drm/i915: Validate the state after an atomic modeset only, and pass the state.
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50         DRM_FORMAT_C8,
51         DRM_FORMAT_RGB565,
52         DRM_FORMAT_XRGB1555,
53         DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB8888,
61         DRM_FORMAT_XBGR8888,
62         DRM_FORMAT_XRGB2101010,
63         DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_ARGB8888,
72         DRM_FORMAT_ABGR8888,
73         DRM_FORMAT_XRGB2101010,
74         DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79         DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85                                 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87                                    struct intel_crtc_state *pipe_config);
88
89 static int intel_framebuffer_init(struct drm_device *dev,
90                                   struct intel_framebuffer *ifb,
91                                   struct drm_mode_fb_cmd2 *mode_cmd,
92                                   struct drm_i915_gem_object *obj);
93 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
94 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
95 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
96                                          struct intel_link_m_n *m_n,
97                                          struct intel_link_m_n *m2_n2);
98 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
99 static void haswell_set_pipeconf(struct drm_crtc *crtc);
100 static void intel_set_pipe_csc(struct drm_crtc *crtc);
101 static void vlv_prepare_pll(struct intel_crtc *crtc,
102                             const struct intel_crtc_state *pipe_config);
103 static void chv_prepare_pll(struct intel_crtc *crtc,
104                             const struct intel_crtc_state *pipe_config);
105 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
106 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
107 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
108         struct intel_crtc_state *crtc_state);
109 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
110                            int num_connectors);
111 static void intel_modeset_setup_hw_state(struct drm_device *dev);
112
113 typedef struct {
114         int     min, max;
115 } intel_range_t;
116
117 typedef struct {
118         int     dot_limit;
119         int     p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
125         intel_p2_t          p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132
133         WARN_ON(!HAS_PCH_SPLIT(dev));
134
135         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141         if (IS_GEN5(dev)) {
142                 struct drm_i915_private *dev_priv = dev->dev_private;
143                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144         } else
145                 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149         .dot = { .min = 25000, .max = 350000 },
150         .vco = { .min = 908000, .max = 1512000 },
151         .n = { .min = 2, .max = 16 },
152         .m = { .min = 96, .max = 140 },
153         .m1 = { .min = 18, .max = 26 },
154         .m2 = { .min = 6, .max = 16 },
155         .p = { .min = 4, .max = 128 },
156         .p1 = { .min = 2, .max = 33 },
157         .p2 = { .dot_limit = 165000,
158                 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162         .dot = { .min = 25000, .max = 350000 },
163         .vco = { .min = 908000, .max = 1512000 },
164         .n = { .min = 2, .max = 16 },
165         .m = { .min = 96, .max = 140 },
166         .m1 = { .min = 18, .max = 26 },
167         .m2 = { .min = 6, .max = 16 },
168         .p = { .min = 4, .max = 128 },
169         .p1 = { .min = 2, .max = 33 },
170         .p2 = { .dot_limit = 165000,
171                 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175         .dot = { .min = 25000, .max = 350000 },
176         .vco = { .min = 908000, .max = 1512000 },
177         .n = { .min = 2, .max = 16 },
178         .m = { .min = 96, .max = 140 },
179         .m1 = { .min = 18, .max = 26 },
180         .m2 = { .min = 6, .max = 16 },
181         .p = { .min = 4, .max = 128 },
182         .p1 = { .min = 1, .max = 6 },
183         .p2 = { .dot_limit = 165000,
184                 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188         .dot = { .min = 20000, .max = 400000 },
189         .vco = { .min = 1400000, .max = 2800000 },
190         .n = { .min = 1, .max = 6 },
191         .m = { .min = 70, .max = 120 },
192         .m1 = { .min = 8, .max = 18 },
193         .m2 = { .min = 3, .max = 7 },
194         .p = { .min = 5, .max = 80 },
195         .p1 = { .min = 1, .max = 8 },
196         .p2 = { .dot_limit = 200000,
197                 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201         .dot = { .min = 20000, .max = 400000 },
202         .vco = { .min = 1400000, .max = 2800000 },
203         .n = { .min = 1, .max = 6 },
204         .m = { .min = 70, .max = 120 },
205         .m1 = { .min = 8, .max = 18 },
206         .m2 = { .min = 3, .max = 7 },
207         .p = { .min = 7, .max = 98 },
208         .p1 = { .min = 1, .max = 8 },
209         .p2 = { .dot_limit = 112000,
210                 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215         .dot = { .min = 25000, .max = 270000 },
216         .vco = { .min = 1750000, .max = 3500000},
217         .n = { .min = 1, .max = 4 },
218         .m = { .min = 104, .max = 138 },
219         .m1 = { .min = 17, .max = 23 },
220         .m2 = { .min = 5, .max = 11 },
221         .p = { .min = 10, .max = 30 },
222         .p1 = { .min = 1, .max = 3},
223         .p2 = { .dot_limit = 270000,
224                 .p2_slow = 10,
225                 .p2_fast = 10
226         },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230         .dot = { .min = 22000, .max = 400000 },
231         .vco = { .min = 1750000, .max = 3500000},
232         .n = { .min = 1, .max = 4 },
233         .m = { .min = 104, .max = 138 },
234         .m1 = { .min = 16, .max = 23 },
235         .m2 = { .min = 5, .max = 11 },
236         .p = { .min = 5, .max = 80 },
237         .p1 = { .min = 1, .max = 8},
238         .p2 = { .dot_limit = 165000,
239                 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243         .dot = { .min = 20000, .max = 115000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 28, .max = 112 },
250         .p1 = { .min = 2, .max = 8 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 14, .p2_fast = 14
253         },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257         .dot = { .min = 80000, .max = 224000 },
258         .vco = { .min = 1750000, .max = 3500000 },
259         .n = { .min = 1, .max = 3 },
260         .m = { .min = 104, .max = 138 },
261         .m1 = { .min = 17, .max = 23 },
262         .m2 = { .min = 5, .max = 11 },
263         .p = { .min = 14, .max = 42 },
264         .p1 = { .min = 2, .max = 6 },
265         .p2 = { .dot_limit = 0,
266                 .p2_slow = 7, .p2_fast = 7
267         },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271         .dot = { .min = 20000, .max = 400000},
272         .vco = { .min = 1700000, .max = 3500000 },
273         /* Pineview's Ncounter is a ring counter */
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         /* Pineview only has one combined m divider, which we treat as m2. */
277         .m1 = { .min = 0, .max = 0 },
278         .m2 = { .min = 0, .max = 254 },
279         .p = { .min = 5, .max = 80 },
280         .p1 = { .min = 1, .max = 8 },
281         .p2 = { .dot_limit = 200000,
282                 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286         .dot = { .min = 20000, .max = 400000 },
287         .vco = { .min = 1700000, .max = 3500000 },
288         .n = { .min = 3, .max = 6 },
289         .m = { .min = 2, .max = 256 },
290         .m1 = { .min = 0, .max = 0 },
291         .m2 = { .min = 0, .max = 254 },
292         .p = { .min = 7, .max = 112 },
293         .p1 = { .min = 1, .max = 8 },
294         .p2 = { .dot_limit = 112000,
295                 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299  *
300  * We calculate clock using (register_value + 2) for N/M1/M2, so here
301  * the range value for them is (actual_value - 2).
302  */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304         .dot = { .min = 25000, .max = 350000 },
305         .vco = { .min = 1760000, .max = 3510000 },
306         .n = { .min = 1, .max = 5 },
307         .m = { .min = 79, .max = 127 },
308         .m1 = { .min = 12, .max = 22 },
309         .m2 = { .min = 5, .max = 9 },
310         .p = { .min = 5, .max = 80 },
311         .p1 = { .min = 1, .max = 8 },
312         .p2 = { .dot_limit = 225000,
313                 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317         .dot = { .min = 25000, .max = 350000 },
318         .vco = { .min = 1760000, .max = 3510000 },
319         .n = { .min = 1, .max = 3 },
320         .m = { .min = 79, .max = 118 },
321         .m1 = { .min = 12, .max = 22 },
322         .m2 = { .min = 5, .max = 9 },
323         .p = { .min = 28, .max = 112 },
324         .p1 = { .min = 2, .max = 8 },
325         .p2 = { .dot_limit = 225000,
326                 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330         .dot = { .min = 25000, .max = 350000 },
331         .vco = { .min = 1760000, .max = 3510000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 79, .max = 127 },
334         .m1 = { .min = 12, .max = 22 },
335         .m2 = { .min = 5, .max = 9 },
336         .p = { .min = 14, .max = 56 },
337         .p1 = { .min = 2, .max = 8 },
338         .p2 = { .dot_limit = 225000,
339                 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000 },
346         .n = { .min = 1, .max = 2 },
347         .m = { .min = 79, .max = 126 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 28, .max = 112 },
351         .p1 = { .min = 2, .max = 8 },
352         .p2 = { .dot_limit = 225000,
353                 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357         .dot = { .min = 25000, .max = 350000 },
358         .vco = { .min = 1760000, .max = 3510000 },
359         .n = { .min = 1, .max = 3 },
360         .m = { .min = 79, .max = 126 },
361         .m1 = { .min = 12, .max = 22 },
362         .m2 = { .min = 5, .max = 9 },
363         .p = { .min = 14, .max = 42 },
364         .p1 = { .min = 2, .max = 6 },
365         .p2 = { .dot_limit = 225000,
366                 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370          /*
371           * These are the data rate limits (measured in fast clocks)
372           * since those are the strictest limits we have. The fast
373           * clock and actual rate limits are more relaxed, so checking
374           * them would make no difference.
375           */
376         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m1 = { .min = 2, .max = 3 },
380         .m2 = { .min = 11, .max = 156 },
381         .p1 = { .min = 2, .max = 3 },
382         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386         /*
387          * These are the data rate limits (measured in fast clocks)
388          * since those are the strictest limits we have.  The fast
389          * clock and actual rate limits are more relaxed, so checking
390          * them would make no difference.
391          */
392         .dot = { .min = 25000 * 5, .max = 540000 * 5},
393         .vco = { .min = 4800000, .max = 6480000 },
394         .n = { .min = 1, .max = 1 },
395         .m1 = { .min = 2, .max = 2 },
396         .m2 = { .min = 24 << 22, .max = 175 << 22 },
397         .p1 = { .min = 2, .max = 4 },
398         .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static const intel_limit_t intel_limits_bxt = {
402         /* FIXME: find real dot limits */
403         .dot = { .min = 0, .max = INT_MAX },
404         .vco = { .min = 4800000, .max = 6700000 },
405         .n = { .min = 1, .max = 1 },
406         .m1 = { .min = 2, .max = 2 },
407         /* FIXME: find real m2 limits */
408         .m2 = { .min = 2 << 22, .max = 255 << 22 },
409         .p1 = { .min = 2, .max = 4 },
410         .p2 = { .p2_slow = 1, .p2_fast = 20 },
411 };
412
413 static bool
414 needs_modeset(struct drm_crtc_state *state)
415 {
416         return drm_atomic_crtc_needs_modeset(state);
417 }
418
419 /**
420  * Returns whether any output on the specified pipe is of the specified type
421  */
422 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
423 {
424         struct drm_device *dev = crtc->base.dev;
425         struct intel_encoder *encoder;
426
427         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
428                 if (encoder->type == type)
429                         return true;
430
431         return false;
432 }
433
434 /**
435  * Returns whether any output on the specified pipe will have the specified
436  * type after a staged modeset is complete, i.e., the same as
437  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
438  * encoder->crtc.
439  */
440 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
441                                       int type)
442 {
443         struct drm_atomic_state *state = crtc_state->base.state;
444         struct drm_connector *connector;
445         struct drm_connector_state *connector_state;
446         struct intel_encoder *encoder;
447         int i, num_connectors = 0;
448
449         for_each_connector_in_state(state, connector, connector_state, i) {
450                 if (connector_state->crtc != crtc_state->base.crtc)
451                         continue;
452
453                 num_connectors++;
454
455                 encoder = to_intel_encoder(connector_state->best_encoder);
456                 if (encoder->type == type)
457                         return true;
458         }
459
460         WARN_ON(num_connectors == 0);
461
462         return false;
463 }
464
465 static const intel_limit_t *
466 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
467 {
468         struct drm_device *dev = crtc_state->base.crtc->dev;
469         const intel_limit_t *limit;
470
471         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
472                 if (intel_is_dual_link_lvds(dev)) {
473                         if (refclk == 100000)
474                                 limit = &intel_limits_ironlake_dual_lvds_100m;
475                         else
476                                 limit = &intel_limits_ironlake_dual_lvds;
477                 } else {
478                         if (refclk == 100000)
479                                 limit = &intel_limits_ironlake_single_lvds_100m;
480                         else
481                                 limit = &intel_limits_ironlake_single_lvds;
482                 }
483         } else
484                 limit = &intel_limits_ironlake_dac;
485
486         return limit;
487 }
488
489 static const intel_limit_t *
490 intel_g4x_limit(struct intel_crtc_state *crtc_state)
491 {
492         struct drm_device *dev = crtc_state->base.crtc->dev;
493         const intel_limit_t *limit;
494
495         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
496                 if (intel_is_dual_link_lvds(dev))
497                         limit = &intel_limits_g4x_dual_channel_lvds;
498                 else
499                         limit = &intel_limits_g4x_single_channel_lvds;
500         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
501                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
502                 limit = &intel_limits_g4x_hdmi;
503         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
504                 limit = &intel_limits_g4x_sdvo;
505         } else /* The option is for other outputs */
506                 limit = &intel_limits_i9xx_sdvo;
507
508         return limit;
509 }
510
511 static const intel_limit_t *
512 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
513 {
514         struct drm_device *dev = crtc_state->base.crtc->dev;
515         const intel_limit_t *limit;
516
517         if (IS_BROXTON(dev))
518                 limit = &intel_limits_bxt;
519         else if (HAS_PCH_SPLIT(dev))
520                 limit = intel_ironlake_limit(crtc_state, refclk);
521         else if (IS_G4X(dev)) {
522                 limit = intel_g4x_limit(crtc_state);
523         } else if (IS_PINEVIEW(dev)) {
524                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
525                         limit = &intel_limits_pineview_lvds;
526                 else
527                         limit = &intel_limits_pineview_sdvo;
528         } else if (IS_CHERRYVIEW(dev)) {
529                 limit = &intel_limits_chv;
530         } else if (IS_VALLEYVIEW(dev)) {
531                 limit = &intel_limits_vlv;
532         } else if (!IS_GEN2(dev)) {
533                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
534                         limit = &intel_limits_i9xx_lvds;
535                 else
536                         limit = &intel_limits_i9xx_sdvo;
537         } else {
538                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
539                         limit = &intel_limits_i8xx_lvds;
540                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
541                         limit = &intel_limits_i8xx_dvo;
542                 else
543                         limit = &intel_limits_i8xx_dac;
544         }
545         return limit;
546 }
547
548 /*
549  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
550  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
551  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
552  * The helpers' return value is the rate of the clock that is fed to the
553  * display engine's pipe which can be the above fast dot clock rate or a
554  * divided-down version of it.
555  */
556 /* m1 is reserved as 0 in Pineview, n is a ring counter */
557 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
558 {
559         clock->m = clock->m2 + 2;
560         clock->p = clock->p1 * clock->p2;
561         if (WARN_ON(clock->n == 0 || clock->p == 0))
562                 return 0;
563         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
564         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
565
566         return clock->dot;
567 }
568
569 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
570 {
571         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
572 }
573
574 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
575 {
576         clock->m = i9xx_dpll_compute_m(clock);
577         clock->p = clock->p1 * clock->p2;
578         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
579                 return 0;
580         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
581         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
582
583         return clock->dot;
584 }
585
586 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
587 {
588         clock->m = clock->m1 * clock->m2;
589         clock->p = clock->p1 * clock->p2;
590         if (WARN_ON(clock->n == 0 || clock->p == 0))
591                 return 0;
592         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
593         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
594
595         return clock->dot / 5;
596 }
597
598 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
599 {
600         clock->m = clock->m1 * clock->m2;
601         clock->p = clock->p1 * clock->p2;
602         if (WARN_ON(clock->n == 0 || clock->p == 0))
603                 return 0;
604         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
605                         clock->n << 22);
606         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
607
608         return clock->dot / 5;
609 }
610
611 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
612 /**
613  * Returns whether the given set of divisors are valid for a given refclk with
614  * the given connectors.
615  */
616
617 static bool intel_PLL_is_valid(struct drm_device *dev,
618                                const intel_limit_t *limit,
619                                const intel_clock_t *clock)
620 {
621         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
622                 INTELPllInvalid("n out of range\n");
623         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
624                 INTELPllInvalid("p1 out of range\n");
625         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
626                 INTELPllInvalid("m2 out of range\n");
627         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
628                 INTELPllInvalid("m1 out of range\n");
629
630         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
631                 if (clock->m1 <= clock->m2)
632                         INTELPllInvalid("m1 <= m2\n");
633
634         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
635                 if (clock->p < limit->p.min || limit->p.max < clock->p)
636                         INTELPllInvalid("p out of range\n");
637                 if (clock->m < limit->m.min || limit->m.max < clock->m)
638                         INTELPllInvalid("m out of range\n");
639         }
640
641         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
642                 INTELPllInvalid("vco out of range\n");
643         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
644          * connector, etc., rather than just a single range.
645          */
646         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
647                 INTELPllInvalid("dot out of range\n");
648
649         return true;
650 }
651
652 static int
653 i9xx_select_p2_div(const intel_limit_t *limit,
654                    const struct intel_crtc_state *crtc_state,
655                    int target)
656 {
657         struct drm_device *dev = crtc_state->base.crtc->dev;
658
659         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
660                 /*
661                  * For LVDS just rely on its current settings for dual-channel.
662                  * We haven't figured out how to reliably set up different
663                  * single/dual channel state, if we even can.
664                  */
665                 if (intel_is_dual_link_lvds(dev))
666                         return limit->p2.p2_fast;
667                 else
668                         return limit->p2.p2_slow;
669         } else {
670                 if (target < limit->p2.dot_limit)
671                         return limit->p2.p2_slow;
672                 else
673                         return limit->p2.p2_fast;
674         }
675 }
676
677 static bool
678 i9xx_find_best_dpll(const intel_limit_t *limit,
679                     struct intel_crtc_state *crtc_state,
680                     int target, int refclk, intel_clock_t *match_clock,
681                     intel_clock_t *best_clock)
682 {
683         struct drm_device *dev = crtc_state->base.crtc->dev;
684         intel_clock_t clock;
685         int err = target;
686
687         memset(best_clock, 0, sizeof(*best_clock));
688
689         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
690
691         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
692              clock.m1++) {
693                 for (clock.m2 = limit->m2.min;
694                      clock.m2 <= limit->m2.max; clock.m2++) {
695                         if (clock.m2 >= clock.m1)
696                                 break;
697                         for (clock.n = limit->n.min;
698                              clock.n <= limit->n.max; clock.n++) {
699                                 for (clock.p1 = limit->p1.min;
700                                         clock.p1 <= limit->p1.max; clock.p1++) {
701                                         int this_err;
702
703                                         i9xx_calc_dpll_params(refclk, &clock);
704                                         if (!intel_PLL_is_valid(dev, limit,
705                                                                 &clock))
706                                                 continue;
707                                         if (match_clock &&
708                                             clock.p != match_clock->p)
709                                                 continue;
710
711                                         this_err = abs(clock.dot - target);
712                                         if (this_err < err) {
713                                                 *best_clock = clock;
714                                                 err = this_err;
715                                         }
716                                 }
717                         }
718                 }
719         }
720
721         return (err != target);
722 }
723
724 static bool
725 pnv_find_best_dpll(const intel_limit_t *limit,
726                    struct intel_crtc_state *crtc_state,
727                    int target, int refclk, intel_clock_t *match_clock,
728                    intel_clock_t *best_clock)
729 {
730         struct drm_device *dev = crtc_state->base.crtc->dev;
731         intel_clock_t clock;
732         int err = target;
733
734         memset(best_clock, 0, sizeof(*best_clock));
735
736         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
737
738         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
739              clock.m1++) {
740                 for (clock.m2 = limit->m2.min;
741                      clock.m2 <= limit->m2.max; clock.m2++) {
742                         for (clock.n = limit->n.min;
743                              clock.n <= limit->n.max; clock.n++) {
744                                 for (clock.p1 = limit->p1.min;
745                                         clock.p1 <= limit->p1.max; clock.p1++) {
746                                         int this_err;
747
748                                         pnv_calc_dpll_params(refclk, &clock);
749                                         if (!intel_PLL_is_valid(dev, limit,
750                                                                 &clock))
751                                                 continue;
752                                         if (match_clock &&
753                                             clock.p != match_clock->p)
754                                                 continue;
755
756                                         this_err = abs(clock.dot - target);
757                                         if (this_err < err) {
758                                                 *best_clock = clock;
759                                                 err = this_err;
760                                         }
761                                 }
762                         }
763                 }
764         }
765
766         return (err != target);
767 }
768
769 static bool
770 g4x_find_best_dpll(const intel_limit_t *limit,
771                    struct intel_crtc_state *crtc_state,
772                    int target, int refclk, intel_clock_t *match_clock,
773                    intel_clock_t *best_clock)
774 {
775         struct drm_device *dev = crtc_state->base.crtc->dev;
776         intel_clock_t clock;
777         int max_n;
778         bool found = false;
779         /* approximately equals target * 0.00585 */
780         int err_most = (target >> 8) + (target >> 9);
781
782         memset(best_clock, 0, sizeof(*best_clock));
783
784         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
785
786         max_n = limit->n.max;
787         /* based on hardware requirement, prefer smaller n to precision */
788         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
789                 /* based on hardware requirement, prefere larger m1,m2 */
790                 for (clock.m1 = limit->m1.max;
791                      clock.m1 >= limit->m1.min; clock.m1--) {
792                         for (clock.m2 = limit->m2.max;
793                              clock.m2 >= limit->m2.min; clock.m2--) {
794                                 for (clock.p1 = limit->p1.max;
795                                      clock.p1 >= limit->p1.min; clock.p1--) {
796                                         int this_err;
797
798                                         i9xx_calc_dpll_params(refclk, &clock);
799                                         if (!intel_PLL_is_valid(dev, limit,
800                                                                 &clock))
801                                                 continue;
802
803                                         this_err = abs(clock.dot - target);
804                                         if (this_err < err_most) {
805                                                 *best_clock = clock;
806                                                 err_most = this_err;
807                                                 max_n = clock.n;
808                                                 found = true;
809                                         }
810                                 }
811                         }
812                 }
813         }
814         return found;
815 }
816
817 /*
818  * Check if the calculated PLL configuration is more optimal compared to the
819  * best configuration and error found so far. Return the calculated error.
820  */
821 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
822                                const intel_clock_t *calculated_clock,
823                                const intel_clock_t *best_clock,
824                                unsigned int best_error_ppm,
825                                unsigned int *error_ppm)
826 {
827         /*
828          * For CHV ignore the error and consider only the P value.
829          * Prefer a bigger P value based on HW requirements.
830          */
831         if (IS_CHERRYVIEW(dev)) {
832                 *error_ppm = 0;
833
834                 return calculated_clock->p > best_clock->p;
835         }
836
837         if (WARN_ON_ONCE(!target_freq))
838                 return false;
839
840         *error_ppm = div_u64(1000000ULL *
841                                 abs(target_freq - calculated_clock->dot),
842                              target_freq);
843         /*
844          * Prefer a better P value over a better (smaller) error if the error
845          * is small. Ensure this preference for future configurations too by
846          * setting the error to 0.
847          */
848         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
849                 *error_ppm = 0;
850
851                 return true;
852         }
853
854         return *error_ppm + 10 < best_error_ppm;
855 }
856
857 static bool
858 vlv_find_best_dpll(const intel_limit_t *limit,
859                    struct intel_crtc_state *crtc_state,
860                    int target, int refclk, intel_clock_t *match_clock,
861                    intel_clock_t *best_clock)
862 {
863         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
864         struct drm_device *dev = crtc->base.dev;
865         intel_clock_t clock;
866         unsigned int bestppm = 1000000;
867         /* min update 19.2 MHz */
868         int max_n = min(limit->n.max, refclk / 19200);
869         bool found = false;
870
871         target *= 5; /* fast clock */
872
873         memset(best_clock, 0, sizeof(*best_clock));
874
875         /* based on hardware requirement, prefer smaller n to precision */
876         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
877                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
878                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
879                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
880                                 clock.p = clock.p1 * clock.p2;
881                                 /* based on hardware requirement, prefer bigger m1,m2 values */
882                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
883                                         unsigned int ppm;
884
885                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
886                                                                      refclk * clock.m1);
887
888                                         vlv_calc_dpll_params(refclk, &clock);
889
890                                         if (!intel_PLL_is_valid(dev, limit,
891                                                                 &clock))
892                                                 continue;
893
894                                         if (!vlv_PLL_is_optimal(dev, target,
895                                                                 &clock,
896                                                                 best_clock,
897                                                                 bestppm, &ppm))
898                                                 continue;
899
900                                         *best_clock = clock;
901                                         bestppm = ppm;
902                                         found = true;
903                                 }
904                         }
905                 }
906         }
907
908         return found;
909 }
910
911 static bool
912 chv_find_best_dpll(const intel_limit_t *limit,
913                    struct intel_crtc_state *crtc_state,
914                    int target, int refclk, intel_clock_t *match_clock,
915                    intel_clock_t *best_clock)
916 {
917         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
918         struct drm_device *dev = crtc->base.dev;
919         unsigned int best_error_ppm;
920         intel_clock_t clock;
921         uint64_t m2;
922         int found = false;
923
924         memset(best_clock, 0, sizeof(*best_clock));
925         best_error_ppm = 1000000;
926
927         /*
928          * Based on hardware doc, the n always set to 1, and m1 always
929          * set to 2.  If requires to support 200Mhz refclk, we need to
930          * revisit this because n may not 1 anymore.
931          */
932         clock.n = 1, clock.m1 = 2;
933         target *= 5;    /* fast clock */
934
935         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
936                 for (clock.p2 = limit->p2.p2_fast;
937                                 clock.p2 >= limit->p2.p2_slow;
938                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
939                         unsigned int error_ppm;
940
941                         clock.p = clock.p1 * clock.p2;
942
943                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
944                                         clock.n) << 22, refclk * clock.m1);
945
946                         if (m2 > INT_MAX/clock.m1)
947                                 continue;
948
949                         clock.m2 = m2;
950
951                         chv_calc_dpll_params(refclk, &clock);
952
953                         if (!intel_PLL_is_valid(dev, limit, &clock))
954                                 continue;
955
956                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
957                                                 best_error_ppm, &error_ppm))
958                                 continue;
959
960                         *best_clock = clock;
961                         best_error_ppm = error_ppm;
962                         found = true;
963                 }
964         }
965
966         return found;
967 }
968
969 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
970                         intel_clock_t *best_clock)
971 {
972         int refclk = i9xx_get_refclk(crtc_state, 0);
973
974         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
975                                   target_clock, refclk, NULL, best_clock);
976 }
977
978 bool intel_crtc_active(struct drm_crtc *crtc)
979 {
980         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
981
982         /* Be paranoid as we can arrive here with only partial
983          * state retrieved from the hardware during setup.
984          *
985          * We can ditch the adjusted_mode.crtc_clock check as soon
986          * as Haswell has gained clock readout/fastboot support.
987          *
988          * We can ditch the crtc->primary->fb check as soon as we can
989          * properly reconstruct framebuffers.
990          *
991          * FIXME: The intel_crtc->active here should be switched to
992          * crtc->state->active once we have proper CRTC states wired up
993          * for atomic.
994          */
995         return intel_crtc->active && crtc->primary->state->fb &&
996                 intel_crtc->config->base.adjusted_mode.crtc_clock;
997 }
998
999 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1000                                              enum pipe pipe)
1001 {
1002         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1003         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1004
1005         return intel_crtc->config->cpu_transcoder;
1006 }
1007
1008 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1009 {
1010         struct drm_i915_private *dev_priv = dev->dev_private;
1011         u32 reg = PIPEDSL(pipe);
1012         u32 line1, line2;
1013         u32 line_mask;
1014
1015         if (IS_GEN2(dev))
1016                 line_mask = DSL_LINEMASK_GEN2;
1017         else
1018                 line_mask = DSL_LINEMASK_GEN3;
1019
1020         line1 = I915_READ(reg) & line_mask;
1021         msleep(5);
1022         line2 = I915_READ(reg) & line_mask;
1023
1024         return line1 == line2;
1025 }
1026
1027 /*
1028  * intel_wait_for_pipe_off - wait for pipe to turn off
1029  * @crtc: crtc whose pipe to wait for
1030  *
1031  * After disabling a pipe, we can't wait for vblank in the usual way,
1032  * spinning on the vblank interrupt status bit, since we won't actually
1033  * see an interrupt when the pipe is disabled.
1034  *
1035  * On Gen4 and above:
1036  *   wait for the pipe register state bit to turn off
1037  *
1038  * Otherwise:
1039  *   wait for the display line value to settle (it usually
1040  *   ends up stopping at the start of the next frame).
1041  *
1042  */
1043 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1044 {
1045         struct drm_device *dev = crtc->base.dev;
1046         struct drm_i915_private *dev_priv = dev->dev_private;
1047         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1048         enum pipe pipe = crtc->pipe;
1049
1050         if (INTEL_INFO(dev)->gen >= 4) {
1051                 int reg = PIPECONF(cpu_transcoder);
1052
1053                 /* Wait for the Pipe State to go off */
1054                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1055                              100))
1056                         WARN(1, "pipe_off wait timed out\n");
1057         } else {
1058                 /* Wait for the display line to settle */
1059                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1060                         WARN(1, "pipe_off wait timed out\n");
1061         }
1062 }
1063
1064 /*
1065  * ibx_digital_port_connected - is the specified port connected?
1066  * @dev_priv: i915 private structure
1067  * @port: the port to test
1068  *
1069  * Returns true if @port is connected, false otherwise.
1070  */
1071 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1072                                 struct intel_digital_port *port)
1073 {
1074         u32 bit;
1075
1076         if (HAS_PCH_IBX(dev_priv->dev)) {
1077                 switch (port->port) {
1078                 case PORT_B:
1079                         bit = SDE_PORTB_HOTPLUG;
1080                         break;
1081                 case PORT_C:
1082                         bit = SDE_PORTC_HOTPLUG;
1083                         break;
1084                 case PORT_D:
1085                         bit = SDE_PORTD_HOTPLUG;
1086                         break;
1087                 default:
1088                         return true;
1089                 }
1090         } else {
1091                 switch (port->port) {
1092                 case PORT_B:
1093                         bit = SDE_PORTB_HOTPLUG_CPT;
1094                         break;
1095                 case PORT_C:
1096                         bit = SDE_PORTC_HOTPLUG_CPT;
1097                         break;
1098                 case PORT_D:
1099                         bit = SDE_PORTD_HOTPLUG_CPT;
1100                         break;
1101                 default:
1102                         return true;
1103                 }
1104         }
1105
1106         return I915_READ(SDEISR) & bit;
1107 }
1108
1109 static const char *state_string(bool enabled)
1110 {
1111         return enabled ? "on" : "off";
1112 }
1113
1114 /* Only for pre-ILK configs */
1115 void assert_pll(struct drm_i915_private *dev_priv,
1116                 enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121
1122         reg = DPLL(pipe);
1123         val = I915_READ(reg);
1124         cur_state = !!(val & DPLL_VCO_ENABLE);
1125         I915_STATE_WARN(cur_state != state,
1126              "PLL state assertion failure (expected %s, current %s)\n",
1127              state_string(state), state_string(cur_state));
1128 }
1129
1130 /* XXX: the dsi pll is shared between MIPI DSI ports */
1131 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1132 {
1133         u32 val;
1134         bool cur_state;
1135
1136         mutex_lock(&dev_priv->sb_lock);
1137         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1138         mutex_unlock(&dev_priv->sb_lock);
1139
1140         cur_state = val & DSI_PLL_VCO_EN;
1141         I915_STATE_WARN(cur_state != state,
1142              "DSI PLL state assertion failure (expected %s, current %s)\n",
1143              state_string(state), state_string(cur_state));
1144 }
1145 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1146 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1147
1148 struct intel_shared_dpll *
1149 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1150 {
1151         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1152
1153         if (crtc->config->shared_dpll < 0)
1154                 return NULL;
1155
1156         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1157 }
1158
1159 /* For ILK+ */
1160 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1161                         struct intel_shared_dpll *pll,
1162                         bool state)
1163 {
1164         bool cur_state;
1165         struct intel_dpll_hw_state hw_state;
1166
1167         if (WARN (!pll,
1168                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1169                 return;
1170
1171         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1172         I915_STATE_WARN(cur_state != state,
1173              "%s assertion failure (expected %s, current %s)\n",
1174              pll->name, state_string(state), state_string(cur_state));
1175 }
1176
1177 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1178                           enum pipe pipe, bool state)
1179 {
1180         int reg;
1181         u32 val;
1182         bool cur_state;
1183         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1184                                                                       pipe);
1185
1186         if (HAS_DDI(dev_priv->dev)) {
1187                 /* DDI does not have a specific FDI_TX register */
1188                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1189                 val = I915_READ(reg);
1190                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1191         } else {
1192                 reg = FDI_TX_CTL(pipe);
1193                 val = I915_READ(reg);
1194                 cur_state = !!(val & FDI_TX_ENABLE);
1195         }
1196         I915_STATE_WARN(cur_state != state,
1197              "FDI TX state assertion failure (expected %s, current %s)\n",
1198              state_string(state), state_string(cur_state));
1199 }
1200 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1201 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1202
1203 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1204                           enum pipe pipe, bool state)
1205 {
1206         int reg;
1207         u32 val;
1208         bool cur_state;
1209
1210         reg = FDI_RX_CTL(pipe);
1211         val = I915_READ(reg);
1212         cur_state = !!(val & FDI_RX_ENABLE);
1213         I915_STATE_WARN(cur_state != state,
1214              "FDI RX state assertion failure (expected %s, current %s)\n",
1215              state_string(state), state_string(cur_state));
1216 }
1217 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1218 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1219
1220 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1221                                       enum pipe pipe)
1222 {
1223         int reg;
1224         u32 val;
1225
1226         /* ILK FDI PLL is always enabled */
1227         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1228                 return;
1229
1230         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1231         if (HAS_DDI(dev_priv->dev))
1232                 return;
1233
1234         reg = FDI_TX_CTL(pipe);
1235         val = I915_READ(reg);
1236         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1237 }
1238
1239 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1240                        enum pipe pipe, bool state)
1241 {
1242         int reg;
1243         u32 val;
1244         bool cur_state;
1245
1246         reg = FDI_RX_CTL(pipe);
1247         val = I915_READ(reg);
1248         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1249         I915_STATE_WARN(cur_state != state,
1250              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1251              state_string(state), state_string(cur_state));
1252 }
1253
1254 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1255                            enum pipe pipe)
1256 {
1257         struct drm_device *dev = dev_priv->dev;
1258         int pp_reg;
1259         u32 val;
1260         enum pipe panel_pipe = PIPE_A;
1261         bool locked = true;
1262
1263         if (WARN_ON(HAS_DDI(dev)))
1264                 return;
1265
1266         if (HAS_PCH_SPLIT(dev)) {
1267                 u32 port_sel;
1268
1269                 pp_reg = PCH_PP_CONTROL;
1270                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1271
1272                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1273                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1274                         panel_pipe = PIPE_B;
1275                 /* XXX: else fix for eDP */
1276         } else if (IS_VALLEYVIEW(dev)) {
1277                 /* presumably write lock depends on pipe, not port select */
1278                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1279                 panel_pipe = pipe;
1280         } else {
1281                 pp_reg = PP_CONTROL;
1282                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1283                         panel_pipe = PIPE_B;
1284         }
1285
1286         val = I915_READ(pp_reg);
1287         if (!(val & PANEL_POWER_ON) ||
1288             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1289                 locked = false;
1290
1291         I915_STATE_WARN(panel_pipe == pipe && locked,
1292              "panel assertion failure, pipe %c regs locked\n",
1293              pipe_name(pipe));
1294 }
1295
1296 static void assert_cursor(struct drm_i915_private *dev_priv,
1297                           enum pipe pipe, bool state)
1298 {
1299         struct drm_device *dev = dev_priv->dev;
1300         bool cur_state;
1301
1302         if (IS_845G(dev) || IS_I865G(dev))
1303                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1304         else
1305                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1306
1307         I915_STATE_WARN(cur_state != state,
1308              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1309              pipe_name(pipe), state_string(state), state_string(cur_state));
1310 }
1311 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1312 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1313
1314 void assert_pipe(struct drm_i915_private *dev_priv,
1315                  enum pipe pipe, bool state)
1316 {
1317         int reg;
1318         u32 val;
1319         bool cur_state;
1320         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1321                                                                       pipe);
1322
1323         /* if we need the pipe quirk it must be always on */
1324         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1325             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1326                 state = true;
1327
1328         if (!intel_display_power_is_enabled(dev_priv,
1329                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1330                 cur_state = false;
1331         } else {
1332                 reg = PIPECONF(cpu_transcoder);
1333                 val = I915_READ(reg);
1334                 cur_state = !!(val & PIPECONF_ENABLE);
1335         }
1336
1337         I915_STATE_WARN(cur_state != state,
1338              "pipe %c assertion failure (expected %s, current %s)\n",
1339              pipe_name(pipe), state_string(state), state_string(cur_state));
1340 }
1341
1342 static void assert_plane(struct drm_i915_private *dev_priv,
1343                          enum plane plane, bool state)
1344 {
1345         int reg;
1346         u32 val;
1347         bool cur_state;
1348
1349         reg = DSPCNTR(plane);
1350         val = I915_READ(reg);
1351         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1352         I915_STATE_WARN(cur_state != state,
1353              "plane %c assertion failure (expected %s, current %s)\n",
1354              plane_name(plane), state_string(state), state_string(cur_state));
1355 }
1356
1357 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1358 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1359
1360 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1361                                    enum pipe pipe)
1362 {
1363         struct drm_device *dev = dev_priv->dev;
1364         int reg, i;
1365         u32 val;
1366         int cur_pipe;
1367
1368         /* Primary planes are fixed to pipes on gen4+ */
1369         if (INTEL_INFO(dev)->gen >= 4) {
1370                 reg = DSPCNTR(pipe);
1371                 val = I915_READ(reg);
1372                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1373                      "plane %c assertion failure, should be disabled but not\n",
1374                      plane_name(pipe));
1375                 return;
1376         }
1377
1378         /* Need to check both planes against the pipe */
1379         for_each_pipe(dev_priv, i) {
1380                 reg = DSPCNTR(i);
1381                 val = I915_READ(reg);
1382                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1383                         DISPPLANE_SEL_PIPE_SHIFT;
1384                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1385                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1386                      plane_name(i), pipe_name(pipe));
1387         }
1388 }
1389
1390 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1391                                     enum pipe pipe)
1392 {
1393         struct drm_device *dev = dev_priv->dev;
1394         int reg, sprite;
1395         u32 val;
1396
1397         if (INTEL_INFO(dev)->gen >= 9) {
1398                 for_each_sprite(dev_priv, pipe, sprite) {
1399                         val = I915_READ(PLANE_CTL(pipe, sprite));
1400                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1401                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1402                              sprite, pipe_name(pipe));
1403                 }
1404         } else if (IS_VALLEYVIEW(dev)) {
1405                 for_each_sprite(dev_priv, pipe, sprite) {
1406                         reg = SPCNTR(pipe, sprite);
1407                         val = I915_READ(reg);
1408                         I915_STATE_WARN(val & SP_ENABLE,
1409                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1410                              sprite_name(pipe, sprite), pipe_name(pipe));
1411                 }
1412         } else if (INTEL_INFO(dev)->gen >= 7) {
1413                 reg = SPRCTL(pipe);
1414                 val = I915_READ(reg);
1415                 I915_STATE_WARN(val & SPRITE_ENABLE,
1416                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1417                      plane_name(pipe), pipe_name(pipe));
1418         } else if (INTEL_INFO(dev)->gen >= 5) {
1419                 reg = DVSCNTR(pipe);
1420                 val = I915_READ(reg);
1421                 I915_STATE_WARN(val & DVS_ENABLE,
1422                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1423                      plane_name(pipe), pipe_name(pipe));
1424         }
1425 }
1426
1427 static void assert_vblank_disabled(struct drm_crtc *crtc)
1428 {
1429         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1430                 drm_crtc_vblank_put(crtc);
1431 }
1432
1433 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1434 {
1435         u32 val;
1436         bool enabled;
1437
1438         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1439
1440         val = I915_READ(PCH_DREF_CONTROL);
1441         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1442                             DREF_SUPERSPREAD_SOURCE_MASK));
1443         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1444 }
1445
1446 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1447                                            enum pipe pipe)
1448 {
1449         int reg;
1450         u32 val;
1451         bool enabled;
1452
1453         reg = PCH_TRANSCONF(pipe);
1454         val = I915_READ(reg);
1455         enabled = !!(val & TRANS_ENABLE);
1456         I915_STATE_WARN(enabled,
1457              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1458              pipe_name(pipe));
1459 }
1460
1461 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1462                             enum pipe pipe, u32 port_sel, u32 val)
1463 {
1464         if ((val & DP_PORT_EN) == 0)
1465                 return false;
1466
1467         if (HAS_PCH_CPT(dev_priv->dev)) {
1468                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1469                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1470                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1471                         return false;
1472         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1473                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1474                         return false;
1475         } else {
1476                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1477                         return false;
1478         }
1479         return true;
1480 }
1481
1482 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1483                               enum pipe pipe, u32 val)
1484 {
1485         if ((val & SDVO_ENABLE) == 0)
1486                 return false;
1487
1488         if (HAS_PCH_CPT(dev_priv->dev)) {
1489                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1490                         return false;
1491         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1492                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1493                         return false;
1494         } else {
1495                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1496                         return false;
1497         }
1498         return true;
1499 }
1500
1501 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1502                               enum pipe pipe, u32 val)
1503 {
1504         if ((val & LVDS_PORT_EN) == 0)
1505                 return false;
1506
1507         if (HAS_PCH_CPT(dev_priv->dev)) {
1508                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1509                         return false;
1510         } else {
1511                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1512                         return false;
1513         }
1514         return true;
1515 }
1516
1517 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1518                               enum pipe pipe, u32 val)
1519 {
1520         if ((val & ADPA_DAC_ENABLE) == 0)
1521                 return false;
1522         if (HAS_PCH_CPT(dev_priv->dev)) {
1523                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1524                         return false;
1525         } else {
1526                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1527                         return false;
1528         }
1529         return true;
1530 }
1531
1532 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1533                                    enum pipe pipe, int reg, u32 port_sel)
1534 {
1535         u32 val = I915_READ(reg);
1536         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1537              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1538              reg, pipe_name(pipe));
1539
1540         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1541              && (val & DP_PIPEB_SELECT),
1542              "IBX PCH dp port still using transcoder B\n");
1543 }
1544
1545 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1546                                      enum pipe pipe, int reg)
1547 {
1548         u32 val = I915_READ(reg);
1549         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1550              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1551              reg, pipe_name(pipe));
1552
1553         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1554              && (val & SDVO_PIPE_B_SELECT),
1555              "IBX PCH hdmi port still using transcoder B\n");
1556 }
1557
1558 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1559                                       enum pipe pipe)
1560 {
1561         int reg;
1562         u32 val;
1563
1564         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1565         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1566         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1567
1568         reg = PCH_ADPA;
1569         val = I915_READ(reg);
1570         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1571              "PCH VGA enabled on transcoder %c, should be disabled\n",
1572              pipe_name(pipe));
1573
1574         reg = PCH_LVDS;
1575         val = I915_READ(reg);
1576         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1577              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1578              pipe_name(pipe));
1579
1580         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1581         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1582         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1583 }
1584
1585 static void intel_init_dpio(struct drm_device *dev)
1586 {
1587         struct drm_i915_private *dev_priv = dev->dev_private;
1588
1589         if (!IS_VALLEYVIEW(dev))
1590                 return;
1591
1592         /*
1593          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1594          * CHV x1 PHY (DP/HDMI D)
1595          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1596          */
1597         if (IS_CHERRYVIEW(dev)) {
1598                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1599                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1600         } else {
1601                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1602         }
1603 }
1604
1605 static void vlv_enable_pll(struct intel_crtc *crtc,
1606                            const struct intel_crtc_state *pipe_config)
1607 {
1608         struct drm_device *dev = crtc->base.dev;
1609         struct drm_i915_private *dev_priv = dev->dev_private;
1610         int reg = DPLL(crtc->pipe);
1611         u32 dpll = pipe_config->dpll_hw_state.dpll;
1612
1613         assert_pipe_disabled(dev_priv, crtc->pipe);
1614
1615         /* No really, not for ILK+ */
1616         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1617
1618         /* PLL is protected by panel, make sure we can write it */
1619         if (IS_MOBILE(dev_priv->dev))
1620                 assert_panel_unlocked(dev_priv, crtc->pipe);
1621
1622         I915_WRITE(reg, dpll);
1623         POSTING_READ(reg);
1624         udelay(150);
1625
1626         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1627                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1628
1629         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1630         POSTING_READ(DPLL_MD(crtc->pipe));
1631
1632         /* We do this three times for luck */
1633         I915_WRITE(reg, dpll);
1634         POSTING_READ(reg);
1635         udelay(150); /* wait for warmup */
1636         I915_WRITE(reg, dpll);
1637         POSTING_READ(reg);
1638         udelay(150); /* wait for warmup */
1639         I915_WRITE(reg, dpll);
1640         POSTING_READ(reg);
1641         udelay(150); /* wait for warmup */
1642 }
1643
1644 static void chv_enable_pll(struct intel_crtc *crtc,
1645                            const struct intel_crtc_state *pipe_config)
1646 {
1647         struct drm_device *dev = crtc->base.dev;
1648         struct drm_i915_private *dev_priv = dev->dev_private;
1649         int pipe = crtc->pipe;
1650         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1651         u32 tmp;
1652
1653         assert_pipe_disabled(dev_priv, crtc->pipe);
1654
1655         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1656
1657         mutex_lock(&dev_priv->sb_lock);
1658
1659         /* Enable back the 10bit clock to display controller */
1660         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1661         tmp |= DPIO_DCLKP_EN;
1662         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1663
1664         mutex_unlock(&dev_priv->sb_lock);
1665
1666         /*
1667          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1668          */
1669         udelay(1);
1670
1671         /* Enable PLL */
1672         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1673
1674         /* Check PLL is locked */
1675         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1676                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1677
1678         /* not sure when this should be written */
1679         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1680         POSTING_READ(DPLL_MD(pipe));
1681 }
1682
1683 static int intel_num_dvo_pipes(struct drm_device *dev)
1684 {
1685         struct intel_crtc *crtc;
1686         int count = 0;
1687
1688         for_each_intel_crtc(dev, crtc)
1689                 count += crtc->base.state->active &&
1690                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1691
1692         return count;
1693 }
1694
1695 static void i9xx_enable_pll(struct intel_crtc *crtc)
1696 {
1697         struct drm_device *dev = crtc->base.dev;
1698         struct drm_i915_private *dev_priv = dev->dev_private;
1699         int reg = DPLL(crtc->pipe);
1700         u32 dpll = crtc->config->dpll_hw_state.dpll;
1701
1702         assert_pipe_disabled(dev_priv, crtc->pipe);
1703
1704         /* No really, not for ILK+ */
1705         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1706
1707         /* PLL is protected by panel, make sure we can write it */
1708         if (IS_MOBILE(dev) && !IS_I830(dev))
1709                 assert_panel_unlocked(dev_priv, crtc->pipe);
1710
1711         /* Enable DVO 2x clock on both PLLs if necessary */
1712         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1713                 /*
1714                  * It appears to be important that we don't enable this
1715                  * for the current pipe before otherwise configuring the
1716                  * PLL. No idea how this should be handled if multiple
1717                  * DVO outputs are enabled simultaneosly.
1718                  */
1719                 dpll |= DPLL_DVO_2X_MODE;
1720                 I915_WRITE(DPLL(!crtc->pipe),
1721                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1722         }
1723
1724         /* Wait for the clocks to stabilize. */
1725         POSTING_READ(reg);
1726         udelay(150);
1727
1728         if (INTEL_INFO(dev)->gen >= 4) {
1729                 I915_WRITE(DPLL_MD(crtc->pipe),
1730                            crtc->config->dpll_hw_state.dpll_md);
1731         } else {
1732                 /* The pixel multiplier can only be updated once the
1733                  * DPLL is enabled and the clocks are stable.
1734                  *
1735                  * So write it again.
1736                  */
1737                 I915_WRITE(reg, dpll);
1738         }
1739
1740         /* We do this three times for luck */
1741         I915_WRITE(reg, dpll);
1742         POSTING_READ(reg);
1743         udelay(150); /* wait for warmup */
1744         I915_WRITE(reg, dpll);
1745         POSTING_READ(reg);
1746         udelay(150); /* wait for warmup */
1747         I915_WRITE(reg, dpll);
1748         POSTING_READ(reg);
1749         udelay(150); /* wait for warmup */
1750 }
1751
1752 /**
1753  * i9xx_disable_pll - disable a PLL
1754  * @dev_priv: i915 private structure
1755  * @pipe: pipe PLL to disable
1756  *
1757  * Disable the PLL for @pipe, making sure the pipe is off first.
1758  *
1759  * Note!  This is for pre-ILK only.
1760  */
1761 static void i9xx_disable_pll(struct intel_crtc *crtc)
1762 {
1763         struct drm_device *dev = crtc->base.dev;
1764         struct drm_i915_private *dev_priv = dev->dev_private;
1765         enum pipe pipe = crtc->pipe;
1766
1767         /* Disable DVO 2x clock on both PLLs if necessary */
1768         if (IS_I830(dev) &&
1769             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1770             !intel_num_dvo_pipes(dev)) {
1771                 I915_WRITE(DPLL(PIPE_B),
1772                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1773                 I915_WRITE(DPLL(PIPE_A),
1774                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1775         }
1776
1777         /* Don't disable pipe or pipe PLLs if needed */
1778         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1779             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1780                 return;
1781
1782         /* Make sure the pipe isn't still relying on us */
1783         assert_pipe_disabled(dev_priv, pipe);
1784
1785         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1786         POSTING_READ(DPLL(pipe));
1787 }
1788
1789 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1790 {
1791         u32 val;
1792
1793         /* Make sure the pipe isn't still relying on us */
1794         assert_pipe_disabled(dev_priv, pipe);
1795
1796         /*
1797          * Leave integrated clock source and reference clock enabled for pipe B.
1798          * The latter is needed for VGA hotplug / manual detection.
1799          */
1800         val = DPLL_VGA_MODE_DIS;
1801         if (pipe == PIPE_B)
1802                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1803         I915_WRITE(DPLL(pipe), val);
1804         POSTING_READ(DPLL(pipe));
1805
1806 }
1807
1808 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1809 {
1810         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1811         u32 val;
1812
1813         /* Make sure the pipe isn't still relying on us */
1814         assert_pipe_disabled(dev_priv, pipe);
1815
1816         /* Set PLL en = 0 */
1817         val = DPLL_SSC_REF_CLK_CHV |
1818                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1819         if (pipe != PIPE_A)
1820                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1821         I915_WRITE(DPLL(pipe), val);
1822         POSTING_READ(DPLL(pipe));
1823
1824         mutex_lock(&dev_priv->sb_lock);
1825
1826         /* Disable 10bit clock to display controller */
1827         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1828         val &= ~DPIO_DCLKP_EN;
1829         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1830
1831         /* disable left/right clock distribution */
1832         if (pipe != PIPE_B) {
1833                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1834                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1835                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1836         } else {
1837                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1838                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1839                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1840         }
1841
1842         mutex_unlock(&dev_priv->sb_lock);
1843 }
1844
1845 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1846                          struct intel_digital_port *dport,
1847                          unsigned int expected_mask)
1848 {
1849         u32 port_mask;
1850         int dpll_reg;
1851
1852         switch (dport->port) {
1853         case PORT_B:
1854                 port_mask = DPLL_PORTB_READY_MASK;
1855                 dpll_reg = DPLL(0);
1856                 break;
1857         case PORT_C:
1858                 port_mask = DPLL_PORTC_READY_MASK;
1859                 dpll_reg = DPLL(0);
1860                 expected_mask <<= 4;
1861                 break;
1862         case PORT_D:
1863                 port_mask = DPLL_PORTD_READY_MASK;
1864                 dpll_reg = DPIO_PHY_STATUS;
1865                 break;
1866         default:
1867                 BUG();
1868         }
1869
1870         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1871                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1872                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1873 }
1874
1875 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1876 {
1877         struct drm_device *dev = crtc->base.dev;
1878         struct drm_i915_private *dev_priv = dev->dev_private;
1879         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1880
1881         if (WARN_ON(pll == NULL))
1882                 return;
1883
1884         WARN_ON(!pll->config.crtc_mask);
1885         if (pll->active == 0) {
1886                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1887                 WARN_ON(pll->on);
1888                 assert_shared_dpll_disabled(dev_priv, pll);
1889
1890                 pll->mode_set(dev_priv, pll);
1891         }
1892 }
1893
1894 /**
1895  * intel_enable_shared_dpll - enable PCH PLL
1896  * @dev_priv: i915 private structure
1897  * @pipe: pipe PLL to enable
1898  *
1899  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1900  * drives the transcoder clock.
1901  */
1902 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1903 {
1904         struct drm_device *dev = crtc->base.dev;
1905         struct drm_i915_private *dev_priv = dev->dev_private;
1906         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1907
1908         if (WARN_ON(pll == NULL))
1909                 return;
1910
1911         if (WARN_ON(pll->config.crtc_mask == 0))
1912                 return;
1913
1914         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1915                       pll->name, pll->active, pll->on,
1916                       crtc->base.base.id);
1917
1918         if (pll->active++) {
1919                 WARN_ON(!pll->on);
1920                 assert_shared_dpll_enabled(dev_priv, pll);
1921                 return;
1922         }
1923         WARN_ON(pll->on);
1924
1925         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1926
1927         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1928         pll->enable(dev_priv, pll);
1929         pll->on = true;
1930 }
1931
1932 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1933 {
1934         struct drm_device *dev = crtc->base.dev;
1935         struct drm_i915_private *dev_priv = dev->dev_private;
1936         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1937
1938         /* PCH only available on ILK+ */
1939         if (INTEL_INFO(dev)->gen < 5)
1940                 return;
1941
1942         if (pll == NULL)
1943                 return;
1944
1945         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1946                 return;
1947
1948         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1949                       pll->name, pll->active, pll->on,
1950                       crtc->base.base.id);
1951
1952         if (WARN_ON(pll->active == 0)) {
1953                 assert_shared_dpll_disabled(dev_priv, pll);
1954                 return;
1955         }
1956
1957         assert_shared_dpll_enabled(dev_priv, pll);
1958         WARN_ON(!pll->on);
1959         if (--pll->active)
1960                 return;
1961
1962         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1963         pll->disable(dev_priv, pll);
1964         pll->on = false;
1965
1966         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1967 }
1968
1969 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1970                                            enum pipe pipe)
1971 {
1972         struct drm_device *dev = dev_priv->dev;
1973         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1974         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1975         uint32_t reg, val, pipeconf_val;
1976
1977         /* PCH only available on ILK+ */
1978         BUG_ON(!HAS_PCH_SPLIT(dev));
1979
1980         /* Make sure PCH DPLL is enabled */
1981         assert_shared_dpll_enabled(dev_priv,
1982                                    intel_crtc_to_shared_dpll(intel_crtc));
1983
1984         /* FDI must be feeding us bits for PCH ports */
1985         assert_fdi_tx_enabled(dev_priv, pipe);
1986         assert_fdi_rx_enabled(dev_priv, pipe);
1987
1988         if (HAS_PCH_CPT(dev)) {
1989                 /* Workaround: Set the timing override bit before enabling the
1990                  * pch transcoder. */
1991                 reg = TRANS_CHICKEN2(pipe);
1992                 val = I915_READ(reg);
1993                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1994                 I915_WRITE(reg, val);
1995         }
1996
1997         reg = PCH_TRANSCONF(pipe);
1998         val = I915_READ(reg);
1999         pipeconf_val = I915_READ(PIPECONF(pipe));
2000
2001         if (HAS_PCH_IBX(dev_priv->dev)) {
2002                 /*
2003                  * Make the BPC in transcoder be consistent with
2004                  * that in pipeconf reg. For HDMI we must use 8bpc
2005                  * here for both 8bpc and 12bpc.
2006                  */
2007                 val &= ~PIPECONF_BPC_MASK;
2008                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2009                         val |= PIPECONF_8BPC;
2010                 else
2011                         val |= pipeconf_val & PIPECONF_BPC_MASK;
2012         }
2013
2014         val &= ~TRANS_INTERLACE_MASK;
2015         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2016                 if (HAS_PCH_IBX(dev_priv->dev) &&
2017                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2018                         val |= TRANS_LEGACY_INTERLACED_ILK;
2019                 else
2020                         val |= TRANS_INTERLACED;
2021         else
2022                 val |= TRANS_PROGRESSIVE;
2023
2024         I915_WRITE(reg, val | TRANS_ENABLE);
2025         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2026                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2027 }
2028
2029 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2030                                       enum transcoder cpu_transcoder)
2031 {
2032         u32 val, pipeconf_val;
2033
2034         /* PCH only available on ILK+ */
2035         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2036
2037         /* FDI must be feeding us bits for PCH ports */
2038         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2039         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2040
2041         /* Workaround: set timing override bit. */
2042         val = I915_READ(_TRANSA_CHICKEN2);
2043         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2044         I915_WRITE(_TRANSA_CHICKEN2, val);
2045
2046         val = TRANS_ENABLE;
2047         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2048
2049         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2050             PIPECONF_INTERLACED_ILK)
2051                 val |= TRANS_INTERLACED;
2052         else
2053                 val |= TRANS_PROGRESSIVE;
2054
2055         I915_WRITE(LPT_TRANSCONF, val);
2056         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2057                 DRM_ERROR("Failed to enable PCH transcoder\n");
2058 }
2059
2060 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2061                                             enum pipe pipe)
2062 {
2063         struct drm_device *dev = dev_priv->dev;
2064         uint32_t reg, val;
2065
2066         /* FDI relies on the transcoder */
2067         assert_fdi_tx_disabled(dev_priv, pipe);
2068         assert_fdi_rx_disabled(dev_priv, pipe);
2069
2070         /* Ports must be off as well */
2071         assert_pch_ports_disabled(dev_priv, pipe);
2072
2073         reg = PCH_TRANSCONF(pipe);
2074         val = I915_READ(reg);
2075         val &= ~TRANS_ENABLE;
2076         I915_WRITE(reg, val);
2077         /* wait for PCH transcoder off, transcoder state */
2078         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2079                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2080
2081         if (!HAS_PCH_IBX(dev)) {
2082                 /* Workaround: Clear the timing override chicken bit again. */
2083                 reg = TRANS_CHICKEN2(pipe);
2084                 val = I915_READ(reg);
2085                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2086                 I915_WRITE(reg, val);
2087         }
2088 }
2089
2090 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2091 {
2092         u32 val;
2093
2094         val = I915_READ(LPT_TRANSCONF);
2095         val &= ~TRANS_ENABLE;
2096         I915_WRITE(LPT_TRANSCONF, val);
2097         /* wait for PCH transcoder off, transcoder state */
2098         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2099                 DRM_ERROR("Failed to disable PCH transcoder\n");
2100
2101         /* Workaround: clear timing override bit. */
2102         val = I915_READ(_TRANSA_CHICKEN2);
2103         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2104         I915_WRITE(_TRANSA_CHICKEN2, val);
2105 }
2106
2107 /**
2108  * intel_enable_pipe - enable a pipe, asserting requirements
2109  * @crtc: crtc responsible for the pipe
2110  *
2111  * Enable @crtc's pipe, making sure that various hardware specific requirements
2112  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2113  */
2114 static void intel_enable_pipe(struct intel_crtc *crtc)
2115 {
2116         struct drm_device *dev = crtc->base.dev;
2117         struct drm_i915_private *dev_priv = dev->dev_private;
2118         enum pipe pipe = crtc->pipe;
2119         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2120                                                                       pipe);
2121         enum pipe pch_transcoder;
2122         int reg;
2123         u32 val;
2124
2125         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2126
2127         assert_planes_disabled(dev_priv, pipe);
2128         assert_cursor_disabled(dev_priv, pipe);
2129         assert_sprites_disabled(dev_priv, pipe);
2130
2131         if (HAS_PCH_LPT(dev_priv->dev))
2132                 pch_transcoder = TRANSCODER_A;
2133         else
2134                 pch_transcoder = pipe;
2135
2136         /*
2137          * A pipe without a PLL won't actually be able to drive bits from
2138          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2139          * need the check.
