283
2284 unsigned int
2285 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2286                       uint32_t pixel_format, uint64_t fb_format_modifier)
2287 {
2288         return ALIGN(height, intel_tile_height(dev, pixel_format,
2289                                                fb_format_modifier));
2290 }
2291
2292 static int
2293 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2294                         const struct drm_plane_state *plane_state)
2295 {
2296         struct intel_rotation_info *info = &view->rotation_info;
2297         static const struct i915_ggtt_view rotated_view =
2298                                 { .type = I915_GGTT_VIEW_ROTATED };
2299
2300         *view = i915_ggtt_view_normal;
2301
2302         if (!plane_state)
2303                 return 0;
2304
2305         if (!intel_rotation_90_or_270(plane_state->rotation))
2306                 return 0;
2307
2308         *view = rotated_view;
2309
2310         info->height = fb->height;
2311         info->pixel_format = fb->pixel_format;
2312         info->pitch = fb->pitches[0];
2313         info->fb_modifier = fb->modifier[0];
2314
2315         if (!(info->fb_modifier == I915_FORMAT_MOD_Y_TILED ||
2316               info->fb_modifier == I915_FORMAT_MOD_Yf_TILED)) {
2317                 DRM_DEBUG_KMS(
2318                               "Y or Yf tiling is needed for 90/270 rotation!\n");
2319                 return -EINVAL;
2320         }
2321
2322         return 0;
2323 }
2324
2325 int
2326 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2327                            struct drm_framebuffer *fb,
2328                            const struct drm_plane_state *plane_state,
2329                            struct intel_engine_cs *pipelined)
2330 {
2331         struct drm_device *dev = fb->dev;
2332         struct drm_i915_private *dev_priv = dev->dev_private;
2333         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2334         struct i915_ggtt_view view;
2335         u32 alignment;
2336         int ret;
2337
2338         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2339
2340         switch (fb->modifier[0]) {
2341         case DRM_FORMAT_MOD_NONE:
2342                 if (INTEL_INFO(dev)->gen >= 9)
2343                         alignment = 256 * 1024;
2344                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2345                         alignment = 128 * 1024;
2346                 else if (INTEL_INFO(dev)->gen >= 4)
2347                         alignment = 4 * 1024;
2348                 else
2349                         alignment = 64 * 1024;
2350                 break;
2351         case I915_FORMAT_MOD_X_TILED:
2352                 if (INTEL_INFO(dev)->gen >= 9)
2353                         alignment = 256 * 1024;
2354                 else {
2355                         /* pin() will align the object as required by fence */
2356                         alignment = 0;
2357                 }
2358                 break;
2359         case I915_FORMAT_MOD_Y_TILED:
2360         case I915_FORMAT_MOD_Yf_TILED:
2361                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2362                           "Y tiling bo slipped through, driver bug!\n"))
2363                         return -EINVAL;
2364                 alignment = 1 * 1024 * 1024;
2365                 break;
2366         default:
2367                 MISSING_CASE(fb->modifier[0]);
2368                 return -EINVAL;
2369         }
2370
2371         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2372         if (ret)
2373                 return ret;
2374
2375         /* Note that the w/a also requires 64 PTE of padding following the
2376          * bo. We currently fill all unused PTE with the shadow page and so
2377          * we should always have valid PTE following the scanout preventing
2378          * the VT-d warning.
2379          */
2380         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2381                 alignment = 256 * 1024;
2382
2383         /*
2384          * Global gtt pte registers are special registers which actually forward
2385          * writes to a chunk of system memory. Which means that there is no risk
2386          * that the register values disappear as soon as we call
2387          * intel_runtime_pm_put(), so it is correct to wrap only the
2388          * pin/unpin/fence and not more.
2389          */
2390         intel_runtime_pm_get(dev_priv);
2391
2392         dev_priv->mm.interruptible = false;
2393         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2394                                                    &view);
2395         if (ret)
2396                 goto err_interruptible;
2397
2398         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2399          * fence, whereas 965+ only requires a fence if using
2400          * framebuffer compression.  For simplicity, we always install
2401          * a fence as the cost is not that onerous.
2402          */
2403         ret = i915_gem_object_get_fence(obj);
2404         if (ret)
2405                 goto err_unpin;
2406
2407         i915_gem_object_pin_fence(obj);
2408
2409         dev_priv->mm.interruptible = true;
2410         intel_runtime_pm_put(dev_priv);
2411         return 0;
2412
2413 err_unpin:
2414         i915_gem_object_unpin_from_display_plane(obj, &view);
2415 err_interruptible:
2416         dev_priv->mm.interruptible = true;
2417         intel_runtime_pm_put(dev_priv);
2418         return ret;
2419 }
2420
2421 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2422                                const struct drm_plane_state *plane_state)
2423 {
2424         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2425         struct i915_ggtt_view view;
2426         int ret;
2427
2428         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2429
2430         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2431         WARN_ONCE(ret, "Couldn't get view from plane state!");
2432
2433         i915_gem_object_unpin_fence(obj);
2434         i915_gem_object_unpin_from_display_plane(obj, &view);
2435 }
2436
2437 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2438  * is assumed to be a power-of-two. */
2439 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2440                                              unsigned int tiling_mode,
2441                                              unsigned int cpp,
2442                                              unsigned int pitch)
2443 {
2444         if (tiling_mode != I915_TILING_NONE) {
2445                 unsigned int tile_rows, tiles;
2446
2447                 tile_rows = *y / 8;
2448                 *y %= 8;
2449
2450                 tiles = *x / (512/cpp);
2451                 *x %= 512/cpp;
2452
2453                 return tile_rows * pitch * 8 + tiles * 4096;
2454         } else {
2455                 unsigned int offset;
2456
2457                 offset = *y * pitch + *x * cpp;
2458                 *y = 0;
2459                 *x = (offset & 4095) / cpp;
2460                 return offset & -4096;
2461         }
2462 }
2463
2464 static int i9xx_format_to_fourcc(int format)
2465 {
2466         switch (format) {
2467         case DISPPLANE_8BPP:
2468                 return DRM_FORMAT_C8;
2469         case DISPPLANE_BGRX555:
2470                 return DRM_FORMAT_XRGB1555;
2471         case DISPPLANE_BGRX565:
2472                 return DRM_FORMAT_RGB565;
2473         default:
2474         case DISPPLANE_BGRX888:
2475                 return DRM_FORMAT_XRGB8888;
2476         case DISPPLANE_RGBX888:
2477                 return DRM_FORMAT_XBGR8888;
2478         case DISPPLANE_BGRX101010:
2479                 return DRM_FORMAT_XRGB2101010;
2480         case DISPPLANE_RGBX101010:
2481                 return DRM_FORMAT_XBGR2101010;
2482         }
2483 }
2484
2485 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2486 {
2487         switch (format) {
2488         case PLANE_CTL_FORMAT_RGB_565:
2489                 return DRM_FORMAT_RGB565;
2490         default:
2491         case PLANE_CTL_FORMAT_XRGB_8888:
2492                 if (rgb_order) {
2493                         if (alpha)
2494                                 return DRM_FORMAT_ABGR8888;
2495                         else
2496                                 return DRM_FORMAT_XBGR8888;
2497                 } else {
2498                         if (alpha)
2499                                 return DRM_FORMAT_ARGB8888;
2500                         else
2501                                 return DRM_FORMAT_XRGB8888;
2502                 }
2503         case PLANE_CTL_FORMAT_XRGB_2101010:
2504                 if (rgb_order)
2505                         return DRM_FORMAT_XBGR2101010;
2506                 else
2507                         return DRM_FORMAT_XRGB2101010;
2508         }
2509 }
2510
2511 static bool
2512 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2513                               struct intel_initial_plane_config *plane_config)
2514 {
2515         struct drm_device *dev = crtc->base.dev;
2516         struct drm_i915_gem_object *obj = NULL;
2517         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2518         struct drm_framebuffer *fb = &plane_config->fb->base;
2519         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2520         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2521                                     PAGE_SIZE);
2522
2523         size_aligned -= base_aligned;
2524
2525         if (plane_config->size == 0)
2526                 return false;
2527
2528         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2529                                                              base_aligned,
2530                                                              base_aligned,
2531                                                              size_aligned);
2532         if (!obj)
2533                 return false;
2534
2535         obj->tiling_mode = plane_config->tiling;
2536         if (obj->tiling_mode == I915_TILING_X)
2537                 obj->stride = fb->pitches[0];
2538
2539         mode_cmd.pixel_format = fb->pixel_format;
2540         mode_cmd.width = fb->width;
2541         mode_cmd.height = fb->height;
2542         mode_cmd.pitches[0] = fb->pitches[0];
2543         mode_cmd.modifier[0] = fb->modifier[0];
2544         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2545
2546         mutex_lock(&dev->struct_mutex);
2547         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2548                                    &mode_cmd, obj)) {
2549                 DRM_DEBUG_KMS("intel fb init failed\n");
2550                 goto out_unref_obj;
2551         }
2552         mutex_unlock(&dev->struct_mutex);
2553
2554         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2555         return true;
2556
2557 out_unref_obj:
2558         drm_gem_object_unreference(&obj->base);
2559         mutex_unlock(&dev->struct_mutex);
2560         return false;
2561 }
2562
2563 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2564 static void
2565 update_state_fb(struct drm_plane *plane)
2566 {
2567         if (plane->fb == plane->state->fb)
2568                 return;
2569
2570         if (plane->state->fb)
2571                 drm_framebuffer_unreference(plane->state->fb);
2572         plane->state->fb = plane->fb;
2573         if (plane->state->fb)
2574                 drm_framebuffer_reference(plane->state->fb);
2575 }
2576
2577 static void
2578 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2579                              struct intel_initial_plane_config *plane_config)
2580 {
2581         struct drm_device *dev = intel_crtc->base.dev;
2582         struct drm_i915_private *dev_priv = dev->dev_private;
2583         struct drm_crtc *c;
2584         struct intel_crtc *i;
2585         struct drm_i915_gem_object *obj;
2586         struct drm_plane *primary = intel_crtc->base.primary;
2587         struct drm_framebuffer *fb;
2588
2589         if (!plane_config->fb)
2590                 return;
2591
2592         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2593                 fb = &plane_config->fb->base;
2594                 goto valid_fb;
2595         }
2596
2597         kfree(plane_config->fb);
2598
2599         /*
2600          * Failed to alloc the obj, check to see if we should share
2601          * an fb with another CRTC instead
2602          */
2603         for_each_crtc(dev, c) {
2604                 i = to_intel_crtc(c);
2605
2606                 if (c == &intel_crtc->base)
2607                         continue;
2608
2609                 if (!i->active)
2610                         continue;
2611
2612                 fb = c->primary->fb;
2613                 if (!fb)
2614                         continue;
2615
2616                 obj = intel_fb_obj(fb);
2617                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2618                         drm_framebuffer_reference(fb);
2619                         goto valid_fb;
2620                 }
2621         }
2622
2623         return;
2624
2625 valid_fb:
2626         obj = intel_fb_obj(fb);
2627         if (obj->tiling_mode != I915_TILING_NONE)
2628                 dev_priv->preserve_bios_swizzle = true;
2629
2630         primary->fb = fb;
2631         primary->state->crtc = &intel_crtc->base;
2632         primary->crtc = &intel_crtc->base;
2633         update_state_fb(primary);
2634         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2635 }
2636
2637 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2638                                       struct drm_framebuffer *fb,
2639                                       int x, int y)
2640 {
2641         struct drm_device *dev = crtc->dev;
2642         struct drm_i915_private *dev_priv = dev->dev_private;
2643         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2644         struct drm_i915_gem_object *obj;
2645         int plane = intel_crtc->plane;
2646         unsigned long linear_offset;
2647         u32 dspcntr;
2648         u32 reg = DSPCNTR(plane);
2649         int pixel_size;
2650
2651         if (!intel_crtc->primary_enabled) {
2652                 I915_WRITE(reg, 0);
2653                 if (INTEL_INFO(dev)->gen >= 4)
2654                         I915_WRITE(DSPSURF(plane), 0);
2655                 else
2656                         I915_WRITE(DSPADDR(plane), 0);
2657                 POSTING_READ(reg);
2658                 return;
2659         }
2660
2661         obj = intel_fb_obj(fb);
2662         if (WARN_ON(obj == NULL))
2663                 return;
2664
2665         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2666
2667         dspcntr = DISPPLANE_GAMMA_ENABLE;
2668
2669         dspcntr |= DISPLAY_PLANE_ENABLE;
2670
2671         if (INTEL_INFO(dev)->gen < 4) {
2672                 if (intel_crtc->pipe == PIPE_B)
2673                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2674
2675                 /* pipesrc and dspsize control the size that is scaled from,
2676                  * which should always be the user's requested size.
2677                  */
2678                 I915_WRITE(DSPSIZE(plane),
2679                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2680                            (intel_crtc->config->pipe_src_w - 1));
2681                 I915_WRITE(DSPPOS(plane), 0);
2682         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2683                 I915_WRITE(PRIMSIZE(plane),
2684                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2685                            (intel_crtc->config->pipe_src_w - 1));
2686                 I915_WRITE(PRIMPOS(plane), 0);
2687                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2688         }
2689
2690         switch (fb->pixel_format) {
2691         case DRM_FORMAT_C8:
2692                 dspcntr |= DISPPLANE_8BPP;
2693                 break;
2694         case DRM_FORMAT_XRGB1555:
2695         case DRM_FORMAT_ARGB1555:
2696                 dspcntr |= DISPPLANE_BGRX555;
2697                 break;
2698         case DRM_FORMAT_RGB565:
2699                 dspcntr |= DISPPLANE_BGRX565;
2700                 break;
2701         case DRM_FORMAT_XRGB8888:
2702         case DRM_FORMAT_ARGB8888:
2703                 dspcntr |= DISPPLANE_BGRX888;
2704                 break;
2705         case DRM_FORMAT_XBGR8888:
2706         case DRM_FORMAT_ABGR8888:
2707                 dspcntr |= DISPPLANE_RGBX888;
2708                 break;
2709         case DRM_FORMAT_XRGB2101010:
2710         case DRM_FORMAT_ARGB2101010:
2711                 dspcntr |= DISPPLANE_BGRX101010;
2712                 break;
2713         case DRM_FORMAT_XBGR2101010:
2714         case DRM_FORMAT_ABGR2101010:
2715                 dspcntr |= DISPPLANE_RGBX101010;
2716                 break;
2717         default:
2718                 BUG();
2719         }
2720
2721         if (INTEL_INFO(dev)->gen >= 4 &&
2722             obj->tiling_mode != I915_TILING_NONE)
2723                 dspcntr |= DISPPLANE_TILED;
2724
2725         if (IS_G4X(dev))
2726                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2727
2728         linear_offset = y * fb->pitches[0] + x * pixel_size;
2729
2730         if (INTEL_INFO(dev)->gen >= 4) {
2731                 intel_crtc->dspaddr_offset =
2732                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2733                                                        pixel_size,
2734                                                        fb->pitches[0]);
2735                 linear_offset -= intel_crtc->dspaddr_offset;
2736         } else {
2737                 intel_crtc->dspaddr_offset = linear_offset;
2738         }
2739
2740         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2741                 dspcntr |= DISPPLANE_ROTATE_180;
2742
2743                 x += (intel_crtc->config->pipe_src_w - 1);
2744                 y += (intel_crtc->config->pipe_src_h - 1);
2745
2746                 /* Finding the last pixel of the last line of the display
2747                 data and adding to linear_offset*/
2748                 linear_offset +=
2749                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2750                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2751         }
2752
2753         I915_WRITE(reg, dspcntr);
2754
2755         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2756         if (INTEL_INFO(dev)->gen >= 4) {
2757                 I915_WRITE(DSPSURF(plane),
2758                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2759                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2760                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2761         } else
2762                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2763         POSTING_READ(reg);
2764 }
2765
2766 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2767                                           struct drm_framebuffer *fb,
2768                                           int x, int y)
2769 {
2770         struct drm_device *dev = crtc->dev;
2771         struct drm_i915_private *dev_priv = dev->dev_private;
2772         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2773         struct drm_i915_gem_object *obj;
2774         int plane = intel_crtc->plane;
2775         unsigned long linear_offset;
2776         u32 dspcntr;
2777         u32 reg = DSPCNTR(plane);
2778         int pixel_size;
2779
2780         if (!intel_crtc->primary_enabled) {
2781                 I915_WRITE(reg, 0);
2782                 I915_WRITE(DSPSURF(plane), 0);
2783                 POSTING_READ(reg);
2784                 return;
2785         }
2786
2787         obj = intel_fb_obj(fb);
2788         if (WARN_ON(obj == NULL))
2789                 return;
2790
2791         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2792
2793         dspcntr = DISPPLANE_GAMMA_ENABLE;
2794
2795         dspcntr |= DISPLAY_PLANE_ENABLE;
2796
2797         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2798                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2799
2800         switch (fb->pixel_format) {
2801         case DRM_FORMAT_C8:
2802                 dspcntr |= DISPPLANE_8BPP;
2803                 break;
2804         case DRM_FORMAT_RGB565:
2805                 dspcntr |= DISPPLANE_BGRX565;
2806                 break;
2807         case DRM_FORMAT_XRGB8888:
2808         case DRM_FORMAT_ARGB8888:
2809                 dspcntr |= DISPPLANE_BGRX888;
2810                 break;
2811         case DRM_FORMAT_XBGR8888:
2812         case DRM_FORMAT_ABGR8888:
2813                 dspcntr |= DISPPLANE_RGBX888;
2814                 break;
2815         case DRM_FORMAT_XRGB2101010:
2816         case DRM_FORMAT_ARGB2101010:
2817                 dspcntr |= DISPPLANE_BGRX101010;
2818                 break;
2819         case DRM_FORMAT_XBGR2101010:
2820         case DRM_FORMAT_ABGR2101010:
2821                 dspcntr |= DISPPLANE_RGBX101010;
2822                 break;
2823         default:
2824                 BUG();
2825         }
2826
2827         if (obj->tiling_mode != I915_TILING_NONE)
2828                 dspcntr |= DISPPLANE_TILED;
2829
2830         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2831                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2832
2833         linear_offset = y * fb->pitches[0] + x * pixel_size;
2834         intel_crtc->dspaddr_offset =
2835                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2836                                                pixel_size,
2837                                                fb->pitches[0]);
2838         linear_offset -= intel_crtc->dspaddr_offset;
2839         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2840                 dspcntr |= DISPPLANE_ROTATE_180;
2841
2842                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2843                         x += (intel_crtc->config->pipe_src_w - 1);
2844                         y += (intel_crtc->config->pipe_src_h - 1);
2845
2846                         /* Finding the last pixel of the last line of the display
2847                         data and adding to linear_offset*/
2848                         linear_offset +=
2849                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2850                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2851                 }
2852         }
2853
2854         I915_WRITE(reg, dspcntr);
2855
2856         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2857         I915_WRITE(DSPSURF(plane),
2858                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2859         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2860                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2861         } else {
2862                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2863                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2864         }
2865         POSTING_READ(reg);
2866 }
2867
2868 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2869                               uint32_t pixel_format)
2870 {
2871         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2872
2873         /*
2874          * The stride is either expressed as a multiple of 64 bytes
2875          * chunks for linear buffers or in number of tiles for tiled
2876          * buffers.
2877          */
2878         switch (fb_modifier) {
2879         case DRM_FORMAT_MOD_NONE:
2880                 return 64;
2881         case I915_FORMAT_MOD_X_TILED:
2882                 if (INTEL_INFO(dev)->gen == 2)
2883                         return 128;
2884                 return 512;
2885         case I915_FORMAT_MOD_Y_TILED:
2886                 /* No need to check for old gens and Y tiling since this is
2887                  * about the display engine and those will be blocked before
2888                  * we get here.
2889                  */
2890                 return 128;
2891         case I915_FORMAT_MOD_Yf_TILED:
2892                 if (bits_per_pixel == 8)
2893                         return 64;
2894                 else
2895                         return 128;
2896         default:
2897                 MISSING_CASE(fb_modifier);
2898                 return 64;
2899         }
2900 }
2901
2902 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2903                                      struct drm_i915_gem_object *obj)
2904 {
2905         enum i915_ggtt_view_type view = I915_GGTT_VIEW_NORMAL;
2906
2907         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2908                 view = I915_GGTT_VIEW_ROTATED;
2909
2910         return i915_gem_obj_ggtt_offset_view(obj, view);
2911 }
2912
2913 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2914                                          struct drm_framebuffer *fb,
2915                                          int x, int y)
2916 {
2917         struct drm_device *dev = crtc->dev;
2918         struct drm_i915_private *dev_priv = dev->dev_private;
2919         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2920         struct drm_i915_gem_object *obj;
2921         int pipe = intel_crtc->pipe;
2922         u32 plane_ctl, stride_div;
2923         unsigned long surf_addr;
2924
2925         if (!intel_crtc->primary_enabled) {
2926                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2927                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2928                 POSTING_READ(PLANE_CTL(pipe, 0));
2929                 return;
2930         }
2931
2932         plane_ctl = PLANE_CTL_ENABLE |
2933                     PLANE_CTL_PIPE_GAMMA_ENABLE |
2934                     PLANE_CTL_PIPE_CSC_ENABLE;
2935
2936         switch (fb->pixel_format) {
2937         case DRM_FORMAT_RGB565:
2938                 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2939                 break;
2940         case DRM_FORMAT_XRGB8888:
2941                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2942                 break;
2943         case DRM_FORMAT_ARGB8888:
2944                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2945                 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2946                 break;
2947         case DRM_FORMAT_XBGR8888:
2948                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2949                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2950                 break;
2951         case DRM_FORMAT_ABGR8888:
2952                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2953                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2954                 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2955                 break;
2956         case DRM_FORMAT_XRGB2101010:
2957                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2958                 break;
2959         case DRM_FORMAT_XBGR2101010:
2960                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2961                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2962                 break;
2963         default:
2964                 BUG();
2965         }
2966
2967         switch (fb->modifier[0]) {
2968         case DRM_FORMAT_MOD_NONE:
2969                 break;
2970         case I915_FORMAT_MOD_X_TILED:
2971                 plane_ctl |= PLANE_CTL_TILED_X;
2972                 break;
2973         case I915_FORMAT_MOD_Y_TILED:
2974                 plane_ctl |= PLANE_CTL_TILED_Y;
2975                 break;
2976         case I915_FORMAT_MOD_Yf_TILED:
2977                 plane_ctl |= PLANE_CTL_TILED_YF;
2978                 break;
2979         default:
2980                 MISSING_CASE(fb->modifier[0]);
2981         }
2982
2983         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2984         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
2985                 plane_ctl |= PLANE_CTL_ROTATE_180;
2986
2987         obj = intel_fb_obj(fb);
2988         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
2989                                                fb->pixel_format);
2990         surf_addr = intel_plane_obj_offset(to_intel_plane(crtc->primary), obj);
2991
2992         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2993         I915_WRITE(PLANE_POS(pipe, 0), 0);
2994         I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2995         I915_WRITE(PLANE_SIZE(pipe, 0),
2996                    (intel_crtc->config->pipe_src_h - 1) << 16 |
2997                    (intel_crtc->config->pipe_src_w - 1));
2998         I915_WRITE(PLANE_STRIDE(pipe, 0), fb->pitches[0] / stride_div);
2999         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3000
3001         POSTING_READ(PLANE_SURF(pipe, 0));
3002 }
3003
3004 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3005 static int
3006 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3007                            int x, int y, enum mode_set_atomic state)
3008 {
3009         struct drm_device *dev = crtc->dev;
3010         struct drm_i915_private *dev_priv = dev->dev_private;
3011
3012         if (dev_priv->display.disable_fbc)
3013                 dev_priv->display.disable_fbc(dev);
3014
3015         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3016
3017         return 0;
3018 }
3019
3020 static void intel_complete_page_flips(struct drm_device *dev)
3021 {
3022         struct drm_crtc *crtc;
3023
3024         for_each_crtc(dev, crtc) {
3025                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3026                 enum plane plane = intel_crtc->plane;
3027
3028                 intel_prepare_page_flip(dev, plane);
3029                 intel_finish_page_flip_plane(dev, plane);
3030         }
3031 }
3032
3033 static void intel_update_primary_planes(struct drm_device *dev)
3034 {
3035         struct drm_i915_private *dev_priv = dev->dev_private;
3036         struct drm_crtc *crtc;
3037
3038         for_each_crtc(dev, crtc) {
3039                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3040
3041                 drm_modeset_lock(&crtc->mutex, NULL);
3042                 /*
3043                  * FIXME: Once we have proper support for primary planes (and
3044                  * disabling them without disabling the entire crtc) allow again
3045                  * a NULL crtc->primary->fb.
3046                  */
3047                 if (intel_crtc->active && crtc->primary->fb)
3048                         dev_priv->display.update_primary_plane(crtc,
3049                                                                crtc->primary->fb,
3050                                                                crtc->x,
3051                                                                crtc->y);
3052                 drm_modeset_unlock(&crtc->mutex);
3053         }
3054 }
3055
3056 void intel_prepare_reset(struct drm_device *dev)
3057 {
3058         struct drm_i915_private *dev_priv = to_i915(dev);
3059         struct intel_crtc *crtc;
3060
3061         /* no reset support for gen2 */
3062         if (IS_GEN2(dev))
3063                 return;
3064
3065         /* reset doesn't touch the display */
3066         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3067                 return;
3068
3069         drm_modeset_lock_all(dev);
3070
3071         /*
3072          * Disabling the crtcs gracefully seems nicer. Also the
3073          * g33 docs say we should at least disable all the planes.
3074          */
3075         for_each_intel_crtc(dev, crtc) {
3076                 if (crtc->active)
3077                         dev_priv->display.crtc_disable(&crtc->base);
3078         }
3079 }
3080
3081 void intel_finish_reset(struct drm_device *dev)
3082 {
3083         struct drm_i915_private *dev_priv = to_i915(dev);
3084
3085         /*
3086          * Flips in the rings will be nuked by the reset,
3087          * so complete all pending flips so that user space
3088          * will get its events and not get stuck.
3089          */
3090         intel_complete_page_flips(dev);
3091
3092         /* no reset support for gen2 */
3093         if (IS_GEN2(dev))
3094                 return;
3095
3096         /* reset doesn't touch the display */
3097         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3098                 /*
3099                  * Flips in the rings have been nuked by the reset,
3100                  * so update the base address of all primary
3101                  * planes to the the last fb to make sure we're
3102                  * showing the correct fb after a reset.
3103                  */
3104                 intel_update_primary_planes(dev);
3105                 return;
3106         }
3107
3108         /*
3109          * The display has been reset as well,
3110          * so need a full re-initialization.
3111          */
3112         intel_runtime_pm_disable_interrupts(dev_priv);
3113         intel_runtime_pm_enable_interrupts(dev_priv);
3114
3115         intel_modeset_init_hw(dev);
3116
3117         spin_lock_irq(&dev_priv->irq_lock);
3118         if (dev_priv->display.hpd_irq_setup)
3119                 dev_priv->display.hpd_irq_setup(dev);
3120         spin_unlock_irq(&dev_priv->irq_lock);
3121
3122         intel_modeset_setup_hw_state(dev, true);
3123
3124         intel_hpd_init(dev_priv);
3125
3126         drm_modeset_unlock_all(dev);
3127 }
3128
3129 static int
3130 intel_finish_fb(struct drm_framebuffer *old_fb)
3131 {
3132         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3133         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3134         bool was_interruptible = dev_priv->mm.interruptible;
3135         int ret;
3136
3137         /* Big Hammer, we also need to ensure that any pending
3138          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3139          * current scanout is retired before unpinning the old
3140          * framebuffer.
3141          *
3142          * This should only fail upon a hung GPU, in which case we
3143          * can safely continue.
3144          */
3145         dev_priv->mm.interruptible = false;
3146         ret = i915_gem_object_finish_gpu(obj);
3147         dev_priv->mm.interruptible = was_interruptible;
3148
3149         return ret;
3150 }
3151
3152 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3153 {
3154         struct drm_device *dev = crtc->dev;
3155         struct drm_i915_private *dev_priv = dev->dev_private;
3156         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3157         bool pending;
3158
3159         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3160             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3161                 return false;
3162
3163         spin_lock_irq(&dev->event_lock);
3164         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3165         spin_unlock_irq(&dev->event_lock);
3166
3167         return pending;
3168 }
3169
3170 static void intel_update_pipe_size(struct intel_crtc *crtc)
3171 {
3172         struct drm_device *dev = crtc->base.dev;
3173         struct drm_i915_private *dev_priv = dev->dev_private;
3174         const struct drm_display_mode *adjusted_mode;
3175
3176         if (!i915.fastboot)
3177                 return;
3178
3179         /*
3180          * Update pipe size and adjust fitter if needed: the reason for this is
3181          * that in compute_mode_changes we check the native mode (not the pfit
3182          * mode) to see if we can flip rather than do a full mode set. In the
3183          * fastboot case, we'll flip, but if we don't update the pipesrc and
3184          * pfit state, we'll end up with a big fb scanned out into the wrong
3185          * sized surface.
3186          *
3187          * To fix this properly, we need to hoist the checks up into
3188          * compute_mode_changes (or above), check the actual pfit state and
3189          * whether the platform allows pfit disable with pipe active, and only
3190          * then update the pipesrc and pfit state, even on the flip path.
3191          */
3192
3193         adjusted_mode = &crtc->config->base.adjusted_mode;
3194
3195         I915_WRITE(PIPESRC(crtc->pipe),
3196                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3197                    (adjusted_mode->crtc_vdisplay - 1));
3198         if (!crtc->config->pch_pfit.enabled &&
3199             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3200              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3201                 I915_WRITE(PF_CTL(crtc->pipe), 0);
3202                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3203                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3204         }
3205         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3206         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3207 }
3208
3209 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3210 {
3211         struct drm_device *dev = crtc->dev;
3212         struct drm_i915_private *dev_priv = dev->dev_private;
3213         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3214         int pipe = intel_crtc->pipe;
3215         u32 reg, temp;
3216
3217         /* enable normal train */
3218         reg = FDI_TX_CTL(pipe);
3219         temp = I915_READ(reg);
3220         if (IS_IVYBRIDGE(dev)) {
3221                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3222                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3223         } else {
3224                 temp &= ~FDI_LINK_TRAIN_NONE;
3225                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3226         }
3227         I915_WRITE(reg, temp);
3228
3229         reg = FDI_RX_CTL(pipe);
3230         temp = I915_READ(reg);
3231         if (HAS_PCH_CPT(dev)) {
3232                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3233                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3234         } else {
3235                 temp &= ~FDI_LINK_TRAIN_NONE;
3236                 temp |= FDI_LINK_TRAIN_NONE;
3237         }
3238         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3239
3240         /* wait one idle pattern time */
3241         POSTING_READ(reg);
3242         udelay(1000);
3243
3244         /* IVB wants error correction enabled */
3245         if (IS_IVYBRIDGE(dev))
3246                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3247                            FDI_FE_ERRC_ENABLE);
3248 }
3249
3250 /* The FDI link training functions for ILK/Ibexpeak. */
3251 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3252 {
3253         struct drm_device *dev = crtc->dev;
3254         struct drm_i915_private *dev_priv = dev->dev_private;
3255         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3256         int pipe = intel_crtc->pipe;
3257         u32 reg, temp, tries;
3258
3259         /* FDI needs bits from pipe first */
3260         assert_pipe_enabled(dev_priv, pipe);
3261
3262         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3263            for train result */
3264         reg = FDI_RX_IMR(pipe);
3265         temp = I915_READ(reg);
3266         temp &= ~FDI_RX_SYMBOL_LOCK;
3267         temp &= ~FDI_RX_BIT_LOCK;
3268         I915_WRITE(reg, temp);
3269         I915_READ(reg);
3270         udelay(150);
3271
3272         /* enable CPU FDI TX and PCH FDI RX */
3273         reg = FDI_TX_CTL(pipe);
3274         temp = I915_READ(reg);
3275         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3276         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3277         temp &= ~FDI_LINK_TRAIN_NONE;
3278         temp |= FDI_LINK_TRAIN_PATTERN_1;
3279         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3280
3281         reg = FDI_RX_CTL(pipe);
3282         temp = I915_READ(reg);
3283         temp &= ~FDI_LINK_TRAIN_NONE;
3284         temp |= FDI_LINK_TRAIN_PATTERN_1;
3285         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3286
3287         POSTING_READ(reg);
3288         udelay(150);
3289
3290         /* Ironlake workaround, enable clock pointer after FDI enable*/
3291         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3292         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3293                    FDI_RX_PHASE_SYNC_POINTER_EN);
3294
3295         reg = FDI_RX_IIR(pipe);
3296         for (tries = 0; tries < 5; tries++) {
3297                 temp = I915_READ(reg);
3298                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3299
3300                 if ((temp & FDI_RX_BIT_LOCK)) {
3301                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3302                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3303                         break;
3304                 }
3305         }
3306         if (tries == 5)
3307                 DRM_ERROR("FDI train 1 fail!\n");
3308
3309         /* Train 2 */
3310         reg = FDI_TX_CTL(pipe);
3311         temp = I915_READ(reg);
3312         temp &= ~FDI_LINK_TRAIN_NONE;
3313         temp |= FDI_LINK_TRAIN_PATTERN_2;
3314         I915_WRITE(reg, temp);
3315
3316         reg = FDI_RX_CTL(pipe);
3317         temp = I915_READ(reg);
3318         temp &= ~FDI_LINK_TRAIN_NONE;
3319         temp |= FDI_LINK_TRAIN_PATTERN_2;
3320         I915_WRITE(reg, temp);
3321
3322         POSTING_READ(reg);
3323         udelay(150);
3324
3325         reg = FDI_RX_IIR(pipe);
3326         for (tries = 0; tries < 5; tries++) {
3327                 temp = I915_READ(reg);
3328                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3329
3330                 if (temp & FDI_RX_SYMBOL_LOCK) {
3331                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3332                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3333                         break;
3334                 }
3335         }
3336         if (tries == 5)
3337                 DRM_ERROR("FDI train 2 fail!\n");
3338
3339         DRM_DEBUG_KMS("FDI train done\n");
3340
3341 }
3342
3343 static const int snb_b_fdi_train_param[] = {
3344         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3345         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3346         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3347         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3348 };
3349
3350 /* The FDI link training functions for SNB/Cougarpoint. */
3351 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3352 {
3353         struct drm_device *dev = crtc->dev;
3354         struct drm_i915_private *dev_priv = dev->dev_private;
3355         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3356         int pipe = intel_crtc->pipe;
3357         u32 reg, temp, i, retry;
3358
3359         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3360            for train result */
3361         reg = FDI_RX_IMR(pipe);
3362         temp = I915_READ(reg);
3363         temp &= ~FDI_RX_SYMBOL_LOCK;
3364         temp &= ~FDI_RX_BIT_LOCK;
3365         I915_WRITE(reg, temp);
3366
3367         POSTING_READ(reg);
3368         udelay(150);
3369
3370         /* enable CPU FDI TX and PCH FDI RX */
3371         reg = FDI_TX_CTL(pipe);
3372         temp = I915_READ(reg);
3373         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3374         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3375         temp &= ~FDI_LINK_TRAIN_NONE;
3376         temp |= FDI_LINK_TRAIN_PATTERN_1;
3377         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3378         /* SNB-B */
3379         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3380         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3381
3382         I915_WRITE(FDI_RX_MISC(pipe),
3383                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3384
3385         reg = FDI_RX_CTL(pipe);
3386         temp = I915_READ(reg);
3387         if (HAS_PCH_CPT(dev)) {
3388                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3389                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3390         } else {
3391                 temp &= ~FDI_LINK_TRAIN_NONE;
3392                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3393         }
3394         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3395
3396         POSTING_READ(reg);
3397         udelay(150);
3398
3399         for (i = 0; i < 4; i++) {
3400                 reg = FDI_TX_CTL(pipe);
3401                 temp = I915_READ(reg);
3402                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3403                 temp |= snb_b_fdi_train_param[i];
3404                 I915_WRITE(reg, temp);
3405
3406                 POSTING_READ(reg);
3407                 udelay(500);
3408
3409                 for (retry = 0; retry < 5; retry++) {
3410                         reg = FDI_RX_IIR(pipe);
3411                         temp = I915_READ(reg);
3412                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3413                         if (temp & FDI_RX_BIT_LOCK) {
3414                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3415                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3416                                 break;
3417                         }
3418                         udelay(50);
3419                 }
3420                 if (retry < 5)
3421                         break;
3422         }
3423         if (i == 4)
3424                 DRM_ERROR("FDI train 1 fail!\n");
3425
3426         /* Train 2 */
3427         reg = FDI_TX_CTL(pipe);
3428         temp = I915_READ(reg);
3429         temp &= ~FDI_LINK_TRAIN_NONE;
3430         temp |= FDI_LINK_TRAIN_PATTERN_2;
3431         if (IS_GEN6(dev)) {
3432                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3433                 /* SNB-B */
3434                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3435         }
3436         I915_WRITE(reg, temp);
3437
3438         reg = FDI_RX_CTL(pipe);
3439         temp = I915_READ(reg);
3440         if (HAS_PCH_CPT(dev)) {
3441                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3442                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3443         } else {
3444                 temp &= ~FDI_LINK_TRAIN_NONE;
3445                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3446         }
3447         I915_WRITE(reg, temp);
3448
3449         POSTING_READ(reg);
3450         udelay(150);
3451
3452         for (i = 0; i < 4; i++) {
3453                 reg = FDI_TX_CTL(pipe);
3454                 temp = I915_READ(reg);
3455                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3456                 temp |= snb_b_fdi_train_param[i];
3457                 I915_WRITE(reg, temp);
3458
3459                 POSTING_READ(reg);
3460                 udelay(500);
3461
3462                 for (retry = 0; retry < 5; retry++) {
3463                         reg = FDI_RX_IIR(pipe);
3464                         temp = I915_READ(reg);
3465                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3466                         if (temp & FDI_RX_SYMBOL_LOCK) {
3467                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3468                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3469                                 break;
3470                         }
3471                         udelay(50);
3472                 }
3473                 if (retry < 5)
3474                         break;
3475         }
3476         if (i == 4)
3477                 DRM_ERROR("FDI train 2 fail!\n");
3478
3479         DRM_DEBUG_KMS("FDI train done.\n");
3480 }
3481
3482 /* Manual link training for Ivy Bridge A0 parts */
3483 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3484 {
3485         struct drm_device *dev = crtc->dev;
3486         struct drm_i915_private *dev_priv = dev->dev_private;
3487         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3488         int pipe = intel_crtc->pipe;
3489         u32 reg, temp, i, j;
3490
3491         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3492            for train result */
3493         reg = FDI_RX_IMR(pipe);
3494         temp = I915_READ(reg);
3495         temp &= ~FDI_RX_SYMBOL_LOCK;
3496         temp &= ~FDI_RX_BIT_LOCK;
3497         I915_WRITE(reg, temp);
3498
3499         POSTING_READ(reg);
3500         udelay(150);
3501
3502         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3503                       I915_READ(FDI_RX_IIR(pipe)));
3504
3505         /* Try each vswing and preemphasis setting twice before moving on */
3506         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3507                 /* disable first in case we need to retry */
3508                 reg = FDI_TX_CTL(pipe);
3509                 temp = I915_READ(reg);
3510                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3511                 temp &= ~FDI_TX_ENABLE;
3512                 I915_WRITE(reg, temp);
3513
3514                 reg = FDI_RX_CTL(pipe);
3515                 temp = I915_READ(reg);
3516                 temp &= ~FDI_LINK_TRAIN_AUTO;
3517                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3518                 temp &= ~FDI_RX_ENABLE;
3519                 I915_WRITE(reg, temp);
3520
3521                 /* enable CPU FDI TX and PCH FDI RX */
3522                 reg = FDI_TX_CTL(pipe);
3523                 temp = I915_READ(reg);
3524                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3525                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3526                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3527                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3528                 temp |= snb_b_fdi_train_param[j/2];
3529                 temp |= FDI_COMPOSITE_SYNC;
3530                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3531
3532                 I915_WRITE(FDI_RX_MISC(pipe),
3533                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3534
3535                 reg = FDI_RX_CTL(pipe);
3536                 temp = I915_READ(reg);
3537                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3538                 temp |= FDI_COMPOSITE_SYNC;
3539                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3540
3541                 POSTING_READ(reg);
3542                 udelay(1); /* should be 0.5us */
3543
3544                 for (i = 0; i < 4; i++) {
3545                         reg = FDI_RX_IIR(pipe);
3546                         temp = I915_READ(reg);
3547                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3548
3549                         if (temp & FDI_RX_BIT_LOCK ||
3550                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3551                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3552                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3553                                               i);
3554                                 break;
3555                         }
3556                         udelay(1); /* should be 0.5us */
3557                 }
3558                 if (i == 4) {
3559                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3560                         continue;
3561                 }
3562
3563                 /* Train 2 */
3564                 reg = FDI_TX_CTL(pipe);
3565                 temp = I915_READ(reg);
3566                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3567                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3568                 I915_WRITE(reg, temp);
3569
3570                 reg = FDI_RX_CTL(pipe);
3571                 temp = I915_READ(reg);
3572                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3573                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3574                 I915_WRITE(reg, temp);
3575
3576                 POSTING_READ(reg);
3577                 udelay(2); /* should be 1.5us */
3578
3579                 for (i = 0; i < 4; i++) {
3580                         reg = FDI_RX_IIR(pipe);
3581                         temp = I915_READ(reg);
3582                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3583
3584                         if (temp & FDI_RX_SYMBOL_LOCK ||
3585                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3586                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3587                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3588                                               i);
3589                                 goto train_done;
3590                         }
3591                         udelay(2); /* should be 1.5us */
3592                 }
3593                 if (i == 4)
3594                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3595         }
3596
3597 train_done:
3598         DRM_DEBUG_KMS("FDI train done.\n");
3599 }
3600
3601 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3602 {
3603         struct drm_device *dev = intel_crtc->base.dev;
3604         struct drm_i915_private *dev_priv = dev->dev_private;
3605         int pipe = intel_crtc->pipe;
3606         u32 reg, temp;
3607
3608
3609         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3610         reg = FDI_RX_CTL(pipe);
3611         temp = I915_READ(reg);
3612         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3613         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3614         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3615         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3616
3617         POSTING_READ(reg);
3618         udelay(200);
3619
3620         /* Switch from Rawclk to PCDclk */
3621         temp = I915_READ(reg);
3622         I915_WRITE(reg, temp | FDI_PCDCLK);
3623
3624         POSTING_READ(reg);
3625         udelay(200);
3626
3627         /* Enable CPU FDI TX PLL, always on for Ironlake */
3628         reg = FDI_TX_CTL(pipe);
3629         temp = I915_READ(reg);
3630         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3631                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3632
3633                 POSTING_READ(reg);
3634                 udelay(100);
3635         }
3636 }
3637
3638 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3639 {
3640         struct drm_device *dev = intel_crtc->base.dev;
3641         struct drm_i915_private *dev_priv = dev->dev_private;
3642         int pipe = intel_crtc->pipe;
3643         u32 reg, temp;
3644
3645         /* Switch from PCDclk to Rawclk */
3646         reg = FDI_RX_CTL(pipe);
3647         temp = I915_READ(reg);
3648         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3649
3650         /* Disable CPU FDI TX PLL */
3651         reg = FDI_TX_CTL(pipe);
3652         temp = I915_READ(reg);
3653         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3654
3655         POSTING_READ(reg);
3656         udelay(100);
3657
3658         reg = FDI_RX_CTL(pipe);
3659         temp = I915_READ(reg);
3660         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3661
3662         /* Wait for the clocks to turn off. */
3663         POSTING_READ(reg);
3664         udelay(100);
3665 }
3666
3667 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3668 {
3669         struct drm_device *dev = crtc->dev;
3670         struct drm_i915_private *dev_priv = dev->dev_private;
3671         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3672         int pipe = intel_crtc->pipe;
3673         u32 reg, temp;
3674
3675         /* disable CPU FDI tx and PCH FDI rx */
3676         reg = FDI_TX_CTL(pipe);
3677         temp = I915_READ(reg);
3678         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3679         POSTING_READ(reg);
3680
3681         reg = FDI_RX_CTL(pipe);
3682         temp = I915_READ(reg);
3683         temp &= ~(0x7 << 16);
3684         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3685         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3686
3687         POSTING_READ(reg);
3688         udelay(100);
3689
3690         /* Ironlake workaround, disable clock pointer after downing FDI */
3691         if (HAS_PCH_IBX(dev))
3692                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3693
3694         /* still set train pattern 1 */
3695         reg = FDI_TX_CTL(pipe);
3696         temp = I915_READ(reg);
3697         temp &= ~FDI_LINK_TRAIN_NONE;
3698         temp |= FDI_LINK_TRAIN_PATTERN_1;
3699         I915_WRITE(reg, temp);
3700
3701         reg = FDI_RX_CTL(pipe);
3702         temp = I915_READ(reg);
3703         if (HAS_PCH_CPT(dev)) {
3704                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3705                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3706         } else {
3707                 temp &= ~FDI_LINK_TRAIN_NONE;
3708                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3709         }
3710         /* BPC in FDI rx is consistent with that in PIPECONF */
3711         temp &= ~(0x07 << 16);
3712         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3713         I915_WRITE(reg, temp);
3714
3715         POSTING_READ(reg);
3716         udelay(100);
3717 }
3718
3719 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3720 {
3721         struct intel_crtc *crtc;
3722
3723         /* Note that we don't need to be called with mode_config.lock here
3724          * as our list of CRTC objects is static for the lifetime of the
3725          * device and so cannot disappear as we iterate. Similarly, we can
3726          * happily treat the predicates as racy, atomic checks as userspace
3727          * cannot claim and pin a new fb without at least acquring the
3728          * struct_mutex and so serialising with us.
3729          */
3730         for_each_intel_crtc(dev, crtc) {
3731                 if (atomic_read(&crtc->unpin_work_count) == 0)
3732                         continue;
3733
3734                 if (crtc->unpin_work)
3735                         intel_wait_for_vblank(dev, crtc->pipe);
3736
3737                 return true;
3738         }
3739
3740         return false;
3741 }
3742
3743 static void page_flip_completed(struct intel_crtc *intel_crtc)
3744 {
3745         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3746         struct intel_unpin_work *work = intel_crtc->unpin_work;
3747
3748         /* ensure that the unpin work is consistent wrt ->pending. */
3749         smp_rmb();
3750         intel_crtc->unpin_work = NULL;
3751
3752         if (work->event)
3753                 drm_send_vblank_event(intel_crtc->base.dev,
3754                                       intel_crtc->pipe,
3755                                       work->event);
3756
3757         drm_crtc_vblank_put(&intel_crtc->base);
3758
3759         wake_up_all(&dev_priv->pending_flip_queue);
3760         queue_work(dev_priv->wq, &work->work);
3761
3762         trace_i915_flip_complete(intel_crtc->plane,
3763                                  work->pending_flip_obj);
3764 }
3765
3766 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3767 {
3768         struct drm_device *dev = crtc->dev;
3769         struct drm_i915_private *dev_priv = dev->dev_private;
3770
3771         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3772         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3773                                        !intel_crtc_has_pending_flip(crtc),
3774                                        60*HZ) == 0)) {
3775                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3776
3777                 spin_lock_irq(&dev->event_lock);
3778                 if (intel_crtc->unpin_work) {
3779                         WARN_ONCE(1, "Removing stuck page flip\n");
3780                         page_flip_completed(intel_crtc);
3781                 }
3782                 spin_unlock_irq(&dev->event_lock);
3783         }
3784
3785         if (crtc->primary->fb) {
3786                 mutex_lock(&dev->struct_mutex);
3787                 intel_finish_fb(crtc->primary->fb);
3788                 mutex_unlock(&dev->struct_mutex);
3789         }
3790 }
3791
3792 /* Program iCLKIP clock to the desired frequency */
3793 static void lpt_program_iclkip(struct drm_crtc *crtc)
3794 {
3795         struct drm_device *dev = crtc->dev;
3796         struct drm_i915_private *dev_priv = dev->dev_private;
3797         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3798         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3799         u32 temp;
3800
3801         mutex_lock(&dev_priv->dpio_lock);
3802
3803         /* It is necessary to ungate the pixclk gate prior to programming
3804          * the divisors, and gate it back when it is done.