2140          */
2141         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2142                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2143                         assert_dsi_pll_enabled(dev_priv);
2144                 else
2145                         assert_pll_enabled(dev_priv, pipe);
2146         else {
2147                 if (crtc->config->has_pch_encoder) {
2148                         /* if driving the PCH, we need FDI enabled */
2149                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2150                         assert_fdi_tx_pll_enabled(dev_priv,
2151                                                   (enum pipe) cpu_transcoder);
2152                 }
2153                 /* FIXME: assert CPU port conditions for SNB+ */
2154         }
2155
2156         reg = PIPECONF(cpu_transcoder);
2157         val = I915_READ(reg);
2158         if (val & PIPECONF_ENABLE) {
2159                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2160                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2161                 return;
2162         }
2163
2164         I915_WRITE(reg, val | PIPECONF_ENABLE);
2165         POSTING_READ(reg);
2166 }
2167
2168 /**
2169  * intel_disable_pipe - disable a pipe, asserting requirements
2170  * @crtc: crtc whose pipes is to be disabled
2171  *
2172  * Disable the pipe of @crtc, making sure that various hardware
2173  * specific requirements are met, if applicable, e.g. plane
2174  * disabled, panel fitter off, etc.
2175  *
2176  * Will wait until the pipe has shut down before returning.
2177  */
2178 static void intel_disable_pipe(struct intel_crtc *crtc)
2179 {
2180         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2181         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2182         enum pipe pipe = crtc->pipe;
2183         int reg;
2184         u32 val;
2185
2186         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2187
2188         /*
2189          * Make sure planes won't keep trying to pump pixels to us,
2190          * or we might hang the display.
2191          */
2192         assert_planes_disabled(dev_priv, pipe);
2193         assert_cursor_disabled(dev_priv, pipe);
2194         assert_sprites_disabled(dev_priv, pipe);
2195
2196         reg = PIPECONF(cpu_transcoder);
2197         val = I915_READ(reg);
2198         if ((val & PIPECONF_ENABLE) == 0)
2199                 return;
2200
2201         /*
2202          * Double wide has implications for planes
2203          * so best keep it disabled when not needed.
2204          */
2205         if (crtc->config->double_wide)
2206                 val &= ~PIPECONF_DOUBLE_WIDE;
2207
2208         /* Don't disable pipe or pipe PLLs if needed */
2209         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2210             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2211                 val &= ~PIPECONF_ENABLE;
2212
2213         I915_WRITE(reg, val);
2214         if ((val & PIPECONF_ENABLE) == 0)
2215                 intel_wait_for_pipe_off(crtc);
2216 }
2217
2218 static bool need_vtd_wa(struct drm_device *dev)
2219 {
2220 #ifdef CONFIG_INTEL_IOMMU
2221         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2222                 return true;
2223 #endif
2224         return false;
2225 }
2226
2227 unsigned int
2228 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2229                   uint64_t fb_format_modifier)
2230 {
2231         unsigned int tile_height;
2232         uint32_t pixel_bytes;
2233
2234         switch (fb_format_modifier) {
2235         case DRM_FORMAT_MOD_NONE:
2236                 tile_height = 1;
2237                 break;
2238         case I915_FORMAT_MOD_X_TILED:
2239                 tile_height = IS_GEN2(dev) ? 16 : 8;
2240                 break;
2241         case I915_FORMAT_MOD_Y_TILED:
2242                 tile_height = 32;
2243                 break;
2244         case I915_FORMAT_MOD_Yf_TILED:
2245                 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2246                 switch (pixel_bytes) {
2247                 default:
2248                 case 1:
2249                         tile_height = 64;
2250                         break;
2251                 case 2:
2252                 case 4:
2253                         tile_height = 32;
2254                         break;
2255                 case 8:
2256                         tile_height = 16;
2257                         break;
2258                 case 16:
2259                         WARN_ONCE(1,
2260                                   "128-bit pixels are not supported for display!");
2261                         tile_height = 16;
2262                         break;
2263                 }
2264                 break;
2265         default:
2266                 MISSING_CASE(fb_format_modifier);
2267                 tile_height = 1;
2268                 break;
2269         }
2270
2271         return tile_height;
2272 }
2273
2274 unsigned int
2275 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2276                       uint32_t pixel_format, uint64_t fb_format_modifier)
2277 {
2278         return ALIGN(height, intel_tile_height(dev, pixel_format,
2279                                                fb_format_modifier));
2280 }
2281
2282 static int
2283 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2284                         const struct drm_plane_state *plane_state)
2285 {
2286         struct intel_rotation_info *info = &view->rotation_info;
2287         unsigned int tile_height, tile_pitch;
2288
2289         *view = i915_ggtt_view_normal;
2290
2291         if (!plane_state)
2292                 return 0;
2293
2294         if (!intel_rotation_90_or_270(plane_state->rotation))
2295                 return 0;
2296
2297         *view = i915_ggtt_view_rotated;
2298
2299         info->height = fb->height;
2300         info->pixel_format = fb->pixel_format;
2301         info->pitch = fb->pitches[0];
2302         info->fb_modifier = fb->modifier[0];
2303
2304         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2305                                         fb->modifier[0]);
2306         tile_pitch = PAGE_SIZE / tile_height;
2307         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2308         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2309         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2310
2311         return 0;
2312 }
2313
2314 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2315 {
2316         if (INTEL_INFO(dev_priv)->gen >= 9)
2317                 return 256 * 1024;
2318         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2319                  IS_VALLEYVIEW(dev_priv))
2320                 return 128 * 1024;
2321         else if (INTEL_INFO(dev_priv)->gen >= 4)
2322                 return 4 * 1024;
2323         else
2324                 return 0;
2325 }
2326
2327 int
2328 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2329                            struct drm_framebuffer *fb,
2330                            const struct drm_plane_state *plane_state,
2331                            struct intel_engine_cs *pipelined,
2332                            struct drm_i915_gem_request **pipelined_request)
2333 {
2334         struct drm_device *dev = fb->dev;
2335         struct drm_i915_private *dev_priv = dev->dev_private;
2336         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2337         struct i915_ggtt_view view;
2338         u32 alignment;
2339         int ret;
2340
2341         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2342
2343         switch (fb->modifier[0]) {
2344         case DRM_FORMAT_MOD_NONE:
2345                 alignment = intel_linear_alignment(dev_priv);
2346                 break;
2347         case I915_FORMAT_MOD_X_TILED:
2348                 if (INTEL_INFO(dev)->gen >= 9)
2349                         alignment = 256 * 1024;
2350                 else {
2351                         /* pin() will align the object as required by fence */
2352                         alignment = 0;
2353                 }
2354                 break;
2355         case I915_FORMAT_MOD_Y_TILED:
2356         case I915_FORMAT_MOD_Yf_TILED:
2357                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2358                           "Y tiling bo slipped through, driver bug!\n"))
2359                         return -EINVAL;
2360                 alignment = 1 * 1024 * 1024;
2361                 break;
2362         default:
2363                 MISSING_CASE(fb->modifier[0]);
2364                 return -EINVAL;
2365         }
2366
2367         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2368         if (ret)
2369                 return ret;
2370
2371         /* Note that the w/a also requires 64 PTE of padding following the
2372          * bo. We currently fill all unused PTE with the shadow page and so
2373          * we should always have valid PTE following the scanout preventing
2374          * the VT-d warning.
2375          */
2376         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2377                 alignment = 256 * 1024;
2378
2379         /*
2380          * Global gtt pte registers are special registers which actually forward
2381          * writes to a chunk of system memory. Which means that there is no risk
2382          * that the register values disappear as soon as we call
2383          * intel_runtime_pm_put(), so it is correct to wrap only the
2384          * pin/unpin/fence and not more.
2385          */
2386         intel_runtime_pm_get(dev_priv);
2387
2388         dev_priv->mm.interruptible = false;
2389         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2390                                                    pipelined_request, &view);
2391         if (ret)
2392                 goto err_interruptible;
2393
2394         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2395          * fence, whereas 965+ only requires a fence if using
2396          * framebuffer compression.  For simplicity, we always install
2397          * a fence as the cost is not that onerous.
2398          */
2399         ret = i915_gem_object_get_fence(obj);
2400         if (ret)
2401                 goto err_unpin;
2402
2403         i915_gem_object_pin_fence(obj);
2404
2405         dev_priv->mm.interruptible = true;
2406         intel_runtime_pm_put(dev_priv);
2407         return 0;
2408
2409 err_unpin:
2410         i915_gem_object_unpin_from_display_plane(obj, &view);
2411 err_interruptible:
2412         dev_priv->mm.interruptible = true;
2413         intel_runtime_pm_put(dev_priv);
2414         return ret;
2415 }
2416
2417 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2418                                const struct drm_plane_state *plane_state)
2419 {
2420         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2421         struct i915_ggtt_view view;
2422         int ret;
2423
2424         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2425
2426         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2427         WARN_ONCE(ret, "Couldn't get view from plane state!");
2428
2429         i915_gem_object_unpin_fence(obj);
2430         i915_gem_object_unpin_from_display_plane(obj, &view);
2431 }
2432
2433 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2434  * is assumed to be a power-of-two. */
2435 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2436                                              int *x, int *y,
2437                                              unsigned int tiling_mode,
2438                                              unsigned int cpp,
2439                                              unsigned int pitch)
2440 {
2441         if (tiling_mode != I915_TILING_NONE) {
2442                 unsigned int tile_rows, tiles;
2443
2444                 tile_rows = *y / 8;
2445                 *y %= 8;
2446
2447                 tiles = *x / (512/cpp);
2448                 *x %= 512/cpp;
2449
2450                 return tile_rows * pitch * 8 + tiles * 4096;
2451         } else {
2452                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2453                 unsigned int offset;
2454
2455                 offset = *y * pitch + *x * cpp;
2456                 *y = (offset & alignment) / pitch;
2457                 *x = ((offset & alignment) - *y * pitch) / cpp;
2458                 return offset & ~alignment;
2459         }
2460 }
2461
2462 static int i9xx_format_to_fourcc(int format)
2463 {
2464         switch (format) {
2465         case DISPPLANE_8BPP:
2466                 return DRM_FORMAT_C8;
2467         case DISPPLANE_BGRX555:
2468                 return DRM_FORMAT_XRGB1555;
2469         case DISPPLANE_BGRX565:
2470                 return DRM_FORMAT_RGB565;
2471         default:
2472         case DISPPLANE_BGRX888:
2473                 return DRM_FORMAT_XRGB8888;
2474         case DISPPLANE_RGBX888:
2475                 return DRM_FORMAT_XBGR8888;
2476         case DISPPLANE_BGRX101010:
2477                 return DRM_FORMAT_XRGB2101010;
2478         case DISPPLANE_RGBX101010:
2479                 return DRM_FORMAT_XBGR2101010;
2480         }
2481 }
2482
2483 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2484 {
2485         switch (format) {
2486         case PLANE_CTL_FORMAT_RGB_565:
2487                 return DRM_FORMAT_RGB565;
2488         default:
2489         case PLANE_CTL_FORMAT_XRGB_8888:
2490                 if (rgb_order) {
2491                         if (alpha)
2492                                 return DRM_FORMAT_ABGR8888;
2493                         else
2494                                 return DRM_FORMAT_XBGR8888;
2495                 } else {
2496                         if (alpha)
2497                                 return DRM_FORMAT_ARGB8888;
2498                         else
2499                                 return DRM_FORMAT_XRGB8888;
2500                 }
2501         case PLANE_CTL_FORMAT_XRGB_2101010:
2502                 if (rgb_order)
2503                         return DRM_FORMAT_XBGR2101010;
2504                 else
2505                         return DRM_FORMAT_XRGB2101010;
2506         }
2507 }
2508
2509 static bool
2510 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2511                               struct intel_initial_plane_config *plane_config)
2512 {
2513         struct drm_device *dev = crtc->base.dev;
2514         struct drm_i915_gem_object *obj = NULL;
2515         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2516         struct drm_framebuffer *fb = &plane_config->fb->base;
2517         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2518         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2519                                     PAGE_SIZE);
2520
2521         size_aligned -= base_aligned;
2522
2523         if (plane_config->size == 0)
2524                 return false;
2525
2526         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2527                                                              base_aligned,
2528                                                              base_aligned,
2529                                                              size_aligned);
2530         if (!obj)
2531                 return false;
2532
2533         obj->tiling_mode = plane_config->tiling;
2534         if (obj->tiling_mode == I915_TILING_X)
2535                 obj->stride = fb->pitches[0];
2536
2537         mode_cmd.pixel_format = fb->pixel_format;
2538         mode_cmd.width = fb->width;
2539         mode_cmd.height = fb->height;
2540         mode_cmd.pitches[0] = fb->pitches[0];
2541         mode_cmd.modifier[0] = fb->modifier[0];
2542         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2543
2544         mutex_lock(&dev->struct_mutex);
2545         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2546                                    &mode_cmd, obj)) {
2547                 DRM_DEBUG_KMS("intel fb init failed\n");
2548                 goto out_unref_obj;
2549         }
2550         mutex_unlock(&dev->struct_mutex);
2551
2552         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2553         return true;
2554
2555 out_unref_obj:
2556         drm_gem_object_unreference(&obj->base);
2557         mutex_unlock(&dev->struct_mutex);
2558         return false;
2559 }
2560
2561 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2562 static void
2563 update_state_fb(struct drm_plane *plane)
2564 {
2565         if (plane->fb == plane->state->fb)
2566                 return;
2567
2568         if (plane->state->fb)
2569                 drm_framebuffer_unreference(plane->state->fb);
2570         plane->state->fb = plane->fb;
2571         if (plane->state->fb)
2572                 drm_framebuffer_reference(plane->state->fb);
2573 }
2574
2575 static void
2576 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2577                              struct intel_initial_plane_config *plane_config)
2578 {
2579         struct drm_device *dev = intel_crtc->base.dev;
2580         struct drm_i915_private *dev_priv = dev->dev_private;
2581         struct drm_crtc *c;
2582         struct intel_crtc *i;
2583         struct drm_i915_gem_object *obj;
2584         struct drm_plane *primary = intel_crtc->base.primary;
2585         struct drm_plane_state *plane_state = primary->state;
2586         struct drm_framebuffer *fb;
2587
2588         if (!plane_config->fb)
2589                 return;
2590
2591         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2592                 fb = &plane_config->fb->base;
2593                 goto valid_fb;
2594         }
2595
2596         kfree(plane_config->fb);
2597
2598         /*
2599          * Failed to alloc the obj, check to see if we should share
2600          * an fb with another CRTC instead
2601          */
2602         for_each_crtc(dev, c) {
2603                 i = to_intel_crtc(c);
2604
2605                 if (c == &intel_crtc->base)
2606                         continue;
2607
2608                 if (!i->active)
2609                         continue;
2610
2611                 fb = c->primary->fb;
2612                 if (!fb)
2613                         continue;
2614
2615                 obj = intel_fb_obj(fb);
2616                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2617                         drm_framebuffer_reference(fb);
2618                         goto valid_fb;
2619                 }
2620         }
2621
2622         return;
2623
2624 valid_fb:
2625         plane_state->src_x = plane_state->src_y = 0;
2626         plane_state->src_w = fb->width << 16;
2627         plane_state->src_h = fb->height << 16;
2628
2629         plane_state->crtc_x = plane_state->src_y = 0;
2630         plane_state->crtc_w = fb->width;
2631         plane_state->crtc_h = fb->height;
2632
2633         obj = intel_fb_obj(fb);
2634         if (obj->tiling_mode != I915_TILING_NONE)
2635                 dev_priv->preserve_bios_swizzle = true;
2636
2637         drm_framebuffer_reference(fb);
2638         primary->fb = primary->state->fb = fb;
2639         primary->crtc = primary->state->crtc = &intel_crtc->base;
2640         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2641         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2642 }
2643
2644 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2645                                       struct drm_framebuffer *fb,
2646                                       int x, int y)
2647 {
2648         struct drm_device *dev = crtc->dev;
2649         struct drm_i915_private *dev_priv = dev->dev_private;
2650         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2651         struct drm_plane *primary = crtc->primary;
2652         bool visible = to_intel_plane_state(primary->state)->visible;
2653         struct drm_i915_gem_object *obj;
2654         int plane = intel_crtc->plane;
2655         unsigned long linear_offset;
2656         u32 dspcntr;
2657         u32 reg = DSPCNTR(plane);
2658         int pixel_size;
2659
2660         if (!visible || !fb) {
2661                 I915_WRITE(reg, 0);
2662                 if (INTEL_INFO(dev)->gen >= 4)
2663                         I915_WRITE(DSPSURF(plane), 0);
2664                 else
2665                         I915_WRITE(DSPADDR(plane), 0);
2666                 POSTING_READ(reg);
2667                 return;
2668         }
2669
2670         obj = intel_fb_obj(fb);
2671         if (WARN_ON(obj == NULL))
2672                 return;
2673
2674         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2675
2676         dspcntr = DISPPLANE_GAMMA_ENABLE;
2677
2678         dspcntr |= DISPLAY_PLANE_ENABLE;
2679
2680         if (INTEL_INFO(dev)->gen < 4) {
2681                 if (intel_crtc->pipe == PIPE_B)
2682                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2683
2684                 /* pipesrc and dspsize control the size that is scaled from,
2685                  * which should always be the user's requested size.
2686                  */
2687                 I915_WRITE(DSPSIZE(plane),
2688                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2689                            (intel_crtc->config->pipe_src_w - 1));
2690                 I915_WRITE(DSPPOS(plane), 0);
2691         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2692                 I915_WRITE(PRIMSIZE(plane),
2693                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2694                            (intel_crtc->config->pipe_src_w - 1));
2695                 I915_WRITE(PRIMPOS(plane), 0);
2696                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2697         }
2698
2699         switch (fb->pixel_format) {
2700         case DRM_FORMAT_C8:
2701                 dspcntr |= DISPPLANE_8BPP;
2702                 break;
2703         case DRM_FORMAT_XRGB1555:
2704                 dspcntr |= DISPPLANE_BGRX555;
2705                 break;
2706         case DRM_FORMAT_RGB565:
2707                 dspcntr |= DISPPLANE_BGRX565;
2708                 break;
2709         case DRM_FORMAT_XRGB8888:
2710                 dspcntr |= DISPPLANE_BGRX888;
2711                 break;
2712         case DRM_FORMAT_XBGR8888:
2713                 dspcntr |= DISPPLANE_RGBX888;
2714                 break;
2715         case DRM_FORMAT_XRGB2101010:
2716                 dspcntr |= DISPPLANE_BGRX101010;
2717                 break;
2718         case DRM_FORMAT_XBGR2101010:
2719                 dspcntr |= DISPPLANE_RGBX101010;
2720                 break;
2721         default:
2722                 BUG();
2723         }
2724
2725         if (INTEL_INFO(dev)->gen >= 4 &&
2726             obj->tiling_mode != I915_TILING_NONE)
2727                 dspcntr |= DISPPLANE_TILED;
2728
2729         if (IS_G4X(dev))
2730                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2731
2732         linear_offset = y * fb->pitches[0] + x * pixel_size;
2733
2734         if (INTEL_INFO(dev)->gen >= 4) {
2735                 intel_crtc->dspaddr_offset =
2736                         intel_gen4_compute_page_offset(dev_priv,
2737                                                        &x, &y, obj->tiling_mode,
2738                                                        pixel_size,
2739                                                        fb->pitches[0]);
2740                 linear_offset -= intel_crtc->dspaddr_offset;
2741         } else {
2742                 intel_crtc->dspaddr_offset = linear_offset;
2743         }
2744
2745         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2746                 dspcntr |= DISPPLANE_ROTATE_180;
2747
2748                 x += (intel_crtc->config->pipe_src_w - 1);
2749                 y += (intel_crtc->config->pipe_src_h - 1);
2750
2751                 /* Finding the last pixel of the last line of the display
2752                 data and adding to linear_offset*/
2753                 linear_offset +=
2754                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2755                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2756         }
2757
2758         I915_WRITE(reg, dspcntr);
2759
2760         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2761         if (INTEL_INFO(dev)->gen >= 4) {
2762                 I915_WRITE(DSPSURF(plane),
2763                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2764                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2765                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2766         } else
2767                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2768         POSTING_READ(reg);
2769 }
2770
2771 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2772                                           struct drm_framebuffer *fb,
2773                                           int x, int y)
2774 {
2775         struct drm_device *dev = crtc->dev;
2776         struct drm_i915_private *dev_priv = dev->dev_private;
2777         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2778         struct drm_plane *primary = crtc->primary;
2779         bool visible = to_intel_plane_state(primary->state)->visible;
2780         struct drm_i915_gem_object *obj;
2781         int plane = intel_crtc->plane;
2782         unsigned long linear_offset;
2783         u32 dspcntr;
2784         u32 reg = DSPCNTR(plane);
2785         int pixel_size;
2786
2787         if (!visible || !fb) {
2788                 I915_WRITE(reg, 0);
2789                 I915_WRITE(DSPSURF(plane), 0);
2790                 POSTING_READ(reg);
2791                 return;
2792         }
2793
2794         obj = intel_fb_obj(fb);
2795         if (WARN_ON(obj == NULL))
2796                 return;
2797
2798         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2799
2800         dspcntr = DISPPLANE_GAMMA_ENABLE;
2801
2802         dspcntr |= DISPLAY_PLANE_ENABLE;
2803
2804         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2805                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2806
2807         switch (fb->pixel_format) {
2808         case DRM_FORMAT_C8:
2809                 dspcntr |= DISPPLANE_8BPP;
2810                 break;
2811         case DRM_FORMAT_RGB565:
2812                 dspcntr |= DISPPLANE_BGRX565;
2813                 break;
2814         case DRM_FORMAT_XRGB8888:
2815                 dspcntr |= DISPPLANE_BGRX888;
2816                 break;
2817         case DRM_FORMAT_XBGR8888:
2818                 dspcntr |= DISPPLANE_RGBX888;
2819                 break;
2820         case DRM_FORMAT_XRGB2101010:
2821                 dspcntr |= DISPPLANE_BGRX101010;
2822                 break;
2823         case DRM_FORMAT_XBGR2101010:
2824                 dspcntr |= DISPPLANE_RGBX101010;
2825                 break;
2826         default:
2827                 BUG();
2828         }
2829
2830         if (obj->tiling_mode != I915_TILING_NONE)
2831                 dspcntr |= DISPPLANE_TILED;
2832
2833         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2834                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2835
2836         linear_offset = y * fb->pitches[0] + x * pixel_size;
2837         intel_crtc->dspaddr_offset =
2838                 intel_gen4_compute_page_offset(dev_priv,
2839                                                &x, &y, obj->tiling_mode,
2840                                                pixel_size,
2841                                                fb->pitches[0]);
2842         linear_offset -= intel_crtc->dspaddr_offset;
2843         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2844                 dspcntr |= DISPPLANE_ROTATE_180;
2845
2846                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2847                         x += (intel_crtc->config->pipe_src_w - 1);
2848                         y += (intel_crtc->config->pipe_src_h - 1);
2849
2850                         /* Finding the last pixel of the last line of the display
2851                         data and adding to linear_offset*/
2852                         linear_offset +=
2853                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2854                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2855                 }
2856         }
2857
2858         I915_WRITE(reg, dspcntr);
2859
2860         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2861         I915_WRITE(DSPSURF(plane),
2862                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2863         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2864                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2865         } else {
2866                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2867                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2868         }
2869         POSTING_READ(reg);
2870 }
2871
2872 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2873                               uint32_t pixel_format)
2874 {
2875         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2876
2877         /*
2878          * The stride is either expressed as a multiple of 64 bytes
2879          * chunks for linear buffers or in number of tiles for tiled
2880          * buffers.
2881          */
2882         switch (fb_modifier) {
2883         case DRM_FORMAT_MOD_NONE:
2884                 return 64;
2885         case I915_FORMAT_MOD_X_TILED:
2886                 if (INTEL_INFO(dev)->gen == 2)
2887                         return 128;
2888                 return 512;
2889         case I915_FORMAT_MOD_Y_TILED:
2890                 /* No need to check for old gens and Y tiling since this is
2891                  * about the display engine and those will be blocked before
2892                  * we get here.
2893                  */
2894                 return 128;
2895         case I915_FORMAT_MOD_Yf_TILED:
2896                 if (bits_per_pixel == 8)
2897                         return 64;
2898                 else
2899                         return 128;
2900         default:
2901                 MISSING_CASE(fb_modifier);
2902                 return 64;
2903         }
2904 }
2905
2906 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2907                                      struct drm_i915_gem_object *obj)
2908 {
2909         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2910
2911         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2912                 view = &i915_ggtt_view_rotated;
2913
2914         return i915_gem_obj_ggtt_offset_view(obj, view);
2915 }
2916
2917 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2918 {
2919         struct drm_device *dev = intel_crtc->base.dev;
2920         struct drm_i915_private *dev_priv = dev->dev_private;
2921
2922         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2923         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2924         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2925         DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2926                 intel_crtc->base.base.id, intel_crtc->pipe, id);
2927 }
2928
2929 /*
2930  * This function detaches (aka. unbinds) unused scalers in hardware
2931  */
2932 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2933 {
2934         struct intel_crtc_scaler_state *scaler_state;
2935         int i;
2936
2937         scaler_state = &intel_crtc->config->scaler_state;
2938
2939         /* loop through and disable scalers that aren't in use */
2940         for (i = 0; i < intel_crtc->num_scalers; i++) {
2941                 if (!scaler_state->scalers[i].in_use)
2942                         skl_detach_scaler(intel_crtc, i);
2943         }
2944 }
2945
2946 u32 skl_plane_ctl_format(uint32_t pixel_format)
2947 {
2948         switch (pixel_format) {
2949         case DRM_FORMAT_C8:
2950                 return PLANE_CTL_FORMAT_INDEXED;
2951         case DRM_FORMAT_RGB565:
2952                 return PLANE_CTL_FORMAT_RGB_565;
2953         case DRM_FORMAT_XBGR8888:
2954                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2955         case DRM_FORMAT_XRGB8888:
2956                 return PLANE_CTL_FORMAT_XRGB_8888;
2957         /*
2958          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2959          * to be already pre-multiplied. We need to add a knob (or a different
2960          * DRM_FORMAT) for user-space to configure that.
2961          */
2962         case DRM_FORMAT_ABGR8888:
2963                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2964                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2965         case DRM_FORMAT_ARGB8888:
2966                 return PLANE_CTL_FORMAT_XRGB_8888 |
2967                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2968         case DRM_FORMAT_XRGB2101010:
2969                 return PLANE_CTL_FORMAT_XRGB_2101010;
2970         case DRM_FORMAT_XBGR2101010:
2971                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2972         case DRM_FORMAT_YUYV:
2973                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2974         case DRM_FORMAT_YVYU:
2975                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2976         case DRM_FORMAT_UYVY:
2977                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2978         case DRM_FORMAT_VYUY:
2979                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2980         default:
2981                 MISSING_CASE(pixel_format);
2982         }
2983
2984         return 0;
2985 }
2986
2987 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2988 {
2989         switch (fb_modifier) {
2990         case DRM_FORMAT_MOD_NONE:
2991                 break;
2992         case I915_FORMAT_MOD_X_TILED:
2993                 return PLANE_CTL_TILED_X;
2994         case I915_FORMAT_MOD_Y_TILED:
2995                 return PLANE_CTL_TILED_Y;
2996         case I915_FORMAT_MOD_Yf_TILED:
2997                 return PLANE_CTL_TILED_YF;
2998         default:
2999                 MISSING_CASE(fb_modifier);
3000         }
3001
3002         return 0;
3003 }
3004
3005 u32 skl_plane_ctl_rotation(unsigned int rotation)
3006 {
3007         switch (rotation) {
3008         case BIT(DRM_ROTATE_0):
3009                 break;
3010         /*
3011          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3012          * while i915 HW rotation is clockwise, thats why this swapping.
3013          */
3014         case BIT(DRM_ROTATE_90):
3015                 return PLANE_CTL_ROTATE_270;
3016         case BIT(DRM_ROTATE_180):
3017                 return PLANE_CTL_ROTATE_180;
3018         case BIT(DRM_ROTATE_270):
3019                 return PLANE_CTL_ROTATE_90;
3020         default:
3021                 MISSING_CASE(rotation);
3022         }
3023
3024         return 0;
3025 }
3026
3027 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3028                                          struct drm_framebuffer *fb,
3029                                          int x, int y)
3030 {
3031         struct drm_device *dev = crtc->dev;
3032         struct drm_i915_private *dev_priv = dev->dev_private;
3033         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3034         struct drm_plane *plane = crtc->primary;
3035         bool visible = to_intel_plane_state(plane->state)->visible;
3036         struct drm_i915_gem_object *obj;
3037         int pipe = intel_crtc->pipe;
3038         u32 plane_ctl, stride_div, stride;
3039         u32 tile_height, plane_offset, plane_size;
3040         unsigned int rotation;
3041         int x_offset, y_offset;
3042         unsigned long surf_addr;
3043         struct intel_crtc_state *crtc_state = intel_crtc->config;
3044         struct intel_plane_state *plane_state;
3045         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3046         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3047         int scaler_id = -1;
3048
3049         plane_state = to_intel_plane_state(plane->state);
3050
3051         if (!visible || !fb) {
3052                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3053                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3054                 POSTING_READ(PLANE_CTL(pipe, 0));
3055                 return;
3056         }
3057
3058         plane_ctl = PLANE_CTL_ENABLE |
3059                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3060                     PLANE_CTL_PIPE_CSC_ENABLE;
3061
3062         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3063         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3064         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3065
3066         rotation = plane->state->rotation;
3067         plane_ctl |= skl_plane_ctl_rotation(rotation);
3068
3069         obj = intel_fb_obj(fb);
3070         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3071                                                fb->pixel_format);
3072         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3073
3074         /*
3075          * FIXME: intel_plane_state->src, dst aren't set when transitional
3076          * update_plane helpers are called from legacy paths.
3077          * Once full atomic crtc is available, below check can be avoided.
3078          */
3079         if (drm_rect_width(&plane_state->src)) {
3080                 scaler_id = plane_state->scaler_id;
3081                 src_x = plane_state->src.x1 >> 16;
3082                 src_y = plane_state->src.y1 >> 16;
3083                 src_w = drm_rect_width(&plane_state->src) >> 16;
3084                 src_h = drm_rect_height(&plane_state->src) >> 16;
3085                 dst_x = plane_state->dst.x1;
3086                 dst_y = plane_state->dst.y1;
3087                 dst_w = drm_rect_width(&plane_state->dst);
3088                 dst_h = drm_rect_height(&plane_state->dst);
3089
3090                 WARN_ON(x != src_x || y != src_y);
3091         } else {
3092                 src_w = intel_crtc->config->pipe_src_w;
3093                 src_h = intel_crtc->config->pipe_src_h;
3094         }
3095
3096         if (intel_rotation_90_or_270(rotation)) {
3097                 /* stride = Surface height in tiles */
3098                 tile_height = intel_tile_height(dev, fb->pixel_format,
3099                                                 fb->modifier[0]);
3100                 stride = DIV_ROUND_UP(fb->height, tile_height);
3101                 x_offset = stride * tile_height - y - src_h;
3102                 y_offset = x;
3103                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3104         } else {
3105                 stride = fb->pitches[0] / stride_div;
3106                 x_offset = x;
3107                 y_offset = y;
3108                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3109         }
3110         plane_offset = y_offset << 16 | x_offset;
3111
3112         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3113         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3114         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3115         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3116
3117         if (scaler_id >= 0) {
3118                 uint32_t ps_ctrl = 0;
3119
3120                 WARN_ON(!dst_w || !dst_h);
3121                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3122                         crtc_state->scaler_state.scalers[scaler_id].mode;
3123                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3124                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3125                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3126                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3127                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3128         } else {
3129                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3130         }
3131
3132         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3133
3134         POSTING_READ(PLANE_SURF(pipe, 0));
3135 }
3136
3137 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3138 static int
3139 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3140                            int x, int y, enum mode_set_atomic state)
3141 {
3142         struct drm_device *dev = crtc->dev;
3143         struct drm_i915_private *dev_priv = dev->dev_private;
3144
3145         if (dev_priv->fbc.disable_fbc)
3146                 dev_priv->fbc.disable_fbc(dev_priv);
3147
3148         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3149
3150         return 0;
3151 }
3152
3153 static void intel_complete_page_flips(struct drm_device *dev)
3154 {
3155         struct drm_crtc *crtc;
3156
3157         for_each_crtc(dev, crtc) {
3158                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3159                 enum plane plane = intel_crtc->plane;
3160
3161                 intel_prepare_page_flip(dev, plane);
3162                 intel_finish_page_flip_plane(dev, plane);
3163         }
3164 }
3165
3166 static void intel_update_primary_planes(struct drm_device *dev)
3167 {
3168         struct drm_i915_private *dev_priv = dev->dev_private;
3169         struct drm_crtc *crtc;
3170
3171         for_each_crtc(dev, crtc) {
3172                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3173
3174                 drm_modeset_lock(&crtc->mutex, NULL);
3175                 /*
3176                  * FIXME: Once we have proper support for primary planes (and
3177                  * disabling them without disabling the entire crtc) allow again
3178                  * a NULL crtc->primary->fb.
3179                  */
3180                 if (intel_crtc->active && crtc->primary->fb)
3181                         dev_priv->display.update_primary_plane(crtc,
3182                                                                crtc->primary->fb,
3183                                                                crtc->x,
3184                                                                crtc->y);
3185                 drm_modeset_unlock(&crtc->mutex);
3186         }
3187 }
3188
3189 void intel_prepare_reset(struct drm_device *dev)
3190 {
3191         /* no reset support for gen2 */
3192         if (IS_GEN2(dev))
3193                 return;
3194
3195         /* reset doesn't touch the display */
3196         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3197                 return;
3198
3199         drm_modeset_lock_all(dev);
3200         /*
3201          * Disabling the crtcs gracefully seems nicer. Also the
3202          * g33 docs say we should at least disable all the planes.
3203          */
3204         intel_display_suspend(dev);
3205 }
3206
3207 void intel_finish_reset(struct drm_device *dev)
3208 {
3209         struct drm_i915_private *dev_priv = to_i915(dev);
3210
3211         /*
3212          * Flips in the rings will be nuked by the reset,
3213          * so complete all pending flips so that user space
3214          * will get its events and not get stuck.
3215          */
3216         intel_complete_page_flips(dev);
3217
3218         /* no reset support for gen2 */
3219         if (IS_GEN2(dev))
3220                 return;
3221
3222         /* reset doesn't touch the display */
3223         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3224                 /*
3225                  * Flips in the rings have been nuked by the reset,
3226                  * so update the base address of all primary
3227                  * planes to the the last fb to make sure we're
3228                  * showing the correct fb after a reset.
3229                  */
3230                 intel_update_primary_planes(dev);
3231                 return;
3232         }
3233
3234         /*
3235          * The display has been reset as well,
3236          * so need a full re-initialization.
3237          */
3238         intel_runtime_pm_disable_interrupts(dev_priv);
3239         intel_runtime_pm_enable_interrupts(dev_priv);
3240
3241         intel_modeset_init_hw(dev);
3242
3243         spin_lock_irq(&dev_priv->irq_lock);
3244         if (dev_priv->display.hpd_irq_setup)
3245                 dev_priv->display.hpd_irq_setup(dev);
3246         spin_unlock_irq(&dev_priv->irq_lock);
3247
3248         intel_display_resume(dev);
3249
3250         intel_hpd_init(dev_priv);
3251
3252         drm_modeset_unlock_all(dev);
3253 }
3254
3255 static void
3256 intel_finish_fb(struct drm_framebuffer *old_fb)
3257 {
3258         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3259         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3260         bool was_interruptible = dev_priv->mm.interruptible;
3261         int ret;
3262
3263         /* Big Hammer, we also need to ensure that any pending
3264          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3265          * current scanout is retired before unpinning the old
3266          * framebuffer. Note that we rely on userspace rendering
3267          * into the buffer attached to the pipe they are waiting
3268          * on. If not, userspace generates a GPU hang with IPEHR
3269          * point to the MI_WAIT_FOR_EVENT.
3270          *
3271          * This should only fail upon a hung GPU, in which case we
3272          * can safely continue.
3273          */
3274         dev_priv->mm.interruptible = false;
3275         ret = i915_gem_object_wait_rendering(obj, true);
3276         dev_priv->mm.interruptible = was_interruptible;
3277
3278         WARN_ON(ret);
3279 }
3280
3281 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3282 {
3283         struct drm_device *dev = crtc->dev;
3284         struct drm_i915_private *dev_priv = dev->dev_private;
3285         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3286         bool pending;
3287
3288         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3289             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3290                 return false;
3291
3292         spin_lock_irq(&dev->event_lock);
3293         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3294         spin_unlock_irq(&dev->event_lock);
3295
3296         return pending;
3297 }
3298
3299 static void intel_update_pipe_size(struct intel_crtc *crtc)
3300 {
3301         struct drm_device *dev = crtc->base.dev;
3302         struct drm_i915_private *dev_priv = dev->dev_private;
3303         const struct drm_display_mode *adjusted_mode;
3304
3305         if (!i915.fastboot)
3306                 return;
3307
3308         /*
3309          * Update pipe size and adjust fitter if needed: the reason for this is
3310          * that in compute_mode_changes we check the native mode (not the pfit
3311          * mode) to see if we can flip rather than do a full mode set. In the
3312          * fastboot case, we'll flip, but if we don't update the pipesrc and
3313          * pfit state, we'll end up with a big fb scanned out into the wrong
3314          * sized surface.
3315          *
3316          * To fix this properly, we need to hoist the checks up into
3317          * compute_mode_changes (or above), check the actual pfit state and
3318          * whether the platform allows pfit disable with pipe active, and only
3319          * then update the pipesrc and pfit state, even on the flip path.
3320          */
3321
3322         adjusted_mode = &crtc->config->base.adjusted_mode;
3323
3324         I915_WRITE(PIPESRC(crtc->pipe),
3325                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3326                    (adjusted_mode->crtc_vdisplay - 1));
3327         if (!crtc->config->pch_pfit.enabled &&
3328             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3329              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3330                 I915_WRITE(PF_CTL(crtc->pipe), 0);
3331                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3332                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3333         }
3334         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3335         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3336 }
3337
3338 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3339 {
3340         struct drm_device *dev = crtc->dev;
3341         struct drm_i915_private *dev_priv = dev->dev_private;
3342         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3343         int pipe = intel_crtc->pipe;
3344         u32 reg, temp;
3345
3346         /* enable normal train */
3347         reg = FDI_TX_CTL(pipe);
3348         temp = I915_READ(reg);
3349         if (IS_IVYBRIDGE(dev)) {
3350                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3351                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3352         } else {
3353                 temp &= ~FDI_LINK_TRAIN_NONE;
3354                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3355         }
3356         I915_WRITE(reg, temp);
3357
3358         reg = FDI_RX_CTL(pipe);
3359         temp = I915_READ(reg);
3360         if (HAS_PCH_CPT(dev)) {
3361                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3362                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3363         } else {
3364                 temp &= ~FDI_LINK_TRAIN_NONE;
3365                 temp |= FDI_LINK_TRAIN_NONE;
3366         }
3367         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3368
3369         /* wait one idle pattern time */
3370         POSTING_READ(reg);
3371         udelay(1000);
3372
3373         /* IVB wants error correction enabled */
3374         if (IS_IVYBRIDGE(dev))
3375                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3376                            FDI_FE_ERRC_ENABLE);
3377 }
3378
3379 /* The FDI link training functions for ILK/Ibexpeak. */
3380 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3381 {
3382         struct drm_device *dev = crtc->dev;
3383         struct drm_i915_private *dev_priv = dev->dev_private;
3384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3385         int pipe = intel_crtc->pipe;
3386         u32 reg, temp, tries;
3387
3388         /* FDI needs bits from pipe first */
3389         assert_pipe_enabled(dev_priv, pipe);
3390
3391         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3392            for train result */
3393         reg = FDI_RX_IMR(pipe);
3394         temp = I915_READ(reg);
3395         temp &= ~FDI_RX_SYMBOL_LOCK;
3396         temp &= ~FDI_RX_BIT_LOCK;
3397         I915_WRITE(reg, temp);
3398         I915_READ(reg);
3399         udelay(150);
3400
3401         /* enable CPU FDI TX and PCH FDI RX */
3402         reg = FDI_TX_CTL(pipe);
3403         temp = I915_READ(reg);
3404         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3405         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3406         temp &= ~FDI_LINK_TRAIN_NONE;
3407         temp |= FDI_LINK_TRAIN_PATTERN_1;
3408         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3409
3410         reg = FDI_RX_CTL(pipe);
3411         temp = I915_READ(reg);
3412         temp &= ~FDI_LINK_TRAIN_NONE;
3413         temp |= FDI_LINK_TRAIN_PATTERN_1;
3414         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3415
3416         POSTING_READ(reg);
3417         udelay(150);
3418
3419         /* Ironlake workaround, enable clock pointer after FDI enable*/
3420         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3421         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3422                    FDI_RX_PHASE_SYNC_POINTER_EN);
3423
3424         reg = FDI_RX_IIR(pipe);
3425         for (tries = 0; tries < 5; tries++) {
3426                 temp = I915_READ(reg);
3427                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3428
3429                 if ((temp & FDI_RX_BIT_LOCK)) {
3430                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3431                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3432                         break;
3433                 }
3434         }
3435         if (tries == 5)
3436                 DRM_ERROR("FDI train 1 fail!\n");
3437
3438         /* Train 2 */
3439         reg = FDI_TX_CTL(pipe);
3440         temp = I915_READ(reg);
3441         temp &= ~FDI_LINK_TRAIN_NONE;
3442         temp |= FDI_LINK_TRAIN_PATTERN_2;
3443         I915_WRITE(reg, temp);
3444
3445         reg = FDI_RX_CTL(pipe);
3446         temp = I915_READ(reg);
3447         temp &= ~FDI_LINK_TRAIN_NONE;
3448         temp |= FDI_LINK_TRAIN_PATTERN_2;
3449         I915_WRITE(reg, temp);
3450
3451         POSTING_READ(reg);
3452         udelay(150);
3453
3454         reg = FDI_RX_IIR(pipe);
3455         for (tries = 0; tries < 5; tries++) {
3456                 temp = I915_READ(reg);
3457                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3458
3459                 if (temp & FDI_RX_SYMBOL_LOCK) {
3460                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3461                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3462                         break;
3463                 }
3464         }
3465         if (tries == 5)
3466                 DRM_ERROR("FDI train 2 fail!\n");
3467
3468         DRM_DEBUG_KMS("FDI train done\n");
3469
3470 }
3471
3472 static const int snb_b_fdi_train_param[] = {
3473         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3474         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3475         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3476         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3477 };
3478
3479 /* The FDI link training functions for SNB/Cougarpoint. */
3480 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3481 {
3482         struct drm_device *dev = crtc->dev;
3483         struct drm_i915_private *dev_priv = dev->dev_private;
3484         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3485         int pipe = intel_crtc->pipe;
3486         u32 reg, temp, i, retry;
3487
3488         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3489            for train result */
3490         reg = FDI_RX_IMR(pipe);
3491         temp = I915_READ(reg);
3492         temp &= ~FDI_RX_SYMBOL_LOCK;
3493         temp &= ~FDI_RX_BIT_LOCK;
3494         I915_WRITE(reg, temp);
3495
3496         POSTING_READ(reg);
3497         udelay(150);
3498
3499         /* enable CPU FDI TX and PCH FDI RX */
3500         reg = FDI_TX_CTL(pipe);
3501         temp = I915_READ(reg);
3502         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3503         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3504         temp &= ~FDI_LINK_TRAIN_NONE;
3505         temp |= FDI_LINK_TRAIN_PATTERN_1;
3506         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3507         /* SNB-B */
3508         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3509         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3510
3511         I915_WRITE(FDI_RX_MISC(pipe),
3512                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3513
3514         reg = FDI_RX_CTL(pipe);
3515         temp = I915_READ(reg);
3516         if (HAS_PCH_CPT(dev)) {
3517                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3518                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3519         } else {
3520                 temp &= ~FDI_LINK_TRAIN_NONE;
3521                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3522         }
3523         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3524
3525         POSTING_READ(reg);
3526         udelay(150);
3527
3528         for (i = 0; i < 4; i++) {
3529                 reg = FDI_TX_CTL(pipe);
3530                 temp = I915_READ(reg);
3531                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3532                 temp |= snb_b_fdi_train_param[i];
3533                 I915_WRITE(reg, temp);
3534
3535                 POSTING_READ(reg);
3536                 udelay(500);
3537
3538                 for (retry = 0; retry < 5; retry++) {
3539                         reg = FDI_RX_IIR(pipe);
3540                         temp = I915_READ(reg);
3541                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3542                         if (temp & FDI_RX_BIT_LOCK) {
3543                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3544                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3545                                 break;
3546                         }
3547                         udelay(50);
3548                 }
3549                 if (retry < 5)
3550                         break;
3551         }
3552         if (i == 4)
3553                 DRM_ERROR("FDI train 1 fail!\n");
3554
3555         /* Train 2 */
3556         reg = FDI_TX_CTL(pipe);
3557         temp = I915_READ(reg);
3558         temp &= ~FDI_LINK_TRAIN_NONE;
3559         temp |= FDI_LINK_TRAIN_PATTERN_2;
3560         if (IS_GEN6(dev)) {
3561                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3562                 /* SNB-B */
3563                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3564         }
3565         I915_WRITE(reg, temp);
3566
3567         reg = FDI_RX_CTL(pipe);
3568         temp = I915_READ(reg);
3569         if (HAS_PCH_CPT(dev)) {
3570                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3571                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3572         } else {
3573                 temp &= ~FDI_LINK_TRAIN_NONE;
3574                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3575         }
3576         I915_WRITE(reg, temp);
3577
3578         POSTING_READ(reg);
3579         udelay(150);
3580
3581         for (i = 0; i < 4; i++) {
3582                 reg = FDI_TX_CTL(pipe);
3583                 temp = I915_READ(reg);
3584                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3585                 temp |= snb_b_fdi_train_param[i];
3586                 I915_WRITE(reg, temp);
3587
3588                 POSTING_READ(reg);
3589                 udelay(500);
3590
3591                 for (retry = 0; retry < 5; retry++) {
3592                         reg = FDI_RX_IIR(pipe);
3593                         temp = I915_READ(reg);
3594                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3595                         if (temp & FDI_RX_SYMBOL_LOCK) {
3596                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3597                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3598                                 break;
3599                         }
3600                         udelay(50);
3601                 }
3602                 if (retry < 5)
3603                         break;
3604         }
3605         if (i == 4)
3606                 DRM_ERROR("FDI train 2 fail!\n");
3607
3608         DRM_DEBUG_KMS("FDI train done.\n");
3609 }
3610
3611 /* Manual link training for Ivy Bridge A0 parts */
3612 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3613 {
3614         struct drm_device *dev = crtc->dev;
3615         struct drm_i915_private *dev_priv = dev->dev_private;
3616         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3617         int pipe = intel_crtc->pipe;
3618         u32 reg, temp, i, j;
3619
3620         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3621            for train result */
3622         reg = FDI_RX_IMR(pipe);
3623         temp = I915_READ(reg);
3624         temp &= ~FDI_RX_SYMBOL_LOCK;
3625         temp &= ~FDI_RX_BIT_LOCK;
3626         I915_WRITE(reg, temp);
3627
3628         POSTING_READ(reg);
3629         udelay(150);
3630
3631         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3632                       I915_READ(FDI_RX_IIR(pipe)));
3633
3634         /* Try each vswing and preemphasis setting twice before moving on */
3635         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3636                 /* disable first in case we need to retry */
3637                 reg = FDI_TX_CTL(pipe);
3638                 temp = I915_READ(reg);
3639                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3640                 temp &= ~FDI_TX_ENABLE;
3641                 I915_WRITE(reg, temp);
3642
3643                 reg = FDI_RX_CTL(pipe);
3644                 temp = I915_READ(reg);
3645                 temp &= ~FDI_LINK_TRAIN_AUTO;
3646                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3647                 temp &= ~FDI_RX_ENABLE;
3648                 I915_WRITE(reg, temp);
3649
3650                 /* enable CPU FDI TX and PCH FDI RX */
3651                 reg = FDI_TX_CTL(pipe);
3652                 temp = I915_READ(reg);
3653                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3654                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3655                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3656                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3657                 temp |= snb_b_fdi_train_param[j/2];
3658                 temp |= FDI_COMPOSITE_SYNC;
3659                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3660
3661                 I915_WRITE(FDI_RX_MISC(pipe),
3662                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3663
3664                 reg = FDI_RX_CTL(pipe);
3665                 temp = I915_READ(reg);
3666                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3667                 temp |= FDI_COMPOSITE_SYNC;
3668                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3669
3670                 POSTING_READ(reg);
3671                 udelay(1); /* should be 0.5us */
3672
3673                 for (i = 0; i < 4; i++) {
3674                         reg = FDI_RX_IIR(pipe);
3675                         temp = I915_READ(reg);
3676                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3677
3678                         if (temp & FDI_RX_BIT_LOCK ||
3679                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3680                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3681                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3682                                               i);
3683                                 break;
3684                         }
3685                         udelay(1); /* should be 0.5us */
3686                 }
3687                 if (i == 4) {
3688                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3689                         continue;
3690                 }
3691
3692                 /* Train 2 */
3693                 reg = FDI_TX_CTL(pipe);
3694                 temp = I915_READ(reg);
3695                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3696                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3697                 I915_WRITE(reg, temp);
3698
3699                 reg = FDI_RX_CTL(pipe);
3700                 temp = I915_READ(reg);
3701                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3702                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3703                 I915_WRITE(reg, temp);
3704
3705                 POSTING_READ(reg);
3706                 udelay(2); /* should be 1.5us */
3707
3708                 for (i = 0; i < 4; i++) {
3709                         reg = FDI_RX_IIR(pipe);
3710                         temp = I915_READ(reg);
3711                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3712
3713                         if (temp & FDI_RX_SYMBOL_LOCK ||
3714                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3715                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3716                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3717                                               i);
3718                                 goto train_done;
3719                         }
3720                         udelay(2); /* should be 1.5us */
3721                 }
3722                 if (i == 4)
3723                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3724         }
3725
3726 train_done:
3727         DRM_DEBUG_KMS("FDI train done.\n");
3728 }
3729
3730 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3731 {
3732         struct drm_device *dev = intel_crtc->base.dev;
3733         struct drm_i915_private *dev_priv = dev->dev_private;
3734         int pipe = intel_crtc->pipe;
3735         u32 reg, temp;
3736
3737
3738         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3739         reg = FDI_RX_CTL(pipe);
3740         temp = I915_READ(reg);
3741         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3742         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3743         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3744         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3745
3746         POSTING_READ(reg);
3747         udelay(200);
3748
3749         /* Switch from Rawclk to PCDclk */
3750         temp = I915_READ(reg);
3751         I915_WRITE(reg, temp | FDI_PCDCLK);
3752
3753         POSTING_READ(reg);
3754         udelay(200);
3755
3756         /* Enable CPU FDI TX PLL, always on for Ironlake */
3757         reg = FDI_TX_CTL(pipe);
3758         temp = I915_READ(reg);
3759         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3760                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3761
3762                 POSTING_READ(reg);
3763                 udelay(100);
3764         }
3765 }
3766
3767 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3768 {
3769         struct drm_device *dev = intel_crtc->base.dev;
3770         struct drm_i915_private *dev_priv = dev->dev_private;
3771         int pipe = intel_crtc->pipe;
3772         u32 reg, temp;
3773
3774         /* Switch from PCDclk to Rawclk */
3775         reg = FDI_RX_CTL(pipe);
3776         temp = I915_READ(reg);
3777         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3778
3779         /* Disable CPU FDI TX PLL */
3780         reg = FDI_TX_CTL(pipe);
3781         temp = I915_READ(reg);
3782         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3783
3784         POSTING_READ(reg);
3785         udelay(100);
3786
3787         reg = FDI_RX_CTL(pipe);
3788         temp = I915_READ(reg);
3789         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3790
3791         /* Wait for the clocks to turn off. */
3792         POSTING_READ(reg);
3793         udelay(100);
3794 }
3795
3796 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3797 {
3798         struct drm_device *dev = crtc->dev;
3799         struct drm_i915_private *dev_priv = dev->dev_private;
3800         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3801         int pipe = intel_crtc->pipe;
3802         u32 reg, temp;
3803
3804         /* disable CPU FDI tx and PCH FDI rx */
3805         reg = FDI_TX_CTL(pipe);
3806         temp = I915_READ(reg);
3807         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3808         POSTING_READ(reg);
3809
3810         reg = FDI_RX_CTL(pipe);
3811         temp = I915_READ(reg);
3812         temp &= ~(0x7 << 16);
3813         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3814         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3815
3816         POSTING_READ(reg);
3817         udelay(100);
3818
3819         /* Ironlake workaround, disable clock pointer after downing FDI */
3820         if (HAS_PCH_IBX(dev))
3821                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3822
3823         /* still set train pattern 1 */
3824         reg = FDI_TX_CTL(pipe);
3825         temp = I915_READ(reg);
3826         temp &= ~FDI_LINK_TRAIN_NONE;
3827         temp |= FDI_LINK_TRAIN_PATTERN_1;
3828         I915_WRITE(reg, temp);
3829
3830         reg = FDI_RX_CTL(pipe);
3831         temp = I915_READ(reg);
3832         if (HAS_PCH_CPT(dev)) {
3833                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3834                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3835         } else {
3836                 temp &= ~FDI_LINK_TRAIN_NONE;
3837                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3838         }
3839         /* BPC in FDI rx is consistent with that in PIPECONF */
3840         temp &= ~(0x07 << 16);
3841         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3842         I915_WRITE(reg, temp);
3843
3844         POSTING_READ(reg);
3845         udelay(100);
3846 }
3847
3848 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3849 {
3850         struct intel_crtc *crtc;
3851
3852         /* Note that we don't need to be called with mode_config.lock here
3853          * as our list of CRTC objects is static for the lifetime of the
3854          * device and so cannot disappear as we iterate. Similarly, we can
3855          * happily treat the predicates as racy, atomic checks as userspace
3856          * cannot claim and pin a new fb without at least acquring the
3857          * struct_mutex and so serialising with us.
3858          */
3859         for_each_intel_crtc(dev, crtc) {
3860                 if (atomic_read(&crtc->unpin_work_count) == 0)
3861                         continue;
3862
3863                 if (crtc->unpin_work)
3864                         intel_wait_for_vblank(dev, crtc->pipe);
3865
3866                 return true;
3867         }
3868
3869         return false;
3870 }
3871
3872 static void page_flip_completed(struct intel_crtc *intel_crtc)
3873 {
3874         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3875         struct intel_unpin_work *work = intel_crtc->unpin_work;
3876
3877         /* ensure that the unpin work is consistent wrt ->pending. */
3878         smp_rmb();
3879         intel_crtc->unpin_work = NULL;
3880
3881         if (work->event)
3882                 drm_send_vblank_event(intel_crtc->base.dev,
3883                                       intel_crtc->pipe,
3884                                       work->event);
3885
3886         drm_crtc_vblank_put(&intel_crtc->base);
3887
3888         wake_up_all(&dev_priv->pending_flip_queue);
3889         queue_work(dev_priv->wq, &work->work);
3890
3891         trace_i915_flip_complete(intel_crtc->plane,
3892                                  work->pending_flip_obj);
3893 }
3894
3895 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3896 {
3897         struct drm_device *dev = crtc->dev;
3898         struct drm_i915_private *dev_priv = dev->dev_private;
3899
3900         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3901         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3902                                        !intel_crtc_has_pending_flip(crtc),
3903                                        60*HZ) == 0)) {
3904                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3905
3906                 spin_lock_irq(&dev->event_lock);
3907                 if (intel_crtc->unpin_work) {
3908                         WARN_ONCE(1, "Removing stuck page flip\n");
3909                         page_flip_completed(intel_crtc);
3910                 }
3911                 spin_unlock_irq(&dev->event_lock);
3912         }
3913
3914         if (crtc->primary->fb) {
3915                 mutex_lock(&dev->struct_mutex);
3916                 intel_finish_fb(crtc->primary->fb);
3917                 mutex_unlock(&dev->struct_mutex);
3918         }
3919 }
3920
3921 /* Program iCLKIP clock to the desired frequency */
3922 static void lpt_program_iclkip(struct drm_crtc *crtc)
3923 {
3924         struct drm_device *dev = crtc->dev;
3925         struct drm_i915_private *dev_priv = dev->dev_private;
3926         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3927         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3928         u32 temp;
3929
3930         mutex_lock(&dev_priv->sb_lock);
3931
3932         /* It is necessary to ungate the pixclk gate prior to programming
3933          * the divisors, and gate it back when it is done.
3934          */
3935         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3936
3937         /* Disable SSCCTL */
3938         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3939                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3940                                 SBI_SSCCTL_DISABLE,
3941                         SBI_ICLK);
3942
3943         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3944         if (clock == 20000) {
3945                 auxdiv = 1;
3946                 divsel = 0x41;
3947                 phaseinc = 0x20;
3948         } else {
3949                 /* The iCLK virtual clock root frequency is in MHz,
3950                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3951                  * divisors, it is necessary to divide one by another, so we
3952                  * convert the virtual clock precision to KHz here for higher
3953                  * precision.