3805          */
3806         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3807
3808         /* Disable SSCCTL */
3809         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3810                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3811                                 SBI_SSCCTL_DISABLE,
3812                         SBI_ICLK);
3813
3814         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3815         if (clock == 20000) {
3816                 auxdiv = 1;
3817                 divsel = 0x41;
3818                 phaseinc = 0x20;
3819         } else {
3820                 /* The iCLK virtual clock root frequency is in MHz,
3821                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3822                  * divisors, it is necessary to divide one by another, so we
3823                  * convert the virtual clock precision to KHz here for higher
3824                  * precision.
3825                  */
3826                 u32 iclk_virtual_root_freq = 172800 * 1000;
3827                 u32 iclk_pi_range = 64;
3828                 u32 desired_divisor, msb_divisor_value, pi_value;
3829
3830                 desired_divisor = (iclk_virtual_root_freq / clock);
3831                 msb_divisor_value = desired_divisor / iclk_pi_range;
3832                 pi_value = desired_divisor % iclk_pi_range;
3833
3834                 auxdiv = 0;
3835                 divsel = msb_divisor_value - 2;
3836                 phaseinc = pi_value;
3837         }
3838
3839         /* This should not happen with any sane values */
3840         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3841                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3842         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3843                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3844
3845         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3846                         clock,
3847                         auxdiv,
3848                         divsel,
3849                         phasedir,
3850                         phaseinc);
3851
3852         /* Program SSCDIVINTPHASE6 */
3853         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3854         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3855         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3856         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3857         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3858         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3859         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3860         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3861
3862         /* Program SSCAUXDIV */
3863         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3864         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3865         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3866         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3867
3868         /* Enable modulator and associated divider */
3869         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3870         temp &= ~SBI_SSCCTL_DISABLE;
3871         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3872
3873         /* Wait for initialization time */
3874         udelay(24);
3875
3876         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3877
3878         mutex_unlock(&dev_priv->dpio_lock);
3879 }
3880
3881 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3882                                                 enum pipe pch_transcoder)
3883 {
3884         struct drm_device *dev = crtc->base.dev;
3885         struct drm_i915_private *dev_priv = dev->dev_private;
3886         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3887
3888         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3889                    I915_READ(HTOTAL(cpu_transcoder)));
3890         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3891                    I915_READ(HBLANK(cpu_transcoder)));
3892         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3893                    I915_READ(HSYNC(cpu_transcoder)));
3894
3895         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3896                    I915_READ(VTOTAL(cpu_transcoder)));
3897         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3898                    I915_READ(VBLANK(cpu_transcoder)));
3899         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3900                    I915_READ(VSYNC(cpu_transcoder)));
3901         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3902                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3903 }
3904
3905 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
3906 {
3907         struct drm_i915_private *dev_priv = dev->dev_private;
3908         uint32_t temp;
3909
3910         temp = I915_READ(SOUTH_CHICKEN1);
3911         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
3912                 return;
3913
3914         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3915         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3916
3917         temp &= ~FDI_BC_BIFURCATION_SELECT;
3918         if (enable)
3919                 temp |= FDI_BC_BIFURCATION_SELECT;
3920
3921         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
3922         I915_WRITE(SOUTH_CHICKEN1, temp);
3923         POSTING_READ(SOUTH_CHICKEN1);
3924 }
3925
3926 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3927 {
3928         struct drm_device *dev = intel_crtc->base.dev;
3929
3930         switch (intel_crtc->pipe) {
3931         case PIPE_A:
3932                 break;
3933         case PIPE_B:
3934                 if (intel_crtc->config->fdi_lanes > 2)
3935                         cpt_set_fdi_bc_bifurcation(dev, false);
3936                 else
3937                         cpt_set_fdi_bc_bifurcation(dev, true);
3938
3939                 break;
3940         case PIPE_C:
3941                 cpt_set_fdi_bc_bifurcation(dev, true);
3942
3943                 break;
3944         default:
3945                 BUG();
3946         }
3947 }
3948
3949 /*
3950  * Enable PCH resources required for PCH ports:
3951  *   - PCH PLLs
3952  *   - FDI training & RX/TX
3953  *   - update transcoder timings
3954  *   - DP transcoding bits
3955  *   - transcoder
3956  */
3957 static void ironlake_pch_enable(struct drm_crtc *crtc)
3958 {
3959         struct drm_device *dev = crtc->dev;
3960         struct drm_i915_private *dev_priv = dev->dev_private;
3961         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3962         int pipe = intel_crtc->pipe;
3963         u32 reg, temp;
3964
3965         assert_pch_transcoder_disabled(dev_priv, pipe);
3966
3967         if (IS_IVYBRIDGE(dev))
3968                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3969
3970         /* Write the TU size bits before fdi link training, so that error
3971          * detection works. */
3972         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3973                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3974
3975         /* For PCH output, training FDI link */
3976         dev_priv->display.fdi_link_train(crtc);
3977
3978         /* We need to program the right clock selection before writing the pixel
3979          * mutliplier into the DPLL. */
3980         if (HAS_PCH_CPT(dev)) {
3981                 u32 sel;
3982
3983                 temp = I915_READ(PCH_DPLL_SEL);
3984                 temp |= TRANS_DPLL_ENABLE(pipe);
3985                 sel = TRANS_DPLLB_SEL(pipe);
3986                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
3987                         temp |= sel;
3988                 else
3989                         temp &= ~sel;
3990                 I915_WRITE(PCH_DPLL_SEL, temp);
3991         }
3992
3993         /* XXX: pch pll's can be enabled any time before we enable the PCH
3994          * transcoder, and we actually should do this to not upset any PCH
3995          * transcoder that already use the clock when we share it.
3996          *
3997          * Note that enable_shared_dpll tries to do the right thing, but
3998          * get_shared_dpll unconditionally resets the pll - we need that to have
3999          * the right LVDS enable sequence. */
4000         intel_enable_shared_dpll(intel_crtc);
4001
4002         /* set transcoder timing, panel must allow it */
4003         assert_panel_unlocked(dev_priv, pipe);
4004         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4005
4006         intel_fdi_normal_train(crtc);
4007
4008         /* For PCH DP, enable TRANS_DP_CTL */
4009         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4010                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4011                 reg = TRANS_DP_CTL(pipe);
4012                 temp = I915_READ(reg);
4013                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4014                           TRANS_DP_SYNC_MASK |
4015                           TRANS_DP_BPC_MASK);
4016                 temp |= (TRANS_DP_OUTPUT_ENABLE |
4017                          TRANS_DP_ENH_FRAMING);
4018                 temp |= bpc << 9; /* same format but at 11:9 */
4019
4020                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4021                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4022                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4023                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4024
4025                 switch (intel_trans_dp_port_sel(crtc)) {
4026                 case PCH_DP_B:
4027                         temp |= TRANS_DP_PORT_SEL_B;
4028                         break;
4029                 case PCH_DP_C:
4030                         temp |= TRANS_DP_PORT_SEL_C;
4031                         break;
4032                 case PCH_DP_D:
4033                         temp |= TRANS_DP_PORT_SEL_D;
4034                         break;
4035                 default:
4036                         BUG();
4037                 }
4038
4039                 I915_WRITE(reg, temp);
4040         }
4041
4042         ironlake_enable_pch_transcoder(dev_priv, pipe);
4043 }
4044
4045 static void lpt_pch_enable(struct drm_crtc *crtc)
4046 {
4047         struct drm_device *dev = crtc->dev;
4048         struct drm_i915_private *dev_priv = dev->dev_private;
4049         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4050         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4051
4052         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4053
4054         lpt_program_iclkip(crtc);
4055
4056         /* Set transcoder timing. */
4057         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4058
4059         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4060 }
4061
4062 void intel_put_shared_dpll(struct intel_crtc *crtc)
4063 {
4064         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4065
4066         if (pll == NULL)
4067                 return;
4068
4069         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4070                 WARN(1, "bad %s crtc mask\n", pll->name);
4071                 return;
4072         }
4073
4074         pll->config.crtc_mask &= ~(1 << crtc->pipe);
4075         if (pll->config.crtc_mask == 0) {
4076                 WARN_ON(pll->on);
4077                 WARN_ON(pll->active);
4078         }
4079
4080         crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4081 }
4082
4083 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4084                                                 struct intel_crtc_state *crtc_state)
4085 {
4086         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4087         struct intel_shared_dpll *pll;
4088         enum intel_dpll_id i;
4089
4090         if (HAS_PCH_IBX(dev_priv->dev)) {
4091                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4092                 i = (enum intel_dpll_id) crtc->pipe;
4093                 pll = &dev_priv->shared_dplls[i];
4094
4095                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4096                               crtc->base.base.id, pll->name);
4097
4098                 WARN_ON(pll->new_config->crtc_mask);
4099
4100                 goto found;
4101         }
4102
4103         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4104                 pll = &dev_priv->shared_dplls[i];
4105
4106                 /* Only want to check enabled timings first */
4107                 if (pll->new_config->crtc_mask == 0)
4108                         continue;
4109
4110                 if (memcmp(&crtc_state->dpll_hw_state,
4111                            &pll->new_config->hw_state,
4112                            sizeof(pll->new_config->hw_state)) == 0) {
4113                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4114                                       crtc->base.base.id, pll->name,
4115                                       pll->new_config->crtc_mask,
4116                                       pll->active);
4117                         goto found;
4118                 }
4119         }
4120
4121         /* Ok no matching timings, maybe there's a free one? */
4122         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4123                 pll = &dev_priv->shared_dplls[i];
4124                 if (pll->new_config->crtc_mask == 0) {
4125                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4126                                       crtc->base.base.id, pll->name);
4127                         goto found;
4128                 }
4129         }
4130
4131         return NULL;
4132
4133 found:
4134         if (pll->new_config->crtc_mask == 0)
4135                 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4136
4137         crtc_state->shared_dpll = i;
4138         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4139                          pipe_name(crtc->pipe));
4140
4141         pll->new_config->crtc_mask |= 1 << crtc->pipe;
4142
4143         return pll;
4144 }
4145
4146 /**
4147  * intel_shared_dpll_start_config - start a new PLL staged config
4148  * @dev_priv: DRM device
4149  * @clear_pipes: mask of pipes that will have their PLLs freed
4150  *
4151  * Starts a new PLL staged config, copying the current config but
4152  * releasing the references of pipes specified in clear_pipes.
4153  */
4154 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4155                                           unsigned clear_pipes)
4156 {
4157         struct intel_shared_dpll *pll;
4158         enum intel_dpll_id i;
4159
4160         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4161                 pll = &dev_priv->shared_dplls[i];
4162
4163                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4164                                           GFP_KERNEL);
4165                 if (!pll->new_config)
4166                         goto cleanup;
4167
4168                 pll->new_config->crtc_mask &= ~clear_pipes;
4169         }
4170
4171         return 0;
4172
4173 cleanup:
4174         while (--i >= 0) {
4175                 pll = &dev_priv->shared_dplls[i];
4176                 kfree(pll->new_config);
4177                 pll->new_config = NULL;
4178         }
4179
4180         return -ENOMEM;
4181 }
4182
4183 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4184 {
4185         struct intel_shared_dpll *pll;
4186         enum intel_dpll_id i;
4187
4188         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4189                 pll = &dev_priv->shared_dplls[i];
4190
4191                 WARN_ON(pll->new_config == &pll->config);
4192
4193                 pll->config = *pll->new_config;
4194                 kfree(pll->new_config);
4195                 pll->new_config = NULL;
4196         }
4197 }
4198
4199 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4200 {
4201         struct intel_shared_dpll *pll;
4202         enum intel_dpll_id i;
4203
4204         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4205                 pll = &dev_priv->shared_dplls[i];
4206
4207                 WARN_ON(pll->new_config == &pll->config);
4208
4209                 kfree(pll->new_config);
4210                 pll->new_config = NULL;
4211         }
4212 }
4213
4214 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4215 {
4216         struct drm_i915_private *dev_priv = dev->dev_private;
4217         int dslreg = PIPEDSL(pipe);
4218         u32 temp;
4219
4220         temp = I915_READ(dslreg);
4221         udelay(500);
4222         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4223                 if (wait_for(I915_READ(dslreg) != temp, 5))
4224                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4225         }
4226 }
4227
4228 static void skylake_pfit_enable(struct intel_crtc *crtc)
4229 {
4230         struct drm_device *dev = crtc->base.dev;
4231         struct drm_i915_private *dev_priv = dev->dev_private;
4232         int pipe = crtc->pipe;
4233
4234         if (crtc->config->pch_pfit.enabled) {
4235                 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4236                 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4237                 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4238         }
4239 }
4240
4241 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4242 {
4243         struct drm_device *dev = crtc->base.dev;
4244         struct drm_i915_private *dev_priv = dev->dev_private;
4245         int pipe = crtc->pipe;
4246
4247         if (crtc->config->pch_pfit.enabled) {
4248                 /* Force use of hard-coded filter coefficients
4249                  * as some pre-programmed values are broken,
4250                  * e.g. x201.
4251                  */
4252                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4253                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4254                                                  PF_PIPE_SEL_IVB(pipe));
4255                 else
4256                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4257                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4258                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4259         }
4260 }
4261
4262 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4263 {
4264         struct drm_device *dev = crtc->dev;
4265         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4266         struct drm_plane *plane;
4267         struct intel_plane *intel_plane;
4268
4269         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4270                 intel_plane = to_intel_plane(plane);
4271                 if (intel_plane->pipe == pipe)
4272                         intel_plane_restore(&intel_plane->base);
4273         }
4274 }
4275
4276 /*
4277  * Disable a plane internally without actually modifying the plane's state.
4278  * This will allow us to easily restore the plane later by just reprogramming
4279  * its state.
4280  */
4281 static void disable_plane_internal(struct drm_plane *plane)
4282 {
4283         struct intel_plane *intel_plane = to_intel_plane(plane);
4284         struct drm_plane_state *state =
4285                 plane->funcs->atomic_duplicate_state(plane);
4286         struct intel_plane_state *intel_state = to_intel_plane_state(state);
4287
4288         intel_state->visible = false;
4289         intel_plane->commit_plane(plane, intel_state);
4290
4291         intel_plane_destroy_state(plane, state);
4292 }
4293
4294 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4295 {
4296         struct drm_device *dev = crtc->dev;
4297         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4298         struct drm_plane *plane;
4299         struct intel_plane *intel_plane;
4300
4301         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4302                 intel_plane = to_intel_plane(plane);
4303                 if (plane->fb && intel_plane->pipe == pipe)
4304                         disable_plane_internal(plane);
4305         }
4306 }
4307
4308 void hsw_enable_ips(struct intel_crtc *crtc)
4309 {
4310         struct drm_device *dev = crtc->base.dev;
4311         struct drm_i915_private *dev_priv = dev->dev_private;
4312
4313         if (!crtc->config->ips_enabled)
4314                 return;
4315
4316         /* We can only enable IPS after we enable a plane and wait for a vblank */
4317         intel_wait_for_vblank(dev, crtc->pipe);
4318
4319         assert_plane_enabled(dev_priv, crtc->plane);
4320         if (IS_BROADWELL(dev)) {
4321                 mutex_lock(&dev_priv->rps.hw_lock);
4322                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4323                 mutex_unlock(&dev_priv->rps.hw_lock);
4324                 /* Quoting Art Runyan: "its not safe to expect any particular
4325                  * value in IPS_CTL bit 31 after enabling IPS through the
4326                  * mailbox." Moreover, the mailbox may return a bogus state,
4327                  * so we need to just enable it and continue on.
4328                  */
4329         } else {
4330                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4331                 /* The bit only becomes 1 in the next vblank, so this wait here
4332                  * is essentially intel_wait_for_vblank. If we don't have this
4333                  * and don't wait for vblanks until the end of crtc_enable, then
4334                  * the HW state readout code will complain that the expected
4335                  * IPS_CTL value is not the one we read. */
4336                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4337                         DRM_ERROR("Timed out waiting for IPS enable\n");
4338         }
4339 }
4340
4341 void hsw_disable_ips(struct intel_crtc *crtc)
4342 {
4343         struct drm_device *dev = crtc->base.dev;
4344         struct drm_i915_private *dev_priv = dev->dev_private;
4345
4346         if (!crtc->config->ips_enabled)
4347                 return;
4348
4349         assert_plane_enabled(dev_priv, crtc->plane);
4350         if (IS_BROADWELL(dev)) {
4351                 mutex_lock(&dev_priv->rps.hw_lock);
4352                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4353                 mutex_unlock(&dev_priv->rps.hw_lock);
4354                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4355                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4356                         DRM_ERROR("Timed out waiting for IPS disable\n");
4357         } else {
4358                 I915_WRITE(IPS_CTL, 0);
4359                 POSTING_READ(IPS_CTL);
4360         }
4361
4362         /* We need to wait for a vblank before we can disable the plane. */
4363         intel_wait_for_vblank(dev, crtc->pipe);
4364 }
4365
4366 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4367 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4368 {
4369         struct drm_device *dev = crtc->dev;
4370         struct drm_i915_private *dev_priv = dev->dev_private;
4371         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4372         enum pipe pipe = intel_crtc->pipe;
4373         int palreg = PALETTE(pipe);
4374         int i;
4375         bool reenable_ips = false;
4376
4377         /* The clocks have to be on to load the palette. */
4378         if (!crtc->state->enable || !intel_crtc->active)
4379                 return;
4380
4381         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4382                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4383                         assert_dsi_pll_enabled(dev_priv);
4384                 else
4385                         assert_pll_enabled(dev_priv, pipe);
4386         }
4387
4388         /* use legacy palette for Ironlake */
4389         if (!HAS_GMCH_DISPLAY(dev))
4390                 palreg = LGC_PALETTE(pipe);
4391
4392         /* Workaround : Do not read or write the pipe palette/gamma data while
4393          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4394          */
4395         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4396             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4397              GAMMA_MODE_MODE_SPLIT)) {
4398                 hsw_disable_ips(intel_crtc);
4399                 reenable_ips = true;
4400         }
4401
4402         for (i = 0; i < 256; i++) {
4403                 I915_WRITE(palreg + 4 * i,
4404                            (intel_crtc->lut_r[i] << 16) |
4405                            (intel_crtc->lut_g[i] << 8) |
4406                            intel_crtc->lut_b[i]);
4407         }
4408
4409         if (reenable_ips)
4410                 hsw_enable_ips(intel_crtc);
4411 }
4412
4413 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4414 {
4415         if (!enable && intel_crtc->overlay) {
4416                 struct drm_device *dev = intel_crtc->base.dev;
4417                 struct drm_i915_private *dev_priv = dev->dev_private;
4418
4419                 mutex_lock(&dev->struct_mutex);
4420                 dev_priv->mm.interruptible = false;
4421                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4422                 dev_priv->mm.interruptible = true;
4423                 mutex_unlock(&dev->struct_mutex);
4424         }
4425
4426         /* Let userspace switch the overlay on again. In most cases userspace
4427          * has to recompute where to put it anyway.
4428          */
4429 }
4430
4431 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4432 {
4433         struct drm_device *dev = crtc->dev;
4434         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4435         int pipe = intel_crtc->pipe;
4436
4437         intel_enable_primary_hw_plane(crtc->primary, crtc);
4438         intel_enable_sprite_planes(crtc);
4439         intel_crtc_update_cursor(crtc, true);
4440         intel_crtc_dpms_overlay(intel_crtc, true);
4441
4442         hsw_enable_ips(intel_crtc);
4443
4444         mutex_lock(&dev->struct_mutex);
4445         intel_fbc_update(dev);
4446         mutex_unlock(&dev->struct_mutex);
4447
4448         /*
4449          * FIXME: Once we grow proper nuclear flip support out of this we need
4450          * to compute the mask of flip planes precisely. For the time being
4451          * consider this a flip from a NULL plane.
4452          */
4453         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4454 }
4455
4456 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4457 {
4458         struct drm_device *dev = crtc->dev;
4459         struct drm_i915_private *dev_priv = dev->dev_private;
4460         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4461         int pipe = intel_crtc->pipe;
4462
4463         intel_crtc_wait_for_pending_flips(crtc);
4464
4465         if (dev_priv->fbc.crtc == intel_crtc)
4466                 intel_fbc_disable(dev);
4467
4468         hsw_disable_ips(intel_crtc);
4469
4470         intel_crtc_dpms_overlay(intel_crtc, false);
4471         intel_crtc_update_cursor(crtc, false);
4472         intel_disable_sprite_planes(crtc);
4473         intel_disable_primary_hw_plane(crtc->primary, crtc);
4474
4475         /*
4476          * FIXME: Once we grow proper nuclear flip support out of this we need
4477          * to compute the mask of flip planes precisely. For the time being
4478          * consider this a flip to a NULL plane.
4479          */
4480         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4481 }
4482
4483 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4484 {
4485         struct drm_device *dev = crtc->dev;
4486         struct drm_i915_private *dev_priv = dev->dev_private;
4487         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4488         struct intel_encoder *encoder;
4489         int pipe = intel_crtc->pipe;
4490
4491         WARN_ON(!crtc->state->enable);
4492
4493         if (intel_crtc->active)
4494                 return;
4495
4496         if (intel_crtc->config->has_pch_encoder)
4497                 intel_prepare_shared_dpll(intel_crtc);
4498
4499         if (intel_crtc->config->has_dp_encoder)
4500                 intel_dp_set_m_n(intel_crtc, M1_N1);
4501
4502         intel_set_pipe_timings(intel_crtc);
4503
4504         if (intel_crtc->config->has_pch_encoder) {
4505                 intel_cpu_transcoder_set_m_n(intel_crtc,
4506                                      &intel_crtc->config->fdi_m_n, NULL);
4507         }
4508
4509         ironlake_set_pipeconf(crtc);
4510
4511         intel_crtc->active = true;
4512
4513         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4514         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4515
4516         for_each_encoder_on_crtc(dev, crtc, encoder)
4517                 if (encoder->pre_enable)
4518                         encoder->pre_enable(encoder);
4519
4520         if (intel_crtc->config->has_pch_encoder) {
4521                 /* Note: FDI PLL enabling _must_ be done before we enable the
4522                  * cpu pipes, hence this is separate from all the other fdi/pch
4523                  * enabling. */
4524                 ironlake_fdi_pll_enable(intel_crtc);
4525         } else {
4526                 assert_fdi_tx_disabled(dev_priv, pipe);
4527                 assert_fdi_rx_disabled(dev_priv, pipe);
4528         }
4529
4530         ironlake_pfit_enable(intel_crtc);
4531
4532         /*
4533          * On ILK+ LUT must be loaded before the pipe is running but with
4534          * clocks enabled
4535          */
4536         intel_crtc_load_lut(crtc);
4537
4538         intel_update_watermarks(crtc);
4539         intel_enable_pipe(intel_crtc);
4540
4541         if (intel_crtc->config->has_pch_encoder)
4542                 ironlake_pch_enable(crtc);
4543
4544         assert_vblank_disabled(crtc);
4545         drm_crtc_vblank_on(crtc);
4546
4547         for_each_encoder_on_crtc(dev, crtc, encoder)
4548                 encoder->enable(encoder);
4549
4550         if (HAS_PCH_CPT(dev))
4551                 cpt_verify_modeset(dev, intel_crtc->pipe);
4552
4553         intel_crtc_enable_planes(crtc);
4554 }
4555
4556 /* IPS only exists on ULT machines and is tied to pipe A. */
4557 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4558 {
4559         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4560 }
4561
4562 /*
4563  * This implements the workaround described in the "notes" section of the mode
4564  * set sequence documentation. When going from no pipes or single pipe to
4565  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4566  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4567  */
4568 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4569 {
4570         struct drm_device *dev = crtc->base.dev;
4571         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4572
4573         /* We want to get the other_active_crtc only if there's only 1 other
4574          * active crtc. */
4575         for_each_intel_crtc(dev, crtc_it) {
4576                 if (!crtc_it->active || crtc_it == crtc)
4577                         continue;
4578
4579                 if (other_active_crtc)
4580                         return;
4581
4582                 other_active_crtc = crtc_it;
4583         }
4584         if (!other_active_crtc)
4585                 return;
4586
4587         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4588         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4589 }
4590
4591 static void haswell_crtc_enable(struct drm_crtc *crtc)
4592 {
4593         struct drm_device *dev = crtc->dev;
4594         struct drm_i915_private *dev_priv = dev->dev_private;
4595         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4596         struct intel_encoder *encoder;
4597         int pipe = intel_crtc->pipe;
4598
4599         WARN_ON(!crtc->state->enable);
4600
4601         if (intel_crtc->active)
4602                 return;
4603
4604         if (intel_crtc_to_shared_dpll(intel_crtc))
4605                 intel_enable_shared_dpll(intel_crtc);
4606
4607         if (intel_crtc->config->has_dp_encoder)
4608                 intel_dp_set_m_n(intel_crtc, M1_N1);
4609
4610         intel_set_pipe_timings(intel_crtc);
4611
4612         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4613                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4614                            intel_crtc->config->pixel_multiplier - 1);
4615         }
4616
4617         if (intel_crtc->config->has_pch_encoder) {
4618                 intel_cpu_transcoder_set_m_n(intel_crtc,
4619                                      &intel_crtc->config->fdi_m_n, NULL);
4620         }
4621
4622         haswell_set_pipeconf(crtc);
4623
4624         intel_set_pipe_csc(crtc);
4625
4626         intel_crtc->active = true;
4627
4628         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4629         for_each_encoder_on_crtc(dev, crtc, encoder)
4630                 if (encoder->pre_enable)
4631                         encoder->pre_enable(encoder);
4632
4633         if (intel_crtc->config->has_pch_encoder) {
4634                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4635                                                       true);
4636                 dev_priv->display.fdi_link_train(crtc);
4637         }
4638
4639         intel_ddi_enable_pipe_clock(intel_crtc);
4640
4641         if (IS_SKYLAKE(dev))
4642                 skylake_pfit_enable(intel_crtc);
4643         else
4644                 ironlake_pfit_enable(intel_crtc);
4645
4646         /*
4647          * On ILK+ LUT must be loaded before the pipe is running but with
4648          * clocks enabled
4649          */
4650         intel_crtc_load_lut(crtc);
4651
4652         intel_ddi_set_pipe_settings(crtc);
4653         intel_ddi_enable_transcoder_func(crtc);
4654
4655         intel_update_watermarks(crtc);
4656         intel_enable_pipe(intel_crtc);
4657
4658         if (intel_crtc->config->has_pch_encoder)
4659                 lpt_pch_enable(crtc);
4660
4661         if (intel_crtc->config->dp_encoder_is_mst)
4662                 intel_ddi_set_vc_payload_alloc(crtc, true);
4663
4664         assert_vblank_disabled(crtc);
4665         drm_crtc_vblank_on(crtc);
4666
4667         for_each_encoder_on_crtc(dev, crtc, encoder) {
4668                 encoder->enable(encoder);
4669                 intel_opregion_notify_encoder(encoder, true);
4670         }
4671
4672         /* If we change the relative order between pipe/planes enabling, we need
4673          * to change the workaround. */
4674         haswell_mode_set_planes_workaround(intel_crtc);
4675         intel_crtc_enable_planes(crtc);
4676 }
4677
4678 static void skylake_pfit_disable(struct intel_crtc *crtc)
4679 {
4680         struct drm_device *dev = crtc->base.dev;
4681         struct drm_i915_private *dev_priv = dev->dev_private;
4682         int pipe = crtc->pipe;
4683
4684         /* To avoid upsetting the power well on haswell only disable the pfit if
4685          * it's in use. The hw state code will make sure we get this right. */
4686         if (crtc->config->pch_pfit.enabled) {
4687                 I915_WRITE(PS_CTL(pipe), 0);
4688                 I915_WRITE(PS_WIN_POS(pipe), 0);
4689                 I915_WRITE(PS_WIN_SZ(pipe), 0);
4690         }
4691 }
4692
4693 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4694 {
4695         struct drm_device *dev = crtc->base.dev;
4696         struct drm_i915_private *dev_priv = dev->dev_private;
4697         int pipe = crtc->pipe;
4698
4699         /* To avoid upsetting the power well on haswell only disable the pfit if
4700          * it's in use. The hw state code will make sure we get this right. */
4701         if (crtc->config->pch_pfit.enabled) {
4702                 I915_WRITE(PF_CTL(pipe), 0);
4703                 I915_WRITE(PF_WIN_POS(pipe), 0);
4704                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4705         }
4706 }
4707
4708 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4709 {
4710         struct drm_device *dev = crtc->dev;
4711         struct drm_i915_private *dev_priv = dev->dev_private;
4712         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4713         struct intel_encoder *encoder;
4714         int pipe = intel_crtc->pipe;
4715         u32 reg, temp;
4716
4717         if (!intel_crtc->active)
4718                 return;
4719
4720         intel_crtc_disable_planes(crtc);
4721
4722         for_each_encoder_on_crtc(dev, crtc, encoder)
4723                 encoder->disable(encoder);
4724
4725         drm_crtc_vblank_off(crtc);
4726         assert_vblank_disabled(crtc);
4727
4728         if (intel_crtc->config->has_pch_encoder)
4729                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4730
4731         intel_disable_pipe(intel_crtc);
4732
4733         ironlake_pfit_disable(intel_crtc);
4734
4735         for_each_encoder_on_crtc(dev, crtc, encoder)
4736                 if (encoder->post_disable)
4737                         encoder->post_disable(encoder);
4738
4739         if (intel_crtc->config->has_pch_encoder) {
4740                 ironlake_fdi_disable(crtc);
4741
4742                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4743
4744                 if (HAS_PCH_CPT(dev)) {
4745                         /* disable TRANS_DP_CTL */
4746                         reg = TRANS_DP_CTL(pipe);
4747                         temp = I915_READ(reg);
4748                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4749                                   TRANS_DP_PORT_SEL_MASK);
4750                         temp |= TRANS_DP_PORT_SEL_NONE;
4751                         I915_WRITE(reg, temp);
4752
4753                         /* disable DPLL_SEL */
4754                         temp = I915_READ(PCH_DPLL_SEL);
4755                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4756                         I915_WRITE(PCH_DPLL_SEL, temp);
4757                 }
4758
4759                 /* disable PCH DPLL */
4760                 intel_disable_shared_dpll(intel_crtc);
4761
4762                 ironlake_fdi_pll_disable(intel_crtc);
4763         }
4764
4765         intel_crtc->active = false;
4766         intel_update_watermarks(crtc);
4767
4768         mutex_lock(&dev->struct_mutex);
4769         intel_fbc_update(dev);
4770         mutex_unlock(&dev->struct_mutex);
4771 }
4772
4773 static void haswell_crtc_disable(struct drm_crtc *crtc)
4774 {
4775         struct drm_device *dev = crtc->dev;
4776         struct drm_i915_private *dev_priv = dev->dev_private;
4777         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4778         struct intel_encoder *encoder;
4779         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4780
4781         if (!intel_crtc->active)
4782                 return;
4783
4784         intel_crtc_disable_planes(crtc);
4785
4786         for_each_encoder_on_crtc(dev, crtc, encoder) {
4787                 intel_opregion_notify_encoder(encoder, false);
4788                 encoder->disable(encoder);
4789         }
4790
4791         drm_crtc_vblank_off(crtc);
4792         assert_vblank_disabled(crtc);
4793
4794         if (intel_crtc->config->has_pch_encoder)
4795                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4796                                                       false);
4797         intel_disable_pipe(intel_crtc);
4798
4799         if (intel_crtc->config->dp_encoder_is_mst)
4800                 intel_ddi_set_vc_payload_alloc(crtc, false);
4801
4802         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4803
4804         if (IS_SKYLAKE(dev))
4805                 skylake_pfit_disable(intel_crtc);
4806         else
4807                 ironlake_pfit_disable(intel_crtc);
4808
4809         intel_ddi_disable_pipe_clock(intel_crtc);
4810
4811         if (intel_crtc->config->has_pch_encoder) {
4812                 lpt_disable_pch_transcoder(dev_priv);
4813                 intel_ddi_fdi_disable(crtc);
4814         }
4815
4816         for_each_encoder_on_crtc(dev, crtc, encoder)
4817                 if (encoder->post_disable)
4818                         encoder->post_disable(encoder);
4819
4820         intel_crtc->active = false;
4821         intel_update_watermarks(crtc);
4822
4823         mutex_lock(&dev->struct_mutex);
4824         intel_fbc_update(dev);
4825         mutex_unlock(&dev->struct_mutex);
4826
4827         if (intel_crtc_to_shared_dpll(intel_crtc))
4828                 intel_disable_shared_dpll(intel_crtc);
4829 }
4830
4831 static void ironlake_crtc_off(struct drm_crtc *crtc)
4832 {
4833         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4834         intel_put_shared_dpll(intel_crtc);
4835 }
4836
4837
4838 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4839 {
4840         struct drm_device *dev = crtc->base.dev;
4841         struct drm_i915_private *dev_priv = dev->dev_private;
4842         struct intel_crtc_state *pipe_config = crtc->config;
4843
4844         if (!pipe_config->gmch_pfit.control)
4845                 return;
4846
4847         /*
4848          * The panel fitter should only be adjusted whilst the pipe is disabled,
4849          * according to register description and PRM.
4850          */
4851         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4852         assert_pipe_disabled(dev_priv, crtc->pipe);
4853
4854         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4855         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4856
4857         /* Border color in case we don't scale up to the full screen. Black by
4858          * default, change to something else for debugging. */
4859         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4860 }
4861
4862 static enum intel_display_power_domain port_to_power_domain(enum port port)
4863 {
4864         switch (port) {
4865         case PORT_A:
4866                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4867         case PORT_B:
4868                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4869         case PORT_C:
4870                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4871         case PORT_D:
4872                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4873         default:
4874                 WARN_ON_ONCE(1);
4875                 return POWER_DOMAIN_PORT_OTHER;
4876         }
4877 }
4878
4879 #define for_each_power_domain(domain, mask)                             \
4880         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4881                 if ((1 << (domain)) & (mask))
4882
4883 enum intel_display_power_domain
4884 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4885 {
4886         struct drm_device *dev = intel_encoder->base.dev;
4887         struct intel_digital_port *intel_dig_port;
4888
4889         switch (intel_encoder->type) {
4890         case INTEL_OUTPUT_UNKNOWN:
4891                 /* Only DDI platforms should ever use this output type */
4892                 WARN_ON_ONCE(!HAS_DDI(dev));
4893         case INTEL_OUTPUT_DISPLAYPORT:
4894         case INTEL_OUTPUT_HDMI:
4895         case INTEL_OUTPUT_EDP:
4896                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4897                 return port_to_power_domain(intel_dig_port->port);
4898         case INTEL_OUTPUT_DP_MST:
4899                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4900                 return port_to_power_domain(intel_dig_port->port);
4901         case INTEL_OUTPUT_ANALOG:
4902                 return POWER_DOMAIN_PORT_CRT;
4903         case INTEL_OUTPUT_DSI:
4904                 return POWER_DOMAIN_PORT_DSI;
4905         default:
4906                 return POWER_DOMAIN_PORT_OTHER;
4907         }
4908 }
4909
4910 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4911 {
4912         struct drm_device *dev = crtc->dev;
4913         struct intel_encoder *intel_encoder;
4914         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4915         enum pipe pipe = intel_crtc->pipe;
4916         unsigned long mask;
4917         enum transcoder transcoder;
4918
4919         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4920
4921         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4922         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4923         if (intel_crtc->config->pch_pfit.enabled ||
4924             intel_crtc->config->pch_pfit.force_thru)
4925                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4926
4927         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4928                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4929
4930         return mask;
4931 }
4932
4933 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4934 {
4935         struct drm_i915_private *dev_priv = dev->dev_private;
4936         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4937         struct intel_crtc *crtc;
4938
4939         /*
4940          * First get all needed power domains, then put all unneeded, to avoid
4941          * any unnecessary toggling of the power wells.
4942          */
4943         for_each_intel_crtc(dev, crtc) {
4944                 enum intel_display_power_domain domain;
4945
4946                 if (!crtc->base.state->enable)
4947                         continue;
4948
4949                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4950
4951                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4952                         intel_display_power_get(dev_priv, domain);
4953         }
4954
4955         if (dev_priv->display.modeset_global_resources)
4956                 dev_priv->display.modeset_global_resources(dev);
4957
4958         for_each_intel_crtc(dev, crtc) {
4959                 enum intel_display_power_domain domain;
4960
4961                 for_each_power_domain(domain, crtc->enabled_power_domains)
4962                         intel_display_power_put(dev_priv, domain);
4963
4964                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4965         }
4966
4967         intel_display_set_init_power(dev_priv, false);
4968 }
4969
4970 /* returns HPLL frequency in kHz */
4971 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4972 {
4973         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4974
4975         /* Obtain SKU information */
4976         mutex_lock(&dev_priv->dpio_lock);
4977         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4978                 CCK_FUSE_HPLL_FREQ_MASK;
4979         mutex_unlock(&dev_priv->dpio_lock);
4980
4981         return vco_freq[hpll_freq] * 1000;
4982 }
4983
4984 static void vlv_update_cdclk(struct drm_device *dev)
4985 {
4986         struct drm_i915_private *dev_priv = dev->dev_private;
4987
4988         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4989         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4990                          dev_priv->vlv_cdclk_freq);
4991
4992         /*
4993          * Program the gmbus_freq based on the cdclk frequency.
4994          * BSpec erroneously claims we should aim for 4MHz, but
4995          * in fact 1MHz is the correct frequency.
4996          */
4997         I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4998 }
4999
5000 /* Adjust CDclk dividers to allow high res or save power if possible */
5001 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5002 {
5003         struct drm_i915_private *dev_priv = dev->dev_private;
5004         u32 val, cmd;
5005
5006         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5007
5008         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5009                 cmd = 2;
5010         else if (cdclk == 266667)
5011                 cmd = 1;
5012         else
5013                 cmd = 0;
5014
5015         mutex_lock(&dev_priv->rps.hw_lock);
5016         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5017         val &= ~DSPFREQGUAR_MASK;
5018         val |= (cmd << DSPFREQGUAR_SHIFT);
5019         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5020         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5021                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5022                      50)) {
5023                 DRM_ERROR("timed out waiting for CDclk change\n");
5024         }
5025         mutex_unlock(&dev_priv->rps.hw_lock);
5026
5027         if (cdclk == 400000) {
5028                 u32 divider;
5029
5030                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5031
5032                 mutex_lock(&dev_priv->dpio_lock);
5033                 /* adjust cdclk divider */
5034                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5035                 val &= ~DISPLAY_FREQUENCY_VALUES;
5036                 val |= divider;
5037                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5038
5039                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5040                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5041                              50))
5042                         DRM_ERROR("timed out waiting for CDclk change\n");
5043                 mutex_unlock(&dev_priv->dpio_lock);
5044         }
5045
5046         mutex_lock(&dev_priv->dpio_lock);
5047         /* adjust self-refresh exit latency value */
5048         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5049         val &= ~0x7f;
5050
5051         /*
5052          * For high bandwidth configs, we set a higher latency in the bunit
5053          * so that the core display fetch happens in time to avoid underruns.
5054          */
5055         if (cdclk == 400000)
5056                 val |= 4500 / 250; /* 4.5 usec */
5057         else
5058                 val |= 3000 / 250; /* 3.0 usec */
5059         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5060         mutex_unlock(&dev_priv->dpio_lock);
5061
5062         vlv_update_cdclk(dev);
5063 }
5064
5065 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5066 {
5067         struct drm_i915_private *dev_priv = dev->dev_private;
5068         u32 val, cmd;
5069
5070         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5071
5072         switch (cdclk) {
5073         case 333333:
5074         case 320000:
5075         case 266667:
5076         case 200000:
5077                 break;
5078         default:
5079                 MISSING_CASE(cdclk);
5080                 return;
5081         }
5082
5083         /*
5084          * Specs are full of misinformation, but testing on actual
5085          * hardware has shown that we just need to write the desired
5086          * CCK divider into the Punit register.
5087          */
5088         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5089
5090         mutex_lock(&dev_priv->rps.hw_lock);
5091         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5092         val &= ~DSPFREQGUAR_MASK_CHV;
5093         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5094         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5095         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5096                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5097                      50)) {
5098                 DRM_ERROR("timed out waiting for CDclk change\n");
5099         }
5100         mutex_unlock(&dev_priv->rps.hw_lock);
5101
5102         vlv_update_cdclk(dev);
5103 }
5104
5105 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5106                                  int max_pixclk)
5107 {
5108         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5109         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5110
5111         /*
5112          * Really only a few cases to deal with, as only 4 CDclks are supported:
5113          *   200MHz
5114          *   267MHz
5115          *   320/333MHz (depends on HPLL freq)
5116          *   400MHz (VLV only)
5117          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5118          * of the lower bin and adjust if needed.
5119          *
5120          * We seem to get an unstable or solid color picture at 200MHz.
5121          * Not sure what's wrong. For now use 200MHz only when all pipes
5122          * are off.
5123          */
5124         if (!IS_CHERRYVIEW(dev_priv) &&
5125             max_pixclk > freq_320*limit/100)
5126                 return 400000;
5127         else if (max_pixclk > 266667*limit/100)
5128                 return freq_320;
5129         else if (max_pixclk > 0)
5130                 return 266667;
5131         else
5132                 return 200000;
5133 }
5134
5135 /* compute the max pixel clock for new configuration */
5136 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
5137 {
5138         struct drm_device *dev = dev_priv->dev;
5139         struct intel_crtc *intel_crtc;
5140         int max_pixclk = 0;
5141
5142         for_each_intel_crtc(dev, intel_crtc) {
5143                 if (intel_crtc->new_enabled)
5144                         max_pixclk = max(max_pixclk,
5145                                          intel_crtc->new_config->base.adjusted_mode.crtc_clock);
5146         }
5147
5148         return max_pixclk;
5149 }
5150
5151 static void valleyview_modeset_global_pipes(struct drm_device *dev,
5152                                             unsigned *prepare_pipes)
5153 {
5154         struct drm_i915_private *dev_priv = dev->dev_private;
5155         struct intel_crtc *intel_crtc;
5156         int max_pixclk = intel_mode_max_pixclk(dev_priv);
5157
5158         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
5159             dev_priv->vlv_cdclk_freq)
5160                 return;
5161
5162         /* disable/enable all currently active pipes while we change cdclk */
5163         for_each_intel_crtc(dev, intel_crtc)
5164                 if (intel_crtc->base.state->enable)
5165                         *prepare_pipes |= (1 << intel_crtc->pipe);
5166 }
5167
5168 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5169 {
5170         unsigned int credits, default_credits;
5171
5172         if (IS_CHERRYVIEW(dev_priv))
5173                 default_credits = PFI_CREDIT(12);
5174         else
5175                 default_credits = PFI_CREDIT(8);
5176
5177         if (DIV_ROUND_CLOSEST(dev_priv->vlv_cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5178                 /* CHV suggested value is 31 or 63 */
5179                 if (IS_CHERRYVIEW(dev_priv))
5180                         credits = PFI_CREDIT_31;
5181                 else
5182                         credits = PFI_CREDIT(15);
5183         } else {
5184                 credits = default_credits;
5185         }
5186
5187         /*
5188          * WA - write default credits before re-programming
5189          * FIXME: should we also set the resend bit here?
5190          */
5191         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5192                    default_credits);
5193
5194         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5195                    credits | PFI_CREDIT_RESEND);
5196
5197         /*
5198          * FIXME is this guaranteed to clear
5199          * immediately or should we poll for it?
5200          */
5201         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5202 }
5203
5204 static void valleyview_modeset_global_resources(struct drm_device *dev)
5205 {
5206         struct drm_i915_private *dev_priv = dev->dev_private;
5207         int max_pixclk = intel_mode_max_pixclk(dev_priv);
5208         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5209
5210         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5211                 /*
5212                  * FIXME: We can end up here with all power domains off, yet
5213                  * with a CDCLK frequency other than the minimum. To account
5214                  * for this take the PIPE-A power domain, which covers the HW
5215                  * blocks needed for the following programming. This can be
5216                  * removed once it's guaranteed that we get here either with
5217                  * the minimum CDCLK set, or the required power domains
5218                  * enabled.
5219                  */
5220                 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5221
5222                 if (IS_CHERRYVIEW(dev))
5223                         cherryview_set_cdclk(dev, req_cdclk);
5224                 else
5225                         valleyview_set_cdclk(dev, req_cdclk);
5226
5227                 vlv_program_pfi_credits(dev_priv);
5228
5229                 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5230         }
5231 }
5232
5233 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5234 {
5235         struct drm_device *dev = crtc->dev;
5236         struct drm_i915_private *dev_priv = to_i915(dev);
5237         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5238         struct intel_encoder *encoder;
5239         int pipe = intel_crtc->pipe;
5240         bool is_dsi;
5241
5242         WARN_ON(!crtc->state->enable);
5243
5244         if (intel_crtc->active)
5245                 return;
5246
5247         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5248
5249         if (!is_dsi) {
5250                 if (IS_CHERRYVIEW(dev))
5251                         chv_prepare_pll(intel_crtc, intel_crtc->config);
5252                 else
5253                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
5254         }
5255
5256         if (intel_crtc->config->has_dp_encoder)
5257                 intel_dp_set_m_n(intel_crtc, M1_N1);
5258
5259         intel_set_pipe_timings(intel_crtc);
5260
5261         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5262                 struct drm_i915_private *dev_priv = dev->dev_private;
5263
5264                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5265                 I915_WRITE(CHV_CANVAS(pipe), 0);
5266         }
5267
5268         i9xx_set_pipeconf(intel_crtc);
5269
5270         intel_crtc->active = true;
5271
5272         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5273
5274         for_each_encoder_on_crtc(dev, crtc, encoder)
5275                 if (encoder->pre_pll_enable)
5276                         encoder->pre_pll_enable(encoder);
5277
5278         if (!is_dsi) {
5279                 if (IS_CHERRYVIEW(dev))
5280                         chv_enable_pll(intel_crtc, intel_crtc->config);
5281                 else
5282                         vlv_enable_pll(intel_crtc, intel_crtc->config);
5283         }
5284
5285         for_each_encoder_on_crtc(dev, crtc, encoder)
5286                 if (encoder->pre_enable)
5287                         encoder->pre_enable(encoder);
5288
5289         i9xx_pfit_enable(intel_crtc);
5290
5291         intel_crtc_load_lut(crtc);
5292
5293         intel_update_watermarks(crtc);
5294         intel_enable_pipe(intel_crtc);
5295
5296         assert_vblank_disabled(crtc);
5297         drm_crtc_vblank_on(crtc);
5298
5299         for_each_encoder_on_crtc(dev, crtc, encoder)
5300                 encoder->enable(encoder);
5301
5302         intel_crtc_enable_planes(crtc);
5303
5304         /* Underruns don't raise interrupts, so check manually. */
5305         i9xx_check_fifo_underruns(dev_priv);
5306 }
5307
5308 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5309 {
5310         struct drm_device *dev = crtc->base.dev;
5311         struct drm_i915_private *dev_priv = dev->dev_private;
5312
5313         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5314         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5315 }
5316
5317 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5318 {
5319         struct drm_device *dev = crtc->dev;
5320         struct drm_i915_private *dev_priv = to_i915(dev);
5321         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5322         struct intel_encoder *encoder;
5323         int pipe = intel_crtc->pipe;
5324
5325         WARN_ON(!crtc->state->enable);
5326
5327         if (intel_crtc->active)
5328                 return;
5329
5330         i9xx_set_pll_dividers(intel_crtc);
5331
5332         if (intel_crtc->config->has_dp_encoder)
5333                 intel_dp_set_m_n(intel_crtc, M1_N1);
5334
5335         intel_set_pipe_timings(intel_crtc);
5336
5337         i9xx_set_pipeconf(intel_crtc);
5338
5339         intel_crtc->active = true;
5340
5341         if (!IS_GEN2(dev))
5342                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5343
5344         for_each_encoder_on_crtc(dev, crtc, encoder)
5345                 if (encoder->pre_enable)
5346                         encoder->pre_enable(encoder);
5347
5348         i9xx_enable_pll(intel_crtc);
5349
5350         i9xx_pfit_enable(intel_crtc);
5351
5352         intel_crtc_load_lut(crtc);
5353
5354         intel_update_watermarks(crtc);
5355         intel_enable_pipe(intel_crtc);
5356
5357         assert_vblank_disabled(crtc);
5358         drm_crtc_vblank_on(crtc);
5359
5360         for_each_encoder_on_crtc(dev, crtc, encoder)
5361                 encoder->enable(encoder);
5362
5363         intel_crtc_enable_planes(crtc);
5364
5365         /*
5366          * Gen2 reports pipe underruns whenever all planes are disabled.