3954                  */
3955                 u32 iclk_virtual_root_freq = 172800 * 1000;
3956                 u32 iclk_pi_range = 64;
3957                 u32 desired_divisor, msb_divisor_value, pi_value;
3958
3959                 desired_divisor = (iclk_virtual_root_freq / clock);
3960                 msb_divisor_value = desired_divisor / iclk_pi_range;
3961                 pi_value = desired_divisor % iclk_pi_range;
3962
3963                 auxdiv = 0;
3964                 divsel = msb_divisor_value - 2;
3965                 phaseinc = pi_value;
3966         }
3967
3968         /* This should not happen with any sane values */
3969         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3970                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3971         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3972                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3973
3974         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3975                         clock,
3976                         auxdiv,
3977                         divsel,
3978                         phasedir,
3979                         phaseinc);
3980
3981         /* Program SSCDIVINTPHASE6 */
3982         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3983         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3984         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3985         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3986         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3987         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3988         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3989         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3990
3991         /* Program SSCAUXDIV */
3992         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3993         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3994         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3995         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3996
3997         /* Enable modulator and associated divider */
3998         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3999         temp &= ~SBI_SSCCTL_DISABLE;
4000         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4001
4002         /* Wait for initialization time */
4003         udelay(24);
4004
4005         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4006
4007         mutex_unlock(&dev_priv->sb_lock);
4008 }
4009
4010 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4011                                                 enum pipe pch_transcoder)
4012 {
4013         struct drm_device *dev = crtc->base.dev;
4014         struct drm_i915_private *dev_priv = dev->dev_private;
4015         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4016
4017         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4018                    I915_READ(HTOTAL(cpu_transcoder)));
4019         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4020                    I915_READ(HBLANK(cpu_transcoder)));
4021         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4022                    I915_READ(HSYNC(cpu_transcoder)));
4023
4024         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4025                    I915_READ(VTOTAL(cpu_transcoder)));
4026         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4027                    I915_READ(VBLANK(cpu_transcoder)));
4028         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4029                    I915_READ(VSYNC(cpu_transcoder)));
4030         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4031                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4032 }
4033
4034 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4035 {
4036         struct drm_i915_private *dev_priv = dev->dev_private;
4037         uint32_t temp;
4038
4039         temp = I915_READ(SOUTH_CHICKEN1);
4040         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4041                 return;
4042
4043         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4044         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4045
4046         temp &= ~FDI_BC_BIFURCATION_SELECT;
4047         if (enable)
4048                 temp |= FDI_BC_BIFURCATION_SELECT;
4049
4050         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4051         I915_WRITE(SOUTH_CHICKEN1, temp);
4052         POSTING_READ(SOUTH_CHICKEN1);
4053 }
4054
4055 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4056 {
4057         struct drm_device *dev = intel_crtc->base.dev;
4058
4059         switch (intel_crtc->pipe) {
4060         case PIPE_A:
4061                 break;
4062         case PIPE_B:
4063                 if (intel_crtc->config->fdi_lanes > 2)
4064                         cpt_set_fdi_bc_bifurcation(dev, false);
4065                 else
4066                         cpt_set_fdi_bc_bifurcation(dev, true);
4067
4068                 break;
4069         case PIPE_C:
4070                 cpt_set_fdi_bc_bifurcation(dev, true);
4071
4072                 break;
4073         default:
4074                 BUG();
4075         }
4076 }
4077
4078 /*
4079  * Enable PCH resources required for PCH ports:
4080  *   - PCH PLLs
4081  *   - FDI training & RX/TX
4082  *   - update transcoder timings
4083  *   - DP transcoding bits
4084  *   - transcoder
4085  */
4086 static void ironlake_pch_enable(struct drm_crtc *crtc)
4087 {
4088         struct drm_device *dev = crtc->dev;
4089         struct drm_i915_private *dev_priv = dev->dev_private;
4090         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4091         int pipe = intel_crtc->pipe;
4092         u32 reg, temp;
4093
4094         assert_pch_transcoder_disabled(dev_priv, pipe);
4095
4096         if (IS_IVYBRIDGE(dev))
4097                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4098
4099         /* Write the TU size bits before fdi link training, so that error
4100          * detection works. */
4101         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4102                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4103
4104         /* For PCH output, training FDI link */
4105         dev_priv->display.fdi_link_train(crtc);
4106
4107         /* We need to program the right clock selection before writing the pixel
4108          * mutliplier into the DPLL. */
4109         if (HAS_PCH_CPT(dev)) {
4110                 u32 sel;
4111
4112                 temp = I915_READ(PCH_DPLL_SEL);
4113                 temp |= TRANS_DPLL_ENABLE(pipe);
4114                 sel = TRANS_DPLLB_SEL(pipe);
4115                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4116                         temp |= sel;
4117                 else
4118                         temp &= ~sel;
4119                 I915_WRITE(PCH_DPLL_SEL, temp);
4120         }
4121
4122         /* XXX: pch pll's can be enabled any time before we enable the PCH
4123          * transcoder, and we actually should do this to not upset any PCH
4124          * transcoder that already use the clock when we share it.
4125          *
4126          * Note that enable_shared_dpll tries to do the right thing, but
4127          * get_shared_dpll unconditionally resets the pll - we need that to have
4128          * the right LVDS enable sequence. */
4129         intel_enable_shared_dpll(intel_crtc);
4130
4131         /* set transcoder timing, panel must allow it */
4132         assert_panel_unlocked(dev_priv, pipe);
4133         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4134
4135         intel_fdi_normal_train(crtc);
4136
4137         /* For PCH DP, enable TRANS_DP_CTL */
4138         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4139                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4140                 reg = TRANS_DP_CTL(pipe);
4141                 temp = I915_READ(reg);
4142                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4143                           TRANS_DP_SYNC_MASK |
4144                           TRANS_DP_BPC_MASK);
4145                 temp |= TRANS_DP_OUTPUT_ENABLE;
4146                 temp |= bpc << 9; /* same format but at 11:9 */
4147
4148                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4149                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4150                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4151                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4152
4153                 switch (intel_trans_dp_port_sel(crtc)) {
4154                 case PCH_DP_B:
4155                         temp |= TRANS_DP_PORT_SEL_B;
4156                         break;
4157                 case PCH_DP_C:
4158                         temp |= TRANS_DP_PORT_SEL_C;
4159                         break;
4160                 case PCH_DP_D:
4161                         temp |= TRANS_DP_PORT_SEL_D;
4162                         break;
4163                 default:
4164                         BUG();
4165                 }
4166
4167                 I915_WRITE(reg, temp);
4168         }
4169
4170         ironlake_enable_pch_transcoder(dev_priv, pipe);
4171 }
4172
4173 static void lpt_pch_enable(struct drm_crtc *crtc)
4174 {
4175         struct drm_device *dev = crtc->dev;
4176         struct drm_i915_private *dev_priv = dev->dev_private;
4177         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4178         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4179
4180         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4181
4182         lpt_program_iclkip(crtc);
4183
4184         /* Set transcoder timing. */
4185         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4186
4187         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4188 }
4189
4190 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4191                                                 struct intel_crtc_state *crtc_state)
4192 {
4193         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4194         struct intel_shared_dpll *pll;
4195         struct intel_shared_dpll_config *shared_dpll;
4196         enum intel_dpll_id i;
4197
4198         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4199
4200         if (HAS_PCH_IBX(dev_priv->dev)) {
4201                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4202                 i = (enum intel_dpll_id) crtc->pipe;
4203                 pll = &dev_priv->shared_dplls[i];
4204
4205                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4206                               crtc->base.base.id, pll->name);
4207
4208                 WARN_ON(shared_dpll[i].crtc_mask);
4209
4210                 goto found;
4211         }
4212
4213         if (IS_BROXTON(dev_priv->dev)) {
4214                 /* PLL is attached to port in bxt */
4215                 struct intel_encoder *encoder;
4216                 struct intel_digital_port *intel_dig_port;
4217
4218                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4219                 if (WARN_ON(!encoder))
4220                         return NULL;
4221
4222                 intel_dig_port = enc_to_dig_port(&encoder->base);
4223                 /* 1:1 mapping between ports and PLLs */
4224                 i = (enum intel_dpll_id)intel_dig_port->port;
4225                 pll = &dev_priv->shared_dplls[i];
4226                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4227                         crtc->base.base.id, pll->name);
4228                 WARN_ON(shared_dpll[i].crtc_mask);
4229
4230                 goto found;
4231         }
4232
4233         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4234                 pll = &dev_priv->shared_dplls[i];
4235
4236                 /* Only want to check enabled timings first */
4237                 if (shared_dpll[i].crtc_mask == 0)
4238                         continue;
4239
4240                 if (memcmp(&crtc_state->dpll_hw_state,
4241                            &shared_dpll[i].hw_state,
4242                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4243                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4244                                       crtc->base.base.id, pll->name,
4245                                       shared_dpll[i].crtc_mask,
4246                                       pll->active);
4247                         goto found;
4248                 }
4249         }
4250
4251         /* Ok no matching timings, maybe there's a free one? */
4252         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4253                 pll = &dev_priv->shared_dplls[i];
4254                 if (shared_dpll[i].crtc_mask == 0) {
4255                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4256                                       crtc->base.base.id, pll->name);
4257                         goto found;
4258                 }
4259         }
4260
4261         return NULL;
4262
4263 found:
4264         if (shared_dpll[i].crtc_mask == 0)
4265                 shared_dpll[i].hw_state =
4266                         crtc_state->dpll_hw_state;
4267
4268         crtc_state->shared_dpll = i;
4269         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4270                          pipe_name(crtc->pipe));
4271
4272         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4273
4274         return pll;
4275 }
4276
4277 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4278 {
4279         struct drm_i915_private *dev_priv = to_i915(state->dev);
4280         struct intel_shared_dpll_config *shared_dpll;
4281         struct intel_shared_dpll *pll;
4282         enum intel_dpll_id i;
4283
4284         if (!to_intel_atomic_state(state)->dpll_set)
4285                 return;
4286
4287         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4288         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4289                 pll = &dev_priv->shared_dplls[i];
4290                 pll->config = shared_dpll[i];
4291         }
4292 }
4293
4294 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4295 {
4296         struct drm_i915_private *dev_priv = dev->dev_private;
4297         int dslreg = PIPEDSL(pipe);
4298         u32 temp;
4299
4300         temp = I915_READ(dslreg);
4301         udelay(500);
4302         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4303                 if (wait_for(I915_READ(dslreg) != temp, 5))
4304                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4305         }
4306 }
4307
4308 static int
4309 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4310                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4311                   int src_w, int src_h, int dst_w, int dst_h)
4312 {
4313         struct intel_crtc_scaler_state *scaler_state =
4314                 &crtc_state->scaler_state;
4315         struct intel_crtc *intel_crtc =
4316                 to_intel_crtc(crtc_state->base.crtc);
4317         int need_scaling;
4318
4319         need_scaling = intel_rotation_90_or_270(rotation) ?
4320                 (src_h != dst_w || src_w != dst_h):
4321                 (src_w != dst_w || src_h != dst_h);
4322
4323         /*
4324          * if plane is being disabled or scaler is no more required or force detach
4325          *  - free scaler binded to this plane/crtc
4326          *  - in order to do this, update crtc->scaler_usage
4327          *
4328          * Here scaler state in crtc_state is set free so that
4329          * scaler can be assigned to other user. Actual register
4330          * update to free the scaler is done in plane/panel-fit programming.
4331          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4332          */
4333         if (force_detach || !need_scaling) {
4334                 if (*scaler_id >= 0) {
4335                         scaler_state->scaler_users &= ~(1 << scaler_user);
4336                         scaler_state->scalers[*scaler_id].in_use = 0;
4337
4338                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4339                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4340                                 intel_crtc->pipe, scaler_user, *scaler_id,
4341                                 scaler_state->scaler_users);
4342                         *scaler_id = -1;
4343                 }
4344                 return 0;
4345         }
4346
4347         /* range checks */
4348         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4349                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4350
4351                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4352                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4353                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4354                         "size is out of scaler range\n",
4355                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4356                 return -EINVAL;
4357         }
4358
4359         /* mark this plane as a scaler user in crtc_state */
4360         scaler_state->scaler_users |= (1 << scaler_user);
4361         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4362                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4363                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4364                 scaler_state->scaler_users);
4365
4366         return 0;
4367 }
4368
4369 /**
4370  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4371  *
4372  * @state: crtc's scaler state
4373  *
4374  * Return
4375  *     0 - scaler_usage updated successfully
4376  *    error - requested scaling cannot be supported or other error condition
4377  */
4378 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4379 {
4380         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4381         struct drm_display_mode *adjusted_mode =
4382                 &state->base.adjusted_mode;
4383
4384         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4385                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4386
4387         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4388                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4389                 state->pipe_src_w, state->pipe_src_h,
4390                 adjusted_mode->hdisplay, adjusted_mode->vdisplay);
4391 }
4392
4393 /**
4394  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4395  *
4396  * @state: crtc's scaler state
4397  * @plane_state: atomic plane state to update
4398  *
4399  * Return
4400  *     0 - scaler_usage updated successfully
4401  *    error - requested scaling cannot be supported or other error condition
4402  */
4403 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4404                                    struct intel_plane_state *plane_state)
4405 {
4406
4407         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4408         struct intel_plane *intel_plane =
4409                 to_intel_plane(plane_state->base.plane);
4410         struct drm_framebuffer *fb = plane_state->base.fb;
4411         int ret;
4412
4413         bool force_detach = !fb || !plane_state->visible;
4414
4415         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4416                       intel_plane->base.base.id, intel_crtc->pipe,
4417                       drm_plane_index(&intel_plane->base));
4418
4419         ret = skl_update_scaler(crtc_state, force_detach,
4420                                 drm_plane_index(&intel_plane->base),
4421                                 &plane_state->scaler_id,
4422                                 plane_state->base.rotation,
4423                                 drm_rect_width(&plane_state->src) >> 16,
4424                                 drm_rect_height(&plane_state->src) >> 16,
4425                                 drm_rect_width(&plane_state->dst),
4426                                 drm_rect_height(&plane_state->dst));
4427
4428         if (ret || plane_state->scaler_id < 0)
4429                 return ret;
4430
4431         /* check colorkey */
4432         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4433                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4434                               intel_plane->base.base.id);
4435                 return -EINVAL;
4436         }
4437
4438         /* Check src format */
4439         switch (fb->pixel_format) {
4440         case DRM_FORMAT_RGB565:
4441         case DRM_FORMAT_XBGR8888:
4442         case DRM_FORMAT_XRGB8888:
4443         case DRM_FORMAT_ABGR8888:
4444         case DRM_FORMAT_ARGB8888:
4445         case DRM_FORMAT_XRGB2101010:
4446         case DRM_FORMAT_XBGR2101010:
4447         case DRM_FORMAT_YUYV:
4448         case DRM_FORMAT_YVYU:
4449         case DRM_FORMAT_UYVY:
4450         case DRM_FORMAT_VYUY:
4451                 break;
4452         default:
4453                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4454                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4455                 return -EINVAL;
4456         }
4457
4458         return 0;
4459 }
4460
4461 static void skylake_scaler_disable(struct intel_crtc *crtc)
4462 {
4463         int i;
4464
4465         for (i = 0; i < crtc->num_scalers; i++)
4466                 skl_detach_scaler(crtc, i);
4467 }
4468
4469 static void skylake_pfit_enable(struct intel_crtc *crtc)
4470 {
4471         struct drm_device *dev = crtc->base.dev;
4472         struct drm_i915_private *dev_priv = dev->dev_private;
4473         int pipe = crtc->pipe;
4474         struct intel_crtc_scaler_state *scaler_state =
4475                 &crtc->config->scaler_state;
4476
4477         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4478
4479         if (crtc->config->pch_pfit.enabled) {
4480                 int id;
4481
4482                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4483                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4484                         return;
4485                 }
4486
4487                 id = scaler_state->scaler_id;
4488                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4489                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4490                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4491                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4492
4493                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4494         }
4495 }
4496
4497 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4498 {
4499         struct drm_device *dev = crtc->base.dev;
4500         struct drm_i915_private *dev_priv = dev->dev_private;
4501         int pipe = crtc->pipe;
4502
4503         if (crtc->config->pch_pfit.enabled) {
4504                 /* Force use of hard-coded filter coefficients
4505                  * as some pre-programmed values are broken,
4506                  * e.g. x201.
4507                  */
4508                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4509                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4510                                                  PF_PIPE_SEL_IVB(pipe));
4511                 else
4512                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4513                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4514                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4515         }
4516 }
4517
4518 void hsw_enable_ips(struct intel_crtc *crtc)
4519 {
4520         struct drm_device *dev = crtc->base.dev;
4521         struct drm_i915_private *dev_priv = dev->dev_private;
4522
4523         if (!crtc->config->ips_enabled)
4524                 return;
4525
4526         /* We can only enable IPS after we enable a plane and wait for a vblank */
4527         intel_wait_for_vblank(dev, crtc->pipe);
4528
4529         assert_plane_enabled(dev_priv, crtc->plane);
4530         if (IS_BROADWELL(dev)) {
4531                 mutex_lock(&dev_priv->rps.hw_lock);
4532                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4533                 mutex_unlock(&dev_priv->rps.hw_lock);
4534                 /* Quoting Art Runyan: "its not safe to expect any particular
4535                  * value in IPS_CTL bit 31 after enabling IPS through the
4536                  * mailbox." Moreover, the mailbox may return a bogus state,
4537                  * so we need to just enable it and continue on.
4538                  */
4539         } else {
4540                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4541                 /* The bit only becomes 1 in the next vblank, so this wait here
4542                  * is essentially intel_wait_for_vblank. If we don't have this
4543                  * and don't wait for vblanks until the end of crtc_enable, then
4544                  * the HW state readout code will complain that the expected
4545                  * IPS_CTL value is not the one we read. */
4546                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4547                         DRM_ERROR("Timed out waiting for IPS enable\n");
4548         }
4549 }
4550
4551 void hsw_disable_ips(struct intel_crtc *crtc)
4552 {
4553         struct drm_device *dev = crtc->base.dev;
4554         struct drm_i915_private *dev_priv = dev->dev_private;
4555
4556         if (!crtc->config->ips_enabled)
4557                 return;
4558
4559         assert_plane_enabled(dev_priv, crtc->plane);
4560         if (IS_BROADWELL(dev)) {
4561                 mutex_lock(&dev_priv->rps.hw_lock);
4562                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4563                 mutex_unlock(&dev_priv->rps.hw_lock);
4564                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4565                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4566                         DRM_ERROR("Timed out waiting for IPS disable\n");
4567         } else {
4568                 I915_WRITE(IPS_CTL, 0);
4569                 POSTING_READ(IPS_CTL);
4570         }
4571
4572         /* We need to wait for a vblank before we can disable the plane. */
4573         intel_wait_for_vblank(dev, crtc->pipe);
4574 }
4575
4576 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4577 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4578 {
4579         struct drm_device *dev = crtc->dev;
4580         struct drm_i915_private *dev_priv = dev->dev_private;
4581         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4582         enum pipe pipe = intel_crtc->pipe;
4583         int palreg = PALETTE(pipe);
4584         int i;
4585         bool reenable_ips = false;
4586
4587         /* The clocks have to be on to load the palette. */
4588         if (!crtc->state->active)
4589                 return;
4590
4591         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4592                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4593                         assert_dsi_pll_enabled(dev_priv);
4594                 else
4595                         assert_pll_enabled(dev_priv, pipe);
4596         }
4597
4598         /* use legacy palette for Ironlake */
4599         if (!HAS_GMCH_DISPLAY(dev))
4600                 palreg = LGC_PALETTE(pipe);
4601
4602         /* Workaround : Do not read or write the pipe palette/gamma data while
4603          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4604          */
4605         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4606             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4607              GAMMA_MODE_MODE_SPLIT)) {
4608                 hsw_disable_ips(intel_crtc);
4609                 reenable_ips = true;
4610         }
4611
4612         for (i = 0; i < 256; i++) {
4613                 I915_WRITE(palreg + 4 * i,
4614                            (intel_crtc->lut_r[i] << 16) |
4615                            (intel_crtc->lut_g[i] << 8) |
4616                            intel_crtc->lut_b[i]);
4617         }
4618
4619         if (reenable_ips)
4620                 hsw_enable_ips(intel_crtc);
4621 }
4622
4623 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4624 {
4625         if (intel_crtc->overlay) {
4626                 struct drm_device *dev = intel_crtc->base.dev;
4627                 struct drm_i915_private *dev_priv = dev->dev_private;
4628
4629                 mutex_lock(&dev->struct_mutex);
4630                 dev_priv->mm.interruptible = false;
4631                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4632                 dev_priv->mm.interruptible = true;
4633                 mutex_unlock(&dev->struct_mutex);
4634         }
4635
4636         /* Let userspace switch the overlay on again. In most cases userspace
4637          * has to recompute where to put it anyway.
4638          */
4639 }
4640
4641 /**
4642  * intel_post_enable_primary - Perform operations after enabling primary plane
4643  * @crtc: the CRTC whose primary plane was just enabled
4644  *
4645  * Performs potentially sleeping operations that must be done after the primary
4646  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4647  * called due to an explicit primary plane update, or due to an implicit
4648  * re-enable that is caused when a sprite plane is updated to no longer
4649  * completely hide the primary plane.
4650  */
4651 static void
4652 intel_post_enable_primary(struct drm_crtc *crtc)
4653 {
4654         struct drm_device *dev = crtc->dev;
4655         struct drm_i915_private *dev_priv = dev->dev_private;
4656         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4657         int pipe = intel_crtc->pipe;
4658
4659         /*
4660          * BDW signals flip done immediately if the plane
4661          * is disabled, even if the plane enable is already
4662          * armed to occur at the next vblank :(
4663          */
4664         if (IS_BROADWELL(dev))
4665                 intel_wait_for_vblank(dev, pipe);
4666
4667         /*
4668          * FIXME IPS should be fine as long as one plane is
4669          * enabled, but in practice it seems to have problems
4670          * when going from primary only to sprite only and vice
4671          * versa.
4672          */
4673         hsw_enable_ips(intel_crtc);
4674
4675         /*
4676          * Gen2 reports pipe underruns whenever all planes are disabled.
4677          * So don't enable underrun reporting before at least some planes
4678          * are enabled.
4679          * FIXME: Need to fix the logic to work when we turn off all planes
4680          * but leave the pipe running.
4681          */
4682         if (IS_GEN2(dev))
4683                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4684
4685         /* Underruns don't raise interrupts, so check manually. */
4686         if (HAS_GMCH_DISPLAY(dev))
4687                 i9xx_check_fifo_underruns(dev_priv);
4688 }
4689
4690 /**
4691  * intel_pre_disable_primary - Perform operations before disabling primary plane
4692  * @crtc: the CRTC whose primary plane is to be disabled
4693  *
4694  * Performs potentially sleeping operations that must be done before the
4695  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4696  * be called due to an explicit primary plane update, or due to an implicit
4697  * disable that is caused when a sprite plane completely hides the primary
4698  * plane.
4699  */
4700 static void
4701 intel_pre_disable_primary(struct drm_crtc *crtc)
4702 {
4703         struct drm_device *dev = crtc->dev;
4704         struct drm_i915_private *dev_priv = dev->dev_private;
4705         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4706         int pipe = intel_crtc->pipe;
4707
4708         /*
4709          * Gen2 reports pipe underruns whenever all planes are disabled.
4710          * So diasble underrun reporting before all the planes get disabled.
4711          * FIXME: Need to fix the logic to work when we turn off all planes
4712          * but leave the pipe running.
4713          */
4714         if (IS_GEN2(dev))
4715                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4716
4717         /*
4718          * Vblank time updates from the shadow to live plane control register
4719          * are blocked if the memory self-refresh mode is active at that
4720          * moment. So to make sure the plane gets truly disabled, disable
4721          * first the self-refresh mode. The self-refresh enable bit in turn
4722          * will be checked/applied by the HW only at the next frame start
4723          * event which is after the vblank start event, so we need to have a
4724          * wait-for-vblank between disabling the plane and the pipe.
4725          */
4726         if (HAS_GMCH_DISPLAY(dev)) {
4727                 intel_set_memory_cxsr(dev_priv, false);
4728                 dev_priv->wm.vlv.cxsr = false;
4729                 intel_wait_for_vblank(dev, pipe);
4730         }
4731
4732         /*
4733          * FIXME IPS should be fine as long as one plane is
4734          * enabled, but in practice it seems to have problems
4735          * when going from primary only to sprite only and vice
4736          * versa.
4737          */
4738         hsw_disable_ips(intel_crtc);
4739 }
4740
4741 static void intel_post_plane_update(struct intel_crtc *crtc)
4742 {
4743         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4744         struct drm_device *dev = crtc->base.dev;
4745         struct drm_i915_private *dev_priv = dev->dev_private;
4746         struct drm_plane *plane;
4747
4748         if (atomic->wait_vblank)
4749                 intel_wait_for_vblank(dev, crtc->pipe);
4750
4751         intel_frontbuffer_flip(dev, atomic->fb_bits);
4752
4753         if (atomic->disable_cxsr)
4754                 crtc->wm.cxsr_allowed = true;
4755
4756         if (crtc->atomic.update_wm_post)
4757                 intel_update_watermarks(&crtc->base);
4758
4759         if (atomic->update_fbc)
4760                 intel_fbc_update(dev_priv);
4761
4762         if (atomic->post_enable_primary)
4763                 intel_post_enable_primary(&crtc->base);
4764
4765         drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4766                 intel_update_sprite_watermarks(plane, &crtc->base,
4767                                                0, 0, 0, false, false);
4768
4769         memset(atomic, 0, sizeof(*atomic));
4770 }
4771
4772 static void intel_pre_plane_update(struct intel_crtc *crtc)
4773 {
4774         struct drm_device *dev = crtc->base.dev;
4775         struct drm_i915_private *dev_priv = dev->dev_private;
4776         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4777         struct drm_plane *p;
4778
4779         /* Track fb's for any planes being disabled */
4780         drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4781                 struct intel_plane *plane = to_intel_plane(p);
4782
4783                 mutex_lock(&dev->struct_mutex);
4784                 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4785                                   plane->frontbuffer_bit);
4786                 mutex_unlock(&dev->struct_mutex);
4787         }
4788
4789         if (atomic->wait_for_flips)
4790                 intel_crtc_wait_for_pending_flips(&crtc->base);
4791
4792         if (atomic->disable_fbc)
4793                 intel_fbc_disable_crtc(crtc);
4794
4795         if (crtc->atomic.disable_ips)
4796                 hsw_disable_ips(crtc);
4797
4798         if (atomic->pre_disable_primary)
4799                 intel_pre_disable_primary(&crtc->base);
4800
4801         if (atomic->disable_cxsr) {
4802                 crtc->wm.cxsr_allowed = false;
4803                 intel_set_memory_cxsr(dev_priv, false);
4804         }
4805 }
4806
4807 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4808 {
4809         struct drm_device *dev = crtc->dev;
4810         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4811         struct drm_plane *p;
4812         int pipe = intel_crtc->pipe;
4813
4814         intel_crtc_dpms_overlay_disable(intel_crtc);
4815
4816         drm_for_each_plane_mask(p, dev, plane_mask)
4817                 to_intel_plane(p)->disable_plane(p, crtc);
4818
4819         /*
4820          * FIXME: Once we grow proper nuclear flip support out of this we need
4821          * to compute the mask of flip planes precisely. For the time being
4822          * consider this a flip to a NULL plane.
4823          */
4824         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4825 }
4826
4827 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4828 {
4829         struct drm_device *dev = crtc->dev;
4830         struct drm_i915_private *dev_priv = dev->dev_private;
4831         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4832         struct intel_encoder *encoder;
4833         int pipe = intel_crtc->pipe;
4834
4835         if (WARN_ON(intel_crtc->active))
4836                 return;
4837
4838         if (intel_crtc->config->has_pch_encoder)
4839                 intel_prepare_shared_dpll(intel_crtc);
4840
4841         if (intel_crtc->config->has_dp_encoder)
4842                 intel_dp_set_m_n(intel_crtc, M1_N1);
4843
4844         intel_set_pipe_timings(intel_crtc);
4845
4846         if (intel_crtc->config->has_pch_encoder) {
4847                 intel_cpu_transcoder_set_m_n(intel_crtc,
4848                                      &intel_crtc->config->fdi_m_n, NULL);
4849         }
4850
4851         ironlake_set_pipeconf(crtc);
4852
4853         intel_crtc->active = true;
4854
4855         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4856         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4857
4858         for_each_encoder_on_crtc(dev, crtc, encoder)
4859                 if (encoder->pre_enable)
4860                         encoder->pre_enable(encoder);
4861
4862         if (intel_crtc->config->has_pch_encoder) {
4863                 /* Note: FDI PLL enabling _must_ be done before we enable the
4864                  * cpu pipes, hence this is separate from all the other fdi/pch
4865                  * enabling. */
4866                 ironlake_fdi_pll_enable(intel_crtc);
4867         } else {
4868                 assert_fdi_tx_disabled(dev_priv, pipe);
4869                 assert_fdi_rx_disabled(dev_priv, pipe);
4870         }
4871
4872         ironlake_pfit_enable(intel_crtc);
4873
4874         /*
4875          * On ILK+ LUT must be loaded before the pipe is running but with
4876          * clocks enabled
4877          */
4878         intel_crtc_load_lut(crtc);
4879
4880         intel_update_watermarks(crtc);
4881         intel_enable_pipe(intel_crtc);
4882
4883         if (intel_crtc->config->has_pch_encoder)
4884                 ironlake_pch_enable(crtc);
4885
4886         assert_vblank_disabled(crtc);
4887         drm_crtc_vblank_on(crtc);
4888
4889         for_each_encoder_on_crtc(dev, crtc, encoder)
4890                 encoder->enable(encoder);
4891
4892         if (HAS_PCH_CPT(dev))
4893                 cpt_verify_modeset(dev, intel_crtc->pipe);
4894 }
4895
4896 /* IPS only exists on ULT machines and is tied to pipe A. */
4897 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4898 {
4899         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4900 }
4901
4902 static void haswell_crtc_enable(struct drm_crtc *crtc)
4903 {
4904         struct drm_device *dev = crtc->dev;
4905         struct drm_i915_private *dev_priv = dev->dev_private;
4906         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4907         struct intel_encoder *encoder;
4908         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4909         struct intel_crtc_state *pipe_config =
4910                 to_intel_crtc_state(crtc->state);
4911
4912         if (WARN_ON(intel_crtc->active))
4913                 return;
4914
4915         if (intel_crtc_to_shared_dpll(intel_crtc))
4916                 intel_enable_shared_dpll(intel_crtc);
4917
4918         if (intel_crtc->config->has_dp_encoder)
4919                 intel_dp_set_m_n(intel_crtc, M1_N1);
4920
4921         intel_set_pipe_timings(intel_crtc);
4922
4923         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4924                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4925                            intel_crtc->config->pixel_multiplier - 1);
4926         }
4927
4928         if (intel_crtc->config->has_pch_encoder) {
4929                 intel_cpu_transcoder_set_m_n(intel_crtc,
4930                                      &intel_crtc->config->fdi_m_n, NULL);
4931         }
4932
4933         haswell_set_pipeconf(crtc);
4934
4935         intel_set_pipe_csc(crtc);
4936
4937         intel_crtc->active = true;
4938
4939         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4940         for_each_encoder_on_crtc(dev, crtc, encoder)
4941                 if (encoder->pre_enable)
4942                         encoder->pre_enable(encoder);
4943
4944         if (intel_crtc->config->has_pch_encoder) {
4945                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4946                                                       true);
4947                 dev_priv->display.fdi_link_train(crtc);
4948         }
4949
4950         intel_ddi_enable_pipe_clock(intel_crtc);
4951
4952         if (INTEL_INFO(dev)->gen == 9)
4953                 skylake_pfit_enable(intel_crtc);
4954         else if (INTEL_INFO(dev)->gen < 9)
4955                 ironlake_pfit_enable(intel_crtc);
4956         else
4957                 MISSING_CASE(INTEL_INFO(dev)->gen);
4958
4959         /*
4960          * On ILK+ LUT must be loaded before the pipe is running but with
4961          * clocks enabled
4962          */
4963         intel_crtc_load_lut(crtc);
4964
4965         intel_ddi_set_pipe_settings(crtc);
4966         intel_ddi_enable_transcoder_func(crtc);
4967
4968         intel_update_watermarks(crtc);
4969         intel_enable_pipe(intel_crtc);
4970
4971         if (intel_crtc->config->has_pch_encoder)
4972                 lpt_pch_enable(crtc);
4973
4974         if (intel_crtc->config->dp_encoder_is_mst)
4975                 intel_ddi_set_vc_payload_alloc(crtc, true);
4976
4977         assert_vblank_disabled(crtc);
4978         drm_crtc_vblank_on(crtc);
4979
4980         for_each_encoder_on_crtc(dev, crtc, encoder) {
4981                 encoder->enable(encoder);
4982                 intel_opregion_notify_encoder(encoder, true);
4983         }
4984
4985         /* If we change the relative order between pipe/planes enabling, we need
4986          * to change the workaround. */
4987         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4988         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4989                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4990                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4991         }
4992 }
4993
4994 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4995 {
4996         struct drm_device *dev = crtc->base.dev;
4997         struct drm_i915_private *dev_priv = dev->dev_private;
4998         int pipe = crtc->pipe;
4999
5000         /* To avoid upsetting the power well on haswell only disable the pfit if
5001          * it's in use. The hw state code will make sure we get this right. */
5002         if (crtc->config->pch_pfit.enabled) {
5003                 I915_WRITE(PF_CTL(pipe), 0);
5004                 I915_WRITE(PF_WIN_POS(pipe), 0);
5005                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5006         }
5007 }
5008
5009 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5010 {
5011         struct drm_device *dev = crtc->dev;
5012         struct drm_i915_private *dev_priv = dev->dev_private;
5013         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5014         struct intel_encoder *encoder;
5015         int pipe = intel_crtc->pipe;
5016         u32 reg, temp;
5017
5018         for_each_encoder_on_crtc(dev, crtc, encoder)
5019                 encoder->disable(encoder);
5020
5021         drm_crtc_vblank_off(crtc);
5022         assert_vblank_disabled(crtc);
5023
5024         if (intel_crtc->config->has_pch_encoder)
5025                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5026
5027         intel_disable_pipe(intel_crtc);
5028
5029         ironlake_pfit_disable(intel_crtc);
5030
5031         if (intel_crtc->config->has_pch_encoder)
5032                 ironlake_fdi_disable(crtc);
5033
5034         for_each_encoder_on_crtc(dev, crtc, encoder)
5035                 if (encoder->post_disable)
5036                         encoder->post_disable(encoder);
5037
5038         if (intel_crtc->config->has_pch_encoder) {
5039                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5040
5041                 if (HAS_PCH_CPT(dev)) {
5042                         /* disable TRANS_DP_CTL */
5043                         reg = TRANS_DP_CTL(pipe);
5044                         temp = I915_READ(reg);
5045                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5046                                   TRANS_DP_PORT_SEL_MASK);
5047                         temp |= TRANS_DP_PORT_SEL_NONE;
5048                         I915_WRITE(reg, temp);
5049
5050                         /* disable DPLL_SEL */
5051                         temp = I915_READ(PCH_DPLL_SEL);
5052                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5053                         I915_WRITE(PCH_DPLL_SEL, temp);
5054                 }
5055
5056                 ironlake_fdi_pll_disable(intel_crtc);
5057         }
5058
5059         intel_crtc->active = false;
5060         intel_update_watermarks(crtc);
5061 }
5062
5063 static void haswell_crtc_disable(struct drm_crtc *crtc)
5064 {
5065         struct drm_device *dev = crtc->dev;
5066         struct drm_i915_private *dev_priv = dev->dev_private;
5067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5068         struct intel_encoder *encoder;
5069         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5070
5071         for_each_encoder_on_crtc(dev, crtc, encoder) {
5072                 intel_opregion_notify_encoder(encoder, false);
5073                 encoder->disable(encoder);
5074         }
5075
5076         drm_crtc_vblank_off(crtc);
5077         assert_vblank_disabled(crtc);
5078
5079         if (intel_crtc->config->has_pch_encoder)
5080                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5081                                                       false);
5082         intel_disable_pipe(intel_crtc);
5083
5084         if (intel_crtc->config->dp_encoder_is_mst)
5085                 intel_ddi_set_vc_payload_alloc(crtc, false);
5086
5087         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5088
5089         if (INTEL_INFO(dev)->gen == 9)
5090                 skylake_scaler_disable(intel_crtc);
5091         else if (INTEL_INFO(dev)->gen < 9)
5092                 ironlake_pfit_disable(intel_crtc);
5093         else
5094                 MISSING_CASE(INTEL_INFO(dev)->gen);
5095
5096         intel_ddi_disable_pipe_clock(intel_crtc);
5097
5098         if (intel_crtc->config->has_pch_encoder) {
5099                 lpt_disable_pch_transcoder(dev_priv);
5100                 intel_ddi_fdi_disable(crtc);
5101         }
5102
5103         for_each_encoder_on_crtc(dev, crtc, encoder)
5104                 if (encoder->post_disable)
5105                         encoder->post_disable(encoder);
5106
5107         intel_crtc->active = false;
5108         intel_update_watermarks(crtc);
5109 }
5110
5111 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5112 {
5113         struct drm_device *dev = crtc->base.dev;
5114         struct drm_i915_private *dev_priv = dev->dev_private;
5115         struct intel_crtc_state *pipe_config = crtc->config;
5116
5117         if (!pipe_config->gmch_pfit.control)
5118                 return;
5119
5120         /*
5121          * The panel fitter should only be adjusted whilst the pipe is disabled,
5122          * according to register description and PRM.
5123          */
5124         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5125         assert_pipe_disabled(dev_priv, crtc->pipe);
5126
5127         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5128         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5129
5130         /* Border color in case we don't scale up to the full screen. Black by
5131          * default, change to something else for debugging. */
5132         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5133 }
5134
5135 static enum intel_display_power_domain port_to_power_domain(enum port port)
5136 {
5137         switch (port) {
5138         case PORT_A:
5139                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5140         case PORT_B:
5141                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5142         case PORT_C:
5143                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5144         case PORT_D:
5145                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5146         default:
5147                 WARN_ON_ONCE(1);
5148                 return POWER_DOMAIN_PORT_OTHER;
5149         }
5150 }
5151
5152 #define for_each_power_domain(domain, mask)                             \
5153         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5154                 if ((1 << (domain)) & (mask))
5155
5156 enum intel_display_power_domain
5157 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5158 {
5159         struct drm_device *dev = intel_encoder->base.dev;
5160         struct intel_digital_port *intel_dig_port;
5161
5162         switch (intel_encoder->type) {
5163         case INTEL_OUTPUT_UNKNOWN:
5164                 /* Only DDI platforms should ever use this output type */
5165                 WARN_ON_ONCE(!HAS_DDI(dev));
5166         case INTEL_OUTPUT_DISPLAYPORT:
5167         case INTEL_OUTPUT_HDMI:
5168         case INTEL_OUTPUT_EDP:
5169                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5170                 return port_to_power_domain(intel_dig_port->port);
5171         case INTEL_OUTPUT_DP_MST:
5172                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5173                 return port_to_power_domain(intel_dig_port->port);
5174         case INTEL_OUTPUT_ANALOG:
5175                 return POWER_DOMAIN_PORT_CRT;
5176         case INTEL_OUTPUT_DSI:
5177                 return POWER_DOMAIN_PORT_DSI;
5178         default:
5179                 return POWER_DOMAIN_PORT_OTHER;
5180         }
5181 }
5182
5183 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5184 {
5185         struct drm_device *dev = crtc->dev;
5186         struct intel_encoder *intel_encoder;
5187         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5188         enum pipe pipe = intel_crtc->pipe;
5189         unsigned long mask;
5190         enum transcoder transcoder;
5191
5192         if (!crtc->state->active)
5193                 return 0;
5194
5195         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5196
5197         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5198         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5199         if (intel_crtc->config->pch_pfit.enabled ||
5200             intel_crtc->config->pch_pfit.force_thru)
5201                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5202
5203         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5204                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5205
5206         return mask;
5207 }
5208
5209 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5210 {
5211         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5212         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5213         enum intel_display_power_domain domain;
5214         unsigned long domains, new_domains, old_domains;
5215
5216         old_domains = intel_crtc->enabled_power_domains;
5217         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5218
5219         domains = new_domains & ~old_domains;
5220
5221         for_each_power_domain(domain, domains)
5222                 intel_display_power_get(dev_priv, domain);
5223
5224         return old_domains & ~new_domains;
5225 }
5226
5227 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5228                                       unsigned long domains)
5229 {
5230         enum intel_display_power_domain domain;
5231
5232         for_each_power_domain(domain, domains)
5233                 intel_display_power_put(dev_priv, domain);
5234 }
5235
5236 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5237 {
5238         struct drm_device *dev = state->dev;
5239         struct drm_i915_private *dev_priv = dev->dev_private;
5240         unsigned long put_domains[I915_MAX_PIPES] = {};
5241         struct drm_crtc_state *crtc_state;
5242         struct drm_crtc *crtc;
5243         int i;
5244
5245         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5246                 if (needs_modeset(crtc->state))
5247                         put_domains[to_intel_crtc(crtc)->pipe] =
5248                                 modeset_get_crtc_power_domains(crtc);
5249         }
5250
5251         if (dev_priv->display.modeset_commit_cdclk) {
5252                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5253
5254                 if (cdclk != dev_priv->cdclk_freq &&
5255                     !WARN_ON(!state->allow_modeset))
5256                         dev_priv->display.modeset_commit_cdclk(state);
5257         }
5258
5259         for (i = 0; i < I915_MAX_PIPES; i++)
5260                 if (put_domains[i])
5261                         modeset_put_power_domains(dev_priv, put_domains[i]);
5262 }
5263
5264 static void intel_update_max_cdclk(struct drm_device *dev)
5265 {
5266         struct drm_i915_private *dev_priv = dev->dev_private;
5267
5268         if (IS_SKYLAKE(dev)) {
5269                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5270
5271                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5272                         dev_priv->max_cdclk_freq = 675000;
5273                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5274                         dev_priv->max_cdclk_freq = 540000;
5275                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5276                         dev_priv->max_cdclk_freq = 450000;
5277                 else
5278                         dev_priv->max_cdclk_freq = 337500;
5279         } else if (IS_BROADWELL(dev))  {
5280                 /*
5281                  * FIXME with extra cooling we can allow
5282                  * 540 MHz for ULX and 675 Mhz for ULT.
5283                  * How can we know if extra cooling is
5284                  * available? PCI ID, VTB, something else?
5285                  */
5286                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5287                         dev_priv->max_cdclk_freq = 450000;
5288                 else if (IS_BDW_ULX(dev))
5289                         dev_priv->max_cdclk_freq = 450000;
5290                 else if (IS_BDW_ULT(dev))
5291                         dev_priv->max_cdclk_freq = 540000;
5292                 else
5293                         dev_priv->max_cdclk_freq = 675000;
5294         } else if (IS_CHERRYVIEW(dev)) {
5295                 dev_priv->max_cdclk_freq = 320000;
5296         } else if (IS_VALLEYVIEW(dev)) {
5297                 dev_priv->max_cdclk_freq = 400000;
5298         } else {
5299                 /* otherwise assume cdclk is fixed */
5300                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5301         }
5302
5303         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5304                          dev_priv->max_cdclk_freq);
5305 }
5306
5307 static void intel_update_cdclk(struct drm_device *dev)
5308 {
5309         struct drm_i915_private *dev_priv = dev->dev_private;
5310
5311         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5312         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5313                          dev_priv->cdclk_freq);
5314
5315         /*
5316          * Program the gmbus_freq based on the cdclk frequency.
5317          * BSpec erroneously claims we should aim for 4MHz, but
5318          * in fact 1MHz is the correct frequency.
5319          */
5320         if (IS_VALLEYVIEW(dev)) {
5321                 /*
5322                  * Program the gmbus_freq based on the cdclk frequency.
5323                  * BSpec erroneously claims we should aim for 4MHz, but
5324                  * in fact 1MHz is the correct frequency.
5325                  */
5326                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5327         }
5328
5329         if (dev_priv->max_cdclk_freq == 0)
5330                 intel_update_max_cdclk(dev);
5331 }
5332
5333 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5334 {
5335         struct drm_i915_private *dev_priv = dev->dev_private;
5336         uint32_t divider;
5337         uint32_t ratio;
5338         uint32_t current_freq;
5339         int ret;
5340
5341         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5342         switch (frequency) {
5343         case 144000:
5344                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5345                 ratio = BXT_DE_PLL_RATIO(60);
5346                 break;
5347         case 288000:
5348                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5349                 ratio = BXT_DE_PLL_RATIO(60);
5350                 break;
5351         case 384000:
5352                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5353                 ratio = BXT_DE_PLL_RATIO(60);
5354                 break;
5355         case 576000:
5356                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5357                 ratio = BXT_DE_PLL_RATIO(60);
5358                 break;
5359         case 624000:
5360                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5361                 ratio = BXT_DE_PLL_RATIO(65);
5362                 break;
5363         case 19200:
5364                 /*
5365                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5366                  * to suppress GCC warning.
5367                  */
5368                 ratio = 0;
5369                 divider = 0;
5370                 break;
5371         default:
5372                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5373
5374                 return;
5375         }
5376
5377         mutex_lock(&dev_priv->rps.hw_lock);
5378         /* Inform power controller of upcoming frequency change */
5379         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5380                                       0x80000000);
5381         mutex_unlock(&dev_priv->rps.hw_lock);
5382
5383         if (ret) {
5384                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5385                           ret, frequency);
5386                 return;
5387         }
5388
5389         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5390         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5391         current_freq = current_freq * 500 + 1000;
5392
5393         /*
5394          * DE PLL has to be disabled when
5395          * - setting to 19.2MHz (bypass, PLL isn't used)
5396          * - before setting to 624MHz (PLL needs toggling)
5397          * - before setting to any frequency from 624MHz (PLL needs toggling)
5398          */
5399         if (frequency == 19200 || frequency == 624000 ||
5400             current_freq == 624000) {
5401                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5402                 /* Timeout 200us */
5403                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5404                              1))
5405                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5406         }
5407
5408         if (frequency != 19200) {
5409                 uint32_t val;
5410
5411                 val = I915_READ(BXT_DE_PLL_CTL);
5412                 val &= ~BXT_DE_PLL_RATIO_MASK;
5413                 val |= ratio;
5414                 I915_WRITE(BXT_DE_PLL_CTL, val);
5415
5416                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5417                 /* Timeout 200us */
5418                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5419                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5420
5421                 val = I915_READ(CDCLK_CTL);
5422                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5423                 val |= divider;
5424                 /*
5425                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5426                  * enable otherwise.
5427                  */
5428                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5429                 if (frequency >= 500000)
5430                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5431
5432                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5433                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5434                 val |= (frequency - 1000) / 500;
5435                 I915_WRITE(CDCLK_CTL, val);
5436         }
5437
5438         mutex_lock(&dev_priv->rps.hw_lock);
5439         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5440                                       DIV_ROUND_UP(frequency, 25000));
5441         mutex_unlock(&dev_priv->rps.hw_lock);
5442
5443         if (ret) {
5444                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5445                           ret, frequency);
5446                 return;
5447         }
5448
5449         intel_update_cdclk(dev);
5450 }
5451
5452 void broxton_init_cdclk(struct drm_device *dev)
5453 {
5454         struct drm_i915_private *dev_priv = dev->dev_private;
5455         uint32_t val;
5456
5457         /*
5458          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5459          * or else the reset will hang because there is no PCH to respond.
5460          * Move the handshake programming to initialization sequence.
5461          * Previously was left up to BIOS.
5462          */
5463         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5464         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5465         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5466
5467         /* Enable PG1 for cdclk */
5468         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5469
5470         /* check if cd clock is enabled */
5471         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5472                 DRM_DEBUG_KMS("Display already initialized\n");
5473                 return;
5474         }
5475
5476         /*
5477          * FIXME:
5478          * - The initial CDCLK needs to be read from VBT.
5479          *   Need to make this change after VBT has changes for BXT.
5480          * - check if setting the max (or any) cdclk freq is really necessary
5481          *   here, it belongs to modeset time
5482          */
5483         broxton_set_cdclk(dev, 624000);
5484
5485         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5486         POSTING_READ(DBUF_CTL);
5487
5488         udelay(10);
5489
5490         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5491                 DRM_ERROR("DBuf power enable timeout!\n");
5492 }
5493
5494 void broxton_uninit_cdclk(struct drm_device *dev)
5495 {
5496         struct drm_i915_private *dev_priv = dev->dev_private;
5497
5498         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5499         POSTING_READ(DBUF_CTL);
5500
5501         udelay(10);
5502
5503         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5504                 DRM_ERROR("DBuf power disable timeout!\n");
5505
5506         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5507         broxton_set_cdclk(dev, 19200);
5508
5509         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5510 }
5511
5512 static const struct skl_cdclk_entry {
5513         unsigned int freq;
5514         unsigned int vco;
5515 } skl_cdclk_frequencies[] = {
5516         { .freq = 308570, .vco = 8640 },
5517         { .freq = 337500, .vco = 8100 },
5518         { .freq = 432000, .vco = 8640 },
5519         { .freq = 450000, .vco = 8100 },
5520         { .freq = 540000, .vco = 8100 },
5521         { .freq = 617140, .vco = 8640 },
5522         { .freq = 675000, .vco = 8100 },
5523 };
5524
5525 static unsigned int skl_cdclk_decimal(unsigned int freq)
5526 {
5527         return (freq - 1000) / 500;
5528 }
5529
5530 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5531 {
5532         unsigned int i;
5533
5534         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5535                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5536
5537                 if (e->freq == freq)
5538                         return e->vco;
5539         }
5540
5541         return 8100;
5542 }
5543
5544 static void
5545 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5546 {
5547         unsigned int min_freq;
5548         u32 val;
5549
5550         /* select the minimum CDCLK before enabling DPLL 0 */
5551         val = I915_READ(CDCLK_CTL);
5552         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5553         val |= CDCLK_FREQ_337_308;
5554
5555         if (required_vco == 8640)
5556                 min_freq = 308570;
5557         else
5558                 min_freq = 337500;
5559
5560         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5561
5562         I915_WRITE(CDCLK_CTL, val);
5563         POSTING_READ(CDCLK_CTL);
5564
5565         /*
5566          * We always enable DPLL0 with the lowest link rate possible, but still
5567          * taking into account the VCO required to operate the eDP panel at the
5568          * desired frequency. The usual DP link rates operate with a VCO of
5569          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5570          * The modeset code is responsible for the selection of the exact link
5571          * rate later on, with the constraint of choosing a frequency that
5572          * works with required_vco.
5573          */
5574         val = I915_READ(DPLL_CTRL1);
5575
5576         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5577                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5578         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5579         if (required_vco == 8640)
5580                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5581                                             SKL_DPLL0);
5582         else
5583                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5584                                             SKL_DPLL0);
5585
5586         I915_WRITE(DPLL_CTRL1, val);
5587         POSTING_READ(DPLL_CTRL1);
5588
5589         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5590
5591         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5592                 DRM_ERROR("DPLL0 not locked\n");
5593 }
5594
5595 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5596 {
5597         int ret;
5598         u32 val;
5599
5600         /* inform PCU we want to change CDCLK */
5601         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5602         mutex_lock(&dev_priv->rps.hw_lock);
5603         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5604         mutex_unlock(&dev_priv->rps.hw_lock);
5605
5606         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5607 }
5608
5609 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5610 {
5611         unsigned int i;
5612
5613         for (i = 0; i < 15; i++) {
5614                 if (skl_cdclk_pcu_ready(dev_priv))
5615                         return true;
5616                 udelay(10);
5617         }
5618
5619         return false;
5620 }
5621
5622 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5623 {
5624         struct drm_device *dev = dev_priv->dev;
5625         u32 freq_select, pcu_ack;
5626
5627         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5628
5629         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5630                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5631                 return;
5632         }
5633
5634         /* set CDCLK_CTL */
5635         switch(freq) {
5636         case 450000:
5637         case 432000:
5638                 freq_select = CDCLK_FREQ_450_432;
5639                 pcu_ack = 1;
5640                 break;
5641         case 540000:
5642                 freq_select = CDCLK_FREQ_540;
5643                 pcu_ack = 2;
5644                 break;
5645         case 308570:
5646         case 337500:
5647         default:
5648                 freq_select = CDCLK_FREQ_337_308;
5649                 pcu_ack = 0;
5650                 break;
5651         case 617140:
5652         case 675000:
5653                 freq_select = CDCLK_FREQ_675_617;
5654                 pcu_ack = 3;
5655                 break;
5656         }
5657
5658         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5659         POSTING_READ(CDCLK_CTL);
5660
5661         /* inform PCU of the change */
5662         mutex_lock(&dev_priv->rps.hw_lock);
5663         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5664         mutex_unlock(&dev_priv->rps.hw_lock);
5665
5666         intel_update_cdclk(dev);
5667 }
5668
5669 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5670 {
5671         /* disable DBUF power */
5672         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5673         POSTING_READ(DBUF_CTL);
5674
5675         udelay(10);
5676
5677         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5678                 DRM_ERROR("DBuf power disable timeout\n");
5679
5680         /* disable DPLL0 */
5681         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5682         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5683                 DRM_ERROR("Couldn't disable DPLL0\n");
5684
5685         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5686 }
5687
5688 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5689 {
5690         u32 val;
5691         unsigned int required_vco;
5692
5693         /* enable PCH reset handshake */
5694         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5695         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5696
5697         /* enable PG1 and Misc I/O */
5698         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5699
5700         /* DPLL0 already enabed !? */
5701         if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5702                 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5703                 return;
5704         }
5705
5706         /* enable DPLL0 */
5707         required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5708         skl_dpll0_enable(dev_priv, required_vco);
5709
5710         /* set CDCLK to the frequency the BIOS chose */
5711         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5712
5713         /* enable DBUF power */
5714         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5715         POSTING_READ(DBUF_CTL);
5716
5717         udelay(10);
5718
5719         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5720                 DRM_ERROR("DBuf power enable timeout\n");
5721 }
5722
5723 /* returns HPLL frequency in kHz */
5724 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5725 {
5726         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5727
5728         /* Obtain SKU information */
5729         mutex_lock(&dev_priv->sb_lock);
5730         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5731                 CCK_FUSE_HPLL_FREQ_MASK;
5732         mutex_unlock(&dev_priv->sb_lock);
5733
5734         return vco_freq[hpll_freq] * 1000;
5735 }
5736
5737 /* Adjust CDclk dividers to allow high res or save power if possible */
5738 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5739 {
5740         struct drm_i915_private *dev_priv = dev->dev_private;
5741         u32 val, cmd;
5742
5743         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5744                                         != dev_priv->cdclk_freq);
5745
5746         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5747                 cmd = 2;
5748         else if (cdclk == 266667)
5749                 cmd = 1;
5750         else
5751                 cmd = 0;
5752
5753         mutex_lock(&dev_priv->rps.hw_lock);
5754         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5755         val &= ~DSPFREQGUAR_MASK;
5756         val |= (cmd << DSPFREQGUAR_SHIFT);
5757         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5758         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5759                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5760                      50)) {
5761                 DRM_ERROR("timed out waiting for CDclk change\n");
5762         }
5763         mutex_unlock(&dev_priv->rps.hw_lock);
5764
5765         mutex_lock(&dev_priv->sb_lock);
5766
5767         if (cdclk == 400000) {
5768                 u32 divider;
5769
5770                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5771
5772                 /* adjust cdclk divider */
5773                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5774                 val &= ~DISPLAY_FREQUENCY_VALUES;
5775                 val |= divider;
5776                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5777
5778                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5779                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5780                              50))
5781                         DRM_ERROR("timed out waiting for CDclk change\n");
5782         }
5783
5784         /* adjust self-refresh exit latency value */
5785         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5786         val &= ~0x7f;
5787
5788         /*
5789          * For high bandwidth configs, we set a higher latency in the bunit
5790          * so that the core display fetch happens in time to avoid underruns.
5791          */
5792         if (cdclk == 400000)
5793                 val |= 4500 / 250; /* 4.5 usec */
5794         else
5795                 val |= 3000 / 250; /* 3.0 usec */
5796         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5797
5798         mutex_unlock(&dev_priv->sb_lock);
5799
5800         intel_update_cdclk(dev);
5801 }
5802
5803 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5804 {
5805         struct drm_i915_private *dev_priv = dev->dev_private;
5806         u32 val, cmd;
5807
5808         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5809                                                 != dev_priv->cdclk_freq);
5810
5811         switch (cdclk) {
5812         case 333333:
5813         case 320000:
5814         case 266667:
5815         case 200000:
5816                 break;
5817         default:
5818                 MISSING_CASE(cdclk);
5819                 return;
5820         }
5821
5822         /*
5823          * Specs are full of misinformation, but testing on actual
5824          * hardware has shown that we just need to write the desired
5825          * CCK divider into the Punit register.
5826          */
5827         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5828
5829         mutex_lock(&dev_priv->rps.hw_lock);
5830         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5831         val &= ~DSPFREQGUAR_MASK_CHV;
5832         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5833         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5834         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5835                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5836                      50)) {
5837                 DRM_ERROR("timed out waiting for CDclk change\n");
5838         }
5839         mutex_unlock(&dev_priv->rps.hw_lock);
5840
5841         intel_update_cdclk(dev);
5842 }
5843
5844 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5845                                  int max_pixclk)
5846 {
5847         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5848         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5849
5850         /*
5851          * Really only a few cases to deal with, as only 4 CDclks are supported:
5852          *   200MHz
5853          *   267MHz
5854          *   320/333MHz (depends on HPLL freq)
5855          *   400MHz (VLV only)
5856          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5857          * of the lower bin and adjust if needed.
5858          *
5859          * We seem to get an unstable or solid color picture at 200MHz.
5860          * Not sure what's wrong. For now use 200MHz only when all pipes
5861          * are off.
5862          */
5863         if (!IS_CHERRYVIEW(dev_priv) &&
5864             max_pixclk > freq_320*limit/100)
5865                 return 400000;
5866         else if (max_pixclk > 266667*limit/100)
5867                 return freq_320;
5868         else if (max_pixclk > 0)
5869                 return 266667;
5870         else
5871                 return 200000;
5872 }
5873
5874 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5875                               int max_pixclk)
5876 {
5877         /*
5878          * FIXME:
5879          * - remove the guardband, it's not needed on BXT
5880          * - set 19.2MHz bypass frequency if there are no active pipes
5881          */
5882         if (max_pixclk > 576000*9/10)
5883                 return 624000;
5884         else if (max_pixclk > 384000*9/10)
5885                 return 576000;
5886         else if (max_pixclk > 288000*9/10)
5887                 return 384000;
5888         else if (max_pixclk > 144000*9/10)
5889                 return 288000;
5890         else
5891                 return 144000;
5892 }
5893
5894 /* Compute the max pixel clock for new configuration. Uses atomic state if
5895  * that's non-NULL, look at current state otherwise. */
5896 static int intel_mode_max_pixclk(struct drm_device *dev,
5897                                  struct drm_atomic_state *state)
5898 {
5899         struct intel_crtc *intel_crtc;
5900         struct intel_crtc_state *crtc_state;
5901         int max_pixclk = 0;
5902
5903         for_each_intel_crtc(dev, intel_crtc) {
5904                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5905                 if (IS_ERR(crtc_state))
5906                         return PTR_ERR(crtc_state);
5907
5908                 if (!crtc_state->base.enable)
5909                         continue;
5910
5911                 max_pixclk = max(max_pixclk,
5912                                  crtc_state->base.adjusted_mode.crtc_clock);
5913         }
5914
5915         return max_pixclk;
5916 }
5917
5918 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5919 {
5920         struct drm_device *dev = state->dev;
5921         struct drm_i915_private *dev_priv = dev->dev_private;
5922         int max_pixclk = intel_mode_max_pixclk(dev, state);
5923
5924         if (max_pixclk < 0)
5925                 return max_pixclk;
5926
5927         to_intel_atomic_state(state)->cdclk =
5928                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5929
5930         return 0;
5931 }
5932
5933 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5934 {
5935         struct drm_device *dev = state->dev;
5936         struct drm_i915_private *dev_priv = dev->dev_private;
5937         int max_pixclk = intel_mode_max_pixclk(dev, state);
5938
5939         if (max_pixclk < 0)
5940                 return max_pixclk;
5941
5942         to_intel_atomic_state(state)->cdclk =
5943                 broxton_calc_cdclk(dev_priv, max_pixclk);
5944
5945         return 0;
5946 }
5947
5948 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5949 {
5950         unsigned int credits, default_credits;
5951
5952         if (IS_CHERRYVIEW(dev_priv))
5953                 default_credits = PFI_CREDIT(12);
5954         else
5955                 default_credits = PFI_CREDIT(8);
5956
5957         if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5958                 /* CHV suggested value is 31 or 63 */
5959                 if (IS_CHERRYVIEW(dev_priv))
5960                         credits = PFI_CREDIT_63;
5961                 else
5962                         credits = PFI_CREDIT(15);
5963         } else {
5964                 credits = default_credits;
5965         }
5966
5967         /*
5968          * WA - write default credits before re-programming
5969          * FIXME: should we also set the resend bit here?
5970          */
5971         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5972                    default_credits);
5973
5974         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5975                    credits | PFI_CREDIT_RESEND);
5976
5977         /*
5978          * FIXME is this guaranteed to clear
5979          * immediately or should we poll for it?
5980          */
5981         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5982 }
5983
5984 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
5985 {
5986         struct drm_device *dev = old_state->dev;
5987         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
5988         struct drm_i915_private *dev_priv = dev->dev_private;
5989
5990         /*
5991          * FIXME: We can end up here with all power domains off, yet
5992          * with a CDCLK frequency other than the minimum. To account
5993          * for this take the PIPE-A power domain, which covers the HW
5994          * blocks needed for the following programming. This can be
5995          * removed once it's guaranteed that we get here either with
5996          * the minimum CDCLK set, or the required power domains
5997          * enabled.
5998          */
5999         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6000
6001         if (IS_CHERRYVIEW(dev))
6002                 cherryview_set_cdclk(dev, req_cdclk);
6003         else
6004                 valleyview_set_cdclk(dev, req_cdclk);
6005
6006         vlv_program_pfi_credits(dev_priv);
6007
6008         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6009 }
6010
6011 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6012 {
6013         struct drm_device *dev = crtc->dev;
6014         struct drm_i915_private *dev_priv = to_i915(dev);
6015         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6016         struct intel_encoder *encoder;
6017         int pipe = intel_crtc->pipe;
6018         bool is_dsi;
6019
6020         if (WARN_ON(intel_crtc->active))
6021                 return;
6022
6023         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6024
6025         if (!is_dsi) {
6026                 if (IS_CHERRYVIEW(dev))
6027                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6028                 else
6029                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6030         }
6031
6032         if (intel_crtc->config->has_dp_encoder)
6033                 intel_dp_set_m_n(intel_crtc, M1_N1);
6034
6035         intel_set_pipe_timings(intel_crtc);
6036
6037         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6038                 struct drm_i915_private *dev_priv = dev->dev_private;
6039
6040                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6041                 I915_WRITE(CHV_CANVAS(pipe), 0);
6042         }
6043
6044         i9xx_set_pipeconf(intel_crtc);
6045
6046         intel_crtc->active = true;
6047
6048         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6049
6050         for_each_encoder_on_crtc(dev, crtc, encoder)
6051                 if (encoder->pre_pll_enable)
6052                         encoder->pre_pll_enable(encoder);
6053
6054         if (!is_dsi) {
6055                 if (IS_CHERRYVIEW(dev))
6056                         chv_enable_pll(intel_crtc, intel_crtc->config);
6057                 else
6058                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6059         }
6060
6061         for_each_encoder_on_crtc(dev, crtc, encoder)
6062                 if (encoder->pre_enable)
6063                         encoder->pre_enable(encoder);
6064
6065         i9xx_pfit_enable(intel_crtc);
6066
6067         intel_crtc_load_lut(crtc);
6068
6069         intel_enable_pipe(intel_crtc);
6070
6071         assert_vblank_disabled(crtc);
6072         drm_crtc_vblank_on(crtc);
6073
6074         for_each_encoder_on_crtc(dev, crtc, encoder)
6075                 encoder->enable(encoder);
6076 }
6077
6078 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6079 {
6080         struct drm_device *dev = crtc->base.dev;
6081         struct drm_i915_private *dev_priv = dev->dev_private;
6082
6083         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6084         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6085 }
6086
6087 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6088 {
6089         struct drm_device *dev = crtc->dev;
6090         struct drm_i915_private *dev_priv = to_i915(dev);
6091         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6092         struct intel_encoder *encoder;
6093         int pipe = intel_crtc->pipe;
6094
6095         if (WARN_ON(intel_crtc->active))
6096                 return;
6097
6098         i9xx_set_pll_dividers(intel_crtc);
6099
6100         if (intel_crtc->config->has_dp_encoder)
6101                 intel_dp_set_m_n(intel_crtc, M1_N1);
6102
6103         intel_set_pipe_timings(intel_crtc);
6104
6105         i9xx_set_pipeconf(intel_crtc);
6106
6107         intel_crtc->active = true;
6108
6109         if (!IS_GEN2(dev))
6110                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6111
6112         for_each_encoder_on_crtc(dev, crtc, encoder)
6113                 if (encoder->pre_enable)
6114                         encoder->pre_enable(encoder);
6115
6116         i9xx_enable_pll(intel_crtc);
6117
6118         i9xx_pfit_enable(intel_crtc);
6119
6120         intel_crtc_load_lut(crtc);
6121
6122         intel_update_watermarks(crtc);
6123         intel_enable_pipe(intel_crtc);
6124
6125         assert_vblank_disabled(crtc);
6126         drm_crtc_vblank_on(crtc);
6127
6128         for_each_encoder_on_crtc(dev, crtc, encoder)
6129                 encoder->enable(encoder);
6130 }
6131
6132 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6133 {
6134         struct drm_device *dev = crtc->base.dev;
6135         struct drm_i915_private *dev_priv = dev->dev_private;
6136
6137         if (!crtc->config->gmch_pfit.control)
6138                 return;
6139
6140         assert_pipe_disabled(dev_priv, crtc->pipe);
6141
6142         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6143                          I915_READ(PFIT_CONTROL));
6144         I915_WRITE(PFIT_CONTROL, 0);
6145 }
6146
6147 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6148 {
6149         struct drm_device *dev = crtc->dev;
6150         struct drm_i915_private *dev_priv = dev->dev_private;
6151         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6152         struct intel_encoder *encoder;
6153         int pipe = intel_crtc->pipe;
6154
6155         /*
6156          * On gen2 planes are double buffered but the pipe isn't, so we must
6157          * wait for planes to fully turn off before disabling the pipe.
6158          * We also need to wait on all gmch platforms because of the
6159          * self-refresh mode constraint explained above.
6160          */
6161         intel_wait_for_vblank(dev, pipe);
6162
6163         for_each_encoder_on_crtc(dev, crtc, encoder)
6164                 encoder->disable(encoder);
6165
6166         drm_crtc_vblank_off(crtc);
6167         assert_vblank_disabled(crtc);
6168
6169         intel_disable_pipe(intel_crtc);
6170
6171         i9xx_pfit_disable(intel_crtc);
6172
6173         for_each_encoder_on_crtc(dev, crtc, encoder)
6174                 if (encoder->post_disable)
6175                         encoder->post_disable(encoder);
6176
6177         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6178                 if (IS_CHERRYVIEW(dev))
6179                         chv_disable_pll(dev_priv, pipe);
6180                 else if (IS_VALLEYVIEW(dev))
6181                         vlv_disable_pll(dev_priv, pipe);
6182                 else
6183                         i9xx_disable_pll(intel_crtc);
6184         }
6185
6186         if (!IS_GEN2(dev))
6187                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6188
6189         intel_crtc->active = false;
6190         intel_update_watermarks(crtc);
6191 }
6192
6193 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6194 {
6195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6196         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6197         enum intel_display_power_domain domain;
6198         unsigned long domains;
6199
6200         if (!intel_crtc->active)
6201                 return;
6202
6203         if (to_intel_plane_state(crtc->primary->state)->visible) {
6204                 intel_crtc_wait_for_pending_flips(crtc);
6205                 intel_pre_disable_primary(crtc);
6206         }
6207
6208         intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6209         dev_priv->display.crtc_disable(crtc);
6210         intel_disable_shared_dpll(intel_crtc);
6211
6212         domains = intel_crtc->enabled_power_domains;
6213         for_each_power_domain(domain, domains)
6214                 intel_display_power_put(dev_priv, domain);
6215         intel_crtc->enabled_power_domains = 0;
6216 }
6217
6218 /*
6219  * turn all crtc's off, but do not adjust state
6220  * This has to be paired with a call to intel_modeset_setup_hw_state.
6221  */
6222 int intel_display_suspend(struct drm_device *dev)
6223 {
6224         struct drm_mode_config *config = &dev->mode_config;
6225         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6226         struct drm_atomic_state *state;
6227         struct drm_crtc *crtc;
6228         unsigned crtc_mask = 0;
6229         int ret = 0;
6230
6231         if (WARN_ON(!ctx))
6232                 return 0;
6233
6234         lockdep_assert_held(&ctx->ww_ctx);
6235         state = drm_atomic_state_alloc(dev);
6236         if (WARN_ON(!state))
6237                 return -ENOMEM;
6238
6239         state->acquire_ctx = ctx;
6240         state->allow_modeset = true;
6241
6242         for_each_crtc(dev, crtc) {
6243                 struct drm_crtc_state *crtc_state =
6244                         drm_atomic_get_crtc_state(state, crtc);
6245
6246                 ret = PTR_ERR_OR_ZERO(crtc_state);
6247                 if (ret)
6248                         goto free;
6249
6250                 if (!crtc_state->active)
6251                         continue;
6252
6253                 crtc_state->active = false;
6254                 crtc_mask |= 1 << drm_crtc_index(crtc);
6255         }
6256
6257         if (crtc_mask) {
6258                 ret = drm_atomic_commit(state);
6259
6260                 if (!ret) {
6261                         for_each_crtc(dev, crtc)
6262                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6263                                         crtc->state->active = true;
6264
6265                         return ret;
6266                 }
6267         }
6268
6269 free:
6270         if (ret)
6271                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6272         drm_atomic_state_free(state);
6273         return ret;
6274 }
6275
6276 /* Master function to enable/disable CRTC and corresponding power wells */
6277 int intel_crtc_control(struct drm_crtc *crtc, bool enable)
6278 {
6279         struct drm_device *dev = crtc->dev;
6280         struct drm_mode_config *config = &dev->mode_config;
6281         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6282         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6283         struct intel_crtc_state *pipe_config;
6284         struct drm_atomic_state *state;
6285         int ret;
6286
6287         if (enable == intel_crtc->active)
6288                 return 0;
6289
6290         if (enable && !crtc->state->enable)
6291                 return 0;
6292
6293         /* this function should be called with drm_modeset_lock_all for now */
6294         if (WARN_ON(!ctx))
6295                 return -EIO;
6296         lockdep_assert_held(&ctx->ww_ctx);
6297
6298         state = drm_atomic_state_alloc(dev);
6299         if (WARN_ON(!state))
6300                 return -ENOMEM;
6301
6302         state->acquire_ctx = ctx;
6303         state->allow_modeset = true;
6304
6305         pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
6306         if (IS_ERR(pipe_config)) {
6307                 ret = PTR_ERR(pipe_config);
6308                 goto err;
6309         }
6310         pipe_config->base.active = enable;
6311
6312         ret = drm_atomic_commit(state);
6313         if (!ret)
6314                 return ret;
6315
6316 err:
6317         DRM_ERROR("Updating crtc active failed with %i\n", ret);
6318         drm_atomic_state_free(state);
6319         return ret;
6320 }
6321
6322 /**
6323  * Sets the power management mode of the pipe and plane.
6324  */
6325 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6326 {
6327         struct drm_device *dev = crtc->dev;
6328         struct intel_encoder *intel_encoder;
6329         bool enable = false;
6330
6331         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6332                 enable |= intel_encoder->connectors_active;
6333
6334         intel_crtc_control(crtc, enable);
6335 }
6336
6337 void intel_encoder_destroy(struct drm_encoder *encoder)
6338 {
6339         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6340
6341         drm_encoder_cleanup(encoder);
6342         kfree(intel_encoder);
6343 }
6344
6345 /* Simple dpms helper for encoders with just one connector, no cloning and only
6346  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6347  * state of the entire output pipe. */
6348 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6349 {
6350         if (mode == DRM_MODE_DPMS_ON) {
6351                 encoder->connectors_active = true;
6352
6353                 intel_crtc_update_dpms(encoder->base.crtc);
6354         } else {
6355                 encoder->connectors_active = false;
6356
6357                 intel_crtc_update_dpms(encoder->base.crtc);
6358         }
6359 }
6360
6361 /* Cross check the actual hw state with our own modeset state tracking (and it's
6362  * internal consistency). */
6363 static void intel_connector_check_state(struct intel_connector *connector)
6364 {
6365         if (connector->get_hw_state(connector)) {
6366                 struct intel_encoder *encoder = connector->encoder;
6367                 struct drm_crtc *crtc;
6368                 bool encoder_enabled;
6369                 enum pipe pipe;
6370
6371                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6372                               connector->base.base.id,
6373                               connector->base.name);
6374
6375                 /* there is no real hw state for MST connectors */
6376                 if (connector->mst_port)
6377                         return;
6378
6379                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6380                      "wrong connector dpms state\n");
6381                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6382                      "active connector not linked to encoder\n");
6383
6384                 if (encoder) {
6385                         I915_STATE_WARN(!encoder->connectors_active,
6386                              "encoder->connectors_active not set\n");
6387
6388                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6389                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6390                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
6391                                 return;
6392
6393                         crtc = encoder->base.crtc;
6394
6395                         I915_STATE_WARN(!crtc->state->enable,
6396                                         "crtc not enabled\n");
6397                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6398                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6399                              "encoder active on the wrong pipe\n");
6400                 }
6401         }
6402 }
6403
6404 int intel_connector_init(struct intel_connector *connector)
6405 {
6406         struct drm_connector_state *connector_state;
6407
6408         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6409         if (!connector_state)
6410                 return -ENOMEM;
6411
6412         connector->base.state = connector_state;
6413         return 0;
6414 }
6415
6416 struct intel_connector *intel_connector_alloc(void)
6417 {
6418         struct intel_connector *connector;
6419
6420         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6421         if (!connector)
6422                 return NULL;
6423
6424         if (intel_connector_init(connector) < 0) {
6425                 kfree(connector);
6426                 return NULL;
6427         }
6428
6429         return connector;
6430 }
6431
6432 /* Even simpler default implementation, if there's really no special case to
6433  * consider. */
6434 int intel_connector_dpms(struct drm_connector *connector, int mode)
6435 {
6436         /* All the simple cases only support two dpms states. */
6437         if (mode != DRM_MODE_DPMS_ON)
6438                 mode = DRM_MODE_DPMS_OFF;
6439
6440         if (mode == connector->dpms)
6441                 return 0;
6442
6443         connector->dpms = mode;
6444
6445         /* Only need to change hw state when actually enabled */
6446         if (connector->encoder)
6447                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6448
6449         return 0;
6450 }
6451
6452 /* Simple connector->get_hw_state implementation for encoders that support only
6453  * one connector and no cloning and hence the encoder state determines the state
6454  * of the connector. */
6455 bool intel_connector_get_hw_state(struct intel_connector *connector)
6456 {
6457         enum pipe pipe = 0;
6458         struct intel_encoder *encoder = connector->encoder;
6459
6460         return encoder->get_hw_state(encoder, &pipe);
6461 }
6462
6463 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6464 {
6465         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6466                 return crtc_state->fdi_lanes;
6467
6468         return 0;
6469 }
6470
6471 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6472                                      struct intel_crtc_state *pipe_config)
6473 {
6474         struct drm_atomic_state *state = pipe_config->base.state;
6475         struct intel_crtc *other_crtc;
6476         struct intel_crtc_state *other_crtc_state;
6477
6478         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6479                       pipe_name(pipe), pipe_config->fdi_lanes);
6480         if (pipe_config->fdi_lanes > 4) {
6481                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6482                               pipe_name(pipe), pipe_config->fdi_lanes);
6483                 return -EINVAL;
6484         }
6485
6486         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6487                 if (pipe_config->fdi_lanes > 2) {
6488                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6489                                       pipe_config->fdi_lanes);
6490                         return -EINVAL;
6491                 } else {
6492                         return 0;
6493                 }
6494         }
6495
6496         if (INTEL_INFO(dev)->num_pipes == 2)
6497                 return 0;
6498
6499         /* Ivybridge 3 pipe is really complicated */
6500         switch (pipe) {
6501         case PIPE_A:
6502                 return 0;
6503         case PIPE_B:
6504                 if (pipe_config->fdi_lanes <= 2)
6505                         return 0;
6506
6507                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6508                 other_crtc_state =
6509                         intel_atomic_get_crtc_state(state, other_crtc);
6510                 if (IS_ERR(other_crtc_state))
6511                         return PTR_ERR(other_crtc_state);
6512
6513                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6514                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6515                                       pipe_name(pipe), pipe_config->fdi_lanes);
6516                         return -EINVAL;
6517                 }
6518                 return 0;
6519         case PIPE_C:
6520                 if (pipe_config->fdi_lanes > 2) {
6521                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6522                                       pipe_name(pipe), pipe_config->fdi_lanes);
6523                         return -EINVAL;
6524                 }
6525
6526                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6527                 other_crtc_state =
6528                         intel_atomic_get_crtc_state(state, other_crtc);
6529                 if (IS_ERR(other_crtc_state))
6530                         return PTR_ERR(other_crtc_state);
6531
6532                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6533                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6534                         return -EINVAL;
6535                 }
6536                 return 0;
6537         default:
6538                 BUG();
6539         }
6540 }
6541
6542 #define RETRY 1
6543 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6544                                        struct intel_crtc_state *pipe_config)
6545 {
6546         struct drm_device *dev = intel_crtc->base.dev;
6547         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6548         int lane, link_bw, fdi_dotclock, ret;
6549         bool needs_recompute = false;
6550
6551 retry:
6552         /* FDI is a binary signal running at ~2.7GHz, encoding
6553          * each output octet as 10 bits. The actual frequency
6554          * is stored as a divider into a 100MHz clock, and the
6555          * mode pixel clock is stored in units of 1KHz.
6556          * Hence the bw of each lane in terms of the mode signal
6557          * is:
6558          */
6559         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6560
6561         fdi_dotclock = adjusted_mode->crtc_clock;
6562
6563         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6564                                            pipe_config->pipe_bpp);
6565
6566         pipe_config->fdi_lanes = lane;
6567
6568         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6569                                link_bw, &pipe_config->fdi_m_n);
6570
6571         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6572                                        intel_crtc->pipe, pipe_config);
6573         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6574                 pipe_config->pipe_bpp -= 2*3;
6575                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6576                               pipe_config->pipe_bpp);
6577                 needs_recompute = true;
6578                 pipe_config->bw_constrained = true;
6579
6580                 goto retry;
6581         }
6582
6583         if (needs_recompute)
6584                 return RETRY;
6585
6586         return ret;
6587 }
6588
6589 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6590                                      struct intel_crtc_state *pipe_config)
6591 {
6592         if (pipe_config->pipe_bpp > 24)
6593                 return false;
6594
6595         /* HSW can handle pixel rate up to cdclk? */
6596         if (IS_HASWELL(dev_priv->dev))
6597                 return true;
6598
6599         /*
6600          * We compare against max which means we must take
6601          * the increased cdclk requirement into account when
6602          * calculating the new cdclk.
6603          *
6604          * Should measure whether using a lower cdclk w/o IPS
6605          */
6606         return ilk_pipe_pixel_rate(pipe_config) <=
6607                 dev_priv->max_cdclk_freq * 95 / 100;
6608 }
6609
6610 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6611                                    struct intel_crtc_state *pipe_config)
6612 {
6613         struct drm_device *dev = crtc->base.dev;
6614         struct drm_i915_private *dev_priv = dev->dev_private;
6615
6616         pipe_config->ips_enabled = i915.enable_ips &&
6617                 hsw_crtc_supports_ips(crtc) &&
6618                 pipe_config_supports_ips(dev_priv, pipe_config);
6619 }
6620
6621 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6622                                      struct intel_crtc_state *pipe_config)
6623 {
6624         struct drm_device *dev = crtc->base.dev;
6625         struct drm_i915_private *dev_priv = dev->dev_private;
6626         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6627
6628         /* FIXME should check pixel clock limits on all platforms */
6629         if (INTEL_INFO(dev)->gen < 4) {
6630                 int clock_limit = dev_priv->max_cdclk_freq;
6631
6632                 /*
6633                  * Enable pixel doubling when the dot clock
6634                  * is > 90% of the (display) core speed.
6635                  *
6636                  * GDG double wide on either pipe,
6637                  * otherwise pipe A only.
6638                  */
6639                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6640                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6641                         clock_limit *= 2;
6642                         pipe_config->double_wide = true;
6643                 }
6644
6645                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6646                         return -EINVAL;
6647         }
6648
6649         /*
6650          * Pipe horizontal size must be even in:
6651          * - DVO ganged mode
6652          * - LVDS dual channel mode
6653          * - Double wide pipe
6654          */
6655         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6656              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6657                 pipe_config->pipe_src_w &= ~1;
6658
6659         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6660          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6661          */
6662         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6663                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6664                 return -EINVAL;
6665
6666         if (HAS_IPS(dev))
6667                 hsw_compute_ips_config(crtc, pipe_config);
6668
6669         if (pipe_config->has_pch_encoder)
6670                 return ironlake_fdi_compute_config(crtc, pipe_config);
6671
6672         return 0;
6673 }
6674
6675 static int skylake_get_display_clock_speed(struct drm_device *dev)
6676 {
6677         struct drm_i915_private *dev_priv = to_i915(dev);
6678         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6679         uint32_t cdctl = I915_READ(CDCLK_CTL);
6680         uint32_t linkrate;
6681
6682         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6683                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6684
6685         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6686                 return 540000;
6687
6688         linkrate = (I915_READ(DPLL_CTRL1) &
6689                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6690
6691         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6692             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6693                 /* vco 8640 */
6694                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6695                 case CDCLK_FREQ_450_432:
6696                         return 432000;
6697                 case CDCLK_FREQ_337_308:
6698                         return 308570;
6699                 case CDCLK_FREQ_675_617:
6700                         return 617140;
6701                 default:
6702                         WARN(1, "Unknown cd freq selection\n");
6703                 }
6704         } else {
6705                 /* vco 8100 */
6706                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6707                 case CDCLK_FREQ_450_432:
6708                         return 450000;
6709                 case CDCLK_FREQ_337_308:
6710                         return 337500;
6711                 case CDCLK_FREQ_675_617:
6712                         return 675000;
6713                 default:
6714                         WARN(1, "Unknown cd freq selection\n");
6715                 }
6716         }
6717
6718         /* error case, do as if DPLL0 isn't enabled */
6719         return 24000;
6720 }
6721
6722 static int broxton_get_display_clock_speed(struct drm_device *dev)
6723 {
6724         struct drm_i915_private *dev_priv = to_i915(dev);
6725         uint32_t cdctl = I915_READ(CDCLK_CTL);
6726         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6727         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6728         int cdclk;
6729
6730         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6731                 return 19200;
6732
6733         cdclk = 19200 * pll_ratio / 2;
6734
6735         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6736         case BXT_CDCLK_CD2X_DIV_SEL_1:
6737                 return cdclk;  /* 576MHz or 624MHz */
6738         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6739                 return cdclk * 2 / 3; /* 384MHz */
6740         case BXT_CDCLK_CD2X_DIV_SEL_2:
6741                 return cdclk / 2; /* 288MHz */
6742         case BXT_CDCLK_CD2X_DIV_SEL_4:
6743                 return cdclk / 4; /* 144MHz */
6744         }
6745
6746         /* error case, do as if DE PLL isn't enabled */
6747         return 19200;
6748 }
6749
6750 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6751 {
6752         struct drm_i915_private *dev_priv = dev->dev_private;
6753         uint32_t lcpll = I915_READ(LCPLL_CTL);
6754         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6755
6756         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6757                 return 800000;
6758         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6759                 return 450000;
6760         else if (freq == LCPLL_CLK_FREQ_450)
6761                 return 450000;
6762         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6763                 return 540000;
6764         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6765                 return 337500;
6766         else
6767                 return 675000;
6768 }
6769
6770 static int haswell_get_display_clock_speed(struct drm_device *dev)
6771 {
6772         struct drm_i915_private *dev_priv = dev->dev_private;
6773         uint32_t lcpll = I915_READ(LCPLL_CTL);
6774         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6775
6776         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6777                 return 800000;
6778         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6779                 return 450000;
6780         else if (freq == LCPLL_CLK_FREQ_450)
6781                 return 450000;
6782         else if (IS_HSW_ULT(dev))
6783                 return 337500;
6784         else
6785                 return 540000;
6786 }
6787
6788 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6789 {
6790         struct drm_i915_private *dev_priv = dev->dev_private;
6791         u32 val;
6792         int divider;
6793
6794         if (dev_priv->hpll_freq == 0)
6795                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6796
6797         mutex_lock(&dev_priv->sb_lock);
6798         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6799         mutex_unlock(&dev_priv->sb_lock);
6800
6801         divider = val & DISPLAY_FREQUENCY_VALUES;
6802
6803         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6804              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6805              "cdclk change in progress\n");
6806
6807         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6808 }
6809
6810 static int ilk_get_display_clock_speed(struct drm_device *dev)
6811 {
6812         return 450000;
6813 }
6814
6815 static int i945_get_display_clock_speed(struct drm_device *dev)
6816 {
6817         return 400000;
6818 }
6819
6820 static int i915_get_display_clock_speed(struct drm_device *dev)
6821 {
6822         return 333333;
6823 }
6824
6825 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6826 {
6827         return 200000;
6828 }
6829
6830 static int pnv_get_display_clock_speed(struct drm_device *dev)
6831 {
6832         u16 gcfgc = 0;
6833
6834         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6835
6836         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6837         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6838                 return 266667;
6839         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6840                 return 333333;
6841         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6842                 return 444444;
6843         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6844                 return 200000;
6845         default:
6846                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6847         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6848                 return 133333;
6849         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6850                 return 166667;
6851         }
6852 }
6853
6854 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6855 {
6856         u16 gcfgc = 0;
6857
6858         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6859
6860         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6861                 return 133333;
6862         else {
6863                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6864                 case GC_DISPLAY_CLOCK_333_MHZ:
6865                         return 333333;
6866                 default:
6867                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6868                         return 190000;
6869                 }
6870         }
6871 }
6872
6873 static int i865_get_display_clock_speed(struct drm_device *dev)
6874 {
6875         return 266667;
6876 }
6877
6878 static int i85x_get_display_clock_speed(struct drm_device *dev)
6879 {
6880         u16 hpllcc = 0;
6881
6882         /*
6883          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6884          * encoding is different :(
6885          * FIXME is this the right way to detect 852GM/852GMV?
6886          */
6887         if (dev->pdev->revision == 0x1)
6888                 return 133333;
6889
6890         pci_bus_read_config_word(dev->pdev->bus,
6891                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6892
6893         /* Assume that the hardware is in the high speed state.  This
6894          * should be the default.
6895          */
6896         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6897         case GC_CLOCK_133_200:
6898         case GC_CLOCK_133_200_2:
6899         case GC_CLOCK_100_200:
6900                 return 200000;
6901         case GC_CLOCK_166_250:
6902                 return 250000;
6903         case GC_CLOCK_100_133:
6904                 return 133333;
6905         case GC_CLOCK_133_266:
6906         case GC_CLOCK_133_266_2:
6907         case GC_CLOCK_166_266:
6908                 return 266667;
6909         }
6910
6911         /* Shouldn't happen */
6912         return 0;
6913 }
6914
6915 static int i830_get_display_clock_speed(struct drm_device *dev)
6916 {
6917         return 133333;
6918 }
6919
6920 static unsigned int intel_hpll_vco(struct drm_device *dev)
6921 {
6922         struct drm_i915_private *dev_priv = dev->dev_private;
6923         static const unsigned int blb_vco[8] = {
6924                 [0] = 3200000,
6925                 [1] = 4000000,
6926                 [2] = 5333333,
6927                 [3] = 4800000,
6928                 [4] = 6400000,
6929         };
6930         static const unsigned int pnv_vco[8] = {
6931                 [0] = 3200000,
6932                 [1] = 4000000,
6933                 [2] = 5333333,
6934                 [3] = 4800000,
6935                 [4] = 2666667,
6936         };
6937         static const unsigned int cl_vco[8] = {
6938                 [0] = 3200000,
6939                 [1] = 4000000,
6940                 [2] = 5333333,
6941                 [3] = 6400000,
6942                 [4] = 3333333,
6943                 [5] = 3566667,
6944                 [6] = 4266667,
6945         };
6946         static const unsigned int elk_vco[8] = {
6947                 [0] = 3200000,
6948                 [1] = 4000000,
6949                 [2] = 5333333,
6950                 [3] = 4800000,
6951         };
6952         static const unsigned int ctg_vco[8] = {
6953                 [0] = 3200000,
6954                 [1] = 4000000,
6955                 [2] = 5333333,
6956                 [3] = 6400000,
6957                 [4] = 2666667,
6958                 [5] = 4266667,
6959         };
6960         const unsigned int *vco_table;
6961         unsigned int vco;
6962         uint8_t tmp = 0;
6963
6964         /* FIXME other chipsets? */
6965         if (IS_GM45(dev))
6966                 vco_table = ctg_vco;
6967         else if (IS_G4X(dev))
6968                 vco_table = elk_vco;
6969         else if (IS_CRESTLINE(dev))
6970                 vco_table = cl_vco;
6971         else if (IS_PINEVIEW(dev))
6972                 vco_table = pnv_vco;
6973         else if (IS_G33(dev))
6974                 vco_table = blb_vco;
6975         else
6976                 return 0;
6977
6978         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6979
6980         vco = vco_table[tmp & 0x7];
6981         if (vco == 0)
6982                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6983         else
6984                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6985
6986         return vco;
6987 }
6988
6989 static int gm45_get_display_clock_speed(struct drm_device *dev)
6990 {
6991         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6992         uint16_t tmp = 0;
6993
6994         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6995
6996         cdclk_sel = (tmp >> 12) & 0x1;
6997
6998         switch (vco) {
6999         case 2666667:
7000         case 4000000:
7001         case 5333333:
7002                 return cdclk_sel ? 333333 : 222222;
7003         case 3200000:
7004                 return cdclk_sel ? 320000 : 228571;
7005         default:
7006                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7007                 return 222222;
7008         }
7009 }
7010
7011 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7012 {
7013         static const uint8_t div_3200[] = { 16, 10,  8 };
7014         static const uint8_t div_4000[] = { 20, 12, 10 };
7015         static const uint8_t div_5333[] = { 24, 16, 14 };
7016         const uint8_t *div_table;
7017         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7018         uint16_t tmp = 0;
7019
7020         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7021
7022         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7023
7024         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7025                 goto fail;
7026
7027         switch (vco) {
7028         case 3200000:
7029                 div_table = div_3200;
7030                 break;
7031         case 4000000:
7032                 div_table = div_4000;
7033                 break;
7034         case 5333333:
7035                 div_table = div_5333;
7036                 break;
7037         default:
7038                 goto fail;
7039         }
7040
7041         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7042
7043 fail:
7044         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7045         return 200000;
7046 }
7047
7048 static int g33_get_display_clock_speed(struct drm_device *dev)
7049 {
7050         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7051         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7052         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7053         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7054         const uint8_t *div_table;
7055         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7056         uint16_t tmp = 0;
7057
7058         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7059
7060         cdclk_sel = (tmp >> 4) & 0x7;
7061
7062         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7063                 goto fail;
7064
7065         switch (vco) {
7066         case 3200000:
7067                 div_table = div_3200;
7068                 break;
7069         case 4000000:
7070                 div_table = div_4000;
7071                 break;
7072         case 4800000:
7073                 div_table = div_4800;
7074                 break;
7075         case 5333333:
7076                 div_table = div_5333;
7077                 break;
7078         default:
7079                 goto fail;
7080         }
7081
7082         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7083
7084 fail:
7085         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7086         return 190476;
7087 }
7088
7089 static void
7090 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7091 {
7092         while (*num > DATA_LINK_M_N_MASK ||
7093                *den > DATA_LINK_M_N_MASK) {
7094                 *num >>= 1;
7095                 *den >>= 1;
7096         }
7097 }
7098
7099 static void compute_m_n(unsigned int m, unsigned int n,
7100                         uint32_t *ret_m, uint32_t *ret_n)
7101 {
7102         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7103         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7104         intel_reduce_m_n_ratio(ret_m, ret_n);
7105 }
7106
7107 void
7108 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7109                        int pixel_clock, int link_clock,
7110                        struct intel_link_m_n *m_n)
7111 {
7112         m_n->tu = 64;
7113
7114         compute_m_n(bits_per_pixel * pixel_clock,
7115                     link_clock * nlanes * 8,
7116                     &m_n->gmch_m, &m_n->gmch_n);
7117
7118         compute_m_n(pixel_clock, link_clock,
7119                     &m_n->link_m, &m_n->link_n);
7120 }
7121
7122 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7123 {
7124         if (i915.panel_use_ssc >= 0)
7125                 return i915.panel_use_ssc != 0;
7126         return dev_priv->vbt.lvds_use_ssc
7127                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7128 }
7129
7130 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7131                            int num_connectors)
7132 {
7133         struct drm_device *dev = crtc_state->base.crtc->dev;
7134         struct drm_i915_private *dev_priv = dev->dev_private;
7135         int refclk;
7136
7137         WARN_ON(!crtc_state->base.state);
7138
7139         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7140                 refclk = 100000;
7141         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7142             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7143                 refclk = dev_priv->vbt.lvds_ssc_freq;
7144                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7145         } else if (!IS_GEN2(dev)) {
7146                 refclk = 96000;
7147         } else {
7148                 refclk = 48000;
7149         }
7150
7151         return refclk;
7152 }
7153
7154 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7155 {
7156         return (1 << dpll->n) << 16 | dpll->m2;
7157 }
7158
7159 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7160 {
7161         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7162 }
7163
7164 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7165                                      struct intel_crtc_state *crtc_state,
7166                                      intel_clock_t *reduced_clock)
7167 {
7168         struct drm_device *dev = crtc->base.dev;
7169         u32 fp, fp2 = 0;
7170
7171         if (IS_PINEVIEW(dev)) {
7172                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7173                 if (reduced_clock)
7174                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7175         } else {
7176                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7177                 if (reduced_clock)
7178                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7179         }
7180
7181         crtc_state->dpll_hw_state.fp0 = fp;
7182
7183         crtc->lowfreq_avail = false;
7184         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7185             reduced_clock) {
7186                 crtc_state->dpll_hw_state.fp1 = fp2;
7187                 crtc->lowfreq_avail = true;
7188         } else {
7189                 crtc_state->dpll_hw_state.fp1 = fp;
7190         }
7191 }
7192
7193 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7194                 pipe)
7195 {
7196         u32 reg_val;
7197
7198         /*
7199          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7200          * and set it to a reasonable value instead.
7201          */
7202         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7203         reg_val &= 0xffffff00;
7204         reg_val |= 0x00000030;
7205         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7206
7207         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7208         reg_val &= 0x8cffffff;
7209         reg_val = 0x8c000000;
7210         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7211
7212         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7213         reg_val &= 0xffffff00;
7214         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7215
7216         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7217         reg_val &= 0x00ffffff;
7218         reg_val |= 0xb0000000;
7219         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7220 }
7221
7222 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7223                                          struct intel_link_m_n *m_n)
7224 {
7225         struct drm_device *dev = crtc->base.dev;
7226         struct drm_i915_private *dev_priv = dev->dev_private;
7227         int pipe = crtc->pipe;
7228
7229         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7230         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7231         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7232         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7233 }
7234
7235 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7236                                          struct intel_link_m_n *m_n,
7237                                          struct intel_link_m_n *m2_n2)
7238 {
7239         struct drm_device *dev = crtc->base.dev;
7240         struct drm_i915_private *dev_priv = dev->dev_private;
7241         int pipe = crtc->pipe;
7242         enum transcoder transcoder = crtc->config->cpu_transcoder;
7243
7244         if (INTEL_INFO(dev)->gen >= 5) {
7245                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7246                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7247                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7248                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7249                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7250                  * for gen < 8) and if DRRS is supported (to make sure the
7251                  * registers are not unnecessarily accessed).
7252                  */
7253                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7254                         crtc->config->has_drrs) {
7255                         I915_WRITE(PIPE_DATA_M2(transcoder),
7256                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7257                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7258                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7259                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7260                 }
7261         } else {
7262                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7263                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7264                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7265                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7266         }
7267 }
7268
7269 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7270 {
7271         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7272
7273         if (m_n == M1_N1) {
7274                 dp_m_n = &crtc->config->dp_m_n;
7275                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7276         } else if (m_n == M2_N2) {
7277
7278                 /*
7279                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7280                  * needs to be programmed into M1_N1.
7281                  */
7282                 dp_m_n = &crtc->config->dp_m2_n2;
7283         } else {
7284                 DRM_ERROR("Unsupported divider value\n");
7285                 return;
7286         }
7287
7288         if (crtc->config->has_pch_encoder)
7289                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7290         else
7291                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7292 }
7293
7294 static void vlv_compute_dpll(struct intel_crtc *crtc,
7295                              struct intel_crtc_state *pipe_config)
7296 {
7297         u32 dpll, dpll_md;
7298
7299         /*
7300          * Enable DPIO clock input. We should never disable the reference
7301          * clock for pipe B, since VGA hotplug / manual detection depends
7302          * on it.
7303          */
7304         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7305                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7306         /* We should never disable this, set it here for state tracking */
7307         if (crtc->pipe == PIPE_B)
7308                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7309         dpll |= DPLL_VCO_ENABLE;
7310         pipe_config->dpll_hw_state.dpll = dpll;
7311
7312         dpll_md = (pipe_config->pixel_multiplier - 1)
7313                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7314         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7315 }
7316
7317 static void vlv_prepare_pll(struct intel_crtc *crtc,
7318                             const struct intel_crtc_state *pipe_config)
7319 {
7320         struct drm_device *dev = crtc->base.dev;
7321         struct drm_i915_private *dev_priv = dev->dev_private;
7322         int pipe = crtc->pipe;
7323         u32 mdiv;
7324         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7325         u32 coreclk, reg_val;
7326
7327         mutex_lock(&dev_priv->sb_lock);
7328
7329         bestn = pipe_config->dpll.n;
7330         bestm1 = pipe_config->dpll.m1;
7331         bestm2 = pipe_config->dpll.m2;
7332         bestp1 = pipe_config->dpll.p1;
7333         bestp2 = pipe_config->dpll.p2;
7334
7335         /* See eDP HDMI DPIO driver vbios notes doc */
7336
7337         /* PLL B needs special handling */
7338         if (pipe == PIPE_B)
7339                 vlv_pllb_recal_opamp(dev_priv, pipe);
7340
7341         /* Set up Tx target for periodic Rcomp update */
7342         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7343
7344         /* Disable target IRef on PLL */
7345         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7346         reg_val &= 0x00ffffff;
7347         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7348
7349         /* Disable fast lock */
7350         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7351
7352         /* Set idtafcrecal before PLL is enabled */
7353         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7354         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7355         mdiv |= ((bestn << DPIO_N_SHIFT));
7356         mdiv |= (1 << DPIO_K_SHIFT);
7357
7358         /*
7359          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7360          * but we don't support that).
7361          * Note: don't use the DAC post divider as it seems unstable.
7362          */
7363         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7364         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7365
7366         mdiv |= DPIO_ENABLE_CALIBRATION;
7367         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7368
7369         /* Set HBR and RBR LPF coefficients */
7370         if (pipe_config->port_clock == 162000 ||
7371             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7372             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7373                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7374                                  0x009f0003);
7375         else
7376                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7377                                  0x00d0000f);
7378
7379         if (pipe_config->has_dp_encoder) {
7380                 /* Use SSC source */
7381                 if (pipe == PIPE_A)
7382                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7383                                          0x0df40000);
7384                 else
7385                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7386                                          0x0df70000);
7387         } else { /* HDMI or VGA */
7388                 /* Use bend source */
7389                 if (pipe == PIPE_A)
7390                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7391                                          0x0df70000);
7392                 else
7393                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7394                                          0x0df40000);
7395         }
7396
7397         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7398         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7399         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7400             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7401                 coreclk |= 0x01000000;
7402         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7403
7404         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7405         mutex_unlock(&dev_priv->sb_lock);
7406 }
7407
7408 static void chv_compute_dpll(struct intel_crtc *crtc,
7409                              struct intel_crtc_state *pipe_config)
7410 {
7411         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7412                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7413                 DPLL_VCO_ENABLE;
7414         if (crtc->pipe != PIPE_A)
7415                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7416
7417         pipe_config->dpll_hw_state.dpll_md =
7418                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7419 }
7420
7421 static void chv_prepare_pll(struct intel_crtc *crtc,
7422                             const struct intel_crtc_state *pipe_config)
7423 {
7424         struct drm_device *dev = crtc->base.dev;
7425         struct drm_i915_private *dev_priv = dev->dev_private;
7426         int pipe = crtc->pipe;
7427         int dpll_reg = DPLL(crtc->pipe);
7428         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7429         u32 loopfilter, tribuf_calcntr;
7430         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7431         u32 dpio_val;
7432         int vco;
7433
7434         bestn = pipe_config->dpll.n;
7435         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7436         bestm1 = pipe_config->dpll.m1;
7437         bestm2 = pipe_config->dpll.m2 >> 22;
7438         bestp1 = pipe_config->dpll.p1;
7439         bestp2 = pipe_config->dpll.p2;
7440         vco = pipe_config->dpll.vco;
7441         dpio_val = 0;
7442         loopfilter = 0;
7443
7444         /*
7445          * Enable Refclk and SSC
7446          */
7447         I915_WRITE(dpll_reg,
7448                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7449
7450         mutex_lock(&dev_priv->sb_lock);
7451
7452         /* p1 and p2 divider */
7453         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7454                         5 << DPIO_CHV_S1_DIV_SHIFT |
7455                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7456                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7457                         1 << DPIO_CHV_K_DIV_SHIFT);
7458
7459         /* Feedback post-divider - m2 */
7460         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7461
7462         /* Feedback refclk divider - n and m1 */
7463         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7464                         DPIO_CHV_M1_DIV_BY_2 |
7465                         1 << DPIO_CHV_N_DIV_SHIFT);
7466
7467         /* M2 fraction division */
7468         if (bestm2_frac)
7469                 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7470
7471         /* M2 fraction division enable */
7472         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7473         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7474         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7475         if (bestm2_frac)
7476                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7477         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7478
7479         /* Program digital lock detect threshold */
7480         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7481         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7482                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7483         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7484         if (!bestm2_frac)
7485                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7486         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7487
7488         /* Loop filter */
7489         if (vco == 5400000) {
7490                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7491                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7492                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7493                 tribuf_calcntr = 0x9;
7494         } else if (vco <= 6200000) {
7495                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7496                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7497                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7498                 tribuf_calcntr = 0x9;
7499         } else if (vco <= 6480000) {
7500                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7501                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7502                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7503                 tribuf_calcntr = 0x8;
7504         } else {
7505                 /* Not supported. Apply the same limits as in the max case */
7506                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7507                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7508                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7509                 tribuf_calcntr = 0;
7510         }
7511         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7512
7513         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7514         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7515         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7516         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7517
7518         /* AFC Recal */
7519         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7520                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7521                         DPIO_AFC_RECAL);
7522
7523         mutex_unlock(&dev_priv->sb_lock);
7524 }
7525
7526 /**
7527  * vlv_force_pll_on - forcibly enable just the PLL
7528  * @dev_priv: i915 private structure
7529  * @pipe: pipe PLL to enable
7530  * @dpll: PLL configuration
7531  *
7532  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7533  * in cases where we need the PLL enabled even when @pipe is not going to
7534  * be enabled.
7535  */
7536 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7537                       const struct dpll *dpll)
7538 {
7539         struct intel_crtc *crtc =
7540                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7541         struct intel_crtc_state pipe_config = {
7542                 .base.crtc = &crtc->base,
7543                 .pixel_multiplier = 1,
7544                 .dpll = *dpll,
7545         };
7546
7547         if (IS_CHERRYVIEW(dev)) {
7548                 chv_compute_dpll(crtc, &pipe_config);
7549                 chv_prepare_pll(crtc, &pipe_config);
7550                 chv_enable_pll(crtc, &pipe_config);
7551         } else {
7552                 vlv_compute_dpll(crtc, &pipe_config);
7553                 vlv_prepare_pll(crtc, &pipe_config);
7554                 vlv_enable_pll(crtc, &pipe_config);
7555         }
7556 }
7557
7558 /**
7559  * vlv_force_pll_off - forcibly disable just the PLL
7560  * @dev_priv: i915 private structure
7561  * @pipe: pipe PLL to disable
7562  *
7563  * Disable the PLL for @pipe. To be used in cases where we need
7564  * the PLL enabled even when @pipe is not going to be enabled.
7565  */
7566 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7567 {
7568         if (IS_CHERRYVIEW(dev))
7569                 chv_disable_pll(to_i915(dev), pipe);
7570         else
7571                 vlv_disable_pll(to_i915(dev), pipe);
7572 }
7573
7574 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7575                               struct intel_crtc_state *crtc_state,
7576                               intel_clock_t *reduced_clock,
7577                               int num_connectors)
7578 {
7579         struct drm_device *dev = crtc->base.dev;
7580         struct drm_i915_private *dev_priv = dev->dev_private;
7581         u32 dpll;
7582         bool is_sdvo;
7583         struct dpll *clock = &crtc_state->dpll;
7584
7585         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7586
7587         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7588                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7589
7590         dpll = DPLL_VGA_MODE_DIS;
7591
7592         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7593                 dpll |= DPLLB_MODE_LVDS;
7594         else
7595                 dpll |= DPLLB_MODE_DAC_SERIAL;
7596
7597         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7598                 dpll |= (crtc_state->pixel_multiplier - 1)
7599                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7600         }
7601
7602         if (is_sdvo)
7603                 dpll |= DPLL_SDVO_HIGH_SPEED;
7604
7605         if (crtc_state->has_dp_encoder)
7606                 dpll |= DPLL_SDVO_HIGH_SPEED;
7607
7608         /* compute bitmask from p1 value */
7609         if (IS_PINEVIEW(dev))
7610                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7611         else {
7612                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7613                 if (IS_G4X(dev) && reduced_clock)
7614                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7615         }
7616         switch (clock->p2) {
7617         case 5:
7618                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7619                 break;
7620         case 7:
7621                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7622                 break;
7623         case 10:
7624                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7625                 break;
7626         case 14:
7627                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7628                 break;
7629         }
7630         if (INTEL_INFO(dev)->gen >= 4)
7631                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7632
7633         if (crtc_state->sdvo_tv_clock)
7634                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7635         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7636                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7637                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7638         else
7639                 dpll |= PLL_REF_INPUT_DREFCLK;
7640
7641         dpll |= DPLL_VCO_ENABLE;
7642         crtc_state->dpll_hw_state.dpll = dpll;
7643
7644         if (INTEL_INFO(dev)->gen >= 4) {
7645                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7646                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7647                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7648         }
7649 }
7650
7651 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7652                               struct intel_crtc_state *crtc_state,
7653                               intel_clock_t *reduced_clock,
7654                               int num_connectors)
7655 {
7656         struct drm_device *dev = crtc->base.dev;
7657         struct drm_i915_private *dev_priv = dev->dev_private;
7658         u32 dpll;
7659         struct dpll *clock = &crtc_state->dpll;
7660
7661         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7662
7663         dpll = DPLL_VGA_MODE_DIS;
7664
7665         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7666                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7667         } else {
7668                 if (clock->p1 == 2)
7669                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7670                 else
7671                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7672                 if (clock->p2 == 4)
7673                         dpll |= PLL_P2_DIVIDE_BY_4;
7674         }
7675
7676         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7677                 dpll |= DPLL_DVO_2X_MODE;
7678
7679         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7680                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7681                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7682         else
7683                 dpll |= PLL_REF_INPUT_DREFCLK;
7684
7685         dpll |= DPLL_VCO_ENABLE;
7686         crtc_state->dpll_hw_state.dpll = dpll;
7687 }
7688
7689 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7690 {
7691         struct drm_device *dev = intel_crtc->base.dev;
7692         struct drm_i915_private *dev_priv = dev->dev_private;
7693         enum pipe pipe = intel_crtc->pipe;
7694         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7695         struct drm_display_mode *adjusted_mode =
7696                 &intel_crtc->config->base.adjusted_mode;
7697         uint32_t crtc_vtotal, crtc_vblank_end;
7698         int vsyncshift = 0;
7699
7700         /* We need to be careful not to changed the adjusted mode, for otherwise
7701          * the hw state checker will get angry at the mismatch. */
7702         crtc_vtotal = adjusted_mode->crtc_vtotal;
7703         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7704
7705         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7706                 /* the chip adds 2 halflines automatically */
7707                 crtc_vtotal -= 1;
7708                 crtc_vblank_end -= 1;
7709
7710                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7711                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7712                 else
7713                         vsyncshift = adjusted_mode->crtc_hsync_start -
7714                                 adjusted_mode->crtc_htotal / 2;
7715                 if (vsyncshift < 0)
7716                         vsyncshift += adjusted_mode->crtc_htotal;
7717         }
7718
7719         if (INTEL_INFO(dev)->gen > 3)
7720                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7721
7722         I915_WRITE(HTOTAL(cpu_transcoder),
7723                    (adjusted_mode->crtc_hdisplay - 1) |
7724                    ((adjusted_mode->crtc_htotal - 1) << 16));
7725         I915_WRITE(HBLANK(cpu_transcoder),
7726                    (adjusted_mode->crtc_hblank_start - 1) |
7727                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7728         I915_WRITE(HSYNC(cpu_transcoder),
7729                    (adjusted_mode->crtc_hsync_start - 1) |
7730                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7731
7732         I915_WRITE(VTOTAL(cpu_transcoder),
7733                    (adjusted_mode->crtc_vdisplay - 1) |
7734                    ((crtc_vtotal - 1) << 16));
7735         I915_WRITE(VBLANK(cpu_transcoder),
7736                    (adjusted_mode->crtc_vblank_start - 1) |
7737                    ((crtc_vblank_end - 1) << 16));
7738         I915_WRITE(VSYNC(cpu_transcoder),
7739                    (adjusted_mode->crtc_vsync_start - 1) |
7740                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7741
7742         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7743          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7744          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7745          * bits. */
7746         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7747             (pipe == PIPE_B || pipe == PIPE_C))
7748                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7749
7750         /* pipesrc controls the size that is scaled from, which should
7751          * always be the user's requested size.
7752          */
7753         I915_WRITE(PIPESRC(pipe),
7754                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7755                    (intel_crtc->config->pipe_src_h - 1));
7756 }
7757
7758 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7759                                    struct intel_crtc_state *pipe_config)
7760 {
7761         struct drm_device *dev = crtc->base.dev;
7762         struct drm_i915_private *dev_priv = dev->dev_private;
7763         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7764         uint32_t tmp;
7765
7766         tmp = I915_READ(HTOTAL(cpu_transcoder));
7767         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7768         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7769         tmp = I915_READ(HBLANK(cpu_transcoder));
7770         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7771         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7772         tmp = I915_READ(HSYNC(cpu_transcoder));
7773         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7774         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7775
7776         tmp = I915_READ(VTOTAL(cpu_transcoder));
7777         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7778         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7779         tmp = I915_READ(VBLANK(cpu_transcoder));
7780         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7781         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7782         tmp = I915_READ(VSYNC(cpu_transcoder));
7783         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7784         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7785
7786         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7787                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7788                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7789                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7790         }
7791
7792         tmp = I915_READ(PIPESRC(crtc->pipe));
7793         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7794         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7795
7796         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7797         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7798 }
7799
7800 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7801                                  struct intel_crtc_state *pipe_config)
7802 {
7803         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7804         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7805         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7806         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7807
7808         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7809         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7810         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7811         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7812
7813         mode->flags = pipe_config->base.adjusted_mode.flags;
7814         mode->type = DRM_MODE_TYPE_DRIVER;
7815
7816         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7817         mode->flags |= pipe_config->base.adjusted_mode.flags;
7818
7819         mode->hsync = drm_mode_hsync(mode);
7820         mode->vrefresh = drm_mode_vrefresh(mode);
7821         drm_mode_set_name(mode);
7822 }
7823
7824 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7825 {
7826         struct drm_device *dev = intel_crtc->base.dev;
7827         struct drm_i915_private *dev_priv = dev->dev_private;
7828         uint32_t pipeconf;
7829
7830         pipeconf = 0;
7831
7832         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7833             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7834                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7835
7836         if (intel_crtc->config->double_wide)
7837                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7838
7839         /* only g4x and later have fancy bpc/dither controls */
7840         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7841                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7842                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7843                         pipeconf |= PIPECONF_DITHER_EN |
7844                                     PIPECONF_DITHER_TYPE_SP;
7845
7846                 switch (intel_crtc->config->pipe_bpp) {
7847                 case 18:
7848                         pipeconf |= PIPECONF_6BPC;
7849                         break;
7850                 case 24:
7851                         pipeconf |= PIPECONF_8BPC;
7852                         break;
7853                 case 30:
7854                         pipeconf |= PIPECONF_10BPC;
7855                         break;
7856                 default:
7857                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7858                         BUG();
7859                 }
7860         }
7861
7862         if (HAS_PIPE_CXSR(dev)) {
7863                 if (intel_crtc->lowfreq_avail) {
7864                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7865                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7866                 } else {
7867                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7868                 }
7869         }
7870
7871         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7872                 if (INTEL_INFO(dev)->gen < 4 ||
7873                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7874                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7875                 else
7876                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7877         } else
7878                 pipeconf |= PIPECONF_PROGRESSIVE;
7879
7880         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7881                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7882
7883         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7884         POSTING_READ(PIPECONF(intel_crtc->pipe));
7885 }
7886
7887 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7888                                    struct intel_crtc_state *crtc_state)
7889 {
7890         struct drm_device *dev = crtc->base.dev;
7891         struct drm_i915_private *dev_priv = dev->dev_private;
7892         int refclk, num_connectors = 0;
7893         intel_clock_t clock;
7894         bool ok;
7895         bool is_dsi = false;
7896         struct intel_encoder *encoder;
7897         const intel_limit_t *limit;
7898         struct drm_atomic_state *state = crtc_state->base.state;
7899         struct drm_connector *connector;
7900         struct drm_connector_state *connector_state;
7901         int i;
7902
7903         memset(&crtc_state->dpll_hw_state, 0,
7904                sizeof(crtc_state->dpll_hw_state));
7905
7906         for_each_connector_in_state(state, connector, connector_state, i) {
7907                 if (connector_state->crtc != &crtc->base)
7908                         continue;
7909
7910                 encoder = to_intel_encoder(connector_state->best_encoder);
7911
7912                 switch (encoder->type) {
7913                 case INTEL_OUTPUT_DSI:
7914                         is_dsi = true;
7915                         break;
7916                 default:
7917                         break;
7918                 }
7919
7920                 num_connectors++;
7921         }
7922
7923         if (is_dsi)
7924                 return 0;
7925
7926         if (!crtc_state->clock_set) {
7927                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7928
7929                 /*
7930                  * Returns a set of divisors for the desired target clock with
7931                  * the given refclk, or FALSE.  The returned values represent
7932                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7933                  * 2) / p1 / p2.