5367          * So don't enable underrun reporting before at least some planes
5368          * are enabled.
5369          * FIXME: Need to fix the logic to work when we turn off all planes
5370          * but leave the pipe running.
5371          */
5372         if (IS_GEN2(dev))
5373                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5374
5375         /* Underruns don't raise interrupts, so check manually. */
5376         i9xx_check_fifo_underruns(dev_priv);
5377 }
5378
5379 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5380 {
5381         struct drm_device *dev = crtc->base.dev;
5382         struct drm_i915_private *dev_priv = dev->dev_private;
5383
5384         if (!crtc->config->gmch_pfit.control)
5385                 return;
5386
5387         assert_pipe_disabled(dev_priv, crtc->pipe);
5388
5389         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5390                          I915_READ(PFIT_CONTROL));
5391         I915_WRITE(PFIT_CONTROL, 0);
5392 }
5393
5394 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5395 {
5396         struct drm_device *dev = crtc->dev;
5397         struct drm_i915_private *dev_priv = dev->dev_private;
5398         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5399         struct intel_encoder *encoder;
5400         int pipe = intel_crtc->pipe;
5401
5402         if (!intel_crtc->active)
5403                 return;
5404
5405         /*
5406          * Gen2 reports pipe underruns whenever all planes are disabled.
5407          * So diasble underrun reporting before all the planes get disabled.
5408          * FIXME: Need to fix the logic to work when we turn off all planes
5409          * but leave the pipe running.
5410          */
5411         if (IS_GEN2(dev))
5412                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5413
5414         /*
5415          * Vblank time updates from the shadow to live plane control register
5416          * are blocked if the memory self-refresh mode is active at that
5417          * moment. So to make sure the plane gets truly disabled, disable
5418          * first the self-refresh mode. The self-refresh enable bit in turn
5419          * will be checked/applied by the HW only at the next frame start
5420          * event which is after the vblank start event, so we need to have a
5421          * wait-for-vblank between disabling the plane and the pipe.
5422          */
5423         intel_set_memory_cxsr(dev_priv, false);
5424         intel_crtc_disable_planes(crtc);
5425
5426         /*
5427          * On gen2 planes are double buffered but the pipe isn't, so we must
5428          * wait for planes to fully turn off before disabling the pipe.
5429          * We also need to wait on all gmch platforms because of the
5430          * self-refresh mode constraint explained above.
5431          */
5432         intel_wait_for_vblank(dev, pipe);
5433
5434         for_each_encoder_on_crtc(dev, crtc, encoder)
5435                 encoder->disable(encoder);
5436
5437         drm_crtc_vblank_off(crtc);
5438         assert_vblank_disabled(crtc);
5439
5440         intel_disable_pipe(intel_crtc);
5441
5442         i9xx_pfit_disable(intel_crtc);
5443
5444         for_each_encoder_on_crtc(dev, crtc, encoder)
5445                 if (encoder->post_disable)
5446                         encoder->post_disable(encoder);
5447
5448         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5449                 if (IS_CHERRYVIEW(dev))
5450                         chv_disable_pll(dev_priv, pipe);
5451                 else if (IS_VALLEYVIEW(dev))
5452                         vlv_disable_pll(dev_priv, pipe);
5453                 else
5454                         i9xx_disable_pll(intel_crtc);
5455         }
5456
5457         if (!IS_GEN2(dev))
5458                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5459
5460         intel_crtc->active = false;
5461         intel_update_watermarks(crtc);
5462
5463         mutex_lock(&dev->struct_mutex);
5464         intel_fbc_update(dev);
5465         mutex_unlock(&dev->struct_mutex);
5466 }
5467
5468 static void i9xx_crtc_off(struct drm_crtc *crtc)
5469 {
5470 }
5471
5472 /* Master function to enable/disable CRTC and corresponding power wells */
5473 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5474 {
5475         struct drm_device *dev = crtc->dev;
5476         struct drm_i915_private *dev_priv = dev->dev_private;
5477         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5478         enum intel_display_power_domain domain;
5479         unsigned long domains;
5480
5481         if (enable) {
5482                 if (!intel_crtc->active) {
5483                         domains = get_crtc_power_domains(crtc);
5484                         for_each_power_domain(domain, domains)
5485                                 intel_display_power_get(dev_priv, domain);
5486                         intel_crtc->enabled_power_domains = domains;
5487
5488                         dev_priv->display.crtc_enable(crtc);
5489                 }
5490         } else {
5491                 if (intel_crtc->active) {
5492                         dev_priv->display.crtc_disable(crtc);
5493
5494                         domains = intel_crtc->enabled_power_domains;
5495                         for_each_power_domain(domain, domains)
5496                                 intel_display_power_put(dev_priv, domain);
5497                         intel_crtc->enabled_power_domains = 0;
5498                 }
5499         }
5500 }
5501
5502 /**
5503  * Sets the power management mode of the pipe and plane.
5504  */
5505 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5506 {
5507         struct drm_device *dev = crtc->dev;
5508         struct intel_encoder *intel_encoder;
5509         bool enable = false;
5510
5511         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5512                 enable |= intel_encoder->connectors_active;
5513
5514         intel_crtc_control(crtc, enable);
5515 }
5516
5517 static void intel_crtc_disable(struct drm_crtc *crtc)
5518 {
5519         struct drm_device *dev = crtc->dev;
5520         struct drm_connector *connector;
5521         struct drm_i915_private *dev_priv = dev->dev_private;
5522
5523         /* crtc should still be enabled when we disable it. */
5524         WARN_ON(!crtc->state->enable);
5525
5526         dev_priv->display.crtc_disable(crtc);
5527         dev_priv->display.off(crtc);
5528
5529         crtc->primary->funcs->disable_plane(crtc->primary);
5530
5531         /* Update computed state. */
5532         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5533                 if (!connector->encoder || !connector->encoder->crtc)
5534                         continue;
5535
5536                 if (connector->encoder->crtc != crtc)
5537                         continue;
5538
5539                 connector->dpms = DRM_MODE_DPMS_OFF;
5540                 to_intel_encoder(connector->encoder)->connectors_active = false;
5541         }
5542 }
5543
5544 void intel_encoder_destroy(struct drm_encoder *encoder)
5545 {
5546         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5547
5548         drm_encoder_cleanup(encoder);
5549         kfree(intel_encoder);
5550 }
5551
5552 /* Simple dpms helper for encoders with just one connector, no cloning and only
5553  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5554  * state of the entire output pipe. */
5555 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5556 {
5557         if (mode == DRM_MODE_DPMS_ON) {
5558                 encoder->connectors_active = true;
5559
5560                 intel_crtc_update_dpms(encoder->base.crtc);
5561         } else {
5562                 encoder->connectors_active = false;
5563
5564                 intel_crtc_update_dpms(encoder->base.crtc);
5565         }
5566 }
5567
5568 /* Cross check the actual hw state with our own modeset state tracking (and it's
5569  * internal consistency). */
5570 static void intel_connector_check_state(struct intel_connector *connector)
5571 {
5572         if (connector->get_hw_state(connector)) {
5573                 struct intel_encoder *encoder = connector->encoder;
5574                 struct drm_crtc *crtc;
5575                 bool encoder_enabled;
5576                 enum pipe pipe;
5577
5578                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5579                               connector->base.base.id,
5580                               connector->base.name);
5581
5582                 /* there is no real hw state for MST connectors */
5583                 if (connector->mst_port)
5584                         return;
5585
5586                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5587                      "wrong connector dpms state\n");
5588                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5589                      "active connector not linked to encoder\n");
5590
5591                 if (encoder) {
5592                         I915_STATE_WARN(!encoder->connectors_active,
5593                              "encoder->connectors_active not set\n");
5594
5595                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5596                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5597                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
5598                                 return;
5599
5600                         crtc = encoder->base.crtc;
5601
5602                         I915_STATE_WARN(!crtc->state->enable,
5603                                         "crtc not enabled\n");
5604                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5605                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5606                              "encoder active on the wrong pipe\n");
5607                 }
5608         }
5609 }
5610
5611 /* Even simpler default implementation, if there's really no special case to
5612  * consider. */
5613 void intel_connector_dpms(struct drm_connector *connector, int mode)
5614 {
5615         /* All the simple cases only support two dpms states. */
5616         if (mode != DRM_MODE_DPMS_ON)
5617                 mode = DRM_MODE_DPMS_OFF;
5618
5619         if (mode == connector->dpms)
5620                 return;
5621
5622         connector->dpms = mode;
5623
5624         /* Only need to change hw state when actually enabled */
5625         if (connector->encoder)
5626                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5627
5628         intel_modeset_check_state(connector->dev);
5629 }
5630
5631 /* Simple connector->get_hw_state implementation for encoders that support only
5632  * one connector and no cloning and hence the encoder state determines the state
5633  * of the connector. */
5634 bool intel_connector_get_hw_state(struct intel_connector *connector)
5635 {
5636         enum pipe pipe = 0;
5637         struct intel_encoder *encoder = connector->encoder;
5638
5639         return encoder->get_hw_state(encoder, &pipe);
5640 }
5641
5642 static int pipe_required_fdi_lanes(struct drm_device *dev, enum pipe pipe)
5643 {
5644         struct intel_crtc *crtc =
5645                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5646
5647         if (crtc->base.state->enable &&
5648             crtc->config->has_pch_encoder)
5649                 return crtc->config->fdi_lanes;
5650
5651         return 0;
5652 }
5653
5654 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5655                                      struct intel_crtc_state *pipe_config)
5656 {
5657         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5658                       pipe_name(pipe), pipe_config->fdi_lanes);
5659         if (pipe_config->fdi_lanes > 4) {
5660                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5661                               pipe_name(pipe), pipe_config->fdi_lanes);
5662                 return false;
5663         }
5664
5665         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5666                 if (pipe_config->fdi_lanes > 2) {
5667                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5668                                       pipe_config->fdi_lanes);
5669                         return false;
5670                 } else {
5671                         return true;
5672                 }
5673         }
5674
5675         if (INTEL_INFO(dev)->num_pipes == 2)
5676                 return true;
5677
5678         /* Ivybridge 3 pipe is really complicated */
5679         switch (pipe) {
5680         case PIPE_A:
5681                 return true;
5682         case PIPE_B:
5683                 if (pipe_config->fdi_lanes > 2 &&
5684                     pipe_required_fdi_lanes(dev, PIPE_C) > 0) {
5685                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5686                                       pipe_name(pipe), pipe_config->fdi_lanes);
5687                         return false;
5688                 }
5689                 return true;
5690         case PIPE_C:
5691                 if (pipe_config->fdi_lanes > 2) {
5692                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
5693                                       pipe_name(pipe), pipe_config->fdi_lanes);
5694                         return false;
5695                 }
5696                 if (pipe_required_fdi_lanes(dev, PIPE_B) > 2) {
5697                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5698                         return false;
5699                 }
5700                 return true;
5701         default:
5702                 BUG();
5703         }
5704 }
5705
5706 #define RETRY 1
5707 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5708                                        struct intel_crtc_state *pipe_config)
5709 {
5710         struct drm_device *dev = intel_crtc->base.dev;
5711         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5712         int lane, link_bw, fdi_dotclock;
5713         bool setup_ok, needs_recompute = false;
5714
5715 retry:
5716         /* FDI is a binary signal running at ~2.7GHz, encoding
5717          * each output octet as 10 bits. The actual frequency
5718          * is stored as a divider into a 100MHz clock, and the
5719          * mode pixel clock is stored in units of 1KHz.
5720          * Hence the bw of each lane in terms of the mode signal
5721          * is:
5722          */
5723         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5724
5725         fdi_dotclock = adjusted_mode->crtc_clock;
5726
5727         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5728                                            pipe_config->pipe_bpp);
5729
5730         pipe_config->fdi_lanes = lane;
5731
5732         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5733                                link_bw, &pipe_config->fdi_m_n);
5734
5735         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5736                                             intel_crtc->pipe, pipe_config);
5737         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5738                 pipe_config->pipe_bpp -= 2*3;
5739                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5740                               pipe_config->pipe_bpp);
5741                 needs_recompute = true;
5742                 pipe_config->bw_constrained = true;
5743
5744                 goto retry;
5745         }
5746
5747         if (needs_recompute)
5748                 return RETRY;
5749
5750         return setup_ok ? 0 : -EINVAL;
5751 }
5752
5753 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5754                                    struct intel_crtc_state *pipe_config)
5755 {
5756         pipe_config->ips_enabled = i915.enable_ips &&
5757                                    hsw_crtc_supports_ips(crtc) &&
5758                                    pipe_config->pipe_bpp <= 24;
5759 }
5760
5761 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5762                                      struct intel_crtc_state *pipe_config)
5763 {
5764         struct drm_device *dev = crtc->base.dev;
5765         struct drm_i915_private *dev_priv = dev->dev_private;
5766         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5767
5768         /* FIXME should check pixel clock limits on all platforms */
5769         if (INTEL_INFO(dev)->gen < 4) {
5770                 int clock_limit =
5771                         dev_priv->display.get_display_clock_speed(dev);
5772
5773                 /*
5774                  * Enable pixel doubling when the dot clock
5775                  * is > 90% of the (display) core speed.
5776                  *
5777                  * GDG double wide on either pipe,
5778                  * otherwise pipe A only.
5779                  */
5780                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5781                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5782                         clock_limit *= 2;
5783                         pipe_config->double_wide = true;
5784                 }
5785
5786                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5787                         return -EINVAL;
5788         }
5789
5790         /*
5791          * Pipe horizontal size must be even in:
5792          * - DVO ganged mode
5793          * - LVDS dual channel mode
5794          * - Double wide pipe
5795          */
5796         if ((intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5797              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5798                 pipe_config->pipe_src_w &= ~1;
5799
5800         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5801          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5802          */
5803         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5804                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5805                 return -EINVAL;
5806
5807         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5808                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5809         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5810                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5811                  * for lvds. */
5812                 pipe_config->pipe_bpp = 8*3;
5813         }
5814
5815         if (HAS_IPS(dev))
5816                 hsw_compute_ips_config(crtc, pipe_config);
5817
5818         if (pipe_config->has_pch_encoder)
5819                 return ironlake_fdi_compute_config(crtc, pipe_config);
5820
5821         return 0;
5822 }
5823
5824 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5825 {
5826         struct drm_i915_private *dev_priv = dev->dev_private;
5827         u32 val;
5828         int divider;
5829
5830         if (dev_priv->hpll_freq == 0)
5831                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5832
5833         mutex_lock(&dev_priv->dpio_lock);
5834         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5835         mutex_unlock(&dev_priv->dpio_lock);
5836
5837         divider = val & DISPLAY_FREQUENCY_VALUES;
5838
5839         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5840              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5841              "cdclk change in progress\n");
5842
5843         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5844 }
5845
5846 static int i945_get_display_clock_speed(struct drm_device *dev)
5847 {
5848         return 400000;
5849 }
5850
5851 static int i915_get_display_clock_speed(struct drm_device *dev)
5852 {
5853         return 333000;
5854 }
5855
5856 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5857 {
5858         return 200000;
5859 }
5860
5861 static int pnv_get_display_clock_speed(struct drm_device *dev)
5862 {
5863         u16 gcfgc = 0;
5864
5865         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5866
5867         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5868         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5869                 return 267000;
5870         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5871                 return 333000;
5872         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5873                 return 444000;
5874         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5875                 return 200000;
5876         default:
5877                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5878         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5879                 return 133000;
5880         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5881                 return 167000;
5882         }
5883 }
5884
5885 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5886 {
5887         u16 gcfgc = 0;
5888
5889         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5890
5891         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5892                 return 133000;
5893         else {
5894                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5895                 case GC_DISPLAY_CLOCK_333_MHZ:
5896                         return 333000;
5897                 default:
5898                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5899                         return 190000;
5900                 }
5901         }
5902 }
5903
5904 static int i865_get_display_clock_speed(struct drm_device *dev)
5905 {
5906         return 266000;
5907 }
5908
5909 static int i855_get_display_clock_speed(struct drm_device *dev)
5910 {
5911         u16 hpllcc = 0;
5912         /* Assume that the hardware is in the high speed state.  This
5913          * should be the default.
5914          */
5915         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5916         case GC_CLOCK_133_200:
5917         case GC_CLOCK_100_200:
5918                 return 200000;
5919         case GC_CLOCK_166_250:
5920                 return 250000;
5921         case GC_CLOCK_100_133:
5922                 return 133000;
5923         }
5924
5925         /* Shouldn't happen */
5926         return 0;
5927 }
5928
5929 static int i830_get_display_clock_speed(struct drm_device *dev)
5930 {
5931         return 133000;
5932 }
5933
5934 static void
5935 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5936 {
5937         while (*num > DATA_LINK_M_N_MASK ||
5938                *den > DATA_LINK_M_N_MASK) {
5939                 *num >>= 1;
5940                 *den >>= 1;
5941         }
5942 }
5943
5944 static void compute_m_n(unsigned int m, unsigned int n,
5945                         uint32_t *ret_m, uint32_t *ret_n)
5946 {
5947         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5948         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5949         intel_reduce_m_n_ratio(ret_m, ret_n);
5950 }
5951
5952 void
5953 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5954                        int pixel_clock, int link_clock,
5955                        struct intel_link_m_n *m_n)
5956 {
5957         m_n->tu = 64;
5958
5959         compute_m_n(bits_per_pixel * pixel_clock,
5960                     link_clock * nlanes * 8,
5961                     &m_n->gmch_m, &m_n->gmch_n);
5962
5963         compute_m_n(pixel_clock, link_clock,
5964                     &m_n->link_m, &m_n->link_n);
5965 }
5966
5967 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5968 {
5969         if (i915.panel_use_ssc >= 0)
5970                 return i915.panel_use_ssc != 0;
5971         return dev_priv->vbt.lvds_use_ssc
5972                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5973 }
5974
5975 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5976 {
5977         struct drm_device *dev = crtc->base.dev;
5978         struct drm_i915_private *dev_priv = dev->dev_private;
5979         int refclk;
5980
5981         if (IS_VALLEYVIEW(dev)) {
5982                 refclk = 100000;
5983         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5984             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5985                 refclk = dev_priv->vbt.lvds_ssc_freq;
5986                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5987         } else if (!IS_GEN2(dev)) {
5988                 refclk = 96000;
5989         } else {
5990                 refclk = 48000;
5991         }
5992
5993         return refclk;
5994 }
5995
5996 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5997 {
5998         return (1 << dpll->n) << 16 | dpll->m2;
5999 }
6000
6001 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6002 {
6003         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6004 }
6005
6006 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6007                                      struct intel_crtc_state *crtc_state,
6008                                      intel_clock_t *reduced_clock)
6009 {
6010         struct drm_device *dev = crtc->base.dev;
6011         u32 fp, fp2 = 0;
6012
6013         if (IS_PINEVIEW(dev)) {
6014                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6015                 if (reduced_clock)
6016                         fp2 = pnv_dpll_compute_fp(reduced_clock);
6017         } else {
6018                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6019                 if (reduced_clock)
6020                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
6021         }
6022
6023         crtc_state->dpll_hw_state.fp0 = fp;
6024
6025         crtc->lowfreq_avail = false;
6026         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6027             reduced_clock) {
6028                 crtc_state->dpll_hw_state.fp1 = fp2;
6029                 crtc->lowfreq_avail = true;
6030         } else {
6031                 crtc_state->dpll_hw_state.fp1 = fp;
6032         }
6033 }
6034
6035 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6036                 pipe)
6037 {
6038         u32 reg_val;
6039
6040         /*
6041          * PLLB opamp always calibrates to max value of 0x3f, force enable it
6042          * and set it to a reasonable value instead.
6043          */
6044         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6045         reg_val &= 0xffffff00;
6046         reg_val |= 0x00000030;
6047         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6048
6049         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6050         reg_val &= 0x8cffffff;
6051         reg_val = 0x8c000000;
6052         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6053
6054         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6055         reg_val &= 0xffffff00;
6056         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6057
6058         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6059         reg_val &= 0x00ffffff;
6060         reg_val |= 0xb0000000;
6061         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6062 }
6063
6064 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6065                                          struct intel_link_m_n *m_n)
6066 {
6067         struct drm_device *dev = crtc->base.dev;
6068         struct drm_i915_private *dev_priv = dev->dev_private;
6069         int pipe = crtc->pipe;
6070
6071         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6072         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6073         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6074         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6075 }
6076
6077 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6078                                          struct intel_link_m_n *m_n,
6079                                          struct intel_link_m_n *m2_n2)
6080 {
6081         struct drm_device *dev = crtc->base.dev;
6082         struct drm_i915_private *dev_priv = dev->dev_private;
6083         int pipe = crtc->pipe;
6084         enum transcoder transcoder = crtc->config->cpu_transcoder;
6085
6086         if (INTEL_INFO(dev)->gen >= 5) {
6087                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6088                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6089                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6090                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6091                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6092                  * for gen < 8) and if DRRS is supported (to make sure the
6093                  * registers are not unnecessarily accessed).
6094                  */
6095                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6096                         crtc->config->has_drrs) {
6097                         I915_WRITE(PIPE_DATA_M2(transcoder),
6098                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6099                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6100                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6101                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6102                 }
6103         } else {
6104                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6105                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6106                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6107                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6108         }
6109 }
6110
6111 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6112 {
6113         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6114
6115         if (m_n == M1_N1) {
6116                 dp_m_n = &crtc->config->dp_m_n;
6117                 dp_m2_n2 = &crtc->config->dp_m2_n2;
6118         } else if (m_n == M2_N2) {
6119
6120                 /*
6121                  * M2_N2 registers are not supported. Hence m2_n2 divider value
6122                  * needs to be programmed into M1_N1.
6123                  */
6124                 dp_m_n = &crtc->config->dp_m2_n2;
6125         } else {
6126                 DRM_ERROR("Unsupported divider value\n");
6127                 return;
6128         }
6129
6130         if (crtc->config->has_pch_encoder)
6131                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6132         else
6133                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6134 }
6135
6136 static void vlv_update_pll(struct intel_crtc *crtc,
6137                            struct intel_crtc_state *pipe_config)
6138 {
6139         u32 dpll, dpll_md;
6140
6141         /*
6142          * Enable DPIO clock input. We should never disable the reference
6143          * clock for pipe B, since VGA hotplug / manual detection depends
6144          * on it.
6145          */
6146         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6147                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6148         /* We should never disable this, set it here for state tracking */
6149         if (crtc->pipe == PIPE_B)
6150                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6151         dpll |= DPLL_VCO_ENABLE;
6152         pipe_config->dpll_hw_state.dpll = dpll;
6153
6154         dpll_md = (pipe_config->pixel_multiplier - 1)
6155                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6156         pipe_config->dpll_hw_state.dpll_md = dpll_md;
6157 }
6158
6159 static void vlv_prepare_pll(struct intel_crtc *crtc,
6160                             const struct intel_crtc_state *pipe_config)
6161 {
6162         struct drm_device *dev = crtc->base.dev;
6163         struct drm_i915_private *dev_priv = dev->dev_private;
6164         int pipe = crtc->pipe;
6165         u32 mdiv;
6166         u32 bestn, bestm1, bestm2, bestp1, bestp2;
6167         u32 coreclk, reg_val;
6168
6169         mutex_lock(&dev_priv->dpio_lock);
6170
6171         bestn = pipe_config->dpll.n;
6172         bestm1 = pipe_config->dpll.m1;
6173         bestm2 = pipe_config->dpll.m2;
6174         bestp1 = pipe_config->dpll.p1;
6175         bestp2 = pipe_config->dpll.p2;
6176
6177         /* See eDP HDMI DPIO driver vbios notes doc */
6178
6179         /* PLL B needs special handling */
6180         if (pipe == PIPE_B)
6181                 vlv_pllb_recal_opamp(dev_priv, pipe);
6182
6183         /* Set up Tx target for periodic Rcomp update */
6184         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6185
6186         /* Disable target IRef on PLL */
6187         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6188         reg_val &= 0x00ffffff;
6189         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6190
6191         /* Disable fast lock */
6192         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6193
6194         /* Set idtafcrecal before PLL is enabled */
6195         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6196         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6197         mdiv |= ((bestn << DPIO_N_SHIFT));
6198         mdiv |= (1 << DPIO_K_SHIFT);
6199
6200         /*
6201          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6202          * but we don't support that).
6203          * Note: don't use the DAC post divider as it seems unstable.
6204          */
6205         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6206         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6207
6208         mdiv |= DPIO_ENABLE_CALIBRATION;
6209         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6210
6211         /* Set HBR and RBR LPF coefficients */
6212         if (pipe_config->port_clock == 162000 ||
6213             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6214             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6215                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6216                                  0x009f0003);
6217         else
6218                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6219                                  0x00d0000f);
6220
6221         if (pipe_config->has_dp_encoder) {
6222                 /* Use SSC source */
6223                 if (pipe == PIPE_A)
6224                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6225                                          0x0df40000);
6226                 else
6227                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6228                                          0x0df70000);
6229         } else { /* HDMI or VGA */
6230                 /* Use bend source */
6231                 if (pipe == PIPE_A)
6232                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6233                                          0x0df70000);
6234                 else
6235                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6236                                          0x0df40000);
6237         }
6238
6239         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6240         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6241         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6242             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6243                 coreclk |= 0x01000000;
6244         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6245
6246         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6247         mutex_unlock(&dev_priv->dpio_lock);
6248 }
6249
6250 static void chv_update_pll(struct intel_crtc *crtc,
6251                            struct intel_crtc_state *pipe_config)
6252 {
6253         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6254                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6255                 DPLL_VCO_ENABLE;
6256         if (crtc->pipe != PIPE_A)
6257                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6258
6259         pipe_config->dpll_hw_state.dpll_md =
6260                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6261 }
6262
6263 static void chv_prepare_pll(struct intel_crtc *crtc,
6264                             const struct intel_crtc_state *pipe_config)
6265 {
6266         struct drm_device *dev = crtc->base.dev;
6267         struct drm_i915_private *dev_priv = dev->dev_private;
6268         int pipe = crtc->pipe;
6269         int dpll_reg = DPLL(crtc->pipe);
6270         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6271         u32 loopfilter, tribuf_calcntr;
6272         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6273         u32 dpio_val;
6274         int vco;
6275
6276         bestn = pipe_config->dpll.n;
6277         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6278         bestm1 = pipe_config->dpll.m1;
6279         bestm2 = pipe_config->dpll.m2 >> 22;
6280         bestp1 = pipe_config->dpll.p1;
6281         bestp2 = pipe_config->dpll.p2;
6282         vco = pipe_config->dpll.vco;
6283         dpio_val = 0;
6284         loopfilter = 0;
6285
6286         /*
6287          * Enable Refclk and SSC
6288          */
6289         I915_WRITE(dpll_reg,
6290                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6291
6292         mutex_lock(&dev_priv->dpio_lock);
6293
6294         /* p1 and p2 divider */
6295         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6296                         5 << DPIO_CHV_S1_DIV_SHIFT |
6297                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6298                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6299                         1 << DPIO_CHV_K_DIV_SHIFT);
6300
6301         /* Feedback post-divider - m2 */
6302         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6303
6304         /* Feedback refclk divider - n and m1 */
6305         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6306                         DPIO_CHV_M1_DIV_BY_2 |
6307                         1 << DPIO_CHV_N_DIV_SHIFT);
6308
6309         /* M2 fraction division */
6310         if (bestm2_frac)
6311                 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6312
6313         /* M2 fraction division enable */
6314         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6315         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6316         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6317         if (bestm2_frac)
6318                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6319         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6320
6321         /* Program digital lock detect threshold */
6322         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6323         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6324                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6325         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6326         if (!bestm2_frac)
6327                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6328         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6329
6330         /* Loop filter */
6331         if (vco == 5400000) {
6332                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6333                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6334                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6335                 tribuf_calcntr = 0x9;
6336         } else if (vco <= 6200000) {
6337                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6338                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6339                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6340                 tribuf_calcntr = 0x9;
6341         } else if (vco <= 6480000) {
6342                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6343                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6344                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6345                 tribuf_calcntr = 0x8;
6346         } else {
6347                 /* Not supported. Apply the same limits as in the max case */
6348                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6349                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6350                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6351                 tribuf_calcntr = 0;
6352         }
6353         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6354
6355         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6356         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6357         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6358         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6359
6360         /* AFC Recal */
6361         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6362                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6363                         DPIO_AFC_RECAL);
6364
6365         mutex_unlock(&dev_priv->dpio_lock);
6366 }
6367
6368 /**
6369  * vlv_force_pll_on - forcibly enable just the PLL
6370  * @dev_priv: i915 private structure
6371  * @pipe: pipe PLL to enable
6372  * @dpll: PLL configuration
6373  *
6374  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6375  * in cases where we need the PLL enabled even when @pipe is not going to
6376  * be enabled.
6377  */
6378 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6379                       const struct dpll *dpll)
6380 {
6381         struct intel_crtc *crtc =
6382                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6383         struct intel_crtc_state pipe_config = {
6384                 .pixel_multiplier = 1,
6385                 .dpll = *dpll,
6386         };
6387
6388         if (IS_CHERRYVIEW(dev)) {
6389                 chv_update_pll(crtc, &pipe_config);
6390                 chv_prepare_pll(crtc, &pipe_config);
6391                 chv_enable_pll(crtc, &pipe_config);
6392         } else {
6393                 vlv_update_pll(crtc, &pipe_config);
6394                 vlv_prepare_pll(crtc, &pipe_config);
6395                 vlv_enable_pll(crtc, &pipe_config);
6396         }
6397 }
6398
6399 /**
6400  * vlv_force_pll_off - forcibly disable just the PLL
6401  * @dev_priv: i915 private structure
6402  * @pipe: pipe PLL to disable
6403  *
6404  * Disable the PLL for @pipe. To be used in cases where we need
6405  * the PLL enabled even when @pipe is not going to be enabled.
6406  */
6407 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6408 {
6409         if (IS_CHERRYVIEW(dev))
6410                 chv_disable_pll(to_i915(dev), pipe);
6411         else
6412                 vlv_disable_pll(to_i915(dev), pipe);
6413 }
6414
6415 static void i9xx_update_pll(struct intel_crtc *crtc,
6416                             struct intel_crtc_state *crtc_state,
6417                             intel_clock_t *reduced_clock,
6418                             int num_connectors)
6419 {
6420         struct drm_device *dev = crtc->base.dev;
6421         struct drm_i915_private *dev_priv = dev->dev_private;
6422         u32 dpll;
6423         bool is_sdvo;
6424         struct dpll *clock = &crtc_state->dpll;
6425
6426         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6427
6428         is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6429                 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6430
6431         dpll = DPLL_VGA_MODE_DIS;
6432
6433         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6434                 dpll |= DPLLB_MODE_LVDS;
6435         else
6436                 dpll |= DPLLB_MODE_DAC_SERIAL;
6437
6438         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6439                 dpll |= (crtc_state->pixel_multiplier - 1)
6440                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6441         }
6442
6443         if (is_sdvo)
6444                 dpll |= DPLL_SDVO_HIGH_SPEED;
6445
6446         if (crtc_state->has_dp_encoder)
6447                 dpll |= DPLL_SDVO_HIGH_SPEED;
6448
6449         /* compute bitmask from p1 value */
6450         if (IS_PINEVIEW(dev))
6451                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6452         else {
6453                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6454                 if (IS_G4X(dev) && reduced_clock)
6455                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6456         }
6457         switch (clock->p2) {
6458         case 5:
6459                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6460                 break;
6461         case 7:
6462                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6463                 break;
6464         case 10:
6465                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6466                 break;
6467         case 14:
6468                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6469                 break;
6470         }
6471         if (INTEL_INFO(dev)->gen >= 4)
6472                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6473
6474         if (crtc_state->sdvo_tv_clock)
6475                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6476         else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6477                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6478                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6479         else
6480                 dpll |= PLL_REF_INPUT_DREFCLK;
6481
6482         dpll |= DPLL_VCO_ENABLE;
6483         crtc_state->dpll_hw_state.dpll = dpll;
6484
6485         if (INTEL_INFO(dev)->gen >= 4) {
6486                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6487                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6488                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6489         }
6490 }
6491
6492 static void i8xx_update_pll(struct intel_crtc *crtc,
6493                             struct intel_crtc_state *crtc_state,
6494                             intel_clock_t *reduced_clock,
6495                             int num_connectors)
6496 {
6497         struct drm_device *dev = crtc->base.dev;
6498         struct drm_i915_private *dev_priv = dev->dev_private;
6499         u32 dpll;
6500         struct dpll *clock = &crtc_state->dpll;
6501
6502         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6503
6504         dpll = DPLL_VGA_MODE_DIS;
6505
6506         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6507                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6508         } else {
6509                 if (clock->p1 == 2)
6510                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6511                 else
6512                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6513                 if (clock->p2 == 4)
6514                         dpll |= PLL_P2_DIVIDE_BY_4;
6515         }
6516
6517         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6518                 dpll |= DPLL_DVO_2X_MODE;
6519
6520         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6521                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6522                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6523         else
6524                 dpll |= PLL_REF_INPUT_DREFCLK;
6525
6526         dpll |= DPLL_VCO_ENABLE;
6527         crtc_state->dpll_hw_state.dpll = dpll;
6528 }
6529
6530 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6531 {
6532         struct drm_device *dev = intel_crtc->base.dev;
6533         struct drm_i915_private *dev_priv = dev->dev_private;
6534         enum pipe pipe = intel_crtc->pipe;
6535         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6536         struct drm_display_mode *adjusted_mode =
6537                 &intel_crtc->config->base.adjusted_mode;
6538         uint32_t crtc_vtotal, crtc_vblank_end;
6539         int vsyncshift = 0;
6540
6541         /* We need to be careful not to changed the adjusted mode, for otherwise
6542          * the hw state checker will get angry at the mismatch. */
6543         crtc_vtotal = adjusted_mode->crtc_vtotal;
6544         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6545
6546         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6547                 /* the chip adds 2 halflines automatically */
6548                 crtc_vtotal -= 1;
6549                 crtc_vblank_end -= 1;
6550
6551                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6552                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6553                 else
6554                         vsyncshift = adjusted_mode->crtc_hsync_start -
6555                                 adjusted_mode->crtc_htotal / 2;
6556                 if (vsyncshift < 0)
6557                         vsyncshift += adjusted_mode->crtc_htotal;
6558         }
6559
6560         if (INTEL_INFO(dev)->gen > 3)
6561                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6562
6563         I915_WRITE(HTOTAL(cpu_transcoder),
6564                    (adjusted_mode->crtc_hdisplay - 1) |
6565                    ((adjusted_mode->crtc_htotal - 1) << 16));
6566         I915_WRITE(HBLANK(cpu_transcoder),
6567                    (adjusted_mode->crtc_hblank_start - 1) |
6568                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6569         I915_WRITE(HSYNC(cpu_transcoder),
6570                    (adjusted_mode->crtc_hsync_start - 1) |
6571                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6572
6573         I915_WRITE(VTOTAL(cpu_transcoder),
6574                    (adjusted_mode->crtc_vdisplay - 1) |
6575                    ((crtc_vtotal - 1) << 16));
6576         I915_WRITE(VBLANK(cpu_transcoder),
6577                    (adjusted_mode->crtc_vblank_start - 1) |
6578                    ((crtc_vblank_end - 1) << 16));
6579         I915_WRITE(VSYNC(cpu_transcoder),
6580                    (adjusted_mode->crtc_vsync_start - 1) |
6581                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6582
6583         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6584          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6585          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6586          * bits. */
6587         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6588             (pipe == PIPE_B || pipe == PIPE_C))
6589                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6590
6591         /* pipesrc controls the size that is scaled from, which should
6592          * always be the user's requested size.
6593          */
6594         I915_WRITE(PIPESRC(pipe),
6595                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
6596                    (intel_crtc->config->pipe_src_h - 1));
6597 }
6598
6599 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6600                                    struct intel_crtc_state *pipe_config)
6601 {
6602         struct drm_device *dev = crtc->base.dev;
6603         struct drm_i915_private *dev_priv = dev->dev_private;
6604         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6605         uint32_t tmp;
6606
6607         tmp = I915_READ(HTOTAL(cpu_transcoder));
6608         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6609         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6610         tmp = I915_READ(HBLANK(cpu_transcoder));
6611         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6612         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6613         tmp = I915_READ(HSYNC(cpu_transcoder));
6614         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6615         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6616
6617         tmp = I915_READ(VTOTAL(cpu_transcoder));
6618         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6619         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6620         tmp = I915_READ(VBLANK(cpu_transcoder));
6621         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6622         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6623         tmp = I915_READ(VSYNC(cpu_transcoder));
6624         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6625         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6626
6627         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6628                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6629                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6630                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6631         }
6632
6633         tmp = I915_READ(PIPESRC(crtc->pipe));
6634         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6635         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6636
6637         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6638         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6639 }
6640
6641 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6642                                  struct intel_crtc_state *pipe_config)
6643 {
6644         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6645         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6646         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6647         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6648
6649         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6650         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6651         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6652         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6653
6654         mode->flags = pipe_config->base.adjusted_mode.flags;
6655
6656         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6657         mode->flags |= pipe_config->base.adjusted_mode.flags;
6658 }
6659
6660 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6661 {
6662         struct drm_device *dev = intel_crtc->base.dev;
6663         struct drm_i915_private *dev_priv = dev->dev_private;
6664         uint32_t pipeconf;
6665
6666         pipeconf = 0;
6667
6668         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6669             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6670                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6671
6672         if (intel_crtc->config->double_wide)
6673                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6674
6675         /* only g4x and later have fancy bpc/dither controls */
6676         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6677                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6678                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6679                         pipeconf |= PIPECONF_DITHER_EN |
6680                                     PIPECONF_DITHER_TYPE_SP;
6681
6682                 switch (intel_crtc->config->pipe_bpp) {
6683                 case 18:
6684                         pipeconf |= PIPECONF_6BPC;
6685                         break;
6686                 case 24:
6687                         pipeconf |= PIPECONF_8BPC;
6688                         break;
6689                 case 30:
6690                         pipeconf |= PIPECONF_10BPC;
6691                         break;
6692                 default:
6693                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6694                         BUG();
6695                 }
6696         }
6697
6698         if (HAS_PIPE_CXSR(dev)) {
6699                 if (intel_crtc->lowfreq_avail) {
6700                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6701                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6702                 } else {
6703                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6704                 }
6705         }
6706
6707         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6708                 if (INTEL_INFO(dev)->gen < 4 ||
6709                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6710                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6711                 else
6712                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6713         } else
6714                 pipeconf |= PIPECONF_PROGRESSIVE;
6715
6716         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6717                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6718
6719         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6720         POSTING_READ(PIPECONF(intel_crtc->pipe));
6721 }
6722
6723 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6724                                    struct intel_crtc_state *crtc_state)
6725 {
6726         struct drm_device *dev = crtc->base.dev;
6727         struct drm_i915_private *dev_priv = dev->dev_private;
6728         int refclk, num_connectors = 0;
6729         intel_clock_t clock, reduced_clock;
6730         bool ok, has_reduced_clock = false;
6731         bool is_lvds = false, is_dsi = false;
6732         struct intel_encoder *encoder;
6733         const intel_limit_t *limit;
6734
6735         for_each_intel_encoder(dev, encoder) {
6736                 if (encoder->new_crtc != crtc)
6737                         continue;
6738
6739                 switch (encoder->type) {
6740                 case INTEL_OUTPUT_LVDS:
6741                         is_lvds = true;
6742                         break;
6743                 case INTEL_OUTPUT_DSI:
6744                         is_dsi = true;
6745                         break;
6746                 default:
6747                         break;
6748                 }
6749
6750                 num_connectors++;
6751         }
6752
6753         if (is_dsi)
6754                 return 0;
6755
6756         if (!crtc_state->clock_set) {
6757                 refclk = i9xx_get_refclk(crtc, num_connectors);
6758
6759                 /*
6760                  * Returns a set of divisors for the desired target clock with
6761                  * the given refclk, or FALSE.  The returned values represent
6762                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6763                  * 2) / p1 / p2.
6764                  */
6765                 limit = intel_limit(crtc, refclk);
6766                 ok = dev_priv->display.find_dpll(limit, crtc,
6767                                                  crtc_state->port_clock,
6768                                                  refclk, NULL, &clock);
6769                 if (!ok) {
6770                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6771                         return -EINVAL;
6772                 }
6773
6774                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6775                         /*
6776                          * Ensure we match the reduced clock's P to the target
6777                          * clock.  If the clocks don't match, we can't switch
6778                          * the display clock by using the FP0/FP1. In such case
6779                          * we will disable the LVDS downclock feature.
6780                          */
6781                         has_reduced_clock =
6782                                 dev_priv->display.find_dpll(limit, crtc,
6783                                                             dev_priv->lvds_downclock,
6784                                                             refclk, &clock,
6785                                                             &reduced_clock);
6786                 }
6787                 /* Compat-code for transition, will disappear. */
6788                 crtc_state->dpll.n = clock.n;
6789                 crtc_state->dpll.m1 = clock.m1;
6790                 crtc_state->dpll.m2 = clock.m2;
6791                 crtc_state->dpll.p1 = clock.p1;
6792                 crtc_state->dpll.p2 = clock.p2;
6793         }
6794
6795         if (IS_GEN2(dev)) {
6796                 i8xx_update_pll(crtc, crtc_state,
6797                                 has_reduced_clock ? &reduced_clock : NULL,
6798                                 num_connectors);
6799         } else if (IS_CHERRYVIEW(dev)) {
6800                 chv_update_pll(crtc, crtc_state);
6801         } else if (IS_VALLEYVIEW(dev)) {
6802                 vlv_update_pll(crtc, crtc_state);
6803         } else {
6804                 i9xx_update_pll(crtc, crtc_state,
6805                                 has_reduced_clock ? &reduced_clock : NULL,
6806                                 num_connectors);
6807         }
6808
6809         return 0;
6810 }
6811
6812 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6813                                  struct intel_crtc_state *pipe_config)
6814 {
6815         struct drm_device *dev = crtc->base.dev;
6816         struct drm_i915_private *dev_priv = dev->dev_private;
6817         uint32_t tmp;
6818
6819         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6820                 return;
6821
6822         tmp = I915_READ(PFIT_CONTROL);
6823         if (!(tmp & PFIT_ENABLE))
6824                 return;
6825
6826         /* Check whether the pfit is attached to our pipe. */
6827         if (INTEL_INFO(dev)->gen < 4) {
6828                 if (crtc->pipe != PIPE_B)
6829                         return;
6830         } else {
6831                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6832                         return;
6833         }
6834
6835         pipe_config->gmch_pfit.control = tmp;
6836         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6837         if (INTEL_INFO(dev)->gen < 5)
6838                 pipe_config->gmch_pfit.lvds_border_bits =
6839                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6840 }
6841
6842 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6843                                struct intel_crtc_state *pipe_config)
6844 {
6845         struct drm_device *dev = crtc->base.dev;
6846         struct drm_i915_private *dev_priv = dev->dev_private;
6847         int pipe = pipe_config->cpu_transcoder;
6848         intel_clock_t clock;
6849         u32 mdiv;
6850         int refclk = 100000;
6851
6852         /* In case of MIPI DPLL will not even be used */
6853         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6854                 return;
6855
6856         mutex_lock(&dev_priv->dpio_lock);
6857         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6858         mutex_unlock(&dev_priv->dpio_lock);
6859
6860         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6861         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6862         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6863         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6864         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6865
6866         vlv_clock(refclk, &clock);
6867
6868         /* clock.dot is the fast clock */
6869         pipe_config->port_clock = clock.dot / 5;
6870 }
6871
6872 static void
6873 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6874                               struct intel_initial_plane_config *plane_config)
6875 {
6876         struct drm_device *dev = crtc->base.dev;
6877         struct drm_i915_private *dev_priv = dev->dev_private;
6878         u32 val, base, offset;
6879         int pipe = crtc->pipe, plane = crtc->plane;
6880         int fourcc, pixel_format;
6881         unsigned int aligned_height;
6882         struct drm_framebuffer *fb;
6883         struct intel_framebuffer *intel_fb;
6884
6885         val = I915_READ(DSPCNTR(plane));
6886         if (!(val & DISPLAY_PLANE_ENABLE))
6887                 return;
6888
6889         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6890         if (!intel_fb) {
6891                 DRM_DEBUG_KMS("failed to alloc fb\n");
6892                 return;
6893         }
6894
6895         fb = &intel_fb->base;
6896
6897         if (INTEL_INFO(dev)->gen >= 4) {
6898                 if (val & DISPPLANE_TILED) {
6899                         plane_config->tiling = I915_TILING_X;
6900                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6901                 }
6902         }
6903
6904         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6905         fourcc = i9xx_format_to_fourcc(pixel_format);
6906         fb->pixel_format = fourcc;
6907         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6908
6909         if (INTEL_INFO(dev)->gen >= 4) {
6910                 if (plane_config->tiling)
6911                         offset = I915_READ(DSPTILEOFF(plane));
6912                 else
6913                         offset = I915_READ(DSPLINOFF(plane));
6914                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6915         } else {
6916                 base = I915_READ(DSPADDR(plane));
6917         }
6918         plane_config->base = base;
6919
6920         val = I915_READ(PIPESRC(pipe));
6921         fb->width = ((val >> 16) & 0xfff) + 1;
6922         fb->height = ((val >> 0) & 0xfff) + 1;
6923
6924         val = I915_READ(DSPSTRIDE(pipe));
6925         fb->pitches[0] = val & 0xffffffc0;
6926
6927         aligned_height = intel_fb_align_height(dev, fb->height,
6928                                                fb->pixel_format,
6929                                                fb->modifier[0]);
6930
6931         plane_config->size = fb->pitches[0] * aligned_height;
6932
6933         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6934                       pipe_name(pipe), plane, fb->width, fb->height,
6935                       fb->bits_per_pixel, base, fb->pitches[0],
6936                       plane_config->size);
6937
6938         plane_config->fb = intel_fb;
6939 }
6940
6941 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6942                                struct intel_crtc_state *pipe_config)
6943 {
6944         struct drm_device *dev = crtc->base.dev;
6945         struct drm_i915_private *dev_priv = dev->dev_private;
6946         int pipe = pipe_config->cpu_transcoder;
6947         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6948         intel_clock_t clock;
6949         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6950         int refclk = 100000;
6951
6952         mutex_lock(&dev_priv->dpio_lock);
6953         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6954         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6955         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6956         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6957         mutex_unlock(&dev_priv->dpio_lock);
6958
6959         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6960         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6961         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6962         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6963         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6964
6965         chv_clock(refclk, &clock);
6966
6967         /* clock.dot is the fast clock */
6968         pipe_config->port_clock = clock.dot / 5;
6969 }
6970
6971 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6972                                  struct intel_crtc_state *pipe_config)
6973 {
6974         struct drm_device *dev = crtc->base.dev;
6975         struct drm_i915_private *dev_priv = dev->dev_private;
6976         uint32_t tmp;
6977
6978         if (!intel_display_power_is_enabled(dev_priv,
6979                                             POWER_DOMAIN_PIPE(crtc->pipe)))
6980                 return false;
6981
6982         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6983         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6984
6985         tmp = I915_READ(PIPECONF(crtc->pipe));
6986         if (!(tmp & PIPECONF_ENABLE))
6987                 return false;
6988
6989         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6990                 switch (tmp & PIPECONF_BPC_MASK) {
6991                 case PIPECONF_6BPC:
6992                         pipe_config->pipe_bpp = 18;
6993                         break;
6994                 case PIPECONF_8BPC:
6995                         pipe_config->pipe_bpp = 24;
6996                         break;
6997                 case PIPECONF_10BPC:
6998                         pipe_config->pipe_bpp = 30;
6999                         break;
7000                 default:
7001                         break;
7002                 }
7003         }
7004
7005         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7006                 pipe_config->limited_color_range = true;
7007
7008         if (INTEL_INFO(dev)->gen < 4)
7009                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7010
7011         intel_get_pipe_timings(crtc, pipe_config);
7012
7013         i9xx_get_pfit_config(crtc, pipe_config);
7014
7015         if (INTEL_INFO(dev)->gen >= 4) {
7016                 tmp = I915_READ(DPLL_MD(crtc->pipe));
7017                 pipe_config->pixel_multiplier =
7018                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7019                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7020                 pipe_config->dpll_hw_state.dpll_md = tmp;
7021         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7022                 tmp = I915_READ(DPLL(crtc->pipe));
7023                 pipe_config->pixel_multiplier =
7024                         ((tmp & SDVO_MULTIPLIER_MASK)
7025                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7026         } else {
7027                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7028                  * port and will be fixed up in the encoder->get_config
7029                  * function. */
7030                 pipe_config->pixel_multiplier = 1;
7031         }
7032         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7033         if (!IS_VALLEYVIEW(dev)) {
7034                 /*
7035                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7036                  * on 830. Filter it out here so that we don't
7037                  * report errors due to that.