7934                  */
7935                 limit = intel_limit(crtc_state, refclk);
7936                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7937                                                  crtc_state->port_clock,
7938                                                  refclk, NULL, &clock);
7939                 if (!ok) {
7940                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7941                         return -EINVAL;
7942                 }
7943
7944                 /* Compat-code for transition, will disappear. */
7945                 crtc_state->dpll.n = clock.n;
7946                 crtc_state->dpll.m1 = clock.m1;
7947                 crtc_state->dpll.m2 = clock.m2;
7948                 crtc_state->dpll.p1 = clock.p1;
7949                 crtc_state->dpll.p2 = clock.p2;
7950         }
7951
7952         if (IS_GEN2(dev)) {
7953                 i8xx_compute_dpll(crtc, crtc_state, NULL,
7954                                   num_connectors);
7955         } else if (IS_CHERRYVIEW(dev)) {
7956                 chv_compute_dpll(crtc, crtc_state);
7957         } else if (IS_VALLEYVIEW(dev)) {
7958                 vlv_compute_dpll(crtc, crtc_state);
7959         } else {
7960                 i9xx_compute_dpll(crtc, crtc_state, NULL,
7961                                   num_connectors);
7962         }
7963
7964         return 0;
7965 }
7966
7967 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7968                                  struct intel_crtc_state *pipe_config)
7969 {
7970         struct drm_device *dev = crtc->base.dev;
7971         struct drm_i915_private *dev_priv = dev->dev_private;
7972         uint32_t tmp;
7973
7974         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7975                 return;
7976
7977         tmp = I915_READ(PFIT_CONTROL);
7978         if (!(tmp & PFIT_ENABLE))
7979                 return;
7980
7981         /* Check whether the pfit is attached to our pipe. */
7982         if (INTEL_INFO(dev)->gen < 4) {
7983                 if (crtc->pipe != PIPE_B)
7984                         return;
7985         } else {
7986                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7987                         return;
7988         }
7989
7990         pipe_config->gmch_pfit.control = tmp;
7991         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7992         if (INTEL_INFO(dev)->gen < 5)
7993                 pipe_config->gmch_pfit.lvds_border_bits =
7994                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7995 }
7996
7997 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7998                                struct intel_crtc_state *pipe_config)
7999 {
8000         struct drm_device *dev = crtc->base.dev;
8001         struct drm_i915_private *dev_priv = dev->dev_private;
8002         int pipe = pipe_config->cpu_transcoder;
8003         intel_clock_t clock;
8004         u32 mdiv;
8005         int refclk = 100000;
8006
8007         /* In case of MIPI DPLL will not even be used */
8008         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8009                 return;
8010
8011         mutex_lock(&dev_priv->sb_lock);
8012         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8013         mutex_unlock(&dev_priv->sb_lock);
8014
8015         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8016         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8017         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8018         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8019         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8020
8021         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8022 }
8023
8024 static void
8025 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8026                               struct intel_initial_plane_config *plane_config)
8027 {
8028         struct drm_device *dev = crtc->base.dev;
8029         struct drm_i915_private *dev_priv = dev->dev_private;
8030         u32 val, base, offset;
8031         int pipe = crtc->pipe, plane = crtc->plane;
8032         int fourcc, pixel_format;
8033         unsigned int aligned_height;
8034         struct drm_framebuffer *fb;
8035         struct intel_framebuffer *intel_fb;
8036
8037         val = I915_READ(DSPCNTR(plane));
8038         if (!(val & DISPLAY_PLANE_ENABLE))
8039                 return;
8040
8041         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8042         if (!intel_fb) {
8043                 DRM_DEBUG_KMS("failed to alloc fb\n");
8044                 return;
8045         }
8046
8047         fb = &intel_fb->base;
8048
8049         if (INTEL_INFO(dev)->gen >= 4) {
8050                 if (val & DISPPLANE_TILED) {
8051                         plane_config->tiling = I915_TILING_X;
8052                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8053                 }
8054         }
8055
8056         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8057         fourcc = i9xx_format_to_fourcc(pixel_format);
8058         fb->pixel_format = fourcc;
8059         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8060
8061         if (INTEL_INFO(dev)->gen >= 4) {
8062                 if (plane_config->tiling)
8063                         offset = I915_READ(DSPTILEOFF(plane));
8064                 else
8065                         offset = I915_READ(DSPLINOFF(plane));
8066                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8067         } else {
8068                 base = I915_READ(DSPADDR(plane));
8069         }
8070         plane_config->base = base;
8071
8072         val = I915_READ(PIPESRC(pipe));
8073         fb->width = ((val >> 16) & 0xfff) + 1;
8074         fb->height = ((val >> 0) & 0xfff) + 1;
8075
8076         val = I915_READ(DSPSTRIDE(pipe));
8077         fb->pitches[0] = val & 0xffffffc0;
8078
8079         aligned_height = intel_fb_align_height(dev, fb->height,
8080                                                fb->pixel_format,
8081                                                fb->modifier[0]);
8082
8083         plane_config->size = fb->pitches[0] * aligned_height;
8084
8085         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8086                       pipe_name(pipe), plane, fb->width, fb->height,
8087                       fb->bits_per_pixel, base, fb->pitches[0],
8088                       plane_config->size);
8089
8090         plane_config->fb = intel_fb;
8091 }
8092
8093 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8094                                struct intel_crtc_state *pipe_config)
8095 {
8096         struct drm_device *dev = crtc->base.dev;
8097         struct drm_i915_private *dev_priv = dev->dev_private;
8098         int pipe = pipe_config->cpu_transcoder;
8099         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8100         intel_clock_t clock;
8101         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8102         int refclk = 100000;
8103
8104         mutex_lock(&dev_priv->sb_lock);
8105         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8106         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8107         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8108         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8109         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8110         mutex_unlock(&dev_priv->sb_lock);
8111
8112         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8113         clock.m2 = (pll_dw0 & 0xff) << 22;
8114         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8115                 clock.m2 |= pll_dw2 & 0x3fffff;
8116         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8117         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8118         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8119
8120         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8121 }
8122
8123 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8124                                  struct intel_crtc_state *pipe_config)
8125 {
8126         struct drm_device *dev = crtc->base.dev;
8127         struct drm_i915_private *dev_priv = dev->dev_private;
8128         uint32_t tmp;
8129
8130         if (!intel_display_power_is_enabled(dev_priv,
8131                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8132                 return false;
8133
8134         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8135         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8136
8137         tmp = I915_READ(PIPECONF(crtc->pipe));
8138         if (!(tmp & PIPECONF_ENABLE))
8139                 return false;
8140
8141         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8142                 switch (tmp & PIPECONF_BPC_MASK) {
8143                 case PIPECONF_6BPC:
8144                         pipe_config->pipe_bpp = 18;
8145                         break;
8146                 case PIPECONF_8BPC:
8147                         pipe_config->pipe_bpp = 24;
8148                         break;
8149                 case PIPECONF_10BPC:
8150                         pipe_config->pipe_bpp = 30;
8151                         break;
8152                 default:
8153                         break;
8154                 }
8155         }
8156
8157         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8158                 pipe_config->limited_color_range = true;
8159
8160         if (INTEL_INFO(dev)->gen < 4)
8161                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8162
8163         intel_get_pipe_timings(crtc, pipe_config);
8164
8165         i9xx_get_pfit_config(crtc, pipe_config);
8166
8167         if (INTEL_INFO(dev)->gen >= 4) {
8168                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8169                 pipe_config->pixel_multiplier =
8170                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8171                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8172                 pipe_config->dpll_hw_state.dpll_md = tmp;
8173         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8174                 tmp = I915_READ(DPLL(crtc->pipe));
8175                 pipe_config->pixel_multiplier =
8176                         ((tmp & SDVO_MULTIPLIER_MASK)
8177                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8178         } else {
8179                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8180                  * port and will be fixed up in the encoder->get_config
8181                  * function. */
8182                 pipe_config->pixel_multiplier = 1;
8183         }
8184         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8185         if (!IS_VALLEYVIEW(dev)) {
8186                 /*
8187                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8188                  * on 830. Filter it out here so that we don't
8189                  * report errors due to that.
8190                  */
8191                 if (IS_I830(dev))
8192                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8193
8194                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8195                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8196         } else {
8197                 /* Mask out read-only status bits. */
8198                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8199                                                      DPLL_PORTC_READY_MASK |
8200                                                      DPLL_PORTB_READY_MASK);
8201         }
8202
8203         if (IS_CHERRYVIEW(dev))
8204                 chv_crtc_clock_get(crtc, pipe_config);
8205         else if (IS_VALLEYVIEW(dev))
8206                 vlv_crtc_clock_get(crtc, pipe_config);
8207         else
8208                 i9xx_crtc_clock_get(crtc, pipe_config);
8209
8210         return true;
8211 }
8212
8213 static void ironlake_init_pch_refclk(struct drm_device *dev)
8214 {
8215         struct drm_i915_private *dev_priv = dev->dev_private;
8216         struct intel_encoder *encoder;
8217         u32 val, final;
8218         bool has_lvds = false;
8219         bool has_cpu_edp = false;
8220         bool has_panel = false;
8221         bool has_ck505 = false;
8222         bool can_ssc = false;
8223
8224         /* We need to take the global config into account */
8225         for_each_intel_encoder(dev, encoder) {
8226                 switch (encoder->type) {
8227                 case INTEL_OUTPUT_LVDS:
8228                         has_panel = true;
8229                         has_lvds = true;
8230                         break;
8231                 case INTEL_OUTPUT_EDP:
8232                         has_panel = true;
8233                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8234                                 has_cpu_edp = true;
8235                         break;
8236                 default:
8237                         break;
8238                 }
8239         }
8240
8241         if (HAS_PCH_IBX(dev)) {
8242                 has_ck505 = dev_priv->vbt.display_clock_mode;
8243                 can_ssc = has_ck505;
8244         } else {
8245                 has_ck505 = false;
8246                 can_ssc = true;
8247         }
8248
8249         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8250                       has_panel, has_lvds, has_ck505);
8251
8252         /* Ironlake: try to setup display ref clock before DPLL
8253          * enabling. This is only under driver's control after
8254          * PCH B stepping, previous chipset stepping should be
8255          * ignoring this setting.
8256          */
8257         val = I915_READ(PCH_DREF_CONTROL);
8258
8259         /* As we must carefully and slowly disable/enable each source in turn,
8260          * compute the final state we want first and check if we need to
8261          * make any changes at all.
8262          */
8263         final = val;
8264         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8265         if (has_ck505)
8266                 final |= DREF_NONSPREAD_CK505_ENABLE;
8267         else
8268                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8269
8270         final &= ~DREF_SSC_SOURCE_MASK;
8271         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8272         final &= ~DREF_SSC1_ENABLE;
8273
8274         if (has_panel) {
8275                 final |= DREF_SSC_SOURCE_ENABLE;
8276
8277                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8278                         final |= DREF_SSC1_ENABLE;
8279
8280                 if (has_cpu_edp) {
8281                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8282                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8283                         else
8284                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8285                 } else
8286                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8287         } else {
8288                 final |= DREF_SSC_SOURCE_DISABLE;
8289                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8290         }
8291
8292         if (final == val)
8293                 return;
8294
8295         /* Always enable nonspread source */
8296         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8297
8298         if (has_ck505)
8299                 val |= DREF_NONSPREAD_CK505_ENABLE;
8300         else
8301                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8302
8303         if (has_panel) {
8304                 val &= ~DREF_SSC_SOURCE_MASK;
8305                 val |= DREF_SSC_SOURCE_ENABLE;
8306
8307                 /* SSC must be turned on before enabling the CPU output  */
8308                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8309                         DRM_DEBUG_KMS("Using SSC on panel\n");
8310                         val |= DREF_SSC1_ENABLE;
8311                 } else
8312                         val &= ~DREF_SSC1_ENABLE;
8313
8314                 /* Get SSC going before enabling the outputs */
8315                 I915_WRITE(PCH_DREF_CONTROL, val);
8316                 POSTING_READ(PCH_DREF_CONTROL);
8317                 udelay(200);
8318
8319                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8320
8321                 /* Enable CPU source on CPU attached eDP */
8322                 if (has_cpu_edp) {
8323                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8324                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8325                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8326                         } else
8327                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8328                 } else
8329                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8330
8331                 I915_WRITE(PCH_DREF_CONTROL, val);
8332                 POSTING_READ(PCH_DREF_CONTROL);
8333                 udelay(200);
8334         } else {
8335                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8336
8337                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8338
8339                 /* Turn off CPU output */
8340                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8341
8342                 I915_WRITE(PCH_DREF_CONTROL, val);
8343                 POSTING_READ(PCH_DREF_CONTROL);
8344                 udelay(200);
8345
8346                 /* Turn off the SSC source */
8347                 val &= ~DREF_SSC_SOURCE_MASK;
8348                 val |= DREF_SSC_SOURCE_DISABLE;
8349
8350                 /* Turn off SSC1 */
8351                 val &= ~DREF_SSC1_ENABLE;
8352
8353                 I915_WRITE(PCH_DREF_CONTROL, val);
8354                 POSTING_READ(PCH_DREF_CONTROL);
8355                 udelay(200);
8356         }
8357
8358         BUG_ON(val != final);
8359 }
8360
8361 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8362 {
8363         uint32_t tmp;
8364
8365         tmp = I915_READ(SOUTH_CHICKEN2);
8366         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8367         I915_WRITE(SOUTH_CHICKEN2, tmp);
8368
8369         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8370                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8371                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8372
8373         tmp = I915_READ(SOUTH_CHICKEN2);
8374         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8375         I915_WRITE(SOUTH_CHICKEN2, tmp);
8376
8377         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8378                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8379                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8380 }
8381
8382 /* WaMPhyProgramming:hsw */
8383 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8384 {
8385         uint32_t tmp;
8386
8387         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8388         tmp &= ~(0xFF << 24);
8389         tmp |= (0x12 << 24);
8390         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8391
8392         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8393         tmp |= (1 << 11);
8394         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8395
8396         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8397         tmp |= (1 << 11);
8398         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8399
8400         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8401         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8402         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8403
8404         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8405         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8406         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8407
8408         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8409         tmp &= ~(7 << 13);
8410         tmp |= (5 << 13);
8411         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8412
8413         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8414         tmp &= ~(7 << 13);
8415         tmp |= (5 << 13);
8416         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8417
8418         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8419         tmp &= ~0xFF;
8420         tmp |= 0x1C;
8421         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8422
8423         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8424         tmp &= ~0xFF;
8425         tmp |= 0x1C;
8426         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8427
8428         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8429         tmp &= ~(0xFF << 16);
8430         tmp |= (0x1C << 16);
8431         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8432
8433         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8434         tmp &= ~(0xFF << 16);
8435         tmp |= (0x1C << 16);
8436         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8437
8438         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8439         tmp |= (1 << 27);
8440         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8441
8442         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8443         tmp |= (1 << 27);
8444         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8445
8446         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8447         tmp &= ~(0xF << 28);
8448         tmp |= (4 << 28);
8449         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8450
8451         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8452         tmp &= ~(0xF << 28);
8453         tmp |= (4 << 28);
8454         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8455 }
8456
8457 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8458  * Programming" based on the parameters passed:
8459  * - Sequence to enable CLKOUT_DP
8460  * - Sequence to enable CLKOUT_DP without spread
8461  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8462  */
8463 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8464                                  bool with_fdi)
8465 {
8466         struct drm_i915_private *dev_priv = dev->dev_private;
8467         uint32_t reg, tmp;
8468
8469         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8470                 with_spread = true;
8471         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8472                  with_fdi, "LP PCH doesn't have FDI\n"))
8473                 with_fdi = false;
8474
8475         mutex_lock(&dev_priv->sb_lock);
8476
8477         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8478         tmp &= ~SBI_SSCCTL_DISABLE;
8479         tmp |= SBI_SSCCTL_PATHALT;
8480         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8481
8482         udelay(24);
8483
8484         if (with_spread) {
8485                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8486                 tmp &= ~SBI_SSCCTL_PATHALT;
8487                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8488
8489                 if (with_fdi) {
8490                         lpt_reset_fdi_mphy(dev_priv);
8491                         lpt_program_fdi_mphy(dev_priv);
8492                 }
8493         }
8494
8495         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8496                SBI_GEN0 : SBI_DBUFF0;
8497         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8498         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8499         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8500
8501         mutex_unlock(&dev_priv->sb_lock);
8502 }
8503
8504 /* Sequence to disable CLKOUT_DP */
8505 static void lpt_disable_clkout_dp(struct drm_device *dev)
8506 {
8507         struct drm_i915_private *dev_priv = dev->dev_private;
8508         uint32_t reg, tmp;
8509
8510         mutex_lock(&dev_priv->sb_lock);
8511
8512         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8513                SBI_GEN0 : SBI_DBUFF0;
8514         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8515         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8516         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8517
8518         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8519         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8520                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8521                         tmp |= SBI_SSCCTL_PATHALT;
8522                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8523                         udelay(32);
8524                 }
8525                 tmp |= SBI_SSCCTL_DISABLE;
8526                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8527         }
8528
8529         mutex_unlock(&dev_priv->sb_lock);
8530 }
8531
8532 static void lpt_init_pch_refclk(struct drm_device *dev)
8533 {
8534         struct intel_encoder *encoder;
8535         bool has_vga = false;
8536
8537         for_each_intel_encoder(dev, encoder) {
8538                 switch (encoder->type) {
8539                 case INTEL_OUTPUT_ANALOG:
8540                         has_vga = true;
8541                         break;
8542                 default:
8543                         break;
8544                 }
8545         }
8546
8547         if (has_vga)
8548                 lpt_enable_clkout_dp(dev, true, true);
8549         else
8550                 lpt_disable_clkout_dp(dev);
8551 }
8552
8553 /*
8554  * Initialize reference clocks when the driver loads
8555  */
8556 void intel_init_pch_refclk(struct drm_device *dev)
8557 {
8558         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8559                 ironlake_init_pch_refclk(dev);
8560         else if (HAS_PCH_LPT(dev))
8561                 lpt_init_pch_refclk(dev);
8562 }
8563
8564 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8565 {
8566         struct drm_device *dev = crtc_state->base.crtc->dev;
8567         struct drm_i915_private *dev_priv = dev->dev_private;
8568         struct drm_atomic_state *state = crtc_state->base.state;
8569         struct drm_connector *connector;
8570         struct drm_connector_state *connector_state;
8571         struct intel_encoder *encoder;
8572         int num_connectors = 0, i;
8573         bool is_lvds = false;
8574
8575         for_each_connector_in_state(state, connector, connector_state, i) {
8576                 if (connector_state->crtc != crtc_state->base.crtc)
8577                         continue;
8578
8579                 encoder = to_intel_encoder(connector_state->best_encoder);
8580
8581                 switch (encoder->type) {
8582                 case INTEL_OUTPUT_LVDS:
8583                         is_lvds = true;
8584                         break;
8585                 default:
8586                         break;
8587                 }
8588                 num_connectors++;
8589         }
8590
8591         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8592                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8593                               dev_priv->vbt.lvds_ssc_freq);
8594                 return dev_priv->vbt.lvds_ssc_freq;
8595         }
8596
8597         return 120000;
8598 }
8599
8600 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8601 {
8602         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8603         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8604         int pipe = intel_crtc->pipe;
8605         uint32_t val;
8606
8607         val = 0;
8608
8609         switch (intel_crtc->config->pipe_bpp) {
8610         case 18:
8611                 val |= PIPECONF_6BPC;
8612                 break;
8613         case 24:
8614                 val |= PIPECONF_8BPC;
8615                 break;
8616         case 30:
8617                 val |= PIPECONF_10BPC;
8618                 break;
8619         case 36:
8620                 val |= PIPECONF_12BPC;
8621                 break;
8622         default:
8623                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8624                 BUG();
8625         }
8626
8627         if (intel_crtc->config->dither)
8628                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8629
8630         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8631                 val |= PIPECONF_INTERLACED_ILK;
8632         else
8633                 val |= PIPECONF_PROGRESSIVE;
8634
8635         if (intel_crtc->config->limited_color_range)
8636                 val |= PIPECONF_COLOR_RANGE_SELECT;
8637
8638         I915_WRITE(PIPECONF(pipe), val);
8639         POSTING_READ(PIPECONF(pipe));
8640 }
8641
8642 /*
8643  * Set up the pipe CSC unit.
8644  *
8645  * Currently only full range RGB to limited range RGB conversion
8646  * is supported, but eventually this should handle various
8647  * RGB<->YCbCr scenarios as well.
8648  */
8649 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8650 {
8651         struct drm_device *dev = crtc->dev;
8652         struct drm_i915_private *dev_priv = dev->dev_private;
8653         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8654         int pipe = intel_crtc->pipe;
8655         uint16_t coeff = 0x7800; /* 1.0 */
8656
8657         /*
8658          * TODO: Check what kind of values actually come out of the pipe
8659          * with these coeff/postoff values and adjust to get the best
8660          * accuracy. Perhaps we even need to take the bpc value into
8661          * consideration.
8662          */
8663
8664         if (intel_crtc->config->limited_color_range)
8665                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8666
8667         /*
8668          * GY/GU and RY/RU should be the other way around according
8669          * to BSpec, but reality doesn't agree. Just set them up in
8670          * a way that results in the correct picture.
8671          */
8672         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8673         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8674
8675         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8676         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8677
8678         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8679         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8680
8681         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8682         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8683         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8684
8685         if (INTEL_INFO(dev)->gen > 6) {
8686                 uint16_t postoff = 0;
8687
8688                 if (intel_crtc->config->limited_color_range)
8689                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8690
8691                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8692                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8693                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8694
8695                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8696         } else {
8697                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8698
8699                 if (intel_crtc->config->limited_color_range)
8700                         mode |= CSC_BLACK_SCREEN_OFFSET;
8701
8702                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8703         }
8704 }
8705
8706 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8707 {
8708         struct drm_device *dev = crtc->dev;
8709         struct drm_i915_private *dev_priv = dev->dev_private;
8710         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8711         enum pipe pipe = intel_crtc->pipe;
8712         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8713         uint32_t val;
8714
8715         val = 0;
8716
8717         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8718                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8719
8720         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8721                 val |= PIPECONF_INTERLACED_ILK;
8722         else
8723                 val |= PIPECONF_PROGRESSIVE;
8724
8725         I915_WRITE(PIPECONF(cpu_transcoder), val);
8726         POSTING_READ(PIPECONF(cpu_transcoder));
8727
8728         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8729         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8730
8731         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8732                 val = 0;
8733
8734                 switch (intel_crtc->config->pipe_bpp) {
8735                 case 18:
8736                         val |= PIPEMISC_DITHER_6_BPC;
8737                         break;
8738                 case 24:
8739                         val |= PIPEMISC_DITHER_8_BPC;
8740                         break;
8741                 case 30:
8742                         val |= PIPEMISC_DITHER_10_BPC;
8743                         break;
8744                 case 36:
8745                         val |= PIPEMISC_DITHER_12_BPC;
8746                         break;
8747                 default:
8748                         /* Case prevented by pipe_config_set_bpp. */
8749                         BUG();
8750                 }
8751
8752                 if (intel_crtc->config->dither)
8753                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8754
8755                 I915_WRITE(PIPEMISC(pipe), val);
8756         }
8757 }
8758
8759 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8760                                     struct intel_crtc_state *crtc_state,
8761                                     intel_clock_t *clock,
8762                                     bool *has_reduced_clock,
8763                                     intel_clock_t *reduced_clock)
8764 {
8765         struct drm_device *dev = crtc->dev;
8766         struct drm_i915_private *dev_priv = dev->dev_private;
8767         int refclk;
8768         const intel_limit_t *limit;
8769         bool ret;
8770
8771         refclk = ironlake_get_refclk(crtc_state);
8772
8773         /*
8774          * Returns a set of divisors for the desired target clock with the given
8775          * refclk, or FALSE.  The returned values represent the clock equation:
8776          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8777          */
8778         limit = intel_limit(crtc_state, refclk);
8779         ret = dev_priv->display.find_dpll(limit, crtc_state,
8780                                           crtc_state->port_clock,
8781                                           refclk, NULL, clock);
8782         if (!ret)
8783                 return false;
8784
8785         return true;
8786 }
8787
8788 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8789 {
8790         /*
8791          * Account for spread spectrum to avoid
8792          * oversubscribing the link. Max center spread
8793          * is 2.5%; use 5% for safety's sake.
8794          */
8795         u32 bps = target_clock * bpp * 21 / 20;
8796         return DIV_ROUND_UP(bps, link_bw * 8);
8797 }
8798
8799 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8800 {
8801         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8802 }
8803
8804 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8805                                       struct intel_crtc_state *crtc_state,
8806                                       u32 *fp,
8807                                       intel_clock_t *reduced_clock, u32 *fp2)
8808 {
8809         struct drm_crtc *crtc = &intel_crtc->base;
8810         struct drm_device *dev = crtc->dev;
8811         struct drm_i915_private *dev_priv = dev->dev_private;
8812         struct drm_atomic_state *state = crtc_state->base.state;
8813         struct drm_connector *connector;
8814         struct drm_connector_state *connector_state;
8815         struct intel_encoder *encoder;
8816         uint32_t dpll;
8817         int factor, num_connectors = 0, i;
8818         bool is_lvds = false, is_sdvo = false;
8819
8820         for_each_connector_in_state(state, connector, connector_state, i) {
8821                 if (connector_state->crtc != crtc_state->base.crtc)
8822                         continue;
8823
8824                 encoder = to_intel_encoder(connector_state->best_encoder);
8825
8826                 switch (encoder->type) {
8827                 case INTEL_OUTPUT_LVDS:
8828                         is_lvds = true;
8829                         break;
8830                 case INTEL_OUTPUT_SDVO:
8831                 case INTEL_OUTPUT_HDMI:
8832                         is_sdvo = true;
8833                         break;
8834                 default:
8835                         break;
8836                 }
8837
8838                 num_connectors++;
8839         }
8840
8841         /* Enable autotuning of the PLL clock (if permissible) */
8842         factor = 21;
8843         if (is_lvds) {
8844                 if ((intel_panel_use_ssc(dev_priv) &&
8845                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8846                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8847                         factor = 25;
8848         } else if (crtc_state->sdvo_tv_clock)
8849                 factor = 20;
8850
8851         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8852                 *fp |= FP_CB_TUNE;
8853
8854         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8855                 *fp2 |= FP_CB_TUNE;
8856
8857         dpll = 0;
8858
8859         if (is_lvds)
8860                 dpll |= DPLLB_MODE_LVDS;
8861         else
8862                 dpll |= DPLLB_MODE_DAC_SERIAL;
8863
8864         dpll |= (crtc_state->pixel_multiplier - 1)
8865                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8866
8867         if (is_sdvo)
8868                 dpll |= DPLL_SDVO_HIGH_SPEED;
8869         if (crtc_state->has_dp_encoder)
8870                 dpll |= DPLL_SDVO_HIGH_SPEED;
8871
8872         /* compute bitmask from p1 value */
8873         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8874         /* also FPA1 */
8875         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8876
8877         switch (crtc_state->dpll.p2) {
8878         case 5:
8879                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8880                 break;
8881         case 7:
8882                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8883                 break;
8884         case 10:
8885                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8886                 break;
8887         case 14:
8888                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8889                 break;
8890         }
8891
8892         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8893                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8894         else
8895                 dpll |= PLL_REF_INPUT_DREFCLK;
8896
8897         return dpll | DPLL_VCO_ENABLE;
8898 }
8899
8900 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8901                                        struct intel_crtc_state *crtc_state)
8902 {
8903         struct drm_device *dev = crtc->base.dev;
8904         intel_clock_t clock, reduced_clock;
8905         u32 dpll = 0, fp = 0, fp2 = 0;
8906         bool ok, has_reduced_clock = false;
8907         bool is_lvds = false;
8908         struct intel_shared_dpll *pll;
8909
8910         memset(&crtc_state->dpll_hw_state, 0,
8911                sizeof(crtc_state->dpll_hw_state));
8912
8913         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8914
8915         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8916              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8917
8918         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8919                                      &has_reduced_clock, &reduced_clock);
8920         if (!ok && !crtc_state->clock_set) {
8921                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8922                 return -EINVAL;
8923         }
8924         /* Compat-code for transition, will disappear. */
8925         if (!crtc_state->clock_set) {
8926                 crtc_state->dpll.n = clock.n;
8927                 crtc_state->dpll.m1 = clock.m1;
8928                 crtc_state->dpll.m2 = clock.m2;
8929                 crtc_state->dpll.p1 = clock.p1;
8930                 crtc_state->dpll.p2 = clock.p2;
8931         }
8932
8933         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8934         if (crtc_state->has_pch_encoder) {
8935                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8936                 if (has_reduced_clock)
8937                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8938
8939                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8940                                              &fp, &reduced_clock,
8941                                              has_reduced_clock ? &fp2 : NULL);
8942
8943                 crtc_state->dpll_hw_state.dpll = dpll;
8944                 crtc_state->dpll_hw_state.fp0 = fp;
8945                 if (has_reduced_clock)
8946                         crtc_state->dpll_hw_state.fp1 = fp2;
8947                 else
8948                         crtc_state->dpll_hw_state.fp1 = fp;
8949
8950                 pll = intel_get_shared_dpll(crtc, crtc_state);
8951                 if (pll == NULL) {
8952                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8953                                          pipe_name(crtc->pipe));
8954                         return -EINVAL;
8955                 }
8956         }
8957
8958         if (is_lvds && has_reduced_clock)
8959                 crtc->lowfreq_avail = true;
8960         else
8961                 crtc->lowfreq_avail = false;
8962
8963         return 0;
8964 }
8965
8966 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8967                                          struct intel_link_m_n *m_n)
8968 {
8969         struct drm_device *dev = crtc->base.dev;
8970         struct drm_i915_private *dev_priv = dev->dev_private;
8971         enum pipe pipe = crtc->pipe;
8972
8973         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8974         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8975         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8976                 & ~TU_SIZE_MASK;
8977         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8978         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8979                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8980 }
8981
8982 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8983                                          enum transcoder transcoder,
8984                                          struct intel_link_m_n *m_n,
8985                                          struct intel_link_m_n *m2_n2)
8986 {
8987         struct drm_device *dev = crtc->base.dev;
8988         struct drm_i915_private *dev_priv = dev->dev_private;
8989         enum pipe pipe = crtc->pipe;
8990
8991         if (INTEL_INFO(dev)->gen >= 5) {
8992                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8993                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8994                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8995                         & ~TU_SIZE_MASK;
8996                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8997                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8998                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8999                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9000                  * gen < 8) and if DRRS is supported (to make sure the
9001                  * registers are not unnecessarily read).
9002                  */
9003                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9004                         crtc->config->has_drrs) {
9005                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9006                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9007                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9008                                         & ~TU_SIZE_MASK;
9009                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9010                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9011                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9012                 }
9013         } else {
9014                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9015                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9016                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9017                         & ~TU_SIZE_MASK;
9018                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9019                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9020                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9021         }
9022 }
9023
9024 void intel_dp_get_m_n(struct intel_crtc *crtc,
9025                       struct intel_crtc_state *pipe_config)
9026 {
9027         if (pipe_config->has_pch_encoder)
9028                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9029         else
9030                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9031                                              &pipe_config->dp_m_n,
9032                                              &pipe_config->dp_m2_n2);
9033 }
9034
9035 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9036                                         struct intel_crtc_state *pipe_config)
9037 {
9038         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9039                                      &pipe_config->fdi_m_n, NULL);
9040 }
9041
9042 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9043                                     struct intel_crtc_state *pipe_config)
9044 {
9045         struct drm_device *dev = crtc->base.dev;
9046         struct drm_i915_private *dev_priv = dev->dev_private;
9047         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9048         uint32_t ps_ctrl = 0;
9049         int id = -1;
9050         int i;
9051
9052         /* find scaler attached to this pipe */
9053         for (i = 0; i < crtc->num_scalers; i++) {
9054                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9055                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9056                         id = i;
9057                         pipe_config->pch_pfit.enabled = true;
9058                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9059                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9060                         break;
9061                 }
9062         }
9063
9064         scaler_state->scaler_id = id;
9065         if (id >= 0) {
9066                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9067         } else {
9068                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9069         }
9070 }
9071
9072 static void
9073 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9074                                  struct intel_initial_plane_config *plane_config)
9075 {
9076         struct drm_device *dev = crtc->base.dev;
9077         struct drm_i915_private *dev_priv = dev->dev_private;
9078         u32 val, base, offset, stride_mult, tiling;
9079         int pipe = crtc->pipe;
9080         int fourcc, pixel_format;
9081         unsigned int aligned_height;
9082         struct drm_framebuffer *fb;
9083         struct intel_framebuffer *intel_fb;
9084
9085         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9086         if (!intel_fb) {
9087                 DRM_DEBUG_KMS("failed to alloc fb\n");
9088                 return;
9089         }
9090
9091         fb = &intel_fb->base;
9092
9093         val = I915_READ(PLANE_CTL(pipe, 0));
9094         if (!(val & PLANE_CTL_ENABLE))
9095                 goto error;
9096
9097         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9098         fourcc = skl_format_to_fourcc(pixel_format,
9099                                       val & PLANE_CTL_ORDER_RGBX,
9100                                       val & PLANE_CTL_ALPHA_MASK);
9101         fb->pixel_format = fourcc;
9102         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9103
9104         tiling = val & PLANE_CTL_TILED_MASK;
9105         switch (tiling) {
9106         case PLANE_CTL_TILED_LINEAR:
9107                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9108                 break;
9109         case PLANE_CTL_TILED_X:
9110                 plane_config->tiling = I915_TILING_X;
9111                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9112                 break;
9113         case PLANE_CTL_TILED_Y:
9114                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9115                 break;
9116         case PLANE_CTL_TILED_YF:
9117                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9118                 break;
9119         default:
9120                 MISSING_CASE(tiling);
9121                 goto error;
9122         }
9123
9124         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9125         plane_config->base = base;
9126
9127         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9128
9129         val = I915_READ(PLANE_SIZE(pipe, 0));
9130         fb->height = ((val >> 16) & 0xfff) + 1;
9131         fb->width = ((val >> 0) & 0x1fff) + 1;
9132
9133         val = I915_READ(PLANE_STRIDE(pipe, 0));
9134         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9135                                                 fb->pixel_format);
9136         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9137
9138         aligned_height = intel_fb_align_height(dev, fb->height,
9139                                                fb->pixel_format,
9140                                                fb->modifier[0]);
9141
9142         plane_config->size = fb->pitches[0] * aligned_height;
9143
9144         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9145                       pipe_name(pipe), fb->width, fb->height,
9146                       fb->bits_per_pixel, base, fb->pitches[0],
9147                       plane_config->size);
9148
9149         plane_config->fb = intel_fb;
9150         return;
9151
9152 error:
9153         kfree(fb);
9154 }
9155
9156 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9157                                      struct intel_crtc_state *pipe_config)
9158 {
9159         struct drm_device *dev = crtc->base.dev;
9160         struct drm_i915_private *dev_priv = dev->dev_private;
9161         uint32_t tmp;
9162
9163         tmp = I915_READ(PF_CTL(crtc->pipe));
9164
9165         if (tmp & PF_ENABLE) {
9166                 pipe_config->pch_pfit.enabled = true;
9167                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9168                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9169
9170                 /* We currently do not free assignements of panel fitters on
9171                  * ivb/hsw (since we don't use the higher upscaling modes which
9172                  * differentiates them) so just WARN about this case for now. */
9173                 if (IS_GEN7(dev)) {
9174                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9175                                 PF_PIPE_SEL_IVB(crtc->pipe));
9176                 }
9177         }
9178 }
9179
9180 static void
9181 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9182                                   struct intel_initial_plane_config *plane_config)
9183 {
9184         struct drm_device *dev = crtc->base.dev;
9185         struct drm_i915_private *dev_priv = dev->dev_private;
9186         u32 val, base, offset;
9187         int pipe = crtc->pipe;
9188         int fourcc, pixel_format;
9189         unsigned int aligned_height;
9190         struct drm_framebuffer *fb;
9191         struct intel_framebuffer *intel_fb;
9192
9193         val = I915_READ(DSPCNTR(pipe));
9194         if (!(val & DISPLAY_PLANE_ENABLE))
9195                 return;
9196
9197         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9198         if (!intel_fb) {
9199                 DRM_DEBUG_KMS("failed to alloc fb\n");
9200                 return;
9201         }
9202
9203         fb = &intel_fb->base;
9204
9205         if (INTEL_INFO(dev)->gen >= 4) {
9206                 if (val & DISPPLANE_TILED) {
9207                         plane_config->tiling = I915_TILING_X;
9208                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9209                 }
9210         }
9211
9212         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9213         fourcc = i9xx_format_to_fourcc(pixel_format);
9214         fb->pixel_format = fourcc;
9215         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9216
9217         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9218         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9219                 offset = I915_READ(DSPOFFSET(pipe));
9220         } else {
9221                 if (plane_config->tiling)
9222                         offset = I915_READ(DSPTILEOFF(pipe));
9223                 else
9224                         offset = I915_READ(DSPLINOFF(pipe));
9225         }
9226         plane_config->base = base;
9227
9228         val = I915_READ(PIPESRC(pipe));
9229         fb->width = ((val >> 16) & 0xfff) + 1;
9230         fb->height = ((val >> 0) & 0xfff) + 1;
9231
9232         val = I915_READ(DSPSTRIDE(pipe));
9233         fb->pitches[0] = val & 0xffffffc0;
9234
9235         aligned_height = intel_fb_align_height(dev, fb->height,
9236                                                fb->pixel_format,
9237                                                fb->modifier[0]);
9238
9239         plane_config->size = fb->pitches[0] * aligned_height;
9240
9241         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9242                       pipe_name(pipe), fb->width, fb->height,
9243                       fb->bits_per_pixel, base, fb->pitches[0],
9244                       plane_config->size);
9245
9246         plane_config->fb = intel_fb;
9247 }
9248
9249 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9250                                      struct intel_crtc_state *pipe_config)
9251 {
9252         struct drm_device *dev = crtc->base.dev;
9253         struct drm_i915_private *dev_priv = dev->dev_private;
9254         uint32_t tmp;
9255
9256         if (!intel_display_power_is_enabled(dev_priv,
9257                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9258                 return false;
9259
9260         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9261         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9262
9263         tmp = I915_READ(PIPECONF(crtc->pipe));
9264         if (!(tmp & PIPECONF_ENABLE))
9265                 return false;
9266
9267         switch (tmp & PIPECONF_BPC_MASK) {
9268         case PIPECONF_6BPC:
9269                 pipe_config->pipe_bpp = 18;
9270                 break;
9271         case PIPECONF_8BPC:
9272                 pipe_config->pipe_bpp = 24;
9273                 break;
9274         case PIPECONF_10BPC:
9275                 pipe_config->pipe_bpp = 30;
9276                 break;
9277         case PIPECONF_12BPC:
9278                 pipe_config->pipe_bpp = 36;
9279                 break;
9280         default:
9281                 break;
9282         }
9283
9284         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9285                 pipe_config->limited_color_range = true;
9286
9287         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9288                 struct intel_shared_dpll *pll;
9289
9290                 pipe_config->has_pch_encoder = true;
9291
9292                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9293                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9294                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9295
9296                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9297
9298                 if (HAS_PCH_IBX(dev_priv->dev)) {
9299                         pipe_config->shared_dpll =
9300                                 (enum intel_dpll_id) crtc->pipe;
9301                 } else {
9302                         tmp = I915_READ(PCH_DPLL_SEL);
9303                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9304                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9305                         else
9306                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9307                 }
9308
9309                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9310
9311                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9312                                            &pipe_config->dpll_hw_state));
9313
9314                 tmp = pipe_config->dpll_hw_state.dpll;
9315                 pipe_config->pixel_multiplier =
9316                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9317                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9318
9319                 ironlake_pch_clock_get(crtc, pipe_config);
9320         } else {
9321                 pipe_config->pixel_multiplier = 1;
9322         }
9323
9324         intel_get_pipe_timings(crtc, pipe_config);
9325
9326         ironlake_get_pfit_config(crtc, pipe_config);
9327
9328         return true;
9329 }
9330
9331 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9332 {
9333         struct drm_device *dev = dev_priv->dev;
9334         struct intel_crtc *crtc;
9335
9336         for_each_intel_crtc(dev, crtc)
9337                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9338                      pipe_name(crtc->pipe));
9339
9340         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9341         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9342         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9343         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9344         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9345         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9346              "CPU PWM1 enabled\n");
9347         if (IS_HASWELL(dev))
9348                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9349                      "CPU PWM2 enabled\n");
9350         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9351              "PCH PWM1 enabled\n");
9352         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9353              "Utility pin enabled\n");
9354         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9355
9356         /*
9357          * In theory we can still leave IRQs enabled, as long as only the HPD
9358          * interrupts remain enabled. We used to check for that, but since it's
9359          * gen-specific and since we only disable LCPLL after we fully disable
9360          * the interrupts, the check below should be enough.
9361          */
9362         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9363 }
9364
9365 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9366 {
9367         struct drm_device *dev = dev_priv->dev;
9368
9369         if (IS_HASWELL(dev))
9370                 return I915_READ(D_COMP_HSW);
9371         else
9372                 return I915_READ(D_COMP_BDW);
9373 }
9374
9375 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9376 {
9377         struct drm_device *dev = dev_priv->dev;
9378
9379         if (IS_HASWELL(dev)) {
9380                 mutex_lock(&dev_priv->rps.hw_lock);
9381                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9382                                             val))
9383                         DRM_ERROR("Failed to write to D_COMP\n");
9384                 mutex_unlock(&dev_priv->rps.hw_lock);
9385         } else {
9386                 I915_WRITE(D_COMP_BDW, val);
9387                 POSTING_READ(D_COMP_BDW);
9388         }
9389 }
9390
9391 /*
9392  * This function implements pieces of two sequences from BSpec:
9393  * - Sequence for display software to disable LCPLL
9394  * - Sequence for display software to allow package C8+
9395  * The steps implemented here are just the steps that actually touch the LCPLL
9396  * register. Callers should take care of disabling all the display engine
9397  * functions, doing the mode unset, fixing interrupts, etc.
9398  */
9399 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9400                               bool switch_to_fclk, bool allow_power_down)
9401 {
9402         uint32_t val;
9403
9404         assert_can_disable_lcpll(dev_priv);
9405
9406         val = I915_READ(LCPLL_CTL);
9407
9408         if (switch_to_fclk) {
9409                 val |= LCPLL_CD_SOURCE_FCLK;
9410                 I915_WRITE(LCPLL_CTL, val);
9411
9412                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9413                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9414                         DRM_ERROR("Switching to FCLK failed\n");
9415
9416                 val = I915_READ(LCPLL_CTL);
9417         }
9418
9419         val |= LCPLL_PLL_DISABLE;
9420         I915_WRITE(LCPLL_CTL, val);
9421         POSTING_READ(LCPLL_CTL);
9422
9423         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9424                 DRM_ERROR("LCPLL still locked\n");
9425
9426         val = hsw_read_dcomp(dev_priv);
9427         val |= D_COMP_COMP_DISABLE;
9428         hsw_write_dcomp(dev_priv, val);
9429         ndelay(100);
9430
9431         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9432                      1))
9433                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9434
9435         if (allow_power_down) {
9436                 val = I915_READ(LCPLL_CTL);
9437                 val |= LCPLL_POWER_DOWN_ALLOW;
9438                 I915_WRITE(LCPLL_CTL, val);
9439                 POSTING_READ(LCPLL_CTL);
9440         }
9441 }
9442
9443 /*
9444  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9445  * source.
9446  */
9447 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9448 {
9449         uint32_t val;
9450
9451         val = I915_READ(LCPLL_CTL);
9452
9453         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9454                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9455                 return;
9456
9457         /*
9458          * Make sure we're not on PC8 state before disabling PC8, otherwise
9459          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9460          */
9461         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9462
9463         if (val & LCPLL_POWER_DOWN_ALLOW) {
9464                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9465                 I915_WRITE(LCPLL_CTL, val);
9466                 POSTING_READ(LCPLL_CTL);
9467         }
9468
9469         val = hsw_read_dcomp(dev_priv);
9470         val |= D_COMP_COMP_FORCE;
9471         val &= ~D_COMP_COMP_DISABLE;
9472         hsw_write_dcomp(dev_priv, val);
9473
9474         val = I915_READ(LCPLL_CTL);
9475         val &= ~LCPLL_PLL_DISABLE;
9476         I915_WRITE(LCPLL_CTL, val);
9477
9478         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9479                 DRM_ERROR("LCPLL not locked yet\n");
9480
9481         if (val & LCPLL_CD_SOURCE_FCLK) {
9482                 val = I915_READ(LCPLL_CTL);
9483                 val &= ~LCPLL_CD_SOURCE_FCLK;
9484                 I915_WRITE(LCPLL_CTL, val);
9485
9486                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9487                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9488                         DRM_ERROR("Switching back to LCPLL failed\n");
9489         }
9490
9491         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9492         intel_update_cdclk(dev_priv->dev);
9493 }
9494
9495 /*
9496  * Package states C8 and deeper are really deep PC states that can only be
9497  * reached when all the devices on the system allow it, so even if the graphics
9498  * device allows PC8+, it doesn't mean the system will actually get to these
9499  * states. Our driver only allows PC8+ when going into runtime PM.
9500  *
9501  * The requirements for PC8+ are that all the outputs are disabled, the power
9502  * well is disabled and most interrupts are disabled, and these are also
9503  * requirements for runtime PM. When these conditions are met, we manually do
9504  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9505  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9506  * hang the machine.
9507  *
9508  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9509  * the state of some registers, so when we come back from PC8+ we need to
9510  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9511  * need to take care of the registers kept by RC6. Notice that this happens even
9512  * if we don't put the device in PCI D3 state (which is what currently happens
9513  * because of the runtime PM support).
9514  *
9515  * For more, read "Display Sequences for Package C8" on the hardware
9516  * documentation.
9517  */
9518 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9519 {
9520         struct drm_device *dev = dev_priv->dev;
9521         uint32_t val;
9522
9523         DRM_DEBUG_KMS("Enabling package C8+\n");
9524
9525         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9526                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9527                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9528                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9529         }
9530
9531         lpt_disable_clkout_dp(dev);
9532         hsw_disable_lcpll(dev_priv, true, true);
9533 }
9534
9535 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9536 {
9537         struct drm_device *dev = dev_priv->dev;
9538         uint32_t val;
9539
9540         DRM_DEBUG_KMS("Disabling package C8+\n");
9541
9542         hsw_restore_lcpll(dev_priv);
9543         lpt_init_pch_refclk(dev);
9544
9545         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9546                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9547                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9548                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9549         }
9550
9551         intel_prepare_ddi(dev);
9552 }
9553
9554 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9555 {
9556         struct drm_device *dev = old_state->dev;
9557         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9558
9559         broxton_set_cdclk(dev, req_cdclk);
9560 }
9561
9562 /* compute the max rate for new configuration */
9563 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9564 {
9565         struct intel_crtc *intel_crtc;
9566         struct intel_crtc_state *crtc_state;
9567         int max_pixel_rate = 0;
9568
9569         for_each_intel_crtc(state->dev, intel_crtc) {
9570                 int pixel_rate;
9571
9572                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9573                 if (IS_ERR(crtc_state))
9574                         return PTR_ERR(crtc_state);
9575
9576                 if (!crtc_state->base.enable)
9577                         continue;
9578
9579                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9580
9581                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9582                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9583                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9584
9585                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9586         }
9587
9588         return max_pixel_rate;
9589 }
9590
9591 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9592 {
9593         struct drm_i915_private *dev_priv = dev->dev_private;
9594         uint32_t val, data;
9595         int ret;
9596
9597         if (WARN((I915_READ(LCPLL_CTL) &
9598                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9599                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9600                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9601                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9602                  "trying to change cdclk frequency with cdclk not enabled\n"))
9603                 return;
9604
9605         mutex_lock(&dev_priv->rps.hw_lock);
9606         ret = sandybridge_pcode_write(dev_priv,
9607                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9608         mutex_unlock(&dev_priv->rps.hw_lock);
9609         if (ret) {
9610                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9611                 return;
9612         }
9613
9614         val = I915_READ(LCPLL_CTL);
9615         val |= LCPLL_CD_SOURCE_FCLK;
9616         I915_WRITE(LCPLL_CTL, val);
9617
9618         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9619                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9620                 DRM_ERROR("Switching to FCLK failed\n");
9621
9622         val = I915_READ(LCPLL_CTL);
9623         val &= ~LCPLL_CLK_FREQ_MASK;
9624
9625         switch (cdclk) {
9626         case 450000:
9627                 val |= LCPLL_CLK_FREQ_450;
9628                 data = 0;
9629                 break;
9630         case 540000:
9631                 val |= LCPLL_CLK_FREQ_54O_BDW;
9632                 data = 1;
9633                 break;
9634         case 337500:
9635                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9636                 data = 2;
9637                 break;
9638         case 675000:
9639                 val |= LCPLL_CLK_FREQ_675_BDW;
9640                 data = 3;
9641                 break;
9642         default:
9643                 WARN(1, "invalid cdclk frequency\n");
9644                 return;
9645         }
9646
9647         I915_WRITE(LCPLL_CTL, val);
9648
9649         val = I915_READ(LCPLL_CTL);
9650         val &= ~LCPLL_CD_SOURCE_FCLK;
9651         I915_WRITE(LCPLL_CTL, val);
9652
9653         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9654                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9655                 DRM_ERROR("Switching back to LCPLL failed\n");
9656
9657         mutex_lock(&dev_priv->rps.hw_lock);
9658         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9659         mutex_unlock(&dev_priv->rps.hw_lock);
9660
9661         intel_update_cdclk(dev);
9662
9663         WARN(cdclk != dev_priv->cdclk_freq,
9664              "cdclk requested %d kHz but got %d kHz\n",
9665              cdclk, dev_priv->cdclk_freq);
9666 }
9667
9668 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9669 {
9670         struct drm_i915_private *dev_priv = to_i915(state->dev);
9671         int max_pixclk = ilk_max_pixel_rate(state);
9672         int cdclk;
9673
9674         /*
9675          * FIXME should also account for plane ratio
9676          * once 64bpp pixel formats are supported.
9677          */
9678         if (max_pixclk > 540000)
9679                 cdclk = 675000;
9680         else if (max_pixclk > 450000)
9681                 cdclk = 540000;
9682         else if (max_pixclk > 337500)
9683                 cdclk = 450000;
9684         else
9685                 cdclk = 337500;
9686
9687         /*
9688          * FIXME move the cdclk caclulation to
9689          * compute_config() so we can fail gracegully.
9690          */
9691         if (cdclk > dev_priv->max_cdclk_freq) {
9692                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9693                           cdclk, dev_priv->max_cdclk_freq);
9694                 cdclk = dev_priv->max_cdclk_freq;
9695         }
9696
9697         to_intel_atomic_state(state)->cdclk = cdclk;
9698
9699         return 0;
9700 }
9701
9702 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9703 {
9704         struct drm_device *dev = old_state->dev;
9705         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9706
9707         broadwell_set_cdclk(dev, req_cdclk);
9708 }
9709
9710 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9711                                       struct intel_crtc_state *crtc_state)
9712 {
9713         if (!intel_ddi_pll_select(crtc, crtc_state))
9714                 return -EINVAL;
9715
9716         crtc->lowfreq_avail = false;
9717
9718         return 0;
9719 }
9720
9721 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9722                                 enum port port,
9723                                 struct intel_crtc_state *pipe_config)
9724 {
9725         switch (port) {
9726         case PORT_A:
9727                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9728                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9729                 break;
9730         case PORT_B:
9731                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9732                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9733                 break;
9734         case PORT_C:
9735                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9736                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9737                 break;
9738         default:
9739                 DRM_ERROR("Incorrect port type\n");
9740         }
9741 }
9742
9743 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9744                                 enum port port,
9745                                 struct intel_crtc_state *pipe_config)
9746 {
9747         u32 temp, dpll_ctl1;
9748
9749         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9750         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9751
9752         switch (pipe_config->ddi_pll_sel) {
9753         case SKL_DPLL0:
9754                 /*
9755                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9756                  * of the shared DPLL framework and thus needs to be read out
9757                  * separately
9758                  */
9759                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9760                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9761                 break;
9762         case SKL_DPLL1:
9763                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9764                 break;
9765         case SKL_DPLL2:
9766                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9767                 break;
9768         case SKL_DPLL3:
9769                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9770                 break;
9771         }
9772 }
9773
9774 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9775                                 enum port port,
9776                                 struct intel_crtc_state *pipe_config)
9777 {
9778         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9779
9780         switch (pipe_config->ddi_pll_sel) {
9781         case PORT_CLK_SEL_WRPLL1:
9782                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9783                 break;
9784         case PORT_CLK_SEL_WRPLL2:
9785                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9786                 break;
9787         }
9788 }
9789
9790 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9791                                        struct intel_crtc_state *pipe_config)
9792 {
9793         struct drm_device *dev = crtc->base.dev;
9794         struct drm_i915_private *dev_priv = dev->dev_private;
9795         struct intel_shared_dpll *pll;
9796         enum port port;
9797         uint32_t tmp;
9798
9799         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9800
9801         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9802
9803         if (IS_SKYLAKE(dev))
9804                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9805         else if (IS_BROXTON(dev))
9806                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9807         else
9808                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9809
9810         if (pipe_config->shared_dpll >= 0) {
9811                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9812
9813                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9814                                            &pipe_config->dpll_hw_state));
9815         }
9816
9817         /*
9818          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9819          * DDI E. So just check whether this pipe is wired to DDI E and whether
9820          * the PCH transcoder is on.
9821          */
9822         if (INTEL_INFO(dev)->gen < 9 &&
9823             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9824                 pipe_config->has_pch_encoder = true;
9825
9826                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9827                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9828                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9829
9830                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9831         }
9832 }
9833
9834 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9835                                     struct intel_crtc_state *pipe_config)
9836 {
9837         struct drm_device *dev = crtc->base.dev;
9838         struct drm_i915_private *dev_priv = dev->dev_private;
9839         enum intel_display_power_domain pfit_domain;
9840         uint32_t tmp;
9841
9842         if (!intel_display_power_is_enabled(dev_priv,
9843                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9844                 return false;
9845
9846         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9847         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9848
9849         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9850         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9851                 enum pipe trans_edp_pipe;
9852                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9853                 default:
9854                         WARN(1, "unknown pipe linked to edp transcoder\n");
9855                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9856                 case TRANS_DDI_EDP_INPUT_A_ON:
9857                         trans_edp_pipe = PIPE_A;
9858                         break;
9859                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9860                         trans_edp_pipe = PIPE_B;
9861                         break;
9862                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9863                         trans_edp_pipe = PIPE_C;
9864                         break;
9865                 }
9866
9867                 if (trans_edp_pipe == crtc->pipe)
9868                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9869         }
9870
9871         if (!intel_display_power_is_enabled(dev_priv,
9872                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9873                 return false;
9874
9875         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9876         if (!(tmp & PIPECONF_ENABLE))
9877                 return false;
9878
9879         haswell_get_ddi_port_state(crtc, pipe_config);
9880
9881         intel_get_pipe_timings(crtc, pipe_config);
9882
9883         if (INTEL_INFO(dev)->gen >= 9) {
9884                 skl_init_scalers(dev, crtc, pipe_config);
9885         }
9886
9887         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9888
9889         if (INTEL_INFO(dev)->gen >= 9) {
9890                 pipe_config->scaler_state.scaler_id = -1;
9891                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9892         }
9893
9894         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9895                 if (INTEL_INFO(dev)->gen == 9)
9896                         skylake_get_pfit_config(crtc, pipe_config);
9897                 else if (INTEL_INFO(dev)->gen < 9)
9898                         ironlake_get_pfit_config(crtc, pipe_config);
9899                 else
9900                         MISSING_CASE(INTEL_INFO(dev)->gen);
9901         }
9902
9903         if (IS_HASWELL(dev))
9904                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9905                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9906
9907         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9908                 pipe_config->pixel_multiplier =
9909                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9910         } else {
9911                 pipe_config->pixel_multiplier = 1;
9912         }
9913
9914         return true;
9915 }
9916
9917 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9918 {
9919         struct drm_device *dev = crtc->dev;
9920         struct drm_i915_private *dev_priv = dev->dev_private;
9921         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9922         uint32_t cntl = 0, size = 0;
9923
9924         if (base) {
9925                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9926                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9927                 unsigned int stride = roundup_pow_of_two(width) * 4;
9928
9929                 switch (stride) {
9930                 default:
9931                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9932                                   width, stride);
9933                         stride = 256;
9934                         /* fallthrough */
9935                 case 256:
9936                 case 512:
9937                 case 1024:
9938                 case 2048:
9939                         break;
9940                 }
9941
9942                 cntl |= CURSOR_ENABLE |
9943                         CURSOR_GAMMA_ENABLE |
9944                         CURSOR_FORMAT_ARGB |
9945                         CURSOR_STRIDE(stride);
9946
9947                 size = (height << 12) | width;
9948         }
9949
9950         if (intel_crtc->cursor_cntl != 0 &&
9951             (intel_crtc->cursor_base != base ||
9952              intel_crtc->cursor_size != size ||
9953              intel_crtc->cursor_cntl != cntl)) {
9954                 /* On these chipsets we can only modify the base/size/stride
9955                  * whilst the cursor is disabled.
9956                  */
9957                 I915_WRITE(_CURACNTR, 0);
9958                 POSTING_READ(_CURACNTR);
9959                 intel_crtc->cursor_cntl = 0;
9960         }
9961
9962         if (intel_crtc->cursor_base != base) {
9963                 I915_WRITE(_CURABASE, base);
9964                 intel_crtc->cursor_base = base;
9965         }
9966
9967         if (intel_crtc->cursor_size != size) {
9968                 I915_WRITE(CURSIZE, size);
9969                 intel_crtc->cursor_size = size;
9970         }
9971
9972         if (intel_crtc->cursor_cntl != cntl) {
9973                 I915_WRITE(_CURACNTR, cntl);
9974                 POSTING_READ(_CURACNTR);
9975                 intel_crtc->cursor_cntl = cntl;
9976         }
9977 }
9978
9979 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9980 {
9981         struct drm_device *dev = crtc->dev;
9982         struct drm_i915_private *dev_priv = dev->dev_private;
9983         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9984         int pipe = intel_crtc->pipe;
9985         uint32_t cntl;
9986
9987         cntl = 0;
9988         if (base) {
9989                 cntl = MCURSOR_GAMMA_ENABLE;
9990                 switch (intel_crtc->base.cursor->state->crtc_w) {
9991                         case 64:
9992                                 cntl |= CURSOR_MODE_64_ARGB_AX;
9993                                 break;
9994                         case 128:
9995                                 cntl |= CURSOR_MODE_128_ARGB_AX;
9996                                 break;
9997                         case 256:
9998                                 cntl |= CURSOR_MODE_256_ARGB_AX;
9999                                 break;
10000                         default:
10001                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10002                                 return;
10003                 }
10004                 cntl |= pipe << 28; /* Connect to correct pipe */
10005
10006                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
10007                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10008         }
10009
10010         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10011                 cntl |= CURSOR_ROTATE_180;
10012
10013         if (intel_crtc->cursor_cntl != cntl) {
10014                 I915_WRITE(CURCNTR(pipe), cntl);
10015                 POSTING_READ(CURCNTR(pipe));
10016                 intel_crtc->cursor_cntl = cntl;
10017         }
10018
10019         /* and commit changes on next vblank */
10020         I915_WRITE(CURBASE(pipe), base);
10021         POSTING_READ(CURBASE(pipe));
10022
10023         intel_crtc->cursor_base = base;
10024 }
10025
10026 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10027 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10028                                      bool on)
10029 {
10030         struct drm_device *dev = crtc->dev;
10031         struct drm_i915_private *dev_priv = dev->dev_private;
10032         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10033         int pipe = intel_crtc->pipe;
10034         int x = crtc->cursor_x;
10035         int y = crtc->cursor_y;
10036         u32 base = 0, pos = 0;
10037
10038         if (on)
10039                 base = intel_crtc->cursor_addr;
10040
10041         if (x >= intel_crtc->config->pipe_src_w)
10042                 base = 0;
10043
10044         if (y >= intel_crtc->config->pipe_src_h)
10045                 base = 0;
10046
10047         if (x < 0) {
10048                 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
10049                         base = 0;
10050
10051                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10052                 x = -x;
10053         }
10054         pos |= x << CURSOR_X_SHIFT;
10055
10056         if (y < 0) {
10057                 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
10058                         base = 0;
10059
10060                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10061                 y = -y;
10062         }
10063         pos |= y << CURSOR_Y_SHIFT;
10064
10065         if (base == 0 && intel_crtc->cursor_base == 0)
10066                 return;
10067
10068         I915_WRITE(CURPOS(pipe), pos);
10069
10070         /* ILK+ do this automagically */
10071         if (HAS_GMCH_DISPLAY(dev) &&
10072             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10073                 base += (intel_crtc->base.cursor->state->crtc_h *
10074                         intel_crtc->base.cursor->state->crtc_w - 1) * 4;
10075         }
10076
10077         if (IS_845G(dev) || IS_I865G(dev))
10078                 i845_update_cursor(crtc, base);
10079         else
10080                 i9xx_update_cursor(crtc, base);
10081 }
10082
10083 static bool cursor_size_ok(struct drm_device *dev,
10084                            uint32_t width, uint32_t height)
10085 {
10086         if (width == 0 || height == 0)
10087                 return false;
10088
10089         /*
10090          * 845g/865g are special in that they are only limited by
10091          * the width of their cursors, the height is arbitrary up to
10092          * the precision of the register. Everything else requires
10093          * square cursors, limited to a few power-of-two sizes.
10094          */
10095         if (IS_845G(dev) || IS_I865G(dev)) {
10096                 if ((width & 63) != 0)
10097                         return false;
10098
10099                 if (width > (IS_845G(dev) ? 64 : 512))
10100                         return false;
10101
10102                 if (height > 1023)
10103                         return false;
10104         } else {
10105                 switch (width | height) {
10106                 case 256:
10107                 case 128:
10108                         if (IS_GEN2(dev))
10109                                 return false;
10110                 case 64:
10111                         break;
10112                 default:
10113                         return false;
10114                 }
10115         }
10116
10117         return true;
10118 }
10119
10120 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10121                                  u16 *blue, uint32_t start, uint32_t size)
10122 {
10123         int end = (start + size > 256) ? 256 : start + size, i;
10124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10125
10126         for (i = start; i < end; i++) {
10127                 intel_crtc->lut_r[i] = red[i] >> 8;
10128                 intel_crtc->lut_g[i] = green[i] >> 8;
10129                 intel_crtc->lut_b[i] = blue[i] >> 8;
10130         }
10131
10132         intel_crtc_load_lut(crtc);
10133 }
10134
10135 /* VESA 640x480x72Hz mode to set on the pipe */
10136 static struct drm_display_mode load_detect_mode = {
10137         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10138                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10139 };
10140
10141 struct drm_framebuffer *
10142 __intel_framebuffer_create(struct drm_device *dev,
10143                            struct drm_mode_fb_cmd2 *mode_cmd,
10144                            struct drm_i915_gem_object *obj)
10145 {
10146         struct intel_framebuffer *intel_fb;
10147         int ret;
10148
10149         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10150         if (!intel_fb) {
10151                 drm_gem_object_unreference(&obj->base);
10152                 return ERR_PTR(-ENOMEM);
10153         }
10154
10155         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10156         if (ret)
10157                 goto err;
10158
10159         return &intel_fb->base;
10160 err:
10161         drm_gem_object_unreference(&obj->base);
10162         kfree(intel_fb);
10163
10164         return ERR_PTR(ret);
10165 }
10166
10167 static struct drm_framebuffer *
10168 intel_framebuffer_create(struct drm_device *dev,
10169                          struct drm_mode_fb_cmd2 *mode_cmd,
10170                          struct drm_i915_gem_object *obj)
10171 {
10172         struct drm_framebuffer *fb;
10173         int ret;
10174
10175         ret = i915_mutex_lock_interruptible(dev);
10176         if (ret)
10177                 return ERR_PTR(ret);
10178         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10179         mutex_unlock(&dev->struct_mutex);
10180
10181         return fb;
10182 }
10183
10184 static u32
10185 intel_framebuffer_pitch_for_width(int width, int bpp)
10186 {
10187         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10188         return ALIGN(pitch, 64);
10189 }
10190
10191 static u32
10192 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10193 {
10194         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10195         return PAGE_ALIGN(pitch * mode->vdisplay);
10196 }
10197
10198 static struct drm_framebuffer *
10199 intel_framebuffer_create_for_mode(struct drm_device *dev,
10200                                   struct drm_display_mode *mode,
10201                                   int depth, int bpp)
10202 {
10203         struct drm_i915_gem_object *obj;
10204         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10205
10206         obj = i915_gem_alloc_object(dev,
10207                                     intel_framebuffer_size_for_mode(mode, bpp));
10208         if (obj == NULL)
10209                 return ERR_PTR(-ENOMEM);
10210
10211         mode_cmd.width = mode->hdisplay;
10212         mode_cmd.height = mode->vdisplay;
10213         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10214                                                                 bpp);
10215         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10216
10217         return intel_framebuffer_create(dev, &mode_cmd, obj);
10218 }
10219
10220 static struct drm_framebuffer *
10221 mode_fits_in_fbdev(struct drm_device *dev,
10222                    struct drm_display_mode *mode)
10223 {
10224 #ifdef CONFIG_DRM_I915_FBDEV
10225         struct drm_i915_private *dev_priv = dev->dev_private;
10226         struct drm_i915_gem_object *obj;
10227         struct drm_framebuffer *fb;
10228
10229         if (!dev_priv->fbdev)
10230                 return NULL;
10231
10232         if (!dev_priv->fbdev->fb)
10233                 return NULL;
10234
10235         obj = dev_priv->fbdev->fb->obj;
10236         BUG_ON(!obj);
10237
10238         fb = &dev_priv->fbdev->fb->base;
10239         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10240                                                                fb->bits_per_pixel))
10241                 return NULL;
10242
10243         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10244                 return NULL;
10245
10246         return fb;
10247 #else
10248         return NULL;
10249 #endif
10250 }
10251
10252 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10253                                            struct drm_crtc *crtc,
10254                                            struct drm_display_mode *mode,
10255                                            struct drm_framebuffer *fb,
10256                                            int x, int y)
10257 {
10258         struct drm_plane_state *plane_state;
10259         int hdisplay, vdisplay;
10260         int ret;
10261
10262         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10263         if (IS_ERR(plane_state))
10264                 return PTR_ERR(plane_state);
10265
10266         if (mode)
10267                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10268         else
10269                 hdisplay = vdisplay = 0;
10270
10271         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10272         if (ret)
10273                 return ret;
10274         drm_atomic_set_fb_for_plane(plane_state, fb);
10275         plane_state->crtc_x = 0;
10276         plane_state->crtc_y = 0;
10277         plane_state->crtc_w = hdisplay;
10278         plane_state->crtc_h = vdisplay;
10279         plane_state->src_x = x << 16;
10280         plane_state->src_y = y << 16;
10281         plane_state->src_w = hdisplay << 16;
10282         plane_state->src_h = vdisplay << 16;
10283
10284         return 0;
10285 }
10286
10287 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10288                                 struct drm_display_mode *mode,
10289                                 struct intel_load_detect_pipe *old,
10290                                 struct drm_modeset_acquire_ctx *ctx)
10291 {
10292         struct intel_crtc *intel_crtc;
10293         struct intel_encoder *intel_encoder =
10294                 intel_attached_encoder(connector);
10295         struct drm_crtc *possible_crtc;
10296         struct drm_encoder *encoder = &intel_encoder->base;
10297         struct drm_crtc *crtc = NULL;
10298         struct drm_device *dev = encoder->dev;
10299         struct drm_framebuffer *fb;
10300         struct drm_mode_config *config = &dev->mode_config;
10301         struct drm_atomic_state *state = NULL;
10302         struct drm_connector_state *connector_state;
10303         struct intel_crtc_state *crtc_state;
10304         int ret, i = -1;
10305
10306         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10307                       connector->base.id, connector->name,
10308                       encoder->base.id, encoder->name);
10309
10310 retry:
10311         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10312         if (ret)
10313                 goto fail;
10314
10315         /*
10316          * Algorithm gets a little messy:
10317          *
10318          *   - if the connector already has an assigned crtc, use it (but make
10319          *     sure it's on first)
10320          *
10321          *   - try to find the first unused crtc that can drive this connector,
10322          *     and use that if we find one
10323          */
10324
10325         /* See if we already have a CRTC for this connector */
10326         if (encoder->crtc) {
10327                 crtc = encoder->crtc;
10328
10329                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10330                 if (ret)
10331                         goto fail;
10332                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10333                 if (ret)
10334                         goto fail;
10335
10336                 old->dpms_mode = connector->dpms;
10337                 old->load_detect_temp = false;
10338
10339                 /* Make sure the crtc and connector are running */
10340                 if (connector->dpms != DRM_MODE_DPMS_ON)
10341                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10342
10343                 return true;
10344         }
10345
10346         /* Find an unused one (if possible) */
10347         for_each_crtc(dev, possible_crtc) {
10348                 i++;
10349                 if (!(encoder->possible_crtcs & (1 << i)))
10350                         continue;
10351                 if (possible_crtc->state->enable)
10352                         continue;
10353
10354                 crtc = possible_crtc;
10355                 break;
10356         }
10357
10358         /*
10359          * If we didn't find an unused CRTC, don't use any.
10360          */
10361         if (!crtc) {
10362                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10363                 goto fail;
10364         }
10365
10366         ret = drm_modeset_lock(&crtc->mutex, ctx);
10367         if (ret)
10368                 goto fail;
10369         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10370         if (ret)
10371                 goto fail;
10372
10373         intel_crtc = to_intel_crtc(crtc);
10374         old->dpms_mode = connector->dpms;
10375         old->load_detect_temp = true;
10376         old->release_fb = NULL;
10377
10378         state = drm_atomic_state_alloc(dev);
10379         if (!state)
10380                 return false;
10381
10382         state->acquire_ctx = ctx;
10383
10384         connector_state = drm_atomic_get_connector_state(state, connector);
10385         if (IS_ERR(connector_state)) {
10386                 ret = PTR_ERR(connector_state);
10387                 goto fail;
10388         }
10389
10390         connector_state->crtc = crtc;
10391         connector_state->best_encoder = &intel_encoder->base;
10392
10393         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10394         if (IS_ERR(crtc_state)) {
10395                 ret = PTR_ERR(crtc_state);
10396                 goto fail;
10397         }
10398
10399         crtc_state->base.active = crtc_state->base.enable = true;
10400
10401         if (!mode)
10402                 mode = &load_detect_mode;
10403
10404         /* We need a framebuffer large enough to accommodate all accesses
10405          * that the plane may generate whilst we perform load detection.
10406          * We can not rely on the fbcon either being present (we get called
10407          * during its initialisation to detect all boot displays, or it may
10408          * not even exist) or that it is large enough to satisfy the
10409          * requested mode.
10410          */
10411         fb = mode_fits_in_fbdev(dev, mode);
10412         if (fb == NULL) {
10413                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10414                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10415                 old->release_fb = fb;
10416         } else
10417                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10418         if (IS_ERR(fb)) {
10419                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10420                 goto fail;
10421         }
10422
10423         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10424         if (ret)
10425                 goto fail;
10426
10427         drm_mode_copy(&crtc_state->base.mode, mode);
10428
10429         if (drm_atomic_commit(state)) {
10430                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10431                 if (old->release_fb)
10432                         old->release_fb->funcs->destroy(old->release_fb);
10433                 goto fail;
10434         }
10435         crtc->primary->crtc = crtc;
10436
10437         /* let the connector get through one full cycle before testing */
10438         intel_wait_for_vblank(dev, intel_crtc->pipe);
10439         return true;
10440
10441 fail:
10442         drm_atomic_state_free(state);
10443         state = NULL;
10444
10445         if (ret == -EDEADLK) {
10446                 drm_modeset_backoff(ctx);
10447                 goto retry;
10448         }
10449
10450         return false;
10451 }
10452
10453 void intel_release_load_detect_pipe(struct drm_connector *connector,
10454                                     struct intel_load_detect_pipe *old,
10455                                     struct drm_modeset_acquire_ctx *ctx)
10456 {
10457         struct drm_device *dev = connector->dev;
10458         struct intel_encoder *intel_encoder =
10459                 intel_attached_encoder(connector);
10460         struct drm_encoder *encoder = &intel_encoder->base;
10461         struct drm_crtc *crtc = encoder->crtc;
10462         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10463         struct drm_atomic_state *state;
10464         struct drm_connector_state *connector_state;
10465         struct intel_crtc_state *crtc_state;
10466         int ret;
10467
10468         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10469                       connector->base.id, connector->name,
10470                       encoder->base.id, encoder->name);
10471
10472         if (old->load_detect_temp) {
10473                 state = drm_atomic_state_alloc(dev);
10474                 if (!state)
10475                         goto fail;
10476
10477                 state->acquire_ctx = ctx;
10478
10479                 connector_state = drm_atomic_get_connector_state(state, connector);
10480                 if (IS_ERR(connector_state))
10481                         goto fail;
10482
10483                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10484                 if (IS_ERR(crtc_state))
10485                         goto fail;
10486
10487                 connector_state->best_encoder = NULL;
10488                 connector_state->crtc = NULL;
10489
10490                 crtc_state->base.enable = crtc_state->base.active = false;
10491
10492                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10493                                                       0, 0);
10494                 if (ret)
10495                         goto fail;
10496
10497                 ret = drm_atomic_commit(state);
10498                 if (ret)
10499                         goto fail;
10500
10501                 if (old->release_fb) {
10502                         drm_framebuffer_unregister_private(old->release_fb);
10503                         drm_framebuffer_unreference(old->release_fb);
10504                 }
10505
10506                 return;
10507         }
10508
10509         /* Switch crtc and encoder back off if necessary */
10510         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10511                 connector->funcs->dpms(connector, old->dpms_mode);
10512
10513         return;
10514 fail:
10515         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10516         drm_atomic_state_free(state);
10517 }
10518
10519 static int i9xx_pll_refclk(struct drm_device *dev,
10520                            const struct intel_crtc_state *pipe_config)
10521 {
10522         struct drm_i915_private *dev_priv = dev->dev_private;
10523         u32 dpll = pipe_config->dpll_hw_state.dpll;
10524
10525         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10526                 return dev_priv->vbt.lvds_ssc_freq;
10527         else if (HAS_PCH_SPLIT(dev))
10528                 return 120000;
10529         else if (!IS_GEN2(dev))
10530                 return 96000;
10531         else
10532                 return 48000;
10533 }
10534
10535 /* Returns the clock of the currently programmed mode of the given pipe. */
10536 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10537                                 struct intel_crtc_state *pipe_config)
10538 {
10539         struct drm_device *dev = crtc->base.dev;
10540         struct drm_i915_private *dev_priv = dev->dev_private;
10541         int pipe = pipe_config->cpu_transcoder;
10542         u32 dpll = pipe_config->dpll_hw_state.dpll;
10543         u32 fp;
10544         intel_clock_t clock;
10545         int port_clock;
10546         int refclk = i9xx_pll_refclk(dev, pipe_config);
10547
10548         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10549                 fp = pipe_config->dpll_hw_state.fp0;
10550         else
10551                 fp = pipe_config->dpll_hw_state.fp1;
10552
10553         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10554         if (IS_PINEVIEW(dev)) {
10555                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10556                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10557         } else {
10558                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10559                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10560         }
10561
10562         if (!IS_GEN2(dev)) {
10563                 if (IS_PINEVIEW(dev))
10564                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10565                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10566                 else
10567                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10568                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10569
10570                 switch (dpll & DPLL_MODE_MASK) {
10571                 case DPLLB_MODE_DAC_SERIAL:
10572                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10573                                 5 : 10;
10574                         break;
10575                 case DPLLB_MODE_LVDS:
10576                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10577                                 7 : 14;
10578                         break;
10579                 default:
10580                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10581                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10582                         return;
10583                 }
10584
10585                 if (IS_PINEVIEW(dev))
10586                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10587                 else
10588                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10589         } else {
10590                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10591                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10592
10593                 if (is_lvds) {
10594                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10595                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10596
10597                         if (lvds & LVDS_CLKB_POWER_UP)
10598                                 clock.p2 = 7;
10599                         else
10600                                 clock.p2 = 14;
10601                 } else {
10602                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10603                                 clock.p1 = 2;
10604                         else {
10605                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10606                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10607                         }
10608                         if (dpll & PLL_P2_DIVIDE_BY_4)
10609                                 clock.p2 = 4;
10610                         else
10611                                 clock.p2 = 2;
10612                 }
10613
10614                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10615         }
10616
10617         /*
10618          * This value includes pixel_multiplier. We will use
10619          * port_clock to compute adjusted_mode.crtc_clock in the
10620          * encoder's get_config() function.
10621          */
10622         pipe_config->port_clock = port_clock;
10623 }
10624
10625 int intel_dotclock_calculate(int link_freq,
10626                              const struct intel_link_m_n *m_n)
10627 {
10628         /*
10629          * The calculation for the data clock is:
10630          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10631          * But we want to avoid losing precison if possible, so:
10632          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10633          *
10634          * and the link clock is simpler:
10635          * link_clock = (m * link_clock) / n
10636          */
10637
10638         if (!m_n->link_n)
10639                 return 0;
10640
10641         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10642 }
10643
10644 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10645                                    struct intel_crtc_state *pipe_config)
10646 {
10647         struct drm_device *dev = crtc->base.dev;
10648
10649         /* read out port_clock from the DPLL */
10650         i9xx_crtc_clock_get(crtc, pipe_config);
10651
10652         /*
10653          * This value does not include pixel_multiplier.
10654          * We will check that port_clock and adjusted_mode.crtc_clock
10655          * agree once we know their relationship in the encoder's
10656          * get_config() function.
10657          */
10658         pipe_config->base.adjusted_mode.crtc_clock =
10659                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10660                                          &pipe_config->fdi_m_n);
10661 }
10662
10663 /** Returns the currently programmed mode of the given pipe. */
10664 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10665                                              struct drm_crtc *crtc)
10666 {
10667         struct drm_i915_private *dev_priv = dev->dev_private;
10668         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10669         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10670         struct drm_display_mode *mode;
10671         struct intel_crtc_state pipe_config;
10672         int htot = I915_READ(HTOTAL(cpu_transcoder));
10673         int hsync = I915_READ(HSYNC(cpu_transcoder));
10674         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10675         int vsync = I915_READ(VSYNC(cpu_transcoder));
10676         enum pipe pipe = intel_crtc->pipe;
10677
10678         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10679         if (!mode)
10680                 return NULL;
10681
10682         /*
10683          * Construct a pipe_config sufficient for getting the clock info
10684          * back out of crtc_clock_get.
10685          *
10686          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10687          * to use a real value here instead.
10688          */
10689         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10690         pipe_config.pixel_multiplier = 1;
10691         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10692         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10693         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10694         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10695
10696         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10697         mode->hdisplay = (htot & 0xffff) + 1;
10698         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10699         mode->hsync_start = (hsync & 0xffff) + 1;
10700         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10701         mode->vdisplay = (vtot & 0xffff) + 1;
10702         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10703         mode->vsync_start = (vsync & 0xffff) + 1;
10704         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10705
10706         drm_mode_set_name(mode);
10707
10708         return mode;
10709 }
10710
10711 void intel_mark_busy(struct drm_device *dev)
10712 {
10713         struct drm_i915_private *dev_priv = dev->dev_private;
10714
10715         if (dev_priv->mm.busy)
10716                 return;
10717
10718         intel_runtime_pm_get(dev_priv);
10719         i915_update_gfx_val(dev_priv);
10720         if (INTEL_INFO(dev)->gen >= 6)
10721                 gen6_rps_busy(dev_priv);
10722         dev_priv->mm.busy = true;
10723 }
10724
10725 void intel_mark_idle(struct drm_device *dev)
10726 {
10727         struct drm_i915_private *dev_priv = dev->dev_private;
10728
10729         if (!dev_priv->mm.busy)
10730                 return;
10731
10732         dev_priv->mm.busy = false;
10733
10734         if (INTEL_INFO(dev)->gen >= 6)
10735                 gen6_rps_idle(dev->dev_private);
10736
10737         intel_runtime_pm_put(dev_priv);
10738 }
10739
10740 static void intel_crtc_destroy(struct drm_crtc *crtc)
10741 {
10742         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10743         struct drm_device *dev = crtc->dev;
10744         struct intel_unpin_work *work;
10745
10746         spin_lock_irq(&dev->event_lock);
10747         work = intel_crtc->unpin_work;
10748         intel_crtc->unpin_work = NULL;
10749         spin_unlock_irq(&dev->event_lock);
10750
10751         if (work) {
10752                 cancel_work_sync(&work->work);
10753                 kfree(work);
10754         }
10755
10756         drm_crtc_cleanup(crtc);
10757
10758         kfree(intel_crtc);
10759 }
10760
10761 static void intel_unpin_work_fn(struct work_struct *__work)
10762 {
10763         struct intel_unpin_work *work =
10764                 container_of(__work, struct intel_unpin_work, work);
10765         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10766         struct drm_device *dev = crtc->base.dev;
10767         struct drm_plane *primary = crtc->base.primary;
10768
10769         mutex_lock(&dev->struct_mutex);
10770         intel_unpin_fb_obj(work->old_fb, primary->state);
10771         drm_gem_object_unreference(&work->pending_flip_obj->base);
10772
10773         if (work->flip_queued_req)
10774                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10775         mutex_unlock(&dev->struct_mutex);
10776
10777         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10778         drm_framebuffer_unreference(work->old_fb);
10779
10780         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10781         atomic_dec(&crtc->unpin_work_count);
10782
10783         kfree(work);
10784 }
10785
10786 static void do_intel_finish_page_flip(struct drm_device *dev,
10787                                       struct drm_crtc *crtc)
10788 {
10789         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10790         struct intel_unpin_work *work;
10791         unsigned long flags;
10792
10793         /* Ignore early vblank irqs */
10794         if (intel_crtc == NULL)
10795                 return;
10796
10797         /*
10798          * This is called both by irq handlers and the reset code (to complete
10799          * lost pageflips) so needs the full irqsave spinlocks.
10800          */
10801         spin_lock_irqsave(&dev->event_lock, flags);
10802         work = intel_crtc->unpin_work;
10803
10804         /* Ensure we don't miss a work->pending update ... */
10805         smp_rmb();
10806
10807         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10808                 spin_unlock_irqrestore(&dev->event_lock, flags);
10809                 return;
10810         }
10811
10812         page_flip_completed(intel_crtc);
10813
10814         spin_unlock_irqrestore(&dev->event_lock, flags);
10815 }
10816
10817 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10818 {
10819         struct drm_i915_private *dev_priv = dev->dev_private;
10820         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10821
10822         do_intel_finish_page_flip(dev, crtc);
10823 }
10824
10825 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10826 {
10827         struct drm_i915_private *dev_priv = dev->dev_private;
10828         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10829
10830         do_intel_finish_page_flip(dev, crtc);
10831 }
10832
10833 /* Is 'a' after or equal to 'b'? */
10834 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10835 {
10836         return !((a - b) & 0x80000000);
10837 }
10838
10839 static bool page_flip_finished(struct intel_crtc *crtc)
10840 {
10841         struct drm_device *dev = crtc->base.dev;
10842         struct drm_i915_private *dev_priv = dev->dev_private;
10843
10844         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10845             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10846                 return true;
10847
10848         /*
10849          * The relevant registers doen't exist on pre-ctg.
10850          * As the flip done interrupt doesn't trigger for mmio
10851          * flips on gmch platforms, a flip count check isn't
10852          * really needed there. But since ctg has the registers,
10853          * include it in the check anyway.
10854          */
10855         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10856                 return true;
10857
10858         /*
10859          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10860          * used the same base address. In that case the mmio flip might
10861          * have completed, but the CS hasn't even executed the flip yet.
10862          *
10863          * A flip count check isn't enough as the CS might have updated
10864          * the base address just after start of vblank, but before we
10865          * managed to process the interrupt. This means we'd complete the
10866          * CS flip too soon.
10867          *
10868          * Combining both checks should get us a good enough result. It may
10869          * still happen that the CS flip has been executed, but has not
10870          * yet actually completed. But in case the base address is the same
10871          * anyway, we don't really care.
10872          */
10873         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10874                 crtc->unpin_work->gtt_offset &&
10875                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10876                                     crtc->unpin_work->flip_count);
10877 }
10878
10879 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10880 {
10881         struct drm_i915_private *dev_priv = dev->dev_private;
10882         struct intel_crtc *intel_crtc =
10883                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10884         unsigned long flags;
10885
10886
10887         /*
10888          * This is called both by irq handlers and the reset code (to complete
10889          * lost pageflips) so needs the full irqsave spinlocks.
10890          *
10891          * NB: An MMIO update of the plane base pointer will also
10892          * generate a page-flip completion irq, i.e. every modeset
10893          * is also accompanied by a spurious intel_prepare_page_flip().
10894          */
10895         spin_lock_irqsave(&dev->event_lock, flags);
10896         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10897                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10898         spin_unlock_irqrestore(&dev->event_lock, flags);
10899 }
10900
10901 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10902 {
10903         /* Ensure that the work item is consistent when activating it ... */
10904         smp_wmb();
10905         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10906         /* and that it is marked active as soon as the irq could fire. */
10907         smp_wmb();
10908 }
10909
10910 static int intel_gen2_queue_flip(struct drm_device *dev,
10911                                  struct drm_crtc *crtc,
10912                                  struct drm_framebuffer *fb,
10913                                  struct drm_i915_gem_object *obj,
10914                                  struct drm_i915_gem_request *req,
10915                                  uint32_t flags)
10916 {
10917         struct intel_engine_cs *ring = req->ring;
10918         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10919         u32 flip_mask;
10920         int ret;
10921
10922         ret = intel_ring_begin(req, 6);
10923         if (ret)
10924                 return ret;
10925
10926         /* Can't queue multiple flips, so wait for the previous
10927          * one to finish before executing the next.
10928          */
10929         if (intel_crtc->plane)
10930                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10931         else
10932                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10933         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10934         intel_ring_emit(ring, MI_NOOP);
10935         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10936                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10937         intel_ring_emit(ring, fb->pitches[0]);
10938         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10939         intel_ring_emit(ring, 0); /* aux display base address, unused */
10940
10941         intel_mark_page_flip_active(intel_crtc);
10942         return 0;
10943 }
10944
10945 static int intel_gen3_queue_flip(struct drm_device *dev,
10946                                  struct drm_crtc *crtc,
10947                                  struct drm_framebuffer *fb,
10948                                  struct drm_i915_gem_object *obj,
10949                                  struct drm_i915_gem_request *req,
10950                                  uint32_t flags)
10951 {
10952         struct intel_engine_cs *ring = req->ring;
10953         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10954         u32 flip_mask;
10955         int ret;
10956
10957         ret = intel_ring_begin(req, 6);
10958         if (ret)
10959                 return ret;
10960
10961         if (intel_crtc->plane)
10962                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10963         else
10964                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10965         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10966         intel_ring_emit(ring, MI_NOOP);
10967         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10968                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10969         intel_ring_emit(ring, fb->pitches[0]);
10970         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10971         intel_ring_emit(ring, MI_NOOP);
10972
10973         intel_mark_page_flip_active(intel_crtc);
10974         return 0;
10975 }
10976
10977 static int intel_gen4_queue_flip(struct drm_device *dev,
10978                                  struct drm_crtc *crtc,
10979                                  struct drm_framebuffer *fb,
10980                                  struct drm_i915_gem_object *obj,
10981                                  struct drm_i915_gem_request *req,
10982                                  uint32_t flags)
10983 {
10984         struct intel_engine_cs *ring = req->ring;
10985         struct drm_i915_private *dev_priv = dev->dev_private;
10986         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10987         uint32_t pf, pipesrc;
10988         int ret;
10989
10990         ret = intel_ring_begin(req, 4);
10991         if (ret)
10992                 return ret;
10993
10994         /* i965+ uses the linear or tiled offsets from the
10995          * Display Registers (which do not change across a page-flip)
10996          * so we need only reprogram the base address.
10997          */
10998         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10999                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11000         intel_ring_emit(ring, fb->pitches[0]);
11001         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11002                         obj->tiling_mode);
11003
11004         /* XXX Enabling the panel-fitter across page-flip is so far
11005          * untested on non-native modes, so ignore it for now.
11006          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11007          */
11008         pf = 0;
11009         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11010         intel_ring_emit(ring, pf | pipesrc);
11011
11012         intel_mark_page_flip_active(intel_crtc);
11013         return 0;
11014 }
11015
11016 static int intel_gen6_queue_flip(struct drm_device *dev,
11017                                  struct drm_crtc *crtc,
11018                                  struct drm_framebuffer *fb,
11019                                  struct drm_i915_gem_object *obj,
11020                                  struct drm_i915_gem_request *req,
11021                                  uint32_t flags)
11022 {
11023         struct intel_engine_cs *ring = req->ring;
11024         struct drm_i915_private *dev_priv = dev->dev_private;
11025         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11026         uint32_t pf, pipesrc;
11027         int ret;
11028
11029         ret = intel_ring_begin(req, 4);
11030         if (ret)
11031                 return ret;
11032
11033         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11034                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11035         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11036         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11037
11038         /* Contrary to the suggestions in the documentation,
11039          * "Enable Panel Fitter" does not seem to be required when page
11040          * flipping with a non-native mode, and worse causes a normal
11041          * modeset to fail.
11042          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11043          */
11044         pf = 0;
11045         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11046         intel_ring_emit(ring, pf | pipesrc);
11047
11048         intel_mark_page_flip_active(intel_crtc);
11049         return 0;
11050 }
11051
11052 static int intel_gen7_queue_flip(struct drm_device *dev,
11053                                  struct drm_crtc *crtc,
11054                                  struct drm_framebuffer *fb,
11055                                  struct drm_i915_gem_object *obj,
11056                                  struct drm_i915_gem_request *req,
11057                                  uint32_t flags)
11058 {
11059         struct intel_engine_cs *ring = req->ring;
11060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11061         uint32_t plane_bit = 0;
11062         int len, ret;
11063
11064         switch (intel_crtc->plane) {
11065         case PLANE_A:
11066                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11067                 break;
11068         case PLANE_B:
11069                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11070                 break;
11071         case PLANE_C:
11072                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11073                 break;
11074         default:
11075                 WARN_ONCE(1, "unknown plane in flip command\n");
11076                 return -ENODEV;
11077         }
11078
11079         len = 4;
11080         if (ring->id == RCS) {
11081                 len += 6;
11082                 /*
11083                  * On Gen 8, SRM is now taking an extra dword to accommodate
11084                  * 48bits addresses, and we need a NOOP for the batch size to
11085                  * stay even.
11086                  */
11087                 if (IS_GEN8(dev))
11088                         len += 2;
11089         }
11090
11091         /*
11092          * BSpec MI_DISPLAY_FLIP for IVB:
11093          * "The full packet must be contained within the same cache line."
11094          *
11095          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11096          * cacheline, if we ever start emitting more commands before
11097          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11098          * then do the cacheline alignment, and finally emit the
11099          * MI_DISPLAY_FLIP.
11100          */
11101         ret = intel_ring_cacheline_align(req);
11102         if (ret)
11103                 return ret;
11104
11105         ret = intel_ring_begin(req, len);
11106         if (ret)
11107                 return ret;
11108
11109         /* Unmask the flip-done completion message. Note that the bspec says that
11110          * we should do this for both the BCS and RCS, and that we must not unmask
11111          * more than one flip event at any time (or ensure that one flip message
11112          * can be sent by waiting for flip-done prior to queueing new flips).
11113          * Experimentation says that BCS works despite DERRMR masking all
11114          * flip-done completion events and that unmasking all planes at once
11115          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11116          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11117          */
11118         if (ring->id == RCS) {
11119                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11120                 intel_ring_emit(ring, DERRMR);
11121                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11122                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11123                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11124                 if (IS_GEN8(dev))
11125                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11126                                               MI_SRM_LRM_GLOBAL_GTT);
11127                 else
11128                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11129                                               MI_SRM_LRM_GLOBAL_GTT);
11130                 intel_ring_emit(ring, DERRMR);
11131                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11132                 if (IS_GEN8(dev)) {
11133                         intel_ring_emit(ring, 0);
11134                         intel_ring_emit(ring, MI_NOOP);
11135                 }
11136         }
11137
11138         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11139         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11140         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11141         intel_ring_emit(ring, (MI_NOOP));
11142
11143         intel_mark_page_flip_active(intel_crtc);
11144         return 0;
11145 }
11146
11147 static bool use_mmio_flip(struct intel_engine_cs *ring,
11148                           struct drm_i915_gem_object *obj)
11149 {
11150         /*
11151          * This is not being used for older platforms, because
11152          * non-availability of flip done interrupt forces us to use
11153          * CS flips. Older platforms derive flip done using some clever
11154          * tricks involving the flip_pending status bits and vblank irqs.
11155          * So using MMIO flips there would disrupt this mechanism.
11156          */
11157
11158         if (ring == NULL)
11159                 return true;
11160
11161         if (INTEL_INFO(ring->dev)->gen < 5)
11162                 return false;
11163
11164         if (i915.use_mmio_flip < 0)
11165                 return false;
11166         else if (i915.use_mmio_flip > 0)
11167                 return true;
11168         else if (i915.enable_execlists)
11169                 return true;
11170         else
11171                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11172 }
11173
11174 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11175 {
11176         struct drm_device *dev = intel_crtc->base.dev;
11177         struct drm_i915_private *dev_priv = dev->dev_private;
11178         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11179         const enum pipe pipe = intel_crtc->pipe;
11180         u32 ctl, stride;
11181
11182         ctl = I915_READ(PLANE_CTL(pipe, 0));
11183         ctl &= ~PLANE_CTL_TILED_MASK;
11184         switch (fb->modifier[0]) {
11185         case DRM_FORMAT_MOD_NONE:
11186                 break;
11187         case I915_FORMAT_MOD_X_TILED:
11188                 ctl |= PLANE_CTL_TILED_X;
11189                 break;
11190         case I915_FORMAT_MOD_Y_TILED:
11191                 ctl |= PLANE_CTL_TILED_Y;
11192                 break;
11193         case I915_FORMAT_MOD_Yf_TILED:
11194                 ctl |= PLANE_CTL_TILED_YF;
11195                 break;
11196         default:
11197                 MISSING_CASE(fb->modifier[0]);
11198         }
11199
11200         /*
11201          * The stride is either expressed as a multiple of 64 bytes chunks for
11202          * linear buffers or in number of tiles for tiled buffers.
11203          */
11204         stride = fb->pitches[0] /
11205                  intel_fb_stride_alignment(dev, fb->modifier[0],
11206                                            fb->pixel_format);
11207
11208         /*
11209          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11210          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11211          */
11212         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11213         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11214
11215         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11216         POSTING_READ(PLANE_SURF(pipe, 0));
11217 }
11218
11219 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11220 {
11221         struct drm_device *dev = intel_crtc->base.dev;
11222         struct drm_i915_private *dev_priv = dev->dev_private;
11223         struct intel_framebuffer *intel_fb =
11224                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11225         struct drm_i915_gem_object *obj = intel_fb->obj;
11226         u32 dspcntr;
11227         u32 reg;
11228
11229         reg = DSPCNTR(intel_crtc->plane);
11230         dspcntr = I915_READ(reg);
11231
11232         if (obj->tiling_mode != I915_TILING_NONE)
11233                 dspcntr |= DISPPLANE_TILED;
11234         else
11235                 dspcntr &= ~DISPPLANE_TILED;
11236
11237         I915_WRITE(reg, dspcntr);
11238
11239         I915_WRITE(DSPSURF(intel_crtc->plane),
11240                    intel_crtc->unpin_work->gtt_offset);
11241         POSTING_READ(DSPSURF(intel_crtc->plane));
11242
11243 }
11244
11245 /*
11246  * XXX: This is the temporary way to update the plane registers until we get
11247  * around to using the usual plane update functions for MMIO flips
11248  */
11249 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11250 {
11251         struct drm_device *dev = intel_crtc->base.dev;
11252         u32 start_vbl_count;
11253
11254         intel_mark_page_flip_active(intel_crtc);
11255
11256         intel_pipe_update_start(intel_crtc, &start_vbl_count);
11257
11258         if (INTEL_INFO(dev)->gen >= 9)
11259                 skl_do_mmio_flip(intel_crtc);
11260         else
11261                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11262                 ilk_do_mmio_flip(intel_crtc);
11263
11264         intel_pipe_update_end(intel_crtc, start_vbl_count);
11265 }
11266
11267 static void intel_mmio_flip_work_func(struct work_struct *work)
11268 {
11269         struct intel_mmio_flip *mmio_flip =
11270                 container_of(work, struct intel_mmio_flip, work);
11271
11272         if (mmio_flip->req)
11273                 WARN_ON(__i915_wait_request(mmio_flip->req,
11274                                             mmio_flip->crtc->reset_counter,
11275                                             false, NULL,
11276                                             &mmio_flip->i915->rps.mmioflips));
11277
11278         intel_do_mmio_flip(mmio_flip->crtc);
11279
11280         i915_gem_request_unreference__unlocked(mmio_flip->req);
11281         kfree(mmio_flip);
11282 }
11283
11284 static int intel_queue_mmio_flip(struct drm_device *dev,
11285                                  struct drm_crtc *crtc,
11286                                  struct drm_framebuffer *fb,
11287                                  struct drm_i915_gem_object *obj,
11288                                  struct intel_engine_cs *ring,
11289                                  uint32_t flags)
11290 {
11291         struct intel_mmio_flip *mmio_flip;
11292
11293         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11294         if (mmio_flip == NULL)
11295                 return -ENOMEM;
11296
11297         mmio_flip->i915 = to_i915(dev);
11298         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11299         mmio_flip->crtc = to_intel_crtc(crtc);
11300
11301         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11302         schedule_work(&mmio_flip->work);
11303
11304         return 0;
11305 }
11306
11307 static int intel_default_queue_flip(struct drm_device *dev,
11308                                     struct drm_crtc *crtc,
11309                                     struct drm_framebuffer *fb,
11310                                     struct drm_i915_gem_object *obj,
11311                                     struct drm_i915_gem_request *req,
11312                                     uint32_t flags)
11313 {
11314         return -ENODEV;
11315 }
11316
11317 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11318                                          struct drm_crtc *crtc)
11319 {
11320         struct drm_i915_private *dev_priv = dev->dev_private;
11321         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11322         struct intel_unpin_work *work = intel_crtc->unpin_work;
11323         u32 addr;
11324
11325         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11326                 return true;
11327
11328         if (!work->enable_stall_check)
11329                 return false;
11330
11331         if (work->flip_ready_vblank == 0) {
11332                 if (work->flip_queued_req &&
11333                     !i915_gem_request_completed(work->flip_queued_req, true))
11334                         return false;
11335
11336                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11337         }
11338
11339         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11340                 return false;
11341
11342         /* Potential stall - if we see that the flip has happened,
11343          * assume a missed interrupt. */
11344         if (INTEL_INFO(dev)->gen >= 4)
11345                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11346         else
11347                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11348
11349         /* There is a potential issue here with a false positive after a flip
11350          * to the same address. We could address this by checking for a
11351          * non-incrementing frame counter.
11352          */
11353         return addr == work->gtt_offset;
11354 }
11355
11356 void intel_check_page_flip(struct drm_device *dev, int pipe)
11357 {
11358         struct drm_i915_private *dev_priv = dev->dev_private;
11359         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11360         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11361         struct intel_unpin_work *work;
11362
11363         WARN_ON(!in_interrupt());
11364
11365         if (crtc == NULL)
11366                 return;
11367
11368         spin_lock(&dev->event_lock);
11369         work = intel_crtc->unpin_work;
11370         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11371                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11372                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11373                 page_flip_completed(intel_crtc);
11374                 work = NULL;
11375         }
11376         if (work != NULL &&
11377             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11378                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11379         spin_unlock(&dev->event_lock);
11380 }
11381
11382 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11383                                 struct drm_framebuffer *fb,
11384                                 struct drm_pending_vblank_event *event,
11385                                 uint32_t page_flip_flags)
11386 {
11387         struct drm_device *dev = crtc->dev;
11388         struct drm_i915_private *dev_priv = dev->dev_private;
11389         struct drm_framebuffer *old_fb = crtc->primary->fb;
11390         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11391         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11392         struct drm_plane *primary = crtc->primary;
11393         enum pipe pipe = intel_crtc->pipe;
11394         struct intel_unpin_work *work;
11395         struct intel_engine_cs *ring;
11396         bool mmio_flip;
11397         struct drm_i915_gem_request *request = NULL;
11398         int ret;
11399
11400         /*
11401          * drm_mode_page_flip_ioctl() should already catch this, but double
11402          * check to be safe.  In the future we may enable pageflipping from
11403          * a disabled primary plane.
11404          */
11405         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11406                 return -EBUSY;
11407
11408         /* Can't change pixel format via MI display flips. */
11409         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11410                 return -EINVAL;
11411
11412         /*
11413          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11414          * Note that pitch changes could also affect these register.
11415          */
11416         if (INTEL_INFO(dev)->gen > 3 &&
11417             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11418              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11419                 return -EINVAL;
11420
11421         if (i915_terminally_wedged(&dev_priv->gpu_error))
11422                 goto out_hang;
11423
11424         work = kzalloc(sizeof(*work), GFP_KERNEL);
11425         if (work == NULL)
11426                 return -ENOMEM;
11427
11428         work->event = event;
11429         work->crtc = crtc;
11430         work->old_fb = old_fb;
11431         INIT_WORK(&work->work, intel_unpin_work_fn);
11432
11433         ret = drm_crtc_vblank_get(crtc);
11434         if (ret)
11435                 goto free_work;
11436
11437         /* We borrow the event spin lock for protecting unpin_work */
11438         spin_lock_irq(&dev->event_lock);
11439         if (intel_crtc->unpin_work) {
11440                 /* Before declaring the flip queue wedged, check if
11441                  * the hardware completed the operation behind our backs.
11442                  */
11443                 if (__intel_pageflip_stall_check(dev, crtc)) {
11444                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11445                         page_flip_completed(intel_crtc);
11446                 } else {
11447                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11448                         spin_unlock_irq(&dev->event_lock);
11449
11450                         drm_crtc_vblank_put(crtc);
11451                         kfree(work);
11452                         return -EBUSY;
11453                 }
11454         }
11455         intel_crtc->unpin_work = work;
11456         spin_unlock_irq(&dev->event_lock);
11457
11458         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11459                 flush_workqueue(dev_priv->wq);
11460
11461         /* Reference the objects for the scheduled work. */
11462         drm_framebuffer_reference(work->old_fb);
11463         drm_gem_object_reference(&obj->base);
11464
11465         crtc->primary->fb = fb;
11466         update_state_fb(crtc->primary);
11467
11468         work->pending_flip_obj = obj;
11469
11470         ret = i915_mutex_lock_interruptible(dev);
11471         if (ret)
11472                 goto cleanup;
11473
11474         atomic_inc(&intel_crtc->unpin_work_count);
11475         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11476
11477         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11478                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11479
11480         if (IS_VALLEYVIEW(dev)) {
11481                 ring = &dev_priv->ring[BCS];
11482                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11483                         /* vlv: DISPLAY_FLIP fails to change tiling */
11484                         ring = NULL;
11485         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11486                 ring = &dev_priv->ring[BCS];
11487         } else if (INTEL_INFO(dev)->gen >= 7) {
11488                 ring = i915_gem_request_get_ring(obj->last_write_req);
11489                 if (ring == NULL || ring->id != RCS)
11490                         ring = &dev_priv->ring[BCS];
11491         } else {
11492                 ring = &dev_priv->ring[RCS];
11493         }
11494
11495         mmio_flip = use_mmio_flip(ring, obj);
11496
11497         /* When using CS flips, we want to emit semaphores between rings.
11498          * However, when using mmio flips we will create a task to do the
11499          * synchronisation, so all we want here is to pin the framebuffer
11500          * into the display plane and skip any waits.
11501          */
11502         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11503                                          crtc->primary->state,
11504                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11505         if (ret)
11506                 goto cleanup_pending;
11507
11508         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11509                                                   + intel_crtc->dspaddr_offset;
11510
11511         if (mmio_flip) {
11512                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11513                                             page_flip_flags);
11514                 if (ret)
11515                         goto cleanup_unpin;
11516
11517                 i915_gem_request_assign(&work->flip_queued_req,
11518                                         obj->last_write_req);
11519         } else {
11520                 if (!request) {
11521                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11522                         if (ret)
11523                                 goto cleanup_unpin;
11524                 }
11525
11526                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11527                                                    page_flip_flags);
11528                 if (ret)
11529                         goto cleanup_unpin;
11530
11531                 i915_gem_request_assign(&work->flip_queued_req, request);
11532         }
11533
11534         if (request)
11535                 i915_add_request_no_flush(request);
11536
11537         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11538         work->enable_stall_check = true;
11539
11540         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11541                           to_intel_plane(primary)->frontbuffer_bit);
11542         mutex_unlock(&dev->struct_mutex);
11543
11544         intel_fbc_disable_crtc(intel_crtc);
11545         intel_frontbuffer_flip_prepare(dev,
11546                                        to_intel_plane(primary)->frontbuffer_bit);
11547
11548         trace_i915_flip_request(intel_crtc->plane, obj);
11549
11550         return 0;
11551
11552 cleanup_unpin:
11553         intel_unpin_fb_obj(fb, crtc->primary->state);
11554 cleanup_pending:
11555         if (request)
11556                 i915_gem_request_cancel(request);
11557         atomic_dec(&intel_crtc->unpin_work_count);
11558         mutex_unlock(&dev->struct_mutex);
11559 cleanup:
11560         crtc->primary->fb = old_fb;
11561         update_state_fb(crtc->primary);
11562
11563         drm_gem_object_unreference_unlocked(&obj->base);
11564         drm_framebuffer_unreference(work->old_fb);
11565
11566         spin_lock_irq(&dev->event_lock);
11567         intel_crtc->unpin_work = NULL;
11568         spin_unlock_irq(&dev->event_lock);
11569
11570         drm_crtc_vblank_put(crtc);
11571 free_work:
11572         kfree(work);
11573
11574         if (ret == -EIO) {
11575                 struct drm_atomic_state *state;
11576                 struct drm_plane_state *plane_state;
11577
11578 out_hang:
11579                 state = drm_atomic_state_alloc(dev);
11580                 if (!state)
11581                         return -ENOMEM;
11582                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11583
11584 retry:
11585                 plane_state = drm_atomic_get_plane_state(state, primary);
11586                 ret = PTR_ERR_OR_ZERO(plane_state);
11587                 if (!ret) {
11588                         drm_atomic_set_fb_for_plane(plane_state, fb);
11589
11590                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11591                         if (!ret)
11592                                 ret = drm_atomic_commit(state);
11593                 }
11594
11595                 if (ret == -EDEADLK) {
11596                         drm_modeset_backoff(state->acquire_ctx);
11597                         drm_atomic_state_clear(state);
11598                         goto retry;
11599                 }
11600
11601                 if (ret)
11602                         drm_atomic_state_free(state);
11603
11604                 if (ret == 0 && event) {
11605                         spin_lock_irq(&dev->event_lock);
11606                         drm_send_vblank_event(dev, pipe, event);
11607                         spin_unlock_irq(&dev->event_lock);
11608                 }
11609         }
11610         return ret;
11611 }
11612
11613
11614 /**
11615  * intel_wm_need_update - Check whether watermarks need updating
11616  * @plane: drm plane
11617  * @state: new plane state
11618  *
11619  * Check current plane state versus the new one to determine whether
11620  * watermarks need to be recalculated.
11621  *
11622  * Returns true or false.
11623  */
11624 static bool intel_wm_need_update(struct drm_plane *plane,
11625                                  struct drm_plane_state *state)
11626 {
11627         /* Update watermarks on tiling changes. */
11628         if (!plane->state->fb || !state->fb ||
11629             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11630             plane->state->rotation != state->rotation)
11631                 return true;
11632
11633         if (plane->state->crtc_w != state->crtc_w)
11634                 return true;
11635
11636         return false;
11637 }
11638
11639 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11640                                     struct drm_plane_state *plane_state)
11641 {
11642         struct drm_crtc *crtc = crtc_state->crtc;
11643         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11644         struct drm_plane *plane = plane_state->plane;
11645         struct drm_device *dev = crtc->dev;
11646         struct drm_i915_private *dev_priv = dev->dev_private;
11647         struct intel_plane_state *old_plane_state =
11648                 to_intel_plane_state(plane->state);
11649         int idx = intel_crtc->base.base.id, ret;
11650         int i = drm_plane_index(plane);
11651         bool mode_changed = needs_modeset(crtc_state);
11652         bool was_crtc_enabled = crtc->state->active;
11653         bool is_crtc_enabled = crtc_state->active;
11654
11655         bool turn_off, turn_on, visible, was_visible;
11656         struct drm_framebuffer *fb = plane_state->fb;
11657
11658         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11659             plane->type != DRM_PLANE_TYPE_CURSOR) {
11660                 ret = skl_update_scaler_plane(
11661                         to_intel_crtc_state(crtc_state),
11662                         to_intel_plane_state(plane_state));
11663                 if (ret)
11664                         return ret;
11665         }
11666
11667         /*
11668          * Disabling a plane is always okay; we just need to update
11669          * fb tracking in a special way since cleanup_fb() won't
11670          * get called by the plane helpers.
11671          */
11672         if (old_plane_state->base.fb && !fb)
11673                 intel_crtc->atomic.disabled_planes |= 1 << i;
11674
11675         was_visible = old_plane_state->visible;
11676         visible = to_intel_plane_state(plane_state)->visible;
11677
11678         if (!was_crtc_enabled && WARN_ON(was_visible))
11679                 was_visible = false;
11680
11681         if (!is_crtc_enabled && WARN_ON(visible))
11682                 visible = false;
11683
11684         if (!was_visible && !visible)
11685                 return 0;
11686
11687         turn_off = was_visible && (!visible || mode_changed);
11688         turn_on = visible && (!was_visible || mode_changed);
11689
11690         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11691                          plane->base.id, fb ? fb->base.id : -1);
11692
11693         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11694                          plane->base.id, was_visible, visible,
11695                          turn_off, turn_on, mode_changed);
11696
11697         if (turn_on) {
11698                 intel_crtc->atomic.update_wm_pre = true;
11699                 /* must disable cxsr around plane enable/disable */
11700                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11701                         intel_crtc->atomic.disable_cxsr = true;
11702                         /* to potentially re-enable cxsr */
11703                         intel_crtc->atomic.wait_vblank = true;
11704                         intel_crtc->atomic.update_wm_post = true;
11705                 }
11706         } else if (turn_off) {
11707                 intel_crtc->atomic.update_wm_post = true;
11708                 /* must disable cxsr around plane enable/disable */
11709                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11710                         if (is_crtc_enabled)
11711                                 intel_crtc->atomic.wait_vblank = true;
11712                         intel_crtc->atomic.disable_cxsr = true;
11713                 }
11714         } else if (intel_wm_need_update(plane, plane_state)) {
11715                 intel_crtc->atomic.update_wm_pre = true;
11716         }
11717
11718         if (visible)
11719                 intel_crtc->atomic.fb_bits |=
11720                         to_intel_plane(plane)->frontbuffer_bit;
11721
11722         switch (plane->type) {
11723         case DRM_PLANE_TYPE_PRIMARY:
11724                 intel_crtc->atomic.wait_for_flips = true;
11725                 intel_crtc->atomic.pre_disable_primary = turn_off;
11726                 intel_crtc->atomic.post_enable_primary = turn_on;
11727
11728                 if (turn_off) {
11729                         /*
11730                          * FIXME: Actually if we will still have any other
11731                          * plane enabled on the pipe we could let IPS enabled
11732                          * still, but for now lets consider that when we make
11733                          * primary invisible by setting DSPCNTR to 0 on
11734                          * update_primary_plane function IPS needs to be
11735                          * disable.
11736                          */
11737                         intel_crtc->atomic.disable_ips = true;
11738
11739                         intel_crtc->atomic.disable_fbc = true;
11740                 }
11741
11742                 /*
11743                  * FBC does not work on some platforms for rotated
11744                  * planes, so disable it when rotation is not 0 and
11745                  * update it when rotation is set back to 0.
11746                  *
11747                  * FIXME: This is redundant with the fbc update done in
11748                  * the primary plane enable function except that that
11749                  * one is done too late. We eventually need to unify
11750                  * this.
11751                  */
11752
11753                 if (visible &&
11754                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11755                     dev_priv->fbc.crtc == intel_crtc &&
11756                     plane_state->rotation != BIT(DRM_ROTATE_0))
11757                         intel_crtc->atomic.disable_fbc = true;
11758
11759                 /*
11760                  * BDW signals flip done immediately if the plane
11761                  * is disabled, even if the plane enable is already
11762                  * armed to occur at the next vblank :(
11763                  */
11764                 if (turn_on && IS_BROADWELL(dev))
11765                         intel_crtc->atomic.wait_vblank = true;
11766
11767                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11768                 break;
11769         case DRM_PLANE_TYPE_CURSOR:
11770                 break;
11771         case DRM_PLANE_TYPE_OVERLAY:
11772                 if (turn_off && !mode_changed) {
11773                         intel_crtc->atomic.wait_vblank = true;
11774                         intel_crtc->atomic.update_sprite_watermarks |=
11775                                 1 << i;
11776                 }
11777         }
11778         return 0;
11779 }
11780
11781 static bool encoders_cloneable(const struct intel_encoder *a,
11782                                const struct intel_encoder *b)
11783 {
11784         /* masks could be asymmetric, so check both ways */
11785         return a == b || (a->cloneable & (1 << b->type) &&
11786                           b->cloneable & (1 << a->type));
11787 }
11788
11789 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11790                                          struct intel_crtc *crtc,
11791                                          struct intel_encoder *encoder)
11792 {
11793         struct intel_encoder *source_encoder;
11794         struct drm_connector *connector;
11795         struct drm_connector_state *connector_state;
11796         int i;
11797
11798         for_each_connector_in_state(state, connector, connector_state, i) {
11799                 if (connector_state->crtc != &crtc->base)
11800                         continue;
11801
11802                 source_encoder =
11803                         to_intel_encoder(connector_state->best_encoder);
11804                 if (!encoders_cloneable(encoder, source_encoder))
11805                         return false;
11806         }
11807
11808         return true;
11809 }
11810
11811 static bool check_encoder_cloning(struct drm_atomic_state *state,
11812                                   struct intel_crtc *crtc)
11813 {
11814         struct intel_encoder *encoder;
11815         struct drm_connector *connector;
11816         struct drm_connector_state *connector_state;
11817         int i;
11818
11819         for_each_connector_in_state(state, connector, connector_state, i) {
11820                 if (connector_state->crtc != &crtc->base)
11821                         continue;
11822
11823                 encoder = to_intel_encoder(connector_state->best_encoder);
11824                 if (!check_single_encoder_cloning(state, crtc, encoder))
11825                         return false;
11826         }
11827
11828         return true;
11829 }
11830
11831 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11832                                    struct drm_crtc_state *crtc_state)
11833 {
11834         struct drm_device *dev = crtc->dev;
11835         struct drm_i915_private *dev_priv = dev->dev_private;
11836         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11837         struct intel_crtc_state *pipe_config =
11838                 to_intel_crtc_state(crtc_state);
11839         struct drm_atomic_state *state = crtc_state->state;
11840         int ret, idx = crtc->base.id;
11841         bool mode_changed = needs_modeset(crtc_state);
11842
11843         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11844                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11845                 return -EINVAL;
11846         }
11847
11848         I915_STATE_WARN(crtc->state->active != intel_crtc->active,
11849                 "[CRTC:%i] mismatch between state->active(%i) and crtc->active(%i)\n",
11850                 idx, crtc->state->active, intel_crtc->active);
11851
11852         if (mode_changed && !crtc_state->active)
11853                 intel_crtc->atomic.update_wm_post = true;
11854
11855         if (mode_changed && crtc_state->enable &&
11856             dev_priv->display.crtc_compute_clock &&
11857             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11858                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11859                                                            pipe_config);
11860                 if (ret)
11861                         return ret;
11862         }
11863
11864         ret = 0;
11865         if (INTEL_INFO(dev)->gen >= 9) {
11866                 if (mode_changed)
11867                         ret = skl_update_scaler_crtc(pipe_config);
11868
11869                 if (!ret)
11870                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11871                                                          pipe_config);
11872         }
11873
11874         return ret;
11875 }
11876
11877 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11878         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11879         .load_lut = intel_crtc_load_lut,
11880         .atomic_begin = intel_begin_crtc_commit,
11881         .atomic_flush = intel_finish_crtc_commit,
11882         .atomic_check = intel_crtc_atomic_check,
11883 };
11884
11885 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11886 {
11887         struct intel_connector *connector;
11888
11889         for_each_intel_connector(dev, connector) {
11890                 if (connector->base.encoder) {
11891                         connector->base.state->best_encoder =
11892                                 connector->base.encoder;
11893                         connector->base.state->crtc =
11894                                 connector->base.encoder->crtc;
11895                 } else {
11896                         connector->base.state->best_encoder = NULL;
11897                         connector->base.state->crtc = NULL;
11898                 }
11899         }
11900 }
11901
11902 static void
11903 connected_sink_compute_bpp(struct intel_connector *connector,
11904                            struct intel_crtc_state *pipe_config)
11905 {
11906         int bpp = pipe_config->pipe_bpp;
11907
11908         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11909                 connector->base.base.id,
11910                 connector->base.name);
11911
11912         /* Don't use an invalid EDID bpc value */
11913         if (connector->base.display_info.bpc &&
11914             connector->base.display_info.bpc * 3 < bpp) {
11915                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11916                               bpp, connector->base.display_info.bpc*3);
11917                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11918         }
11919
11920         /* Clamp bpp to 8 on screens without EDID 1.4 */
11921         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11922                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11923                               bpp);
11924                 pipe_config->pipe_bpp = 24;
11925         }
11926 }
11927
11928 static int
11929 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11930                           struct intel_crtc_state *pipe_config)
11931 {
11932         struct drm_device *dev = crtc->base.dev;
11933         struct drm_atomic_state *state;
11934         struct drm_connector *connector;
11935         struct drm_connector_state *connector_state;
11936         int bpp, i;
11937
11938         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11939                 bpp = 10*3;
11940         else if (INTEL_INFO(dev)->gen >= 5)
11941                 bpp = 12*3;
11942         else
11943                 bpp = 8*3;
11944
11945
11946         pipe_config->pipe_bpp = bpp;
11947
11948         state = pipe_config->base.state;
11949
11950         /* Clamp display bpp to EDID value */
11951         for_each_connector_in_state(state, connector, connector_state, i) {
11952                 if (connector_state->crtc != &crtc->base)
11953                         continue;
11954
11955                 connected_sink_compute_bpp(to_intel_connector(connector),
11956                                            pipe_config);
11957         }
11958
11959         return bpp;
11960 }
11961
11962 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11963 {
11964         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11965                         "type: 0x%x flags: 0x%x\n",
11966                 mode->crtc_clock,
11967                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11968                 mode->crtc_hsync_end, mode->crtc_htotal,
11969                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11970                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11971 }
11972
11973 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11974                                    struct intel_crtc_state *pipe_config,
11975                                    const char *context)
11976 {
11977         struct drm_device *dev = crtc->base.dev;
11978         struct drm_plane *plane;
11979         struct intel_plane *intel_plane;
11980         struct intel_plane_state *state;
11981         struct drm_framebuffer *fb;
11982
11983         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11984                       context, pipe_config, pipe_name(crtc->pipe));
11985
11986         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11987         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11988                       pipe_config->pipe_bpp, pipe_config->dither);
11989         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11990                       pipe_config->has_pch_encoder,
11991                       pipe_config->fdi_lanes,
11992                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11993                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11994                       pipe_config->fdi_m_n.tu);
11995         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11996                       pipe_config->has_dp_encoder,
11997                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11998                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11999                       pipe_config->dp_m_n.tu);
12000
12001         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12002                       pipe_config->has_dp_encoder,
12003                       pipe_config->dp_m2_n2.gmch_m,
12004                       pipe_config->dp_m2_n2.gmch_n,
12005                       pipe_config->dp_m2_n2.link_m,
12006                       pipe_config->dp_m2_n2.link_n,
12007                       pipe_config->dp_m2_n2.tu);
12008
12009         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12010                       pipe_config->has_audio,
12011                       pipe_config->has_infoframe);
12012
12013         DRM_DEBUG_KMS("requested mode:\n");
12014         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12015         DRM_DEBUG_KMS("adjusted mode:\n");
12016         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12017         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12018         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12019         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12020                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12021         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12022                       crtc->num_scalers,
12023                       pipe_config->scaler_state.scaler_users,
12024                       pipe_config->scaler_state.scaler_id);
12025         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12026                       pipe_config->gmch_pfit.control,
12027                       pipe_config->gmch_pfit.pgm_ratios,
12028                       pipe_config->gmch_pfit.lvds_border_bits);
12029         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12030                       pipe_config->pch_pfit.pos,
12031                       pipe_config->pch_pfit.size,
12032                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12033         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12034         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12035
12036         if (IS_BROXTON(dev)) {
12037                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12038                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12039                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12040                               pipe_config->ddi_pll_sel,
12041                               pipe_config->dpll_hw_state.ebb0,
12042                               pipe_config->dpll_hw_state.ebb4,
12043                               pipe_config->dpll_hw_state.pll0,
12044                               pipe_config->dpll_hw_state.pll1,
12045                               pipe_config->dpll_hw_state.pll2,
12046                               pipe_config->dpll_hw_state.pll3,
12047                               pipe_config->dpll_hw_state.pll6,
12048                               pipe_config->dpll_hw_state.pll8,
12049                               pipe_config->dpll_hw_state.pll9,
12050                               pipe_config->dpll_hw_state.pll10,
12051                               pipe_config->dpll_hw_state.pcsdw12);
12052         } else if (IS_SKYLAKE(dev)) {
12053                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12054                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12055                               pipe_config->ddi_pll_sel,
12056                               pipe_config->dpll_hw_state.ctrl1,
12057                               pipe_config->dpll_hw_state.cfgcr1,
12058                               pipe_config->dpll_hw_state.cfgcr2);
12059         } else if (HAS_DDI(dev)) {
12060                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
12061                               pipe_config->ddi_pll_sel,
12062                               pipe_config->dpll_hw_state.wrpll);
12063         } else {
12064                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12065                               "fp0: 0x%x, fp1: 0x%x\n",
12066                               pipe_config->dpll_hw_state.dpll,
12067                               pipe_config->dpll_hw_state.dpll_md,
12068                               pipe_config->dpll_hw_state.fp0,
12069                               pipe_config->dpll_hw_state.fp1);
12070         }
12071
12072         DRM_DEBUG_KMS("planes on this crtc\n");
12073         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12074                 intel_plane = to_intel_plane(plane);
12075                 if (intel_plane->pipe != crtc->pipe)
12076                         continue;
12077
12078                 state = to_intel_plane_state(plane->state);
12079                 fb = state->base.fb;
12080                 if (!fb) {
12081                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12082                                 "disabled, scaler_id = %d\n",
12083                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12084                                 plane->base.id, intel_plane->pipe,
12085                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12086                                 drm_plane_index(plane), state->scaler_id);
12087                         continue;
12088                 }
12089
12090                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12091                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12092                         plane->base.id, intel_plane->pipe,
12093                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12094                         drm_plane_index(plane));
12095                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12096                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12097                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12098                         state->scaler_id,
12099                         state->src.x1 >> 16, state->src.y1 >> 16,
12100                         drm_rect_width(&state->src) >> 16,
12101                         drm_rect_height(&state->src) >> 16,
12102                         state->dst.x1, state->dst.y1,
12103                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12104         }
12105 }
12106
12107 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12108 {
12109         struct drm_device *dev = state->dev;
12110         struct intel_encoder *encoder;
12111         struct drm_connector *connector;
12112         struct drm_connector_state *connector_state;
12113         unsigned int used_ports = 0;
12114         int i;
12115
12116         /*
12117          * Walk the connector list instead of the encoder
12118          * list to detect the problem on ddi platforms
12119          * where there's just one encoder per digital port.