7038                  */
7039                 if (IS_I830(dev))
7040                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7041
7042                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7043                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7044         } else {
7045                 /* Mask out read-only status bits. */
7046                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7047                                                      DPLL_PORTC_READY_MASK |
7048                                                      DPLL_PORTB_READY_MASK);
7049         }
7050
7051         if (IS_CHERRYVIEW(dev))
7052                 chv_crtc_clock_get(crtc, pipe_config);
7053         else if (IS_VALLEYVIEW(dev))
7054                 vlv_crtc_clock_get(crtc, pipe_config);
7055         else
7056                 i9xx_crtc_clock_get(crtc, pipe_config);
7057
7058         return true;
7059 }
7060
7061 static void ironlake_init_pch_refclk(struct drm_device *dev)
7062 {
7063         struct drm_i915_private *dev_priv = dev->dev_private;
7064         struct intel_encoder *encoder;
7065         u32 val, final;
7066         bool has_lvds = false;
7067         bool has_cpu_edp = false;
7068         bool has_panel = false;
7069         bool has_ck505 = false;
7070         bool can_ssc = false;
7071
7072         /* We need to take the global config into account */
7073         for_each_intel_encoder(dev, encoder) {
7074                 switch (encoder->type) {
7075                 case INTEL_OUTPUT_LVDS:
7076                         has_panel = true;
7077                         has_lvds = true;
7078                         break;
7079                 case INTEL_OUTPUT_EDP:
7080                         has_panel = true;
7081                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7082                                 has_cpu_edp = true;
7083                         break;
7084                 default:
7085                         break;
7086                 }
7087         }
7088
7089         if (HAS_PCH_IBX(dev)) {
7090                 has_ck505 = dev_priv->vbt.display_clock_mode;
7091                 can_ssc = has_ck505;
7092         } else {
7093                 has_ck505 = false;
7094                 can_ssc = true;
7095         }
7096
7097         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7098                       has_panel, has_lvds, has_ck505);
7099
7100         /* Ironlake: try to setup display ref clock before DPLL
7101          * enabling. This is only under driver's control after
7102          * PCH B stepping, previous chipset stepping should be
7103          * ignoring this setting.
7104          */
7105         val = I915_READ(PCH_DREF_CONTROL);
7106
7107         /* As we must carefully and slowly disable/enable each source in turn,
7108          * compute the final state we want first and check if we need to
7109          * make any changes at all.
7110          */
7111         final = val;
7112         final &= ~DREF_NONSPREAD_SOURCE_MASK;
7113         if (has_ck505)
7114                 final |= DREF_NONSPREAD_CK505_ENABLE;
7115         else
7116                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7117
7118         final &= ~DREF_SSC_SOURCE_MASK;
7119         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7120         final &= ~DREF_SSC1_ENABLE;
7121
7122         if (has_panel) {
7123                 final |= DREF_SSC_SOURCE_ENABLE;
7124
7125                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7126                         final |= DREF_SSC1_ENABLE;
7127
7128                 if (has_cpu_edp) {
7129                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
7130                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7131                         else
7132                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7133                 } else
7134                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7135         } else {
7136                 final |= DREF_SSC_SOURCE_DISABLE;
7137                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7138         }
7139
7140         if (final == val)
7141                 return;
7142
7143         /* Always enable nonspread source */
7144         val &= ~DREF_NONSPREAD_SOURCE_MASK;
7145
7146         if (has_ck505)
7147                 val |= DREF_NONSPREAD_CK505_ENABLE;
7148         else
7149                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7150
7151         if (has_panel) {
7152                 val &= ~DREF_SSC_SOURCE_MASK;
7153                 val |= DREF_SSC_SOURCE_ENABLE;
7154
7155                 /* SSC must be turned on before enabling the CPU output  */
7156                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7157                         DRM_DEBUG_KMS("Using SSC on panel\n");
7158                         val |= DREF_SSC1_ENABLE;
7159                 } else
7160                         val &= ~DREF_SSC1_ENABLE;
7161
7162                 /* Get SSC going before enabling the outputs */
7163                 I915_WRITE(PCH_DREF_CONTROL, val);
7164                 POSTING_READ(PCH_DREF_CONTROL);
7165                 udelay(200);
7166
7167                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7168
7169                 /* Enable CPU source on CPU attached eDP */
7170                 if (has_cpu_edp) {
7171                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7172                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
7173                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7174                         } else
7175                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7176                 } else
7177                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7178
7179                 I915_WRITE(PCH_DREF_CONTROL, val);
7180                 POSTING_READ(PCH_DREF_CONTROL);
7181                 udelay(200);
7182         } else {
7183                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7184
7185                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7186
7187                 /* Turn off CPU output */
7188                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7189
7190                 I915_WRITE(PCH_DREF_CONTROL, val);
7191                 POSTING_READ(PCH_DREF_CONTROL);
7192                 udelay(200);
7193
7194                 /* Turn off the SSC source */
7195                 val &= ~DREF_SSC_SOURCE_MASK;
7196                 val |= DREF_SSC_SOURCE_DISABLE;
7197
7198                 /* Turn off SSC1 */
7199                 val &= ~DREF_SSC1_ENABLE;
7200
7201                 I915_WRITE(PCH_DREF_CONTROL, val);
7202                 POSTING_READ(PCH_DREF_CONTROL);
7203                 udelay(200);
7204         }
7205
7206         BUG_ON(val != final);
7207 }
7208
7209 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7210 {
7211         uint32_t tmp;
7212
7213         tmp = I915_READ(SOUTH_CHICKEN2);
7214         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7215         I915_WRITE(SOUTH_CHICKEN2, tmp);
7216
7217         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7218                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7219                 DRM_ERROR("FDI mPHY reset assert timeout\n");
7220
7221         tmp = I915_READ(SOUTH_CHICKEN2);
7222         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7223         I915_WRITE(SOUTH_CHICKEN2, tmp);
7224
7225         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7226                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7227                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7228 }
7229
7230 /* WaMPhyProgramming:hsw */
7231 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7232 {
7233         uint32_t tmp;
7234
7235         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7236         tmp &= ~(0xFF << 24);
7237         tmp |= (0x12 << 24);
7238         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7239
7240         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7241         tmp |= (1 << 11);
7242         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7243
7244         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7245         tmp |= (1 << 11);
7246         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7247
7248         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7249         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7250         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7251
7252         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7253         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7254         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7255
7256         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7257         tmp &= ~(7 << 13);
7258         tmp |= (5 << 13);
7259         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7260
7261         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7262         tmp &= ~(7 << 13);
7263         tmp |= (5 << 13);
7264         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7265
7266         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7267         tmp &= ~0xFF;
7268         tmp |= 0x1C;
7269         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7270
7271         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7272         tmp &= ~0xFF;
7273         tmp |= 0x1C;
7274         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7275
7276         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7277         tmp &= ~(0xFF << 16);
7278         tmp |= (0x1C << 16);
7279         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7280
7281         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7282         tmp &= ~(0xFF << 16);
7283         tmp |= (0x1C << 16);
7284         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7285
7286         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7287         tmp |= (1 << 27);
7288         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7289
7290         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7291         tmp |= (1 << 27);
7292         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7293
7294         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7295         tmp &= ~(0xF << 28);
7296         tmp |= (4 << 28);
7297         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7298
7299         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7300         tmp &= ~(0xF << 28);
7301         tmp |= (4 << 28);
7302         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7303 }
7304
7305 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7306  * Programming" based on the parameters passed:
7307  * - Sequence to enable CLKOUT_DP
7308  * - Sequence to enable CLKOUT_DP without spread
7309  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7310  */
7311 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7312                                  bool with_fdi)
7313 {
7314         struct drm_i915_private *dev_priv = dev->dev_private;
7315         uint32_t reg, tmp;
7316
7317         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7318                 with_spread = true;
7319         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7320                  with_fdi, "LP PCH doesn't have FDI\n"))
7321                 with_fdi = false;
7322
7323         mutex_lock(&dev_priv->dpio_lock);
7324
7325         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7326         tmp &= ~SBI_SSCCTL_DISABLE;
7327         tmp |= SBI_SSCCTL_PATHALT;
7328         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7329
7330         udelay(24);
7331
7332         if (with_spread) {
7333                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7334                 tmp &= ~SBI_SSCCTL_PATHALT;
7335                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7336
7337                 if (with_fdi) {
7338                         lpt_reset_fdi_mphy(dev_priv);
7339                         lpt_program_fdi_mphy(dev_priv);
7340                 }
7341         }
7342
7343         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7344                SBI_GEN0 : SBI_DBUFF0;
7345         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7346         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7347         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7348
7349         mutex_unlock(&dev_priv->dpio_lock);
7350 }
7351
7352 /* Sequence to disable CLKOUT_DP */
7353 static void lpt_disable_clkout_dp(struct drm_device *dev)
7354 {
7355         struct drm_i915_private *dev_priv = dev->dev_private;
7356         uint32_t reg, tmp;
7357
7358         mutex_lock(&dev_priv->dpio_lock);
7359
7360         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7361                SBI_GEN0 : SBI_DBUFF0;
7362         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7363         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7364         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7365
7366         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7367         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7368                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7369                         tmp |= SBI_SSCCTL_PATHALT;
7370                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7371                         udelay(32);
7372                 }
7373                 tmp |= SBI_SSCCTL_DISABLE;
7374                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7375         }
7376
7377         mutex_unlock(&dev_priv->dpio_lock);
7378 }
7379
7380 static void lpt_init_pch_refclk(struct drm_device *dev)
7381 {
7382         struct intel_encoder *encoder;
7383         bool has_vga = false;
7384
7385         for_each_intel_encoder(dev, encoder) {
7386                 switch (encoder->type) {
7387                 case INTEL_OUTPUT_ANALOG:
7388                         has_vga = true;
7389                         break;
7390                 default:
7391                         break;
7392                 }
7393         }
7394
7395         if (has_vga)
7396                 lpt_enable_clkout_dp(dev, true, true);
7397         else
7398                 lpt_disable_clkout_dp(dev);
7399 }
7400
7401 /*
7402  * Initialize reference clocks when the driver loads
7403  */
7404 void intel_init_pch_refclk(struct drm_device *dev)
7405 {
7406         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7407                 ironlake_init_pch_refclk(dev);
7408         else if (HAS_PCH_LPT(dev))
7409                 lpt_init_pch_refclk(dev);
7410 }
7411
7412 static int ironlake_get_refclk(struct drm_crtc *crtc)
7413 {
7414         struct drm_device *dev = crtc->dev;
7415         struct drm_i915_private *dev_priv = dev->dev_private;
7416         struct intel_encoder *encoder;
7417         int num_connectors = 0;
7418         bool is_lvds = false;
7419
7420         for_each_intel_encoder(dev, encoder) {
7421                 if (encoder->new_crtc != to_intel_crtc(crtc))
7422                         continue;
7423
7424                 switch (encoder->type) {
7425                 case INTEL_OUTPUT_LVDS:
7426                         is_lvds = true;
7427                         break;
7428                 default:
7429                         break;
7430                 }
7431                 num_connectors++;
7432         }
7433
7434         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7435                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7436                               dev_priv->vbt.lvds_ssc_freq);
7437                 return dev_priv->vbt.lvds_ssc_freq;
7438         }
7439
7440         return 120000;
7441 }
7442
7443 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7444 {
7445         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7446         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7447         int pipe = intel_crtc->pipe;
7448         uint32_t val;
7449
7450         val = 0;
7451
7452         switch (intel_crtc->config->pipe_bpp) {
7453         case 18:
7454                 val |= PIPECONF_6BPC;
7455                 break;
7456         case 24:
7457                 val |= PIPECONF_8BPC;
7458                 break;
7459         case 30:
7460                 val |= PIPECONF_10BPC;
7461                 break;
7462         case 36:
7463                 val |= PIPECONF_12BPC;
7464                 break;
7465         default:
7466                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7467                 BUG();
7468         }
7469
7470         if (intel_crtc->config->dither)
7471                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7472
7473         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7474                 val |= PIPECONF_INTERLACED_ILK;
7475         else
7476                 val |= PIPECONF_PROGRESSIVE;
7477
7478         if (intel_crtc->config->limited_color_range)
7479                 val |= PIPECONF_COLOR_RANGE_SELECT;
7480
7481         I915_WRITE(PIPECONF(pipe), val);
7482         POSTING_READ(PIPECONF(pipe));
7483 }
7484
7485 /*
7486  * Set up the pipe CSC unit.
7487  *
7488  * Currently only full range RGB to limited range RGB conversion
7489  * is supported, but eventually this should handle various
7490  * RGB<->YCbCr scenarios as well.
7491  */
7492 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7493 {
7494         struct drm_device *dev = crtc->dev;
7495         struct drm_i915_private *dev_priv = dev->dev_private;
7496         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7497         int pipe = intel_crtc->pipe;
7498         uint16_t coeff = 0x7800; /* 1.0 */
7499
7500         /*
7501          * TODO: Check what kind of values actually come out of the pipe
7502          * with these coeff/postoff values and adjust to get the best
7503          * accuracy. Perhaps we even need to take the bpc value into
7504          * consideration.
7505          */
7506
7507         if (intel_crtc->config->limited_color_range)
7508                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7509
7510         /*
7511          * GY/GU and RY/RU should be the other way around according
7512          * to BSpec, but reality doesn't agree. Just set them up in
7513          * a way that results in the correct picture.
7514          */
7515         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7516         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7517
7518         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7519         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7520
7521         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7522         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7523
7524         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7525         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7526         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7527
7528         if (INTEL_INFO(dev)->gen > 6) {
7529                 uint16_t postoff = 0;
7530
7531                 if (intel_crtc->config->limited_color_range)
7532                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
7533
7534                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7535                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7536                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7537
7538                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7539         } else {
7540                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7541
7542                 if (intel_crtc->config->limited_color_range)
7543                         mode |= CSC_BLACK_SCREEN_OFFSET;
7544
7545                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7546         }
7547 }
7548
7549 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7550 {
7551         struct drm_device *dev = crtc->dev;
7552         struct drm_i915_private *dev_priv = dev->dev_private;
7553         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7554         enum pipe pipe = intel_crtc->pipe;
7555         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7556         uint32_t val;
7557
7558         val = 0;
7559
7560         if (IS_HASWELL(dev) && intel_crtc->config->dither)
7561                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7562
7563         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7564                 val |= PIPECONF_INTERLACED_ILK;
7565         else
7566                 val |= PIPECONF_PROGRESSIVE;
7567
7568         I915_WRITE(PIPECONF(cpu_transcoder), val);
7569         POSTING_READ(PIPECONF(cpu_transcoder));
7570
7571         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7572         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7573
7574         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7575                 val = 0;
7576
7577                 switch (intel_crtc->config->pipe_bpp) {
7578                 case 18:
7579                         val |= PIPEMISC_DITHER_6_BPC;
7580                         break;
7581                 case 24:
7582                         val |= PIPEMISC_DITHER_8_BPC;
7583                         break;
7584                 case 30:
7585                         val |= PIPEMISC_DITHER_10_BPC;
7586                         break;
7587                 case 36:
7588                         val |= PIPEMISC_DITHER_12_BPC;
7589                         break;
7590                 default:
7591                         /* Case prevented by pipe_config_set_bpp. */
7592                         BUG();
7593                 }
7594
7595                 if (intel_crtc->config->dither)
7596                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7597
7598                 I915_WRITE(PIPEMISC(pipe), val);
7599         }
7600 }
7601
7602 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7603                                     struct intel_crtc_state *crtc_state,
7604                                     intel_clock_t *clock,
7605                                     bool *has_reduced_clock,
7606                                     intel_clock_t *reduced_clock)
7607 {
7608         struct drm_device *dev = crtc->dev;
7609         struct drm_i915_private *dev_priv = dev->dev_private;
7610         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7611         int refclk;
7612         const intel_limit_t *limit;
7613         bool ret, is_lvds = false;
7614
7615         is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7616
7617         refclk = ironlake_get_refclk(crtc);
7618
7619         /*
7620          * Returns a set of divisors for the desired target clock with the given
7621          * refclk, or FALSE.  The returned values represent the clock equation:
7622          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7623          */
7624         limit = intel_limit(intel_crtc, refclk);
7625         ret = dev_priv->display.find_dpll(limit, intel_crtc,
7626                                           crtc_state->port_clock,
7627                                           refclk, NULL, clock);
7628         if (!ret)
7629                 return false;
7630
7631         if (is_lvds && dev_priv->lvds_downclock_avail) {
7632                 /*
7633                  * Ensure we match the reduced clock's P to the target clock.
7634                  * If the clocks don't match, we can't switch the display clock
7635                  * by using the FP0/FP1. In such case we will disable the LVDS
7636                  * downclock feature.
7637                 */
7638                 *has_reduced_clock =
7639                         dev_priv->display.find_dpll(limit, intel_crtc,
7640                                                     dev_priv->lvds_downclock,
7641                                                     refclk, clock,
7642                                                     reduced_clock);
7643         }
7644
7645         return true;
7646 }
7647
7648 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7649 {
7650         /*
7651          * Account for spread spectrum to avoid
7652          * oversubscribing the link. Max center spread
7653          * is 2.5%; use 5% for safety's sake.
7654          */
7655         u32 bps = target_clock * bpp * 21 / 20;
7656         return DIV_ROUND_UP(bps, link_bw * 8);
7657 }
7658
7659 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7660 {
7661         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7662 }
7663
7664 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7665                                       struct intel_crtc_state *crtc_state,
7666                                       u32 *fp,
7667                                       intel_clock_t *reduced_clock, u32 *fp2)
7668 {
7669         struct drm_crtc *crtc = &intel_crtc->base;
7670         struct drm_device *dev = crtc->dev;
7671         struct drm_i915_private *dev_priv = dev->dev_private;
7672         struct intel_encoder *intel_encoder;
7673         uint32_t dpll;
7674         int factor, num_connectors = 0;
7675         bool is_lvds = false, is_sdvo = false;
7676
7677         for_each_intel_encoder(dev, intel_encoder) {
7678                 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7679                         continue;
7680
7681                 switch (intel_encoder->type) {
7682                 case INTEL_OUTPUT_LVDS:
7683                         is_lvds = true;
7684                         break;
7685                 case INTEL_OUTPUT_SDVO:
7686                 case INTEL_OUTPUT_HDMI:
7687                         is_sdvo = true;
7688                         break;
7689                 default:
7690                         break;
7691                 }
7692
7693                 num_connectors++;
7694         }
7695
7696         /* Enable autotuning of the PLL clock (if permissible) */
7697         factor = 21;
7698         if (is_lvds) {
7699                 if ((intel_panel_use_ssc(dev_priv) &&
7700                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7701                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7702                         factor = 25;
7703         } else if (crtc_state->sdvo_tv_clock)
7704                 factor = 20;
7705
7706         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7707                 *fp |= FP_CB_TUNE;
7708
7709         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7710                 *fp2 |= FP_CB_TUNE;
7711
7712         dpll = 0;
7713
7714         if (is_lvds)
7715                 dpll |= DPLLB_MODE_LVDS;
7716         else
7717                 dpll |= DPLLB_MODE_DAC_SERIAL;
7718
7719         dpll |= (crtc_state->pixel_multiplier - 1)
7720                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7721
7722         if (is_sdvo)
7723                 dpll |= DPLL_SDVO_HIGH_SPEED;
7724         if (crtc_state->has_dp_encoder)
7725                 dpll |= DPLL_SDVO_HIGH_SPEED;
7726
7727         /* compute bitmask from p1 value */
7728         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7729         /* also FPA1 */
7730         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7731
7732         switch (crtc_state->dpll.p2) {
7733         case 5:
7734                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7735                 break;
7736         case 7:
7737                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7738                 break;
7739         case 10:
7740                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7741                 break;
7742         case 14:
7743                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7744                 break;
7745         }
7746
7747         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7748                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7749         else
7750                 dpll |= PLL_REF_INPUT_DREFCLK;
7751
7752         return dpll | DPLL_VCO_ENABLE;
7753 }
7754
7755 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7756                                        struct intel_crtc_state *crtc_state)
7757 {
7758         struct drm_device *dev = crtc->base.dev;
7759         intel_clock_t clock, reduced_clock;
7760         u32 dpll = 0, fp = 0, fp2 = 0;
7761         bool ok, has_reduced_clock = false;
7762         bool is_lvds = false;
7763         struct intel_shared_dpll *pll;
7764
7765         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7766
7767         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7768              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7769
7770         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7771                                      &has_reduced_clock, &reduced_clock);
7772         if (!ok && !crtc_state->clock_set) {
7773                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7774                 return -EINVAL;
7775         }
7776         /* Compat-code for transition, will disappear. */
7777         if (!crtc_state->clock_set) {
7778                 crtc_state->dpll.n = clock.n;
7779                 crtc_state->dpll.m1 = clock.m1;
7780                 crtc_state->dpll.m2 = clock.m2;
7781                 crtc_state->dpll.p1 = clock.p1;
7782                 crtc_state->dpll.p2 = clock.p2;
7783         }
7784
7785         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7786         if (crtc_state->has_pch_encoder) {
7787                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7788                 if (has_reduced_clock)
7789                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7790
7791                 dpll = ironlake_compute_dpll(crtc, crtc_state,
7792                                              &fp, &reduced_clock,
7793                                              has_reduced_clock ? &fp2 : NULL);
7794
7795                 crtc_state->dpll_hw_state.dpll = dpll;
7796                 crtc_state->dpll_hw_state.fp0 = fp;
7797                 if (has_reduced_clock)
7798                         crtc_state->dpll_hw_state.fp1 = fp2;
7799                 else
7800                         crtc_state->dpll_hw_state.fp1 = fp;
7801
7802                 pll = intel_get_shared_dpll(crtc, crtc_state);
7803                 if (pll == NULL) {
7804                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7805                                          pipe_name(crtc->pipe));
7806                         return -EINVAL;
7807                 }
7808         }
7809
7810         if (is_lvds && has_reduced_clock)
7811                 crtc->lowfreq_avail = true;
7812         else
7813                 crtc->lowfreq_avail = false;
7814
7815         return 0;
7816 }
7817
7818 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7819                                          struct intel_link_m_n *m_n)
7820 {
7821         struct drm_device *dev = crtc->base.dev;
7822         struct drm_i915_private *dev_priv = dev->dev_private;
7823         enum pipe pipe = crtc->pipe;
7824
7825         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7826         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7827         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7828                 & ~TU_SIZE_MASK;
7829         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7830         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7831                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7832 }
7833
7834 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7835                                          enum transcoder transcoder,
7836                                          struct intel_link_m_n *m_n,
7837                                          struct intel_link_m_n *m2_n2)
7838 {
7839         struct drm_device *dev = crtc->base.dev;
7840         struct drm_i915_private *dev_priv = dev->dev_private;
7841         enum pipe pipe = crtc->pipe;
7842
7843         if (INTEL_INFO(dev)->gen >= 5) {
7844                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7845                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7846                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7847                         & ~TU_SIZE_MASK;
7848                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7849                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7850                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7851                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7852                  * gen < 8) and if DRRS is supported (to make sure the
7853                  * registers are not unnecessarily read).
7854                  */
7855                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7856                         crtc->config->has_drrs) {
7857                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7858                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7859                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7860                                         & ~TU_SIZE_MASK;
7861                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7862                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7863                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7864                 }
7865         } else {
7866                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7867                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7868                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7869                         & ~TU_SIZE_MASK;
7870                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7871                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7872                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7873         }
7874 }
7875
7876 void intel_dp_get_m_n(struct intel_crtc *crtc,
7877                       struct intel_crtc_state *pipe_config)
7878 {
7879         if (pipe_config->has_pch_encoder)
7880                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7881         else
7882                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7883                                              &pipe_config->dp_m_n,
7884                                              &pipe_config->dp_m2_n2);
7885 }
7886
7887 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7888                                         struct intel_crtc_state *pipe_config)
7889 {
7890         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7891                                      &pipe_config->fdi_m_n, NULL);
7892 }
7893
7894 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7895                                     struct intel_crtc_state *pipe_config)
7896 {
7897         struct drm_device *dev = crtc->base.dev;
7898         struct drm_i915_private *dev_priv = dev->dev_private;
7899         uint32_t tmp;
7900
7901         tmp = I915_READ(PS_CTL(crtc->pipe));
7902
7903         if (tmp & PS_ENABLE) {
7904                 pipe_config->pch_pfit.enabled = true;
7905                 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7906                 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7907         }
7908 }
7909
7910 static void
7911 skylake_get_initial_plane_config(struct intel_crtc *crtc,
7912                                  struct intel_initial_plane_config *plane_config)
7913 {
7914         struct drm_device *dev = crtc->base.dev;
7915         struct drm_i915_private *dev_priv = dev->dev_private;
7916         u32 val, base, offset, stride_mult, tiling;
7917         int pipe = crtc->pipe;
7918         int fourcc, pixel_format;
7919         unsigned int aligned_height;
7920         struct drm_framebuffer *fb;
7921         struct intel_framebuffer *intel_fb;
7922
7923         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7924         if (!intel_fb) {
7925                 DRM_DEBUG_KMS("failed to alloc fb\n");
7926                 return;
7927         }
7928
7929         fb = &intel_fb->base;
7930
7931         val = I915_READ(PLANE_CTL(pipe, 0));
7932         if (!(val & PLANE_CTL_ENABLE))
7933                 goto error;
7934
7935         pixel_format = val & PLANE_CTL_FORMAT_MASK;
7936         fourcc = skl_format_to_fourcc(pixel_format,
7937                                       val & PLANE_CTL_ORDER_RGBX,
7938                                       val & PLANE_CTL_ALPHA_MASK);
7939         fb->pixel_format = fourcc;
7940         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7941
7942         tiling = val & PLANE_CTL_TILED_MASK;
7943         switch (tiling) {
7944         case PLANE_CTL_TILED_LINEAR:
7945                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
7946                 break;
7947         case PLANE_CTL_TILED_X:
7948                 plane_config->tiling = I915_TILING_X;
7949                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7950                 break;
7951         case PLANE_CTL_TILED_Y:
7952                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
7953                 break;
7954         case PLANE_CTL_TILED_YF:
7955                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
7956                 break;
7957         default:
7958                 MISSING_CASE(tiling);
7959                 goto error;
7960         }
7961
7962         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7963         plane_config->base = base;
7964
7965         offset = I915_READ(PLANE_OFFSET(pipe, 0));
7966
7967         val = I915_READ(PLANE_SIZE(pipe, 0));
7968         fb->height = ((val >> 16) & 0xfff) + 1;
7969         fb->width = ((val >> 0) & 0x1fff) + 1;
7970
7971         val = I915_READ(PLANE_STRIDE(pipe, 0));
7972         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
7973                                                 fb->pixel_format);
7974         fb->pitches[0] = (val & 0x3ff) * stride_mult;
7975
7976         aligned_height = intel_fb_align_height(dev, fb->height,
7977                                                fb->pixel_format,
7978                                                fb->modifier[0]);
7979
7980         plane_config->size = fb->pitches[0] * aligned_height;
7981
7982         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7983                       pipe_name(pipe), fb->width, fb->height,
7984                       fb->bits_per_pixel, base, fb->pitches[0],
7985                       plane_config->size);
7986
7987         plane_config->fb = intel_fb;
7988         return;
7989
7990 error:
7991         kfree(fb);
7992 }
7993
7994 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7995                                      struct intel_crtc_state *pipe_config)
7996 {
7997         struct drm_device *dev = crtc->base.dev;
7998         struct drm_i915_private *dev_priv = dev->dev_private;
7999         uint32_t tmp;
8000
8001         tmp = I915_READ(PF_CTL(crtc->pipe));
8002
8003         if (tmp & PF_ENABLE) {
8004                 pipe_config->pch_pfit.enabled = true;
8005                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8006                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8007
8008                 /* We currently do not free assignements of panel fitters on
8009                  * ivb/hsw (since we don't use the higher upscaling modes which
8010                  * differentiates them) so just WARN about this case for now. */
8011                 if (IS_GEN7(dev)) {
8012                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8013                                 PF_PIPE_SEL_IVB(crtc->pipe));
8014                 }
8015         }
8016 }
8017
8018 static void
8019 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8020                                   struct intel_initial_plane_config *plane_config)
8021 {
8022         struct drm_device *dev = crtc->base.dev;
8023         struct drm_i915_private *dev_priv = dev->dev_private;
8024         u32 val, base, offset;
8025         int pipe = crtc->pipe;
8026         int fourcc, pixel_format;
8027         unsigned int aligned_height;
8028         struct drm_framebuffer *fb;
8029         struct intel_framebuffer *intel_fb;
8030
8031         val = I915_READ(DSPCNTR(pipe));
8032         if (!(val & DISPLAY_PLANE_ENABLE))
8033                 return;
8034
8035         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8036         if (!intel_fb) {
8037                 DRM_DEBUG_KMS("failed to alloc fb\n");
8038                 return;
8039         }
8040
8041         fb = &intel_fb->base;
8042
8043         if (INTEL_INFO(dev)->gen >= 4) {
8044                 if (val & DISPPLANE_TILED) {
8045                         plane_config->tiling = I915_TILING_X;
8046                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8047                 }
8048         }
8049
8050         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8051         fourcc = i9xx_format_to_fourcc(pixel_format);
8052         fb->pixel_format = fourcc;
8053         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8054
8055         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8056         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
8057                 offset = I915_READ(DSPOFFSET(pipe));
8058         } else {
8059                 if (plane_config->tiling)
8060                         offset = I915_READ(DSPTILEOFF(pipe));
8061                 else
8062                         offset = I915_READ(DSPLINOFF(pipe));
8063         }
8064         plane_config->base = base;
8065
8066         val = I915_READ(PIPESRC(pipe));
8067         fb->width = ((val >> 16) & 0xfff) + 1;
8068         fb->height = ((val >> 0) & 0xfff) + 1;
8069
8070         val = I915_READ(DSPSTRIDE(pipe));
8071         fb->pitches[0] = val & 0xffffffc0;
8072
8073         aligned_height = intel_fb_align_height(dev, fb->height,
8074                                                fb->pixel_format,
8075                                                fb->modifier[0]);
8076
8077         plane_config->size = fb->pitches[0] * aligned_height;
8078
8079         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8080                       pipe_name(pipe), fb->width, fb->height,
8081                       fb->bits_per_pixel, base, fb->pitches[0],
8082                       plane_config->size);
8083
8084         plane_config->fb = intel_fb;
8085 }
8086
8087 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8088                                      struct intel_crtc_state *pipe_config)
8089 {
8090         struct drm_device *dev = crtc->base.dev;
8091         struct drm_i915_private *dev_priv = dev->dev_private;
8092         uint32_t tmp;
8093
8094         if (!intel_display_power_is_enabled(dev_priv,
8095                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8096                 return false;
8097
8098         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8099         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8100
8101         tmp = I915_READ(PIPECONF(crtc->pipe));
8102         if (!(tmp & PIPECONF_ENABLE))
8103                 return false;
8104
8105         switch (tmp & PIPECONF_BPC_MASK) {
8106         case PIPECONF_6BPC:
8107                 pipe_config->pipe_bpp = 18;
8108                 break;
8109         case PIPECONF_8BPC:
8110                 pipe_config->pipe_bpp = 24;
8111                 break;
8112         case PIPECONF_10BPC:
8113                 pipe_config->pipe_bpp = 30;
8114                 break;
8115         case PIPECONF_12BPC:
8116                 pipe_config->pipe_bpp = 36;
8117                 break;
8118         default:
8119                 break;
8120         }
8121
8122         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8123                 pipe_config->limited_color_range = true;
8124
8125         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8126                 struct intel_shared_dpll *pll;
8127
8128                 pipe_config->has_pch_encoder = true;
8129
8130                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8131                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8132                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8133
8134                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8135
8136                 if (HAS_PCH_IBX(dev_priv->dev)) {
8137                         pipe_config->shared_dpll =
8138                                 (enum intel_dpll_id) crtc->pipe;
8139                 } else {
8140                         tmp = I915_READ(PCH_DPLL_SEL);
8141                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8142                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8143                         else
8144                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8145                 }
8146
8147                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8148
8149                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8150                                            &pipe_config->dpll_hw_state));
8151
8152                 tmp = pipe_config->dpll_hw_state.dpll;
8153                 pipe_config->pixel_multiplier =
8154                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8155                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8156
8157                 ironlake_pch_clock_get(crtc, pipe_config);
8158         } else {
8159                 pipe_config->pixel_multiplier = 1;
8160         }
8161
8162         intel_get_pipe_timings(crtc, pipe_config);
8163
8164         ironlake_get_pfit_config(crtc, pipe_config);
8165
8166         return true;
8167 }
8168
8169 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8170 {
8171         struct drm_device *dev = dev_priv->dev;
8172         struct intel_crtc *crtc;
8173
8174         for_each_intel_crtc(dev, crtc)
8175                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8176                      pipe_name(crtc->pipe));
8177
8178         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8179         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8180         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8181         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8182         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8183         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8184              "CPU PWM1 enabled\n");
8185         if (IS_HASWELL(dev))
8186                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8187                      "CPU PWM2 enabled\n");
8188         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8189              "PCH PWM1 enabled\n");
8190         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8191              "Utility pin enabled\n");
8192         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8193
8194         /*
8195          * In theory we can still leave IRQs enabled, as long as only the HPD
8196          * interrupts remain enabled. We used to check for that, but since it's
8197          * gen-specific and since we only disable LCPLL after we fully disable
8198          * the interrupts, the check below should be enough.
8199          */
8200         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8201 }
8202
8203 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8204 {
8205         struct drm_device *dev = dev_priv->dev;
8206
8207         if (IS_HASWELL(dev))
8208                 return I915_READ(D_COMP_HSW);
8209         else
8210                 return I915_READ(D_COMP_BDW);
8211 }
8212
8213 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8214 {
8215         struct drm_device *dev = dev_priv->dev;
8216
8217         if (IS_HASWELL(dev)) {
8218                 mutex_lock(&dev_priv->rps.hw_lock);
8219                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8220                                             val))
8221                         DRM_ERROR("Failed to write to D_COMP\n");
8222                 mutex_unlock(&dev_priv->rps.hw_lock);
8223         } else {
8224                 I915_WRITE(D_COMP_BDW, val);
8225                 POSTING_READ(D_COMP_BDW);
8226         }
8227 }
8228
8229 /*
8230  * This function implements pieces of two sequences from BSpec:
8231  * - Sequence for display software to disable LCPLL
8232  * - Sequence for display software to allow package C8+
8233  * The steps implemented here are just the steps that actually touch the LCPLL
8234  * register. Callers should take care of disabling all the display engine
8235  * functions, doing the mode unset, fixing interrupts, etc.
8236  */
8237 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8238                               bool switch_to_fclk, bool allow_power_down)
8239 {
8240         uint32_t val;
8241
8242         assert_can_disable_lcpll(dev_priv);
8243
8244         val = I915_READ(LCPLL_CTL);
8245
8246         if (switch_to_fclk) {
8247                 val |= LCPLL_CD_SOURCE_FCLK;
8248                 I915_WRITE(LCPLL_CTL, val);
8249
8250                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8251                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
8252                         DRM_ERROR("Switching to FCLK failed\n");
8253
8254                 val = I915_READ(LCPLL_CTL);
8255         }
8256
8257         val |= LCPLL_PLL_DISABLE;
8258         I915_WRITE(LCPLL_CTL, val);
8259         POSTING_READ(LCPLL_CTL);
8260
8261         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8262                 DRM_ERROR("LCPLL still locked\n");
8263
8264         val = hsw_read_dcomp(dev_priv);
8265         val |= D_COMP_COMP_DISABLE;
8266         hsw_write_dcomp(dev_priv, val);
8267         ndelay(100);
8268
8269         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8270                      1))
8271                 DRM_ERROR("D_COMP RCOMP still in progress\n");
8272
8273         if (allow_power_down) {
8274                 val = I915_READ(LCPLL_CTL);
8275                 val |= LCPLL_POWER_DOWN_ALLOW;
8276                 I915_WRITE(LCPLL_CTL, val);
8277                 POSTING_READ(LCPLL_CTL);
8278         }
8279 }
8280
8281 /*
8282  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8283  * source.
8284  */
8285 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8286 {
8287         uint32_t val;
8288
8289         val = I915_READ(LCPLL_CTL);
8290
8291         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8292                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8293                 return;
8294
8295         /*
8296          * Make sure we're not on PC8 state before disabling PC8, otherwise
8297          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8298          */
8299         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8300
8301         if (val & LCPLL_POWER_DOWN_ALLOW) {
8302                 val &= ~LCPLL_POWER_DOWN_ALLOW;
8303                 I915_WRITE(LCPLL_CTL, val);
8304                 POSTING_READ(LCPLL_CTL);
8305         }
8306
8307         val = hsw_read_dcomp(dev_priv);
8308         val |= D_COMP_COMP_FORCE;
8309         val &= ~D_COMP_COMP_DISABLE;
8310         hsw_write_dcomp(dev_priv, val);
8311
8312         val = I915_READ(LCPLL_CTL);
8313         val &= ~LCPLL_PLL_DISABLE;
8314         I915_WRITE(LCPLL_CTL, val);
8315
8316         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8317                 DRM_ERROR("LCPLL not locked yet\n");
8318
8319         if (val & LCPLL_CD_SOURCE_FCLK) {
8320                 val = I915_READ(LCPLL_CTL);
8321                 val &= ~LCPLL_CD_SOURCE_FCLK;
8322                 I915_WRITE(LCPLL_CTL, val);
8323
8324                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8325                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8326                         DRM_ERROR("Switching back to LCPLL failed\n");
8327         }
8328
8329         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8330 }
8331
8332 /*
8333  * Package states C8 and deeper are really deep PC states that can only be
8334  * reached when all the devices on the system allow it, so even if the graphics
8335  * device allows PC8+, it doesn't mean the system will actually get to these
8336  * states. Our driver only allows PC8+ when going into runtime PM.
8337  *
8338  * The requirements for PC8+ are that all the outputs are disabled, the power
8339  * well is disabled and most interrupts are disabled, and these are also
8340  * requirements for runtime PM. When these conditions are met, we manually do
8341  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8342  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8343  * hang the machine.
8344  *
8345  * When we really reach PC8 or deeper states (not just when we allow it) we lose
8346  * the state of some registers, so when we come back from PC8+ we need to
8347  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8348  * need to take care of the registers kept by RC6. Notice that this happens even
8349  * if we don't put the device in PCI D3 state (which is what currently happens
8350  * because of the runtime PM support).
8351  *
8352  * For more, read "Display Sequences for Package C8" on the hardware
8353  * documentation.
8354  */
8355 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8356 {
8357         struct drm_device *dev = dev_priv->dev;
8358         uint32_t val;
8359
8360         DRM_DEBUG_KMS("Enabling package C8+\n");
8361
8362         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8363                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8364                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8365                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8366         }
8367
8368         lpt_disable_clkout_dp(dev);
8369         hsw_disable_lcpll(dev_priv, true, true);
8370 }
8371
8372 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8373 {
8374         struct drm_device *dev = dev_priv->dev;
8375         uint32_t val;
8376
8377         DRM_DEBUG_KMS("Disabling package C8+\n");
8378
8379         hsw_restore_lcpll(dev_priv);
8380         lpt_init_pch_refclk(dev);
8381
8382         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8383                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8384                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8385                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8386         }
8387
8388         intel_prepare_ddi(dev);
8389 }
8390
8391 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8392                                       struct intel_crtc_state *crtc_state)
8393 {
8394         if (!intel_ddi_pll_select(crtc, crtc_state))
8395                 return -EINVAL;
8396
8397         crtc->lowfreq_avail = false;
8398
8399         return 0;
8400 }
8401
8402 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8403                                 enum port port,
8404                                 struct intel_crtc_state *pipe_config)
8405 {
8406         u32 temp, dpll_ctl1;
8407
8408         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8409         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8410
8411         switch (pipe_config->ddi_pll_sel) {
8412         case SKL_DPLL0:
8413                 /*
8414                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8415                  * of the shared DPLL framework and thus needs to be read out
8416                  * separately
8417                  */
8418                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8419                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8420                 break;
8421         case SKL_DPLL1:
8422                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8423                 break;
8424         case SKL_DPLL2:
8425                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8426                 break;
8427         case SKL_DPLL3:
8428                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8429                 break;
8430         }
8431 }
8432
8433 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8434                                 enum port port,
8435                                 struct intel_crtc_state *pipe_config)
8436 {
8437         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8438
8439         switch (pipe_config->ddi_pll_sel) {
8440         case PORT_CLK_SEL_WRPLL1:
8441                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8442                 break;
8443         case PORT_CLK_SEL_WRPLL2:
8444                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8445                 break;
8446         }
8447 }
8448
8449 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8450                                        struct intel_crtc_state *pipe_config)
8451 {
8452         struct drm_device *dev = crtc->base.dev;
8453         struct drm_i915_private *dev_priv = dev->dev_private;
8454         struct intel_shared_dpll *pll;
8455         enum port port;
8456         uint32_t tmp;
8457
8458         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8459
8460         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8461
8462         if (IS_SKYLAKE(dev))
8463                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8464         else
8465                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8466
8467         if (pipe_config->shared_dpll >= 0) {
8468                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8469
8470                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8471                                            &pipe_config->dpll_hw_state));
8472         }
8473
8474         /*
8475          * Haswell has only FDI/PCH transcoder A. It is which is connected to
8476          * DDI E. So just check whether this pipe is wired to DDI E and whether
8477          * the PCH transcoder is on.
8478          */
8479         if (INTEL_INFO(dev)->gen < 9 &&
8480             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8481                 pipe_config->has_pch_encoder = true;
8482
8483                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8484                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8485                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8486
8487                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8488         }
8489 }
8490
8491 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8492                                     struct intel_crtc_state *pipe_config)
8493 {
8494         struct drm_device *dev = crtc->base.dev;
8495         struct drm_i915_private *dev_priv = dev->dev_private;
8496         enum intel_display_power_domain pfit_domain;
8497         uint32_t tmp;
8498
8499         if (!intel_display_power_is_enabled(dev_priv,
8500                                          POWER_DOMAIN_PIPE(crtc->pipe)))
8501                 return false;
8502
8503         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8504         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8505
8506         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8507         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8508                 enum pipe trans_edp_pipe;
8509                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8510                 default:
8511                         WARN(1, "unknown pipe linked to edp transcoder\n");
8512                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8513                 case TRANS_DDI_EDP_INPUT_A_ON:
8514                         trans_edp_pipe = PIPE_A;
8515                         break;
8516                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8517                         trans_edp_pipe = PIPE_B;
8518                         break;
8519                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8520                         trans_edp_pipe = PIPE_C;
8521                         break;
8522                 }
8523
8524                 if (trans_edp_pipe == crtc->pipe)
8525                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8526         }
8527
8528         if (!intel_display_power_is_enabled(dev_priv,
8529                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8530                 return false;
8531
8532         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8533         if (!(tmp & PIPECONF_ENABLE))
8534                 return false;
8535
8536         haswell_get_ddi_port_state(crtc, pipe_config);
8537
8538         intel_get_pipe_timings(crtc, pipe_config);
8539
8540         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8541         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8542                 if (IS_SKYLAKE(dev))
8543                         skylake_get_pfit_config(crtc, pipe_config);
8544                 else
8545                         ironlake_get_pfit_config(crtc, pipe_config);
8546         }
8547
8548         if (IS_HASWELL(dev))
8549                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8550                         (I915_READ(IPS_CTL) & IPS_ENABLE);
8551
8552         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8553                 pipe_config->pixel_multiplier =
8554                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8555         } else {
8556                 pipe_config->pixel_multiplier = 1;
8557         }
8558
8559         return true;
8560 }
8561
8562 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8563 {
8564         struct drm_device *dev = crtc->dev;
8565         struct drm_i915_private *dev_priv = dev->dev_private;
8566         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8567         uint32_t cntl = 0, size = 0;
8568
8569         if (base) {
8570                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
8571                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
8572                 unsigned int stride = roundup_pow_of_two(width) * 4;
8573
8574                 switch (stride) {
8575                 default:
8576                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8577                                   width, stride);
8578                         stride = 256;
8579                         /* fallthrough */
8580                 case 256:
8581                 case 512:
8582                 case 1024:
8583                 case 2048:
8584                         break;
8585                 }
8586
8587                 cntl |= CURSOR_ENABLE |
8588                         CURSOR_GAMMA_ENABLE |
8589                         CURSOR_FORMAT_ARGB |
8590                         CURSOR_STRIDE(stride);
8591
8592                 size = (height << 12) | width;
8593         }
8594
8595         if (intel_crtc->cursor_cntl != 0 &&
8596             (intel_crtc->cursor_base != base ||
8597              intel_crtc->cursor_size != size ||
8598              intel_crtc->cursor_cntl != cntl)) {
8599                 /* On these chipsets we can only modify the base/size/stride
8600                  * whilst the cursor is disabled.