12120          */
12121         for_each_connector_in_state(state, connector, connector_state, i) {
12122                 if (!connector_state->best_encoder)
12123                         continue;
12124
12125                 encoder = to_intel_encoder(connector_state->best_encoder);
12126
12127                 WARN_ON(!connector_state->crtc);
12128
12129                 switch (encoder->type) {
12130                         unsigned int port_mask;
12131                 case INTEL_OUTPUT_UNKNOWN:
12132                         if (WARN_ON(!HAS_DDI(dev)))
12133                                 break;
12134                 case INTEL_OUTPUT_DISPLAYPORT:
12135                 case INTEL_OUTPUT_HDMI:
12136                 case INTEL_OUTPUT_EDP:
12137                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12138
12139                         /* the same port mustn't appear more than once */
12140                         if (used_ports & port_mask)
12141                                 return false;
12142
12143                         used_ports |= port_mask;
12144                 default:
12145                         break;
12146                 }
12147         }
12148
12149         return true;
12150 }
12151
12152 static void
12153 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12154 {
12155         struct drm_crtc_state tmp_state;
12156         struct intel_crtc_scaler_state scaler_state;
12157         struct intel_dpll_hw_state dpll_hw_state;
12158         enum intel_dpll_id shared_dpll;
12159         uint32_t ddi_pll_sel;
12160         bool force_thru;
12161
12162         /* FIXME: before the switch to atomic started, a new pipe_config was
12163          * kzalloc'd. Code that depends on any field being zero should be
12164          * fixed, so that the crtc_state can be safely duplicated. For now,
12165          * only fields that are know to not cause problems are preserved. */
12166
12167         tmp_state = crtc_state->base;
12168         scaler_state = crtc_state->scaler_state;
12169         shared_dpll = crtc_state->shared_dpll;
12170         dpll_hw_state = crtc_state->dpll_hw_state;
12171         ddi_pll_sel = crtc_state->ddi_pll_sel;
12172         force_thru = crtc_state->pch_pfit.force_thru;
12173
12174         memset(crtc_state, 0, sizeof *crtc_state);
12175
12176         crtc_state->base = tmp_state;
12177         crtc_state->scaler_state = scaler_state;
12178         crtc_state->shared_dpll = shared_dpll;
12179         crtc_state->dpll_hw_state = dpll_hw_state;
12180         crtc_state->ddi_pll_sel = ddi_pll_sel;
12181         crtc_state->pch_pfit.force_thru = force_thru;
12182 }
12183
12184 static int
12185 intel_modeset_pipe_config(struct drm_crtc *crtc,
12186                           struct intel_crtc_state *pipe_config)
12187 {
12188         struct drm_atomic_state *state = pipe_config->base.state;
12189         struct intel_encoder *encoder;
12190         struct drm_connector *connector;
12191         struct drm_connector_state *connector_state;
12192         int base_bpp, ret = -EINVAL;
12193         int i;
12194         bool retry = true;
12195
12196         clear_intel_crtc_state(pipe_config);
12197
12198         pipe_config->cpu_transcoder =
12199                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12200
12201         /*
12202          * Sanitize sync polarity flags based on requested ones. If neither
12203          * positive or negative polarity is requested, treat this as meaning
12204          * negative polarity.
12205          */
12206         if (!(pipe_config->base.adjusted_mode.flags &
12207               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12208                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12209
12210         if (!(pipe_config->base.adjusted_mode.flags &
12211               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12212                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12213
12214         /* Compute a starting value for pipe_config->pipe_bpp taking the source
12215          * plane pixel format and any sink constraints into account. Returns the
12216          * source plane bpp so that dithering can be selected on mismatches
12217          * after encoders and crtc also have had their say. */
12218         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12219                                              pipe_config);
12220         if (base_bpp < 0)
12221                 goto fail;
12222
12223         /*
12224          * Determine the real pipe dimensions. Note that stereo modes can
12225          * increase the actual pipe size due to the frame doubling and
12226          * insertion of additional space for blanks between the frame. This
12227          * is stored in the crtc timings. We use the requested mode to do this
12228          * computation to clearly distinguish it from the adjusted mode, which
12229          * can be changed by the connectors in the below retry loop.
12230          */
12231         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12232                                &pipe_config->pipe_src_w,
12233                                &pipe_config->pipe_src_h);
12234
12235 encoder_retry:
12236         /* Ensure the port clock defaults are reset when retrying. */
12237         pipe_config->port_clock = 0;
12238         pipe_config->pixel_multiplier = 1;
12239
12240         /* Fill in default crtc timings, allow encoders to overwrite them. */
12241         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12242                               CRTC_STEREO_DOUBLE);
12243
12244         /* Pass our mode to the connectors and the CRTC to give them a chance to
12245          * adjust it according to limitations or connector properties, and also
12246          * a chance to reject the mode entirely.
12247          */
12248         for_each_connector_in_state(state, connector, connector_state, i) {
12249                 if (connector_state->crtc != crtc)
12250                         continue;
12251
12252                 encoder = to_intel_encoder(connector_state->best_encoder);
12253
12254                 if (!(encoder->compute_config(encoder, pipe_config))) {
12255                         DRM_DEBUG_KMS("Encoder config failure\n");
12256                         goto fail;
12257                 }
12258         }
12259
12260         /* Set default port clock if not overwritten by the encoder. Needs to be
12261          * done afterwards in case the encoder adjusts the mode. */
12262         if (!pipe_config->port_clock)
12263                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12264                         * pipe_config->pixel_multiplier;
12265
12266         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12267         if (ret < 0) {
12268                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12269                 goto fail;
12270         }
12271
12272         if (ret == RETRY) {
12273                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12274                         ret = -EINVAL;
12275                         goto fail;
12276                 }
12277
12278                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12279                 retry = false;
12280                 goto encoder_retry;
12281         }
12282
12283         pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
12284         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
12285                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12286
12287 fail:
12288         return ret;
12289 }
12290
12291 static bool intel_crtc_in_use(struct drm_crtc *crtc)
12292 {
12293         struct drm_encoder *encoder;
12294         struct drm_device *dev = crtc->dev;
12295
12296         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
12297                 if (encoder->crtc == crtc)
12298                         return true;
12299
12300         return false;
12301 }
12302
12303 static void
12304 intel_modeset_update_state(struct drm_atomic_state *state)
12305 {
12306         struct drm_device *dev = state->dev;
12307         struct intel_encoder *intel_encoder;
12308         struct drm_crtc *crtc;
12309         struct drm_crtc_state *crtc_state;
12310         struct drm_connector *connector;
12311         int i;
12312
12313         intel_shared_dpll_commit(state);
12314
12315         for_each_intel_encoder(dev, intel_encoder) {
12316                 if (!intel_encoder->base.crtc)
12317                         continue;
12318
12319                 crtc = intel_encoder->base.crtc;
12320                 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12321                 if (!crtc_state || !needs_modeset(crtc->state))
12322                         continue;
12323
12324                 intel_encoder->connectors_active = false;
12325         }
12326
12327         drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12328
12329         /* Double check state. */
12330         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12331                 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
12332
12333                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12334
12335                 /* Update hwmode for vblank functions */
12336                 if (crtc->state->active)
12337                         crtc->hwmode = crtc->state->adjusted_mode;
12338                 else
12339                         crtc->hwmode.crtc_clock = 0;
12340         }
12341
12342         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12343                 if (!connector->encoder || !connector->encoder->crtc)
12344                         continue;
12345
12346                 crtc = connector->encoder->crtc;
12347                 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12348                 if (!crtc_state || !needs_modeset(crtc->state))
12349                         continue;
12350
12351                 if (crtc->state->active) {
12352                         intel_encoder = to_intel_encoder(connector->encoder);
12353                         intel_encoder->connectors_active = true;
12354                 }
12355         }
12356 }
12357
12358 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12359 {
12360         int diff;
12361
12362         if (clock1 == clock2)
12363                 return true;
12364
12365         if (!clock1 || !clock2)
12366                 return false;
12367
12368         diff = abs(clock1 - clock2);
12369
12370         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12371                 return true;
12372
12373         return false;
12374 }
12375
12376 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12377         list_for_each_entry((intel_crtc), \
12378                             &(dev)->mode_config.crtc_list, \
12379                             base.head) \
12380                 if (mask & (1 <<(intel_crtc)->pipe))
12381
12382
12383 static bool
12384 intel_compare_m_n(unsigned int m, unsigned int n,
12385                   unsigned int m2, unsigned int n2,
12386                   bool exact)
12387 {
12388         if (m == m2 && n == n2)
12389                 return true;
12390
12391         if (exact || !m || !n || !m2 || !n2)
12392                 return false;
12393
12394         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12395
12396         if (m > m2) {
12397                 while (m > m2) {
12398                         m2 <<= 1;
12399                         n2 <<= 1;
12400                 }
12401         } else if (m < m2) {
12402                 while (m < m2) {
12403                         m <<= 1;
12404                         n <<= 1;
12405                 }
12406         }
12407
12408         return m == m2 && n == n2;
12409 }
12410
12411 static bool
12412 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12413                        struct intel_link_m_n *m2_n2,
12414                        bool adjust)
12415 {
12416         if (m_n->tu == m2_n2->tu &&
12417             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12418                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12419             intel_compare_m_n(m_n->link_m, m_n->link_n,
12420                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12421                 if (adjust)
12422                         *m2_n2 = *m_n;
12423
12424                 return true;
12425         }
12426
12427         return false;
12428 }
12429
12430 static bool
12431 intel_pipe_config_compare(struct drm_device *dev,
12432                           struct intel_crtc_state *current_config,
12433                           struct intel_crtc_state *pipe_config,
12434                           bool adjust)
12435 {
12436         bool ret = true;
12437
12438 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12439         do { \
12440                 if (!adjust) \
12441                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12442                 else \
12443                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12444         } while (0)
12445
12446 #define PIPE_CONF_CHECK_X(name) \
12447         if (current_config->name != pipe_config->name) { \
12448                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12449                           "(expected 0x%08x, found 0x%08x)\n", \
12450                           current_config->name, \
12451                           pipe_config->name); \
12452                 ret = false; \
12453         }
12454
12455 #define PIPE_CONF_CHECK_I(name) \
12456         if (current_config->name != pipe_config->name) { \
12457                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12458                           "(expected %i, found %i)\n", \
12459                           current_config->name, \
12460                           pipe_config->name); \
12461                 ret = false; \
12462         }
12463
12464 #define PIPE_CONF_CHECK_M_N(name) \
12465         if (!intel_compare_link_m_n(&current_config->name, \
12466                                     &pipe_config->name,\
12467                                     adjust)) { \
12468                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12469                           "(expected tu %i gmch %i/%i link %i/%i, " \
12470                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12471                           current_config->name.tu, \
12472                           current_config->name.gmch_m, \
12473                           current_config->name.gmch_n, \
12474                           current_config->name.link_m, \
12475                           current_config->name.link_n, \
12476                           pipe_config->name.tu, \
12477                           pipe_config->name.gmch_m, \
12478                           pipe_config->name.gmch_n, \
12479                           pipe_config->name.link_m, \
12480                           pipe_config->name.link_n); \
12481                 ret = false; \
12482         }
12483
12484 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12485         if (!intel_compare_link_m_n(&current_config->name, \
12486                                     &pipe_config->name, adjust) && \
12487             !intel_compare_link_m_n(&current_config->alt_name, \
12488                                     &pipe_config->name, adjust)) { \
12489                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12490                           "(expected tu %i gmch %i/%i link %i/%i, " \
12491                           "or tu %i gmch %i/%i link %i/%i, " \
12492                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12493                           current_config->name.tu, \
12494                           current_config->name.gmch_m, \
12495                           current_config->name.gmch_n, \
12496                           current_config->name.link_m, \
12497                           current_config->name.link_n, \
12498                           current_config->alt_name.tu, \
12499                           current_config->alt_name.gmch_m, \
12500                           current_config->alt_name.gmch_n, \
12501                           current_config->alt_name.link_m, \
12502                           current_config->alt_name.link_n, \
12503                           pipe_config->name.tu, \
12504                           pipe_config->name.gmch_m, \
12505                           pipe_config->name.gmch_n, \
12506                           pipe_config->name.link_m, \
12507                           pipe_config->name.link_n); \
12508                 ret = false; \
12509         }
12510
12511 /* This is required for BDW+ where there is only one set of registers for
12512  * switching between high and low RR.
12513  * This macro can be used whenever a comparison has to be made between one
12514  * hw state and multiple sw state variables.
12515  */
12516 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12517         if ((current_config->name != pipe_config->name) && \
12518                 (current_config->alt_name != pipe_config->name)) { \
12519                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12520                                   "(expected %i or %i, found %i)\n", \
12521                                   current_config->name, \
12522                                   current_config->alt_name, \
12523                                   pipe_config->name); \
12524                         ret = false; \
12525         }
12526
12527 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12528         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12529                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12530                           "(expected %i, found %i)\n", \
12531                           current_config->name & (mask), \
12532                           pipe_config->name & (mask)); \
12533                 ret = false; \
12534         }
12535
12536 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12537         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12538                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12539                           "(expected %i, found %i)\n", \
12540                           current_config->name, \
12541                           pipe_config->name); \
12542                 ret = false; \
12543         }
12544
12545 #define PIPE_CONF_QUIRK(quirk)  \
12546         ((current_config->quirks | pipe_config->quirks) & (quirk))
12547
12548         PIPE_CONF_CHECK_I(cpu_transcoder);
12549
12550         PIPE_CONF_CHECK_I(has_pch_encoder);
12551         PIPE_CONF_CHECK_I(fdi_lanes);
12552         PIPE_CONF_CHECK_M_N(fdi_m_n);
12553
12554         PIPE_CONF_CHECK_I(has_dp_encoder);
12555
12556         if (INTEL_INFO(dev)->gen < 8) {
12557                 PIPE_CONF_CHECK_M_N(dp_m_n);
12558
12559                 PIPE_CONF_CHECK_I(has_drrs);
12560                 if (current_config->has_drrs)
12561                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12562         } else
12563                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12564
12565         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12566         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12567         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12568         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12569         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12570         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12571
12572         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12573         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12574         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12575         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12576         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12577         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12578
12579         PIPE_CONF_CHECK_I(pixel_multiplier);
12580         PIPE_CONF_CHECK_I(has_hdmi_sink);
12581         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12582             IS_VALLEYVIEW(dev))
12583                 PIPE_CONF_CHECK_I(limited_color_range);
12584         PIPE_CONF_CHECK_I(has_infoframe);
12585
12586         PIPE_CONF_CHECK_I(has_audio);
12587
12588         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12589                               DRM_MODE_FLAG_INTERLACE);
12590
12591         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12592                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12593                                       DRM_MODE_FLAG_PHSYNC);
12594                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12595                                       DRM_MODE_FLAG_NHSYNC);
12596                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12597                                       DRM_MODE_FLAG_PVSYNC);
12598                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12599                                       DRM_MODE_FLAG_NVSYNC);
12600         }
12601
12602         PIPE_CONF_CHECK_I(pipe_src_w);
12603         PIPE_CONF_CHECK_I(pipe_src_h);
12604
12605         PIPE_CONF_CHECK_I(gmch_pfit.control);
12606         /* pfit ratios are autocomputed by the hw on gen4+ */
12607         if (INTEL_INFO(dev)->gen < 4)
12608                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12609         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12610
12611         PIPE_CONF_CHECK_I(pch_pfit.enabled);
12612         if (current_config->pch_pfit.enabled) {
12613                 PIPE_CONF_CHECK_I(pch_pfit.pos);
12614                 PIPE_CONF_CHECK_I(pch_pfit.size);
12615         }
12616
12617         PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12618
12619         /* BDW+ don't expose a synchronous way to read the state */
12620         if (IS_HASWELL(dev))
12621                 PIPE_CONF_CHECK_I(ips_enabled);
12622
12623         PIPE_CONF_CHECK_I(double_wide);
12624
12625         PIPE_CONF_CHECK_X(ddi_pll_sel);
12626
12627         PIPE_CONF_CHECK_I(shared_dpll);
12628         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12629         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12630         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12631         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12632         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12633         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12634         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12635         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12636
12637         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12638                 PIPE_CONF_CHECK_I(pipe_bpp);
12639
12640         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12641         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12642
12643 #undef PIPE_CONF_CHECK_X
12644 #undef PIPE_CONF_CHECK_I
12645 #undef PIPE_CONF_CHECK_I_ALT
12646 #undef PIPE_CONF_CHECK_FLAGS
12647 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12648 #undef PIPE_CONF_QUIRK
12649 #undef INTEL_ERR_OR_DBG_KMS
12650
12651         return ret;
12652 }
12653
12654 static void check_wm_state(struct drm_device *dev)
12655 {
12656         struct drm_i915_private *dev_priv = dev->dev_private;
12657         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12658         struct intel_crtc *intel_crtc;
12659         int plane;
12660
12661         if (INTEL_INFO(dev)->gen < 9)
12662                 return;
12663
12664         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12665         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12666
12667         for_each_intel_crtc(dev, intel_crtc) {
12668                 struct skl_ddb_entry *hw_entry, *sw_entry;
12669                 const enum pipe pipe = intel_crtc->pipe;
12670
12671                 if (!intel_crtc->active)
12672                         continue;
12673
12674                 /* planes */
12675                 for_each_plane(dev_priv, pipe, plane) {
12676                         hw_entry = &hw_ddb.plane[pipe][plane];
12677                         sw_entry = &sw_ddb->plane[pipe][plane];
12678
12679                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12680                                 continue;
12681
12682                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12683                                   "(expected (%u,%u), found (%u,%u))\n",
12684                                   pipe_name(pipe), plane + 1,
12685                                   sw_entry->start, sw_entry->end,
12686                                   hw_entry->start, hw_entry->end);
12687                 }
12688
12689                 /* cursor */
12690                 hw_entry = &hw_ddb.cursor[pipe];
12691                 sw_entry = &sw_ddb->cursor[pipe];
12692
12693                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12694                         continue;
12695
12696                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12697                           "(expected (%u,%u), found (%u,%u))\n",
12698                           pipe_name(pipe),
12699                           sw_entry->start, sw_entry->end,
12700                           hw_entry->start, hw_entry->end);
12701         }
12702 }
12703
12704 static void
12705 check_connector_state(struct drm_device *dev)
12706 {
12707         struct intel_connector *connector;
12708
12709         for_each_intel_connector(dev, connector) {
12710                 struct drm_encoder *encoder = connector->base.encoder;
12711                 struct drm_connector_state *state = connector->base.state;
12712
12713                 /* This also checks the encoder/connector hw state with the
12714                  * ->get_hw_state callbacks. */
12715                 intel_connector_check_state(connector);
12716
12717                 I915_STATE_WARN(state->best_encoder != encoder,
12718                      "connector's staged encoder doesn't match current encoder\n");
12719         }
12720 }
12721
12722 static void
12723 check_encoder_state(struct drm_device *dev)
12724 {
12725         struct intel_encoder *encoder;
12726         struct intel_connector *connector;
12727
12728         for_each_intel_encoder(dev, encoder) {
12729                 bool enabled = false;
12730                 bool active = false;
12731                 enum pipe pipe, tracked_pipe;
12732
12733                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12734                               encoder->base.base.id,
12735                               encoder->base.name);
12736
12737                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
12738                      "encoder's active_connectors set, but no crtc\n");
12739
12740                 for_each_intel_connector(dev, connector) {
12741                         if (connector->base.encoder != &encoder->base)
12742                                 continue;
12743                         enabled = true;
12744                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12745                                 active = true;
12746
12747                         I915_STATE_WARN(connector->base.state->crtc !=
12748                                         encoder->base.crtc,
12749                              "connector's crtc doesn't match encoder crtc\n");
12750                 }
12751                 /*
12752                  * for MST connectors if we unplug the connector is gone
12753                  * away but the encoder is still connected to a crtc
12754                  * until a modeset happens in response to the hotplug.
12755                  */
12756                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12757                         continue;
12758
12759                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12760                      "encoder's enabled state mismatch "
12761                      "(expected %i, found %i)\n",
12762                      !!encoder->base.crtc, enabled);
12763                 I915_STATE_WARN(active && !encoder->base.crtc,
12764                      "active encoder with no crtc\n");
12765
12766                 I915_STATE_WARN(encoder->connectors_active != active,
12767                      "encoder's computed active state doesn't match tracked active state "
12768                      "(expected %i, found %i)\n", active, encoder->connectors_active);
12769
12770                 active = encoder->get_hw_state(encoder, &pipe);
12771                 I915_STATE_WARN(active != encoder->connectors_active,
12772                      "encoder's hw state doesn't match sw tracking "
12773                      "(expected %i, found %i)\n",
12774                      encoder->connectors_active, active);
12775
12776                 if (!encoder->base.crtc)
12777                         continue;
12778
12779                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12780                 I915_STATE_WARN(active && pipe != tracked_pipe,
12781                      "active encoder's pipe doesn't match"
12782                      "(expected %i, found %i)\n",
12783                      tracked_pipe, pipe);
12784
12785         }
12786 }
12787
12788 static void
12789 check_crtc_state(struct drm_device *dev)
12790 {
12791         struct drm_i915_private *dev_priv = dev->dev_private;
12792         struct intel_crtc *crtc;
12793         struct intel_encoder *encoder;
12794         struct intel_crtc_state pipe_config;
12795
12796         for_each_intel_crtc(dev, crtc) {
12797                 bool enabled = false;
12798                 bool active = false;
12799
12800                 memset(&pipe_config, 0, sizeof(pipe_config));
12801
12802                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12803                               crtc->base.base.id);
12804
12805                 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12806                      "active crtc, but not enabled in sw tracking\n");
12807
12808                 for_each_intel_encoder(dev, encoder) {
12809                         if (encoder->base.crtc != &crtc->base)
12810                                 continue;
12811                         enabled = true;
12812                         if (encoder->connectors_active)
12813                                 active = true;
12814                 }
12815
12816                 I915_STATE_WARN(active != crtc->active,
12817                      "crtc's computed active state doesn't match tracked active state "
12818                      "(expected %i, found %i)\n", active, crtc->active);
12819                 I915_STATE_WARN(enabled != crtc->base.state->enable,
12820                      "crtc's computed enabled state doesn't match tracked enabled state "
12821                      "(expected %i, found %i)\n", enabled,
12822                                 crtc->base.state->enable);
12823
12824                 active = dev_priv->display.get_pipe_config(crtc,
12825                                                            &pipe_config);
12826
12827                 /* hw state is inconsistent with the pipe quirk */
12828                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12829                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12830                         active = crtc->active;
12831
12832                 for_each_intel_encoder(dev, encoder) {
12833                         enum pipe pipe;
12834                         if (encoder->base.crtc != &crtc->base)
12835                                 continue;
12836                         if (encoder->get_hw_state(encoder, &pipe))
12837                                 encoder->get_config(encoder, &pipe_config);
12838                 }
12839
12840                 I915_STATE_WARN(crtc->active != active,
12841                      "crtc active state doesn't match with hw state "
12842                      "(expected %i, found %i)\n", crtc->active, active);
12843
12844                 I915_STATE_WARN(crtc->active != crtc->base.state->active,
12845                      "transitional active state does not match atomic hw state "
12846                      "(expected %i, found %i)\n", crtc->base.state->active, crtc->active);
12847
12848                 if (!active)
12849                         continue;
12850
12851                 if (!intel_pipe_config_compare(dev, crtc->config,
12852                                                &pipe_config, false)) {
12853                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12854                         intel_dump_pipe_config(crtc, &pipe_config,
12855                                                "[hw state]");
12856                         intel_dump_pipe_config(crtc, crtc->config,
12857                                                "[sw state]");
12858                 }
12859         }
12860 }
12861
12862 static void
12863 check_shared_dpll_state(struct drm_device *dev)
12864 {
12865         struct drm_i915_private *dev_priv = dev->dev_private;
12866         struct intel_crtc *crtc;
12867         struct intel_dpll_hw_state dpll_hw_state;
12868         int i;
12869
12870         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12871                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12872                 int enabled_crtcs = 0, active_crtcs = 0;
12873                 bool active;
12874
12875                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12876
12877                 DRM_DEBUG_KMS("%s\n", pll->name);
12878
12879                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12880
12881                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12882                      "more active pll users than references: %i vs %i\n",
12883                      pll->active, hweight32(pll->config.crtc_mask));
12884                 I915_STATE_WARN(pll->active && !pll->on,
12885                      "pll in active use but not on in sw tracking\n");
12886                 I915_STATE_WARN(pll->on && !pll->active,
12887                      "pll in on but not on in use in sw tracking\n");
12888                 I915_STATE_WARN(pll->on != active,
12889                      "pll on state mismatch (expected %i, found %i)\n",
12890                      pll->on, active);
12891
12892                 for_each_intel_crtc(dev, crtc) {
12893                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12894                                 enabled_crtcs++;
12895                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12896                                 active_crtcs++;
12897                 }
12898                 I915_STATE_WARN(pll->active != active_crtcs,
12899                      "pll active crtcs mismatch (expected %i, found %i)\n",
12900                      pll->active, active_crtcs);
12901                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12902                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12903                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12904
12905                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12906                                        sizeof(dpll_hw_state)),
12907                      "pll hw state mismatch\n");
12908         }
12909 }
12910
12911 static void
12912 intel_modeset_check_state(struct drm_device *dev,
12913                           struct drm_atomic_state *old_state)
12914 {
12915         check_wm_state(dev);
12916         check_connector_state(dev);
12917         check_encoder_state(dev);
12918         check_crtc_state(dev);
12919         check_shared_dpll_state(dev);
12920 }
12921
12922 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12923                                      int dotclock)
12924 {
12925         /*
12926          * FDI already provided one idea for the dotclock.
12927          * Yell if the encoder disagrees.
12928          */
12929         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12930              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12931              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12932 }
12933
12934 static void update_scanline_offset(struct intel_crtc *crtc)
12935 {
12936         struct drm_device *dev = crtc->base.dev;
12937
12938         /*
12939          * The scanline counter increments at the leading edge of hsync.
12940          *
12941          * On most platforms it starts counting from vtotal-1 on the
12942          * first active line. That means the scanline counter value is
12943          * always one less than what we would expect. Ie. just after
12944          * start of vblank, which also occurs at start of hsync (on the
12945          * last active line), the scanline counter will read vblank_start-1.
12946          *
12947          * On gen2 the scanline counter starts counting from 1 instead
12948          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12949          * to keep the value positive), instead of adding one.
12950          *
12951          * On HSW+ the behaviour of the scanline counter depends on the output
12952          * type. For DP ports it behaves like most other platforms, but on HDMI
12953          * there's an extra 1 line difference. So we need to add two instead of
12954          * one to the value.
12955          */
12956         if (IS_GEN2(dev)) {
12957                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12958                 int vtotal;
12959
12960                 vtotal = mode->crtc_vtotal;
12961                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12962                         vtotal /= 2;
12963
12964                 crtc->scanline_offset = vtotal - 1;
12965         } else if (HAS_DDI(dev) &&
12966                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12967                 crtc->scanline_offset = 2;
12968         } else
12969                 crtc->scanline_offset = 1;
12970 }
12971
12972 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12973 {
12974         struct drm_device *dev = state->dev;
12975         struct drm_i915_private *dev_priv = to_i915(dev);
12976         struct intel_shared_dpll_config *shared_dpll = NULL;
12977         struct intel_crtc *intel_crtc;
12978         struct intel_crtc_state *intel_crtc_state;
12979         struct drm_crtc *crtc;
12980         struct drm_crtc_state *crtc_state;
12981         int i;
12982
12983         if (!dev_priv->display.crtc_compute_clock)
12984                 return;
12985
12986         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12987                 int dpll;
12988
12989                 intel_crtc = to_intel_crtc(crtc);
12990                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12991                 dpll = intel_crtc_state->shared_dpll;
12992
12993                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12994                         continue;
12995
12996                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12997
12998                 if (!shared_dpll)
12999                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13000
13001                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13002         }
13003 }
13004
13005 /*
13006  * This implements the workaround described in the "notes" section of the mode
13007  * set sequence documentation. When going from no pipes or single pipe to
13008  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13009  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13010  */
13011 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13012 {
13013         struct drm_crtc_state *crtc_state;
13014         struct intel_crtc *intel_crtc;
13015         struct drm_crtc *crtc;
13016         struct intel_crtc_state *first_crtc_state = NULL;
13017         struct intel_crtc_state *other_crtc_state = NULL;
13018         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13019         int i;
13020
13021         /* look at all crtc's that are going to be enabled in during modeset */
13022         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13023                 intel_crtc = to_intel_crtc(crtc);
13024
13025                 if (!crtc_state->active || !needs_modeset(crtc_state))
13026                         continue;
13027
13028                 if (first_crtc_state) {
13029                         other_crtc_state = to_intel_crtc_state(crtc_state);
13030                         break;
13031                 } else {
13032                         first_crtc_state = to_intel_crtc_state(crtc_state);
13033                         first_pipe = intel_crtc->pipe;
13034                 }
13035         }
13036
13037         /* No workaround needed? */
13038         if (!first_crtc_state)
13039                 return 0;
13040
13041         /* w/a possibly needed, check how many crtc's are already enabled. */
13042         for_each_intel_crtc(state->dev, intel_crtc) {
13043                 struct intel_crtc_state *pipe_config;
13044
13045                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13046                 if (IS_ERR(pipe_config))
13047                         return PTR_ERR(pipe_config);
13048
13049                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13050
13051                 if (!pipe_config->base.active ||
13052                     needs_modeset(&pipe_config->base))
13053                         continue;
13054
13055                 /* 2 or more enabled crtcs means no need for w/a */
13056                 if (enabled_pipe != INVALID_PIPE)
13057                         return 0;
13058
13059                 enabled_pipe = intel_crtc->pipe;
13060         }
13061
13062         if (enabled_pipe != INVALID_PIPE)
13063                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13064         else if (other_crtc_state)
13065                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13066
13067         return 0;
13068 }
13069
13070 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13071 {
13072         struct drm_crtc *crtc;
13073         struct drm_crtc_state *crtc_state;
13074         int ret = 0;
13075
13076         /* add all active pipes to the state */
13077         for_each_crtc(state->dev, crtc) {
13078                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13079                 if (IS_ERR(crtc_state))
13080                         return PTR_ERR(crtc_state);
13081
13082                 if (!crtc_state->active || needs_modeset(crtc_state))
13083                         continue;
13084
13085                 crtc_state->mode_changed = true;
13086
13087                 ret = drm_atomic_add_affected_connectors(state, crtc);
13088                 if (ret)
13089                         break;
13090
13091                 ret = drm_atomic_add_affected_planes(state, crtc);
13092                 if (ret)
13093                         break;
13094         }
13095
13096         return ret;
13097 }
13098
13099
13100 static int intel_modeset_checks(struct drm_atomic_state *state)
13101 {
13102         struct drm_device *dev = state->dev;
13103         struct drm_i915_private *dev_priv = dev->dev_private;
13104         int ret;
13105
13106         if (!check_digital_port_conflicts(state)) {
13107                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13108                 return -EINVAL;
13109         }
13110
13111         /*
13112          * See if the config requires any additional preparation, e.g.
13113          * to adjust global state with pipes off.  We need to do this
13114          * here so we can get the modeset_pipe updated config for the new
13115          * mode set on this crtc.  For other crtcs we need to use the
13116          * adjusted_mode bits in the crtc directly.
13117          */
13118         if (dev_priv->display.modeset_calc_cdclk) {
13119                 unsigned int cdclk;
13120
13121                 ret = dev_priv->display.modeset_calc_cdclk(state);
13122
13123                 cdclk = to_intel_atomic_state(state)->cdclk;
13124                 if (!ret && cdclk != dev_priv->cdclk_freq)
13125                         ret = intel_modeset_all_pipes(state);
13126
13127                 if (ret < 0)
13128                         return ret;
13129         } else
13130                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13131
13132         intel_modeset_clear_plls(state);
13133
13134         if (IS_HASWELL(dev))
13135                 return haswell_mode_set_planes_workaround(state);
13136
13137         return 0;
13138 }
13139
13140 /**
13141  * intel_atomic_check - validate state object
13142  * @dev: drm device
13143  * @state: state to validate
13144  */
13145 static int intel_atomic_check(struct drm_device *dev,
13146                               struct drm_atomic_state *state)
13147 {
13148         struct drm_crtc *crtc;
13149         struct drm_crtc_state *crtc_state;
13150         int ret, i;
13151         bool any_ms = false;
13152
13153         ret = drm_atomic_helper_check_modeset(dev, state);
13154         if (ret)
13155                 return ret;
13156
13157         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13158                 struct intel_crtc_state *pipe_config =
13159                         to_intel_crtc_state(crtc_state);
13160
13161                 /* Catch I915_MODE_FLAG_INHERITED */
13162                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13163                         crtc_state->mode_changed = true;
13164
13165                 if (!crtc_state->enable) {
13166                         if (needs_modeset(crtc_state))
13167                                 any_ms = true;
13168                         continue;
13169                 }
13170
13171                 if (!needs_modeset(crtc_state))
13172                         continue;
13173
13174                 /* FIXME: For only active_changed we shouldn't need to do any
13175                  * state recomputation at all. */
13176
13177                 ret = drm_atomic_add_affected_connectors(state, crtc);
13178                 if (ret)
13179                         return ret;
13180
13181                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13182                 if (ret)
13183                         return ret;
13184
13185                 if (i915.fastboot &&
13186                     intel_pipe_config_compare(state->dev,
13187                                         to_intel_crtc_state(crtc->state),
13188                                         pipe_config, true)) {
13189                         crtc_state->mode_changed = false;
13190                 }
13191
13192                 if (needs_modeset(crtc_state)) {
13193                         any_ms = true;
13194
13195                         ret = drm_atomic_add_affected_planes(state, crtc);
13196                         if (ret)
13197                                 return ret;
13198                 }
13199
13200                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13201                                        needs_modeset(crtc_state) ?
13202                                        "[modeset]" : "[fastset]");
13203         }
13204
13205         if (any_ms) {
13206                 ret = intel_modeset_checks(state);
13207
13208                 if (ret)
13209                         return ret;
13210         } else
13211                 to_intel_atomic_state(state)->cdclk =
13212                         to_i915(state->dev)->cdclk_freq;
13213
13214         return drm_atomic_helper_check_planes(state->dev, state);
13215 }
13216
13217 /**
13218  * intel_atomic_commit - commit validated state object
13219  * @dev: DRM device
13220  * @state: the top-level driver state object
13221  * @async: asynchronous commit
13222  *
13223  * This function commits a top-level state object that has been validated
13224  * with drm_atomic_helper_check().
13225  *
13226  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13227  * we can only handle plane-related operations and do not yet support
13228  * asynchronous commit.
13229  *
13230  * RETURNS
13231  * Zero for success or -errno.
13232  */
13233 static int intel_atomic_commit(struct drm_device *dev,
13234                                struct drm_atomic_state *state,
13235                                bool async)
13236 {
13237         struct drm_i915_private *dev_priv = dev->dev_private;
13238         struct drm_crtc *crtc;
13239         struct drm_crtc_state *crtc_state;
13240         int ret = 0;
13241         int i;
13242         bool any_ms = false;
13243
13244         if (async) {
13245                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13246                 return -EINVAL;
13247         }
13248
13249         ret = drm_atomic_helper_prepare_planes(dev, state);
13250         if (ret)
13251                 return ret;
13252
13253         drm_atomic_helper_swap_state(dev, state);
13254
13255         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13256                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13257
13258                 if (!needs_modeset(crtc->state))
13259                         continue;
13260
13261                 any_ms = true;
13262                 intel_pre_plane_update(intel_crtc);
13263
13264                 if (crtc_state->active) {
13265                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13266                         dev_priv->display.crtc_disable(crtc);
13267                         intel_crtc->active = false;
13268                         intel_disable_shared_dpll(intel_crtc);
13269                 }
13270         }
13271
13272         /* Only after disabling all output pipelines that will be changed can we
13273          * update the the output configuration. */
13274         intel_modeset_update_state(state);
13275
13276         /* The state has been swaped above, so state actually contains the
13277          * old state now. */
13278         if (any_ms)
13279                 modeset_update_crtc_power_domains(state);
13280
13281         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13282         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13283                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13284                 bool modeset = needs_modeset(crtc->state);
13285
13286                 if (modeset && crtc->state->active) {
13287                         update_scanline_offset(to_intel_crtc(crtc));
13288                         dev_priv->display.crtc_enable(crtc);
13289                 }
13290
13291                 if (!modeset)
13292                         intel_pre_plane_update(intel_crtc);
13293
13294                 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13295                 intel_post_plane_update(intel_crtc);
13296         }
13297
13298         /* FIXME: add subpixel order */
13299
13300         drm_atomic_helper_wait_for_vblanks(dev, state);
13301         drm_atomic_helper_cleanup_planes(dev, state);
13302
13303         if (any_ms)
13304                 intel_modeset_check_state(dev, state);
13305
13306         drm_atomic_state_free(state);
13307
13308         return 0;
13309 }
13310
13311 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13312 {
13313         struct drm_device *dev = crtc->dev;
13314         struct drm_atomic_state *state;
13315         struct drm_crtc_state *crtc_state;
13316         int ret;
13317
13318         state = drm_atomic_state_alloc(dev);
13319         if (!state) {
13320                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13321                               crtc->base.id);
13322                 return;
13323         }
13324
13325         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13326
13327 retry:
13328         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13329         ret = PTR_ERR_OR_ZERO(crtc_state);
13330         if (!ret) {
13331                 if (!crtc_state->active)
13332                         goto out;
13333
13334                 crtc_state->mode_changed = true;
13335                 ret = drm_atomic_commit(state);
13336         }
13337
13338         if (ret == -EDEADLK) {
13339                 drm_atomic_state_clear(state);
13340                 drm_modeset_backoff(state->acquire_ctx);
13341                 goto retry;
13342         }
13343
13344         if (ret)
13345 out:
13346                 drm_atomic_state_free(state);
13347 }
13348
13349 #undef for_each_intel_crtc_masked
13350
13351 static const struct drm_crtc_funcs intel_crtc_funcs = {
13352         .gamma_set = intel_crtc_gamma_set,
13353         .set_config = drm_atomic_helper_set_config,
13354         .destroy = intel_crtc_destroy,
13355         .page_flip = intel_crtc_page_flip,
13356         .atomic_duplicate_state = intel_crtc_duplicate_state,
13357         .atomic_destroy_state = intel_crtc_destroy_state,
13358 };
13359
13360 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13361                                       struct intel_shared_dpll *pll,
13362                                       struct intel_dpll_hw_state *hw_state)
13363 {
13364         uint32_t val;
13365
13366         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13367                 return false;
13368
13369         val = I915_READ(PCH_DPLL(pll->id));
13370         hw_state->dpll = val;
13371         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13372         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13373
13374         return val & DPLL_VCO_ENABLE;
13375 }
13376
13377 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13378                                   struct intel_shared_dpll *pll)
13379 {
13380         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13381         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13382 }
13383
13384 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13385                                 struct intel_shared_dpll *pll)
13386 {
13387         /* PCH refclock must be enabled first */
13388         ibx_assert_pch_refclk_enabled(dev_priv);
13389
13390         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13391
13392         /* Wait for the clocks to stabilize. */
13393         POSTING_READ(PCH_DPLL(pll->id));
13394         udelay(150);
13395
13396         /* The pixel multiplier can only be updated once the
13397          * DPLL is enabled and the clocks are stable.
13398          *
13399          * So write it again.
13400          */
13401         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13402         POSTING_READ(PCH_DPLL(pll->id));
13403         udelay(200);
13404 }
13405
13406 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13407                                  struct intel_shared_dpll *pll)
13408 {
13409         struct drm_device *dev = dev_priv->dev;
13410         struct intel_crtc *crtc;
13411
13412         /* Make sure no transcoder isn't still depending on us. */
13413         for_each_intel_crtc(dev, crtc) {
13414                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13415                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13416         }
13417
13418         I915_WRITE(PCH_DPLL(pll->id), 0);
13419         POSTING_READ(PCH_DPLL(pll->id));
13420         udelay(200);
13421 }
13422
13423 static char *ibx_pch_dpll_names[] = {
13424         "PCH DPLL A",
13425         "PCH DPLL B",
13426 };
13427
13428 static void ibx_pch_dpll_init(struct drm_device *dev)
13429 {
13430         struct drm_i915_private *dev_priv = dev->dev_private;
13431         int i;
13432
13433         dev_priv->num_shared_dpll = 2;
13434
13435         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13436                 dev_priv->shared_dplls[i].id = i;
13437                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13438                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13439                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13440                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13441                 dev_priv->shared_dplls[i].get_hw_state =
13442                         ibx_pch_dpll_get_hw_state;
13443         }
13444 }
13445
13446 static void intel_shared_dpll_init(struct drm_device *dev)
13447 {
13448         struct drm_i915_private *dev_priv = dev->dev_private;
13449
13450         intel_update_cdclk(dev);
13451
13452         if (HAS_DDI(dev))
13453                 intel_ddi_pll_init(dev);
13454         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13455                 ibx_pch_dpll_init(dev);
13456         else
13457                 dev_priv->num_shared_dpll = 0;
13458
13459         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13460 }
13461
13462 /**
13463  * intel_prepare_plane_fb - Prepare fb for usage on plane
13464  * @plane: drm plane to prepare for
13465  * @fb: framebuffer to prepare for presentation
13466  *
13467  * Prepares a framebuffer for usage on a display plane.  Generally this
13468  * involves pinning the underlying object and updating the frontbuffer tracking
13469  * bits.  Some older platforms need special physical address handling for
13470  * cursor planes.
13471  *
13472  * Returns 0 on success, negative error code on failure.
13473  */
13474 int
13475 intel_prepare_plane_fb(struct drm_plane *plane,
13476                        struct drm_framebuffer *fb,
13477                        const struct drm_plane_state *new_state)
13478 {
13479         struct drm_device *dev = plane->dev;
13480         struct intel_plane *intel_plane = to_intel_plane(plane);
13481         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13482         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13483         int ret = 0;
13484
13485         if (!obj)
13486                 return 0;
13487
13488         mutex_lock(&dev->struct_mutex);
13489
13490         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13491             INTEL_INFO(dev)->cursor_needs_physical) {
13492                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13493                 ret = i915_gem_object_attach_phys(obj, align);
13494                 if (ret)
13495                         DRM_DEBUG_KMS("failed to attach phys object\n");
13496         } else {
13497                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13498         }
13499
13500         if (ret == 0)
13501                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13502
13503         mutex_unlock(&dev->struct_mutex);
13504
13505         return ret;
13506 }
13507
13508 /**
13509  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13510  * @plane: drm plane to clean up for
13511  * @fb: old framebuffer that was on plane
13512  *
13513  * Cleans up a framebuffer that has just been removed from a plane.
13514  */
13515 void
13516 intel_cleanup_plane_fb(struct drm_plane *plane,
13517                        struct drm_framebuffer *fb,
13518                        const struct drm_plane_state *old_state)
13519 {
13520         struct drm_device *dev = plane->dev;
13521         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13522
13523         if (WARN_ON(!obj))
13524                 return;
13525
13526         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13527             !INTEL_INFO(dev)->cursor_needs_physical) {
13528                 mutex_lock(&dev->struct_mutex);
13529                 intel_unpin_fb_obj(fb, old_state);
13530                 mutex_unlock(&dev->struct_mutex);
13531         }
13532 }
13533
13534 int
13535 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13536 {
13537         int max_scale;
13538         struct drm_device *dev;
13539         struct drm_i915_private *dev_priv;
13540         int crtc_clock, cdclk;
13541
13542         if (!intel_crtc || !crtc_state)
13543                 return DRM_PLANE_HELPER_NO_SCALING;
13544
13545         dev = intel_crtc->base.dev;
13546         dev_priv = dev->dev_private;
13547         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13548         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13549
13550         if (!crtc_clock || !cdclk)
13551                 return DRM_PLANE_HELPER_NO_SCALING;
13552
13553         /*
13554          * skl max scale is lower of:
13555          *    close to 3 but not 3, -1 is for that purpose
13556          *            or
13557          *    cdclk/crtc_clock
13558          */
13559         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13560
13561         return max_scale;
13562 }
13563
13564 static int
13565 intel_check_primary_plane(struct drm_plane *plane,
13566                           struct intel_crtc_state *crtc_state,
13567                           struct intel_plane_state *state)
13568 {
13569         struct drm_crtc *crtc = state->base.crtc;
13570         struct drm_framebuffer *fb = state->base.fb;
13571         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13572         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13573         bool can_position = false;
13574
13575         /* use scaler when colorkey is not required */
13576         if (INTEL_INFO(plane->dev)->gen >= 9 &&
13577             state->ckey.flags == I915_SET_COLORKEY_NONE) {
13578                 min_scale = 1;
13579                 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13580                 can_position = true;
13581         }
13582
13583         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13584                                              &state->dst, &state->clip,
13585                                              min_scale, max_scale,
13586                                              can_position, true,
13587                                              &state->visible);
13588 }
13589
13590 static void
13591 intel_commit_primary_plane(struct drm_plane *plane,
13592                            struct intel_plane_state *state)
13593 {
13594         struct drm_crtc *crtc = state->base.crtc;
13595         struct drm_framebuffer *fb = state->base.fb;
13596         struct drm_device *dev = plane->dev;
13597         struct drm_i915_private *dev_priv = dev->dev_private;
13598         struct intel_crtc *intel_crtc;
13599         struct drm_rect *src = &state->src;
13600
13601         crtc = crtc ? crtc : plane->crtc;
13602         intel_crtc = to_intel_crtc(crtc);
13603
13604         plane->fb = fb;
13605         crtc->x = src->x1 >> 16;
13606         crtc->y = src->y1 >> 16;
13607
13608         if (!crtc->state->active)
13609                 return;
13610
13611         if (state->visible)
13612                 /* FIXME: kill this fastboot hack */
13613                 intel_update_pipe_size(intel_crtc);
13614
13615         dev_priv->display.update_primary_plane(crtc, fb, crtc->x, crtc->y);
13616 }
13617
13618 static void
13619 intel_disable_primary_plane(struct drm_plane *plane,
13620                             struct drm_crtc *crtc)
13621 {
13622         struct drm_device *dev = plane->dev;
13623         struct drm_i915_private *dev_priv = dev->dev_private;
13624
13625         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13626 }
13627
13628 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13629                                     struct drm_crtc_state *old_crtc_state)
13630 {
13631         struct drm_device *dev = crtc->dev;
13632         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13633
13634         if (intel_crtc->atomic.update_wm_pre)
13635                 intel_update_watermarks(crtc);
13636
13637         /* Perform vblank evasion around commit operation */
13638         if (crtc->state->active)
13639                 intel_pipe_update_start(intel_crtc, &intel_crtc->start_vbl_count);
13640
13641         if (!needs_modeset(crtc->state) && INTEL_INFO(dev)->gen >= 9)
13642                 skl_detach_scalers(intel_crtc);
13643 }
13644
13645 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13646                                      struct drm_crtc_state *old_crtc_state)
13647 {
13648         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13649
13650         if (crtc->state->active)
13651                 intel_pipe_update_end(intel_crtc, intel_crtc->start_vbl_count);
13652 }
13653
13654 /**
13655  * intel_plane_destroy - destroy a plane
13656  * @plane: plane to destroy
13657  *
13658  * Common destruction function for all types of planes (primary, cursor,
13659  * sprite).
13660  */
13661 void intel_plane_destroy(struct drm_plane *plane)
13662 {
13663         struct intel_plane *intel_plane = to_intel_plane(plane);
13664         drm_plane_cleanup(plane);
13665         kfree(intel_plane);
13666 }
13667
13668 const struct drm_plane_funcs intel_plane_funcs = {
13669         .update_plane = drm_atomic_helper_update_plane,
13670         .disable_plane = drm_atomic_helper_disable_plane,
13671         .destroy = intel_plane_destroy,
13672         .set_property = drm_atomic_helper_plane_set_property,
13673         .atomic_get_property = intel_plane_atomic_get_property,
13674         .atomic_set_property = intel_plane_atomic_set_property,
13675         .atomic_duplicate_state = intel_plane_duplicate_state,
13676         .atomic_destroy_state = intel_plane_destroy_state,
13677
13678 };
13679
13680 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13681                                                     int pipe)
13682 {
13683         struct intel_plane *primary;
13684         struct intel_plane_state *state;
13685         const uint32_t *intel_primary_formats;
13686         int num_formats;
13687
13688         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13689         if (primary == NULL)
13690                 return NULL;
13691
13692         state = intel_create_plane_state(&primary->base);
13693         if (!state) {
13694                 kfree(primary);
13695                 return NULL;
13696         }
13697         primary->base.state = &state->base;
13698
13699         primary->can_scale = false;
13700         primary->max_downscale = 1;
13701         if (INTEL_INFO(dev)->gen >= 9) {
13702                 primary->can_scale = true;
13703                 state->scaler_id = -1;
13704         }
13705         primary->pipe = pipe;
13706         primary->plane = pipe;
13707         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13708         primary->check_plane = intel_check_primary_plane;
13709         primary->commit_plane = intel_commit_primary_plane;
13710         primary->disable_plane = intel_disable_primary_plane;
13711         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13712                 primary->plane = !pipe;
13713
13714         if (INTEL_INFO(dev)->gen >= 9) {
13715                 intel_primary_formats = skl_primary_formats;
13716                 num_formats = ARRAY_SIZE(skl_primary_formats);
13717         } else if (INTEL_INFO(dev)->gen >= 4) {
13718                 intel_primary_formats = i965_primary_formats;
13719                 num_formats = ARRAY_SIZE(i965_primary_formats);
13720         } else {
13721                 intel_primary_formats = i8xx_primary_formats;
13722                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13723         }
13724
13725         drm_universal_plane_init(dev, &primary->base, 0,
13726                                  &intel_plane_funcs,
13727                                  intel_primary_formats, num_formats,
13728                                  DRM_PLANE_TYPE_PRIMARY);
13729
13730         if (INTEL_INFO(dev)->gen >= 4)
13731                 intel_create_rotation_property(dev, primary);
13732
13733         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13734
13735         return &primary->base;
13736 }
13737
13738 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13739 {
13740         if (!dev->mode_config.rotation_property) {
13741                 unsigned long flags = BIT(DRM_ROTATE_0) |
13742                         BIT(DRM_ROTATE_180);
13743
13744                 if (INTEL_INFO(dev)->gen >= 9)
13745                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13746
13747                 dev->mode_config.rotation_property =
13748                         drm_mode_create_rotation_property(dev, flags);
13749         }
13750         if (dev->mode_config.rotation_property)
13751                 drm_object_attach_property(&plane->base.base,
13752                                 dev->mode_config.rotation_property,
13753                                 plane->base.state->rotation);
13754 }
13755
13756 static int
13757 intel_check_cursor_plane(struct drm_plane *plane,
13758                          struct intel_crtc_state *crtc_state,
13759                          struct intel_plane_state *state)
13760 {
13761         struct drm_crtc *crtc = crtc_state->base.crtc;
13762         struct drm_framebuffer *fb = state->base.fb;
13763         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13764         unsigned stride;
13765         int ret;
13766
13767         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13768                                             &state->dst, &state->clip,
13769                                             DRM_PLANE_HELPER_NO_SCALING,
13770                                             DRM_PLANE_HELPER_NO_SCALING,
13771                                             true, true, &state->visible);
13772         if (ret)
13773                 return ret;
13774
13775         /* if we want to turn off the cursor ignore width and height */
13776         if (!obj)
13777                 return 0;
13778
13779         /* Check for which cursor types we support */
13780         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13781                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13782                           state->base.crtc_w, state->base.crtc_h);
13783                 return -EINVAL;
13784         }
13785
13786         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13787         if (obj->base.size < stride * state->base.crtc_h) {
13788                 DRM_DEBUG_KMS("buffer is too small\n");
13789                 return -ENOMEM;
13790         }
13791
13792         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13793                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13794                 return -EINVAL;
13795         }
13796
13797         return 0;
13798 }
13799
13800 static void
13801 intel_disable_cursor_plane(struct drm_plane *plane,
13802                            struct drm_crtc *crtc)
13803 {
13804         intel_crtc_update_cursor(crtc, false);
13805 }
13806
13807 static void
13808 intel_commit_cursor_plane(struct drm_plane *plane,
13809                           struct intel_plane_state *state)
13810 {
13811         struct drm_crtc *crtc = state->base.crtc;
13812         struct drm_device *dev = plane->dev;
13813         struct intel_crtc *intel_crtc;
13814         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13815         uint32_t addr;
13816
13817         crtc = crtc ? crtc : plane->crtc;
13818         intel_crtc = to_intel_crtc(crtc);
13819
13820         plane->fb = state->base.fb;
13821         crtc->cursor_x = state->base.crtc_x;
13822         crtc->cursor_y = state->base.crtc_y;
13823
13824         if (intel_crtc->cursor_bo == obj)
13825                 goto update;
13826
13827         if (!obj)
13828                 addr = 0;
13829         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13830                 addr = i915_gem_obj_ggtt_offset(obj);
13831         else
13832                 addr = obj->phys_handle->busaddr;
13833
13834         intel_crtc->cursor_addr = addr;
13835         intel_crtc->cursor_bo = obj;
13836
13837 update:
13838         if (crtc->state->active)
13839                 intel_crtc_update_cursor(crtc, state->visible);
13840 }
13841
13842 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13843                                                    int pipe)
13844 {
13845         struct intel_plane *cursor;
13846         struct intel_plane_state *state;
13847
13848         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13849         if (cursor == NULL)
13850                 return NULL;
13851
13852         state = intel_create_plane_state(&cursor->base);
13853         if (!state) {
13854                 kfree(cursor);
13855                 return NULL;
13856         }
13857         cursor->base.state = &state->base;
13858
13859         cursor->can_scale = false;
13860         cursor->max_downscale = 1;
13861         cursor->pipe = pipe;
13862         cursor->plane = pipe;
13863         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13864         cursor->check_plane = intel_check_cursor_plane;
13865         cursor->commit_plane = intel_commit_cursor_plane;
13866         cursor->disable_plane = intel_disable_cursor_plane;
13867
13868         drm_universal_plane_init(dev, &cursor->base, 0,
13869                                  &intel_plane_funcs,
13870                                  intel_cursor_formats,
13871                                  ARRAY_SIZE(intel_cursor_formats),
13872                                  DRM_PLANE_TYPE_CURSOR);
13873
13874         if (INTEL_INFO(dev)->gen >= 4) {
13875                 if (!dev->mode_config.rotation_property)
13876                         dev->mode_config.rotation_property =
13877                                 drm_mode_create_rotation_property(dev,
13878                                                         BIT(DRM_ROTATE_0) |
13879                                                         BIT(DRM_ROTATE_180));
13880                 if (dev->mode_config.rotation_property)
13881                         drm_object_attach_property(&cursor->base.base,
13882                                 dev->mode_config.rotation_property,
13883                                 state->base.rotation);
13884         }
13885
13886         if (INTEL_INFO(dev)->gen >=9)
13887                 state->scaler_id = -1;
13888
13889         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13890
13891         return &cursor->base;
13892 }
13893
13894 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13895         struct intel_crtc_state *crtc_state)
13896 {
13897         int i;
13898         struct intel_scaler *intel_scaler;
13899         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13900
13901         for (i = 0; i < intel_crtc->num_scalers; i++) {
13902                 intel_scaler = &scaler_state->scalers[i];
13903                 intel_scaler->in_use = 0;
13904                 intel_scaler->mode = PS_SCALER_MODE_DYN;
13905         }
13906
13907         scaler_state->scaler_id = -1;
13908 }
13909
13910 static void intel_crtc_init(struct drm_device *dev, int pipe)
13911 {
13912         struct drm_i915_private *dev_priv = dev->dev_private;
13913         struct intel_crtc *intel_crtc;
13914         struct intel_crtc_state *crtc_state = NULL;
13915         struct drm_plane *primary = NULL;
13916         struct drm_plane *cursor = NULL;
13917         int i, ret;
13918
13919         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13920         if (intel_crtc == NULL)
13921                 return;
13922
13923         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13924         if (!crtc_state)
13925                 goto fail;
13926         intel_crtc->config = crtc_state;
13927         intel_crtc->base.state = &crtc_state->base;
13928         crtc_state->base.crtc = &intel_crtc->base;
13929
13930         /* initialize shared scalers */
13931         if (INTEL_INFO(dev)->gen >= 9) {
13932                 if (pipe == PIPE_C)
13933                         intel_crtc->num_scalers = 1;
13934                 else
13935                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
13936
13937                 skl_init_scalers(dev, intel_crtc, crtc_state);
13938         }
13939
13940         primary = intel_primary_plane_create(dev, pipe);
13941         if (!primary)
13942                 goto fail;
13943
13944         cursor = intel_cursor_plane_create(dev, pipe);
13945         if (!cursor)
13946                 goto fail;
13947
13948         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13949                                         cursor, &intel_crtc_funcs);
13950         if (ret)
13951                 goto fail;
13952
13953         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13954         for (i = 0; i < 256; i++) {
13955                 intel_crtc->lut_r[i] = i;
13956                 intel_crtc->lut_g[i] = i;
13957                 intel_crtc->lut_b[i] = i;
13958         }
13959
13960         /*
13961          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13962          * is hooked to pipe B. Hence we want plane A feeding pipe B.