8601                  */
8602                 I915_WRITE(_CURACNTR, 0);
8603                 POSTING_READ(_CURACNTR);
8604                 intel_crtc->cursor_cntl = 0;
8605         }
8606
8607         if (intel_crtc->cursor_base != base) {
8608                 I915_WRITE(_CURABASE, base);
8609                 intel_crtc->cursor_base = base;
8610         }
8611
8612         if (intel_crtc->cursor_size != size) {
8613                 I915_WRITE(CURSIZE, size);
8614                 intel_crtc->cursor_size = size;
8615         }
8616
8617         if (intel_crtc->cursor_cntl != cntl) {
8618                 I915_WRITE(_CURACNTR, cntl);
8619                 POSTING_READ(_CURACNTR);
8620                 intel_crtc->cursor_cntl = cntl;
8621         }
8622 }
8623
8624 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8625 {
8626         struct drm_device *dev = crtc->dev;
8627         struct drm_i915_private *dev_priv = dev->dev_private;
8628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8629         int pipe = intel_crtc->pipe;
8630         uint32_t cntl;
8631
8632         cntl = 0;
8633         if (base) {
8634                 cntl = MCURSOR_GAMMA_ENABLE;
8635                 switch (intel_crtc->base.cursor->state->crtc_w) {
8636                         case 64:
8637                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8638                                 break;
8639                         case 128:
8640                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8641                                 break;
8642                         case 256:
8643                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8644                                 break;
8645                         default:
8646                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
8647                                 return;
8648                 }
8649                 cntl |= pipe << 28; /* Connect to correct pipe */
8650
8651                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8652                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8653         }
8654
8655         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
8656                 cntl |= CURSOR_ROTATE_180;
8657
8658         if (intel_crtc->cursor_cntl != cntl) {
8659                 I915_WRITE(CURCNTR(pipe), cntl);
8660                 POSTING_READ(CURCNTR(pipe));
8661                 intel_crtc->cursor_cntl = cntl;
8662         }
8663
8664         /* and commit changes on next vblank */
8665         I915_WRITE(CURBASE(pipe), base);
8666         POSTING_READ(CURBASE(pipe));
8667
8668         intel_crtc->cursor_base = base;
8669 }
8670
8671 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8672 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8673                                      bool on)
8674 {
8675         struct drm_device *dev = crtc->dev;
8676         struct drm_i915_private *dev_priv = dev->dev_private;
8677         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8678         int pipe = intel_crtc->pipe;
8679         int x = crtc->cursor_x;
8680         int y = crtc->cursor_y;
8681         u32 base = 0, pos = 0;
8682
8683         if (on)
8684                 base = intel_crtc->cursor_addr;
8685
8686         if (x >= intel_crtc->config->pipe_src_w)
8687                 base = 0;
8688
8689         if (y >= intel_crtc->config->pipe_src_h)
8690                 base = 0;
8691
8692         if (x < 0) {
8693                 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
8694                         base = 0;
8695
8696                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8697                 x = -x;
8698         }
8699         pos |= x << CURSOR_X_SHIFT;
8700
8701         if (y < 0) {
8702                 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
8703                         base = 0;
8704
8705                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8706                 y = -y;
8707         }
8708         pos |= y << CURSOR_Y_SHIFT;
8709
8710         if (base == 0 && intel_crtc->cursor_base == 0)
8711                 return;
8712
8713         I915_WRITE(CURPOS(pipe), pos);
8714
8715         /* ILK+ do this automagically */
8716         if (HAS_GMCH_DISPLAY(dev) &&
8717             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
8718                 base += (intel_crtc->base.cursor->state->crtc_h *
8719                         intel_crtc->base.cursor->state->crtc_w - 1) * 4;
8720         }
8721
8722         if (IS_845G(dev) || IS_I865G(dev))
8723                 i845_update_cursor(crtc, base);
8724         else
8725                 i9xx_update_cursor(crtc, base);
8726 }
8727
8728 static bool cursor_size_ok(struct drm_device *dev,
8729                            uint32_t width, uint32_t height)
8730 {
8731         if (width == 0 || height == 0)
8732                 return false;
8733
8734         /*
8735          * 845g/865g are special in that they are only limited by
8736          * the width of their cursors, the height is arbitrary up to
8737          * the precision of the register. Everything else requires
8738          * square cursors, limited to a few power-of-two sizes.
8739          */
8740         if (IS_845G(dev) || IS_I865G(dev)) {
8741                 if ((width & 63) != 0)
8742                         return false;
8743
8744                 if (width > (IS_845G(dev) ? 64 : 512))
8745                         return false;
8746
8747                 if (height > 1023)
8748                         return false;
8749         } else {
8750                 switch (width | height) {
8751                 case 256:
8752                 case 128:
8753                         if (IS_GEN2(dev))
8754                                 return false;
8755                 case 64:
8756                         break;
8757                 default:
8758                         return false;
8759                 }
8760         }
8761
8762         return true;
8763 }
8764
8765 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8766                                  u16 *blue, uint32_t start, uint32_t size)
8767 {
8768         int end = (start + size > 256) ? 256 : start + size, i;
8769         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8770
8771         for (i = start; i < end; i++) {
8772                 intel_crtc->lut_r[i] = red[i] >> 8;
8773                 intel_crtc->lut_g[i] = green[i] >> 8;
8774                 intel_crtc->lut_b[i] = blue[i] >> 8;
8775         }
8776
8777         intel_crtc_load_lut(crtc);
8778 }
8779
8780 /* VESA 640x480x72Hz mode to set on the pipe */
8781 static struct drm_display_mode load_detect_mode = {
8782         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8783                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8784 };
8785
8786 struct drm_framebuffer *
8787 __intel_framebuffer_create(struct drm_device *dev,
8788                            struct drm_mode_fb_cmd2 *mode_cmd,
8789                            struct drm_i915_gem_object *obj)
8790 {
8791         struct intel_framebuffer *intel_fb;
8792         int ret;
8793
8794         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8795         if (!intel_fb) {
8796                 drm_gem_object_unreference(&obj->base);
8797                 return ERR_PTR(-ENOMEM);
8798         }
8799
8800         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8801         if (ret)
8802                 goto err;
8803
8804         return &intel_fb->base;
8805 err:
8806         drm_gem_object_unreference(&obj->base);
8807         kfree(intel_fb);
8808
8809         return ERR_PTR(ret);
8810 }
8811
8812 static struct drm_framebuffer *
8813 intel_framebuffer_create(struct drm_device *dev,
8814                          struct drm_mode_fb_cmd2 *mode_cmd,
8815                          struct drm_i915_gem_object *obj)
8816 {
8817         struct drm_framebuffer *fb;
8818         int ret;
8819
8820         ret = i915_mutex_lock_interruptible(dev);
8821         if (ret)
8822                 return ERR_PTR(ret);
8823         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8824         mutex_unlock(&dev->struct_mutex);
8825
8826         return fb;
8827 }
8828
8829 static u32
8830 intel_framebuffer_pitch_for_width(int width, int bpp)
8831 {
8832         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8833         return ALIGN(pitch, 64);
8834 }
8835
8836 static u32
8837 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8838 {
8839         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8840         return PAGE_ALIGN(pitch * mode->vdisplay);
8841 }
8842
8843 static struct drm_framebuffer *
8844 intel_framebuffer_create_for_mode(struct drm_device *dev,
8845                                   struct drm_display_mode *mode,
8846                                   int depth, int bpp)
8847 {
8848         struct drm_i915_gem_object *obj;
8849         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8850
8851         obj = i915_gem_alloc_object(dev,
8852                                     intel_framebuffer_size_for_mode(mode, bpp));
8853         if (obj == NULL)
8854                 return ERR_PTR(-ENOMEM);
8855
8856         mode_cmd.width = mode->hdisplay;
8857         mode_cmd.height = mode->vdisplay;
8858         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8859                                                                 bpp);
8860         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8861
8862         return intel_framebuffer_create(dev, &mode_cmd, obj);
8863 }
8864
8865 static struct drm_framebuffer *
8866 mode_fits_in_fbdev(struct drm_device *dev,
8867                    struct drm_display_mode *mode)
8868 {
8869 #ifdef CONFIG_DRM_I915_FBDEV
8870         struct drm_i915_private *dev_priv = dev->dev_private;
8871         struct drm_i915_gem_object *obj;
8872         struct drm_framebuffer *fb;
8873
8874         if (!dev_priv->fbdev)
8875                 return NULL;
8876
8877         if (!dev_priv->fbdev->fb)
8878                 return NULL;
8879
8880         obj = dev_priv->fbdev->fb->obj;
8881         BUG_ON(!obj);
8882
8883         fb = &dev_priv->fbdev->fb->base;
8884         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8885                                                                fb->bits_per_pixel))
8886                 return NULL;
8887
8888         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8889                 return NULL;
8890
8891         return fb;
8892 #else
8893         return NULL;
8894 #endif
8895 }
8896
8897 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8898                                 struct drm_display_mode *mode,
8899                                 struct intel_load_detect_pipe *old,
8900                                 struct drm_modeset_acquire_ctx *ctx)
8901 {
8902         struct intel_crtc *intel_crtc;
8903         struct intel_encoder *intel_encoder =
8904                 intel_attached_encoder(connector);
8905         struct drm_crtc *possible_crtc;
8906         struct drm_encoder *encoder = &intel_encoder->base;
8907         struct drm_crtc *crtc = NULL;
8908         struct drm_device *dev = encoder->dev;
8909         struct drm_framebuffer *fb;
8910         struct drm_mode_config *config = &dev->mode_config;
8911         struct drm_atomic_state *state = NULL;
8912         struct drm_connector_state *connector_state;
8913         int ret, i = -1;
8914
8915         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8916                       connector->base.id, connector->name,
8917                       encoder->base.id, encoder->name);
8918
8919 retry:
8920         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8921         if (ret)
8922                 goto fail_unlock;
8923
8924         /*
8925          * Algorithm gets a little messy:
8926          *
8927          *   - if the connector already has an assigned crtc, use it (but make
8928          *     sure it's on first)
8929          *
8930          *   - try to find the first unused crtc that can drive this connector,
8931          *     and use that if we find one
8932          */
8933
8934         /* See if we already have a CRTC for this connector */
8935         if (encoder->crtc) {
8936                 crtc = encoder->crtc;
8937
8938                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8939                 if (ret)
8940                         goto fail_unlock;
8941                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8942                 if (ret)
8943                         goto fail_unlock;
8944
8945                 old->dpms_mode = connector->dpms;
8946                 old->load_detect_temp = false;
8947
8948                 /* Make sure the crtc and connector are running */
8949                 if (connector->dpms != DRM_MODE_DPMS_ON)
8950                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8951
8952                 return true;
8953         }
8954
8955         /* Find an unused one (if possible) */
8956         for_each_crtc(dev, possible_crtc) {
8957                 i++;
8958                 if (!(encoder->possible_crtcs & (1 << i)))
8959                         continue;
8960                 if (possible_crtc->state->enable)
8961                         continue;
8962                 /* This can occur when applying the pipe A quirk on resume. */
8963                 if (to_intel_crtc(possible_crtc)->new_enabled)
8964                         continue;
8965
8966                 crtc = possible_crtc;
8967                 break;
8968         }
8969
8970         /*
8971          * If we didn't find an unused CRTC, don't use any.
8972          */
8973         if (!crtc) {
8974                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8975                 goto fail_unlock;
8976         }
8977
8978         ret = drm_modeset_lock(&crtc->mutex, ctx);
8979         if (ret)
8980                 goto fail_unlock;
8981         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8982         if (ret)
8983                 goto fail_unlock;
8984         intel_encoder->new_crtc = to_intel_crtc(crtc);
8985         to_intel_connector(connector)->new_encoder = intel_encoder;
8986
8987         intel_crtc = to_intel_crtc(crtc);
8988         intel_crtc->new_enabled = true;
8989         intel_crtc->new_config = intel_crtc->config;
8990         old->dpms_mode = connector->dpms;
8991         old->load_detect_temp = true;
8992         old->release_fb = NULL;
8993
8994         state = drm_atomic_state_alloc(dev);
8995         if (!state)
8996                 return false;
8997
8998         state->acquire_ctx = ctx;
8999
9000         connector_state = drm_atomic_get_connector_state(state, connector);
9001         if (IS_ERR(connector_state)) {
9002                 ret = PTR_ERR(connector_state);
9003                 goto fail;
9004         }
9005
9006         connector_state->crtc = crtc;
9007         connector_state->best_encoder = &intel_encoder->base;
9008
9009         if (!mode)
9010                 mode = &load_detect_mode;
9011
9012         /* We need a framebuffer large enough to accommodate all accesses
9013          * that the plane may generate whilst we perform load detection.
9014          * We can not rely on the fbcon either being present (we get called
9015          * during its initialisation to detect all boot displays, or it may
9016          * not even exist) or that it is large enough to satisfy the
9017          * requested mode.
9018          */
9019         fb = mode_fits_in_fbdev(dev, mode);
9020         if (fb == NULL) {
9021                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9022                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9023                 old->release_fb = fb;
9024         } else
9025                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9026         if (IS_ERR(fb)) {
9027                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9028                 goto fail;
9029         }
9030
9031         if (intel_set_mode(crtc, mode, 0, 0, fb, state)) {
9032                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9033                 if (old->release_fb)
9034                         old->release_fb->funcs->destroy(old->release_fb);
9035                 goto fail;
9036         }
9037         crtc->primary->crtc = crtc;
9038
9039         /* let the connector get through one full cycle before testing */
9040         intel_wait_for_vblank(dev, intel_crtc->pipe);
9041         return true;
9042
9043  fail:
9044         intel_crtc->new_enabled = crtc->state->enable;
9045         if (intel_crtc->new_enabled)
9046                 intel_crtc->new_config = intel_crtc->config;
9047         else
9048                 intel_crtc->new_config = NULL;
9049 fail_unlock:
9050         if (state) {
9051                 drm_atomic_state_free(state);
9052                 state = NULL;
9053         }
9054
9055         if (ret == -EDEADLK) {
9056                 drm_modeset_backoff(ctx);
9057                 goto retry;
9058         }
9059
9060         return false;
9061 }
9062
9063 void intel_release_load_detect_pipe(struct drm_connector *connector,
9064                                     struct intel_load_detect_pipe *old,
9065                                     struct drm_modeset_acquire_ctx *ctx)
9066 {
9067         struct drm_device *dev = connector->dev;
9068         struct intel_encoder *intel_encoder =
9069                 intel_attached_encoder(connector);
9070         struct drm_encoder *encoder = &intel_encoder->base;
9071         struct drm_crtc *crtc = encoder->crtc;
9072         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9073         struct drm_atomic_state *state;
9074         struct drm_connector_state *connector_state;
9075
9076         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9077                       connector->base.id, connector->name,
9078                       encoder->base.id, encoder->name);
9079
9080         if (old->load_detect_temp) {
9081                 state = drm_atomic_state_alloc(dev);
9082                 if (!state)
9083                         goto fail;
9084
9085                 state->acquire_ctx = ctx;
9086
9087                 connector_state = drm_atomic_get_connector_state(state, connector);
9088                 if (IS_ERR(connector_state))
9089                         goto fail;
9090
9091                 to_intel_connector(connector)->new_encoder = NULL;
9092                 intel_encoder->new_crtc = NULL;
9093                 intel_crtc->new_enabled = false;
9094                 intel_crtc->new_config = NULL;
9095
9096                 connector_state->best_encoder = NULL;
9097                 connector_state->crtc = NULL;
9098
9099                 intel_set_mode(crtc, NULL, 0, 0, NULL, state);
9100
9101                 drm_atomic_state_free(state);
9102
9103                 if (old->release_fb) {
9104                         drm_framebuffer_unregister_private(old->release_fb);
9105                         drm_framebuffer_unreference(old->release_fb);
9106                 }
9107
9108                 return;
9109         }
9110
9111         /* Switch crtc and encoder back off if necessary */
9112         if (old->dpms_mode != DRM_MODE_DPMS_ON)
9113                 connector->funcs->dpms(connector, old->dpms_mode);
9114
9115         return;
9116 fail:
9117         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
9118         drm_atomic_state_free(state);
9119 }
9120
9121 static int i9xx_pll_refclk(struct drm_device *dev,
9122                            const struct intel_crtc_state *pipe_config)
9123 {
9124         struct drm_i915_private *dev_priv = dev->dev_private;
9125         u32 dpll = pipe_config->dpll_hw_state.dpll;
9126
9127         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9128                 return dev_priv->vbt.lvds_ssc_freq;
9129         else if (HAS_PCH_SPLIT(dev))
9130                 return 120000;
9131         else if (!IS_GEN2(dev))
9132                 return 96000;
9133         else
9134                 return 48000;
9135 }
9136
9137 /* Returns the clock of the currently programmed mode of the given pipe. */
9138 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9139                                 struct intel_crtc_state *pipe_config)
9140 {
9141         struct drm_device *dev = crtc->base.dev;
9142         struct drm_i915_private *dev_priv = dev->dev_private;
9143         int pipe = pipe_config->cpu_transcoder;
9144         u32 dpll = pipe_config->dpll_hw_state.dpll;
9145         u32 fp;
9146         intel_clock_t clock;
9147         int refclk = i9xx_pll_refclk(dev, pipe_config);
9148
9149         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9150                 fp = pipe_config->dpll_hw_state.fp0;
9151         else
9152                 fp = pipe_config->dpll_hw_state.fp1;
9153
9154         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9155         if (IS_PINEVIEW(dev)) {
9156                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9157                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9158         } else {
9159                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9160                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9161         }
9162
9163         if (!IS_GEN2(dev)) {
9164                 if (IS_PINEVIEW(dev))
9165                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9166                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9167                 else
9168                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9169                                DPLL_FPA01_P1_POST_DIV_SHIFT);
9170
9171                 switch (dpll & DPLL_MODE_MASK) {
9172                 case DPLLB_MODE_DAC_SERIAL:
9173                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9174                                 5 : 10;
9175                         break;
9176                 case DPLLB_MODE_LVDS:
9177                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9178                                 7 : 14;
9179                         break;
9180                 default:
9181                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9182                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
9183                         return;
9184                 }
9185
9186                 if (IS_PINEVIEW(dev))
9187                         pineview_clock(refclk, &clock);
9188                 else
9189                         i9xx_clock(refclk, &clock);
9190         } else {
9191                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
9192                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9193
9194                 if (is_lvds) {
9195                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9196                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
9197
9198                         if (lvds & LVDS_CLKB_POWER_UP)
9199                                 clock.p2 = 7;
9200                         else
9201                                 clock.p2 = 14;
9202                 } else {
9203                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
9204                                 clock.p1 = 2;
9205                         else {
9206                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9207                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9208                         }
9209                         if (dpll & PLL_P2_DIVIDE_BY_4)
9210                                 clock.p2 = 4;
9211                         else
9212                                 clock.p2 = 2;
9213                 }
9214
9215                 i9xx_clock(refclk, &clock);
9216         }
9217
9218         /*
9219          * This value includes pixel_multiplier. We will use
9220          * port_clock to compute adjusted_mode.crtc_clock in the
9221          * encoder's get_config() function.
9222          */
9223         pipe_config->port_clock = clock.dot;
9224 }
9225
9226 int intel_dotclock_calculate(int link_freq,
9227                              const struct intel_link_m_n *m_n)
9228 {
9229         /*
9230          * The calculation for the data clock is:
9231          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
9232          * But we want to avoid losing precison if possible, so:
9233          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
9234          *
9235          * and the link clock is simpler:
9236          * link_clock = (m * link_clock) / n
9237          */
9238
9239         if (!m_n->link_n)
9240                 return 0;
9241
9242         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9243 }
9244
9245 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9246                                    struct intel_crtc_state *pipe_config)
9247 {
9248         struct drm_device *dev = crtc->base.dev;
9249
9250         /* read out port_clock from the DPLL */
9251         i9xx_crtc_clock_get(crtc, pipe_config);
9252
9253         /*
9254          * This value does not include pixel_multiplier.
9255          * We will check that port_clock and adjusted_mode.crtc_clock
9256          * agree once we know their relationship in the encoder's
9257          * get_config() function.
9258          */
9259         pipe_config->base.adjusted_mode.crtc_clock =
9260                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9261                                          &pipe_config->fdi_m_n);
9262 }
9263
9264 /** Returns the currently programmed mode of the given pipe. */
9265 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9266                                              struct drm_crtc *crtc)
9267 {
9268         struct drm_i915_private *dev_priv = dev->dev_private;
9269         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9270         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9271         struct drm_display_mode *mode;
9272         struct intel_crtc_state pipe_config;
9273         int htot = I915_READ(HTOTAL(cpu_transcoder));
9274         int hsync = I915_READ(HSYNC(cpu_transcoder));
9275         int vtot = I915_READ(VTOTAL(cpu_transcoder));
9276         int vsync = I915_READ(VSYNC(cpu_transcoder));
9277         enum pipe pipe = intel_crtc->pipe;
9278
9279         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9280         if (!mode)
9281                 return NULL;
9282
9283         /*
9284          * Construct a pipe_config sufficient for getting the clock info
9285          * back out of crtc_clock_get.
9286          *
9287          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9288          * to use a real value here instead.
9289          */
9290         pipe_config.cpu_transcoder = (enum transcoder) pipe;
9291         pipe_config.pixel_multiplier = 1;
9292         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9293         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9294         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9295         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9296
9297         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9298         mode->hdisplay = (htot & 0xffff) + 1;
9299         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9300         mode->hsync_start = (hsync & 0xffff) + 1;
9301         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9302         mode->vdisplay = (vtot & 0xffff) + 1;
9303         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9304         mode->vsync_start = (vsync & 0xffff) + 1;
9305         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9306
9307         drm_mode_set_name(mode);
9308
9309         return mode;
9310 }
9311
9312 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9313 {
9314         struct drm_device *dev = crtc->dev;
9315         struct drm_i915_private *dev_priv = dev->dev_private;
9316         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9317
9318         if (!HAS_GMCH_DISPLAY(dev))
9319                 return;
9320
9321         if (!dev_priv->lvds_downclock_avail)
9322                 return;
9323
9324         /*
9325          * Since this is called by a timer, we should never get here in
9326          * the manual case.
9327          */
9328         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9329                 int pipe = intel_crtc->pipe;
9330                 int dpll_reg = DPLL(pipe);
9331                 int dpll;
9332
9333                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9334
9335                 assert_panel_unlocked(dev_priv, pipe);
9336
9337                 dpll = I915_READ(dpll_reg);
9338                 dpll |= DISPLAY_RATE_SELECT_FPA1;
9339                 I915_WRITE(dpll_reg, dpll);
9340                 intel_wait_for_vblank(dev, pipe);
9341                 dpll = I915_READ(dpll_reg);
9342                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9343                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9344         }
9345
9346 }
9347
9348 void intel_mark_busy(struct drm_device *dev)
9349 {
9350         struct drm_i915_private *dev_priv = dev->dev_private;
9351
9352         if (dev_priv->mm.busy)
9353                 return;
9354
9355         intel_runtime_pm_get(dev_priv);
9356         i915_update_gfx_val(dev_priv);
9357         if (INTEL_INFO(dev)->gen >= 6)
9358                 gen6_rps_busy(dev_priv);
9359         dev_priv->mm.busy = true;
9360 }
9361
9362 void intel_mark_idle(struct drm_device *dev)
9363 {
9364         struct drm_i915_private *dev_priv = dev->dev_private;
9365         struct drm_crtc *crtc;
9366
9367         if (!dev_priv->mm.busy)
9368                 return;
9369
9370         dev_priv->mm.busy = false;
9371
9372         for_each_crtc(dev, crtc) {
9373                 if (!crtc->primary->fb)
9374                         continue;
9375
9376                 intel_decrease_pllclock(crtc);
9377         }
9378
9379         if (INTEL_INFO(dev)->gen >= 6)
9380                 gen6_rps_idle(dev->dev_private);
9381
9382         intel_runtime_pm_put(dev_priv);
9383 }
9384
9385 static void intel_crtc_set_state(struct intel_crtc *crtc,
9386                                  struct intel_crtc_state *crtc_state)
9387 {
9388         kfree(crtc->config);
9389         crtc->config = crtc_state;
9390         crtc->base.state = &crtc_state->base;
9391 }
9392
9393 static void intel_crtc_destroy(struct drm_crtc *crtc)
9394 {
9395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9396         struct drm_device *dev = crtc->dev;
9397         struct intel_unpin_work *work;
9398
9399         spin_lock_irq(&dev->event_lock);
9400         work = intel_crtc->unpin_work;
9401         intel_crtc->unpin_work = NULL;
9402         spin_unlock_irq(&dev->event_lock);
9403
9404         if (work) {
9405                 cancel_work_sync(&work->work);
9406                 kfree(work);
9407         }
9408
9409         intel_crtc_set_state(intel_crtc, NULL);
9410         drm_crtc_cleanup(crtc);
9411
9412         kfree(intel_crtc);
9413 }
9414
9415 static void intel_unpin_work_fn(struct work_struct *__work)
9416 {
9417         struct intel_unpin_work *work =
9418                 container_of(__work, struct intel_unpin_work, work);
9419         struct drm_device *dev = work->crtc->dev;
9420         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9421
9422         mutex_lock(&dev->struct_mutex);
9423         intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
9424         drm_gem_object_unreference(&work->pending_flip_obj->base);
9425
9426         intel_fbc_update(dev);
9427
9428         if (work->flip_queued_req)
9429                 i915_gem_request_assign(&work->flip_queued_req, NULL);
9430         mutex_unlock(&dev->struct_mutex);
9431
9432         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9433         drm_framebuffer_unreference(work->old_fb);
9434
9435         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9436         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9437
9438         kfree(work);
9439 }
9440
9441 static void do_intel_finish_page_flip(struct drm_device *dev,
9442                                       struct drm_crtc *crtc)
9443 {
9444         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9445         struct intel_unpin_work *work;
9446         unsigned long flags;
9447
9448         /* Ignore early vblank irqs */
9449         if (intel_crtc == NULL)
9450                 return;
9451
9452         /*
9453          * This is called both by irq handlers and the reset code (to complete
9454          * lost pageflips) so needs the full irqsave spinlocks.
9455          */
9456         spin_lock_irqsave(&dev->event_lock, flags);
9457         work = intel_crtc->unpin_work;
9458
9459         /* Ensure we don't miss a work->pending update ... */
9460         smp_rmb();
9461
9462         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9463                 spin_unlock_irqrestore(&dev->event_lock, flags);
9464                 return;
9465         }
9466
9467         page_flip_completed(intel_crtc);
9468
9469         spin_unlock_irqrestore(&dev->event_lock, flags);
9470 }
9471
9472 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9473 {
9474         struct drm_i915_private *dev_priv = dev->dev_private;
9475         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9476
9477         do_intel_finish_page_flip(dev, crtc);
9478 }
9479
9480 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9481 {
9482         struct drm_i915_private *dev_priv = dev->dev_private;
9483         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9484
9485         do_intel_finish_page_flip(dev, crtc);
9486 }
9487
9488 /* Is 'a' after or equal to 'b'? */
9489 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9490 {
9491         return !((a - b) & 0x80000000);
9492 }
9493
9494 static bool page_flip_finished(struct intel_crtc *crtc)
9495 {
9496         struct drm_device *dev = crtc->base.dev;
9497         struct drm_i915_private *dev_priv = dev->dev_private;
9498
9499         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9500             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9501                 return true;
9502
9503         /*
9504          * The relevant registers doen't exist on pre-ctg.
9505          * As the flip done interrupt doesn't trigger for mmio
9506          * flips on gmch platforms, a flip count check isn't
9507          * really needed there. But since ctg has the registers,
9508          * include it in the check anyway.
9509          */
9510         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9511                 return true;
9512
9513         /*
9514          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9515          * used the same base address. In that case the mmio flip might
9516          * have completed, but the CS hasn't even executed the flip yet.
9517          *
9518          * A flip count check isn't enough as the CS might have updated
9519          * the base address just after start of vblank, but before we
9520          * managed to process the interrupt. This means we'd complete the
9521          * CS flip too soon.
9522          *
9523          * Combining both checks should get us a good enough result. It may
9524          * still happen that the CS flip has been executed, but has not
9525          * yet actually completed. But in case the base address is the same
9526          * anyway, we don't really care.
9527          */
9528         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9529                 crtc->unpin_work->gtt_offset &&
9530                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9531                                     crtc->unpin_work->flip_count);
9532 }
9533
9534 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9535 {
9536         struct drm_i915_private *dev_priv = dev->dev_private;
9537         struct intel_crtc *intel_crtc =
9538                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9539         unsigned long flags;
9540
9541
9542         /*
9543          * This is called both by irq handlers and the reset code (to complete
9544          * lost pageflips) so needs the full irqsave spinlocks.
9545          *
9546          * NB: An MMIO update of the plane base pointer will also
9547          * generate a page-flip completion irq, i.e. every modeset
9548          * is also accompanied by a spurious intel_prepare_page_flip().
9549          */
9550         spin_lock_irqsave(&dev->event_lock, flags);
9551         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9552                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9553         spin_unlock_irqrestore(&dev->event_lock, flags);
9554 }
9555
9556 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9557 {
9558         /* Ensure that the work item is consistent when activating it ... */
9559         smp_wmb();
9560         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9561         /* and that it is marked active as soon as the irq could fire. */
9562         smp_wmb();
9563 }
9564
9565 static int intel_gen2_queue_flip(struct drm_device *dev,
9566                                  struct drm_crtc *crtc,
9567                                  struct drm_framebuffer *fb,
9568                                  struct drm_i915_gem_object *obj,
9569                                  struct intel_engine_cs *ring,
9570                                  uint32_t flags)
9571 {
9572         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9573         u32 flip_mask;
9574         int ret;
9575
9576         ret = intel_ring_begin(ring, 6);
9577         if (ret)
9578                 return ret;
9579
9580         /* Can't queue multiple flips, so wait for the previous
9581          * one to finish before executing the next.
9582          */
9583         if (intel_crtc->plane)
9584                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9585         else
9586                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9587         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9588         intel_ring_emit(ring, MI_NOOP);
9589         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9590                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9591         intel_ring_emit(ring, fb->pitches[0]);
9592         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9593         intel_ring_emit(ring, 0); /* aux display base address, unused */
9594
9595         intel_mark_page_flip_active(intel_crtc);
9596         __intel_ring_advance(ring);
9597         return 0;
9598 }
9599
9600 static int intel_gen3_queue_flip(struct drm_device *dev,
9601                                  struct drm_crtc *crtc,
9602                                  struct drm_framebuffer *fb,
9603                                  struct drm_i915_gem_object *obj,
9604                                  struct intel_engine_cs *ring,
9605                                  uint32_t flags)
9606 {
9607         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9608         u32 flip_mask;
9609         int ret;
9610
9611         ret = intel_ring_begin(ring, 6);
9612         if (ret)
9613                 return ret;
9614
9615         if (intel_crtc->plane)
9616                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9617         else
9618                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9619         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9620         intel_ring_emit(ring, MI_NOOP);
9621         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9622                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9623         intel_ring_emit(ring, fb->pitches[0]);
9624         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9625         intel_ring_emit(ring, MI_NOOP);
9626
9627         intel_mark_page_flip_active(intel_crtc);
9628         __intel_ring_advance(ring);
9629         return 0;
9630 }
9631
9632 static int intel_gen4_queue_flip(struct drm_device *dev,
9633                                  struct drm_crtc *crtc,
9634                                  struct drm_framebuffer *fb,
9635                                  struct drm_i915_gem_object *obj,
9636                                  struct intel_engine_cs *ring,
9637                                  uint32_t flags)
9638 {
9639         struct drm_i915_private *dev_priv = dev->dev_private;
9640         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9641         uint32_t pf, pipesrc;
9642         int ret;
9643
9644         ret = intel_ring_begin(ring, 4);
9645         if (ret)
9646                 return ret;
9647
9648         /* i965+ uses the linear or tiled offsets from the
9649          * Display Registers (which do not change across a page-flip)
9650          * so we need only reprogram the base address.
9651          */
9652         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9653                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9654         intel_ring_emit(ring, fb->pitches[0]);
9655         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9656                         obj->tiling_mode);
9657
9658         /* XXX Enabling the panel-fitter across page-flip is so far
9659          * untested on non-native modes, so ignore it for now.
9660          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9661          */
9662         pf = 0;
9663         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9664         intel_ring_emit(ring, pf | pipesrc);
9665
9666         intel_mark_page_flip_active(intel_crtc);
9667         __intel_ring_advance(ring);
9668         return 0;
9669 }
9670
9671 static int intel_gen6_queue_flip(struct drm_device *dev,
9672                                  struct drm_crtc *crtc,
9673                                  struct drm_framebuffer *fb,
9674                                  struct drm_i915_gem_object *obj,
9675                                  struct intel_engine_cs *ring,
9676                                  uint32_t flags)
9677 {
9678         struct drm_i915_private *dev_priv = dev->dev_private;
9679         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9680         uint32_t pf, pipesrc;
9681         int ret;
9682
9683         ret = intel_ring_begin(ring, 4);
9684         if (ret)
9685                 return ret;
9686
9687         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9688                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9689         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9690         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9691
9692         /* Contrary to the suggestions in the documentation,
9693          * "Enable Panel Fitter" does not seem to be required when page
9694          * flipping with a non-native mode, and worse causes a normal
9695          * modeset to fail.
9696          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9697          */
9698         pf = 0;
9699         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9700         intel_ring_emit(ring, pf | pipesrc);
9701
9702         intel_mark_page_flip_active(intel_crtc);
9703         __intel_ring_advance(ring);
9704         return 0;
9705 }
9706
9707 static int intel_gen7_queue_flip(struct drm_device *dev,
9708                                  struct drm_crtc *crtc,
9709                                  struct drm_framebuffer *fb,
9710                                  struct drm_i915_gem_object *obj,
9711                                  struct intel_engine_cs *ring,
9712                                  uint32_t flags)
9713 {
9714         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9715         uint32_t plane_bit = 0;
9716         int len, ret;
9717
9718         switch (intel_crtc->plane) {
9719         case PLANE_A:
9720                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9721                 break;
9722         case PLANE_B:
9723                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9724                 break;
9725         case PLANE_C:
9726                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9727                 break;
9728         default:
9729                 WARN_ONCE(1, "unknown plane in flip command\n");
9730                 return -ENODEV;
9731         }
9732
9733         len = 4;
9734         if (ring->id == RCS) {
9735                 len += 6;
9736                 /*
9737                  * On Gen 8, SRM is now taking an extra dword to accommodate
9738                  * 48bits addresses, and we need a NOOP for the batch size to
9739                  * stay even.
9740                  */
9741                 if (IS_GEN8(dev))
9742                         len += 2;
9743         }
9744
9745         /*
9746          * BSpec MI_DISPLAY_FLIP for IVB:
9747          * "The full packet must be contained within the same cache line."
9748          *
9749          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9750          * cacheline, if we ever start emitting more commands before
9751          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9752          * then do the cacheline alignment, and finally emit the
9753          * MI_DISPLAY_FLIP.
9754          */
9755         ret = intel_ring_cacheline_align(ring);
9756         if (ret)
9757                 return ret;
9758
9759         ret = intel_ring_begin(ring, len);
9760         if (ret)
9761                 return ret;
9762
9763         /* Unmask the flip-done completion message. Note that the bspec says that
9764          * we should do this for both the BCS and RCS, and that we must not unmask
9765          * more than one flip event at any time (or ensure that one flip message
9766          * can be sent by waiting for flip-done prior to queueing new flips).
9767          * Experimentation says that BCS works despite DERRMR masking all
9768          * flip-done completion events and that unmasking all planes at once
9769          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9770          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9771          */
9772         if (ring->id == RCS) {
9773                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9774                 intel_ring_emit(ring, DERRMR);
9775                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9776                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9777                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9778                 if (IS_GEN8(dev))
9779                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9780                                               MI_SRM_LRM_GLOBAL_GTT);
9781                 else
9782                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9783                                               MI_SRM_LRM_GLOBAL_GTT);
9784                 intel_ring_emit(ring, DERRMR);
9785                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9786                 if (IS_GEN8(dev)) {
9787                         intel_ring_emit(ring, 0);
9788                         intel_ring_emit(ring, MI_NOOP);
9789                 }
9790         }
9791
9792         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9793         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9794         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9795         intel_ring_emit(ring, (MI_NOOP));
9796
9797         intel_mark_page_flip_active(intel_crtc);
9798         __intel_ring_advance(ring);
9799         return 0;
9800 }
9801
9802 static bool use_mmio_flip(struct intel_engine_cs *ring,
9803                           struct drm_i915_gem_object *obj)
9804 {
9805         /*
9806          * This is not being used for older platforms, because
9807          * non-availability of flip done interrupt forces us to use
9808          * CS flips. Older platforms derive flip done using some clever
9809          * tricks involving the flip_pending status bits and vblank irqs.
9810          * So using MMIO flips there would disrupt this mechanism.
9811          */
9812
9813         if (ring == NULL)
9814                 return true;
9815
9816         if (INTEL_INFO(ring->dev)->gen < 5)
9817                 return false;
9818
9819         if (i915.use_mmio_flip < 0)
9820                 return false;
9821         else if (i915.use_mmio_flip > 0)
9822                 return true;
9823         else if (i915.enable_execlists)
9824                 return true;
9825         else
9826                 return ring != i915_gem_request_get_ring(obj->last_read_req);
9827 }
9828
9829 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9830 {
9831         struct drm_device *dev = intel_crtc->base.dev;
9832         struct drm_i915_private *dev_priv = dev->dev_private;
9833         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9834         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9835         struct drm_i915_gem_object *obj = intel_fb->obj;
9836         const enum pipe pipe = intel_crtc->pipe;
9837         u32 ctl, stride;
9838
9839         ctl = I915_READ(PLANE_CTL(pipe, 0));
9840         ctl &= ~PLANE_CTL_TILED_MASK;
9841         if (obj->tiling_mode == I915_TILING_X)
9842                 ctl |= PLANE_CTL_TILED_X;
9843
9844         /*
9845          * The stride is either expressed as a multiple of 64 bytes chunks for
9846          * linear buffers or in number of tiles for tiled buffers.
9847          */
9848         stride = fb->pitches[0] >> 6;
9849         if (obj->tiling_mode == I915_TILING_X)
9850                 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9851
9852         /*
9853          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9854          * PLANE_SURF updates, the update is then guaranteed to be atomic.
9855          */
9856         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9857         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9858
9859         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9860         POSTING_READ(PLANE_SURF(pipe, 0));
9861 }
9862
9863 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9864 {
9865         struct drm_device *dev = intel_crtc->base.dev;
9866         struct drm_i915_private *dev_priv = dev->dev_private;
9867         struct intel_framebuffer *intel_fb =
9868                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9869         struct drm_i915_gem_object *obj = intel_fb->obj;
9870         u32 dspcntr;
9871         u32 reg;
9872
9873         reg = DSPCNTR(intel_crtc->plane);
9874         dspcntr = I915_READ(reg);
9875
9876         if (obj->tiling_mode != I915_TILING_NONE)
9877                 dspcntr |= DISPPLANE_TILED;
9878         else
9879                 dspcntr &= ~DISPPLANE_TILED;
9880
9881         I915_WRITE(reg, dspcntr);
9882
9883         I915_WRITE(DSPSURF(intel_crtc->plane),
9884                    intel_crtc->unpin_work->gtt_offset);
9885         POSTING_READ(DSPSURF(intel_crtc->plane));
9886
9887 }
9888
9889 /*
9890  * XXX: This is the temporary way to update the plane registers until we get
9891  * around to using the usual plane update functions for MMIO flips
9892  */
9893 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9894 {
9895         struct drm_device *dev = intel_crtc->base.dev;
9896         bool atomic_update;
9897         u32 start_vbl_count;
9898
9899         intel_mark_page_flip_active(intel_crtc);
9900
9901         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9902
9903         if (INTEL_INFO(dev)->gen >= 9)
9904                 skl_do_mmio_flip(intel_crtc);
9905         else
9906                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9907                 ilk_do_mmio_flip(intel_crtc);
9908
9909         if (atomic_update)
9910                 intel_pipe_update_end(intel_crtc, start_vbl_count);
9911 }
9912
9913 static void intel_mmio_flip_work_func(struct work_struct *work)
9914 {
9915         struct intel_crtc *crtc =
9916                 container_of(work, struct intel_crtc, mmio_flip.work);
9917         struct intel_mmio_flip *mmio_flip;
9918
9919         mmio_flip = &crtc->mmio_flip;
9920         if (mmio_flip->req)
9921                 WARN_ON(__i915_wait_request(mmio_flip->req,
9922                                             crtc->reset_counter,
9923                                             false, NULL, NULL) != 0);
9924
9925         intel_do_mmio_flip(crtc);
9926         if (mmio_flip->req) {
9927                 mutex_lock(&crtc->base.dev->struct_mutex);
9928                 i915_gem_request_assign(&mmio_flip->req, NULL);
9929                 mutex_unlock(&crtc->base.dev->struct_mutex);
9930         }
9931 }
9932
9933 static int intel_queue_mmio_flip(struct drm_device *dev,
9934                                  struct drm_crtc *crtc,
9935                                  struct drm_framebuffer *fb,
9936                                  struct drm_i915_gem_object *obj,
9937                                  struct intel_engine_cs *ring,
9938                                  uint32_t flags)
9939 {
9940         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9941
9942         i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9943                                 obj->last_write_req);
9944
9945         schedule_work(&intel_crtc->mmio_flip.work);
9946
9947         return 0;
9948 }
9949
9950 static int intel_default_queue_flip(struct drm_device *dev,
9951                                     struct drm_crtc *crtc,
9952                                     struct drm_framebuffer *fb,
9953                                     struct drm_i915_gem_object *obj,
9954                                     struct intel_engine_cs *ring,
9955                                     uint32_t flags)
9956 {
9957         return -ENODEV;
9958 }
9959
9960 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9961                                          struct drm_crtc *crtc)
9962 {
9963         struct drm_i915_private *dev_priv = dev->dev_private;
9964         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9965         struct intel_unpin_work *work = intel_crtc->unpin_work;
9966         u32 addr;
9967
9968         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9969                 return true;
9970
9971         if (!work->enable_stall_check)
9972                 return false;
9973
9974         if (work->flip_ready_vblank == 0) {
9975                 if (work->flip_queued_req &&
9976                     !i915_gem_request_completed(work->flip_queued_req, true))
9977                         return false;
9978
9979                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
9980         }
9981
9982         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
9983                 return false;
9984
9985         /* Potential stall - if we see that the flip has happened,
9986          * assume a missed interrupt. */
9987         if (INTEL_INFO(dev)->gen >= 4)
9988                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9989         else
9990                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9991
9992         /* There is a potential issue here with a false positive after a flip
9993          * to the same address. We could address this by checking for a
9994          * non-incrementing frame counter.
9995          */
9996         return addr == work->gtt_offset;
9997 }
9998
9999 void intel_check_page_flip(struct drm_device *dev, int pipe)
10000 {
10001         struct drm_i915_private *dev_priv = dev->dev_private;
10002         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10003         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10004
10005         WARN_ON(!in_interrupt());
10006
10007         if (crtc == NULL)
10008                 return;
10009
10010         spin_lock(&dev->event_lock);
10011         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
10012                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
10013                          intel_crtc->unpin_work->flip_queued_vblank,
10014                          drm_vblank_count(dev, pipe));
10015                 page_flip_completed(intel_crtc);
10016         }
10017         spin_unlock(&dev->event_lock);
10018 }
10019
10020 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10021                                 struct drm_framebuffer *fb,
10022                                 struct drm_pending_vblank_event *event,
10023                                 uint32_t page_flip_flags)
10024 {
10025         struct drm_device *dev = crtc->dev;
10026         struct drm_i915_private *dev_priv = dev->dev_private;
10027         struct drm_framebuffer *old_fb = crtc->primary->fb;
10028         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10030         struct drm_plane *primary = crtc->primary;
10031         enum pipe pipe = intel_crtc->pipe;
10032         struct intel_unpin_work *work;
10033         struct intel_engine_cs *ring;
10034         int ret;
10035
10036         /*
10037          * drm_mode_page_flip_ioctl() should already catch this, but double
10038          * check to be safe.  In the future we may enable pageflipping from
10039          * a disabled primary plane.
10040          */
10041         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10042                 return -EBUSY;
10043
10044         /* Can't change pixel format via MI display flips. */
10045         if (fb->pixel_format != crtc->primary->fb->pixel_format)
10046                 return -EINVAL;
10047
10048         /*
10049          * TILEOFF/LINOFF registers can't be changed via MI display flips.
10050          * Note that pitch changes could also affect these register.
10051          */
10052         if (INTEL_INFO(dev)->gen > 3 &&
10053             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10054              fb->pitches[0] != crtc->primary->fb->pitches[0]))
10055                 return -EINVAL;
10056
10057         if (i915_terminally_wedged(&dev_priv->gpu_error))
10058                 goto out_hang;
10059
10060         work = kzalloc(sizeof(*work), GFP_KERNEL);
10061         if (work == NULL)
10062                 return -ENOMEM;
10063
10064         work->event = event;
10065         work->crtc = crtc;
10066         work->old_fb = old_fb;
10067         INIT_WORK(&work->work, intel_unpin_work_fn);
10068
10069         ret = drm_crtc_vblank_get(crtc);
10070         if (ret)
10071                 goto free_work;
10072
10073         /* We borrow the event spin lock for protecting unpin_work */
10074         spin_lock_irq(&dev->event_lock);
10075         if (intel_crtc->unpin_work) {
10076                 /* Before declaring the flip queue wedged, check if
10077                  * the hardware completed the operation behind our backs.
10078                  */
10079                 if (__intel_pageflip_stall_check(dev, crtc)) {
10080                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10081                         page_flip_completed(intel_crtc);
10082                 } else {
10083                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10084                         spin_unlock_irq(&dev->event_lock);
10085
10086                         drm_crtc_vblank_put(crtc);
10087                         kfree(work);
10088                         return -EBUSY;
10089                 }
10090         }
10091         intel_crtc->unpin_work = work;
10092         spin_unlock_irq(&dev->event_lock);
10093
10094         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10095                 flush_workqueue(dev_priv->wq);
10096
10097         /* Reference the objects for the scheduled work. */
10098         drm_framebuffer_reference(work->old_fb);
10099         drm_gem_object_reference(&obj->base);
10100
10101         crtc->primary->fb = fb;
10102         update_state_fb(crtc->primary);
10103
10104         work->pending_flip_obj = obj;
10105
10106         ret = i915_mutex_lock_interruptible(dev);
10107         if (ret)
10108                 goto cleanup;
10109
10110         atomic_inc(&intel_crtc->unpin_work_count);
10111         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10112
10113         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10114                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10115
10116         if (IS_VALLEYVIEW(dev)) {
10117                 ring = &dev_priv->ring[BCS];
10118                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
10119                         /* vlv: DISPLAY_FLIP fails to change tiling */
10120                         ring = NULL;
10121         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
10122                 ring = &dev_priv->ring[BCS];
10123         } else if (INTEL_INFO(dev)->gen >= 7) {
10124                 ring = i915_gem_request_get_ring(obj->last_read_req);
10125                 if (ring == NULL || ring->id != RCS)
10126                         ring = &dev_priv->ring[BCS];
10127         } else {
10128                 ring = &dev_priv->ring[RCS];
10129         }
10130
10131         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
10132                                          crtc->primary->state, ring);
10133         if (ret)
10134                 goto cleanup_pending;
10135
10136         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10137                                                   + intel_crtc->dspaddr_offset;
10138
10139         if (use_mmio_flip(ring, obj)) {
10140                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10141                                             page_flip_flags);
10142                 if (ret)
10143                         goto cleanup_unpin;
10144
10145                 i915_gem_request_assign(&work->flip_queued_req,
10146                                         obj->last_write_req);
10147         } else {
10148                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10149                                                    page_flip_flags);
10150                 if (ret)
10151                         goto cleanup_unpin;
10152
10153                 i915_gem_request_assign(&work->flip_queued_req,
10154                                         intel_ring_get_request(ring));
10155         }
10156
10157         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
10158         work->enable_stall_check = true;
10159
10160         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
10161                           INTEL_FRONTBUFFER_PRIMARY(pipe));
10162
10163         intel_fbc_disable(dev);
10164         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10165         mutex_unlock(&dev->struct_mutex);
10166
10167         trace_i915_flip_request(intel_crtc->plane, obj);
10168
10169         return 0;
10170
10171 cleanup_unpin:
10172         intel_unpin_fb_obj(fb, crtc->primary->state);
10173 cleanup_pending:
10174         atomic_dec(&intel_crtc->unpin_work_count);
10175         mutex_unlock(&dev->struct_mutex);
10176 cleanup:
10177         crtc->primary->fb = old_fb;
10178         update_state_fb(crtc->primary);
10179
10180         drm_gem_object_unreference_unlocked(&obj->base);
10181         drm_framebuffer_unreference(work->old_fb);
10182
10183         spin_lock_irq(&dev->event_lock);
10184         intel_crtc->unpin_work = NULL;
10185         spin_unlock_irq(&dev->event_lock);
10186
10187         drm_crtc_vblank_put(crtc);
10188 free_work:
10189         kfree(work);
10190
10191         if (ret == -EIO) {
10192 out_hang:
10193                 ret = intel_plane_restore(primary);
10194                 if (ret == 0 && event) {
10195                         spin_lock_irq(&dev->event_lock);
10196                         drm_send_vblank_event(dev, pipe, event);
10197                         spin_unlock_irq(&dev->event_lock);
10198                 }
10199         }
10200         return ret;
10201 }
10202
10203 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10204         .mode_set_base_atomic = intel_pipe_set_base_atomic,
10205         .load_lut = intel_crtc_load_lut,
10206         .atomic_begin = intel_begin_crtc_commit,
10207         .atomic_flush = intel_finish_crtc_commit,
10208 };
10209
10210 /**
10211  * intel_modeset_update_staged_output_state
10212  *
10213  * Updates the staged output configuration state, e.g. after we've read out the
10214  * current hw state.
10215  */
10216 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10217 {
10218         struct intel_crtc *crtc;
10219         struct intel_encoder *encoder;
10220         struct intel_connector *connector;
10221
10222         for_each_intel_connector(dev, connector) {
10223                 connector->new_encoder =
10224                         to_intel_encoder(connector->base.encoder);
10225         }
10226
10227         for_each_intel_encoder(dev, encoder) {
10228                 encoder->new_crtc =
10229                         to_intel_crtc(encoder->base.crtc);
10230         }
10231
10232         for_each_intel_crtc(dev, crtc) {
10233                 crtc->new_enabled = crtc->base.state->enable;
10234
10235                 if (crtc->new_enabled)
10236                         crtc->new_config = crtc->config;
10237                 else
10238                         crtc->new_config = NULL;
10239         }
10240 }
10241
10242 /* Transitional helper to copy current connector/encoder state to
10243  * connector->state. This is needed so that code that is partially
10244  * converted to atomic does the right thing.
10245  */
10246 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10247 {
10248         struct intel_connector *connector;
10249
10250         for_each_intel_connector(dev, connector) {
10251                 if (connector->base.encoder) {
10252                         connector->base.state->best_encoder =
10253                                 connector->base.encoder;
10254                         connector->base.state->crtc =
10255                                 connector->base.encoder->crtc;
10256                 } else {
10257                         connector->base.state->best_encoder = NULL;
10258                         connector->base.state->crtc = NULL;
10259                 }
10260         }
10261 }
10262
10263 /**
10264  * intel_modeset_commit_output_state
10265  *
10266  * This function copies the stage display pipe configuration to the real one.
10267  */
10268 static void intel_modeset_commit_output_state(struct drm_device *dev)
10269 {
10270         struct intel_crtc *crtc;
10271         struct intel_encoder *encoder;
10272         struct intel_connector *connector;
10273
10274         for_each_intel_connector(dev, connector) {
10275                 connector->base.encoder = &connector->new_encoder->base;
10276         }
10277
10278         for_each_intel_encoder(dev, encoder) {
10279                 encoder->base.crtc = &encoder->new_crtc->base;
10280         }
10281
10282         for_each_intel_crtc(dev, crtc) {
10283                 crtc->base.state->enable = crtc->new_enabled;
10284                 crtc->base.enabled = crtc->new_enabled;
10285         }
10286
10287         intel_modeset_update_connector_atomic_state(dev);
10288 }
10289
10290 static void
10291 connected_sink_compute_bpp(struct intel_connector *connector,
10292                            struct intel_crtc_state *pipe_config)
10293 {
10294         int bpp = pipe_config->pipe_bpp;
10295
10296         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10297                 connector->base.base.id,
10298                 connector->base.name);
10299
10300         /* Don't use an invalid EDID bpc value */
10301         if (connector->base.display_info.bpc &&
10302             connector->base.display_info.bpc * 3 < bpp) {
10303                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10304                               bpp, connector->base.display_info.bpc*3);
10305                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10306         }
10307
10308         /* Clamp bpp to 8 on screens without EDID 1.4 */
10309         if (connector->base.display_info.bpc == 0 && bpp > 24) {
10310                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10311                               bpp);
10312                 pipe_config->pipe_bpp = 24;
10313         }
10314 }
10315
10316 static int
10317 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10318                           struct drm_framebuffer *fb,
10319                           struct intel_crtc_state *pipe_config)
10320 {
10321         struct drm_device *dev = crtc->base.dev;
10322         struct intel_connector *connector;
10323         int bpp;
10324
10325         switch (fb->pixel_format) {
10326         case DRM_FORMAT_C8:
10327                 bpp = 8*3; /* since we go through a colormap */
10328                 break;
10329         case DRM_FORMAT_XRGB1555:
10330         case DRM_FORMAT_ARGB1555:
10331                 /* checked in intel_framebuffer_init already */
10332                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10333                         return -EINVAL;
10334         case DRM_FORMAT_RGB565:
10335                 bpp = 6*3; /* min is 18bpp */
10336                 break;
10337         case DRM_FORMAT_XBGR8888:
10338         case DRM_FORMAT_ABGR8888:
10339                 /* checked in intel_framebuffer_init already */
10340                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10341                         return -EINVAL;
10342         case DRM_FORMAT_XRGB8888:
10343         case DRM_FORMAT_ARGB8888:
10344                 bpp = 8*3;
10345                 break;
10346         case DRM_FORMAT_XRGB2101010:
10347         case DRM_FORMAT_ARGB2101010:
10348         case DRM_FORMAT_XBGR2101010:
10349         case DRM_FORMAT_ABGR2101010:
10350                 /* checked in intel_framebuffer_init already */
10351                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10352                         return -EINVAL;
10353                 bpp = 10*3;
10354                 break;
10355         /* TODO: gen4+ supports 16 bpc floating point, too. */
10356         default:
10357                 DRM_DEBUG_KMS("unsupported depth\n");
10358                 return -EINVAL;
10359         }
10360
10361         pipe_config->pipe_bpp = bpp;
10362
10363         /* Clamp display bpp to EDID value */
10364         for_each_intel_connector(dev, connector) {
10365                 if (!connector->new_encoder ||
10366                     connector->new_encoder->new_crtc != crtc)
10367                         continue;
10368
10369                 connected_sink_compute_bpp(connector, pipe_config);
10370         }
10371
10372         return bpp;
10373 }
10374
10375 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10376 {
10377         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10378                         "type: 0x%x flags: 0x%x\n",
10379                 mode->crtc_clock,
10380                 mode->crtc_hdisplay, mode->crtc_hsync_start,
10381                 mode->crtc_hsync_end, mode->crtc_htotal,
10382                 mode->crtc_vdisplay, mode->crtc_vsync_start,
10383                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10384 }
10385
10386 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10387                                    struct intel_crtc_state *pipe_config,
10388                                    const char *context)
10389 {
10390         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10391                       context, pipe_name(crtc->pipe));
10392
10393         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10394         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10395                       pipe_config->pipe_bpp, pipe_config->dither);
10396         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10397                       pipe_config->has_pch_encoder,
10398                       pipe_config->fdi_lanes,
10399                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10400                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10401                       pipe_config->fdi_m_n.tu);
10402         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10403                       pipe_config->has_dp_encoder,
10404                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10405                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10406                       pipe_config->dp_m_n.tu);
10407
10408         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10409                       pipe_config->has_dp_encoder,
10410                       pipe_config->dp_m2_n2.gmch_m,
10411                       pipe_config->dp_m2_n2.gmch_n,
10412                       pipe_config->dp_m2_n2.link_m,
10413                       pipe_config->dp_m2_n2.link_n,
10414                       pipe_config->dp_m2_n2.tu);
10415
10416         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10417                       pipe_config->has_audio,
10418                       pipe_config->has_infoframe);
10419
10420         DRM_DEBUG_KMS("requested mode:\n");
10421         drm_mode_debug_printmodeline(&pipe_config->base.mode);
10422         DRM_DEBUG_KMS("adjusted mode:\n");
10423         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10424         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10425         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10426         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10427                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10428         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10429                       pipe_config->gmch_pfit.control,
10430                       pipe_config->gmch_pfit.pgm_ratios,
10431                       pipe_config->gmch_pfit.lvds_border_bits);
10432         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10433                       pipe_config->pch_pfit.pos,
10434                       pipe_config->pch_pfit.size,
10435                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10436         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10437         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10438 }
10439
10440 static bool encoders_cloneable(const struct intel_encoder *a,
10441                                const struct intel_encoder *b)
10442 {
10443         /* masks could be asymmetric, so check both ways */
10444         return a == b || (a->cloneable & (1 << b->type) &&
10445                           b->cloneable & (1 << a->type));
10446 }
10447
10448 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10449                                          struct intel_encoder *encoder)
10450 {
10451         struct drm_device *dev = crtc->base.dev;
10452         struct intel_encoder *source_encoder;
10453
10454         for_each_intel_encoder(dev, source_encoder) {
10455                 if (source_encoder->new_crtc != crtc)
10456                         continue;
10457
10458                 if (!encoders_cloneable(encoder, source_encoder))
10459                         return false;
10460         }
10461
10462         return true;
10463 }
10464
10465 static bool check_encoder_cloning(struct intel_crtc *crtc)
10466 {
10467         struct drm_device *dev = crtc->base.dev;
10468         struct intel_encoder *encoder;
10469
10470         for_each_intel_encoder(dev, encoder) {
10471                 if (encoder->new_crtc != crtc)
10472                         continue;
10473
10474                 if (!check_single_encoder_cloning(crtc, encoder))
10475                         return false;
10476         }
10477
10478         return true;
10479 }
10480
10481 static bool check_digital_port_conflicts(struct drm_device *dev)
10482 {
10483         struct intel_connector *connector;
10484         unsigned int used_ports = 0;
10485
10486         /*
10487          * Walk the connector list instead of the encoder
10488          * list to detect the problem on ddi platforms
10489          * where there's just one encoder per digital port.
10490          */
10491         for_each_intel_connector(dev, connector) {
10492                 struct intel_encoder *encoder = connector->new_encoder;
10493
10494                 if (!encoder)
10495                         continue;
10496
10497                 WARN_ON(!encoder->new_crtc);
10498
10499                 switch (encoder->type) {
10500                         unsigned int port_mask;
10501                 case INTEL_OUTPUT_UNKNOWN:
10502                         if (WARN_ON(!HAS_DDI(dev)))
10503                                 break;
10504                 case INTEL_OUTPUT_DISPLAYPORT:
10505                 case INTEL_OUTPUT_HDMI:
10506                 case INTEL_OUTPUT_EDP:
10507                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10508
10509                         /* the same port mustn't appear more than once */
10510                         if (used_ports & port_mask)
10511                                 return false;
10512
10513                         used_ports |= port_mask;
10514                 default:
10515                         break;
10516                 }
10517         }
10518
10519         return true;
10520 }
10521
10522 static void
10523 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
10524 {
10525         struct drm_crtc_state tmp_state;
10526
10527         /* Clear only the intel specific part of the crtc state */
10528         tmp_state = crtc_state->base;
10529         memset(crtc_state, 0, sizeof *crtc_state);
10530         crtc_state->base = tmp_state;
10531 }
10532
10533 static struct intel_crtc_state *
10534 intel_modeset_pipe_config(struct drm_crtc *crtc,
10535                           struct drm_framebuffer *fb,
10536                           struct drm_display_mode *mode,
10537                           struct drm_atomic_state *state)
10538 {
10539         struct drm_device *dev = crtc->dev;
10540         struct intel_encoder *encoder;
10541         struct intel_connector *connector;
10542         struct drm_connector_state *connector_state;
10543         struct intel_crtc_state *pipe_config;
10544         int plane_bpp, ret = -EINVAL;
10545         int i;
10546         bool retry = true;
10547
10548         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10549                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10550                 return ERR_PTR(-EINVAL);
10551         }
10552
10553         if (!check_digital_port_conflicts(dev)) {
10554                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10555                 return ERR_PTR(-EINVAL);
10556         }
10557
10558         pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
10559         if (IS_ERR(pipe_config))
10560                 return pipe_config;
10561
10562         clear_intel_crtc_state(pipe_config);
10563
10564         pipe_config->base.crtc = crtc;
10565         drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10566         drm_mode_copy(&pipe_config->base.mode, mode);
10567
10568         pipe_config->cpu_transcoder =
10569                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10570         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10571
10572         /*
10573          * Sanitize sync polarity flags based on requested ones. If neither
10574          * positive or negative polarity is requested, treat this as meaning
10575          * negative polarity.
10576          */
10577         if (!(pipe_config->base.adjusted_mode.flags &
10578               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10579                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10580
10581         if (!(pipe_config->base.adjusted_mode.flags &
10582               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10583                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10584
10585         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10586          * plane pixel format and any sink constraints into account. Returns the
10587          * source plane bpp so that dithering can be selected on mismatches
10588          * after encoders and crtc also have had their say. */
10589         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10590                                               fb, pipe_config);
10591         if (plane_bpp < 0)
10592                 goto fail;
10593
10594         /*
10595          * Determine the real pipe dimensions. Note that stereo modes can
10596          * increase the actual pipe size due to the frame doubling and
10597          * insertion of additional space for blanks between the frame. This
10598          * is stored in the crtc timings. We use the requested mode to do this
10599          * computation to clearly distinguish it from the adjusted mode, which
10600          * can be changed by the connectors in the below retry loop.
10601          */
10602         drm_crtc_get_hv_timing(&pipe_config->base.mode,
10603                                &pipe_config->pipe_src_w,
10604                                &pipe_config->pipe_src_h);
10605
10606 encoder_retry:
10607         /* Ensure the port clock defaults are reset when retrying. */
10608         pipe_config->port_clock = 0;
10609         pipe_config->pixel_multiplier = 1;
10610
10611         /* Fill in default crtc timings, allow encoders to overwrite them. */
10612         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10613                               CRTC_STEREO_DOUBLE);
10614
10615         /* Pass our mode to the connectors and the CRTC to give them a chance to
10616          * adjust it according to limitations or connector properties, and also
10617          * a chance to reject the mode entirely.
10618          */
10619         for (i = 0; i < state->num_connector; i++) {
10620                 connector = to_intel_connector(state->connectors[i]);
10621                 if (!connector)
10622                         continue;
10623
10624                 connector_state = state->connector_states[i];
10625                 if (connector_state->crtc != crtc)
10626                         continue;
10627
10628                 encoder = to_intel_encoder(connector_state->best_encoder);
10629
10630                 if (!(encoder->compute_config(encoder, pipe_config))) {
10631                         DRM_DEBUG_KMS("Encoder config failure\n");
10632                         goto fail;
10633                 }
10634         }
10635
10636         /* Set default port clock if not overwritten by the encoder. Needs to be
10637          * done afterwards in case the encoder adjusts the mode. */
10638         if (!pipe_config->port_clock)
10639                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10640                         * pipe_config->pixel_multiplier;
10641
10642         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10643         if (ret < 0) {
10644                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10645                 goto fail;
10646         }
10647
10648         if (ret == RETRY) {
10649                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10650                         ret = -EINVAL;
10651                         goto fail;
10652                 }
10653
10654                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10655                 retry = false;
10656                 goto encoder_retry;
10657         }
10658
10659         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10660         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10661                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10662
10663         return pipe_config;
10664 fail:
10665         return ERR_PTR(ret);
10666 }
10667
10668 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10669  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10670 static void
10671 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10672                              unsigned *prepare_pipes, unsigned *disable_pipes)
10673 {
10674         struct intel_crtc *intel_crtc;
10675         struct drm_device *dev = crtc->dev;
10676         struct intel_encoder *encoder;
10677         struct intel_connector *connector;
10678         struct drm_crtc *tmp_crtc;
10679
10680         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10681
10682         /* Check which crtcs have changed outputs connected to them, these need
10683          * to be part of the prepare_pipes mask. We don't (yet) support global
10684          * modeset across multiple crtcs, so modeset_pipes will only have one
10685          * bit set at most. */
10686         for_each_intel_connector(dev, connector) {
10687                 if (connector->base.encoder == &connector->new_encoder->base)
10688                         continue;
10689
10690                 if (connector->base.encoder) {
10691                         tmp_crtc = connector->base.encoder->crtc;
10692
10693                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10694                 }
10695
10696                 if (connector->new_encoder)
10697                         *prepare_pipes |=
10698                                 1 << connector->new_encoder->new_crtc->pipe;
10699         }
10700
10701         for_each_intel_encoder(dev, encoder) {
10702                 if (encoder->base.crtc == &encoder->new_crtc->base)
10703                         continue;
10704
10705                 if (encoder->base.crtc) {
10706                         tmp_crtc = encoder->base.crtc;
10707
10708                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10709                 }
10710
10711                 if (encoder->new_crtc)
10712                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10713         }
10714
10715         /* Check for pipes that will be enabled/disabled ... */
10716         for_each_intel_crtc(dev, intel_crtc) {
10717                 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
10718                         continue;
10719
10720                 if (!intel_crtc->new_enabled)
10721                         *disable_pipes |= 1 << intel_crtc->pipe;
10722                 else
10723                         *prepare_pipes |= 1 << intel_crtc->pipe;
10724         }
10725
10726
10727         /* set_mode is also used to update properties on life display pipes. */
10728         intel_crtc = to_intel_crtc(crtc);
10729         if (intel_crtc->new_enabled)
10730                 *prepare_pipes |= 1 << intel_crtc->pipe;
10731
10732         /*
10733          * For simplicity do a full modeset on any pipe where the output routing
10734          * changed. We could be more clever, but that would require us to be
10735          * more careful with calling the relevant encoder->mode_set functions.
10736          */
10737         if (*prepare_pipes)
10738                 *modeset_pipes = *prepare_pipes;
10739
10740         /* ... and mask these out. */
10741         *modeset_pipes &= ~(*disable_pipes);
10742         *prepare_pipes &= ~(*disable_pipes);
10743
10744         /*
10745          * HACK: We don't (yet) fully support global modesets. intel_set_config
10746          * obies this rule, but the modeset restore mode of
10747          * intel_modeset_setup_hw_state does not.
10748          */
10749         *modeset_pipes &= 1 << intel_crtc->pipe;
10750         *prepare_pipes &= 1 << intel_crtc->pipe;
10751
10752         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10753                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10754 }
10755
10756 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10757 {
10758         struct drm_encoder *encoder;
10759         struct drm_device *dev = crtc->dev;
10760
10761         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10762                 if (encoder->crtc == crtc)
10763                         return true;
10764
10765         return false;
10766 }
10767
10768 static void
10769 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10770 {
10771         struct drm_i915_private *dev_priv = dev->dev_private;
10772         struct intel_encoder *intel_encoder;
10773         struct intel_crtc *intel_crtc;
10774         struct drm_connector *connector;
10775
10776         intel_shared_dpll_commit(dev_priv);
10777
10778         for_each_intel_encoder(dev, intel_encoder) {
10779                 if (!intel_encoder->base.crtc)
10780                         continue;
10781
10782                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10783
10784                 if (prepare_pipes & (1 << intel_crtc->pipe))
10785                         intel_encoder->connectors_active = false;
10786         }
10787
10788         intel_modeset_commit_output_state(dev);
10789
10790         /* Double check state. */
10791         for_each_intel_crtc(dev, intel_crtc) {
10792                 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
10793                 WARN_ON(intel_crtc->new_config &&
10794                         intel_crtc->new_config != intel_crtc->config);
10795                 WARN_ON(intel_crtc->base.state->enable != !!intel_crtc->new_config);
10796         }
10797
10798         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10799                 if (!connector->encoder || !connector->encoder->crtc)
10800                         continue;
10801
10802                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10803
10804                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10805                         struct drm_property *dpms_property =
10806                                 dev->mode_config.dpms_property;
10807
10808                         connector->dpms = DRM_MODE_DPMS_ON;
10809                         drm_object_property_set_value(&connector->base,
10810                                                          dpms_property,
10811                                                          DRM_MODE_DPMS_ON);
10812
10813                         intel_encoder = to_intel_encoder(connector->encoder);
10814                         intel_encoder->connectors_active = true;
10815                 }
10816         }
10817
10818 }
10819
10820 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10821 {
10822         int diff;
10823
10824         if (clock1 == clock2)
10825                 return true;
10826
10827         if (!clock1 || !clock2)
10828                 return false;
10829
10830         diff = abs(clock1 - clock2);
10831
10832         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10833                 return true;
10834
10835         return false;
10836 }
10837
10838 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10839         list_for_each_entry((intel_crtc), \
10840                             &(dev)->mode_config.crtc_list, \
10841                             base.head) \
10842                 if (mask & (1 <<(intel_crtc)->pipe))
10843
10844 static bool
10845 intel_pipe_config_compare(struct drm_device *dev,
10846                           struct intel_crtc_state *current_config,
10847                           struct intel_crtc_state *pipe_config)
10848 {
10849 #define PIPE_CONF_CHECK_X(name) \
10850         if (current_config->name != pipe_config->name) { \
10851                 DRM_ERROR("mismatch in " #name " " \
10852                           "(expected 0x%08x, found 0x%08x)\n", \
10853                           current_config->name, \
10854                           pipe_config->name); \
10855                 return false; \
10856         }
10857
10858 #define PIPE_CONF_CHECK_I(name) \
10859         if (current_config->name != pipe_config->name) { \
10860                 DRM_ERROR("mismatch in " #name " " \
10861                           "(expected %i, found %i)\n", \
10862                           current_config->name, \
10863                           pipe_config->name); \
10864                 return false; \
10865         }
10866
10867 /* This is required for BDW+ where there is only one set of registers for
10868  * switching between high and low RR.
10869  * This macro can be used whenever a comparison has to be made between one
10870  * hw state and multiple sw state variables.
10871  */
10872 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10873         if ((current_config->name != pipe_config->name) && \
10874                 (current_config->alt_name != pipe_config->name)) { \
10875                         DRM_ERROR("mismatch in " #name " " \
10876                                   "(expected %i or %i, found %i)\n", \
10877                                   current_config->name, \
10878                                   current_config->alt_name, \
10879                                   pipe_config->name); \
10880                         return false; \
10881         }
10882
10883 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10884         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10885                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10886                           "(expected %i, found %i)\n", \
10887                           current_config->name & (mask), \
10888                           pipe_config->name & (mask)); \
10889                 return false; \
10890         }
10891
10892 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10893         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10894                 DRM_ERROR("mismatch in " #name " " \
10895                           "(expected %i, found %i)\n", \
10896                           current_config->name, \
10897                           pipe_config->name); \
10898                 return false; \
10899         }
10900
10901 #define PIPE_CONF_QUIRK(quirk)  \
10902         ((current_config->quirks | pipe_config->quirks) & (quirk))
10903
10904         PIPE_CONF_CHECK_I(cpu_transcoder);
10905
10906         PIPE_CONF_CHECK_I(has_pch_encoder);
10907         PIPE_CONF_CHECK_I(fdi_lanes);
10908         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10909         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10910         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10911         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10912         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10913
10914         PIPE_CONF_CHECK_I(has_dp_encoder);
10915
10916         if (INTEL_INFO(dev)->gen < 8) {
10917                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10918                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10919                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10920                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10921                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10922
10923                 if (current_config->has_drrs) {
10924                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10925                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10926                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10927                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10928                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10929                 }
10930         } else {
10931                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10932                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10933                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10934                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10935                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10936         }
10937
10938         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10939         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10940         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10941         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10942         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10943         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
10944
10945         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10946         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10947         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10948         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10949         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10950         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
10951
10952         PIPE_CONF_CHECK_I(pixel_multiplier);
10953         PIPE_CONF_CHECK_I(has_hdmi_sink);
10954         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10955             IS_VALLEYVIEW(dev))
10956                 PIPE_CONF_CHECK_I(limited_color_range);
10957         PIPE_CONF_CHECK_I(has_infoframe);
10958
10959         PIPE_CONF_CHECK_I(has_audio);
10960
10961         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10962                               DRM_MODE_FLAG_INTERLACE);
10963
10964         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10965                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10966                                       DRM_MODE_FLAG_PHSYNC);
10967                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10968                                       DRM_MODE_FLAG_NHSYNC);
10969                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10970                                       DRM_MODE_FLAG_PVSYNC);
10971                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10972                                       DRM_MODE_FLAG_NVSYNC);
10973         }
10974
10975         PIPE_CONF_CHECK_I(pipe_src_w);
10976         PIPE_CONF_CHECK_I(pipe_src_h);
10977
10978         /*
10979          * FIXME: BIOS likes to set up a cloned config with lvds+external
10980          * screen. Since we don't yet re-compute the pipe config when moving
10981          * just the lvds port away to another pipe the sw tracking won't match.
10982          *
10983          * Proper atomic modesets with recomputed global state will fix this.
10984          * Until then just don't check gmch state for inherited modes.
10985          */
10986         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10987                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10988                 /* pfit ratios are autocomputed by the hw on gen4+ */
10989                 if (INTEL_INFO(dev)->gen < 4)
10990                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10991                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10992         }
10993
10994         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10995         if (current_config->pch_pfit.enabled) {
10996                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10997                 PIPE_CONF_CHECK_I(pch_pfit.size);
10998         }
10999
11000         /* BDW+ don't expose a synchronous way to read the state */
11001         if (IS_HASWELL(dev))
11002                 PIPE_CONF_CHECK_I(ips_enabled);
11003
11004         PIPE_CONF_CHECK_I(double_wide);
11005
11006         PIPE_CONF_CHECK_X(ddi_pll_sel);
11007
11008         PIPE_CONF_CHECK_I(shared_dpll);
11009         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11010         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11011         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11012         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11013         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11014         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11015         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11016         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11017
11018         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11019                 PIPE_CONF_CHECK_I(pipe_bpp);
11020
11021         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11022         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11023
11024 #undef PIPE_CONF_CHECK_X
11025 #undef PIPE_CONF_CHECK_I
11026 #undef PIPE_CONF_CHECK_I_ALT
11027 #undef PIPE_CONF_CHECK_FLAGS
11028 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11029 #undef PIPE_CONF_QUIRK
11030
11031         return true;
11032 }
11033
11034 static void check_wm_state(struct drm_device *dev)
11035 {
11036         struct drm_i915_private *dev_priv = dev->dev_private;
11037         struct skl_ddb_allocation hw_ddb, *sw_ddb;
11038         struct intel_crtc *intel_crtc;
11039         int plane;
11040
11041         if (INTEL_INFO(dev)->gen < 9)
11042                 return;
11043
11044         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11045         sw_ddb = &dev_priv->wm.skl_hw.ddb;
11046
11047         for_each_intel_crtc(dev, intel_crtc) {
11048                 struct skl_ddb_entry *hw_entry, *sw_entry;
11049                 const enum pipe pipe = intel_crtc->pipe;
11050
11051                 if (!intel_crtc->active)
11052                         continue;
11053
11054                 /* planes */
11055                 for_each_plane(dev_priv, pipe, plane) {
11056                         hw_entry = &hw_ddb.plane[pipe][plane];
11057                         sw_entry = &sw_ddb->plane[pipe][plane];
11058
11059                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
11060                                 continue;
11061
11062                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11063                                   "(expected (%u,%u), found (%u,%u))\n",
11064                                   pipe_name(pipe), plane + 1,
11065                                   sw_entry->start, sw_entry->end,
11066                                   hw_entry->start, hw_entry->end);
11067                 }
11068
11069                 /* cursor */
11070                 hw_entry = &hw_ddb.cursor[pipe];
11071                 sw_entry = &sw_ddb->cursor[pipe];
11072
11073                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11074                         continue;
11075
11076                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11077                           "(expected (%u,%u), found (%u,%u))\n",
11078                           pipe_name(pipe),
11079                           sw_entry->start, sw_entry->end,
11080                           hw_entry->start, hw_entry->end);
11081         }
11082 }
11083
11084 static void
11085 check_connector_state(struct drm_device *dev)
11086 {
11087         struct intel_connector *connector;
11088
11089         for_each_intel_connector(dev, connector) {
11090                 /* This also checks the encoder/connector hw state with the
11091                  * ->get_hw_state callbacks. */
11092                 intel_connector_check_state(connector);
11093
11094                 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
11095                      "connector's staged encoder doesn't match current encoder\n");
11096         }
11097 }
11098
11099 static void
11100 check_encoder_state(struct drm_device *dev)
11101 {
11102         struct intel_encoder *encoder;
11103         struct intel_connector *connector;
11104
11105         for_each_intel_encoder(dev, encoder) {
11106                 bool enabled = false;
11107                 bool active = false;
11108                 enum pipe pipe, tracked_pipe;
11109
11110                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11111                               encoder->base.base.id,
11112                               encoder->base.name);
11113
11114                 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
11115                      "encoder's stage crtc doesn't match current crtc\n");
11116                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
11117                      "encoder's active_connectors set, but no crtc\n");
11118
11119                 for_each_intel_connector(dev, connector) {
11120                         if (connector->base.encoder != &encoder->base)
11121                                 continue;
11122                         enabled = true;
11123                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11124                                 active = true;
11125                 }
11126                 /*
11127                  * for MST connectors if we unplug the connector is gone
11128                  * away but the encoder is still connected to a crtc
11129                  * until a modeset happens in response to the hotplug.
11130                  */
11131                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
11132                         continue;
11133
11134                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11135                      "encoder's enabled state mismatch "
11136                      "(expected %i, found %i)\n",
11137                      !!encoder->base.crtc, enabled);
11138                 I915_STATE_WARN(active && !encoder->base.crtc,
11139                      "active encoder with no crtc\n");
11140
11141                 I915_STATE_WARN(encoder->connectors_active != active,
11142                      "encoder's computed active state doesn't match tracked active state "
11143                      "(expected %i, found %i)\n", active, encoder->connectors_active);
11144
11145                 active = encoder->get_hw_state(encoder, &pipe);
11146                 I915_STATE_WARN(active != encoder->connectors_active,
11147                      "encoder's hw state doesn't match sw tracking "
11148                      "(expected %i, found %i)\n",
11149                      encoder->connectors_active, active);
11150
11151                 if (!encoder->base.crtc)
11152                         continue;
11153
11154                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
11155                 I915_STATE_WARN(active && pipe != tracked_pipe,
11156                      "active encoder's pipe doesn't match"
11157                      "(expected %i, found %i)\n",
11158                      tracked_pipe, pipe);
11159
11160         }
11161 }
11162
11163 static void
11164 check_crtc_state(struct drm_device *dev)
11165 {
11166         struct drm_i915_private *dev_priv = dev->dev_private;
11167         struct intel_crtc *crtc;
11168         struct intel_encoder *encoder;
11169         struct intel_crtc_state pipe_config;
11170
11171         for_each_intel_crtc(dev, crtc) {
11172                 bool enabled = false;
11173                 bool active = false;
11174
11175                 memset(&pipe_config, 0, sizeof(pipe_config));
11176
11177                 DRM_DEBUG_KMS("[CRTC:%d]\n",
11178                               crtc->base.base.id);
11179
11180                 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
11181                      "active crtc, but not enabled in sw tracking\n");
11182
11183                 for_each_intel_encoder(dev, encoder) {
11184                         if (encoder->base.crtc != &crtc->base)
11185                                 continue;
11186                         enabled = true;
11187                         if (encoder->connectors_active)
11188                                 active = true;
11189                 }
11190
11191                 I915_STATE_WARN(active != crtc->active,
11192                      "crtc's computed active state doesn't match tracked active state "
11193                      "(expected %i, found %i)\n", active, crtc->active);
11194                 I915_STATE_WARN(enabled != crtc->base.state->enable,
11195                      "crtc's computed enabled state doesn't match tracked enabled state "
11196                      "(expected %i, found %i)\n", enabled,
11197                                 crtc->base.state->enable);
11198
11199                 active = dev_priv->display.get_pipe_config(crtc,
11200                                                            &pipe_config);
11201
11202                 /* hw state is inconsistent with the pipe quirk */
11203                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
11204                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
11205                         active = crtc->active;
11206
11207                 for_each_intel_encoder(dev, encoder) {
11208                         enum pipe pipe;
11209                         if (encoder->base.crtc != &crtc->base)
11210                                 continue;
11211                         if (encoder->get_hw_state(encoder, &pipe))
11212                                 encoder->get_config(encoder, &pipe_config);
11213                 }
11214
11215                 I915_STATE_WARN(crtc->active != active,
11216                      "crtc active state doesn't match with hw state "
11217                      "(expected %i, found %i)\n", crtc->active, active);
11218
11219                 if (active &&
11220                     !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
11221                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
11222                         intel_dump_pipe_config(crtc, &pipe_config,
11223                                                "[hw state]");
11224                         intel_dump_pipe_config(crtc, crtc->config,
11225                                                "[sw state]");
11226                 }
11227         }
11228 }
11229
11230 static void
11231 check_shared_dpll_state(struct drm_device *dev)
11232 {
11233         struct drm_i915_private *dev_priv = dev->dev_private;
11234         struct intel_crtc *crtc;
11235         struct intel_dpll_hw_state dpll_hw_state;
11236         int i;
11237
11238         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11239                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11240                 int enabled_crtcs = 0, active_crtcs = 0;
11241                 bool active;
11242
11243                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11244
11245                 DRM_DEBUG_KMS("%s\n", pll->name);
11246
11247                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11248
11249                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
11250                      "more active pll users than references: %i vs %i\n",
11251                      pll->active, hweight32(pll->config.crtc_mask));
11252                 I915_STATE_WARN(pll->active && !pll->on,
11253                      "pll in active use but not on in sw tracking\n");
11254                 I915_STATE_WARN(pll->on && !pll->active,
11255                      "pll in on but not on in use in sw tracking\n");
11256                 I915_STATE_WARN(pll->on != active,
11257                      "pll on state mismatch (expected %i, found %i)\n",
11258                      pll->on, active);
11259
11260                 for_each_intel_crtc(dev, crtc) {
11261                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
11262                                 enabled_crtcs++;
11263                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11264                                 active_crtcs++;
11265                 }
11266                 I915_STATE_WARN(pll->active != active_crtcs,
11267                      "pll active crtcs mismatch (expected %i, found %i)\n",
11268                      pll->active, active_crtcs);
11269                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
11270                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
11271                      hweight32(pll->config.crtc_mask), enabled_crtcs);
11272
11273                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
11274                                        sizeof(dpll_hw_state)),
11275                      "pll hw state mismatch\n");
11276         }
11277 }
11278
11279 void
11280 intel_modeset_check_state(struct drm_device *dev)
11281 {
11282         check_wm_state(dev);
11283         check_connector_state(dev);
11284         check_encoder_state(dev);
11285         check_crtc_state(dev);
11286         check_shared_dpll_state(dev);
11287 }
11288
11289 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
11290                                      int dotclock)
11291 {
11292         /*
11293          * FDI already provided one idea for the dotclock.
11294          * Yell if the encoder disagrees.
11295          */
11296         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
11297              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11298              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
11299 }
11300
11301 static void update_scanline_offset(struct intel_crtc *crtc)
11302 {
11303         struct drm_device *dev = crtc->base.dev;
11304
11305         /*
11306          * The scanline counter increments at the leading edge of hsync.
11307          *
11308          * On most platforms it starts counting from vtotal-1 on the
11309          * first active line. That means the scanline counter value is
11310          * always one less than what we would expect. Ie. just after
11311          * start of vblank, which also occurs at start of hsync (on the
11312          * last active line), the scanline counter will read vblank_start-1.
11313          *
11314          * On gen2 the scanline counter starts counting from 1 instead
11315          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11316          * to keep the value positive), instead of adding one.
11317          *
11318          * On HSW+ the behaviour of the scanline counter depends on the output
11319          * type. For DP ports it behaves like most other platforms, but on HDMI
11320          * there's an extra 1 line difference. So we need to add two instead of
11321          * one to the value.
11322          */
11323         if (IS_GEN2(dev)) {
11324                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
11325                 int vtotal;
11326
11327                 vtotal = mode->crtc_vtotal;
11328                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11329                         vtotal /= 2;
11330
11331                 crtc->scanline_offset = vtotal - 1;
11332         } else if (HAS_DDI(dev) &&
11333                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
11334                 crtc->scanline_offset = 2;
11335         } else
11336                 crtc->scanline_offset = 1;
11337 }
11338
11339 static struct intel_crtc_state *
11340 intel_modeset_compute_config(struct drm_crtc *crtc,
11341                              struct drm_display_mode *mode,
11342                              struct drm_framebuffer *fb,
11343                              struct drm_atomic_state *state,
11344                              unsigned *modeset_pipes,
11345                              unsigned *prepare_pipes,
11346                              unsigned *disable_pipes)
11347 {
11348         struct drm_device *dev = crtc->dev;
11349         struct intel_crtc_state *pipe_config = NULL;
11350         struct intel_crtc *intel_crtc;
11351         int ret = 0;
11352
11353         ret = drm_atomic_add_affected_connectors(state, crtc);
11354         if (ret)
11355                 return ERR_PTR(ret);
11356
11357         intel_modeset_affected_pipes(crtc, modeset_pipes,
11358                                      prepare_pipes, disable_pipes);
11359
11360         for_each_intel_crtc_masked(dev, *disable_pipes, intel_crtc) {
11361                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
11362                 if (IS_ERR(pipe_config))
11363                         return pipe_config;
11364
11365                 pipe_config->base.enable = false;
11366         }
11367
11368         /*
11369          * Note this needs changes when we start tracking multiple modes
11370          * and crtcs.  At that point we'll need to compute the whole config
11371          * (i.e. one pipe_config for each crtc) rather than just the one
11372          * for this crtc.
11373          */
11374         for_each_intel_crtc_masked(dev, *modeset_pipes, intel_crtc) {
11375                 /* FIXME: For now we still expect modeset_pipes has at most
11376                  * one bit set. */
11377                 if (WARN_ON(&intel_crtc->base != crtc))
11378                         continue;
11379
11380                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode, state);
11381                 if (IS_ERR(pipe_config))
11382                         return pipe_config;
11383
11384                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11385                                        "[modeset]");
11386         }
11387
11388         return intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));;
11389 }
11390
11391 static int __intel_set_mode_setup_plls(struct drm_device *dev,
11392                                        unsigned modeset_pipes,
11393                                        unsigned disable_pipes)
11394 {
11395         struct drm_i915_private *dev_priv = to_i915(dev);
11396         unsigned clear_pipes = modeset_pipes | disable_pipes;
11397         struct intel_crtc *intel_crtc;
11398         int ret = 0;
11399
11400         if (!dev_priv->display.crtc_compute_clock)
11401                 return 0;
11402
11403         ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11404         if (ret)
11405                 goto done;
11406
11407         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11408                 struct intel_crtc_state *state = intel_crtc->new_config;
11409                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11410                                                            state);
11411                 if (ret) {
11412                         intel_shared_dpll_abort_config(dev_priv);
11413                         goto done;
11414                 }
11415         }
11416
11417 done:
11418         return ret;
11419 }
11420
11421 static int __intel_set_mode(struct drm_crtc *crtc,
11422                             struct drm_display_mode *mode,
11423                             int x, int y, struct drm_framebuffer *fb,
11424                             struct intel_crtc_state *pipe_config,
11425                             unsigned modeset_pipes,
11426                             unsigned prepare_pipes,
11427                             unsigned disable_pipes)
11428 {
11429         struct drm_device *dev = crtc->dev;
11430         struct drm_i915_private *dev_priv = dev->dev_private;
11431         struct drm_display_mode *saved_mode;
11432         struct intel_crtc_state *crtc_state_copy = NULL;
11433         struct intel_crtc *intel_crtc;
11434         int ret = 0;
11435
11436         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11437         if (!saved_mode)
11438                 return -ENOMEM;
11439
11440         crtc_state_copy = kmalloc(sizeof(*crtc_state_copy), GFP_KERNEL);
11441         if (!crtc_state_copy) {
11442                 ret = -ENOMEM;
11443                 goto done;
11444         }
11445
11446         *saved_mode = crtc->mode;
11447
11448         if (modeset_pipes)
11449                 to_intel_crtc(crtc)->new_config = pipe_config;
11450
11451         /*
11452          * See if the config requires any additional preparation, e.g.
11453          * to adjust global state with pipes off.  We need to do this
11454          * here so we can get the modeset_pipe updated config for the new
11455          * mode set on this crtc.  For other crtcs we need to use the
11456          * adjusted_mode bits in the crtc directly.
11457          */
11458         if (IS_VALLEYVIEW(dev)) {
11459                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11460
11461                 /* may have added more to prepare_pipes than we should */
11462                 prepare_pipes &= ~disable_pipes;
11463         }
11464
11465         ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11466         if (ret)
11467                 goto done;
11468
11469         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11470                 intel_crtc_disable(&intel_crtc->base);
11471
11472         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11473                 if (intel_crtc->base.state->enable)
11474                         dev_priv->display.crtc_disable(&intel_crtc->base);
11475         }
11476
11477         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11478          * to set it here already despite that we pass it down the callchain.
11479          *
11480          * Note we'll need to fix this up when we start tracking multiple
11481          * pipes; here we assume a single modeset_pipe and only track the
11482          * single crtc and mode.
11483          */
11484         if (modeset_pipes) {
11485                 crtc->mode = *mode;
11486                 /* mode_set/enable/disable functions rely on a correct pipe
11487                  * config. */
11488                 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
11489
11490                 /*
11491                  * Calculate and store various constants which
11492                  * are later needed by vblank and swap-completion
11493                  * timestamping. They are derived from true hwmode.
11494                  */
11495                 drm_calc_timestamping_constants(crtc,
11496                                                 &pipe_config->base.adjusted_mode);
11497         }
11498
11499         /* Only after disabling all output pipelines that will be changed can we
11500          * update the the output configuration. */
11501         intel_modeset_update_state(dev, prepare_pipes);
11502
11503         modeset_update_crtc_power_domains(dev);
11504
11505         /* Set up the DPLL and any encoders state that needs to adjust or depend
11506          * on the DPLL.