13963          */
13964         intel_crtc->pipe = pipe;
13965         intel_crtc->plane = pipe;
13966         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13967                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13968                 intel_crtc->plane = !pipe;
13969         }
13970
13971         intel_crtc->cursor_base = ~0;
13972         intel_crtc->cursor_cntl = ~0;
13973         intel_crtc->cursor_size = ~0;
13974
13975         intel_crtc->wm.cxsr_allowed = true;
13976
13977         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13978                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13979         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13980         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13981
13982         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13983
13984         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13985         return;
13986
13987 fail:
13988         if (primary)
13989                 drm_plane_cleanup(primary);
13990         if (cursor)
13991                 drm_plane_cleanup(cursor);
13992         kfree(crtc_state);
13993         kfree(intel_crtc);
13994 }
13995
13996 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13997 {
13998         struct drm_encoder *encoder = connector->base.encoder;
13999         struct drm_device *dev = connector->base.dev;
14000
14001         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14002
14003         if (!encoder || WARN_ON(!encoder->crtc))
14004                 return INVALID_PIPE;
14005
14006         return to_intel_crtc(encoder->crtc)->pipe;
14007 }
14008
14009 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14010                                 struct drm_file *file)
14011 {
14012         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14013         struct drm_crtc *drmmode_crtc;
14014         struct intel_crtc *crtc;
14015
14016         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14017
14018         if (!drmmode_crtc) {
14019                 DRM_ERROR("no such CRTC id\n");
14020                 return -ENOENT;
14021         }
14022
14023         crtc = to_intel_crtc(drmmode_crtc);
14024         pipe_from_crtc_id->pipe = crtc->pipe;
14025
14026         return 0;
14027 }
14028
14029 static int intel_encoder_clones(struct intel_encoder *encoder)
14030 {
14031         struct drm_device *dev = encoder->base.dev;
14032         struct intel_encoder *source_encoder;
14033         int index_mask = 0;
14034         int entry = 0;
14035
14036         for_each_intel_encoder(dev, source_encoder) {
14037                 if (encoders_cloneable(encoder, source_encoder))
14038                         index_mask |= (1 << entry);
14039
14040                 entry++;
14041         }
14042
14043         return index_mask;
14044 }
14045
14046 static bool has_edp_a(struct drm_device *dev)
14047 {
14048         struct drm_i915_private *dev_priv = dev->dev_private;
14049
14050         if (!IS_MOBILE(dev))
14051                 return false;
14052
14053         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14054                 return false;
14055
14056         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14057                 return false;
14058
14059         return true;
14060 }
14061
14062 static bool intel_crt_present(struct drm_device *dev)
14063 {
14064         struct drm_i915_private *dev_priv = dev->dev_private;
14065
14066         if (INTEL_INFO(dev)->gen >= 9)
14067                 return false;
14068
14069         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14070                 return false;
14071
14072         if (IS_CHERRYVIEW(dev))
14073                 return false;
14074
14075         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14076                 return false;
14077
14078         return true;
14079 }
14080
14081 static void intel_setup_outputs(struct drm_device *dev)
14082 {
14083         struct drm_i915_private *dev_priv = dev->dev_private;
14084         struct intel_encoder *encoder;
14085         bool dpd_is_edp = false;
14086
14087         intel_lvds_init(dev);
14088
14089         if (intel_crt_present(dev))
14090                 intel_crt_init(dev);
14091
14092         if (IS_BROXTON(dev)) {
14093                 /*
14094                  * FIXME: Broxton doesn't support port detection via the
14095                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14096                  * detect the ports.
14097                  */
14098                 intel_ddi_init(dev, PORT_A);
14099                 intel_ddi_init(dev, PORT_B);
14100                 intel_ddi_init(dev, PORT_C);
14101         } else if (HAS_DDI(dev)) {
14102                 int found;
14103
14104                 /*
14105                  * Haswell uses DDI functions to detect digital outputs.
14106                  * On SKL pre-D0 the strap isn't connected, so we assume
14107                  * it's there.
14108                  */
14109                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
14110                 /* WaIgnoreDDIAStrap: skl */
14111                 if (found ||
14112                     (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
14113                         intel_ddi_init(dev, PORT_A);
14114
14115                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14116                  * register */
14117                 found = I915_READ(SFUSE_STRAP);
14118
14119                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14120                         intel_ddi_init(dev, PORT_B);
14121                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14122                         intel_ddi_init(dev, PORT_C);
14123                 if (found & SFUSE_STRAP_DDID_DETECTED)
14124                         intel_ddi_init(dev, PORT_D);
14125         } else if (HAS_PCH_SPLIT(dev)) {
14126                 int found;
14127                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14128
14129                 if (has_edp_a(dev))
14130                         intel_dp_init(dev, DP_A, PORT_A);
14131
14132                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14133                         /* PCH SDVOB multiplex with HDMIB */
14134                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
14135                         if (!found)
14136                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14137                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14138                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14139                 }
14140
14141                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14142                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14143
14144                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14145                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14146
14147                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14148                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14149
14150                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14151                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14152         } else if (IS_VALLEYVIEW(dev)) {
14153                 /*
14154                  * The DP_DETECTED bit is the latched state of the DDC
14155                  * SDA pin at boot. However since eDP doesn't require DDC
14156                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14157                  * eDP ports may have been muxed to an alternate function.
14158                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14159                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14160                  * detect eDP ports.
14161                  */
14162                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14163                     !intel_dp_is_edp(dev, PORT_B))
14164                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14165                                         PORT_B);
14166                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14167                     intel_dp_is_edp(dev, PORT_B))
14168                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14169
14170                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14171                     !intel_dp_is_edp(dev, PORT_C))
14172                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14173                                         PORT_C);
14174                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14175                     intel_dp_is_edp(dev, PORT_C))
14176                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14177
14178                 if (IS_CHERRYVIEW(dev)) {
14179                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14180                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14181                                                 PORT_D);
14182                         /* eDP not supported on port D, so don't check VBT */
14183                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14184                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14185                 }
14186
14187                 intel_dsi_init(dev);
14188         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14189                 bool found = false;
14190
14191                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14192                         DRM_DEBUG_KMS("probing SDVOB\n");
14193                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14194                         if (!found && IS_G4X(dev)) {
14195                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14196                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14197                         }
14198
14199                         if (!found && IS_G4X(dev))
14200                                 intel_dp_init(dev, DP_B, PORT_B);
14201                 }
14202
14203                 /* Before G4X SDVOC doesn't have its own detect register */
14204
14205                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14206                         DRM_DEBUG_KMS("probing SDVOC\n");
14207                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14208                 }
14209
14210                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14211
14212                         if (IS_G4X(dev)) {
14213                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14214                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14215                         }
14216                         if (IS_G4X(dev))
14217                                 intel_dp_init(dev, DP_C, PORT_C);
14218                 }
14219
14220                 if (IS_G4X(dev) &&
14221                     (I915_READ(DP_D) & DP_DETECTED))
14222                         intel_dp_init(dev, DP_D, PORT_D);
14223         } else if (IS_GEN2(dev))
14224                 intel_dvo_init(dev);
14225
14226         if (SUPPORTS_TV(dev))
14227                 intel_tv_init(dev);
14228
14229         intel_psr_init(dev);
14230
14231         for_each_intel_encoder(dev, encoder) {
14232                 encoder->base.possible_crtcs = encoder->crtc_mask;
14233                 encoder->base.possible_clones =
14234                         intel_encoder_clones(encoder);
14235         }
14236
14237         intel_init_pch_refclk(dev);
14238
14239         drm_helper_move_panel_connectors_to_head(dev);
14240 }
14241
14242 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14243 {
14244         struct drm_device *dev = fb->dev;
14245         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14246
14247         drm_framebuffer_cleanup(fb);
14248         mutex_lock(&dev->struct_mutex);
14249         WARN_ON(!intel_fb->obj->framebuffer_references--);
14250         drm_gem_object_unreference(&intel_fb->obj->base);
14251         mutex_unlock(&dev->struct_mutex);
14252         kfree(intel_fb);
14253 }
14254
14255 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14256                                                 struct drm_file *file,
14257                                                 unsigned int *handle)
14258 {
14259         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14260         struct drm_i915_gem_object *obj = intel_fb->obj;
14261
14262         return drm_gem_handle_create(file, &obj->base, handle);
14263 }
14264
14265 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14266                                         struct drm_file *file,
14267                                         unsigned flags, unsigned color,
14268                                         struct drm_clip_rect *clips,
14269                                         unsigned num_clips)
14270 {
14271         struct drm_device *dev = fb->dev;
14272         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14273         struct drm_i915_gem_object *obj = intel_fb->obj;
14274
14275         mutex_lock(&dev->struct_mutex);
14276         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14277         mutex_unlock(&dev->struct_mutex);
14278
14279         return 0;
14280 }
14281
14282 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14283         .destroy = intel_user_framebuffer_destroy,
14284         .create_handle = intel_user_framebuffer_create_handle,
14285         .dirty = intel_user_framebuffer_dirty,
14286 };
14287
14288 static
14289 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14290                          uint32_t pixel_format)
14291 {
14292         u32 gen = INTEL_INFO(dev)->gen;
14293
14294         if (gen >= 9) {
14295                 /* "The stride in bytes must not exceed the of the size of 8K
14296                  *  pixels and 32K bytes."
14297                  */
14298                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14299         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14300                 return 32*1024;
14301         } else if (gen >= 4) {
14302                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14303                         return 16*1024;
14304                 else
14305                         return 32*1024;
14306         } else if (gen >= 3) {
14307                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14308                         return 8*1024;
14309                 else
14310                         return 16*1024;
14311         } else {
14312                 /* XXX DSPC is limited to 4k tiled */
14313                 return 8*1024;
14314         }
14315 }
14316
14317 static int intel_framebuffer_init(struct drm_device *dev,
14318                                   struct intel_framebuffer *intel_fb,
14319                                   struct drm_mode_fb_cmd2 *mode_cmd,
14320                                   struct drm_i915_gem_object *obj)
14321 {
14322         unsigned int aligned_height;
14323         int ret;
14324         u32 pitch_limit, stride_alignment;
14325
14326         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14327
14328         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14329                 /* Enforce that fb modifier and tiling mode match, but only for
14330                  * X-tiled. This is needed for FBC. */
14331                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14332                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14333                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14334                         return -EINVAL;
14335                 }
14336         } else {
14337                 if (obj->tiling_mode == I915_TILING_X)
14338                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14339                 else if (obj->tiling_mode == I915_TILING_Y) {
14340                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14341                         return -EINVAL;
14342                 }
14343         }
14344
14345         /* Passed in modifier sanity checking. */
14346         switch (mode_cmd->modifier[0]) {
14347         case I915_FORMAT_MOD_Y_TILED:
14348         case I915_FORMAT_MOD_Yf_TILED:
14349                 if (INTEL_INFO(dev)->gen < 9) {
14350                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14351                                   mode_cmd->modifier[0]);
14352                         return -EINVAL;
14353                 }
14354         case DRM_FORMAT_MOD_NONE:
14355         case I915_FORMAT_MOD_X_TILED:
14356                 break;
14357         default:
14358                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14359                           mode_cmd->modifier[0]);
14360                 return -EINVAL;
14361         }
14362
14363         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14364                                                      mode_cmd->pixel_format);
14365         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14366                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14367                           mode_cmd->pitches[0], stride_alignment);
14368                 return -EINVAL;
14369         }
14370
14371         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14372                                            mode_cmd->pixel_format);
14373         if (mode_cmd->pitches[0] > pitch_limit) {
14374                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14375                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14376                           "tiled" : "linear",
14377                           mode_cmd->pitches[0], pitch_limit);
14378                 return -EINVAL;
14379         }
14380
14381         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14382             mode_cmd->pitches[0] != obj->stride) {
14383                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14384                           mode_cmd->pitches[0], obj->stride);
14385                 return -EINVAL;
14386         }
14387
14388         /* Reject formats not supported by any plane early. */
14389         switch (mode_cmd->pixel_format) {
14390         case DRM_FORMAT_C8:
14391         case DRM_FORMAT_RGB565:
14392         case DRM_FORMAT_XRGB8888:
14393         case DRM_FORMAT_ARGB8888:
14394                 break;
14395         case DRM_FORMAT_XRGB1555:
14396                 if (INTEL_INFO(dev)->gen > 3) {
14397                         DRM_DEBUG("unsupported pixel format: %s\n",
14398                                   drm_get_format_name(mode_cmd->pixel_format));
14399                         return -EINVAL;
14400                 }
14401                 break;
14402         case DRM_FORMAT_ABGR8888:
14403                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14404                         DRM_DEBUG("unsupported pixel format: %s\n",
14405                                   drm_get_format_name(mode_cmd->pixel_format));
14406                         return -EINVAL;
14407                 }
14408                 break;
14409         case DRM_FORMAT_XBGR8888:
14410         case DRM_FORMAT_XRGB2101010:
14411         case DRM_FORMAT_XBGR2101010:
14412                 if (INTEL_INFO(dev)->gen < 4) {
14413                         DRM_DEBUG("unsupported pixel format: %s\n",
14414                                   drm_get_format_name(mode_cmd->pixel_format));
14415                         return -EINVAL;
14416                 }
14417                 break;
14418         case DRM_FORMAT_ABGR2101010:
14419                 if (!IS_VALLEYVIEW(dev)) {
14420                         DRM_DEBUG("unsupported pixel format: %s\n",
14421                                   drm_get_format_name(mode_cmd->pixel_format));
14422                         return -EINVAL;
14423                 }
14424                 break;
14425         case DRM_FORMAT_YUYV:
14426         case DRM_FORMAT_UYVY:
14427         case DRM_FORMAT_YVYU:
14428         case DRM_FORMAT_VYUY:
14429                 if (INTEL_INFO(dev)->gen < 5) {
14430                         DRM_DEBUG("unsupported pixel format: %s\n",
14431                                   drm_get_format_name(mode_cmd->pixel_format));
14432                         return -EINVAL;
14433                 }
14434                 break;
14435         default:
14436                 DRM_DEBUG("unsupported pixel format: %s\n",
14437                           drm_get_format_name(mode_cmd->pixel_format));
14438                 return -EINVAL;
14439         }
14440
14441         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14442         if (mode_cmd->offsets[0] != 0)
14443                 return -EINVAL;
14444
14445         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14446                                                mode_cmd->pixel_format,
14447                                                mode_cmd->modifier[0]);
14448         /* FIXME drm helper for size checks (especially planar formats)? */
14449         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14450                 return -EINVAL;
14451
14452         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14453         intel_fb->obj = obj;
14454         intel_fb->obj->framebuffer_references++;
14455
14456         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14457         if (ret) {
14458                 DRM_ERROR("framebuffer init failed %d\n", ret);
14459                 return ret;
14460         }
14461
14462         return 0;
14463 }
14464
14465 static struct drm_framebuffer *
14466 intel_user_framebuffer_create(struct drm_device *dev,
14467                               struct drm_file *filp,
14468                               struct drm_mode_fb_cmd2 *mode_cmd)
14469 {
14470         struct drm_i915_gem_object *obj;
14471
14472         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14473                                                 mode_cmd->handles[0]));
14474         if (&obj->base == NULL)
14475                 return ERR_PTR(-ENOENT);
14476
14477         return intel_framebuffer_create(dev, mode_cmd, obj);
14478 }
14479
14480 #ifndef CONFIG_DRM_I915_FBDEV
14481 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14482 {
14483 }
14484 #endif
14485
14486 static const struct drm_mode_config_funcs intel_mode_funcs = {
14487         .fb_create = intel_user_framebuffer_create,
14488         .output_poll_changed = intel_fbdev_output_poll_changed,
14489         .atomic_check = intel_atomic_check,
14490         .atomic_commit = intel_atomic_commit,
14491         .atomic_state_alloc = intel_atomic_state_alloc,
14492         .atomic_state_clear = intel_atomic_state_clear,
14493 };
14494
14495 /* Set up chip specific display functions */
14496 static void intel_init_display(struct drm_device *dev)
14497 {
14498         struct drm_i915_private *dev_priv = dev->dev_private;
14499
14500         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14501                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14502         else if (IS_CHERRYVIEW(dev))
14503                 dev_priv->display.find_dpll = chv_find_best_dpll;
14504         else if (IS_VALLEYVIEW(dev))
14505                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14506         else if (IS_PINEVIEW(dev))
14507                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14508         else
14509                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14510
14511         if (INTEL_INFO(dev)->gen >= 9) {
14512                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14513                 dev_priv->display.get_initial_plane_config =
14514                         skylake_get_initial_plane_config;
14515                 dev_priv->display.crtc_compute_clock =
14516                         haswell_crtc_compute_clock;
14517                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14518                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14519                 dev_priv->display.update_primary_plane =
14520                         skylake_update_primary_plane;
14521         } else if (HAS_DDI(dev)) {
14522                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14523                 dev_priv->display.get_initial_plane_config =
14524                         ironlake_get_initial_plane_config;
14525                 dev_priv->display.crtc_compute_clock =
14526                         haswell_crtc_compute_clock;
14527                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14528                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14529                 dev_priv->display.update_primary_plane =
14530                         ironlake_update_primary_plane;
14531         } else if (HAS_PCH_SPLIT(dev)) {
14532                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14533                 dev_priv->display.get_initial_plane_config =
14534                         ironlake_get_initial_plane_config;
14535                 dev_priv->display.crtc_compute_clock =
14536                         ironlake_crtc_compute_clock;
14537                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14538                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14539                 dev_priv->display.update_primary_plane =
14540                         ironlake_update_primary_plane;
14541         } else if (IS_VALLEYVIEW(dev)) {
14542                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14543                 dev_priv->display.get_initial_plane_config =
14544                         i9xx_get_initial_plane_config;
14545                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14546                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14547                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14548                 dev_priv->display.update_primary_plane =
14549                         i9xx_update_primary_plane;
14550         } else {
14551                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14552                 dev_priv->display.get_initial_plane_config =
14553                         i9xx_get_initial_plane_config;
14554                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14555                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14556                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14557                 dev_priv->display.update_primary_plane =
14558                         i9xx_update_primary_plane;
14559         }
14560
14561         /* Returns the core display clock speed */
14562         if (IS_SKYLAKE(dev))
14563                 dev_priv->display.get_display_clock_speed =
14564                         skylake_get_display_clock_speed;
14565         else if (IS_BROXTON(dev))
14566                 dev_priv->display.get_display_clock_speed =
14567                         broxton_get_display_clock_speed;
14568         else if (IS_BROADWELL(dev))
14569                 dev_priv->display.get_display_clock_speed =
14570                         broadwell_get_display_clock_speed;
14571         else if (IS_HASWELL(dev))
14572                 dev_priv->display.get_display_clock_speed =
14573                         haswell_get_display_clock_speed;
14574         else if (IS_VALLEYVIEW(dev))
14575                 dev_priv->display.get_display_clock_speed =
14576                         valleyview_get_display_clock_speed;
14577         else if (IS_GEN5(dev))
14578                 dev_priv->display.get_display_clock_speed =
14579                         ilk_get_display_clock_speed;
14580         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14581                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14582                 dev_priv->display.get_display_clock_speed =
14583                         i945_get_display_clock_speed;
14584         else if (IS_GM45(dev))
14585                 dev_priv->display.get_display_clock_speed =
14586                         gm45_get_display_clock_speed;
14587         else if (IS_CRESTLINE(dev))
14588                 dev_priv->display.get_display_clock_speed =
14589                         i965gm_get_display_clock_speed;
14590         else if (IS_PINEVIEW(dev))
14591                 dev_priv->display.get_display_clock_speed =
14592                         pnv_get_display_clock_speed;
14593         else if (IS_G33(dev) || IS_G4X(dev))
14594                 dev_priv->display.get_display_clock_speed =
14595                         g33_get_display_clock_speed;
14596         else if (IS_I915G(dev))
14597                 dev_priv->display.get_display_clock_speed =
14598                         i915_get_display_clock_speed;
14599         else if (IS_I945GM(dev) || IS_845G(dev))
14600                 dev_priv->display.get_display_clock_speed =
14601                         i9xx_misc_get_display_clock_speed;
14602         else if (IS_PINEVIEW(dev))
14603                 dev_priv->display.get_display_clock_speed =
14604                         pnv_get_display_clock_speed;
14605         else if (IS_I915GM(dev))
14606                 dev_priv->display.get_display_clock_speed =
14607                         i915gm_get_display_clock_speed;
14608         else if (IS_I865G(dev))
14609                 dev_priv->display.get_display_clock_speed =
14610                         i865_get_display_clock_speed;
14611         else if (IS_I85X(dev))
14612                 dev_priv->display.get_display_clock_speed =
14613                         i85x_get_display_clock_speed;
14614         else { /* 830 */
14615                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14616                 dev_priv->display.get_display_clock_speed =
14617                         i830_get_display_clock_speed;
14618         }
14619
14620         if (IS_GEN5(dev)) {
14621                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14622         } else if (IS_GEN6(dev)) {
14623                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14624         } else if (IS_IVYBRIDGE(dev)) {
14625                 /* FIXME: detect B0+ stepping and use auto training */
14626                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14627         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14628                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14629                 if (IS_BROADWELL(dev)) {
14630                         dev_priv->display.modeset_commit_cdclk =
14631                                 broadwell_modeset_commit_cdclk;
14632                         dev_priv->display.modeset_calc_cdclk =
14633                                 broadwell_modeset_calc_cdclk;
14634                 }
14635         } else if (IS_VALLEYVIEW(dev)) {
14636                 dev_priv->display.modeset_commit_cdclk =
14637                         valleyview_modeset_commit_cdclk;
14638                 dev_priv->display.modeset_calc_cdclk =
14639                         valleyview_modeset_calc_cdclk;
14640         } else if (IS_BROXTON(dev)) {
14641                 dev_priv->display.modeset_commit_cdclk =
14642                         broxton_modeset_commit_cdclk;
14643                 dev_priv->display.modeset_calc_cdclk =
14644                         broxton_modeset_calc_cdclk;
14645         }
14646
14647         switch (INTEL_INFO(dev)->gen) {
14648         case 2:
14649                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14650                 break;
14651
14652         case 3:
14653                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14654                 break;
14655
14656         case 4:
14657         case 5:
14658                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14659                 break;
14660
14661         case 6:
14662                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14663                 break;
14664         case 7:
14665         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14666                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14667                 break;
14668         case 9:
14669                 /* Drop through - unsupported since execlist only. */
14670         default:
14671                 /* Default just returns -ENODEV to indicate unsupported */
14672                 dev_priv->display.queue_flip = intel_default_queue_flip;
14673         }
14674
14675         intel_panel_init_backlight_funcs(dev);
14676
14677         mutex_init(&dev_priv->pps_mutex);
14678 }
14679
14680 /*
14681  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14682  * resume, or other times.  This quirk makes sure that's the case for
14683  * affected systems.
14684  */
14685 static void quirk_pipea_force(struct drm_device *dev)
14686 {
14687         struct drm_i915_private *dev_priv = dev->dev_private;
14688
14689         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14690         DRM_INFO("applying pipe a force quirk\n");
14691 }
14692
14693 static void quirk_pipeb_force(struct drm_device *dev)
14694 {
14695         struct drm_i915_private *dev_priv = dev->dev_private;
14696
14697         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14698         DRM_INFO("applying pipe b force quirk\n");
14699 }
14700
14701 /*
14702  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14703  */
14704 static void quirk_ssc_force_disable(struct drm_device *dev)
14705 {
14706         struct drm_i915_private *dev_priv = dev->dev_private;
14707         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14708         DRM_INFO("applying lvds SSC disable quirk\n");
14709 }
14710
14711 /*
14712  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14713  * brightness value
14714  */
14715 static void quirk_invert_brightness(struct drm_device *dev)
14716 {
14717         struct drm_i915_private *dev_priv = dev->dev_private;
14718         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14719         DRM_INFO("applying inverted panel brightness quirk\n");
14720 }
14721
14722 /* Some VBT's incorrectly indicate no backlight is present */
14723 static void quirk_backlight_present(struct drm_device *dev)
14724 {
14725         struct drm_i915_private *dev_priv = dev->dev_private;
14726         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14727         DRM_INFO("applying backlight present quirk\n");
14728 }
14729
14730 struct intel_quirk {
14731         int device;
14732         int subsystem_vendor;
14733         int subsystem_device;
14734         void (*hook)(struct drm_device *dev);
14735 };
14736
14737 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14738 struct intel_dmi_quirk {
14739         void (*hook)(struct drm_device *dev);
14740         const struct dmi_system_id (*dmi_id_list)[];
14741 };
14742
14743 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14744 {
14745         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14746         return 1;
14747 }
14748
14749 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14750         {
14751                 .dmi_id_list = &(const struct dmi_system_id[]) {
14752                         {
14753                                 .callback = intel_dmi_reverse_brightness,
14754                                 .ident = "NCR Corporation",
14755                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14756                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14757                                 },
14758                         },
14759                         { }  /* terminating entry */
14760                 },
14761                 .hook = quirk_invert_brightness,
14762         },
14763 };
14764
14765 static struct intel_quirk intel_quirks[] = {
14766         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14767         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14768
14769         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14770         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14771
14772         /* 830 needs to leave pipe A & dpll A up */
14773         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14774
14775         /* 830 needs to leave pipe B & dpll B up */
14776         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14777
14778         /* Lenovo U160 cannot use SSC on LVDS */
14779         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14780
14781         /* Sony Vaio Y cannot use SSC on LVDS */
14782         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14783
14784         /* Acer Aspire 5734Z must invert backlight brightness */
14785         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14786
14787         /* Acer/eMachines G725 */
14788         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14789
14790         /* Acer/eMachines e725 */
14791         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14792
14793         /* Acer/Packard Bell NCL20 */
14794         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14795
14796         /* Acer Aspire 4736Z */
14797         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14798
14799         /* Acer Aspire 5336 */
14800         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14801
14802         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14803         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14804
14805         /* Acer C720 Chromebook (Core i3 4005U) */
14806         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14807
14808         /* Apple Macbook 2,1 (Core 2 T7400) */
14809         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14810
14811         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14812         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14813
14814         /* HP Chromebook 14 (Celeron 2955U) */
14815         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14816
14817         /* Dell Chromebook 11 */
14818         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14819 };
14820
14821 static void intel_init_quirks(struct drm_device *dev)
14822 {
14823         struct pci_dev *d = dev->pdev;
14824         int i;
14825
14826         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14827                 struct intel_quirk *q = &intel_quirks[i];
14828
14829                 if (d->device == q->device &&
14830                     (d->subsystem_vendor == q->subsystem_vendor ||
14831                      q->subsystem_vendor == PCI_ANY_ID) &&
14832                     (d->subsystem_device == q->subsystem_device ||
14833                      q->subsystem_device == PCI_ANY_ID))
14834                         q->hook(dev);
14835         }
14836         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14837                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14838                         intel_dmi_quirks[i].hook(dev);
14839         }
14840 }
14841
14842 /* Disable the VGA plane that we never use */
14843 static void i915_disable_vga(struct drm_device *dev)
14844 {
14845         struct drm_i915_private *dev_priv = dev->dev_private;
14846         u8 sr1;
14847         u32 vga_reg = i915_vgacntrl_reg(dev);
14848
14849         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14850         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14851         outb(SR01, VGA_SR_INDEX);
14852         sr1 = inb(VGA_SR_DATA);
14853         outb(sr1 | 1<<5, VGA_SR_DATA);
14854         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14855         udelay(300);
14856
14857         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14858         POSTING_READ(vga_reg);
14859 }
14860
14861 void intel_modeset_init_hw(struct drm_device *dev)
14862 {
14863         intel_update_cdclk(dev);
14864         intel_prepare_ddi(dev);
14865         intel_init_clock_gating(dev);
14866         intel_enable_gt_powersave(dev);
14867 }
14868
14869 void intel_modeset_init(struct drm_device *dev)
14870 {
14871         struct drm_i915_private *dev_priv = dev->dev_private;
14872         int sprite, ret;
14873         enum pipe pipe;
14874         struct intel_crtc *crtc;
14875
14876         drm_mode_config_init(dev);
14877
14878         dev->mode_config.min_width = 0;
14879         dev->mode_config.min_height = 0;
14880
14881         dev->mode_config.preferred_depth = 24;
14882         dev->mode_config.prefer_shadow = 1;
14883
14884         dev->mode_config.allow_fb_modifiers = true;
14885
14886         dev->mode_config.funcs = &intel_mode_funcs;
14887
14888         intel_init_quirks(dev);
14889
14890         intel_init_pm(dev);
14891
14892         if (INTEL_INFO(dev)->num_pipes == 0)
14893                 return;
14894
14895         intel_init_display(dev);
14896         intel_init_audio(dev);
14897
14898         if (IS_GEN2(dev)) {
14899                 dev->mode_config.max_width = 2048;
14900                 dev->mode_config.max_height = 2048;
14901         } else if (IS_GEN3(dev)) {
14902                 dev->mode_config.max_width = 4096;
14903                 dev->mode_config.max_height = 4096;
14904         } else {
14905                 dev->mode_config.max_width = 8192;
14906                 dev->mode_config.max_height = 8192;
14907         }
14908
14909         if (IS_845G(dev) || IS_I865G(dev)) {
14910                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14911                 dev->mode_config.cursor_height = 1023;
14912         } else if (IS_GEN2(dev)) {
14913                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14914                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14915         } else {
14916                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14917                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14918         }
14919
14920         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14921
14922         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14923                       INTEL_INFO(dev)->num_pipes,
14924                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14925
14926         for_each_pipe(dev_priv, pipe) {
14927                 intel_crtc_init(dev, pipe);
14928                 for_each_sprite(dev_priv, pipe, sprite) {
14929                         ret = intel_plane_init(dev, pipe, sprite);
14930                         if (ret)
14931                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14932                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
14933                 }
14934         }
14935
14936         intel_init_dpio(dev);
14937
14938         intel_shared_dpll_init(dev);
14939
14940         /* Just disable it once at startup */
14941         i915_disable_vga(dev);
14942         intel_setup_outputs(dev);
14943
14944         /* Just in case the BIOS is doing something questionable. */
14945         intel_fbc_disable(dev_priv);
14946
14947         drm_modeset_lock_all(dev);
14948         intel_modeset_setup_hw_state(dev);
14949         drm_modeset_unlock_all(dev);
14950
14951         for_each_intel_crtc(dev, crtc) {
14952                 struct intel_initial_plane_config plane_config = {};
14953
14954                 if (!crtc->active)
14955                         continue;
14956
14957                 /*
14958                  * Note that reserving the BIOS fb up front prevents us
14959                  * from stuffing other stolen allocations like the ring
14960                  * on top.  This prevents some ugliness at boot time, and
14961                  * can even allow for smooth boot transitions if the BIOS
14962                  * fb is large enough for the active pipe configuration.
14963                  */
14964                 dev_priv->display.get_initial_plane_config(crtc,
14965                                                            &plane_config);
14966
14967                 /*
14968                  * If the fb is shared between multiple heads, we'll
14969                  * just get the first one.
14970                  */
14971                 intel_find_initial_plane_obj(crtc, &plane_config);
14972         }
14973 }
14974
14975 static void intel_enable_pipe_a(struct drm_device *dev)
14976 {
14977         struct intel_connector *connector;
14978         struct drm_connector *crt = NULL;
14979         struct intel_load_detect_pipe load_detect_temp;
14980         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14981
14982         /* We can't just switch on the pipe A, we need to set things up with a
14983          * proper mode and output configuration. As a gross hack, enable pipe A
14984          * by enabling the load detect pipe once. */
14985         for_each_intel_connector(dev, connector) {
14986                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14987                         crt = &connector->base;
14988                         break;
14989                 }
14990         }
14991
14992         if (!crt)
14993                 return;
14994
14995         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14996                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14997 }
14998
14999 static bool
15000 intel_check_plane_mapping(struct intel_crtc *crtc)
15001 {
15002         struct drm_device *dev = crtc->base.dev;
15003         struct drm_i915_private *dev_priv = dev->dev_private;
15004         u32 reg, val;
15005
15006         if (INTEL_INFO(dev)->num_pipes == 1)
15007                 return true;
15008
15009         reg = DSPCNTR(!crtc->plane);
15010         val = I915_READ(reg);
15011
15012         if ((val & DISPLAY_PLANE_ENABLE) &&
15013             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15014                 return false;
15015
15016         return true;
15017 }
15018
15019 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15020 {
15021         struct drm_device *dev = crtc->base.dev;
15022         struct drm_i915_private *dev_priv = dev->dev_private;
15023         struct intel_encoder *encoder;
15024         u32 reg;
15025         bool enable;
15026
15027         /* Clear any frame start delays used for debugging left by the BIOS */
15028         reg = PIPECONF(crtc->config->cpu_transcoder);
15029         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15030
15031         /* restore vblank interrupts to correct state */
15032         drm_crtc_vblank_reset(&crtc->base);
15033         if (crtc->active) {
15034                 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15035                 update_scanline_offset(crtc);
15036                 drm_crtc_vblank_on(&crtc->base);
15037         }
15038
15039         /* We need to sanitize the plane -> pipe mapping first because this will
15040          * disable the crtc (and hence change the state) if it is wrong. Note
15041          * that gen4+ has a fixed plane -> pipe mapping.  */
15042         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15043                 bool plane;
15044
15045                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15046                               crtc->base.base.id);
15047
15048                 /* Pipe has the wrong plane attached and the plane is active.
15049                  * Temporarily change the plane mapping and disable everything
15050                  * ...  */
15051                 plane = crtc->plane;
15052                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15053                 crtc->plane = !plane;
15054                 intel_crtc_disable_noatomic(&crtc->base);
15055                 crtc->plane = plane;
15056         }
15057
15058         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15059             crtc->pipe == PIPE_A && !crtc->active) {
15060                 /* BIOS forgot to enable pipe A, this mostly happens after
15061                  * resume. Force-enable the pipe to fix this, the update_dpms
15062                  * call below we restore the pipe to the right state, but leave
15063                  * the required bits on. */
15064                 intel_enable_pipe_a(dev);
15065         }
15066
15067         /* Adjust the state of the output pipe according to whether we
15068          * have active connectors/encoders. */
15069         enable = false;
15070         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15071                 enable |= encoder->connectors_active;
15072
15073         if (!enable)
15074                 intel_crtc_disable_noatomic(&crtc->base);
15075
15076         if (crtc->active != crtc->base.state->active) {
15077
15078                 /* This can happen either due to bugs in the get_hw_state
15079                  * functions or because of calls to intel_crtc_disable_noatomic,
15080                  * or because the pipe is force-enabled due to the
15081                  * pipe A quirk. */
15082                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15083                               crtc->base.base.id,
15084                               crtc->base.state->enable ? "enabled" : "disabled",
15085                               crtc->active ? "enabled" : "disabled");
15086
15087                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15088                 crtc->base.state->active = crtc->active;
15089                 crtc->base.enabled = crtc->active;
15090
15091                 /* Because we only establish the connector -> encoder ->
15092                  * crtc links if something is active, this means the
15093                  * crtc is now deactivated. Break the links. connector
15094                  * -> encoder links are only establish when things are
15095                  *  actually up, hence no need to break them. */
15096                 WARN_ON(crtc->active);
15097
15098                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
15099                         WARN_ON(encoder->connectors_active);
15100                         encoder->base.crtc = NULL;
15101                 }
15102         }
15103
15104         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15105                 /*
15106                  * We start out with underrun reporting disabled to avoid races.
15107                  * For correct bookkeeping mark this on active crtcs.
15108                  *
15109                  * Also on gmch platforms we dont have any hardware bits to
15110                  * disable the underrun reporting. Which means we need to start
15111                  * out with underrun reporting disabled also on inactive pipes,
15112                  * since otherwise we'll complain about the garbage we read when
15113                  * e.g. coming up after runtime pm.
15114                  *
15115                  * No protection against concurrent access is required - at
15116                  * worst a fifo underrun happens which also sets this to false.
15117                  */
15118                 crtc->cpu_fifo_underrun_disabled = true;
15119                 crtc->pch_fifo_underrun_disabled = true;
15120         }
15121 }
15122
15123 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15124 {
15125         struct intel_connector *connector;
15126         struct drm_device *dev = encoder->base.dev;
15127
15128         /* We need to check both for a crtc link (meaning that the
15129          * encoder is active and trying to read from a pipe) and the
15130          * pipe itself being active. */
15131         bool has_active_crtc = encoder->base.crtc &&
15132                 to_intel_crtc(encoder->base.crtc)->active;
15133
15134         if (encoder->connectors_active && !has_active_crtc) {
15135                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15136                               encoder->base.base.id,
15137                               encoder->base.name);
15138
15139                 /* Connector is active, but has no active pipe. This is
15140                  * fallout from our resume register restoring. Disable
15141                  * the encoder manually again. */
15142                 if (encoder->base.crtc) {
15143                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15144                                       encoder->base.base.id,
15145                                       encoder->base.name);
15146                         encoder->disable(encoder);
15147                         if (encoder->post_disable)
15148                                 encoder->post_disable(encoder);
15149                 }
15150                 encoder->base.crtc = NULL;
15151                 encoder->connectors_active = false;
15152
15153                 /* Inconsistent output/port/pipe state happens presumably due to
15154                  * a bug in one of the get_hw_state functions. Or someplace else
15155                  * in our code, like the register restore mess on resume. Clamp
15156                  * things to off as a safer default. */
15157                 for_each_intel_connector(dev, connector) {
15158                         if (connector->encoder != encoder)
15159                                 continue;
15160                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15161                         connector->base.encoder = NULL;
15162                 }
15163         }
15164         /* Enabled encoders without active connectors will be fixed in
15165          * the crtc fixup. */
15166 }
15167
15168 void i915_redisable_vga_power_on(struct drm_device *dev)
15169 {
15170         struct drm_i915_private *dev_priv = dev->dev_private;
15171         u32 vga_reg = i915_vgacntrl_reg(dev);
15172
15173         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15174                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15175                 i915_disable_vga(dev);
15176         }
15177 }
15178
15179 void i915_redisable_vga(struct drm_device *dev)
15180 {
15181         struct drm_i915_private *dev_priv = dev->dev_private;
15182
15183         /* This function can be called both from intel_modeset_setup_hw_state or
15184          * at a very early point in our resume sequence, where the power well
15185          * structures are not yet restored. Since this function is at a very
15186          * paranoid "someone might have enabled VGA while we were not looking"
15187          * level, just check if the power well is enabled instead of trying to
15188          * follow the "don't touch the power well if we don't need it" policy
15189          * the rest of the driver uses. */
15190         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15191                 return;
15192
15193         i915_redisable_vga_power_on(dev);
15194 }
15195
15196 static bool primary_get_hw_state(struct intel_crtc *crtc)
15197 {
15198         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15199
15200         return !!(I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE);
15201 }
15202
15203 static void readout_plane_state(struct intel_crtc *crtc,
15204                                 struct intel_crtc_state *crtc_state)
15205 {
15206         struct intel_plane *p;
15207         struct intel_plane_state *plane_state;
15208         bool active = crtc_state->base.active;
15209
15210         for_each_intel_plane(crtc->base.dev, p) {
15211                 if (crtc->pipe != p->pipe)
15212                         continue;
15213
15214                 plane_state = to_intel_plane_state(p->base.state);
15215
15216                 if (p->base.type == DRM_PLANE_TYPE_PRIMARY)
15217                         plane_state->visible = primary_get_hw_state(crtc);
15218                 else {
15219                         if (active)
15220                                 p->disable_plane(&p->base, &crtc->base);
15221
15222                         plane_state->visible = false;
15223                 }
15224         }
15225 }
15226
15227 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15228 {
15229         struct drm_i915_private *dev_priv = dev->dev_private;
15230         enum pipe pipe;
15231         struct intel_crtc *crtc;
15232         struct intel_encoder *encoder;
15233         struct intel_connector *connector;
15234         int i;
15235
15236         for_each_intel_crtc(dev, crtc) {
15237                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15238                 memset(crtc->config, 0, sizeof(*crtc->config));
15239                 crtc->config->base.crtc = &crtc->base;
15240
15241                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15242                                                                  crtc->config);
15243
15244                 crtc->base.state->active = crtc->active;
15245                 crtc->base.enabled = crtc->active;
15246
15247                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15248                 if (crtc->base.state->active) {
15249                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15250                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15251                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15252
15253                         /*
15254                          * The initial mode needs to be set in order to keep
15255                          * the atomic core happy. It wants a valid mode if the
15256                          * crtc's enabled, so we do the above call.
15257                          *
15258                          * At this point some state updated by the connectors
15259                          * in their ->detect() callback has not run yet, so
15260                          * no recalculation can be done yet.
15261                          *
15262                          * Even if we could do a recalculation and modeset
15263                          * right now it would cause a double modeset if
15264                          * fbdev or userspace chooses a different initial mode.
15265                          *
15266                          * If that happens, someone indicated they wanted a
15267                          * mode change, which means it's safe to do a full
15268                          * recalculation.
15269                          */
15270                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15271                 }
15272
15273                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15274                 readout_plane_state(crtc, to_intel_crtc_state(crtc->base.state));
15275
15276                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15277                               crtc->base.base.id,
15278                               crtc->active ? "enabled" : "disabled");
15279         }
15280
15281         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15282                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15283
15284                 pll->on = pll->get_hw_state(dev_priv, pll,
15285                                             &pll->config.hw_state);
15286                 pll->active = 0;
15287                 pll->config.crtc_mask = 0;
15288                 for_each_intel_crtc(dev, crtc) {
15289                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15290                                 pll->active++;
15291                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15292                         }
15293                 }
15294
15295                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15296                               pll->name, pll->config.crtc_mask, pll->on);
15297
15298                 if (pll->config.crtc_mask)
15299                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15300         }
15301
15302         for_each_intel_encoder(dev, encoder) {
15303                 pipe = 0;
15304
15305                 if (encoder->get_hw_state(encoder, &pipe)) {
15306                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15307                         encoder->base.crtc = &crtc->base;
15308                         encoder->get_config(encoder, crtc->config);
15309                 } else {
15310                         encoder->base.crtc = NULL;
15311                 }
15312
15313                 encoder->connectors_active = false;
15314                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15315                               encoder->base.base.id,
15316                               encoder->base.name,
15317                               encoder->base.crtc ? "enabled" : "disabled",
15318                               pipe_name(pipe));
15319         }
15320
15321         for_each_intel_connector(dev, connector) {
15322                 if (connector->get_hw_state(connector)) {
15323                         connector->base.dpms = DRM_MODE_DPMS_ON;
15324                         connector->encoder->connectors_active = true;
15325                         connector->base.encoder = &connector->encoder->base;
15326                 } else {
15327                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15328                         connector->base.encoder = NULL;
15329                 }
15330                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15331                               connector->base.base.id,
15332                               connector->base.name,
15333                               connector->base.encoder ? "enabled" : "disabled");
15334         }
15335 }
15336
15337 /* Scan out the current hw modeset state,
15338  * and sanitizes it to the current state
15339  */
15340 static void
15341 intel_modeset_setup_hw_state(struct drm_device *dev)
15342 {
15343         struct drm_i915_private *dev_priv = dev->dev_private;
15344         enum pipe pipe;
15345         struct intel_crtc *crtc;
15346         struct intel_encoder *encoder;
15347         int i;
15348
15349         intel_modeset_readout_hw_state(dev);
15350
15351         /* HW state is read out, now we need to sanitize this mess. */
15352         for_each_intel_encoder(dev, encoder) {
15353                 intel_sanitize_encoder(encoder);
15354         }
15355
15356         for_each_pipe(dev_priv, pipe) {
15357                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15358                 intel_sanitize_crtc(crtc);
15359                 intel_dump_pipe_config(crtc, crtc->config,
15360                                        "[setup_hw_state]");
15361         }
15362
15363         intel_modeset_update_connector_atomic_state(dev);
15364
15365         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15366                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15367
15368                 if (!pll->on || pll->active)
15369                         continue;
15370
15371                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15372
15373                 pll->disable(dev_priv, pll);
15374                 pll->on = false;
15375         }
15376
15377         if (IS_VALLEYVIEW(dev))
15378                 vlv_wm_get_hw_state(dev);
15379         else if (IS_GEN9(dev))
15380                 skl_wm_get_hw_state(dev);
15381         else if (HAS_PCH_SPLIT(dev))
15382                 ilk_wm_get_hw_state(dev);
15383
15384         for_each_intel_crtc(dev, crtc) {
15385                 unsigned long put_domains;
15386
15387                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15388                 if (WARN_ON(put_domains))
15389                         modeset_put_power_domains(dev_priv, put_domains);
15390         }
15391         intel_display_set_init_power(dev_priv, false);
15392 }
15393
15394 void intel_display_resume(struct drm_device *dev)
15395 {
15396         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15397         struct intel_connector *conn;
15398         struct intel_plane *plane;
15399         struct drm_crtc *crtc;
15400         int ret;
15401
15402         if (!state)
15403                 return;
15404
15405         state->acquire_ctx = dev->mode_config.acquire_ctx;
15406
15407         /* preserve complete old state, including dpll */
15408         intel_atomic_get_shared_dpll_state(state);
15409
15410         for_each_crtc(dev, crtc) {
15411                 struct drm_crtc_state *crtc_state =
15412                         drm_atomic_get_crtc_state(state, crtc);
15413
15414                 ret = PTR_ERR_OR_ZERO(crtc_state);
15415                 if (ret)
15416                         goto err;
15417
15418                 /* force a restore */
15419                 crtc_state->mode_changed = true;
15420         }
15421
15422         for_each_intel_plane(dev, plane) {
15423                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15424                 if (ret)
15425                         goto err;
15426         }
15427
15428         for_each_intel_connector(dev, conn) {
15429                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15430                 if (ret)
15431                         goto err;
15432         }
15433
15434         intel_modeset_setup_hw_state(dev);
15435
15436         i915_redisable_vga(dev);
15437         ret = drm_atomic_commit(state);
15438         if (!ret)
15439                 return;
15440
15441 err:
15442         DRM_ERROR("Restoring old state failed with %i\n", ret);
15443         drm_atomic_state_free(state);
15444 }
15445
15446 void intel_modeset_gem_init(struct drm_device *dev)
15447 {
15448         struct drm_i915_private *dev_priv = dev->dev_private;
15449         struct drm_crtc *c;
15450         struct drm_i915_gem_object *obj;
15451         int ret;
15452
15453         mutex_lock(&dev->struct_mutex);
15454         intel_init_gt_powersave(dev);
15455         mutex_unlock(&dev->struct_mutex);
15456
15457         /*
15458          * There may be no VBT; and if the BIOS enabled SSC we can
15459          * just keep using it to avoid unnecessary flicker.  Whereas if the
15460          * BIOS isn't using it, don't assume it will work even if the VBT
15461          * indicates as much.
15462          */
15463         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15464                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15465                                                 DREF_SSC1_ENABLE);
15466
15467         intel_modeset_init_hw(dev);
15468
15469         intel_setup_overlay(dev);
15470
15471         /*
15472          * Make sure any fbs we allocated at startup are properly
15473          * pinned & fenced.  When we do the allocation it's too early
15474          * for this.
15475          */
15476         for_each_crtc(dev, c) {
15477                 obj = intel_fb_obj(c->primary->fb);
15478                 if (obj == NULL)
15479                         continue;
15480
15481                 mutex_lock(&dev->struct_mutex);
15482                 ret = intel_pin_and_fence_fb_obj(c->primary,
15483                                                  c->primary->fb,
15484                                                  c->primary->state,
15485                                                  NULL, NULL);
15486                 mutex_unlock(&dev->struct_mutex);
15487                 if (ret) {
15488                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15489                                   to_intel_crtc(c)->pipe);
15490                         drm_framebuffer_unreference(c->primary->fb);
15491                         c->primary->fb = NULL;
15492                         c->primary->crtc = c->primary->state->crtc = NULL;
15493                         update_state_fb(c->primary);
15494                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15495                 }
15496         }
15497
15498         intel_backlight_register(dev);
15499 }
15500
15501 void intel_connector_unregister(struct intel_connector *intel_connector)
15502 {
15503         struct drm_connector *connector = &intel_connector->base;
15504
15505         intel_panel_destroy_backlight(connector);
15506         drm_connector_unregister(connector);
15507 }
15508
15509 void intel_modeset_cleanup(struct drm_device *dev)
15510 {
15511         struct drm_i915_private *dev_priv = dev->dev_private;
15512         struct drm_connector *connector;
15513
15514         intel_disable_gt_powersave(dev);
15515
15516         intel_backlight_unregister(dev);
15517
15518         /*
15519          * Interrupts and polling as the first thing to avoid creating havoc.
15520          * Too much stuff here (turning of connectors, ...) would
15521          * experience fancy races otherwise.
15522          */
15523         intel_irq_uninstall(dev_priv);
15524
15525         /*
15526          * Due to the hpd irq storm handling the hotplug work can re-arm the
15527          * poll handlers. Hence disable polling after hpd handling is shut down.
15528          */
15529         drm_kms_helper_poll_fini(dev);
15530
15531         intel_unregister_dsm_handler();
15532
15533         intel_fbc_disable(dev_priv);
15534
15535         /* flush any delayed tasks or pending work */
15536         flush_scheduled_work();
15537
15538         /* destroy the backlight and sysfs files before encoders/connectors */
15539         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15540                 struct intel_connector *intel_connector;
15541
15542                 intel_connector = to_intel_connector(connector);
15543                 intel_connector->unregister(intel_connector);
15544         }
15545
15546         drm_mode_config_cleanup(dev);
15547
15548         intel_cleanup_overlay(dev);
15549
15550         mutex_lock(&dev->struct_mutex);
15551         intel_cleanup_gt_powersave(dev);
15552         mutex_unlock(&dev->struct_mutex);
15553 }
15554
15555 /*
15556  * Return which encoder is currently attached for connector.
15557  */
15558 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15559 {
15560         return &intel_attached_encoder(connector)->base;
15561 }
15562
15563 void intel_connector_attach_encoder(struct intel_connector *connector,
15564                                     struct intel_encoder *encoder)
15565 {
15566         connector->encoder = encoder;
15567         drm_mode_connector_attach_encoder(&connector->base,
15568                                           &encoder->base);
15569 }
15570
15571 /*
15572  * set vga decode state - true == enable VGA decode
15573  */
15574 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15575 {
15576         struct drm_i915_private *dev_priv = dev->dev_private;
15577         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15578         u16 gmch_ctrl;
15579
15580         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15581                 DRM_ERROR("failed to read control word\n");
15582                 return -EIO;
15583         }
15584
15585         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15586                 return 0;
15587
15588         if (state)
15589                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15590         else
15591                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15592
15593         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15594                 DRM_ERROR("failed to write control word\n");
15595                 return -EIO;
15596         }
15597
15598         return 0;
15599 }
15600
15601 struct intel_display_error_state {
15602
15603         u32 power_well_driver;
15604
15605         int num_transcoders;
15606
15607         struct intel_cursor_error_state {
15608                 u32 control;
15609                 u32 position;
15610                 u32 base;
15611                 u32 size;
15612         } cursor[I915_MAX_PIPES];
15613
15614         struct intel_pipe_error_state {
15615                 bool power_domain_on;
15616                 u32 source;
15617                 u32 stat;
15618         } pipe[I915_MAX_PIPES];
15619
15620         struct intel_plane_error_state {
15621                 u32 control;
15622                 u32 stride;
15623                 u32 size;
15624                 u32 pos;
15625                 u32 addr;
15626                 u32 surface;
15627                 u32 tile_offset;
15628         } plane[I915_MAX_PIPES];
15629
15630         struct intel_transcoder_error_state {
15631                 bool power_domain_on;
15632                 enum transcoder cpu_transcoder;
15633
15634                 u32 conf;
15635
15636                 u32 htotal;
15637                 u32 hblank;
15638                 u32 hsync;
15639                 u32 vtotal;
15640                 u32 vblank;
15641                 u32 vsync;
15642         } transcoder[4];
15643 };
15644
15645 struct intel_display_error_state *
15646 intel_display_capture_error_state(struct drm_device *dev)
15647 {
15648         struct drm_i915_private *dev_priv = dev->dev_private;
15649         struct intel_display_error_state *error;
15650         int transcoders[] = {
15651                 TRANSCODER_A,
15652                 TRANSCODER_B,
15653                 TRANSCODER_C,
15654                 TRANSCODER_EDP,
15655         };
15656         int i;
15657
15658         if (INTEL_INFO(dev)->num_pipes == 0)
15659                 return NULL;
15660
15661         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15662         if (error == NULL)
15663                 return NULL;
15664
15665         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15666                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15667
15668         for_each_pipe(dev_priv, i) {
15669                 error->pipe[i].power_domain_on =
15670                         __intel_display_power_is_enabled(dev_priv,
15671                                                          POWER_DOMAIN_PIPE(i));
15672                 if (!error->pipe[i].power_domain_on)
15673                         continue;
15674
15675                 error->cursor[i].control = I915_READ(CURCNTR(i));
15676                 error->cursor[i].position = I915_READ(CURPOS(i));
15677                 error->cursor[i].base = I915_READ(CURBASE(i));
15678
15679                 error->plane[i].control = I915_READ(DSPCNTR(i));
15680                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15681                 if (INTEL_INFO(dev)->gen <= 3) {
15682                         error->plane[i].size = I915_READ(DSPSIZE(i));
15683                         error->plane[i].pos = I915_READ(DSPPOS(i));
15684                 }
15685                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15686                         error->plane[i].addr = I915_READ(DSPADDR(i));
15687                 if (INTEL_INFO(dev)->gen >= 4) {
15688                         error->plane[i].surface = I915_READ(DSPSURF(i));
15689                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15690                 }
15691
15692                 error->pipe[i].source = I915_READ(PIPESRC(i));
15693
15694                 if (HAS_GMCH_DISPLAY(dev))
15695                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15696         }
15697
15698         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15699         if (HAS_DDI(dev_priv->dev))
15700                 error->num_transcoders++; /* Account for eDP. */
15701
15702         for (i = 0; i < error->num_transcoders; i++) {
15703                 enum transcoder cpu_transcoder = transcoders[i];
15704
15705                 error->transcoder[i].power_domain_on =
15706                         __intel_display_power_is_enabled(dev_priv,
15707                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15708                 if (!error->transcoder[i].power_domain_on)
15709                         continue;
15710
15711                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15712
15713                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15714                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15715                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15716                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15717                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15718                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15719                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15720         }
15721
15722         return error;
15723 }
15724
15725 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15726
15727 void
15728 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15729                                 struct drm_device *dev,
15730                                 struct intel_display_error_state *error)
15731 {
15732         struct drm_i915_private *dev_priv = dev->dev_private;
15733         int i;
15734
15735         if (!error)
15736                 return;
15737
15738         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15739         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15740                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15741                            error->power_well_driver);
15742         for_each_pipe(dev_priv, i) {
15743                 err_printf(m, "Pipe [%d]:\n", i);
15744                 err_printf(m, "  Power: %s\n",
15745                            error->pipe[i].power_domain_on ? "on" : "off");
15746                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15747                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15748
15749                 err_printf(m, "Plane [%d]:\n", i);
15750                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15751                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15752                 if (INTEL_INFO(dev)->gen <= 3) {
15753                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15754                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15755                 }
15756                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15757                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15758                 if (INTEL_INFO(dev)->gen >= 4) {
15759                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15760                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15761                 }
15762
15763                 err_printf(m, "Cursor [%d]:\n", i);
15764                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15765                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15766                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15767         }
15768
15769         for (i = 0; i < error->num_transcoders; i++) {
15770                 err_printf(m, "CPU transcoder: %c\n",
15771                            transcoder_name(error->transcoder[i].cpu_transcoder));
15772                 err_printf(m, "  Power: %s\n",
15773                            error->transcoder[i].power_domain_on ? "on" : "off");
15774                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15775                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15776                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15777                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15778                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15779                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15780                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15781         }
15782 }
15783
15784 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15785 {
15786         struct intel_crtc *crtc;
15787
15788         for_each_intel_crtc(dev, crtc) {
15789                 struct intel_unpin_work *work;
15790
15791                 spin_lock_irq(&dev->event_lock);
15792
15793                 work = crtc->unpin_work;
15794
15795                 if (work && work->event &&
15796                     work->event->base.file_priv == file) {
15797                         kfree(work->event);
15798                         work->event = NULL;
15799                 }
15800
15801                 spin_unlock_irq(&dev->event_lock);
15802         }
15803 }