11507          */
11508         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11509                 struct drm_plane *primary = intel_crtc->base.primary;
11510                 int vdisplay, hdisplay;
11511
11512                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11513                 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11514                                                    fb, 0, 0,
11515                                                    hdisplay, vdisplay,
11516                                                    x << 16, y << 16,
11517                                                    hdisplay << 16, vdisplay << 16);
11518         }
11519
11520         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11521         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11522                 update_scanline_offset(intel_crtc);
11523
11524                 dev_priv->display.crtc_enable(&intel_crtc->base);
11525         }
11526
11527         /* FIXME: add subpixel order */
11528 done:
11529         if (ret && crtc->state->enable)
11530                 crtc->mode = *saved_mode;
11531
11532         if (ret == 0 && pipe_config) {
11533                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11534
11535                 /* The pipe_config will be freed with the atomic state, so
11536                  * make a copy. */
11537                 memcpy(crtc_state_copy, intel_crtc->config,
11538                        sizeof *crtc_state_copy);
11539                 intel_crtc->config = crtc_state_copy;
11540                 intel_crtc->base.state = &crtc_state_copy->base;
11541
11542                 if (modeset_pipes)
11543                         intel_crtc->new_config = intel_crtc->config;
11544         } else {
11545                 kfree(crtc_state_copy);
11546         }
11547
11548         kfree(saved_mode);
11549         return ret;
11550 }
11551
11552 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11553                                 struct drm_display_mode *mode,
11554                                 int x, int y, struct drm_framebuffer *fb,
11555                                 struct intel_crtc_state *pipe_config,
11556                                 unsigned modeset_pipes,
11557                                 unsigned prepare_pipes,
11558                                 unsigned disable_pipes)
11559 {
11560         int ret;
11561
11562         ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11563                                prepare_pipes, disable_pipes);
11564
11565         if (ret == 0)
11566                 intel_modeset_check_state(crtc->dev);
11567
11568         return ret;
11569 }
11570
11571 static int intel_set_mode(struct drm_crtc *crtc,
11572                           struct drm_display_mode *mode,
11573                           int x, int y, struct drm_framebuffer *fb,
11574                           struct drm_atomic_state *state)
11575 {
11576         struct intel_crtc_state *pipe_config;
11577         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11578         int ret = 0;
11579
11580         pipe_config = intel_modeset_compute_config(crtc, mode, fb, state,
11581                                                    &modeset_pipes,
11582                                                    &prepare_pipes,
11583                                                    &disable_pipes);
11584
11585         if (IS_ERR(pipe_config)) {
11586                 ret = PTR_ERR(pipe_config);
11587                 goto out;
11588         }
11589
11590         ret = intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11591                                    modeset_pipes, prepare_pipes,
11592                                    disable_pipes);
11593         if (ret)
11594                 goto out;
11595
11596 out:
11597         return ret;
11598 }
11599
11600 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11601 {
11602         struct drm_device *dev = crtc->dev;
11603         struct drm_atomic_state *state;
11604         struct intel_encoder *encoder;
11605         struct intel_connector *connector;
11606         struct drm_connector_state *connector_state;
11607
11608         state = drm_atomic_state_alloc(dev);
11609         if (!state) {
11610                 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
11611                               crtc->base.id);
11612                 return;
11613         }
11614
11615         state->acquire_ctx = dev->mode_config.acquire_ctx;
11616
11617         /* The force restore path in the HW readout code relies on the staged
11618          * config still keeping the user requested config while the actual
11619          * state has been overwritten by the configuration read from HW. We
11620          * need to copy the staged config to the atomic state, otherwise the
11621          * mode set will just reapply the state the HW is already in. */
11622         for_each_intel_encoder(dev, encoder) {
11623                 if (&encoder->new_crtc->base != crtc)
11624                         continue;
11625
11626                 for_each_intel_connector(dev, connector) {
11627                         if (connector->new_encoder != encoder)
11628                                 continue;
11629
11630                         connector_state = drm_atomic_get_connector_state(state, &connector->base);
11631                         if (IS_ERR(connector_state)) {
11632                                 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
11633                                               connector->base.base.id,
11634                                               connector->base.name,
11635                                               PTR_ERR(connector_state));
11636                                 continue;
11637                         }
11638
11639                         connector_state->crtc = crtc;
11640                         connector_state->best_encoder = &encoder->base;
11641                 }
11642         }
11643
11644         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb,
11645                        state);
11646
11647         drm_atomic_state_free(state);
11648 }
11649
11650 #undef for_each_intel_crtc_masked
11651
11652 static void intel_set_config_free(struct intel_set_config *config)
11653 {
11654         if (!config)
11655                 return;
11656
11657         kfree(config->save_connector_encoders);
11658         kfree(config->save_encoder_crtcs);
11659         kfree(config->save_crtc_enabled);
11660         kfree(config);
11661 }
11662
11663 static int intel_set_config_save_state(struct drm_device *dev,
11664                                        struct intel_set_config *config)
11665 {
11666         struct drm_crtc *crtc;
11667         struct drm_encoder *encoder;
11668         struct drm_connector *connector;
11669         int count;
11670
11671         config->save_crtc_enabled =
11672                 kcalloc(dev->mode_config.num_crtc,
11673                         sizeof(bool), GFP_KERNEL);
11674         if (!config->save_crtc_enabled)
11675                 return -ENOMEM;
11676
11677         config->save_encoder_crtcs =
11678                 kcalloc(dev->mode_config.num_encoder,
11679                         sizeof(struct drm_crtc *), GFP_KERNEL);
11680         if (!config->save_encoder_crtcs)
11681                 return -ENOMEM;
11682
11683         config->save_connector_encoders =
11684                 kcalloc(dev->mode_config.num_connector,
11685                         sizeof(struct drm_encoder *), GFP_KERNEL);
11686         if (!config->save_connector_encoders)
11687                 return -ENOMEM;
11688
11689         /* Copy data. Note that driver private data is not affected.
11690          * Should anything bad happen only the expected state is
11691          * restored, not the drivers personal bookkeeping.
11692          */
11693         count = 0;
11694         for_each_crtc(dev, crtc) {
11695                 config->save_crtc_enabled[count++] = crtc->state->enable;
11696         }
11697
11698         count = 0;
11699         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11700                 config->save_encoder_crtcs[count++] = encoder->crtc;
11701         }
11702
11703         count = 0;
11704         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11705                 config->save_connector_encoders[count++] = connector->encoder;
11706         }
11707
11708         return 0;
11709 }
11710
11711 static void intel_set_config_restore_state(struct drm_device *dev,
11712                                            struct intel_set_config *config)
11713 {
11714         struct intel_crtc *crtc;
11715         struct intel_encoder *encoder;
11716         struct intel_connector *connector;
11717         int count;
11718
11719         count = 0;
11720         for_each_intel_crtc(dev, crtc) {
11721                 crtc->new_enabled = config->save_crtc_enabled[count++];
11722
11723                 if (crtc->new_enabled)
11724                         crtc->new_config = crtc->config;
11725                 else
11726                         crtc->new_config = NULL;
11727         }
11728
11729         count = 0;
11730         for_each_intel_encoder(dev, encoder) {
11731                 encoder->new_crtc =
11732                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11733         }
11734
11735         count = 0;
11736         for_each_intel_connector(dev, connector) {
11737                 connector->new_encoder =
11738                         to_intel_encoder(config->save_connector_encoders[count++]);
11739         }
11740 }
11741
11742 static bool
11743 is_crtc_connector_off(struct drm_mode_set *set)
11744 {
11745         int i;
11746
11747         if (set->num_connectors == 0)
11748                 return false;
11749
11750         if (WARN_ON(set->connectors == NULL))
11751                 return false;
11752
11753         for (i = 0; i < set->num_connectors; i++)
11754                 if (set->connectors[i]->encoder &&
11755                     set->connectors[i]->encoder->crtc == set->crtc &&
11756                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11757                         return true;
11758
11759         return false;
11760 }
11761
11762 static void
11763 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11764                                       struct intel_set_config *config)
11765 {
11766
11767         /* We should be able to check here if the fb has the same properties
11768          * and then just flip_or_move it */
11769         if (is_crtc_connector_off(set)) {
11770                 config->mode_changed = true;
11771         } else if (set->crtc->primary->fb != set->fb) {
11772                 /*
11773                  * If we have no fb, we can only flip as long as the crtc is
11774                  * active, otherwise we need a full mode set.  The crtc may
11775                  * be active if we've only disabled the primary plane, or
11776                  * in fastboot situations.
11777                  */
11778                 if (set->crtc->primary->fb == NULL) {
11779                         struct intel_crtc *intel_crtc =
11780                                 to_intel_crtc(set->crtc);
11781
11782                         if (intel_crtc->active) {
11783                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11784                                 config->fb_changed = true;
11785                         } else {
11786                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11787                                 config->mode_changed = true;
11788                         }
11789                 } else if (set->fb == NULL) {
11790                         config->mode_changed = true;
11791                 } else if (set->fb->pixel_format !=
11792                            set->crtc->primary->fb->pixel_format) {
11793                         config->mode_changed = true;
11794                 } else {
11795                         config->fb_changed = true;
11796                 }
11797         }
11798
11799         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11800                 config->fb_changed = true;
11801
11802         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11803                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11804                 drm_mode_debug_printmodeline(&set->crtc->mode);
11805                 drm_mode_debug_printmodeline(set->mode);
11806                 config->mode_changed = true;
11807         }
11808
11809         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11810                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11811 }
11812
11813 static int
11814 intel_modeset_stage_output_state(struct drm_device *dev,
11815                                  struct drm_mode_set *set,
11816                                  struct intel_set_config *config,
11817                                  struct drm_atomic_state *state)
11818 {
11819         struct intel_connector *connector;
11820         struct drm_connector_state *connector_state;
11821         struct intel_encoder *encoder;
11822         struct intel_crtc *crtc;
11823         int ro;
11824
11825         /* The upper layers ensure that we either disable a crtc or have a list
11826          * of connectors. For paranoia, double-check this. */
11827         WARN_ON(!set->fb && (set->num_connectors != 0));
11828         WARN_ON(set->fb && (set->num_connectors == 0));
11829
11830         for_each_intel_connector(dev, connector) {
11831                 /* Otherwise traverse passed in connector list and get encoders
11832                  * for them. */
11833                 for (ro = 0; ro < set->num_connectors; ro++) {
11834                         if (set->connectors[ro] == &connector->base) {
11835                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11836                                 break;
11837                         }
11838                 }
11839
11840                 /* If we disable the crtc, disable all its connectors. Also, if
11841                  * the connector is on the changing crtc but not on the new
11842                  * connector list, disable it. */
11843                 if ((!set->fb || ro == set->num_connectors) &&
11844                     connector->base.encoder &&
11845                     connector->base.encoder->crtc == set->crtc) {
11846                         connector->new_encoder = NULL;
11847
11848                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11849                                 connector->base.base.id,
11850                                 connector->base.name);
11851                 }
11852
11853
11854                 if (&connector->new_encoder->base != connector->base.encoder) {
11855                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
11856                                       connector->base.base.id,
11857                                       connector->base.name);
11858                         config->mode_changed = true;
11859                 }
11860         }
11861         /* connector->new_encoder is now updated for all connectors. */
11862
11863         /* Update crtc of enabled connectors. */
11864         for_each_intel_connector(dev, connector) {
11865                 struct drm_crtc *new_crtc;
11866
11867                 if (!connector->new_encoder)
11868                         continue;
11869
11870                 new_crtc = connector->new_encoder->base.crtc;
11871
11872                 for (ro = 0; ro < set->num_connectors; ro++) {
11873                         if (set->connectors[ro] == &connector->base)
11874                                 new_crtc = set->crtc;
11875                 }
11876
11877                 /* Make sure the new CRTC will work with the encoder */
11878                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11879                                          new_crtc)) {
11880                         return -EINVAL;
11881                 }
11882                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11883
11884                 connector_state =
11885                         drm_atomic_get_connector_state(state, &connector->base);
11886                 if (IS_ERR(connector_state))
11887                         return PTR_ERR(connector_state);
11888
11889                 connector_state->crtc = new_crtc;
11890                 connector_state->best_encoder = &connector->new_encoder->base;
11891
11892                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11893                         connector->base.base.id,
11894                         connector->base.name,
11895                         new_crtc->base.id);
11896         }
11897
11898         /* Check for any encoders that needs to be disabled. */
11899         for_each_intel_encoder(dev, encoder) {
11900                 int num_connectors = 0;
11901                 for_each_intel_connector(dev, connector) {
11902                         if (connector->new_encoder == encoder) {
11903                                 WARN_ON(!connector->new_encoder->new_crtc);
11904                                 num_connectors++;
11905                         }
11906                 }
11907
11908                 if (num_connectors == 0)
11909                         encoder->new_crtc = NULL;
11910                 else if (num_connectors > 1)
11911                         return -EINVAL;
11912
11913                 /* Only now check for crtc changes so we don't miss encoders
11914                  * that will be disabled. */
11915                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11916                         DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
11917                                       encoder->base.base.id,
11918                                       encoder->base.name);
11919                         config->mode_changed = true;
11920                 }
11921         }
11922         /* Now we've also updated encoder->new_crtc for all encoders. */
11923         for_each_intel_connector(dev, connector) {
11924                 connector_state =
11925                         drm_atomic_get_connector_state(state, &connector->base);
11926
11927                 if (connector->new_encoder) {
11928                         if (connector->new_encoder != connector->encoder)
11929                                 connector->encoder = connector->new_encoder;
11930                 } else {
11931                         connector_state->crtc = NULL;
11932                 }
11933         }
11934         for_each_intel_crtc(dev, crtc) {
11935                 crtc->new_enabled = false;
11936
11937                 for_each_intel_encoder(dev, encoder) {
11938                         if (encoder->new_crtc == crtc) {
11939                                 crtc->new_enabled = true;
11940                                 break;
11941                         }
11942                 }
11943
11944                 if (crtc->new_enabled != crtc->base.state->enable) {
11945                         DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
11946                                       crtc->base.base.id,
11947                                       crtc->new_enabled ? "en" : "dis");
11948                         config->mode_changed = true;
11949                 }
11950
11951                 if (crtc->new_enabled)
11952                         crtc->new_config = crtc->config;
11953                 else
11954                         crtc->new_config = NULL;
11955         }
11956
11957         return 0;
11958 }
11959
11960 static void disable_crtc_nofb(struct intel_crtc *crtc)
11961 {
11962         struct drm_device *dev = crtc->base.dev;
11963         struct intel_encoder *encoder;
11964         struct intel_connector *connector;
11965
11966         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11967                       pipe_name(crtc->pipe));
11968
11969         for_each_intel_connector(dev, connector) {
11970                 if (connector->new_encoder &&
11971                     connector->new_encoder->new_crtc == crtc)
11972                         connector->new_encoder = NULL;
11973         }
11974
11975         for_each_intel_encoder(dev, encoder) {
11976                 if (encoder->new_crtc == crtc)
11977                         encoder->new_crtc = NULL;
11978         }
11979
11980         crtc->new_enabled = false;
11981         crtc->new_config = NULL;
11982 }
11983
11984 static int intel_crtc_set_config(struct drm_mode_set *set)
11985 {
11986         struct drm_device *dev;
11987         struct drm_mode_set save_set;
11988         struct drm_atomic_state *state = NULL;
11989         struct intel_set_config *config;
11990         struct intel_crtc_state *pipe_config;
11991         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11992         int ret;
11993
11994         BUG_ON(!set);
11995         BUG_ON(!set->crtc);
11996         BUG_ON(!set->crtc->helper_private);
11997
11998         /* Enforce sane interface api - has been abused by the fb helper. */
11999         BUG_ON(!set->mode && set->fb);
12000         BUG_ON(set->fb && set->num_connectors == 0);
12001
12002         if (set->fb) {
12003                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12004                                 set->crtc->base.id, set->fb->base.id,
12005                                 (int)set->num_connectors, set->x, set->y);
12006         } else {
12007                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
12008         }
12009
12010         dev = set->crtc->dev;
12011
12012         ret = -ENOMEM;
12013         config = kzalloc(sizeof(*config), GFP_KERNEL);
12014         if (!config)
12015                 goto out_config;
12016
12017         ret = intel_set_config_save_state(dev, config);
12018         if (ret)
12019                 goto out_config;
12020
12021         save_set.crtc = set->crtc;
12022         save_set.mode = &set->crtc->mode;
12023         save_set.x = set->crtc->x;
12024         save_set.y = set->crtc->y;
12025         save_set.fb = set->crtc->primary->fb;
12026
12027         /* Compute whether we need a full modeset, only an fb base update or no
12028          * change at all. In the future we might also check whether only the
12029          * mode changed, e.g. for LVDS where we only change the panel fitter in
12030          * such cases. */
12031         intel_set_config_compute_mode_changes(set, config);
12032
12033         state = drm_atomic_state_alloc(dev);
12034         if (!state) {
12035                 ret = -ENOMEM;
12036                 goto out_config;
12037         }
12038
12039         state->acquire_ctx = dev->mode_config.acquire_ctx;
12040
12041         ret = intel_modeset_stage_output_state(dev, set, config, state);
12042         if (ret)
12043                 goto fail;
12044
12045         pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
12046                                                    set->fb, state,
12047                                                    &modeset_pipes,
12048                                                    &prepare_pipes,
12049                                                    &disable_pipes);
12050         if (IS_ERR(pipe_config)) {
12051                 ret = PTR_ERR(pipe_config);
12052                 goto fail;
12053         } else if (pipe_config) {
12054                 if (pipe_config->has_audio !=
12055                     to_intel_crtc(set->crtc)->config->has_audio)
12056                         config->mode_changed = true;
12057
12058                 /*
12059                  * Note we have an issue here with infoframes: current code
12060                  * only updates them on the full mode set path per hw
12061                  * requirements.  So here we should be checking for any
12062                  * required changes and forcing a mode set.
12063                  */
12064         }
12065
12066         intel_update_pipe_size(to_intel_crtc(set->crtc));
12067
12068         if (config->mode_changed) {
12069                 ret = intel_set_mode_pipes(set->crtc, set->mode,
12070                                            set->x, set->y, set->fb, pipe_config,
12071                                            modeset_pipes, prepare_pipes,
12072                                            disable_pipes);
12073         } else if (config->fb_changed) {
12074                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
12075                 struct drm_plane *primary = set->crtc->primary;
12076                 int vdisplay, hdisplay;
12077
12078                 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
12079                 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
12080                                                    0, 0, hdisplay, vdisplay,
12081                                                    set->x << 16, set->y << 16,
12082                                                    hdisplay << 16, vdisplay << 16);
12083
12084                 /*
12085                  * We need to make sure the primary plane is re-enabled if it
12086                  * has previously been turned off.
12087                  */
12088                 if (!intel_crtc->primary_enabled && ret == 0) {
12089                         WARN_ON(!intel_crtc->active);
12090                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
12091                 }
12092
12093                 /*
12094                  * In the fastboot case this may be our only check of the
12095                  * state after boot.  It would be better to only do it on
12096                  * the first update, but we don't have a nice way of doing that
12097                  * (and really, set_config isn't used much for high freq page
12098                  * flipping, so increasing its cost here shouldn't be a big
12099                  * deal).
12100                  */
12101                 if (i915.fastboot && ret == 0)
12102                         intel_modeset_check_state(set->crtc->dev);
12103         }
12104
12105         if (ret) {
12106                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12107                               set->crtc->base.id, ret);
12108 fail:
12109                 intel_set_config_restore_state(dev, config);
12110
12111                 drm_atomic_state_clear(state);
12112
12113                 /*
12114                  * HACK: if the pipe was on, but we didn't have a framebuffer,
12115                  * force the pipe off to avoid oopsing in the modeset code
12116                  * due to fb==NULL. This should only happen during boot since
12117                  * we don't yet reconstruct the FB from the hardware state.
12118                  */
12119                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
12120                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
12121
12122                 /* Try to restore the config */
12123                 if (config->mode_changed &&
12124                     intel_set_mode(save_set.crtc, save_set.mode,
12125                                    save_set.x, save_set.y, save_set.fb,
12126                                    state))
12127                         DRM_ERROR("failed to restore config after modeset failure\n");
12128         }
12129
12130 out_config:
12131         if (state)
12132                 drm_atomic_state_free(state);
12133
12134         intel_set_config_free(config);
12135         return ret;
12136 }
12137
12138 static const struct drm_crtc_funcs intel_crtc_funcs = {
12139         .gamma_set = intel_crtc_gamma_set,
12140         .set_config = intel_crtc_set_config,
12141         .destroy = intel_crtc_destroy,
12142         .page_flip = intel_crtc_page_flip,
12143         .atomic_duplicate_state = intel_crtc_duplicate_state,
12144         .atomic_destroy_state = intel_crtc_destroy_state,
12145 };
12146
12147 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12148                                       struct intel_shared_dpll *pll,
12149                                       struct intel_dpll_hw_state *hw_state)
12150 {
12151         uint32_t val;
12152
12153         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
12154                 return false;
12155
12156         val = I915_READ(PCH_DPLL(pll->id));
12157         hw_state->dpll = val;
12158         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
12159         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
12160
12161         return val & DPLL_VCO_ENABLE;
12162 }
12163
12164 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
12165                                   struct intel_shared_dpll *pll)
12166 {
12167         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
12168         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
12169 }
12170
12171 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
12172                                 struct intel_shared_dpll *pll)
12173 {
12174         /* PCH refclock must be enabled first */
12175         ibx_assert_pch_refclk_enabled(dev_priv);
12176
12177         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12178
12179         /* Wait for the clocks to stabilize. */
12180         POSTING_READ(PCH_DPLL(pll->id));
12181         udelay(150);
12182
12183         /* The pixel multiplier can only be updated once the
12184          * DPLL is enabled and the clocks are stable.
12185          *
12186          * So write it again.
12187          */
12188         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12189         POSTING_READ(PCH_DPLL(pll->id));
12190         udelay(200);
12191 }
12192
12193 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
12194                                  struct intel_shared_dpll *pll)
12195 {
12196         struct drm_device *dev = dev_priv->dev;
12197         struct intel_crtc *crtc;
12198
12199         /* Make sure no transcoder isn't still depending on us. */
12200         for_each_intel_crtc(dev, crtc) {
12201                 if (intel_crtc_to_shared_dpll(crtc) == pll)
12202                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
12203         }
12204
12205         I915_WRITE(PCH_DPLL(pll->id), 0);
12206         POSTING_READ(PCH_DPLL(pll->id));
12207         udelay(200);
12208 }
12209
12210 static char *ibx_pch_dpll_names[] = {
12211         "PCH DPLL A",
12212         "PCH DPLL B",
12213 };
12214
12215 static void ibx_pch_dpll_init(struct drm_device *dev)
12216 {
12217         struct drm_i915_private *dev_priv = dev->dev_private;
12218         int i;
12219
12220         dev_priv->num_shared_dpll = 2;
12221
12222         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12223                 dev_priv->shared_dplls[i].id = i;
12224                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
12225                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
12226                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12227                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
12228                 dev_priv->shared_dplls[i].get_hw_state =
12229                         ibx_pch_dpll_get_hw_state;
12230         }
12231 }
12232
12233 static void intel_shared_dpll_init(struct drm_device *dev)
12234 {
12235         struct drm_i915_private *dev_priv = dev->dev_private;
12236
12237         if (HAS_DDI(dev))
12238                 intel_ddi_pll_init(dev);
12239         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
12240                 ibx_pch_dpll_init(dev);
12241         else
12242                 dev_priv->num_shared_dpll = 0;
12243
12244         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
12245 }
12246
12247 /**
12248  * intel_wm_need_update - Check whether watermarks need updating
12249  * @plane: drm plane
12250  * @state: new plane state
12251  *
12252  * Check current plane state versus the new one to determine whether
12253  * watermarks need to be recalculated.
12254  *
12255  * Returns true or false.
12256  */
12257 bool intel_wm_need_update(struct drm_plane *plane,
12258                           struct drm_plane_state *state)
12259 {
12260         /* Update watermarks on tiling changes. */
12261         if (!plane->state->fb || !state->fb ||
12262             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12263             plane->state->rotation != state->rotation)
12264                 return true;
12265
12266         return false;
12267 }
12268
12269 /**
12270  * intel_prepare_plane_fb - Prepare fb for usage on plane
12271  * @plane: drm plane to prepare for
12272  * @fb: framebuffer to prepare for presentation
12273  *
12274  * Prepares a framebuffer for usage on a display plane.  Generally this
12275  * involves pinning the underlying object and updating the frontbuffer tracking
12276  * bits.  Some older platforms need special physical address handling for
12277  * cursor planes.
12278  *
12279  * Returns 0 on success, negative error code on failure.
12280  */
12281 int
12282 intel_prepare_plane_fb(struct drm_plane *plane,
12283                        struct drm_framebuffer *fb,
12284                        const struct drm_plane_state *new_state)
12285 {
12286         struct drm_device *dev = plane->dev;
12287         struct intel_plane *intel_plane = to_intel_plane(plane);
12288         enum pipe pipe = intel_plane->pipe;
12289         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12290         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12291         unsigned frontbuffer_bits = 0;
12292         int ret = 0;
12293
12294         if (!obj)
12295                 return 0;
12296
12297         switch (plane->type) {
12298         case DRM_PLANE_TYPE_PRIMARY:
12299                 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12300                 break;
12301         case DRM_PLANE_TYPE_CURSOR:
12302                 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12303                 break;
12304         case DRM_PLANE_TYPE_OVERLAY:
12305                 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
12306                 break;
12307         }
12308
12309         mutex_lock(&dev->struct_mutex);
12310
12311         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12312             INTEL_INFO(dev)->cursor_needs_physical) {
12313                 int align = IS_I830(dev) ? 16 * 1024 : 256;
12314                 ret = i915_gem_object_attach_phys(obj, align);
12315                 if (ret)
12316                         DRM_DEBUG_KMS("failed to attach phys object\n");
12317         } else {
12318                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
12319         }
12320
12321         if (ret == 0)
12322                 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
12323
12324         mutex_unlock(&dev->struct_mutex);
12325
12326         return ret;
12327 }
12328
12329 /**
12330  * intel_cleanup_plane_fb - Cleans up an fb after plane use
12331  * @plane: drm plane to clean up for
12332  * @fb: old framebuffer that was on plane
12333  *
12334  * Cleans up a framebuffer that has just been removed from a plane.
12335  */
12336 void
12337 intel_cleanup_plane_fb(struct drm_plane *plane,
12338                        struct drm_framebuffer *fb,
12339                        const struct drm_plane_state *old_state)
12340 {
12341         struct drm_device *dev = plane->dev;
12342         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12343
12344         if (WARN_ON(!obj))
12345                 return;
12346
12347         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12348             !INTEL_INFO(dev)->cursor_needs_physical) {
12349                 mutex_lock(&dev->struct_mutex);
12350                 intel_unpin_fb_obj(fb, old_state);
12351                 mutex_unlock(&dev->struct_mutex);
12352         }
12353 }
12354
12355 static int
12356 intel_check_primary_plane(struct drm_plane *plane,
12357                           struct intel_plane_state *state)
12358 {
12359         struct drm_device *dev = plane->dev;
12360         struct drm_i915_private *dev_priv = dev->dev_private;
12361         struct drm_crtc *crtc = state->base.crtc;
12362         struct intel_crtc *intel_crtc;
12363         struct drm_framebuffer *fb = state->base.fb;
12364         struct drm_rect *dest = &state->dst;
12365         struct drm_rect *src = &state->src;
12366         const struct drm_rect *clip = &state->clip;
12367         int ret;
12368
12369         crtc = crtc ? crtc : plane->crtc;
12370         intel_crtc = to_intel_crtc(crtc);
12371
12372         ret = drm_plane_helper_check_update(plane, crtc, fb,
12373                                             src, dest, clip,
12374                                             DRM_PLANE_HELPER_NO_SCALING,
12375                                             DRM_PLANE_HELPER_NO_SCALING,
12376                                             false, true, &state->visible);
12377         if (ret)
12378                 return ret;
12379
12380         if (intel_crtc->active) {
12381                 intel_crtc->atomic.wait_for_flips = true;
12382
12383                 /*
12384                  * FBC does not work on some platforms for rotated
12385                  * planes, so disable it when rotation is not 0 and
12386                  * update it when rotation is set back to 0.
12387                  *
12388                  * FIXME: This is redundant with the fbc update done in
12389                  * the primary plane enable function except that that
12390                  * one is done too late. We eventually need to unify
12391                  * this.
12392                  */
12393                 if (intel_crtc->primary_enabled &&
12394                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
12395                     dev_priv->fbc.crtc == intel_crtc &&
12396                     state->base.rotation != BIT(DRM_ROTATE_0)) {
12397                         intel_crtc->atomic.disable_fbc = true;
12398                 }
12399
12400                 if (state->visible) {
12401                         /*
12402                          * BDW signals flip done immediately if the plane
12403                          * is disabled, even if the plane enable is already
12404                          * armed to occur at the next vblank :(
12405                          */
12406                         if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
12407                                 intel_crtc->atomic.wait_vblank = true;
12408                 }
12409
12410                 intel_crtc->atomic.fb_bits |=
12411                         INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
12412
12413                 intel_crtc->atomic.update_fbc = true;
12414
12415                 if (intel_wm_need_update(plane, &state->base))
12416                         intel_crtc->atomic.update_wm = true;
12417         }
12418
12419         return 0;
12420 }
12421
12422 static void
12423 intel_commit_primary_plane(struct drm_plane *plane,
12424                            struct intel_plane_state *state)
12425 {
12426         struct drm_crtc *crtc = state->base.crtc;
12427         struct drm_framebuffer *fb = state->base.fb;
12428         struct drm_device *dev = plane->dev;
12429         struct drm_i915_private *dev_priv = dev->dev_private;
12430         struct intel_crtc *intel_crtc;
12431         struct drm_rect *src = &state->src;
12432
12433         crtc = crtc ? crtc : plane->crtc;
12434         intel_crtc = to_intel_crtc(crtc);
12435
12436         plane->fb = fb;
12437         crtc->x = src->x1 >> 16;
12438         crtc->y = src->y1 >> 16;
12439
12440         if (intel_crtc->active) {
12441                 if (state->visible) {
12442                         /* FIXME: kill this fastboot hack */
12443                         intel_update_pipe_size(intel_crtc);
12444
12445                         intel_crtc->primary_enabled = true;
12446
12447                         dev_priv->display.update_primary_plane(crtc, plane->fb,
12448                                         crtc->x, crtc->y);
12449                 } else {
12450                         /*
12451                          * If clipping results in a non-visible primary plane,
12452                          * we'll disable the primary plane.  Note that this is
12453                          * a bit different than what happens if userspace
12454                          * explicitly disables the plane by passing fb=0
12455                          * because plane->fb still gets set and pinned.
12456                          */
12457                         intel_disable_primary_hw_plane(plane, crtc);
12458                 }
12459         }
12460 }
12461
12462 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
12463 {
12464         struct drm_device *dev = crtc->dev;
12465         struct drm_i915_private *dev_priv = dev->dev_private;
12466         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12467         struct intel_plane *intel_plane;
12468         struct drm_plane *p;
12469         unsigned fb_bits = 0;
12470
12471         /* Track fb's for any planes being disabled */
12472         list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12473                 intel_plane = to_intel_plane(p);
12474
12475                 if (intel_crtc->atomic.disabled_planes &
12476                     (1 << drm_plane_index(p))) {
12477                         switch (p->type) {
12478                         case DRM_PLANE_TYPE_PRIMARY:
12479                                 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12480                                 break;
12481                         case DRM_PLANE_TYPE_CURSOR:
12482                                 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12483                                 break;
12484                         case DRM_PLANE_TYPE_OVERLAY:
12485                                 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12486                                 break;
12487                         }
12488
12489                         mutex_lock(&dev->struct_mutex);
12490                         i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12491                         mutex_unlock(&dev->struct_mutex);
12492                 }
12493         }
12494
12495         if (intel_crtc->atomic.wait_for_flips)
12496                 intel_crtc_wait_for_pending_flips(crtc);
12497
12498         if (intel_crtc->atomic.disable_fbc)
12499                 intel_fbc_disable(dev);
12500
12501         if (intel_crtc->atomic.pre_disable_primary)
12502                 intel_pre_disable_primary(crtc);
12503
12504         if (intel_crtc->atomic.update_wm)
12505                 intel_update_watermarks(crtc);
12506
12507         intel_runtime_pm_get(dev_priv);
12508
12509         /* Perform vblank evasion around commit operation */
12510         if (intel_crtc->active)
12511                 intel_crtc->atomic.evade =
12512                         intel_pipe_update_start(intel_crtc,
12513                                                 &intel_crtc->atomic.start_vbl_count);
12514 }
12515
12516 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12517 {
12518         struct drm_device *dev = crtc->dev;
12519         struct drm_i915_private *dev_priv = dev->dev_private;
12520         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12521         struct drm_plane *p;
12522
12523         if (intel_crtc->atomic.evade)
12524                 intel_pipe_update_end(intel_crtc,
12525                                       intel_crtc->atomic.start_vbl_count);
12526
12527         intel_runtime_pm_put(dev_priv);
12528
12529         if (intel_crtc->atomic.wait_vblank)
12530                 intel_wait_for_vblank(dev, intel_crtc->pipe);
12531
12532         intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12533
12534         if (intel_crtc->atomic.update_fbc) {
12535                 mutex_lock(&dev->struct_mutex);
12536                 intel_fbc_update(dev);
12537                 mutex_unlock(&dev->struct_mutex);
12538         }
12539
12540         if (intel_crtc->atomic.post_enable_primary)
12541                 intel_post_enable_primary(crtc);
12542
12543         drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12544                 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12545                         intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12546                                                        false, false);
12547
12548         memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
12549 }
12550
12551 /**
12552  * intel_plane_destroy - destroy a plane
12553  * @plane: plane to destroy
12554  *
12555  * Common destruction function for all types of planes (primary, cursor,
12556  * sprite).
12557  */
12558 void intel_plane_destroy(struct drm_plane *plane)
12559 {
12560         struct intel_plane *intel_plane = to_intel_plane(plane);
12561         drm_plane_cleanup(plane);
12562         kfree(intel_plane);
12563 }
12564
12565 const struct drm_plane_funcs intel_plane_funcs = {
12566         .update_plane = drm_plane_helper_update,
12567         .disable_plane = drm_plane_helper_disable,
12568         .destroy = intel_plane_destroy,
12569         .set_property = drm_atomic_helper_plane_set_property,
12570         .atomic_get_property = intel_plane_atomic_get_property,
12571         .atomic_set_property = intel_plane_atomic_set_property,
12572         .atomic_duplicate_state = intel_plane_duplicate_state,
12573         .atomic_destroy_state = intel_plane_destroy_state,
12574
12575 };
12576
12577 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12578                                                     int pipe)
12579 {
12580         struct intel_plane *primary;
12581         struct intel_plane_state *state;
12582         const uint32_t *intel_primary_formats;
12583         int num_formats;
12584
12585         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12586         if (primary == NULL)
12587                 return NULL;
12588
12589         state = intel_create_plane_state(&primary->base);
12590         if (!state) {
12591                 kfree(primary);
12592                 return NULL;
12593         }
12594         primary->base.state = &state->base;
12595
12596         primary->can_scale = false;
12597         primary->max_downscale = 1;
12598         primary->pipe = pipe;
12599         primary->plane = pipe;
12600         primary->check_plane = intel_check_primary_plane;
12601         primary->commit_plane = intel_commit_primary_plane;
12602         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12603                 primary->plane = !pipe;
12604
12605         if (INTEL_INFO(dev)->gen <= 3) {
12606                 intel_primary_formats = intel_primary_formats_gen2;
12607                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12608         } else {
12609                 intel_primary_formats = intel_primary_formats_gen4;
12610                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12611         }
12612
12613         drm_universal_plane_init(dev, &primary->base, 0,
12614                                  &intel_plane_funcs,
12615                                  intel_primary_formats, num_formats,
12616                                  DRM_PLANE_TYPE_PRIMARY);
12617
12618         if (INTEL_INFO(dev)->gen >= 4) {
12619                 if (!dev->mode_config.rotation_property)
12620                         dev->mode_config.rotation_property =
12621                                 drm_mode_create_rotation_property(dev,
12622                                                         BIT(DRM_ROTATE_0) |
12623                                                         BIT(DRM_ROTATE_180));
12624                 if (dev->mode_config.rotation_property)
12625                         drm_object_attach_property(&primary->base.base,
12626                                 dev->mode_config.rotation_property,
12627                                 state->base.rotation);
12628         }
12629
12630         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12631
12632         return &primary->base;
12633 }
12634
12635 static int
12636 intel_check_cursor_plane(struct drm_plane *plane,
12637                          struct intel_plane_state *state)
12638 {
12639         struct drm_crtc *crtc = state->base.crtc;
12640         struct drm_device *dev = plane->dev;
12641         struct drm_framebuffer *fb = state->base.fb;
12642         struct drm_rect *dest = &state->dst;
12643         struct drm_rect *src = &state->src;
12644         const struct drm_rect *clip = &state->clip;
12645         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12646         struct intel_crtc *intel_crtc;
12647         unsigned stride;
12648         int ret;
12649
12650         crtc = crtc ? crtc : plane->crtc;
12651         intel_crtc = to_intel_crtc(crtc);
12652
12653         ret = drm_plane_helper_check_update(plane, crtc, fb,
12654                                             src, dest, clip,
12655                                             DRM_PLANE_HELPER_NO_SCALING,
12656                                             DRM_PLANE_HELPER_NO_SCALING,
12657                                             true, true, &state->visible);
12658         if (ret)
12659                 return ret;
12660
12661
12662         /* if we want to turn off the cursor ignore width and height */
12663         if (!obj)
12664                 goto finish;
12665
12666         /* Check for which cursor types we support */
12667         if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12668                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12669                           state->base.crtc_w, state->base.crtc_h);
12670                 return -EINVAL;
12671         }
12672
12673         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12674         if (obj->base.size < stride * state->base.crtc_h) {
12675                 DRM_DEBUG_KMS("buffer is too small\n");
12676                 return -ENOMEM;
12677         }
12678
12679         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
12680                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12681                 ret = -EINVAL;
12682         }
12683
12684 finish:
12685         if (intel_crtc->active) {
12686                 if (plane->state->crtc_w != state->base.crtc_w)
12687                         intel_crtc->atomic.update_wm = true;
12688
12689                 intel_crtc->atomic.fb_bits |=
12690                         INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12691         }
12692
12693         return ret;
12694 }
12695
12696 static void
12697 intel_commit_cursor_plane(struct drm_plane *plane,
12698                           struct intel_plane_state *state)
12699 {
12700         struct drm_crtc *crtc = state->base.crtc;
12701         struct drm_device *dev = plane->dev;
12702         struct intel_crtc *intel_crtc;
12703         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12704         uint32_t addr;
12705
12706         crtc = crtc ? crtc : plane->crtc;
12707         intel_crtc = to_intel_crtc(crtc);
12708
12709         plane->fb = state->base.fb;
12710         crtc->cursor_x = state->base.crtc_x;
12711         crtc->cursor_y = state->base.crtc_y;
12712
12713         if (intel_crtc->cursor_bo == obj)
12714                 goto update;
12715
12716         if (!obj)
12717                 addr = 0;
12718         else if (!INTEL_INFO(dev)->cursor_needs_physical)
12719                 addr = i915_gem_obj_ggtt_offset(obj);
12720         else
12721                 addr = obj->phys_handle->busaddr;
12722
12723         intel_crtc->cursor_addr = addr;
12724         intel_crtc->cursor_bo = obj;
12725 update:
12726
12727         if (intel_crtc->active)
12728                 intel_crtc_update_cursor(crtc, state->visible);
12729 }
12730
12731 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12732                                                    int pipe)
12733 {
12734         struct intel_plane *cursor;
12735         struct intel_plane_state *state;
12736
12737         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12738         if (cursor == NULL)
12739                 return NULL;
12740
12741         state = intel_create_plane_state(&cursor->base);
12742         if (!state) {
12743                 kfree(cursor);
12744                 return NULL;
12745         }
12746         cursor->base.state = &state->base;
12747
12748         cursor->can_scale = false;
12749         cursor->max_downscale = 1;
12750         cursor->pipe = pipe;
12751         cursor->plane = pipe;
12752         cursor->check_plane = intel_check_cursor_plane;
12753         cursor->commit_plane = intel_commit_cursor_plane;
12754
12755         drm_universal_plane_init(dev, &cursor->base, 0,
12756                                  &intel_plane_funcs,
12757                                  intel_cursor_formats,
12758                                  ARRAY_SIZE(intel_cursor_formats),
12759                                  DRM_PLANE_TYPE_CURSOR);
12760
12761         if (INTEL_INFO(dev)->gen >= 4) {
12762                 if (!dev->mode_config.rotation_property)
12763                         dev->mode_config.rotation_property =
12764                                 drm_mode_create_rotation_property(dev,
12765                                                         BIT(DRM_ROTATE_0) |
12766                                                         BIT(DRM_ROTATE_180));
12767                 if (dev->mode_config.rotation_property)
12768                         drm_object_attach_property(&cursor->base.base,
12769                                 dev->mode_config.rotation_property,
12770                                 state->base.rotation);
12771         }
12772
12773         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12774
12775         return &cursor->base;
12776 }
12777
12778 static void intel_crtc_init(struct drm_device *dev, int pipe)
12779 {
12780         struct drm_i915_private *dev_priv = dev->dev_private;
12781         struct intel_crtc *intel_crtc;
12782         struct intel_crtc_state *crtc_state = NULL;
12783         struct drm_plane *primary = NULL;
12784         struct drm_plane *cursor = NULL;
12785         int i, ret;
12786
12787         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12788         if (intel_crtc == NULL)
12789                 return;
12790
12791         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12792         if (!crtc_state)
12793                 goto fail;
12794         intel_crtc_set_state(intel_crtc, crtc_state);
12795         crtc_state->base.crtc = &intel_crtc->base;
12796
12797         primary = intel_primary_plane_create(dev, pipe);
12798         if (!primary)
12799                 goto fail;
12800
12801         cursor = intel_cursor_plane_create(dev, pipe);
12802         if (!cursor)
12803                 goto fail;
12804
12805         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12806                                         cursor, &intel_crtc_funcs);
12807         if (ret)
12808                 goto fail;
12809
12810         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12811         for (i = 0; i < 256; i++) {
12812                 intel_crtc->lut_r[i] = i;
12813                 intel_crtc->lut_g[i] = i;
12814                 intel_crtc->lut_b[i] = i;
12815         }
12816
12817         /*
12818          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12819          * is hooked to pipe B. Hence we want plane A feeding pipe B.
12820          */
12821         intel_crtc->pipe = pipe;
12822         intel_crtc->plane = pipe;
12823         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12824                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12825                 intel_crtc->plane = !pipe;
12826         }
12827
12828         intel_crtc->cursor_base = ~0;
12829         intel_crtc->cursor_cntl = ~0;
12830         intel_crtc->cursor_size = ~0;
12831
12832         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12833                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12834         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12835         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12836
12837         INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12838
12839         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12840
12841         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12842         return;
12843
12844 fail:
12845         if (primary)
12846                 drm_plane_cleanup(primary);
12847         if (cursor)
12848                 drm_plane_cleanup(cursor);
12849         kfree(crtc_state);
12850         kfree(intel_crtc);
12851 }
12852
12853 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12854 {
12855         struct drm_encoder *encoder = connector->base.encoder;
12856         struct drm_device *dev = connector->base.dev;
12857
12858         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12859
12860         if (!encoder || WARN_ON(!encoder->crtc))
12861                 return INVALID_PIPE;
12862
12863         return to_intel_crtc(encoder->crtc)->pipe;
12864 }
12865
12866 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12867                                 struct drm_file *file)
12868 {
12869         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12870         struct drm_crtc *drmmode_crtc;
12871         struct intel_crtc *crtc;
12872
12873         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12874
12875         if (!drmmode_crtc) {
12876                 DRM_ERROR("no such CRTC id\n");
12877                 return -ENOENT;
12878         }
12879
12880         crtc = to_intel_crtc(drmmode_crtc);
12881         pipe_from_crtc_id->pipe = crtc->pipe;
12882
12883         return 0;
12884 }
12885
12886 static int intel_encoder_clones(struct intel_encoder *encoder)
12887 {
12888         struct drm_device *dev = encoder->base.dev;
12889         struct intel_encoder *source_encoder;
12890         int index_mask = 0;
12891         int entry = 0;
12892
12893         for_each_intel_encoder(dev, source_encoder) {
12894                 if (encoders_cloneable(encoder, source_encoder))
12895                         index_mask |= (1 << entry);
12896
12897                 entry++;
12898         }
12899
12900         return index_mask;
12901 }
12902
12903 static bool has_edp_a(struct drm_device *dev)
12904 {
12905         struct drm_i915_private *dev_priv = dev->dev_private;
12906
12907         if (!IS_MOBILE(dev))
12908                 return false;
12909
12910         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12911                 return false;
12912
12913         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12914                 return false;
12915
12916         return true;
12917 }
12918
12919 static bool intel_crt_present(struct drm_device *dev)
12920 {
12921         struct drm_i915_private *dev_priv = dev->dev_private;
12922
12923         if (INTEL_INFO(dev)->gen >= 9)
12924                 return false;
12925
12926         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12927                 return false;
12928
12929         if (IS_CHERRYVIEW(dev))
12930                 return false;
12931
12932         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12933                 return false;
12934
12935         return true;
12936 }
12937
12938 static void intel_setup_outputs(struct drm_device *dev)
12939 {
12940         struct drm_i915_private *dev_priv = dev->dev_private;
12941         struct intel_encoder *encoder;
12942         struct drm_connector *connector;
12943         bool dpd_is_edp = false;
12944
12945         intel_lvds_init(dev);
12946
12947         if (intel_crt_present(dev))
12948                 intel_crt_init(dev);
12949
12950         if (HAS_DDI(dev)) {
12951                 int found;
12952
12953                 /*
12954                  * Haswell uses DDI functions to detect digital outputs.
12955                  * On SKL pre-D0 the strap isn't connected, so we assume
12956                  * it's there.
12957                  */
12958                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12959                 /* WaIgnoreDDIAStrap: skl */
12960                 if (found ||
12961                     (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
12962                         intel_ddi_init(dev, PORT_A);
12963
12964                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12965                  * register */
12966                 found = I915_READ(SFUSE_STRAP);
12967
12968                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12969                         intel_ddi_init(dev, PORT_B);
12970                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12971                         intel_ddi_init(dev, PORT_C);
12972                 if (found & SFUSE_STRAP_DDID_DETECTED)
12973                         intel_ddi_init(dev, PORT_D);
12974         } else if (HAS_PCH_SPLIT(dev)) {
12975                 int found;
12976                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12977
12978                 if (has_edp_a(dev))
12979                         intel_dp_init(dev, DP_A, PORT_A);
12980
12981                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12982                         /* PCH SDVOB multiplex with HDMIB */
12983                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12984                         if (!found)
12985                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12986                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12987                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12988                 }
12989
12990                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12991                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12992
12993                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12994                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12995
12996                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12997                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12998
12999                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13000                         intel_dp_init(dev, PCH_DP_D, PORT_D);
13001         } else if (IS_VALLEYVIEW(dev)) {
13002                 /*
13003                  * The DP_DETECTED bit is the latched state of the DDC
13004                  * SDA pin at boot. However since eDP doesn't require DDC
13005                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
13006                  * eDP ports may have been muxed to an alternate function.
13007                  * Thus we can't rely on the DP_DETECTED bit alone to detect
13008                  * eDP ports. Consult the VBT as well as DP_DETECTED to
13009                  * detect eDP ports.
13010                  */
13011                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13012                     !intel_dp_is_edp(dev, PORT_B))
13013                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13014                                         PORT_B);
13015                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13016                     intel_dp_is_edp(dev, PORT_B))
13017                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
13018
13019                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13020                     !intel_dp_is_edp(dev, PORT_C))
13021                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13022                                         PORT_C);
13023                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13024                     intel_dp_is_edp(dev, PORT_C))
13025                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
13026
13027                 if (IS_CHERRYVIEW(dev)) {
13028                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
13029                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13030                                                 PORT_D);
13031                         /* eDP not supported on port D, so don't check VBT */
13032                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13033                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
13034                 }
13035
13036                 intel_dsi_init(dev);
13037         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
13038                 bool found = false;
13039
13040                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13041                         DRM_DEBUG_KMS("probing SDVOB\n");
13042                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
13043                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
13044                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
13045                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
13046                         }
13047
13048                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
13049                                 intel_dp_init(dev, DP_B, PORT_B);
13050                 }
13051
13052                 /* Before G4X SDVOC doesn't have its own detect register */
13053
13054                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13055                         DRM_DEBUG_KMS("probing SDVOC\n");
13056                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
13057                 }
13058
13059                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
13060
13061                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
13062                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
13063                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
13064                         }
13065                         if (SUPPORTS_INTEGRATED_DP(dev))
13066                                 intel_dp_init(dev, DP_C, PORT_C);
13067                 }
13068
13069                 if (SUPPORTS_INTEGRATED_DP(dev) &&
13070                     (I915_READ(DP_D) & DP_DETECTED))
13071                         intel_dp_init(dev, DP_D, PORT_D);
13072         } else if (IS_GEN2(dev))
13073                 intel_dvo_init(dev);
13074
13075         if (SUPPORTS_TV(dev))
13076                 intel_tv_init(dev);
13077
13078         /*
13079          * FIXME:  We don't have full atomic support yet, but we want to be
13080          * able to enable/test plane updates via the atomic interface in the
13081          * meantime.  However as soon as we flip DRIVER_ATOMIC on, the DRM core
13082          * will take some atomic codepaths to lookup properties during
13083          * drmModeGetConnector() that unconditionally dereference
13084          * connector->state.
13085          *
13086          * We create a dummy connector state here for each connector to ensure
13087          * the DRM core doesn't try to dereference a NULL connector->state.
13088          * The actual connector properties will never be updated or contain
13089          * useful information, but since we're doing this specifically for
13090          * testing/debug of the plane operations (and only when a specific
13091          * kernel module option is given), that shouldn't really matter.
13092          *
13093          * We are also relying on these states to convert the legacy mode set
13094          * to use a drm_atomic_state struct. The states are kept consistent
13095          * with actual state, so that it is safe to rely on that instead of
13096          * the staged config.
13097          *
13098          * Once atomic support for crtc's + connectors lands, this loop should
13099          * be removed since we'll be setting up real connector state, which
13100          * will contain Intel-specific properties.
13101          */
13102         list_for_each_entry(connector,
13103                             &dev->mode_config.connector_list,
13104                             head) {
13105                 if (!WARN_ON(connector->state)) {
13106                         connector->state = kzalloc(sizeof(*connector->state),
13107                                                    GFP_KERNEL);
13108                 }
13109         }
13110
13111         intel_psr_init(dev);
13112
13113         for_each_intel_encoder(dev, encoder) {
13114                 encoder->base.possible_crtcs = encoder->crtc_mask;
13115                 encoder->base.possible_clones =
13116                         intel_encoder_clones(encoder);
13117         }
13118
13119         intel_init_pch_refclk(dev);
13120
13121         drm_helper_move_panel_connectors_to_head(dev);
13122 }
13123
13124 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13125 {
13126         struct drm_device *dev = fb->dev;
13127         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13128
13129         drm_framebuffer_cleanup(fb);
13130         mutex_lock(&dev->struct_mutex);
13131         WARN_ON(!intel_fb->obj->framebuffer_references--);
13132         drm_gem_object_unreference(&intel_fb->obj->base);
13133         mutex_unlock(&dev->struct_mutex);
13134         kfree(intel_fb);
13135 }
13136
13137 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
13138                                                 struct drm_file *file,
13139                                                 unsigned int *handle)
13140 {
13141         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13142         struct drm_i915_gem_object *obj = intel_fb->obj;
13143
13144         return drm_gem_handle_create(file, &obj->base, handle);
13145 }
13146
13147 static const struct drm_framebuffer_funcs intel_fb_funcs = {
13148         .destroy = intel_user_framebuffer_destroy,
13149         .create_handle = intel_user_framebuffer_create_handle,
13150 };
13151
13152 static
13153 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
13154                          uint32_t pixel_format)
13155 {
13156         u32 gen = INTEL_INFO(dev)->gen;
13157
13158         if (gen >= 9) {
13159                 /* "The stride in bytes must not exceed the of the size of 8K
13160                  *  pixels and 32K bytes."
13161                  */
13162                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
13163         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
13164                 return 32*1024;
13165         } else if (gen >= 4) {
13166                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13167                         return 16*1024;
13168                 else
13169                         return 32*1024;
13170         } else if (gen >= 3) {
13171                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13172                         return 8*1024;
13173                 else
13174                         return 16*1024;
13175         } else {
13176                 /* XXX DSPC is limited to 4k tiled */
13177                 return 8*1024;
13178         }
13179 }
13180
13181 static int intel_framebuffer_init(struct drm_device *dev,
13182                                   struct intel_framebuffer *intel_fb,
13183                                   struct drm_mode_fb_cmd2 *mode_cmd,
13184                                   struct drm_i915_gem_object *obj)
13185 {
13186         unsigned int aligned_height;
13187         int ret;
13188         u32 pitch_limit, stride_alignment;
13189
13190         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
13191
13192         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13193                 /* Enforce that fb modifier and tiling mode match, but only for
13194                  * X-tiled. This is needed for FBC. */
13195                 if (!!(obj->tiling_mode == I915_TILING_X) !=
13196                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
13197                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
13198                         return -EINVAL;
13199                 }
13200         } else {
13201                 if (obj->tiling_mode == I915_TILING_X)
13202                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13203                 else if (obj->tiling_mode == I915_TILING_Y) {
13204                         DRM_DEBUG("No Y tiling for legacy addfb\n");
13205                         return -EINVAL;
13206                 }
13207         }
13208
13209         /* Passed in modifier sanity checking. */
13210         switch (mode_cmd->modifier[0]) {
13211         case I915_FORMAT_MOD_Y_TILED:
13212         case I915_FORMAT_MOD_Yf_TILED:
13213                 if (INTEL_INFO(dev)->gen < 9) {
13214                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
13215                                   mode_cmd->modifier[0]);
13216                         return -EINVAL;
13217                 }
13218         case DRM_FORMAT_MOD_NONE:
13219         case I915_FORMAT_MOD_X_TILED:
13220                 break;
13221         default:
13222                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13223                           mode_cmd->modifier[0]);
13224                 return -EINVAL;
13225         }
13226
13227         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13228                                                      mode_cmd->pixel_format);
13229         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13230                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13231                           mode_cmd->pitches[0], stride_alignment);
13232                 return -EINVAL;
13233         }
13234
13235         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13236                                            mode_cmd->pixel_format);
13237         if (mode_cmd->pitches[0] > pitch_limit) {
13238                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13239                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
13240                           "tiled" : "linear",
13241                           mode_cmd->pitches[0], pitch_limit);
13242                 return -EINVAL;
13243         }
13244
13245         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
13246             mode_cmd->pitches[0] != obj->stride) {
13247                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13248                           mode_cmd->pitches[0], obj->stride);
13249                 return -EINVAL;
13250         }
13251
13252         /* Reject formats not supported by any plane early. */
13253         switch (mode_cmd->pixel_format) {
13254         case DRM_FORMAT_C8:
13255         case DRM_FORMAT_RGB565:
13256         case DRM_FORMAT_XRGB8888:
13257         case DRM_FORMAT_ARGB8888:
13258                 break;
13259         case DRM_FORMAT_XRGB1555:
13260         case DRM_FORMAT_ARGB1555:
13261                 if (INTEL_INFO(dev)->gen > 3) {
13262                         DRM_DEBUG("unsupported pixel format: %s\n",
13263                                   drm_get_format_name(mode_cmd->pixel_format));
13264                         return -EINVAL;
13265                 }
13266                 break;
13267         case DRM_FORMAT_XBGR8888:
13268         case DRM_FORMAT_ABGR8888:
13269         case DRM_FORMAT_XRGB2101010:
13270         case DRM_FORMAT_ARGB2101010:
13271         case DRM_FORMAT_XBGR2101010:
13272         case DRM_FORMAT_ABGR2101010:
13273                 if (INTEL_INFO(dev)->gen < 4) {
13274                         DRM_DEBUG("unsupported pixel format: %s\n",
13275                                   drm_get_format_name(mode_cmd->pixel_format));
13276                         return -EINVAL;
13277                 }
13278                 break;
13279         case DRM_FORMAT_YUYV:
13280         case DRM_FORMAT_UYVY:
13281         case DRM_FORMAT_YVYU:
13282         case DRM_FORMAT_VYUY:
13283                 if (INTEL_INFO(dev)->gen < 5) {
13284                         DRM_DEBUG("unsupported pixel format: %s\n",
13285                                   drm_get_format_name(mode_cmd->pixel_format));
13286                         return -EINVAL;
13287                 }
13288                 break;
13289         default:
13290                 DRM_DEBUG("unsupported pixel format: %s\n",
13291                           drm_get_format_name(mode_cmd->pixel_format));
13292                 return -EINVAL;
13293         }
13294
13295         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
13296         if (mode_cmd->offsets[0] != 0)
13297                 return -EINVAL;
13298
13299         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
13300                                                mode_cmd->pixel_format,
13301                                                mode_cmd->modifier[0]);
13302         /* FIXME drm helper for size checks (especially planar formats)? */
13303         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
13304                 return -EINVAL;
13305
13306         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
13307         intel_fb->obj = obj;
13308         intel_fb->obj->framebuffer_references++;
13309
13310         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
13311         if (ret) {
13312                 DRM_ERROR("framebuffer init failed %d\n", ret);
13313                 return ret;
13314         }
13315
13316         return 0;
13317 }
13318
13319 static struct drm_framebuffer *
13320 intel_user_framebuffer_create(struct drm_device *dev,
13321                               struct drm_file *filp,
13322                               struct drm_mode_fb_cmd2 *mode_cmd)
13323 {
13324         struct drm_i915_gem_object *obj;
13325
13326         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
13327                                                 mode_cmd->handles[0]));
13328         if (&obj->base == NULL)
13329                 return ERR_PTR(-ENOENT);
13330
13331         return intel_framebuffer_create(dev, mode_cmd, obj);
13332 }
13333
13334 #ifndef CONFIG_DRM_I915_FBDEV
13335 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
13336 {
13337 }
13338 #endif
13339
13340 static const struct drm_mode_config_funcs intel_mode_funcs = {
13341         .fb_create = intel_user_framebuffer_create,
13342         .output_poll_changed = intel_fbdev_output_poll_changed,
13343         .atomic_check = intel_atomic_check,
13344         .atomic_commit = intel_atomic_commit,
13345 };
13346
13347 /* Set up chip specific display functions */
13348 static void intel_init_display(struct drm_device *dev)
13349 {
13350         struct drm_i915_private *dev_priv = dev->dev_private;
13351
13352         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
13353                 dev_priv->display.find_dpll = g4x_find_best_dpll;
13354         else if (IS_CHERRYVIEW(dev))
13355                 dev_priv->display.find_dpll = chv_find_best_dpll;
13356         else if (IS_VALLEYVIEW(dev))
13357                 dev_priv->display.find_dpll = vlv_find_best_dpll;
13358         else if (IS_PINEVIEW(dev))
13359                 dev_priv->display.find_dpll = pnv_find_best_dpll;
13360         else
13361                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
13362
13363         if (INTEL_INFO(dev)->gen >= 9) {
13364                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13365                 dev_priv->display.get_initial_plane_config =
13366                         skylake_get_initial_plane_config;
13367                 dev_priv->display.crtc_compute_clock =
13368                         haswell_crtc_compute_clock;
13369                 dev_priv->display.crtc_enable = haswell_crtc_enable;
13370                 dev_priv->display.crtc_disable = haswell_crtc_disable;
13371                 dev_priv->display.off = ironlake_crtc_off;
13372                 dev_priv->display.update_primary_plane =
13373                         skylake_update_primary_plane;
13374         } else if (HAS_DDI(dev)) {
13375                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13376                 dev_priv->display.get_initial_plane_config =
13377                         ironlake_get_initial_plane_config;
13378                 dev_priv->display.crtc_compute_clock =
13379                         haswell_crtc_compute_clock;
13380                 dev_priv->display.crtc_enable = haswell_crtc_enable;
13381                 dev_priv->display.crtc_disable = haswell_crtc_disable;
13382                 dev_priv->display.off = ironlake_crtc_off;
13383                 dev_priv->display.update_primary_plane =
13384                         ironlake_update_primary_plane;
13385         } else if (HAS_PCH_SPLIT(dev)) {
13386                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
13387                 dev_priv->display.get_initial_plane_config =
13388                         ironlake_get_initial_plane_config;
13389                 dev_priv->display.crtc_compute_clock =
13390                         ironlake_crtc_compute_clock;
13391                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
13392                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
13393                 dev_priv->display.off = ironlake_crtc_off;
13394                 dev_priv->display.update_primary_plane =
13395                         ironlake_update_primary_plane;
13396         } else if (IS_VALLEYVIEW(dev)) {
13397                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13398                 dev_priv->display.get_initial_plane_config =
13399                         i9xx_get_initial_plane_config;
13400                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13401                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
13402                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13403                 dev_priv->display.off = i9xx_crtc_off;
13404                 dev_priv->display.update_primary_plane =
13405                         i9xx_update_primary_plane;
13406         } else {
13407                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13408                 dev_priv->display.get_initial_plane_config =
13409                         i9xx_get_initial_plane_config;
13410                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13411                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
13412                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13413                 dev_priv->display.off = i9xx_crtc_off;
13414                 dev_priv->display.update_primary_plane =
13415                         i9xx_update_primary_plane;
13416         }
13417
13418         /* Returns the core display clock speed */
13419         if (IS_VALLEYVIEW(dev))
13420                 dev_priv->display.get_display_clock_speed =
13421                         valleyview_get_display_clock_speed;
13422         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
13423                 dev_priv->display.get_display_clock_speed =
13424                         i945_get_display_clock_speed;
13425         else if (IS_I915G(dev))
13426                 dev_priv->display.get_display_clock_speed =
13427                         i915_get_display_clock_speed;
13428         else if (IS_I945GM(dev) || IS_845G(dev))
13429                 dev_priv->display.get_display_clock_speed =
13430                         i9xx_misc_get_display_clock_speed;
13431         else if (IS_PINEVIEW(dev))
13432                 dev_priv->display.get_display_clock_speed =
13433                         pnv_get_display_clock_speed;
13434         else if (IS_I915GM(dev))
13435                 dev_priv->display.get_display_clock_speed =
13436                         i915gm_get_display_clock_speed;
13437         else if (IS_I865G(dev))
13438                 dev_priv->display.get_display_clock_speed =
13439                         i865_get_display_clock_speed;
13440         else if (IS_I85X(dev))
13441                 dev_priv->display.get_display_clock_speed =
13442                         i855_get_display_clock_speed;
13443         else /* 852, 830 */
13444                 dev_priv->display.get_display_clock_speed =
13445                         i830_get_display_clock_speed;
13446
13447         if (IS_GEN5(dev)) {
13448                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
13449         } else if (IS_GEN6(dev)) {
13450                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
13451         } else if (IS_IVYBRIDGE(dev)) {
13452                 /* FIXME: detect B0+ stepping and use auto training */
13453                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
13454         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
13455                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
13456         } else if (IS_VALLEYVIEW(dev)) {
13457                 dev_priv->display.modeset_global_resources =
13458                         valleyview_modeset_global_resources;
13459         }
13460
13461         switch (INTEL_INFO(dev)->gen) {
13462         case 2:
13463                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
13464                 break;
13465
13466         case 3:
13467                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
13468                 break;
13469
13470         case 4:
13471         case 5:
13472                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
13473                 break;
13474
13475         case 6:
13476                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
13477                 break;
13478         case 7:
13479         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
13480                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
13481                 break;
13482         case 9:
13483                 /* Drop through - unsupported since execlist only. */
13484         default:
13485                 /* Default just returns -ENODEV to indicate unsupported */
13486                 dev_priv->display.queue_flip = intel_default_queue_flip;
13487         }
13488
13489         intel_panel_init_backlight_funcs(dev);
13490
13491         mutex_init(&dev_priv->pps_mutex);
13492 }
13493
13494 /*
13495  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13496  * resume, or other times.  This quirk makes sure that's the case for
13497  * affected systems.
13498  */
13499 static void quirk_pipea_force(struct drm_device *dev)
13500 {
13501         struct drm_i915_private *dev_priv = dev->dev_private;
13502
13503         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
13504         DRM_INFO("applying pipe a force quirk\n");
13505 }
13506
13507 static void quirk_pipeb_force(struct drm_device *dev)
13508 {
13509         struct drm_i915_private *dev_priv = dev->dev_private;
13510
13511         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13512         DRM_INFO("applying pipe b force quirk\n");
13513 }
13514
13515 /*
13516  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13517  */
13518 static void quirk_ssc_force_disable(struct drm_device *dev)
13519 {
13520         struct drm_i915_private *dev_priv = dev->dev_private;
13521         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
13522         DRM_INFO("applying lvds SSC disable quirk\n");
13523 }
13524
13525 /*
13526  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13527  * brightness value
13528  */
13529 static void quirk_invert_brightness(struct drm_device *dev)
13530 {
13531         struct drm_i915_private *dev_priv = dev->dev_private;
13532         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
13533         DRM_INFO("applying inverted panel brightness quirk\n");
13534 }
13535
13536 /* Some VBT's incorrectly indicate no backlight is present */
13537 static void quirk_backlight_present(struct drm_device *dev)
13538 {
13539         struct drm_i915_private *dev_priv = dev->dev_private;
13540         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13541         DRM_INFO("applying backlight present quirk\n");
13542 }
13543
13544 struct intel_quirk {
13545         int device;
13546         int subsystem_vendor;
13547         int subsystem_device;
13548         void (*hook)(struct drm_device *dev);
13549 };
13550
13551 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13552 struct intel_dmi_quirk {
13553         void (*hook)(struct drm_device *dev);
13554         const struct dmi_system_id (*dmi_id_list)[];
13555 };
13556
13557 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13558 {
13559         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13560         return 1;
13561 }
13562
13563 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13564         {
13565                 .dmi_id_list = &(const struct dmi_system_id[]) {
13566                         {
13567                                 .callback = intel_dmi_reverse_brightness,
13568                                 .ident = "NCR Corporation",
13569                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13570                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
13571                                 },
13572                         },
13573                         { }  /* terminating entry */
13574                 },
13575                 .hook = quirk_invert_brightness,
13576         },
13577 };
13578
13579 static struct intel_quirk intel_quirks[] = {
13580         /* HP Mini needs pipe A force quirk (LP: #322104) */
13581         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
13582
13583         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13584         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13585
13586         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13587         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13588
13589         /* 830 needs to leave pipe A & dpll A up */
13590         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13591
13592         /* 830 needs to leave pipe B & dpll B up */
13593         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13594
13595         /* Lenovo U160 cannot use SSC on LVDS */
13596         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13597
13598         /* Sony Vaio Y cannot use SSC on LVDS */
13599         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13600
13601         /* Acer Aspire 5734Z must invert backlight brightness */
13602         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13603
13604         /* Acer/eMachines G725 */
13605         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13606
13607         /* Acer/eMachines e725 */
13608         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13609
13610         /* Acer/Packard Bell NCL20 */
13611         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13612
13613         /* Acer Aspire 4736Z */
13614         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13615
13616         /* Acer Aspire 5336 */
13617         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13618
13619         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13620         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13621
13622         /* Acer C720 Chromebook (Core i3 4005U) */
13623         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13624
13625         /* Apple Macbook 2,1 (Core 2 T7400) */
13626         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13627
13628         /* Toshiba CB35 Chromebook (Celeron 2955U) */
13629         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13630
13631         /* HP Chromebook 14 (Celeron 2955U) */
13632         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13633
13634         /* Dell Chromebook 11 */
13635         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
13636 };
13637
13638 static void intel_init_quirks(struct drm_device *dev)
13639 {
13640         struct pci_dev *d = dev->pdev;
13641         int i;
13642
13643         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13644                 struct intel_quirk *q = &intel_quirks[i];
13645
13646                 if (d->device == q->device &&
13647                     (d->subsystem_vendor == q->subsystem_vendor ||
13648                      q->subsystem_vendor == PCI_ANY_ID) &&
13649                     (d->subsystem_device == q->subsystem_device ||
13650                      q->subsystem_device == PCI_ANY_ID))
13651                         q->hook(dev);
13652         }
13653         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13654                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13655                         intel_dmi_quirks[i].hook(dev);
13656         }
13657 }
13658
13659 /* Disable the VGA plane that we never use */
13660 static void i915_disable_vga(struct drm_device *dev)
13661 {
13662         struct drm_i915_private *dev_priv = dev->dev_private;
13663         u8 sr1;
13664         u32 vga_reg = i915_vgacntrl_reg(dev);
13665
13666         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13667         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13668         outb(SR01, VGA_SR_INDEX);
13669         sr1 = inb(VGA_SR_DATA);
13670         outb(sr1 | 1<<5, VGA_SR_DATA);
13671         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13672         udelay(300);
13673
13674         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13675         POSTING_READ(vga_reg);
13676 }
13677
13678 void intel_modeset_init_hw(struct drm_device *dev)
13679 {
13680         intel_prepare_ddi(dev);
13681
13682         if (IS_VALLEYVIEW(dev))
13683                 vlv_update_cdclk(dev);
13684
13685         intel_init_clock_gating(dev);
13686
13687         intel_enable_gt_powersave(dev);
13688 }
13689
13690 void intel_modeset_init(struct drm_device *dev)
13691 {
13692         struct drm_i915_private *dev_priv = dev->dev_private;
13693         int sprite, ret;
13694         enum pipe pipe;
13695         struct intel_crtc *crtc;
13696
13697         drm_mode_config_init(dev);
13698
13699         dev->mode_config.min_width = 0;
13700         dev->mode_config.min_height = 0;
13701
13702         dev->mode_config.preferred_depth = 24;
13703         dev->mode_config.prefer_shadow = 1;
13704
13705         dev->mode_config.allow_fb_modifiers = true;
13706
13707         dev->mode_config.funcs = &intel_mode_funcs;
13708
13709         intel_init_quirks(dev);
13710
13711         intel_init_pm(dev);
13712
13713         if (INTEL_INFO(dev)->num_pipes == 0)
13714                 return;
13715
13716         intel_init_display(dev);
13717         intel_init_audio(dev);
13718
13719         if (IS_GEN2(dev)) {
13720                 dev->mode_config.max_width = 2048;
13721                 dev->mode_config.max_height = 2048;
13722         } else if (IS_GEN3(dev)) {
13723                 dev->mode_config.max_width = 4096;
13724                 dev->mode_config.max_height = 4096;
13725         } else {
13726                 dev->mode_config.max_width = 8192;
13727                 dev->mode_config.max_height = 8192;
13728         }
13729
13730         if (IS_845G(dev) || IS_I865G(dev)) {
13731                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13732                 dev->mode_config.cursor_height = 1023;
13733         } else if (IS_GEN2(dev)) {
13734                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13735                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13736         } else {
13737                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13738                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13739         }
13740
13741         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13742
13743         DRM_DEBUG_KMS("%d display pipe%s available.\n",
13744                       INTEL_INFO(dev)->num_pipes,
13745                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13746
13747         for_each_pipe(dev_priv, pipe) {
13748                 intel_crtc_init(dev, pipe);
13749                 for_each_sprite(dev_priv, pipe, sprite) {
13750                         ret = intel_plane_init(dev, pipe, sprite);
13751                         if (ret)
13752                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13753                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
13754                 }
13755         }
13756
13757         intel_init_dpio(dev);
13758
13759         intel_shared_dpll_init(dev);
13760
13761         /* Just disable it once at startup */
13762         i915_disable_vga(dev);
13763         intel_setup_outputs(dev);
13764
13765         /* Just in case the BIOS is doing something questionable. */
13766         intel_fbc_disable(dev);
13767
13768         drm_modeset_lock_all(dev);
13769         intel_modeset_setup_hw_state(dev, false);
13770         drm_modeset_unlock_all(dev);
13771
13772         for_each_intel_crtc(dev, crtc) {
13773                 if (!crtc->active)
13774                         continue;
13775
13776                 /*
13777                  * Note that reserving the BIOS fb up front prevents us
13778                  * from stuffing other stolen allocations like the ring
13779                  * on top.  This prevents some ugliness at boot time, and
13780                  * can even allow for smooth boot transitions if the BIOS
13781                  * fb is large enough for the active pipe configuration.
13782                  */
13783                 if (dev_priv->display.get_initial_plane_config) {
13784                         dev_priv->display.get_initial_plane_config(crtc,
13785                                                            &crtc->plane_config);
13786                         /*
13787                          * If the fb is shared between multiple heads, we'll
13788                          * just get the first one.
13789                          */
13790                         intel_find_initial_plane_obj(crtc, &crtc->plane_config);
13791                 }
13792         }
13793 }
13794
13795 static void intel_enable_pipe_a(struct drm_device *dev)
13796 {
13797         struct intel_connector *connector;
13798         struct drm_connector *crt = NULL;
13799         struct intel_load_detect_pipe load_detect_temp;
13800         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13801
13802         /* We can't just switch on the pipe A, we need to set things up with a
13803          * proper mode and output configuration. As a gross hack, enable pipe A
13804          * by enabling the load detect pipe once. */
13805         for_each_intel_connector(dev, connector) {
13806                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13807                         crt = &connector->base;
13808                         break;
13809                 }
13810         }
13811
13812         if (!crt)
13813                 return;
13814
13815         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13816                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
13817 }
13818
13819 static bool
13820 intel_check_plane_mapping(struct intel_crtc *crtc)
13821 {
13822         struct drm_device *dev = crtc->base.dev;
13823         struct drm_i915_private *dev_priv = dev->dev_private;
13824         u32 reg, val;
13825
13826         if (INTEL_INFO(dev)->num_pipes == 1)
13827                 return true;
13828
13829         reg = DSPCNTR(!crtc->plane);
13830         val = I915_READ(reg);
13831
13832         if ((val & DISPLAY_PLANE_ENABLE) &&
13833             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13834                 return false;
13835
13836         return true;
13837 }
13838
13839 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13840 {
13841         struct drm_device *dev = crtc->base.dev;
13842         struct drm_i915_private *dev_priv = dev->dev_private;
13843         u32 reg;
13844
13845         /* Clear any frame start delays used for debugging left by the BIOS */
13846         reg = PIPECONF(crtc->config->cpu_transcoder);
13847         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13848
13849         /* restore vblank interrupts to correct state */
13850         drm_crtc_vblank_reset(&crtc->base);
13851         if (crtc->active) {
13852                 update_scanline_offset(crtc);
13853                 drm_crtc_vblank_on(&crtc->base);
13854         }
13855
13856         /* We need to sanitize the plane -> pipe mapping first because this will
13857          * disable the crtc (and hence change the state) if it is wrong. Note
13858          * that gen4+ has a fixed plane -> pipe mapping.  */
13859         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13860                 struct intel_connector *connector;
13861                 bool plane;
13862
13863                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13864                               crtc->base.base.id);
13865
13866                 /* Pipe has the wrong plane attached and the plane is active.
13867                  * Temporarily change the plane mapping and disable everything
13868                  * ...  */
13869                 plane = crtc->plane;
13870                 crtc->plane = !plane;
13871                 crtc->primary_enabled = true;
13872                 dev_priv->display.crtc_disable(&crtc->base);
13873                 crtc->plane = plane;
13874
13875                 /* ... and break all links. */
13876                 for_each_intel_connector(dev, connector) {
13877                         if (connector->encoder->base.crtc != &crtc->base)
13878                                 continue;
13879
13880                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13881                         connector->base.encoder = NULL;
13882                 }
13883                 /* multiple connectors may have the same encoder:
13884                  *  handle them and break crtc link separately */
13885                 for_each_intel_connector(dev, connector)
13886                         if (connector->encoder->base.crtc == &crtc->base) {
13887                                 connector->encoder->base.crtc = NULL;
13888                                 connector->encoder->connectors_active = false;
13889                         }
13890
13891                 WARN_ON(crtc->active);
13892                 crtc->base.state->enable = false;
13893                 crtc->base.enabled = false;
13894         }
13895
13896         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13897             crtc->pipe == PIPE_A && !crtc->active) {
13898                 /* BIOS forgot to enable pipe A, this mostly happens after
13899                  * resume. Force-enable the pipe to fix this, the update_dpms
13900                  * call below we restore the pipe to the right state, but leave
13901                  * the required bits on. */
13902                 intel_enable_pipe_a(dev);
13903         }
13904
13905         /* Adjust the state of the output pipe according to whether we
13906          * have active connectors/encoders. */
13907         intel_crtc_update_dpms(&crtc->base);
13908
13909         if (crtc->active != crtc->base.state->enable) {
13910                 struct intel_encoder *encoder;
13911
13912                 /* This can happen either due to bugs in the get_hw_state
13913                  * functions or because the pipe is force-enabled due to the
13914                  * pipe A quirk. */
13915                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13916                               crtc->base.base.id,
13917                               crtc->base.state->enable ? "enabled" : "disabled",
13918                               crtc->active ? "enabled" : "disabled");
13919
13920                 crtc->base.state->enable = crtc->active;
13921                 crtc->base.enabled = crtc->active;
13922
13923                 /* Because we only establish the connector -> encoder ->
13924                  * crtc links if something is active, this means the
13925                  * crtc is now deactivated. Break the links. connector
13926                  * -> encoder links are only establish when things are
13927                  *  actually up, hence no need to break them. */
13928                 WARN_ON(crtc->active);
13929
13930                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13931                         WARN_ON(encoder->connectors_active);
13932                         encoder->base.crtc = NULL;
13933                 }
13934         }
13935
13936         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13937                 /*
13938                  * We start out with underrun reporting disabled to avoid races.
13939                  * For correct bookkeeping mark this on active crtcs.
13940                  *
13941                  * Also on gmch platforms we dont have any hardware bits to
13942                  * disable the underrun reporting. Which means we need to start
13943                  * out with underrun reporting disabled also on inactive pipes,
13944                  * since otherwise we'll complain about the garbage we read when
13945                  * e.g. coming up after runtime pm.
13946                  *
13947                  * No protection against concurrent access is required - at
13948                  * worst a fifo underrun happens which also sets this to false.
13949                  */
13950                 crtc->cpu_fifo_underrun_disabled = true;
13951                 crtc->pch_fifo_underrun_disabled = true;
13952         }
13953 }
13954
13955 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13956 {
13957         struct intel_connector *connector;
13958         struct drm_device *dev = encoder->base.dev;
13959
13960         /* We need to check both for a crtc link (meaning that the
13961          * encoder is active and trying to read from a pipe) and the
13962          * pipe itself being active. */
13963         bool has_active_crtc = encoder->base.crtc &&
13964                 to_intel_crtc(encoder->base.crtc)->active;
13965
13966         if (encoder->connectors_active && !has_active_crtc) {
13967                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13968                               encoder->base.base.id,
13969                               encoder->base.name);
13970
13971                 /* Connector is active, but has no active pipe. This is
13972                  * fallout from our resume register restoring. Disable
13973                  * the encoder manually again. */
13974                 if (encoder->base.crtc) {
13975                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13976                                       encoder->base.base.id,
13977                                       encoder->base.name);
13978                         encoder->disable(encoder);
13979                         if (encoder->post_disable)
13980                                 encoder->post_disable(encoder);
13981                 }
13982                 encoder->base.crtc = NULL;
13983                 encoder->connectors_active = false;
13984
13985                 /* Inconsistent output/port/pipe state happens presumably due to
13986                  * a bug in one of the get_hw_state functions. Or someplace else
13987                  * in our code, like the register restore mess on resume. Clamp
13988                  * things to off as a safer default. */
13989                 for_each_intel_connector(dev, connector) {
13990                         if (connector->encoder != encoder)
13991                                 continue;
13992                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13993                         connector->base.encoder = NULL;
13994                 }
13995         }
13996         /* Enabled encoders without active connectors will be fixed in
13997          * the crtc fixup. */
13998 }
13999
14000 void i915_redisable_vga_power_on(struct drm_device *dev)
14001 {
14002         struct drm_i915_private *dev_priv = dev->dev_private;
14003         u32 vga_reg = i915_vgacntrl_reg(dev);
14004
14005         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14006                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14007                 i915_disable_vga(dev);
14008         }
14009 }
14010
14011 void i915_redisable_vga(struct drm_device *dev)
14012 {
14013         struct drm_i915_private *dev_priv = dev->dev_private;
14014
14015         /* This function can be called both from intel_modeset_setup_hw_state or
14016          * at a very early point in our resume sequence, where the power well
14017          * structures are not yet restored. Since this function is at a very
14018          * paranoid "someone might have enabled VGA while we were not looking"
14019          * level, just check if the power well is enabled instead of trying to
14020          * follow the "don't touch the power well if we don't need it" policy
14021          * the rest of the driver uses. */
14022         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
14023                 return;
14024
14025         i915_redisable_vga_power_on(dev);
14026 }
14027
14028 static bool primary_get_hw_state(struct intel_crtc *crtc)
14029 {
14030         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14031
14032         if (!crtc->active)
14033                 return false;
14034
14035         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14036 }
14037
14038 static void intel_modeset_readout_hw_state(struct drm_device *dev)
14039 {
14040         struct drm_i915_private *dev_priv = dev->dev_private;
14041         enum pipe pipe;
14042         struct intel_crtc *crtc;
14043         struct intel_encoder *encoder;
14044         struct intel_connector *connector;
14045         int i;
14046
14047         for_each_intel_crtc(dev, crtc) {
14048                 memset(crtc->config, 0, sizeof(*crtc->config));
14049
14050                 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
14051
14052                 crtc->active = dev_priv->display.get_pipe_config(crtc,
14053                                                                  crtc->config);
14054
14055                 crtc->base.state->enable = crtc->active;
14056                 crtc->base.enabled = crtc->active;
14057                 crtc->primary_enabled = primary_get_hw_state(crtc);
14058
14059                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
14060                               crtc->base.base.id,
14061                               crtc->active ? "enabled" : "disabled");
14062         }
14063
14064         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14065                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14066
14067                 pll->on = pll->get_hw_state(dev_priv, pll,
14068                                             &pll->config.hw_state);
14069                 pll->active = 0;
14070                 pll->config.crtc_mask = 0;
14071                 for_each_intel_crtc(dev, crtc) {
14072                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
14073                                 pll->active++;
14074                                 pll->config.crtc_mask |= 1 << crtc->pipe;
14075                         }
14076                 }
14077
14078                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
14079                               pll->name, pll->config.crtc_mask, pll->on);
14080
14081                 if (pll->config.crtc_mask)
14082                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
14083         }
14084
14085         for_each_intel_encoder(dev, encoder) {
14086                 pipe = 0;
14087
14088                 if (encoder->get_hw_state(encoder, &pipe)) {
14089                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14090                         encoder->base.crtc = &crtc->base;
14091                         encoder->get_config(encoder, crtc->config);
14092                 } else {
14093                         encoder->base.crtc = NULL;
14094                 }
14095
14096                 encoder->connectors_active = false;
14097                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
14098                               encoder->base.base.id,
14099                               encoder->base.name,
14100                               encoder->base.crtc ? "enabled" : "disabled",
14101                               pipe_name(pipe));
14102         }
14103
14104         for_each_intel_connector(dev, connector) {
14105                 if (connector->get_hw_state(connector)) {
14106                         connector->base.dpms = DRM_MODE_DPMS_ON;
14107                         connector->encoder->connectors_active = true;
14108                         connector->base.encoder = &connector->encoder->base;
14109                 } else {
14110                         connector->base.dpms = DRM_MODE_DPMS_OFF;
14111                         connector->base.encoder = NULL;
14112                 }
14113                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
14114                               connector->base.base.id,
14115                               connector->base.name,
14116                               connector->base.encoder ? "enabled" : "disabled");
14117         }
14118 }
14119
14120 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
14121  * and i915 state tracking structures. */
14122 void intel_modeset_setup_hw_state(struct drm_device *dev,
14123                                   bool force_restore)
14124 {
14125         struct drm_i915_private *dev_priv = dev->dev_private;
14126         enum pipe pipe;
14127         struct intel_crtc *crtc;
14128         struct intel_encoder *encoder;
14129         int i;
14130
14131         intel_modeset_readout_hw_state(dev);
14132
14133         /*
14134          * Now that we have the config, copy it to each CRTC struct
14135          * Note that this could go away if we move to using crtc_config
14136          * checking everywhere.
14137          */
14138         for_each_intel_crtc(dev, crtc) {
14139                 if (crtc->active && i915.fastboot) {
14140                         intel_mode_from_pipe_config(&crtc->base.mode,
14141                                                     crtc->config);
14142                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
14143                                       crtc->base.base.id);
14144                         drm_mode_debug_printmodeline(&crtc->base.mode);
14145                 }
14146         }
14147
14148         /* HW state is read out, now we need to sanitize this mess. */
14149         for_each_intel_encoder(dev, encoder) {
14150                 intel_sanitize_encoder(encoder);
14151         }
14152
14153         for_each_pipe(dev_priv, pipe) {
14154                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14155                 intel_sanitize_crtc(crtc);
14156                 intel_dump_pipe_config(crtc, crtc->config,
14157                                        "[setup_hw_state]");
14158         }
14159
14160         intel_modeset_update_connector_atomic_state(dev);
14161
14162         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14163                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14164
14165                 if (!pll->on || pll->active)
14166                         continue;
14167
14168                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
14169
14170                 pll->disable(dev_priv, pll);
14171                 pll->on = false;
14172         }
14173
14174         if (IS_GEN9(dev))
14175                 skl_wm_get_hw_state(dev);
14176         else if (HAS_PCH_SPLIT(dev))
14177                 ilk_wm_get_hw_state(dev);
14178
14179         if (force_restore) {
14180                 i915_redisable_vga(dev);
14181
14182                 /*
14183                  * We need to use raw interfaces for restoring state to avoid
14184                  * checking (bogus) intermediate states.
14185                  */
14186                 for_each_pipe(dev_priv, pipe) {
14187                         struct drm_crtc *crtc =
14188                                 dev_priv->pipe_to_crtc_mapping[pipe];
14189
14190                         intel_crtc_restore_mode(crtc);
14191                 }
14192         } else {
14193                 intel_modeset_update_staged_output_state(dev);
14194         }
14195
14196         intel_modeset_check_state(dev);
14197 }
14198
14199 void intel_modeset_gem_init(struct drm_device *dev)
14200 {
14201         struct drm_i915_private *dev_priv = dev->dev_private;
14202         struct drm_crtc *c;
14203         struct drm_i915_gem_object *obj;
14204
14205         mutex_lock(&dev->struct_mutex);
14206         intel_init_gt_powersave(dev);
14207         mutex_unlock(&dev->struct_mutex);
14208
14209         /*
14210          * There may be no VBT; and if the BIOS enabled SSC we can
14211          * just keep using it to avoid unnecessary flicker.  Whereas if the
14212          * BIOS isn't using it, don't assume it will work even if the VBT
14213          * indicates as much.
14214          */
14215         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
14216                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14217                                                 DREF_SSC1_ENABLE);
14218
14219         intel_modeset_init_hw(dev);
14220
14221         intel_setup_overlay(dev);
14222
14223         /*
14224          * Make sure any fbs we allocated at startup are properly
14225          * pinned & fenced.  When we do the allocation it's too early
14226          * for this.
14227          */
14228         mutex_lock(&dev->struct_mutex);
14229         for_each_crtc(dev, c) {
14230                 obj = intel_fb_obj(c->primary->fb);
14231                 if (obj == NULL)
14232                         continue;
14233
14234                 if (intel_pin_and_fence_fb_obj(c->primary,
14235                                                c->primary->fb,
14236                                                c->primary->state,
14237                                                NULL)) {
14238                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
14239                                   to_intel_crtc(c)->pipe);
14240                         drm_framebuffer_unreference(c->primary->fb);
14241                         c->primary->fb = NULL;
14242                         update_state_fb(c->primary);
14243                 }
14244         }
14245         mutex_unlock(&dev->struct_mutex);
14246
14247         intel_backlight_register(dev);
14248 }
14249
14250 void intel_connector_unregister(struct intel_connector *intel_connector)
14251 {
14252         struct drm_connector *connector = &intel_connector->base;
14253
14254         intel_panel_destroy_backlight(connector);
14255         drm_connector_unregister(connector);
14256 }
14257
14258 void intel_modeset_cleanup(struct drm_device *dev)
14259 {
14260         struct drm_i915_private *dev_priv = dev->dev_private;
14261         struct drm_connector *connector;
14262
14263         intel_disable_gt_powersave(dev);
14264
14265         intel_backlight_unregister(dev);
14266
14267         /*
14268          * Interrupts and polling as the first thing to avoid creating havoc.
14269          * Too much stuff here (turning of connectors, ...) would
14270          * experience fancy races otherwise.
14271          */
14272         intel_irq_uninstall(dev_priv);
14273
14274         /*
14275          * Due to the hpd irq storm handling the hotplug work can re-arm the
14276          * poll handlers. Hence disable polling after hpd handling is shut down.
14277          */
14278         drm_kms_helper_poll_fini(dev);
14279
14280         mutex_lock(&dev->struct_mutex);
14281
14282         intel_unregister_dsm_handler();
14283
14284         intel_fbc_disable(dev);
14285
14286         mutex_unlock(&dev->struct_mutex);
14287
14288         /* flush any delayed tasks or pending work */
14289         flush_scheduled_work();
14290
14291         /* destroy the backlight and sysfs files before encoders/connectors */
14292         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
14293                 struct intel_connector *intel_connector;
14294
14295                 intel_connector = to_intel_connector(connector);
14296                 intel_connector->unregister(intel_connector);
14297         }
14298
14299         drm_mode_config_cleanup(dev);
14300
14301         intel_cleanup_overlay(dev);
14302
14303         mutex_lock(&dev->struct_mutex);
14304         intel_cleanup_gt_powersave(dev);
14305         mutex_unlock(&dev->struct_mutex);
14306 }
14307
14308 /*
14309  * Return which encoder is currently attached for connector.
14310  */
14311 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
14312 {
14313         return &intel_attached_encoder(connector)->base;
14314 }
14315
14316 void intel_connector_attach_encoder(struct intel_connector *connector,
14317                                     struct intel_encoder *encoder)
14318 {
14319         connector->encoder = encoder;
14320         drm_mode_connector_attach_encoder(&connector->base,
14321                                           &encoder->base);
14322 }
14323
14324 /*
14325  * set vga decode state - true == enable VGA decode
14326  */
14327 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
14328 {
14329         struct drm_i915_private *dev_priv = dev->dev_private;
14330         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
14331         u16 gmch_ctrl;
14332
14333         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
14334                 DRM_ERROR("failed to read control word\n");
14335                 return -EIO;
14336         }
14337
14338         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
14339                 return 0;
14340
14341         if (state)
14342                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
14343         else
14344                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
14345
14346         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
14347                 DRM_ERROR("failed to write control word\n");
14348                 return -EIO;
14349         }
14350
14351         return 0;
14352 }
14353
14354 struct intel_display_error_state {
14355
14356         u32 power_well_driver;
14357
14358         int num_transcoders;
14359
14360         struct intel_cursor_error_state {
14361                 u32 control;
14362                 u32 position;
14363                 u32 base;
14364                 u32 size;
14365         } cursor[I915_MAX_PIPES];
14366
14367         struct intel_pipe_error_state {
14368                 bool power_domain_on;
14369                 u32 source;
14370                 u32 stat;
14371         } pipe[I915_MAX_PIPES];
14372
14373         struct intel_plane_error_state {
14374                 u32 control;
14375                 u32 stride;
14376                 u32 size;
14377                 u32 pos;
14378                 u32 addr;
14379                 u32 surface;
14380                 u32 tile_offset;
14381         } plane[I915_MAX_PIPES];
14382
14383         struct intel_transcoder_error_state {
14384                 bool power_domain_on;
14385                 enum transcoder cpu_transcoder;
14386
14387                 u32 conf;
14388
14389                 u32 htotal;
14390                 u32 hblank;
14391                 u32 hsync;
14392                 u32 vtotal;
14393                 u32 vblank;
14394                 u32 vsync;
14395         } transcoder[4];
14396 };
14397
14398 struct intel_display_error_state *
14399 intel_display_capture_error_state(struct drm_device *dev)
14400 {
14401         struct drm_i915_private *dev_priv = dev->dev_private;
14402         struct intel_display_error_state *error;
14403         int transcoders[] = {
14404                 TRANSCODER_A,
14405                 TRANSCODER_B,
14406                 TRANSCODER_C,
14407                 TRANSCODER_EDP,
14408         };
14409         int i;
14410
14411         if (INTEL_INFO(dev)->num_pipes == 0)
14412                 return NULL;
14413
14414         error = kzalloc(sizeof(*error), GFP_ATOMIC);
14415         if (error == NULL)
14416                 return NULL;
14417
14418         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14419                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
14420
14421         for_each_pipe(dev_priv, i) {
14422                 error->pipe[i].power_domain_on =
14423                         __intel_display_power_is_enabled(dev_priv,
14424                                                          POWER_DOMAIN_PIPE(i));
14425                 if (!error->pipe[i].power_domain_on)
14426                         continue;
14427
14428                 error->cursor[i].control = I915_READ(CURCNTR(i));
14429                 error->cursor[i].position = I915_READ(CURPOS(i));
14430                 error->cursor[i].base = I915_READ(CURBASE(i));
14431
14432                 error->plane[i].control = I915_READ(DSPCNTR(i));
14433                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
14434                 if (INTEL_INFO(dev)->gen <= 3) {
14435                         error->plane[i].size = I915_READ(DSPSIZE(i));
14436                         error->plane[i].pos = I915_READ(DSPPOS(i));
14437                 }
14438                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14439                         error->plane[i].addr = I915_READ(DSPADDR(i));
14440                 if (INTEL_INFO(dev)->gen >= 4) {
14441                         error->plane[i].surface = I915_READ(DSPSURF(i));
14442                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
14443                 }
14444
14445                 error->pipe[i].source = I915_READ(PIPESRC(i));
14446
14447                 if (HAS_GMCH_DISPLAY(dev))
14448                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
14449         }
14450
14451         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
14452         if (HAS_DDI(dev_priv->dev))
14453                 error->num_transcoders++; /* Account for eDP. */
14454
14455         for (i = 0; i < error->num_transcoders; i++) {
14456                 enum transcoder cpu_transcoder = transcoders[i];
14457
14458                 error->transcoder[i].power_domain_on =
14459                         __intel_display_power_is_enabled(dev_priv,
14460                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
14461                 if (!error->transcoder[i].power_domain_on)
14462                         continue;
14463
14464                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
14465
14466                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
14467                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
14468                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
14469                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
14470                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
14471                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
14472                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
14473         }
14474
14475         return error;
14476 }
14477
14478 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
14479
14480 void
14481 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
14482                                 struct drm_device *dev,
14483                                 struct intel_display_error_state *error)
14484 {
14485         struct drm_i915_private *dev_priv = dev->dev_private;
14486         int i;
14487
14488         if (!error)
14489                 return;
14490
14491         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
14492         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14493                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
14494                            error->power_well_driver);
14495         for_each_pipe(dev_priv, i) {
14496                 err_printf(m, "Pipe [%d]:\n", i);
14497                 err_printf(m, "  Power: %s\n",
14498                            error->pipe[i].power_domain_on ? "on" : "off");
14499                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
14500                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
14501
14502                 err_printf(m, "Plane [%d]:\n", i);
14503                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
14504                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
14505                 if (INTEL_INFO(dev)->gen <= 3) {
14506                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
14507                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
14508                 }
14509                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14510                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
14511                 if (INTEL_INFO(dev)->gen >= 4) {
14512                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
14513                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
14514                 }
14515
14516                 err_printf(m, "Cursor [%d]:\n", i);
14517                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
14518                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
14519                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
14520         }
14521
14522         for (i = 0; i < error->num_transcoders; i++) {
14523                 err_printf(m, "CPU transcoder: %c\n",
14524                            transcoder_name(error->transcoder[i].cpu_transcoder));
14525                 err_printf(m, "  Power: %s\n",
14526                            error->transcoder[i].power_domain_on ? "on" : "off");
14527                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
14528                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
14529                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
14530                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
14531                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
14532                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
14533                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
14534         }
14535 }
14536
14537 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14538 {
14539         struct intel_crtc *crtc;
14540
14541         for_each_intel_crtc(dev, crtc) {
14542                 struct intel_unpin_work *work;
14543
14544                 spin_lock_irq(&dev->event_lock);
14545
14546                 work = crtc->unpin_work;
14547
14548                 if (work && work->event &&
14549                     work->event->base.file_priv == file) {
14550                         kfree(work->event);
14551                         work->event = NULL;
14552                 }
14553
14554                 spin_unlock_irq(&dev->event_lock);
14555         }
14556 }